
A Design Tool for Reusing Integration Knowledge
in Simulation Models

MASSACHUSETTrS INSTITU1TE
OF TECHNOLOGYby

Sangmok Han JUL 2 9 2011

B.S. Mechanical Engineering LIBRAR IES

Seoul National University, 2000

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN MECHANICAL ENGINEERING
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2006

© 2006 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to MIT permission to reproduce

and to distribute publicly paper and electronic

copies of this thesis document in whole or in part

in any medium now known or hereafter created/

Signature of Author ............................. ...... .... ...... .L / . .........
Department of Mechanical Engineering

-May 12,0

C ertified by. .. .. .. .. .. .. .. .. . .. ... . ...
David Wallace

Esther and Harold E. erton Associate Professor

- Thesis Swervisor

Accepted by................................... ...... ......................

Lallit Anand
Chairman, Department Comnmittee on Graduate Students



A Design Tool for Reusing Integration Knowledge
in Simulation Models

By

Sangmok Han

Submitted to the Department of Mechanical Engineering
on 12 May 2004, in partial fulfillment of the requirements

for the degree of Master of Science in Mechanical Engineering

A bst ract

In the academic field of computer-aided product development, the role of the design tool is to
support engineering designers to develop and integrate simulation models. Used to save time
and costs in product development process, the simulation model, however, introduces
additional costs for its development and integration, which often become considerably large
due to the fact that many, complex simulation models need to be integrated. Moreover, the
result of integration and the effort taken during the integration process are often not reused
for other product development projects. In this paper, we attempt to develop a design tool that
can capture integration knowledge and make the knowledge reusable for other design tasks.
More specifically, we are interested in the two kinds of integration knowledge: the first
captured in the form of a graph structure associating simulation models, called the integration
structure, and the second generalized from script codes into rule-based patterns, called the
integration code pattern. An integration mechanism and a pattern generalization algorithm
have been developed and incorporated into a design tool utilizing a new integration model
called catalog model, a model that enables us to reuse the integration structure and code
patterns of one model to quickly build another. Application scenarios have demonstrated the
effectiveness of the design tool: The same integration task could be performed in less time,
and repetitive and error-prone elements in the task were substantially reduced as a result of
reusing integration knowledge in the simulation models.

Thesis Supervisor: David Wallace
Title: Esther and Harold E. Edgerton Associate Professor



Contents

Contents ................................................................................ 3

List of Figures ................................................................................. ........ .5

Chapter 1 Introduction................................................................................................... 7

1.1. M otivation ........................................................................................... 7

1.2. Concepts and Terminology ................................................... 9

1.3. Goal ................................................................................................................. ..... 10

1.4. Contributions ............................................................................................................. 12

1.5. Overview ............................................................................................................. 13

Chapter 2 Reuse Scenarios ........................................................................................... 14

2.1. Reuse of the Integration Structure .......................................................................... 14

2.1.1. Scenario terminology ..................................................................................... 14

2.1.2. Scenario of reusing the integration structure.................................................. 15

2.2. Reuse of the Integration Code Pattern ................................................................... 20

2.2.1. Exemplary reuse problems ............................................................................ 20

2.2.2. Scenario of reusing the integration code pattern ............................................. 23

Chapter 3 Related Work..............................................25

3.1. Approaches ................................................................................................................ 25

3.1.1. Software engineering approach to reusability ............................................... 25

3.1.2. Source code mining approach to reusability ................................................. 26

3.1.3. User interface design approach to reusability................................................ 28

3.2. Challenges ................................................................................................................. 28

Chapter 4 Im plem entation............................................................................................... .33

4.1. System Overview....................................................................................................... 33

4.1.1. Functional requirements ................................................................................. 33

4.1.2. Design parameters .......................................................................................... 34

4.1.3. Component map ............................................................................................ 37

4.2. Catalog M odel Definition...................................................................................... 39

4.2.1. Data structure ................................................................................................. 39

3



4.2.2. A ddressing m echanism .................................................................................... 41

4.3. D ependency Solving Algorithm ............................................................................ 42

4.3.1. Overview of the algorithm ............................................................................. 43

4.3.2. Pseudo code.................................................................................................... 44

4.4. Pattern Generalization Algorithm ........................................................................... 46

4.4.1. Overview of the algorithm ............................................................................. 46

4.4.2. A lgorithm term inology....................................................................................... 48

4.4.3. Pseudo code.................................................................................................... 49

4.5. Catalog M odel Builder .......................................................................................... 56

4.5.1. Layout of the catalog model builder............................................................... 56

4.5.2. M odel representation...................................................................................... 59

4.5.3. D ependency visualization............................................................................... 61

4.5.4. Reference-by-click .......................................................................................... 62

4.5.5. Color-coding.................................................................................................... 64

