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Abstract

In the academic field of computer-aided product development, the role of the design tool is to
support engineering designers to develop and integrate simulation models. Used to save time
and costs in product development process, the simulation model, however, introduces
additional costs for its development and integration, which often become considerably large
due to the fact that many, complex simulation models need to be integrated. Moreover, the
result of integration and the effort taken during the integration process are often not reused
for other product development projects. In this paper, we attempt to develop a design tool that
can capture integration knowledge and make the knowledge reusable for other design tasks.
More specifically, we are interested in the two kinds of integration knowledge: the first
captured in the form of a graph structure associating simulation models, called the integration
structure, and the second generalized from script codes into rule-based patterns, called the
integration code pattern. An integration mechanism and a pattern generalization algorithm
have been developed and incorporated into a design tool utilizing a new integration model
called catalog mode/, a model that enables us to reuse the integration structure and code
patterns of one model to quickly build another. Application scenarios have demonstrated the
effectiveness of the design tool: The same integration task could be performed in less time,
and repetitive and error-prone elements in the task were substantially reduced as a result of
reusing integration knowledge in the simulation models.

Thesis Supervisor: David Wallace
Title: Esther and Harold E. Edgerton Associate Professor
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Chapter 1 Introduction

1.1. Motivation

As foreseen by social scientists, both aging population and unemployment are likely to be
growing sources of social problems in many countries. Interestingly, technological development and
free-market competition are causal forces that lead to improvement in quality of life while
simultaneously giving rise to an aging population and reduced labor needs. Even though no one yet
has come up with a clear solution for this dilemma, it can be generally agreed upon that we need to
develop more job opportunities that create greater value by taking advantage of exclusively human
capabilities, which are not subject to replacement by automation.

Design, be it of software, machines, or organizations, is one of the novel tasks that rely
heavily on human creativity and experience, so I conjecture that designers and inventors will be
increasingly important in the future. However, design is often thought to be a task best suited to
talented, younger people — yet future design problems are likely to become increasingly complex,
combining diversified customer needs, converging product functionalities, and rising environmental
concerns. A challenging mission for design tool technologies of the future will be to allow a wider
range of designers to creatively tackle increasingly complex design problems.

To address this challenge, I believe that a high priority should be placed on advancing two
key functional attributes of design tools: flexibility and usability. Both functionalities aim at
efficiently creating complex models, but take different approaches. The role of flexibility is to make
a design tool manage changes in requirements and configurations of simulation models efficiently.

The more flexible a tool is, the more complex problems designers can tackle, without being



overwhelmed by redundant, repetitive tasks introduced by design requirement changes or design
exploration for a better product configuration. Meanwhile, usability seeks for compatibility with the
human cognitive system. Based on the assumption that the interaction between a computer and a
human is most efficient when the computer has an interface compatible with the underlying
mechanism of the brain and thereby can utilize most capabilities of the brain, the role of usability is
to deliver complex information in an easily digestible form, preferably customized for each designer.
That way, the thought processes of designers will not distracted by procedural, tool-operation issues.

In this thesis, we are interested in design tools whose role in the product development
process is to help engineering designers develop and integrate simulation models. While most
design tools have competent at creating simulation models, few tools address the issue of
integration effectively because they does not provide an adequate level of flexibility to meet
variability in modern product development process. Once a simulation model is made from several
simulation model components, the components are tied to each other and cannot flexibly adapt to
subsequence modification, which is often required to reflect customer requirement changes or to
explore alternative design options like purchasing a standardized machine part from different
vendors. Such a modification often result in budget overruns or schedule delays because a change in
one simulation model has far-reaching effects on other models and making them all consistent
requires considerable amount time and effort. Moreover, it is a tedious task requiring no creative
thinking and thus avoided by most designers.

A usable design tool supporting the reuse of integration knowledge in simulation models is
promising solution to the current problem. We assume that the problem, the lack of flexibility in
simulation models, originates from the missing support of design tools. Because current design
tools do not allow designers to reuse integration knowledge in previously built simulation models,

much of integration effort taken for one simulation model needs to be repeated when some



components need to be replaced or modified. We hope a design tool to be able to capture the
integration knowledge in simulation models in a reusable form, so that it can be applied for building
another integration model. Because time and cost wasted in redundant, repetitive tasks can be
greatly saved, the product development process can employ more design iterations as well as
extensive exploration of design alternatives. Reusing integration knowledge in simulation models
also improves the usability of the design tool because it can provide valuable information that can
save typing and prevent mistakes when combined with appropriate visualization and interaction
techniques. Consequently, this thesis aims at developing mechanism, algorithm, and user interface
for a design tool that enables us to capture integration knowledge in simulation models for another

use.

1.2. Concepts and Terminology

Before we begin our discussion, this section is to establish a common ground on
terminology. Some terms used to describe our goal and contributions need to be defined in a
narrower sense than their general use because they can have various meanings. They include
simulation model, integration model, integration knowledge, relation and mapping.

Simulation model refers to a computer program that attempts to simulate behaviors of a
particular system. All simulation models in our discussion are assumed to be parametric models and
therefore their behaviors are exhibited through output parameters whose values are determined by
submitted values of input parameters. When the behavior of a simulation model is implemented by
subscribed behaviors of other simulation models, we call the implemented simulation model as the
integration model.

As the title of the thesis — reusing integration knowledge in simulation knowledge —

implies, we use integration knowledge to refer to something that is inside a simulation model that
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can be reused for building another. Integration knowledge is defined as information extracted from
data in an integration model, where the information is assumed to reflect knowledge used by human
during the integration process. In other word, we define integration knowledge as tangible
information such as data structures or patterns that can be extracted from the model data. It is a
practical definition because such tangible information not only serves sufficiently to solve reuse
problems of our interest but it also eliminates the need for solving unnecessarily complicated
problems of representing knowledge in a computer understandable way.

Relation is a modeling element of the simulation model to define how input parameters are
transformed to output parameters. We have two kinds of relation: local relation and remote relation.
The local relation is a relation which includes script code, called relation script, and transforms
parameters using the script code. The remote relation is a relation whose transformation is defined
by subscription of a model interface. Model interface is a port, represented by a set of input and
output parameters, through which a simulation model interacts with other modeling elements. When
a simulation model is executed, values submitted to the input parameters are transformed into those
of the output parameters.

Mapping is another modeling element of the simulation model to describing how a
parameter in one relation, called mapping target parameter, is related to parameters in other
relations, called mapping source parameters. Script code called mapping script is used to define
transformation between the mapping target parameter and the mapping source parameters. The
mapping script is different from the relation script in the local relation in that it is a line of script

code whose evaluation result is assigned to the mapping target parameter.

1.3. Goal
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The goal of our new design tool is to reuse two kinds of integration knowledge:
integration structure and integration code pattern.

The integration structure is a graph structure in the integration model describing how
parameters are mapped to each other. The graph structure is used to coordinate local and remote
relations so that output parameters in the model interface of the integration model give the intended
transformation of input parameters in the model interface. We suppose that the graph structure
reflects a designer’s knowledge on how to organize a given set of local and remote relations to
achieve the intended transformation between input and output parameters in the model interface. It
is because we expect the designer to apply the same knowledge when he or she is asked to integrate
a similar set of local and remote relations, which have the same interface as the previous set but
exhibit different behaviors. Therefore, the integration structure is considered as integration
knowledge: its graph structure is extracted from modeling data, and the structure reflects a
designer’s knowledge used in the integration process.

Integration code pattern refers to a pattern generalized from mapping scripts, which is
represented as a set of rules describing regularity found in the scripts. We assume that the regularity
results from applying the same knowledge on naming and indexing convention over several
mapping scripts; thus the set of rules is considered to reflect a designer’s knowledge used in the
integration process. For example, in a situation in which an engineering designer has a set of
parameters that needs a similar mapping such as free_voltage mapped to freeVolt, and
stall_voltagemapped to stallVolt, we assume that the person will perform those mappings thinking
they have a consistent pattern among parameter names. As a result, when the person is asked to
create another mapping for average_voltage, the answer averageVolt can be created by re-applying
his or her knowledge on the regular naming pattern, which is often called naming convention.

The use case scenario in Chapter 2 will explain how these two aspects of integration

11



knowledge are reused in the simulation building process, highlighting the benefit from reusing them.

1.4. Contributions

We categorize contributions of our research in two areas: intellectual and implementational
contributions. Intellectual contributions include new ideas and algorithms, while implementational
contributions include mechanisms and designs, which have been adapted from other disciplines to
serve our needs.

* Intellectual contribution

[0 Identification of two reusable integration knowledge: Integration structure and

integration code pattern

0 Dependency solving algorithm: The algorithm generates an execution sequence of

relations and mappings: The algorithm works with a new set of relational operators:
the relation and the mapping with transformation.

[1 Pattern generalization algorithm: The algorithm identifies reusable integration code

patterns and generalizes the patterns into a rule set
* Implementational contribution
[0 Implementation dispatch mechanism for the catalog model: This mechanism is used to
decouple implementation from interface and to dynamically associate them in the run-
mode. Conceptually, it is similar to a mechanism used for implementing
polymorphism in object-oriented languages. While the object-oriented languages use a
dispatch table approach, our mechanism uses a script generation approach.

0 User interface design for the catalog model builder: The graphical user interface of our

design tool is specialized in reusing integration knowledge in simulation models. It

utilizes techniques developed in the user interface design discipline to provide an

12



effective user interface.

1.5. Overview

Chapter 2 describes how our design tool achieves two goals of reusing integration
knowledge. In the first scenario, the integration structure is reused to explore alternative design
options. The scenario is based on an integration model for estimating the performance of power
window system. The second scenario describes what kinds of integration code patterns can be
captured and how we can reuse them to save integration efforts.

Chapter 3 reviews research efforts taken in other engineering disciplines to find useful
concepts and techniques that can be employed to achieve our goal of reusing integration knowledge.
We investigate research works done in the areas of software engineering, source code mining, and
user interface design.

Chapter 4 describes how we build our design tool that can reuse two kinds of integration
knowledge. The first section of the chapter provides an overview of software components in the
design tool, and the proceeding sections give details on the four major software components:
catalog model definition, dependency solving algorithm, pattern generalization algorithm, and
catalog model builder.

Chapter 5 describes several integration scenarios, through which we validate the
effectiveness of reuse features of our design tool. The integration scenarios include the door seal
catalog browser, the evaluation of a power window system with various configurations, and the
finite element analysis (FEA) of the door seal with multiple levels of fidelity.

Chapter 6 presents a concluding remark of this thesis. Future directions of research are

discussed.

13



Chapter 2 Reuse Scenarios

The use case scenarios in this chapter illustrate how our design tool achieves two goals of
reusing integration knowledge. The first scenario demonstrates how the integration structure is
reused in a step-by-step way. The second scenario presents several integration codes containing

exemplary textual patterns and shows how they can be reused.

2.1. Reuse of the Integration Structure

2.1.1. Scenario terminology

In this section, we introduce several new terms that will be used in the integration structure
reuse scenario as follows: implementation, implementation switch, mapping with transformation,
run-mode, and build-mode. The implementation refers to a collection of parameters, relations, and
mappings, which are coordinated to realize a specific behavior of a simulation model. In a new
integration model supporting the reuse of integration structures, a model can have multiple
implementations for one model interface. The implementation switch is a parameter placed in an
integration model that diverts the source of model behaviors from one implementation to another.
While typical mapping just copies the value of a source parameter to a target parameter, the
mapping with transformation is enhanced in that it can perform mathematical transformation of
source parameters and assign the result value of transformation to a target parameter. The run-mode
refers to a state of a simulation model after the model is deployed in tbe model container of an
integrated design framework. The run-mode is used in contrast with the build-mode, indicating a

state of a simulation model before deployment and possibly under modification.
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2.1.2. Scenario of reusing the integration structure

A company develops an integration model that analyzes the performance of a power

window system used in a car door. The overall configuration of the integration model is shown in

Figure 2-1

The integration model is aimed at finding the stall force — a force imposed by a window

when its movement is blocked by an object — and the maximum speed of the window. It subscribes

a window geometry model to find geometry data such as pillar lengths and glass widths. It also

subscribes a motor performance model giving torque and rotational speed and a window guide

model calculating the stall force and the maximum speed. Each subscribed model interface has three

to twenty parameters. Thos parameters are mapped to each other in the integration model, and as a

result a fairly complex integration model having four relations and forty seven mappings is created.