4.5.6. Code com pletion popup.................................................................................. 65

pter 5 E valuation ..................................................................................................... 68

5.1. D oor Seal Catalog M odel ...................................................................................... 68

5.1.1. Evaluation goal............................................................................................... 68

5.1.2. Configuration of the door seal catalog m odel ............................................... 68

5.1.3. Evaluation result............................................................................................. 71

5.2. Power W indow System Template .............................................................................. 72

5.2.1. Evaluation goal............................................................................................... 72

5.2.2. Configuration of the power window system template.................. 73

5.2.3. Evaluation result............................................................................................. 76

5.3. Simulation models with Different Levels of Fidelity ............................................. 79

5.3.1. Evaluation goal............................................................................................... 79

5.3.2. Configuration of the seal FEA m odel............................................................. 79

5.3.3. Evaluation result............................................................................................. 82

pter 6 C onclusion...................................................................................................... 84

6.1. Sum m ary.................................................................................................................... 84

6.2. Future W ork............................................................................................................... 85

rence .......................................................................................................................... 88

4

Cha

Cha

Refe



List of Figures

Figure 2-1: Simulation models for a power window system........................................................ 15

Figure 2-2: Comparison between two motor simulation models ................................................... 16

Figure 2-3: Adding a new implementation to motor simulation model ........................................ 17

Figure 2-4: Implementation can be switched to another in run-mode........................................... 18

Figure 2-5: By changing the implementation switch, the configuration of the power window system

can be changed from using the current motor simulation model to using the new motor simulation

m odel................................................................................................................................................. 18

Figure 2-6: Using mapping with transformation to handling differences in interface definition...... 19

Figure 2-7: The first example of code pattern generalization problem........................................ 20

Figure 2-8: The second example of code pattern generalization problem ................................... 21

Figure 2-9: The third example of code pattern generalization problem........................................ 21

Figure 2-10: The fourth example of code pattern generalization problem.................................... 22

Figure 2-11: Reusing integration code pattern: after activating code completion......................... 24

Figure 4-1: Function requirements identified for the design tool................................................. 34

Figure 4-2: Design parameters identified for the design tool........................................................ 35

Figure 4-3: Design matrix showing FRs-DPs relationship of our new design tool ...................... 36

Figure 4-4: A component map showing interactions among software components in the build-mode

................................................................................................................................................... 38...... 38

Figure 4-5: A component map showing interactions among software components in the run-mode 39

Figure 4-6: One-to-many relationship between the interface and the implementations................ 41

Figure 4-7: An example of the code token matrix........................................................................ 49

Figure 4-8: Code token matrix for the second row ....................................................................... 51

Figure 4-9: The same number rule (SN) is assigned to column 10 and 17, denoted by yellow. The

same string rule (SS) is assigned to column 1, 5, and 12, denoted by blue.................................. 51

Figure 4-10: The gapped number rule (GN) is assigned to column 3, 7 and 14, denoted by green.. 52

Figure 4-11: The repeated string rule (RS) is assigned to column 1, 5 and 12, denoted by orange.. 52

Figure 4-12: Rule set merging of $compared-ruleset and $accepted-ruleset........................... 54

Figure 4-13: Catalog model editor layout ..................................................................................... 57

Figure 4-14: Local relation definition dialog layout ..................................................................... 58

5



Figure 4-15: Remote relation subscription dialog layout............................................................. 59

Figure 4-16: Graphical representation of parameters and relations in the model editor ............... 60

Figure 4-17: Graphical representation of the model interface in the model builder ..................... 61

Figure 4-18: Dependency visualization with colors: Parameters affected by the edited parameter

turn gray, indicating that they are not valid targets of reference-by-click.................................... 61

Figure 4-19: Matrix-based dependency visualization: efficient for editing, but not so for mapping 62

Figure 4-20: A click on parameter name allows user to insert a reference string to the parameter... 63

Figure 4-21: Color-coding helps detecting typing errors ............................................................... 64

Figure 4-22: Color-coding helps ease visual search of source parameters.................................... 65

Figure 4-23: User can narrow down the code completion candidates by typing more literals. ........ 66

Figure 4-24: Code completion popup supporting three modes of activation ............................... 67

Figure 5-1: Two door seal designs modeled in CATIA ................................................................. 69

Figure 5-2: A web page developed for executing the door seal catalog model............................ 71

Figure 5-3: The door seal catalog model opened in a DOME browser ........................................ 72

Figure 5-4: Data flow among simulation models.......................................................................... 74

Figure 5-5: Three catalog models are added to a DOME integration project as available resources 76