Power window system
integration model

SUDSCHV — \,mmbe

SR

Motor performance model Window guide model

Window geometry model

Figure 2-1: Simulation models for a power window system

After the company evaluates the performance of the current power window system, they

are interested in exploring design alternatives. More specifically, they are interested in a motor from

a new supplier that provides maximum torque and maximum rotation speed similar to the current

motor but has different characteristics in terms of acceleration and electric resistance. They want to
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know how the system’s performance will change if they replace the current motor with the new
motor. Assuming that the company can obtain the new supplier's motor simulation model, two
challenging aspects of the replacement task are observed. First, they want to replace the motor
simulation model without having to rebuild, meaning to create a new integration model and define
all the mappings, the power window system integration model. They want to reuse the integration
structure they have defined in the model: the integration structure refers to a graph composed of all
the mappings and relations defined in an integration model. Second, the simulation model provided

by a new supplier has a slightly different model interface such as it gives resistance instead of

current [Figure 2-2] so mathematical transformation on those parameters will be needed.

Interface of current motor model Interface of new motor model
. speed at 2 Nm torgque . speed at 2nm
. torcue at 20 rpm speed ‘ torque at 20rpm
@ staicurent €--=-=====[-===2 > @ stall resistance
‘ freecurrent €= ========|= = - - 2 > . free resistance
. voltage supply ‘ voltage
° resistance ‘ resistance

Figure 2-2: Comparison between two motor simulation models
As a first step, the company creates an integration model called motor catalog model,
which has the same model interface definition as the current motor model, and maps all parameters
in the current motor model to the corresponding parameters in the model interface. Now the motor

catalog model has the current motor simulation as one of its implementation. The second step is to

add the new motor simulation model as another implementation of the motor catalog model [Figure

2-3] and to set up necessary mappings between parameters in the new motor simulation model and

those in the catalog model interface. The last step is to replace the motor simulation model in the
power window system integration model with the new motor catalog model and set its

implementation switch to the implementation added in the second step. Since both of the replaced

16



and replacing models have the same interface definition, this step can be done without affecting any
mappings or relations in the power window system integration model. In other words, the
integration structure of the power window system integration model is reused for another

configuration of the integration model.

I#

Figure 2-3: Adding a new implementation to motor simulation model
Another benefit from using the motor catalog model instead of the previous typical motor
simulation model is that we can switch and execute different implementations in the run-mode.
While we had to go back to the build-mode to change the configuration of the power window

system and re-deploy the modified integration model, now just changing the value of the

implementation switch in the run-mode will activate the selected implementation {Figure 2-4 |and

Figure 2-5].
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Figure 2-4: Implementation can be switched to another in run-mode

Motor catalog model using the
current motor sunulation model

ele/e)

Changing implementation switch

Motor catalog medel using the :

new motor simulation model

elee)

(2Xe)

Figure 2-5: By changing the implementation switch, the configuration of the power window system
can be changed from using the current motor simulation model to using the new motor simulation

model.
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The difference between two subscribed model interfaces is handled by the mapping with
transformation. The new motor model provides nominal voltage and stall resistance, and therefore
stall current can be calculated from them by dividing voltage with resistance. One method of doing
such a transformation is to write a procedural relation that transforms voltage and resistance into
current. It requires us to create several modeling elements — one relation, three parameters and three
mappings — as well as to specify the causality information. While we are defining a simple
transformation, this method increases the complexity of the integration model considerably;
therefore it is not considered very efficient. However, with the new integration model, we can do the
same task in a simpler way because it supports the mapping with transformation. The mapping with
transformation allows us to write a line of mathematical equation in the mapping script editor, and
the equation is used to transform source parameter values into a target parameter value. Therefore, a

task that used to require several modeling elements can be done with one mapping with

transformation [Figure 2-6}.

[@ speed at 20m..| [ torque ot 20r... | [ stall current

type Real type:Real
unitno unit unitno unit
qupm al voltage /

stall resistance

{‘ free current .

+ ok X cancel A
type:Real Type Heal
unitno unit unitne unit
relAL.nominal tel& nominal
vul-ge.fﬂfree resistance

Figure 2-6: Using mapping with transformation to handling differences in interface definition
As a result, we can handle the difference in model interface definition in an efficient,
manageable way. Note that a parser embedded in the mapping script editor generates causality
information for the equation, and users can save time and effort spent on specifying trivial causality

information.
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2.2. Reuse of thelntegration Code Pattern

2.2.1. Exemplary reuse problems

Before we describe the reuse scenario of integration code patterns, several exemplary
integration code reuse problems will be presented to clarify the focus of our interest in reuse, and
they will be solved by examining regularity existing in the integration code.

In Problem 1, we have four parameters, two of which have their mapping scripts

completed {Figure 2-7]. What would be the mapping scripts for pos 3 and pos 4 then? The answer

would be re/B.p[2] and relB.pf3]. One justification is for this intuitive reasoning is the regularity
found in two completed mapping scripts, which is called the integration code pattern or the code
pattern in short. The code pattern for this problem is expressed using the following set of rules: Text
part of the script, relB.p[ and ], is the same for both mapping scripts, and the number inside brackets

is one smaller than the number comes after pos .

Builder GUI represetnation Text representation
.pnsJ .pos_.z .pos_S .pus_d pOS_l = relB.p[O]
hrpre:Rli ‘ hrp.e‘R.d ) type:Real A type:Real p05_2 — repr[]]
ur.\utnomt u_nkdmu*-i unitno unit unitno unit =9
e 101 @B 1] poea =
pos 4=7

Figure 2-7: The first example of code pattern generalization problem

Problem 2 has four parameters, three of which have mapping scripts

Figure 2-8

. What

would be the mapping script for a3 5? Again it is not very difficult to infer that the answer would
be relB.q[3][5]. We see regularity in three mapping scripts that two numbers inside brackets are the

same as the first and second number in the parameter name.
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Builder GUI represgnaﬁon Text rq)resmt;tion

" TRE Pa2 Pai2 Pass a_1_1=relB.q[1][1]
type:Real type:Real type:Real type'Real a2l= re]Bq[Z][]]
unitno unit unitno unit -unii:no unit unitno unit _1_2 _ relB [1][2]

FBalt1) feiB. a2 1) fBBal112) : g 4

Figure 2-8: The second example of code pattern generalization problem

Problem 3 have three parameters with one mapping scripts not completed [Figure 2-9}. We

are interested to know what would be the mapping script for newDepth. Because two mapping
scripts show that a string coming after new in the parameter name is the same as a string that comes

after old, the answer would be o/dDepth * 0.5.

Builder GUI represetnation Text representation
P newHeight @ newwidth @ newnepth newHeight = originHeight * 0.5
f‘”p.f,',:,':m hfpj_'“':i ; *ﬂ-_; Real . newWidth = originWidth * 0.5

teE.oldHeight * 0.5 | | relE.oldWidth * 0.5 newDepth=?

Figure 2-9: The third example of code pattern generalization problem

In Problem 4, ten mapping scripts are given, and we are asked to fill a mapping script for

B 7 [Figure 2-10). While previous problems could be explained by one set of rules that applies to

whole examples codes, we can't find such a rule in this case. This problem is not as intuitive as the
last three problems, and it may seem unnecessarily complicated. However, this is a more realistic
case of the integration code pattern reuse. It reflects the complexity of the environment in which the
code pattern reuse should operate: A user provides no explicit information other than which
parameter needs code completion. Also, among many mapping scripts in a simulation model, only
some of them can be generalized into a rule set that can generate valid candidate, while others can
be generalized but their candidate may not be compatible with a given code completion — as we will

see in the last solving step of Problem 4, candidates generated by the first and the third rule sets
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begin with A_7, which are not acceptable because it is not consistent with the given parameter name
B 7 — still others may not even be generalized into a rule set. After several trial-and-error to

generalize rules, B_7=B[7]*2+B[8] *2is found to be an answer based on justification as follows.

e -
Builder GUI represetnation Text representation
[@as ®a2 TE TE A_1=B[1]*5+C[1]*5
L fom, Fow, [ A 2Bl Clals
BUPS+C[]*5 Bl2]*5+C[2]*5 BI3]*5+C[3]*5 D[3]*2+D[4]*2 o
D 3=D[3]*2+D[4]*2
: D_4=D[4]*2+D[5]*2
0.4 [@Es " TX; 5
- . L . E_S=E[S]*2+E[6]*2
unitno unit unit:no unit unit:no unit s A_IZA[]]*Q,-FB[I]*Z
D[4]*2+D[5]*2 E[5]*2+E[B]*2 i B i A 2=A[2]*3+B[4]*5
: A_3=A[3]*4+B[4]*5
Pa ®a2 ®as ®as A _4=A[5]*5+B[3]*4
type Real type:Real type Real type:Real ‘
unitno unit unitno unit unitno unit unitno unit —n
A=A 24B11]2 || AR2]P3+B4PS A[3]*4+B[a)'5 A_4=A[S]'S+B[3]M B_7=7

Figure 2-10: The fourth example of code pattern generalization problem

We need three sets of rules to explain all mapping scripts, or all lines in text representation.
The first three lines are explained by a set of rules: “A, B, C, 5, _, *, [, and ] are the same for each
line” and “The number after _is repeated for two numbers in the brackets.” The second set of rules
explains the next three lines: “The same text string such as D or E is repeated three times — one at
the beginning and two before two [, “The number inside the first brackets is the same as the first
number after _, while the number inside the second brackets is one bigger than it,” and “other
numbers are the same as 2 for each line.” Similarly, another set of rules explains the remaining four
lines. Given these three set of rules, now we can create three possible answers. The first and the
third rule sets give A 7=B[7]*2+B[8]*2 and A 7=A[7]*8+B[${N+0}]*${N+1}, in which
$(N+0} is a placeholder for an undetermined number that should be one smaller than the number at
$N+1}. Although the two rule sets have created candidates, their candidates are not acceptable

because they suggest A_7 to be the parameter name, not B_7. Only one candidate generated from
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the second rule set is consistent with the given parameter name B_7, and finally

B_7=B[7]*2+B[8]*2 is displayed as a candidate for the mapping script.

2.2.2. Scenario of reusing the integration code pattern

Assuming a pattern generalization algorithm that can systematically solve problems
described in Section 2.2.1 has been developed, a user will go through the following steps to reuse
the integration code pattern. We suppose that a user is working on the same simulation model used
in Problem 4. The user just have finished writing mapping scripts for parameter D_4 and E_5 and is
about to write a mapping script for B_7. If the design tool did not support automatic code
completion based on code pattern reuse, she would copy the mapping script of D_4,
D[4]*2+D[5]*2 and modify it to Bf7]*2+B[8]*2. Even though changing characters and index
numbers seems to be a trivial task to do, people often miss to modify some indexes and characters,
creating a bug in the simulation model. The bug not only generates unexpected, wrong results, but it
also requires considerable time and effort to be fixed, especially when it is an index-related bug.

Now that the design tool offers code completion feature, enabling the user to reuse the
integration code pattern, the user decides to use it. After having applied the same pattern for the two
mapping scripts of D_4 and E_5, the user activates the code completion feature to generate a
mapping script for B_7. The code completion feature is accessible either by hitting a space key with
control down or clicking a mapping script editor with control down. The list of code completion
candidates pops up in the mapping script editor (Figure 2-11). The user finds that B[7]*2+B/[8]*2 is
the only code completion candidate. After selecting the candidate, the user accepts it either by
double-clicking the candidate or by hitting an enter key. Note that the user does not have to provide
any extra information to the computer other than which parameter needs code completion.

Information such as which mapping scripts should be used as a reference of the code pattern
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generalization might be helpful for the code pattern generalization algorithm to solve the problem
easily, but requiring such information each time of code completion would make the code pattern
reuse process inconvenient and inefficient, possibly damaging usability of the integration code
pattern reusing feature. When the code completion finds many candidates, the user has an option to
narrow down the candidates by typing more literals, which match the beginning of the desired

mapping script.

ﬁiu i @a2 A3 —ﬁn 3
type Real type Real type Raal || typeReal | type:Real
unitno unit unitno unit unitno unit unitno unit | unitne unit
AtP2+B(12 ALZPIBlAIS Al3P4BI4TS

Biuu Pa2
type Real type Real
unitno unit unitno unit
| BII*S+CIS Bl2P'S+CI21*5

|

[Iin_a | @es
type Raal type Raal
unitne unit unitno unit
D[4]*24D[5]*2 | E[5]*2+E[6)*2

Figure 2-11: Reusing integration code pattern: after activating code completion
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Chapter 3 Related Work

This chapter reviews most relevant branches of research that address the issues of software
reusability. These include software engineering, user interface design, and data mining. Section 3.1
describes concepts and techniques developed in those disciplines. Section 3.2 discusses the current
support of reusability in major integrated design frameworks, identifying what kind of features are

missing or need improvement.
3.1. Approaches

3.1.1. Software engineering approach to reusability

Simulation models being a kind of software, software engineering concepts developed for
software reusability is helpful to solve our problem of reusing simulation models. Some of the
useful concepts are found in object-oriented programming, which is the most popular programming
paradigm to date. Given the list of concepts that characterize the object-oriented programming [1],
we have chosen the following concepts since they are closely related to the issue of reusability:
instantiation, polymorphism, and inheritance

Instantiation is a concept on the way how an object is created. In a language supporting
instantiation, multiple objects can be created from a class. Because behaviors and data structures
defined for one class can be reused to create many objects, it improves reusability [2].
Polymorphism is a mechanism that allows multiple implementations to be associated with a class
[3]. It decouples the external representation of a class, called the interface, from its internal
implementations; therefore, programmers can modify implementations without affecting other

classes using the class. To implement polymorphism, behaviors of a class need to be chosen based
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on the target of the invocation. The implementation dispatching mechanism is used to achieve this
in most object-oriented languages [4]. Inheritance is also related to software reusability because it
suggests that specialized behaviors of a sub-class be built on the implementation of super-classes.

In addition to concepts derived from object-oriented programming, we have other software
engineering concepts, which are also essential to achieve software reusability: composition and
interoperability. Composition a concept that allows simple software modules to be combined to
build up a complex one [5]. Because it provides a simple, yet powerful way of reusing software
components, it is supported by most programming languages. Interoperability is also an important
concern for reusability since a software component cannot be reused if it is not accessible to other
software components. Some of existing solutions addressing the interoperability issue include COM

[6], CORBA [7], and SOAP [8].

3.1.2. Source code mining approach to reusability

Source code mining is an application of data mining techniques to find relationships and
correlations hidden in a large amount of source code [9]. While software engineering approaches
described in Section 3.1.1 try to invent new mechanism for reusability and embed it in a
programming language, code mining approach focus on how we can use a given programming
language in a better way promoting reusability. For this reason, code mining approaches have
developed a range of tools that help programmers produce reusable code.

Two categories of the code mining tool are reviewed in detail because they address the
similar technical issues we have to deal with when implementing our feature for reusing integration
code patterns. The first category is a tool that detects undesirable, not-easily-reusable code
fragments, called code clones. The code clone is a code fragment the same or equivalent copies of

which are found in another part of source code [10]. It has been reported that code clones degrade
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the reusability and maintainability of the software [10-14]. The second category is a tool that helps
programmers to find reusable code from a repository of source code. Because the tool automatically
completes the remaining part of source code a programmer is working on, it is called example-
based code completion tool.

Research on the code clone detection tool has focused on developing fast and reliable
algorithm that can locate the same or equivalent code fragments. We identify two broad approaches,
namely, lexical-analyzer-based and textual-pattern-based. The lexical-analyzer-based approach
employs a parser to transform a source code into a specialized data structure for clone detection [12,
14]. Such an approach is computationally more expensive than the textual-pattern-based, but has an
advantage in detecting non-contiguous code clones because lexical information, such as program
dependence graph [14] depicting a relationship among non-contiguous code fragments, can be used.
Some of the initial works done in the textual-pattern-based approach suffer from not being able to
detect code clones that contain slight modification or span over multiple lines [11, 15]. Later works
address this problem by utilizing token-based representation [10, 13, 16]. Because the textual
pattern-based approach does not require a parser, which needs to be developed for each
programming language, it can be applied in language-independent manner [17], an advantageous
aspect over the lexical-analyzer-based approach.

Several example-based code completion tools have been developed based on the code
mining technique [18-21]. Code completion is achieved by a two-step process: building a code
example repository and querying relevant code from the repository. To perform the first step, each
code completion tool has been found to be using different data representation of source code
depending on the search algorithms they employ. A code completion tool described in [20]
represents source codes with a graph of method signatures because it generates code completion

candidates based on a graph search algorithm, while another presented in [21] stores vectors
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because its search algorithm is based on structural similarity measured by the vector distance.
Regarding the second step, most tools address the issue of automatic generation of search queries
[18-21] because it is an essential feature for code completion feature to be usable: Few
programmers would use code completion feature if they have to learn new query syntax and write a

query each time they use it [20].

3.1.3. User interface design approach to reusability

User interface design is a technique to improve usability of an artifact. Based on the
assumption that the actual performance of a tool is determined by both the functionality and the
usability the tool provides, user interface design is another important technique for reusability. A
design tool’s user interface that employs appropriate visualization techniques not only improves an
engineering designer's understanding of simulation models, but also it increases the chance of
applying reuse features of the design tool. Moreover, it reduces the number of mistakes during
model editing and reusing. For example, an engineering designer is editing a simulation model
having a number of parameters connected by complicated causalities. Because the designer has
limited knowledge of the model, he or she may define an erroneous mapping that will cause a loop
in causality. Such an erroneous manipulation of simulation models can be prevented by improving
the design tool’s user interface so that it gives visual feedbacks on causality information. Extensive
studies on information visualization techniques along with justification for them based on the recent
founding on human vision and cognitive can be found in [22]. Useful guidelines provided by user

interface specialists are also available in [23, 24].

3.2. Challenges

The integrated design framework is a computational environment where simulation models
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are built, integrated, and reused for engineering analysis. This section aims at identifying reusability
problems in current integrated design frameworks. We begin our discussion with a survey result
showing how software engineering concepts for reusability, which have been described in Section
3.1.1, are supported in three integrated design environments [25-27] and a simulation modeling
languages [28]. What we observe in Table 3.1 is that even major integrated design frameworks do
not support some of the key concepts, while object-oriented simulation languages [28-30], such as

Modelica, have a support for them.
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Integrated design framework ation modeling]
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DOME Fiper Model Mode
Center lica
Instantiation:
Creating multiple
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objects from one simulation
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Polymorphism:
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from implementation
Inheritance:
Implementing a model
X X X o
using inherited implementation|
of other model
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o A A
Creating a simulation
(declar (master (master 0]
model by aggregation of
ative approach) [model approach)imodel approach)
multiple simulation models
Interoperability:
Subscribing simulation| 0] 0] o X
models in a remote server

Table 3.1: Comparison of the reuse support in major integrated design frameworks
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One way of explaining this difference in support is that some of the object-oriented
programming concepts are not as effective as they promise for reusability. Interestingly, critics on
the object-oriented programming have pointed out that the gain from inheritance is often
outweighed by the inflexibility it introduces to a system [31, 32]. Any change to a super-class has
far-reaching effects on all its sub-classes [33], and as a result the system gets less flexible in
adapting itself for subsequent changes in requirements [31].

In contrast to inheritance, polymorphism is considered as a missing, needed feature for
improving reusability. The integration structure reuse, whose benefits have been demonstrated in
the use case scenario in Section 2.2, is one application of the polymorphism concept to a simulation
model because both — integration structure reuse and polymorphism — share the same key idea of
decoupling the implementation from the interface. Thus, by developing integration mechanism
implementing the integration structure reuse, we complement the missing support of the key
concept in integrated design frameworks. As a platform for developing the integration mechanism,
DOME (Distributed Object-oriented Modeling Environment) will be used. The DOME is an
integrated design framework which has addressed several major reusability issues such as
instantiation, composition, interoperability, portability, and user interface design, making it the most
reuse-supporting platform among compared integrated design frameworks [25, 26].

We decompose our problem of the integration code pattern reuse into two sub-problems so
that we can identify how and which of source code mining techniques can be utilized for our work.
The first sub-problem is to find relevant integration code from the whole integration code, and the
second is to find rules that capture the regularity within the relevant codes. Based on our discussion
on the clone code detection and the example-based code completion, we need to decide which
approach will be taken for the first sub-problem: lexical-analyzer-based or textual-pattern-based.

The textual-pattern-based approach, more specifically the token-based representation, has been
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chosen because we aim to make our pattern reuse mechanism be language-independent and widely
applicable to other text editing software components. Some researchers have also found that a
relatively simple textual-pattern-based approach for code detection performs effectively when
compared to sophisticated lexical analyzer approaches [34]. Other issues such as the code repository
organization and automatic query generation can be addressed accordingly based on the code
representation scheme, and the solution will be presented in Section 4.4. For the second sub-
problem of generalizing rules from the relevant codes, we could not find relevant previous work, so
a new mechanism addressing this problem will be developed in Section 4.4.

As for the user interface design of the design tool reusing two kinds of integration
knowledge, most of visualization and user interaction techniques discussed in [22-24, 35] are found
relevant, and they will be selectively adopted and adapted to meet the design tool’s needs. Issues to
be addressed by the user interface of the design tool include 2-D structures for parameters, relations,
mappings visualization; interaction for model definition and reuse; focus and context management
during model navigation; and data mapping for model understanding. Considering a number of
useful user interface design techniques available to solve our design problem, the focus of our
research, in terms of user interface design, will be exploiting available knowledge to build an
effective user interface, specialized in reusing integration knowledge in simulation models. Further

details on the application will be explored in Section 4.5.
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Chapter 4 Implementation

This chapter describes how we build the design tool for reusing integration knowledge.
The first section of the chapter provides an overview of software components. Instead of just
showing the end result, the section explains the way how our software components are derived and
the reason why they are suitable for our needs. The proceeding sections give details on major
software components: catalog model definition, dependency solving algorithm, pattern

generalization algorithm, and catalog model builder.

4.1. System Overview

Section 4.1.1 and 4.1.2 formulate and analyze the design of the design tool based on a
design methodology called axiomatic design. Further description on the design methodology with

extensive application examples can be found in [36].

4.1.1. Functional requirements

We find the functional requirements for the design tool by sequentially following what the
system performs and writing down what conditions should be met at each step to proceed. In order
to reuse the integration structure, we suppose that the design tool should have a system that
performs the following steps. First, the system has a data structure defining modeling elements in an
integration model. When the system receives a request for executing a model interface, it looks up
the data structure to create an execution plan. The execution plan is translated into an executable
form such as script code, which is executed by a script engine. After executing the executable form,
the execution result is collected and sent out to the DOME runtime environment. In addition to

these run-mode steps, we suppose that following build-time steps are needed. First, the system
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provides a programmable interface to create and modify an integration model. Next, based on the
programmable interface, the system provides a graphical user interface so that users can easily build
integration models.

In order to reuse the integration code pattern, we assume that the system should perform
the followings. First, the system needs to store the whole collection of mapping scripts in an
integration model; also the collection needs to be queried to find mapping scripts relevant to the
parameter name to which code completion is requested. Next, the system is expected to employ an
algorithm to generalize patterns from the relevant mapping scripts; the generalized patterns are used
to generate code completion candidates. The system should interact with the user interface of the
design tool. It provides a programmable interface to access the code completion feature. A user
interface component, such as a code completion popup, is integrated with the programmable
interface and displays the code completion candidates. The functional requirements for the design

tool are summarized as follows (Figure 4-1):

FR1: Reuse integration structure
FR1.1: Manage data structures defining the new integration model
FR1.2: Generate execution plans for the currently selected implementation
FR1.3: Provide programmable interface for building integration models
FR1.4: Provide user-friendly interface for building integration models
FR1.5: Run the execution plan for the selected implementation
FR1.6: Interface with DOME runtime environment to send out the results
FR2: Reuse integration code pattern
FR2.1: Retrieve relevant code from the whole collection of code
FR2.2: Generalize patterns, each which is expressed as a rule set, from the retrieved code
FR2.3: Generate code completion candidates by applying rule sets
FR2.4: Provide programmable interface for executing the algorithm
FR2.5: Integrate the algorithm into design tool user interface

Figure 4-1: Function requirements identified for the design tool

4.1.2. Design parameters
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Given the functional requirements, finding design parameters is to find a set of software
components that can satisfy all the functional requirements. Because there can be multiple sets of
software components satisfying the requirements, we try to come up with a design that is close to an
ideal design, characterized by having no coupling within design parameters. Minimizing coupling is
an important issue for software components since it significantly affects their reusability. Finally,

Figure 4-2 summarizes the design parameters of our design tool.