Figure 5-6: The power window system template demonstrating integration structure reuse: catalog

models can switch their implementations without having to change the integration structure ......... 78

Figure 5-7: The seal FEA catalog allows switching between simulation models having different

levels of fidelity. While the higher fidelity seal FEA model takes 4 minutes for one execution, the

lower fidelity one takes less than 1 second. .................................................................................. 81

6



Chapter 1 Introduction

1.1. Motivation

As foreseen by social scientists, both aging population and unemployment are likely to be

growing sources of social problems in many countries. Interestingly, technological development and

free-market competition are causal forces that lead to improvement in quality of life while

simultaneously giving rise to an aging population and reduced labor needs. Even though no one yet

has come up with a clear solution for this dilemma, it can be generally agreed upon that we need to

develop more job opportunities that create greater value by taking advantage of exclusively human

capabilities, which are not subject to replacement by automation.

Design, be it of software, machines, or organizations, is one of the novel tasks that rely

heavily on human creativity and experience, so I conjecture that designers and inventors will be

increasingly important in the future. However, design is often thought to be a task best suited to

talented, younger people - yet future design problems are likely to become increasingly complex,

combining diversified customer needs, converging product functionalities, and rising environmental

concerns. A challenging mission for design tool technologies of the future will be to allow a wider

range of designers to creatively tackle increasingly complex design problems.

To address this challenge, I believe that a high priority should be placed on advancing two

key functional attributes of design tools: flexibility and usability. Both functionalities aim at

efficiently creating complex models, but take different approaches. The role of flexibility is to make

a design tool manage changes in requirements and configurations of simulation models efficiently.

The more flexible a tool is, the more complex problems designers can tackle, without being

7



overwhelmed by redundant, repetitive tasks introduced by design requirement changes or design

exploration for a better product configuration. Meanwhile, usability seeks for compatibility with the

human cognitive system. Based on the assumption that the interaction between a computer and a

human is most efficient when the computer has an interface compatible with the underlying

mechanism of the brain and thereby can utilize most capabilities of the brain, the role of usability is

to deliver complex information in an easily digestible form, preferably customized for each designer.

That way, the thought processes of designers will not distracted by procedural, tool-operation issues.

In this thesis, we are interested in design tools whose role in the product development

process is to help engineering designers develop and integrate simulation models. While most

design tools have competent at creating simulation models, few tools address the issue of

integration effectively because they does not provide an adequate level of flexibility to meet

variability in modern product development process. Once a simulation model is made from several

simulation model components, the components are tied to each other and cannot flexibly adapt to

subsequence modification, which is often required to reflect customer requirement changes or to

explore alternative design options like purchasing a standardized machine part from different

vendors. Such a modification often result in budget overruns or schedule delays because a change in

one simulation model has far-reaching effects on other models and making them all consistent

requires considerable amount time and effort. Moreover, it is a tedious task requiring no creative

thinking and thus avoided by most designers.

A usable design tool supporting the reuse of integration knowledge in simulation models is

promising solution to the current problem. We assume that the problem, the lack of flexibility in

simulation models, originates from the missing support of design tools. Because current design

tools do not allow designers to reuse integration knowledge in previously built simulation models,

much of integration effort taken for one simulation model needs to be repeated when some

8



components need to be replaced or modified. We hope a design tool to be able to capture the

integration knowledge in simulation models in a reusable form, so that it can be applied for building

another integration model. Because time and cost wasted in redundant, repetitive tasks can be

greatly saved, the product development process can employ more design iterations as well as

extensive exploration of design alternatives. Reusing integration knowledge in simulation models

also improves the usability of the design tool because it can provide valuable information that can

save typing and prevent mistakes when combined with appropriate visualization and interaction

techniques. Consequently, this thesis aims at developing mechanism, algorithm, and user interface

for a design tool that enables us to capture integration knowledge in simulation models for another

use.

1.2. Concepts and Terminology

Before we begin our discussion, this section is to establish a common ground on

terminology. Some terms used to describe our goal and contributions need to be defined in a

narrower sense than their general use because they can have various meanings. They include

simulation model, integration model, integration knowledge, relation and mapping.

Simulation model refers to a computer program that attempts to simulate behaviors of a

particular system. All simulation models in our discussion are assumed to be parametric models and

therefore their behaviors are exhibited through output parameters whose values are determined by

submitted values of input parameters. When the behavior of a simulation model is implemented by

subscribed behaviors of other simulation models, we call the implemented simulation model as the

integration model.