DP1: Software components for integration structure reuse
DP1.1: Catalog model definition classes

(mit.cadlab.dome3.plugin.catalog.core)

DP1.2: Dependency solver classes
(mit.cadlab.dome3.plugin.catalog.core)

DP1.3: Catalog model builder API classes
(mit.cadlab.dome3.plugin.catalog.core)

DP1.4: Catalog model builder GUI classes
(mit.cadlab.dome3.plugin.catalog.ui)

DP1.5: Groovy Script generator, Groovy script engine, and DOME API
(mit.cadlab.dome3.plugin.catalog, mit.cadlab.dome3.api)

DP1.6: Catalog model plug-in and DOME-specific file generator classes
(mit.cadlab.dome3.plugin.catalog, mit.cadlab.dome3.plugin.catalog.serialization)

DP2: Software components for integration code pattern reuse

DP2.1: Code repository classes
(mit.cadlab.dome3.plugin.catalog.pcc)

DP2.2: Rule generalization classes
(mit.cadlab.dome3.plugin.catalog.pcc)

DP2.3: Rule application classes
(mit.cadlab.dome3.plugin.catalog.pcc)

DP2.4: Pattern generalziation API classes
(mit.cadlab.dome3.plugin.catalog.pcc)

DP2.5: Code completion popup classes

(mit.cadlab.dome3.plugin.catalog.ui)

Figure 4-2: Design parameters identified for the design tool
We analyze the design matrix shown in Figure 4-3 to evaluate how desirable our selection
of design parameters is. Design matrix visualizes which design parameters are used to satisfy a

certain functional requirement; for example, to satisfy FR1.2 Generate execution plan, we use two
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components for the catalog model definition and the dependency solving algorithm. Generally,
uncoupled or decoupled design is considered as an acceptable design because all FRs can be

satisfied by choosing DPsin a certain sequential order, which can be solved from the design matrix.

As|Figure 4-3shows, our design matrix is a decoupled one, having only lower triangular elements.
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Figure 4-3: Design matrix showing FRs-DPsrelationship of our new design tool

Modularity analysis on the design matrix reveals that our concern on the reusability of
software components has been effectively addressed. Some of our software components such as the
dependency solving algorithm and the pattern generalization algorithm are elaborated
implementation works, and thus we want to organize the software components so that those
expensive components can be used for other applications. FR1.5 Run the execution plan, which is
decoupled from other DPsbut DP1.3and DP1.5, is one example of effectively decoupled FRs The

current implementation retrieves an execution plan through DP1.3 Catalog model builder API, and
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translates the execution plan into a Groovy script, which is finally run by Groovy script engine.
Because DP1.5 has no interaction with complicated implementation in DP1.1 and DP1.2, the script
engine can be easily replaced and even multiple script engines can be supported. We also notice that
FRI1.6 Interface with DOME is decoupled from other DPs but DP1.6. This implies that we can
make the integration model interact with other type of computational environments by
implementing additional DPI.6. This decoupling provides considerable flexibility to enhance the
interoperability of the integration model. Possible applications include deploying the integration
model, supporting integration knowledge reuse, in other integrated design frameworks and
subscribing simulation services from standard web service containers. Lastly, the design matrix of
FR2.5 Integrate pattern generalization algorithm into user interface suggests that the pattern
generalization algorithm can be integrated into different kinds of user interfaces through DP2.4
pattern generalization API; therefore, text editors or software development tools embedding the

pattern generalization algorithm can be easily developed.

4.1.3. Component map

The following component map illustrates interactions between software components.
Figure 4-4 depicts build-time interactions among participating software components. In the build-
time, the model builder GUI (Graphic User Interface) component initiates interactions. Upon a
user’s request, it modifies model definition and queries code completion from the pattern
generalization algorithm component. When the user invokes a save command, the integration model

will be serialized into a DOME model file.
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Figure 4-4: A component map showing interactions among software components in the build-mode

Figure 4-5[shows interactions in the run-time. In the run-time, a model interface execution

request drives the interaction. When a DOME server receives a model interface execution request, it
instantiates a catalog model runtime using DOME Plug-in APIL. The catalog model runtime first
invokes the script generator component to create script code, which will be evaluated by the script
engine. The script generator component relies on the model definition component and the
dependency solver component to generate script code. When evaluating the script code, the script

engine uses DOME run-mode API to access and execute simulation models in other DOME servers.
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Figure 4-5: A component map showing interactions among software components in the run-mode

4.2. Catalog Model Definition

4.2.1. Data structure

Catalog model is a name for our new integration model supporting the reuse of the
integration structure. This section illustrates how the catalog model organizes its model definition
data. The model definition data are created by catalog model builder, which refers to GUI for
creating and modifying the catalog model. The script generation component uses the model
definition data during the run-mode to convert an execution plan into script code. The catalog
model is defined by five modeling elements: parameter, relation, mapping, interface, and
implementation. The parameter represents an atomic unit of data in a simulation model with data
types of integer, real, Boolean, vector, matrix, enumeration, string, and file. It contains unit

information, which allows the system to perform data conversion automatically between different
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units and to check dimensional conformity when assigning a value to a certain parameter. The
parameter further decomposed into four categories based on its parent entity and causality: interface
input/output parameters and relation input/output parameters.

The relation is used to define a mathematical relationship among parameters within a
catalog model. Depending on the source of the mathematical relationship, we have two
implementations of relations: local relation defined by Groovy script code [37] inside a model and
remote relation defined by a subscription of a model interface outside a model. Mapping in the
catalog model is called mapping with transformation. It not only copies the values of source
parameters to a target parameter, but it can also perform mathematical transformation before it
assigns a value to the target parameter. In implementation point of view, the mapping with
transformation is similar to the relation, but it does not require users to specify causality information
when defining it because it has mechanism to generate causality information from the mapping
script.

Interface and implementation are the modeling elements that distinguish the catalog model
from other integration models that do not support the reuse of the integration structure. The
interface is defined by a set of input and output parameters and causality information between
parameters. Implementation is defined by a collection of relations and mappings, which transforms
the values of input parameters into those of output parameters. Because the definition of a certain
interface is shared by all implementations associated with the interface, one-to-many relationship
exists between interface and implementations (Figure 4-6). The interface defines a kind of
communication protocol between a catalog model and other simulation models subscribing the
catalog model, and therefore we gain flexibility to vary the internal implementation without

affecting the overall integration structure.
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The same interface links

multiple implementations

Figure 4-6: One-to-many relationship between the interface and the implementations

4.2.2. Addressing mechanism

The catalog model introduces new mechanism for addressing modeling elements, which is
implemented by a software component called naming service It is based on a namespace concept,
which has been applied to many languages such as XML, Java, or C#. Using the naming service,
any modeling element can be accessed by a reference string: re/B for a relation or refA.max speed
for a parameter in the relation. We assign a separate namespace for each relation, and the namespace
is accessed using an alias of the relation, which is unique in an implementation of the integration
model: For example, ré/A and relB are aliases for two local relations. Because we may have
multiple subscriptions of the same model interface in an implementation, such a unique alias is
needed to address them efficiently. A dot (.) has a special meaning in the reference string and is
called the scope-resolution operator. It is used to navigate between namespace and sub-namespace,
namespace and a model element, or sub-namespace and a model element. A parameter named max
speed in a relation aliased as reé/B can be addressed using a reference string, re/lB.max speed.
Therefore, we can use the same parameter name multiple times in a simulation model as long as
they belong to different namespaces. The namespace-based addressing mechanism is more user-
friendly than GUID (Globally Unique Identifier)-based reference systems because it allows a short

and human-understandable reference string such as re/lB.max speed when compared to a GUID-
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based reference string such as 33158ded-bf9d-1004-8e0f-20d36b52f98a. Table 4.1 gives a brief

overview of classes used to define the catalog model.

Class Name Description
CParameter Defines name, data type, unit, and solving state.
ClnterfaceInputParameter ClInterfaceOutputParameter and CRelationInputParameter
ClnterfaceOutputParamet | can have a mapping associated with the parameters.
er
CRelationInputParameter
CRelationOutputParamet
er
CRelation Defines a set of relation parameters.
CLocalRelation CLocalRelation defines a script and causality.
CRemoteRelation CRemoteRelation defines subscription and causality.
CMapping Defines a mapping script and causality
CImplementation Defines a collection of relations and mappings
transforming inputs into outputs
Clnterface Defines a set of interface parameters and
causality
CNamingService Implements namespace-based naming service for
accessing model elements

Table 4.1: Description of Catalog model definition classes

4.3. Dependency Solving Algorithm
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4.3.1. Overview of the algorithm

Dependency solving algorithm finds a sequence by which mappings and relations should
be executed. It solves a graph search problem where the goal is propagating value changes in some
nodes to all other nodes affected by them, under the constraint that the navigation between nodes is
restricted by dependencies imposed by mapping and relations. The algorithm first creates a
directional graph using causality information in mappings and relations; in the graph, a node is a
parameter and an arc is either a relation or a mapping. The algorithm searches for a acceptable
navigation sequence, called execution plan, by following steps described in Section 4.3.2. The
output of the algorithm, the execution plan, is a list of mappings and relations; for example, a
execution plan of [mapping: relA.A, mapping: relA.B, relation: relA, mapping: itf.Z | indicates that
we can make all parameters consistent by executing mappings and relations in the given order.
Therefore, the model execution will start with executing the mapping for parameter A in relA and
finish with executing mapping for parameter Z in the interface. The algorithm uses a queue called
green queue to keep track of parameters which are consistent and thereby available as input of
mappings or relations. The key idea of pseudo code presented in the next section is as follows:

* A graph connected by directional arcs is created.

* The modification in input parameters makes some nodes green and others red.

* The algorithm propagates green color from a green node to a red node along directional
arcs.

*  Propagation is allowed when all input parameters of a mapping or a relation are green.

® The algorithm keeps on propagating the green color until it meets the following exit
condition:
O  Success when there is no red node in the graph.
U Failure when there are red nodes in the graph, but there is no relation or mapping that

can propagate the green color.
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4.3.2. Pseudo code

Nomenclature

[GQ] : a queue containing green parameters.

[EP] : a list containing mappings and relations in an order to be executed
{mi-param}: a whole set of modified interface input parameters

{io-param}: a whole set of interface output parameters

{ri-param}: a whole set of relation input parameters

{param | query condition} : a set of parameters queried by a condition

{mapping | query condition} : a set of mappings queried by a condition

{mapping node | query condition} : a set of mapping nodes queried by a condition
-> green or red : turns parameter or mapping node into green or red

=> [EP] or [GQ] : put an item into [EP] or [GQ]

Each {mapping A} : $mapping : each element in {mapping A} will called $mapping

Algorithm

1. The system is given a set of modified input parameters denoted as {mi-param}

2. Turn {mi-param} into green, indicating consistent status, because the input parameters are
consistent.
{mi-param} = green

3. Push modified interface input parameters into green queue [GQ].
{mi-param} = [GQ]

4. Find all parameters driven by {mi-param}, and turn them into red, indicating inconsistent
status. Each time such a parameter turns red, all mapping nodes mapped to the parameters

turns red, too. When it is the first time executing this implementation, {mi-param} should be
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given the same as {ii-param}
{param | driven by {mi-param}}-> red
{mapping node | mapped to {param | driven by {mi-param} } } 2 red
5. When it is the first time executing this implementation, add relation input parameters and
interface output parameters having no driver to [GQ]. For later execution, skip this step
because those parameters will not change their value.
{param | driven by {empty} among {ri-param} } = [GQ]
{param | driven by {empty} among {io-param} } = [GQ]
6. Start a loop popping a green parameter from [GQ].
6.1. For each popped green parameter, turn all mapping nodes mapped to it into green
Each popped parameter : $popped
{mapping node | mapped to $popped} 2> green
{mapping node | mapped to $popped} : {mapping node A}

6.1.1 For each mapping node turning green, find the mapping that is made executable by the
iterated mapping node (A mapping becomes executable when all input mapping
nodes of the mapping are green)

Each {mapping node A}: S$mapping node

{mapping | made executable by $mapping node} => {mapping A}

6.1.1.1. For each executable mapping, put the mapping into [EP], turn its output mapping

node into green, turn a parameter mapped by the mapping into green, and put
the parameter into [GQ].
Each {mapping A} : $mapping
Smapping = [EP]
Output mapping node of $mapping. =2 green

Parameter mapped to the output node - green
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Parameter mapped to the output node = [GQ]
6.2. If [GQ] has remaining green parameters, repeat A.
6.3. If [GQ] has no remaining green parameter, do the followings.
6.3.1 Check if all interface output parameters are in a consistent status. If so, the
dependency is solved successfully. Exit the popping loop of Step 6 and return [EP].
6.3.2 Find executable relations — A relation becomes executable when all input parameters
are green. If no executable relation is found, the dependency solving has failed. Exit
the popping loop of Step 6, and report an error message containing which parameters
remains inconsistent.
6.3.3 If several executable relations are found, select one that creates the most number of
new green parameters
a relation selected from {relation | executable}: $relation
6.3.4 Turn output parameters of the picked relation into green, and push the parameters into
[GQ]. (If there is a derived parameter associated with an output parameter, it will
need the same treatment.)

Srelation =» [ES]
output parameters of $relation = green

output parameters of $relation = [GQ]

7. This execution point is not reached because the popping loop exits either at 6.3.1 or at 6.3.2.

4.4. Pattern Generalization Algorithm

4.4.1. Overview of the algorithm

Pattern generalization algorithm finds code completion candidates based on the given hint
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literals, which consist of a parameter name and a partially completed mapping script in our case. It
first retriéves relevant code lines from the whole collection of script code and generalizes patterns
from them. A pattern is expressed as a rule set describing regularity discovered from the code lines.
The algorithm then applies using rule sets to the hint literals to generate code completion candidates.
Generalizing the rule sets from a given set of code line is the most challenging part of the algorithm
for the following reasons:

First, more than one rule set can be generalized from a given set of code lines. Some of the
code lines are generalized into one rule set, and some others are generated into another rule set. Still
others may not be generalized and dismissed as not generalizable. For example, when we have ten
code lines, eight lines can be generalized into three rule sets, while two code lines are left as not
generalizable. We call such a dismissed code line as an unexplained code lines because they are not
explained by any rules sets generalized from the set of code lines.

Second, we don’t have information on which code lines are grouped and generalized into a
rule set. Let us assume that, among the eight code lines that could be generalized into three rule sets,
row 1, row 2, and row 3 are grouped together and generalized into a rule set, while row 4 and row 6
are generalized into another rule set. Unfortunately, such grouping information is not provided to
the algorithm. The algorithm needs mechanism to group rows efficiently so that each group of code
lines can be generalized into a certain rule set.

Third, there can be more than one way of generalizing rule sets, so we need to
quantitatively differentiate them. We can state the goal of the generalization algorithm quantitatively
that it aims at explaining the most numbers of rows using the least number of rules. A method we
suggest to quantify the closeness to the goal is a score calculated from weighted sum of the number
of unexplained rows and the number of rule sets: The smaller score a generalization has, the more

desirable way of generalization it is.
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The algorithm follows the steps described in Section 4.4.3 to address the challenges. The
first and second challenges are solved by two techniques called hasty rule set generalization from
pairs and rule set merging, which are described in Step 4.3.1 and Step 4.3.3, respectively. The third

challenge is addressed by a technique called rule set permutation, described in Step 4.5.2 and 4.5.3.

4.4.2. Algorithm terminology

Followings are new terms introduced to describe our algorithm: code line, code token,
code token signature, code base, code hint, and code token matrix. The code line is a piece of source
code, which is used as a unit of pattern generalization. Logically, a code line may span over
multiple lines. However, in most case, one line of source code is served as a code line because we
assume that users are interested in a pattern discovered when source code is examined in a line-by-
line manner. The code token is an atomic element of a code line, created by the code tokenizer. Four
types of code token are defined: delimiter token, string token, integer token, and double token. Code
tokens that belong to one code line form an array of code tokens, called the token row. The code
tokenizer splits a code line into a set of code tokens based on regular expression rules; it not only
splits a code line at a symbolic character like + or [ but also splits it at a point where numeric
character begins or ends and alphabet character changes capitalization, which helps splitting code
lines in camel case. The code token signature is a simplified representation of code tokens. It is
created by following transformation rule: delimiter tokens are kept as they are, string tokens are
replaced with S, and integer and real tokens replaced with N. For example, A_I=B[1]*5+C[1]*5 is
transformed into S_N=S/N]*N+S[N]*N.

The code base is a repository of code lines. It allows us to index code lines into the
repository and to query code lines relevant to a code hint. The code hint is a string used to generate

code completion candidates. When a user request code completion, the user specifies a parameter
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whose parameter needs to be completed, and the parameter name is passed as a code hint to the
pattern generalization algorithm. If a mapping script editor has a string in it, the string will be
combined with the parameter name and served as a code hint. The code token matrix is a a data
structure representing multiple code lines. All code lines in the code token matrix have the same
code token signature, and thus it can be organized in a matrix-like form. For example, if we create a
code token matrix from A_I=B[1]*5+C[1]*5, A_2=B[2]*5+C[2]*5, and A_3=B[3]*5+C[3]*5,

the matrix will be as follows (Figure 4-7):

Al _ |1 |=[BJ[[1]][*|[5[+]|lCc|ir]1]1][*]S5

Al_|2|=|Bl[|2]1[*|5|+|C|[]|2|1]*]|S5

Al _[3[=[BJI[|3]11*|S5[+|C|T[]3]1]|*]5
Figure 4-7: An example of the code token matrix

4.4.3. Pseudo code

1. Create a code base, and index code lines. For each code line indexed to the code base, the code
base indexes a code token signature, a code line string, and a source id. For example, if it
indexes mapping script B[1]*5+C[1]*5 from parameter A_I in a relation aliased as relC in
implementation Excellmpl, a record of code token signature S_N=S/N]*N+S[N]*N, code line
string A_I=B[1]*5+C[1]*5, and source id Excellmpl/relC/A_I is stored in the code base. We

assume that the code base has following records (Table 4.2):

Source ID
Excellmpl/relC/A_1

Code token signature
S_N=S[N]*N+S[N]*N

Code line string
A_1=B[1]*5+C[1]*5

A_2=B[2]*5+C[2]*5
A_3=B[3]*5+C[3]*5
D_3=D[3]*2+D[4]*2
D_4=D[4]*2+D[5]*2
E_5=E[5]*2+E[6]*2

A_1=A[1]*2+B[1]*2
A_2=A[2]*3+B[4]*5
A_3=A[3]*4+B[4]*5
A_4=A[5]*5+B[3]*4

Excellmpl/relC/A_2
Excellmpl/relC/A_3
Excellmpl/reC/D_3
Excellmpl/reC/D_4
Excellmpl/relB/E_2
Excellmpl/reB/A_1
Excellmpl/relB/A_2
Excellmpl/relB/A_3
Excellmpl/relB/A_4

S_N=S_N*N

G_1=Z[0]*2+W[0]*2

Excellmpl/relD/G_1
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G_2=Z[11*2+W[1]*2 Excellmpl/relD/G_2
G_3=Z[2]*2+W[2]*2 Excellmpl/relD/G_3
S_N=N A_1=1.0 Excellmpl/relE/A _1
A_2=1.0 Excellmpl/relE/A_2

Table 4.2: Records in the code base

2. Code completion is requested for a parameter named B_7. A code hint, B_7, is created, and a
code token signature for the code hint, S_N=, is created.

3. Query the code base to get code token signatures which starts with the code token signature of
the code hint. The code base will look up the first column code token signature and return all
code token signatures satisfying the query condition.

{signature | starts with the signature of a code hint} : $relevant_signature_list

4. Prepare a list to collect code completion candidates : $candidate_list.

For each queried code token signature, which will be denoted as $relevant_signature, do the

followings:

For each.item in $relevant_signature_list : $relevant_signature

4.1. Query the code base to get code lines whose code token signatures are the same as
$relevant_signature. The query result, a list of code lines, will be called
$relevant_codelines, and the number of relevant code lines will be denoted as N.
{codeline | whose code token signature is $relevant_signature } : $relevant_codeline_list
The size of $relevant_codelines : N

4.2. Create a code token matrix from the queried relevant code lines. For example, if we make
a code token matrix from code lines in the second row of Table 4.2, it will be the matrix

shown in Figure 4-8
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(A L =IBl [t [I*I5[+CTTITiIaT*T5
A 2 =IBl 1211 1*Is5]+Iclil2111+T>5
A 3 =IBl[I3]11*Is5+lcl1I3111*T5
D 3 =Dl 31 * 21+l 417 [*]2

<D 4=D[4]*2+D[5]*2>
E sI=TEl[[511 1 *121+EJ[( 611 *]2
A Ll=1Al Ol 121+IBl 11111112
A 2 =TAl 210 1*13 B4 1*T5
A 3l=TAl[ |31 *lal+IB (4171715

A 4—A[5]*5+B[3]*4J

Figure 4-8: Code token matrix for the second row
4.3. For each pair of rows in the matrix, do the followings:
For each pair of rows in the code token matrix: $first row, $second row
4.3.1 For each columns of the selected two rows, do the followings — this step is called the
hasty rule set generalization from pairs because we try to generalize a rule set based on
just two rows):

4.3.1.1. If two tokens in the column have the same number, assign the same number rule

for the column. For the following pair of the fourth and fifth rows in|Figure 4-8

column 10 and 17 will be assigned the same number rule (SN) as shown inIFigure

4-9
2] 3 7181 910] 11 13| 14] 15] 16| 17
3 31 *[2]+ [4]1*][2
4 4] B [151] ]
SN SN

Figure 4-9: The same number rule (SN) is assigned to column 10 and 17, denoted by yellow. The
same string rule (SS) is assigned to column 1, 5, and 12, denoted by blue.
4.3.1.2. If two tokens in the column have the same string, assign the same string rule (SS)

for the column. For the pair of the fourth and fifth row, column 1, 5, and 12 will be

assigned the same number rule as shown inf Figure 4-9

4.3.1.3. If a certain group of columns in the first row have the same gap with a certain
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group from columns, which should be the same group we have chosen for the first
row, in the second row, assign the gapped number rule (GN) for those columns. For
the pair of the fourth and fifth row, column 3, 7, and 14 are gapped with zero for
both rows, so they are assigned a gapped number rule with gap information of (N,
N+0, N+0), which means if the value of first column is 2 (N=2), the values for the

second column and the third column is 2 (N+0), and 2 (N+0).

112181 4|56 7189101112 17
{D B - (D[N | [ *[2[+]|D =
D e D|[ | ]1*12]+|D 2

Figure 4-10: The gapped number rule (GN) is assigned to column 3, 7 and 14, denoted by green.
4.3.1.4. If a certain group of column has a repeated string in the first row and if a certain
group of column, which should be the same group we have chosen for the first

row, has a repeated string in the second row, assign the repeated string rule (RS)

for those columns. For the pair of the fifth and sixth row inj Figure 4-8| column 1,

5, and 12 have a repeated string for both rows, so they are assigned a repeated

string rule.

1 23 4|86 |7|8,9[10{11}12 13|14|15]|16| 17
D 4 (=D [ |41 *|2|+DI[|5{1]|*]|2
E S =@ [ |5|]]*|2 |+ [|6]|]]*]|2
RS RS RS

Figure 4-11: The repeated string rule (RS) is assigned to column 1, 5 and 12, denoted by orange.
4.3.2 After iterating all columns, check if we could find a rule set that can explain all
columns. If so, the rule set will be accepted for the next step of rule set merging and
denoted as $accepted_rule_set. If not, the rule set will be abandoned.
4.3.3 When a rule set accepted for rule merging reaches this point, do the followings:

4.3.3.1. At this point, we have a map of rule sets called the rule set map, which is
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initialized as an empty map at the beginning of loop at Step 4.3 and later populated
by a process called rule set merging, described in Step 4.3.3.2 to Step 4.3.3.4. The
rule set map stores a rule set as its key and supporting rows as its value. For
example, if we have generalized a rule set from row 4 and 5 and if the rule set has
been added as an entry in the rule set map, the resulting rule set map will be as

follows:

Key (rule set) Value (supporting rows)

[same number rule: column 10, 17]
[same string rule: column 1, 5, 12] row 3,4
[gapped number rule: column 3,7,14 with (N, N+0, N+0)]

Table 4.3: A rule set map having a rule set generated from row 1 and row 2
4.3.3.2.0nce a new S$accepted_rule_set is generalized from a row pair, the
$accepted_rule_set is compared with each of the rule sets in the rule set map, which
denoted as $compared_rule_set.

A. If $compared_rule_set is the same as $accepted_rule_set, the row pair
that have generated the $accepted_rule_set is added to supporting rows
of $ compared_rule_set.

B. Even though $compared_rule_set and $accepted_rule_set are not exactly
the same, there are cases when they can be merged into one. It is because
some columns with the same number rule can be re-assigned as the
gapped number rule and also because some columns with the same
string rule can be re-assigned as the repeated string rule. In that case,
two rule sets are merged into one rule set, and their supporting rows are
also merged. The following example shows a case when

$compared_rule_set found in Table 4.3 is merged with

53



$accepted_rule_set generalized from row 5 and 6 in| Figure 4-8

[Source] Scompared_rule_set supported by row 4 and 5

*
~
ST

SN

16 | 17
*

; SN
Figure 4-12: Rule set merging of $compared_rule_set and $accepted rule_set

C. If $compared_rule_set and $accepted rule set are different and if they
cannot be merged into one, $accepted_rule_set is added as a new entry
in the rule set map.

4.4. Now the loop of Step 4.3 has finished. The final rule set map will have several rule sets

Table 4.4

supported by two or more than two rows as shown i

Key (rule set) Value (supporting rows)
[same string rule: column 1, 5, 12]
[gapped number rule: column 3,7,14 with (N, N+0, N+0)] row 1,2,3
[same number rule: column 10, 17]

[repeated string rule: column 1, 5, 12]
[gapped number rule: column 3,7,14 with (N, N+0, N+0)] row3,4,5
[same number rule: column 10, 17]
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[same string rule: column 1, 5, 12]
[gapped number rule: column 3,7,10 with (N, N+0, N+1)] row 6,7, 8,9
[gapped number rule: column 14,17 with (N, N+1)]

Table 4.4: A rule set map having a rule set generated from row 1 to row 9
4.5. The resulting rule set map can have rows that support more than one rule sets, the rule set
permutation is performed to adjust the rule set map so that the most number of rows can
be explained by the least number of rule sets. The algorithm creates all possible sequences
of lining up the rule sets in the rule set map. For each sequence, we do the followings:
4.5.1 We have two lists: one for storing explained rows, denoted as $explained_row_list and
the other for storing unexplained rows, denoted as #unexplained_row_list. We also
have a list containing active rule sets, denoted as $active_rule_set_list. All lists are
created empty.

4.5.2 As iterating through each permutated sequence of rule sets, we do the followings:
4.5.2.1. Count how many of the supporters of the rule set are not in $explained_row_list
4522 If the count is equal or more than two, the rule set is added to

$active_rule_set_list, and the supporting rows of the rule set are merged into

$explained_row_list.
4.5.2.3. If the count is less than two, the rule set will not be added to $active_rule_set_list.
If the counter is one, the counted supporting row is added to

‘ $unexplained_row_list.

4.5.3 Compute a score for this sequence based on the size of $active_rule_set_list and the
size of $unexplained_row_list. The score is computed by the equation of (weight_1 *
the size of $active_rule_set_list + weight_2 * the size of $unexplained_row_list).

Because we want to have a small size of $active_rule_set_list and a small size of
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$unexplained_row_list, a smaller score indicates that this sequence is more desirable.
4.6. The rule set permutation has finished, giving scores for all the permutated sequences. We
sort it to find the best sequence with the lowest score, and the sequence’s
$active_rule_set_list will be returned.
4.7. Combine the code hint with $active_rule_set_list to create a code completion candidate.
Stored it in the $candidate_list

5. Return a list of code completion candidates stored in $candidate_list.

4.5. Catalog Model Builder

In this section, we present how user interface of the catalog model builder has been built.
The first section describes the layout of the catalog model builder to illustrate how it interacts with a
user to create a catalog model. The second section addresses the issue of model representation.
Questions such as what kind of graphical structure is used to represent a relation in the model
builder will be answered. The next part explains how we visualize dependency among parameters to
help users in the mapping process. The remaining three sections describe features related to the

mapping script editor: reference-by-click, color-coding, and code completion popup

4.5.1. Layout of the catalog model builder

The catalog model builder has three panels for navigation, interface definition, and
implementation definition (Figure 4-13). After creating or opening a catalog model, a user chooses
one of model implementations from the navigation panel, and it makes the selected model
implementation displayed in the implementation definition panel. The user can add local and remote
relations into the implementation definition panel. After adding all necessary relations, the user

defines mappings. Mapping script editor is used to define mappings between parameters; it is
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placed on the input parameters of relations and the output parameters of an interface.

' implementation
definition panel

navigation panel | r - ' ’ “‘;,'L""‘"""
(implementations [l oo " || U - :
and interfaces)  Wk.cimate

1 i sl 2

Figure 4-13: Catalog model editor layout
The local relation definition dialog is used to add or edit a local relation. It is accessed by
add(+) button in the tool bar or edit... button on the center block of the relation and interface bar.

When adding a new local relation, a user first populates a list of parameters using add or remove

button on the left side of the parameter definition section in[Figure 4-14] Next, using the relation

script editor in the middle off Figure 4-14{ the user writes script code, which will be evaluated by the

Groovy script engine, to define a transformation from input parameters to output parameters. The
script editor help users write the script code efficiently by providing parameter name completion
and parameter name highlighting: the parameter name completion shows a popup containing
parameter names, and the parameter name highlighting set the color of input parameter names blue

while setting the color of output parameter names red. In the causality definition section, the user
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specifies dependency among parameters, and clicks confirm button to add a local relation into the

implementation definition panel.

g_power <<room_count * 100 + hell_count * 400;

iger _count*1 000 + computer_count*1 000;
¥ _sum << heating_power + applicance_power;

Figure 4-14: Local relation definition dialog layout
The remote relation definition dialog and the local relation definition can be switched by a
radio button located at the top of both dialogs. The remote relation definition dialog is used to add
or replace a subscription to a model interface. After switching to the remote relation definition

dialog, a user specifies server URL, user name, and password to establish a connection to a DOME

server as shown in|Figure 4-15{ Once connected to a DOME server, the user uses the navigation

panel to navigate through simulation models in the server. The user clicks add button to add a
remote relation into the implementation definition panel. This dialog is also used to replace the
subscription of a model interface with the subscription of another model interface. Because the

mapping script of the replaced subscription is copied to the replacing subscription if they have the
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same parameter names, we can save the effort of re-defining mapping scripts.

|8 FEA catalog model LE
—‘pnwswhdowsydamampﬂa
@R FEA cotelog model

Figure 4-15: Remote relation subscription dialog layout

4.5.2. Model representation

This section will describe what kinds of graphical structures have been used to represent

parameters, relations, interface, and mappings in the catalog model builder. A parameter is

represented by a small square, called parameter cell [Figure 4-16). Four types of parameter cell are

provided corresponding to four types of parameter: interface input parameter, interface output

parameter, relation input parameter, and relation output parameter.
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Figure 4-16: Graphical representation of parameters and relations in the model editor
All parameter cells commonly have fields for the parameter name, the data type, and the

unit, while the mapping script editor is only placed on the interface output parameter cells and the

relation input parameter cells as shown in[Figure 4-16 and|Figure 4-17] Each parameter cell has a

blue or red cube icon at the top left corner of a parameter cell, which is used to provide causality

information: the blue color means input causality and the red color output. Further description on

dependency visualization will be covered in Section [4.5.3] A relation is represented by a bar

consisting of three blocks: a left block for input parameters cells, a right block for output parameter

cells, and a center block for the relation name and the relation alias.

fi climate
type:Enumeration
| wunitno unit

|| @ no of refriger...|
|| typeinteger {
unitno unit
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Figure 4-17: Graphical representation of the model interface in the model builder

4.5.3. Dependency visualization

We have developed a visualization technique to inform users of relevant dependency
information and help them avoid erroneous mappings causing a loop in dependency. When we edit
a mapping script of a certain parameter denoted, the loop in dependency is created if the mapping
script refers other parameter that is affected by the parameter. Therefore, visualizing which
parameters are affected by the current edited parameter would prevent users from creating such an

erroneous mapping.

o um Traut ot

[oemes e ot rofriger..| @ na of room
A5+ Ermarsion rhogm 7 rtagus

after mapping editor opens

before mapping editor opens.

Figure 4-18: Dependency visualization with colors: Parameters affected by the edited parameter
turn gray, indicating that they are not valid targets of reference-by-click.
To visualize the information, we decided to use the color change of cubes on the parameter
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cells: In the initial status, cubes of input parameter cells are blue, and cubes of output parameter
cells are red, but, when the mapping script editor of a certain parameter opens, all parameters
affected by it will change the color of their cubes to grey. An example of the color change is shown
in Figure 4-18: When a user opens the mapping script editor for an input parameter, all parameters
affected turns grey — some are directly affected, while others are affected through a chain of
dependency starting from the parameter. When this colorized visualization is compared to the
matrix-based dependency visualization used for defining local relation shown in Figure 4-19, it
shows that the same dependency information can be utilized more effectively for mapping

depending on the way how the information is delivered.

i
5
t¥e
{
§
@
K

L1 1KY
s
<
K3/l iKY

1
i

Figure 4-19: Matrix-based dependency visualization: efficient for editing, but not so for mapping

4.5.4. Reference-by-click

The reference-by-click feature has been invented to ease the burden of writing reference
strings in the mapping script editor. Instead of typing a reference string, clicking on a parameter
name will add a reference string to the parameter in the mapping script editor. As shown in Figure
4-20, when a user wants to map power_required in solar panel calculator relation to power_sum in

power requirement relation, it can be accomplished by clicking on the parameter name of power

sum.
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Figure 4-20: A click on parameter name allows user to insert a reference string to the parameter.

However, there is a case when reference-by-click becomes less usable. When mapping
source parameters are far from a mapping target parameter, because of other relations placed
between them, users may need to scroll down the model editor pane until they can click the name of
the source parameter. Moreover, if other parameters next to the target parameter need similar
mappings to other parameters in the remote relation, they may have to scroll up and down
laboriously.

One way to solve this problem is to allow users to reorder relations in the editor pane and
put two relations of their interest next to each other. Such flexibility in visualization is accomplished
because the dependency solving mechanism decouples the execution sequence of relations from the
spatial sequence of relations and generates the proper execution plan from the causality information.
Using code completion feature is another way of solving it. Once we have defined mapping scripts
for the first a few of the mapping target parameters with reference-by-click, mapping scripts for

others can be generated by reusing the code patterns.
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4.5.5. Color-coding

The mapping editor utilizes color-coding technique to give a colorized visual
feedback of the typed string; as a result, it not only prevents typing errors but also ease the
visual search of the source parameter. When a typed string is not valid, having no match
with parameter names in the simulation model, the string will be displayed with no
decoration as a thin black font. For a valid string having a match to one of the parameter

names, the relation alias part of the string will have the same background color as the center

block of the referred relation; also the parameter name part will be made bold.|Figure 4-22

and|Figure 4-21|show how this color-coding strategy has been implemented in the editor.

One issue to be addressed in the future is to provide secondary cues that convey the
information to those have color blindness; the differentiation in other graphical properties
such as brightness or texture pattern can be used as secondary cues. Also, because several
forms of color blindness such as red/green blindness are much more common than others,
the current randomized color selector could be improved so that it avoids picking specific

combination of colors in a simulation model.

Typing error No error
panel_cost + relC mount-cost) * 2 rel panel_eommnum_cnst) ¥ 2
« ok 3 cancel 4 ok X cancel v

Figure 4-21: Color-coding helps detecting typing errors
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Figure 4-22: Color-coding helps ease visual search of source parameters.

4.5.6. Code completion popup

Pattern generalization algorithm generates candidates for the mapping script completion.
Code completion popup is used to display, narrow down, and finally select from the candidates. The
usability of the code completion popup has a significant effect on the productivity gain we can
achieve from the algorithm, and therefore it should be designed as efficient as it can be. We
approach this problem in two steps. First, we learn interaction conventions from code completion
features of software development tools; users who have an experience of using such tools are
expected to try to use our code completion feature in the same manner. This kind of interaction
conventions includes “code completion feature is accessed by hitting a space key with control

LY

down,” “users can iterate through code completion candidates using the arrow-up key and the

arrow-down key,” “hitting enter-key inserts the selected candidate into the code editor,” and “the list

of code completion candidates can be narrowed down by typing more literals” [Figure 4-23}.
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Figure 4-23: A user can narrow down the code completion candidates by typing more literals.

As a second step, we identify the difference between user behaviors assumed by the
current interaction conventions and those observed from the catalog model builder; it leads us to
improve the interaction specialized for the catalog model builder. As we can infer from the fact that
the current interaction conventions for the code completion popup are mostly based on keyboard-
based interactions, the current conventions assume that both hands are on the keyboard when the
code completion is requested. However, in the case of the catalog model builder, we observe that
users' hands stay on the mouse most of the time. It is because when users define mapping scripts, a
task that accounts for a significant portion of the time spent for the model integration, most
mapping scripts can be done with mouse control: Many mapping scripts can be completed by one or
two reference-by-clicks bridged with mathematical symbols such as +, *, and /. Therefore, the
conventional interaction of pressing a space with control down and using arrow keys for navigation
is not considered as the best way to use our code completion feature. We suggest that the code
completion feature of the catalog model builder be easily accessible with mouse control, without
having to move a hand to the keyboard. Clicking with control down is a proposed solution, whose
combination is expected to be easy to remember using the analogy of pressing a space key with
control down.

The final implementation of code completion popup supports three modes of activation

Figure 4-24). It can be activated by pressing the space key with control down, clicking on the

mapping script editor with control down, and clicking on the mapping script editor with both
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control and shift down. The last mode is the same as the second mode except for the fact that it
clears the existing mapping script before it generates code completion candidates. The default
behavior of code completion, which is activated by the first and second mode, consumes all written
literals in the mapping script and generates candidates based on that. However, in some cases when
a user thinks the existing mapping script is not relevant and wants to replace it, the default behavior
will supply too many unrelated literals and leave no room for generating fresh candidates.
Introducing the third mode solves this problem by giving us an option to ignore the existing
mapping script; thereby it accommodates the case when a user needs to replace the existing

mapping script with one of the code completion candidates.

1st mode
Space+CTRL |

@ rpos_1 $pos_1
pe Raal type Real
eceegp || unitRounit R
| | reiC.
14 ok X cancel /gf o
relAh[1] " reldi[1) relAh (1] reldi[1]
Math round(relE .c [0]) Math round(reiE c [0])
2nd mode
C!.lck+ CTRL CT™ ) ®pos.1
type Real type Raal type Real
unit o unit unit no unit unit o unit
[ itk |l E— —
reiC.weight_pos reiC.; reiC weight_pos
“rela force_1*3 * “rela force 1*3
relAh[1]* relAi[1] relAh[1]* relA i i e
Math round(relE c [0]) Math round(reE c [0]) . ; round(r&E c [0))
Click+CTRL+SHFT |

Figure 4-24: Code completion popup supports three modes of activation
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Chapter 5 Evaluation

In the first part of this chapter, we describe several integration scenarios, through which we
validate the effectiveness of reuse features of our design tool. The integration scenarios include the
door seal catalog browser, the evaluation of a power window system with various configurations,

and the finite element analysis (FEA) of the door seal with multiple levels of fidelity.

5.1. Door Seal Catalog Model

5.1.1. Evaluation goal

The first demo application called door seal catalog model is built to evaluate if the catalog
model satisfies the basic requirement of decoupling the implementation from the interface. The
requirement can be further decomposed into two sub-level requirements: allowing multiple
implementations to be associated with one interface and supporting switching between
implementations in the run-mode. An implication of this decoupling goal is that we can utilize a
parametric model that allows substantially larger variations than typical parametric models. From a
user point of view, the catalog model is seen as a typical parametric model having an
implementation switch as one of its model parameters. However, the catalog model can exhibit a
much wider range of model behaviors, when compared to typical parametric models, because its
variation in behavior is not based on parameterization of one simulation model, but on many

different simulation models.

5.1.2. Configuration of the door seal catalog model

The variation in geometry originating from different design concepts is one of the tricky
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variations that are not easily handled by parameterization. Our test application, the door seal catalog
model, will deal with that kind of geometric variation. We have two door seal designs which are
derived from two significantly different design concepts. The first is the current door seal design
with a round-shape bulb, while the second is a new door seal design inspired by an idea that a
convex-shaped bulb, having the shape of a deformed round bulb, may reduce door closing force and
energy while providing a comparable level of wind noise blockage. Because the variation between
two door seal designs cannot be handled by parametric changes to the existing round-shaped model,
a new door seal geometry model has been built for the test application. Two door seal geometry
models are created using CATIA [38], a computer aided modeling tool, and they are named as
round-seal. CATPart and convex-seal. CATPart (Figure 5-1).

This door seal geometry model will be used as a part of another integration model, and we
assume that the role of this door seal geometry model is to provide other simulation models with an
IGES file and a VRML file so that they can perform further engineering analysis, such as estimating

door seal stiffness and estimating door closing force.

width ‘
= step-widtth
§’ f—
A
2
£ b=
door seal with a round bulb door seal with a convex bulb
(round-seal.CATPart) (convex-seal. CATPart)

Figure 5-1: Two door seal designs modeled in CATIA

The following steps have been taken to create a catalog model satisfying the requirements

described above:

69



. Two DOME CATIA plug-in models wrapping each of the two CATIA files is created and
deployed on a DOME server. They are named as round door seal model and convex door seal
model.

. A catalog model named door seal catalog model is created. An existing implementation called
default implementation is renamed as round seal implementation. A new implementation called
convex seal implementation is added to the catalog model.

. Modify interface parameters of the catalog model so that it has input parameters of width and
height and output parameters of IGES file and VRML file.

. Use the implementation navigation panel to open the implementation of the round seal
implementation. Add a remote relation subscribing a model interface of the round door seal
model. Map interface input parameters to input parameters of the remote relation. Also map
output parameters of the remote relation to interface output parameters.

. Use the implementation navigation panel to open the implementation of the convex seal
implementation. Add a remote relation subscribing a model interface of the convex door seal
model. Map interface input parameters to input parameters of the remote relation. Also map
output parameters of the remote relation to interface output parameters.

. Save the door seal catalog model, and deploy the generated files to a DOME server.

. Now the door seal catalog model can be opened and executed by a DOME browser. To allow
an access to the model with standard web browsers like Mozilla Firefox, a web page has been

developed based on DOME run-mode API and Java Server Page (JSP) technology (Figure 5-2).
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Seal Catalog Browser
Public > catalog demo > seal catalog model > default interface &

* primary length

e seal type H = . . .
: |rﬂund seal section ‘] (as an implementation switch)
submit changes |

o CATIA mogels

- seal name - seal name - seal name
- what's different? - what's different? - what's different?
- why is that? - why is that? - why is that?

o VRML file

- file name: sealsection.wrl

- download YRML file
- reload VRML file to viewer

e IGES file

Figure 5-2: A web page developed for executing the door seal catalog model

5.1.3. Evaluation result

As we see in Step 4 and Step 5 in previous Section|5.1.2) the catalog allows us to add

multiple implementations associated with one interface. This feature is achieved by the model
definition component’s capability to organize implementation and interface data with many-to-one

relationship as well as the implementation dispatch mechanism that transform the model definition
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data into an executable form. Also the second sub-level requirement of switching implementation in
the run-mode is satisfied, because the door seal catalog model provides a parameter named

implementation switch which allows us to decide which implementation to use for each execution of

the model interface as shown in|Figure 5-3] Finally, the door seal catalog model, utilizing two

different implementations based on two CATIA models, has shown that it can produce IGES file
having a large geometric variation: Not only width and height can be changed, but also the shape of
the seal can be varied. From this representative application of the catalog model, we can conclude

that the catalog model accomplishes the goal of decoupling the implementation from the interface.

Figure 5-3: The door seal catalog model opened in a DOME browser

5.2. Power Window System Template

5.2.1. Evaluation goal

The second demo application called power window system template is to demonstrate how

the catalog model can be used to realize the goal of reusing integration structure. As we have
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described in Section 2.1, we can reuse the integration structure of an integration model if the
integration model is built with simulation models supporting the decoupling of the implementation
from the interface; we call such an integration model as system template, indicating that the
integration model can be served as a template for creating many different systems. The catalog
model provides the decoupling mechanism, so it can be employed to build a system template. To be
a practical solution for the integration structure reuse, the catalog model also needs to satisfy
another implementational requirement: it has to be interoperable with existing DOME models. Not
only the catalog model should be able to subscribe DOME models, which has already been
implemented by the remote relation and demonstrated in Section 5.1, but also the DOME
integration project should be able to subscribe the catalog model as its resource. As a test of the
interoperability issue, the power window system template will use a DOME integration project as

an integration model and import catalog models as resources for the DOME integration project.

5.2.2. Configuration of the power window system template

The power window system template, which itself is a DOME integration project, integrates
three catalog models: window catalog model, motor catalog model, and guide catalog model. The

information flow inside the power window system template is shown in Figure 5-4.
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Figure 5-4: Data flow among simulation models
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When the system template receives values for vehicle typeand window size from its model
interface, it passes vehicle typeand window sizeto a local relation called configurator relation and a
remote relation of the window catalog model, respectively. The configurator relation is a procedural
relation to select appropriate window type, motor type, and guide type based on vehicle type, it has

been implemented by a set of if-then rules. Once the configurator relation passes window typeto the

window catalog model, the model is executed, and as a result window properties, described in| Table

S:

[

are passed to the guide catalog model. Similarly, motor type is passed from the configurator

relation; the motor catalog model is executed; and the motor properties, described in| Table 5.1] are

passed to the guide catalog model.

Catalog model name
Window catalog model

I nput / output parameters
Input:

implementation switch (window type: F150 or Fusion)

Output:
A pillar length, B pillar length
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A upper pillar length, B upper piller length
A lower pillar length, B lower pillar length
glass area, A to B edge length
Motor catalog model Input:
implementation switch (motor type: Danaher or Groschopp)
Output:
speed at 2nm torque, torque at 20rpm speed
stall current, free current, voltage, resistance
Guide catalog model Input:
A pillar glass length, B pillar glass length
A pillar upper runner length, B pillar upper runner length
A pillar lower runner length, B pillar lower runner length
glass mass, A to B edge length
motor speed at 2NM, motor torque at 20 rpm
current draw at stall, motor free current
power supply voltage, inline resistance
Output:
max velocity, max stall force
speed0, speedl, speed2, speed3, speed4, speed5
force(), forcel, force2, force3, force4, force5

Table 5.1: Model interface of three catalog models

Finally, when the window catalog model and motor catalog model copy their results to the
guide catalog model, the guide catalog model calculates force and speed and copies them to the

model interface of the power window system template, whose definition is shown in Table 5.2.

Integration project name Input / output parameters
Power window system Input:
template vehicle type (F150 or Fusion)
window width, window height
Qutput:
max force, max speed, guide type, geometry type, motor type
speed(, speedl, speed2, speed3, speed4, speedS
force0, forcel, force2, force3, force4, force5
torque at 20 rpm, rpm at 2 Nm, glass area,
base width, stall current, free current, A lower pillar length

Table 5.2: Model interface of the power window system template, a DOME integration project
The following steps have been taken to set up the power window system template based on
three catalog models, which are assumed to be already built through the same steps we have

described in Section 5.1.2:
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1. First create A DOME integration project called power window system template.

2. Create an integration model called iMode in the project, and add resources of three catalog

models to the power window system template[Figure 5-5

m’m Wer WinGow wsﬁmtm;zmd = — B ] ] m’ -f‘,' & | ..
- ek Loceion &l
b @ guido cotolog model locahost 8080 7|
b G motor cataiog model localhoet:8080
b @ geometry catalog model locaihost.8080
ntegration models n project:
__ o s Al
» @R posel guide catslog model, motor ¢ ‘ﬂ"

Figure 5-5: Three catalog models are added to a DOME integration project as available resources

3. Open iModel, and subscribe three model interfaces from the catalog models.

4. Add a procedural relation containing input and output parameters defined in| Table 5.1| Write a

script that transforms vehicle type into window type, motor type, and guide type based on a set
if-then rules

5. Define all necessary mappings among subscribed parameters and relation parameters.

6. Create a project interface having input and output parameters defined in|Table 5.2

7. Deploy the power window system template on a DOME server.
8. Now the power window system template can be opened and executed by a DOME browser. A
web page for accessing the system template has been developed based on DOME run-mode

API and JSP technology.

5.2.3. Evaluation result

As depicted in the graphical user interface of the power window system template shown in
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Figure 5-6, the resulting system template lets us explore various design opportunities without
having to modify underlying integration structures. The successful execution of the demo
application also signifies that the issue of interoperability between the catalog model and the
DOME integration project has been resolved effectively. Because we have built the system template
by subscribing catalog models, instead of by subscribing a certain simulation model directly, we can
switch the implementation of its catalog models without having to affecting the overall integration
structure; consequently our goal of reusing integration structure is achieved. The power window
system template also addresses the issue of model configuration. Because implementation switches
of catalog models can be mapped and transformed just like other parameters, we have developed a
relation, called the configurator relation, which can coordinate implementation switches within the
power window system template. The current version of the configurator is a simple procedural
relation based on a few if-then rules, but it considerably reduces the burden of configuring catalog

models one by one.
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Power Window System Template
Public > catalog demo > power window system template > default interface

* system config.
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}
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Figure 5-6: The power window system template demonstrating integration structure reuse: catalog

models can switch their implementations without having to change the integration structure
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5.3. Simulation models with Different Levels of Fidelity

5.3.1. Evaluation goal

The goal of the third demo application is to show the catalog model’s capability to create a
simulation model that can provide different levels of fidelity, which are also configurable in the run-
mode. Such a capability is valuable when a simulation is used for multiple purposes which have
different preferences on the trade-off relation between accuracy and time: some may prefer a very
accurate, but rather slow simulation model, while others may prefer a fast model because of the
tight time constraint. One solution to this challenge would be utilizing two simulation models
serving different needs; however, this approach is not very efficient because it will require us to re-
integrate simulation models for each level of fidelity. Also having to manage multiple simulation
models with similar functionality can be another source of inefficiency because of the version
control issues. The catalog model is a promising solution to meet the need because one catalog
model can hold multiple implementations from simulation models with different levels of fidelity. A

catalog model called seal FEA catalog will be built to verify this promising option.

5.3.2. Configuration of the seal FEA model

The seal FEA model subscribes two simulation models: ABAQUS-based seal FEA model
called full FEA model and MATLAB-based neural-network model approximately emulating the
behavior of the ABAQU-based model called approximated FEA model. The full FEA model is
based on an ABAQUS model utilizing a time step analysis technique. To emulate the behavior of
the full FEA model, a neural network is trained from fifty sample points and also validated against
fifty points. The setup of neural network used in training is as follows:

*  Number of inputs : 4 (seal_width, seal_height, seal_thickness, seal_gap)
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*  Number of outputs: 3 (contact_length, deflection_nom, load_per_length)

*  Number of sampling points: 108
seal_width: 20, 21, 22, 23 [mm]
seal_height: 11, 12, 13 [mm]
seal_thickness: 0.85, 1.0, 1.15 [mm]
seal_gap: 7, 8, 9 [mm]
®  Transfer function:
input layer: logsig
output layer: logsig
*  Training performance: net error 0.0018~0.0041 (depending on randomly-generated seeds)
The model interface of the FEA emulation model has been created so that it matches the

model interface of the full FEA model (Table 5.3). Note that both models have an output parameter
called deform video, but the approximated FEA model will not generate a video file because the
current neural-network setup lacks the capability to generate a video data from a given set of video

data; instead, parameter deform video returns an empty file.

Simulation model name

Input / oulput parameters

Full FEA model Input:
(ABAQUS plug-in model) seal width
seal height
and seal thickness
seal gap

Approximated FEA model | Qutput:

(MATLAB plug-in model) final contact length
deflection nom
load per 100 mm
deform video

Table 5.3: To emulate behaviors of the full FEA model, the model interface of the approximated

FEA model has been copied from that of the full FEA model
Now we have two simulation models that have the same model interface, but provide
different levels of fidelity. Following steps will create a catalog model and add the two simulation

models as its implementations:
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1. Create a catalog model called seal FEA catalog modd!.

2. Rename default implementation as full FEA implementation.

3. Add a new implementation called approximated FEA implementation.

4. Open full FEA implementation. Add a remote model subscribing full FEA model and define
mapping between interface parameters and relation parameters.

5. Open approximated FEA implementation. Add a remote model subscribing approximated FEA
model and define mapping between interface parameters and relation parameters.

6. Deploy the seal FEA catalog model on a DOME server.

7. Now the power window system template can be opened and executed by a DOME browser.

Also a web page for accessing the catalog model has been developed.

Seal FEA Model with Various Levels of Fidelity

Public > catalog demo > FEA catalog model > default interface %

* geemetnysea | seal width [20 (mm) (20.5 ~ 22.5 mm)
4 seal height |T2 (mm] (11 ~ 13.5 mm)
seal thickness |1 [(mm] (0.9 ~ 1.1 mm)

door seal gap E [mm] (7.6 ~ 8.6 mm)

* analysis method time-step analysis by ABAQUS (4 min) 2| (as an impiermentation switch) :

* analysis method | e

1 e

-

- Te—
i . B .
- -
- time-step analysis - trained by 144 real FEA data
- 4 min per evaluation - < 0.5 sec per evaluation
- running on Server A - running on Server B

* analysis result final contact length m—. [mm)
deflection [13.12 [mm]
load per 100mm ﬁ_ [N per 100mm]
deflection video deform.avi (download the AVI file or play it)

Figure 5-7: The seal FEA catalog allows switching between simulation models having different
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levels of fidelity. While the higher fidelity seal FEA model takes 4 minutes for one execution, the

lower fidelity one takes less than 1 second.

5.3.3. Evaluation result

Through the steps described in the previous section, we have built a catalog model called
the seal FEA catalog. The seal FEA catalog provides two levels of fidelity: a higher fidelity based
on ABAQUS-based simulation and a lower fidelity based on neural network approximation. The
implementation switch allows us to adjust the level of fidelity in the run-mode. As a result, the
catalog model successfully accomplishes the goal of our demonstration: one simulation model that
can be used for multiple purposes requiring multiple levels of fidelity. To estimate the level of
fidelity of approximated FEA model, the net error of the model has been measured at fifty
validation sample points. The error — the normalized vector distance between estimated and original
output vectors — is quite small, ranging from 0.0018 to 0.0041, depending on randomly generated
seeds used in the neural network training algorithm. The time required to execute each model has
shown significant difference: the full FEA model takes average 4.8 min for one evaluation, while
the approximated FEA model takes less than 1 second, excluding training time less than 3 seconds,
when both models are deployed in the same computer.

A simulation model that can flexibly adjust the level of fidelity has interesting application
areas. For example, it can be applied to enhance the optimization process. For a problem with large
search space, optimization engines often employ an exploration technique at the beginning of its
search steps to create a rough map of the search space. At this step, a faster simulation model with
an acceptable level of fidelity is preferred over a slower model with a high level of fidelity because

the faster model allows the exploration of many interested areas in a short time. Meanwhile, in the
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later step of optimization, when the engine is confident about in which region the optimum is, a
simulation model with high fidelity is essential to find the exact location of the optimum. Therefore,
the catalog model like the seal FEA catalog will be a valuable tool to realize such an adaptive

optimization strategy.
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Chapter 6 Conclusion

6.1. Summary

The goal of our new design tool to reuse two aspects of integration knowledge: the
integration structure and the integration code pattern. The integration structure is defined as a graph
structure consisting of parameters as nodes and mappings as arcs, which our design tool aims at
reusing for other simulation models that are structurally compatible, but functionally different. The
integration code pattern is a pattern based on regularity found in the script code of simulation
models; the new design tool includes a pattern generalization algorithm and a code completion
feature that enables designers to reuse the pattern.

The first use case scenario — in which a car company tries to replace a motor simulation
model, which is part of a power window simulation model, with another without having to rebuild
or modify the overall integration model — shows reusing integration structure can ease the process
of design exploration by saving redundant integration efforts. In the second use case scenario, we
have provided several exemplary code patterns, which can be easily generalized by human, but have
not handled that well by computers. An algorithm that can perform similar generalization process
human can do would saves integration effort because many of mapping scripts used in simulation
models have regularity, within one model or within a group of models closely related to each other.

Since a simulation model is a kind of software, we have reviewed concepts for software
reusability studied in software engineering to find which can be related to and utilized for our
problem of reusing integration knowledge in simulate models. The missing and needed feature for

integrated design frameworks is found to be a support of the polymorphism concept. The concept
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proposes decoupling between implementation and interface, and when it is implemented in a tool
for designing integrated simulation models, the concept enables us to reuse the integration structure
in simulate models. Another research discipline of code mining provides several techniques relevant
to our implementation of integration code pattern reuse. Especially, previous research on code clone
detection and example-based code completion has developed various code representation
techniques including graph-based, vector-based and token-based.

We derived the list of software components based on the decomposition of functional
requirements and design parameters using the axiomatic design method. Major software
components implementing two goals of integration knowledge reuse include the catalog model
definition, the dependency solving algorithm, the implementation dispatch mechanism, the pattern
generalization algorithm, and the user interface components. Consequently, a design tool called the
catalog model builder and an integration model called the catalog model have been developed.

We have evaluated how our new design tool satisfies its intended goal using three demo
applications: the door seal catalog model, the power window system template, and the seal FEA
catalog model. The applications not only show that the basic capability of the catalog model,
decoupling implementation from interface and reusing the integration structure, is accomplished,
but it also shows that the model can be used for creating simulation models having multiple levels

of fidelity.

6.2. Future Work

The catalog model is a tool for integrating simulation models, and naturally the value of a
catalog model as an engineering analysis tool relies on those of simulation models it subscribes.
Because it allows subscription to DOME simulation models, the catalog model is considered to

competent from this point of view: any computational tool for engineering analysis and modeling is
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represented as a standardized parametric model in the DOME integrated design framework, and
thus the catalog model has a transparent access to various computation tools such as ABAQUS,
CATIA, and MATLAB. However, the catalog model still has room for improvement because the
current implementation subscribes DOME simulation models only, but cannot subscribe other
potentially useful simulation models deployed outside the DOME integrated design framework.
Since the inherent architecture of the remote relation allows more than one type of remote
simulation services, it can be extended to support other simulation services. Considering the fact
that the web service is widening its acceptance in the IT industry, supporting subscription to
simulation services deployed on a web service container will be a valuable extension of the remote
relation.

Supporting a new integration mechanism called implementation delegate also interests us.
If a catalog model has N kinds of implementations for M interfaces, we need to define N X M
implementation instances. For example, when we create a catalog model having five kinds of
implementations with four interfaces, we need to twenty implementation instances, which is not a
trivial task to do. However, we can reasonably reduce the effort when there are duplicated
implementation instances. Such duplication is often introduced because an implementation may
have different implementation instances for some of its interfaces, but have shared implementation
instances for others. The implementation delegate will allow us to delegate the definition of an
implementation instance, called source implementation instance, to other implementation instance,
and therefore we can save the effort of copying the same implementation instance from one to
another. Moreover, the catalog model becomes easier to maintain because a change made to the
source implementation instance will be immediately reflected to other implementation instances
which have delegated their definition to the source implementation instance.

The pattern generalization algorithm has an ability to find patterns in the source code. In
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our application to the code completion feature, the pattern is used to generate missing part of the
code. Another interesting application of the algorithm is to find irregularity existing in the source
code in order to detect possible errors. This task is challenging because it requires us to tell
irregularity from randomness. The pattern generalization algorithm is a promising start point to
develop an algorithm that can differentiate them because the irregularity is characterized by a
consistent pattern in the source code having a few exceptions to the pattern. Introducing additional
rules for generalization is also worth investigating. It is more interesting because a trade-off relation
regarding introduction of a new rule should be considered: while a new rule may help capture
regularity that could not be handled before, it may increase false positive code completion

candidates because the added rule may lead the algorithm recognize unacceptable generalization.
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