As the title of the thesis - reusing integration knowledge in simulation knowledge -

implies, we use integration knowledge to refer to something that is inside a simulation model that

9



can be reused for building another. Integration knowledge is defined as information extracted from

data in an integration model, where the information is assumed to reflect knowledge used by human

during the integration process. In other word, we define integration knowledge as tangible

information such as data structures or patterns that can be extracted from the model data. It is a

practical definition because such tangible information not only serves sufficiently to solve reuse

problems of our interest but it also eliminates the need for solving unnecessarily complicated

problems of representing knowledge in a computer understandable way.

Relation is a modeling element of the simulation model to define how input parameters are

transformed to output parameters. We have two kinds of relation: local relation and remote relation.

The local relation is a relation which includes script code, called relation script, and transforms

parameters using the script code. The remote relation is a relation whose transformation is defined

by subscription of a model interface. Model interface is a port, represented by a set of input and

output parameters, through which a simulation model interacts with other modeling elements. When

a simulation model is executed, values submitted to the input parameters are transformed into those

of the output parameters.

Mapping is another modeling element of the simulation model to describing how a

parameter in one relation, called mapping target parameter, is related to parameters in other

relations, called mapping source parameters. Script code called mapping script is used to define

transformation between the mapping target parameter and the mapping source parameters. The

mapping script is different from the relation script in the local relation in that it is a line of script

code whose evaluation result is assigned to the mapping target parameter.

1.3. Goal

10



The goal of our new design tool is to reuse two kinds of integration knowledge:

integration structure and integration code pattern.

The integration structure is a graph structure in the integration model describing how

parameters are mapped to each other. The graph structure is used to coordinate local and remote

relations so that output parameters in the model interface of the integration model give the intended

transformation of input parameters in the model interface. We suppose that the graph structure

reflects a designer's knowledge on how to organize a given set of local and remote relations to

achieve the intended transformation between input and output parameters in the model interface. It

is because we expect the designer to apply the same knowledge when he or she is asked to integrate

a similar set of local and remote relations, which have the same interface as the previous set but

exhibit different behaviors. Therefore, the integration structure is considered as integration

knowledge: its graph structure is extracted from modeling data, and the structure reflects a

designer's knowledge used in the integration process.

Integration code pattern refers to a pattern generalized from mapping scripts, which is

represented as a set of rules describing regularity found in the scripts. We assume that the regularity

results from applying the same knowledge on naming and indexing convention over several

mapping scripts; thus the set of rules is considered to reflect a designer's knowledge used in the

integration process. For example, in a situation in which an engineering designer has a set of

parameters that needs a similar mapping such as free-voltage mapped to freeVolt, and

stallvoltagemapped to stallVolt, we assume that the person will perform those mappings thinking

they have a consistent pattern among parameter names. As a result, when the person is asked to

create another mapping for average_voltage, the answer averageVolt can be created by re-applying

his or her knowledge on the regular naming pattern, which is often called naming convention.

The use case scenario in Chapter 2 will explain how these two aspects of integration

11



knowledge are reused in the simulation building process, highlighting the benefit from reusing them.

1.4. Contributions

We categorize contributions of our research in two areas: intellectual and implementational

contributions. Intellectual contributions include new ideas and algorithms, while implementational

contributions include mechanisms and designs, which have been adapted from other disciplines to

serve our needs.

* Intellectual contribution

0 Identification of two reusable integration knowledge: Integration structure and

integration code pattern

L Dependency solving algorithm: The algorithm generates an execution sequence of

relations and mappings: The algorithm works with a new set of relational operators:

the relation and the mapping with transformation.

l Pattern generalization algorithm: The algorithm identifies reusable integration code

patterns and generalizes the patterns into a rule set

* Implementational contribution

L Implementation dispatch mechanism for the catalog model: This mechanism is used to

decouple implementation from interface and to dynamically associate them in the run-

mode. Conceptually, it is similar to a mechanism used for implementing

polymorphism in object-oriented languages. While the object-oriented languages use a

dispatch table approach, our mechanism uses a script generation approach.

0 User interface design for the catalog model builder: The graphical user interface of our

design tool is specialized in reusing integration knowledge in simulation models. It

utilizes techniques developed in the user interface design discipline to provide an

12



effective user interface.

1.5. Overview

Chapter 2 describes how our design tool achieves two goals of reusing integration

knowledge. In the first scenario, the integration structure is reused to explore alternative design

options. The scenario is based on an integration model for estimating the performance of power

window system. The second scenario describes what kinds of integration code patterns can be

captured and how we can reuse them to save integration efforts.

Chapter 3 reviews research efforts taken in other engineering disciplines to find useful

concepts and techniques that can be employed to achieve our goal of reusing integration knowledge.

We investigate research works done in the areas of software engineering, source code mining, and

user interface design.

Chapter 4 describes how we build our design tool that can reuse two kinds of integration

knowledge. The first section of the chapter provides an overview of software components in the

design tool, and the proceeding sections give details on the four major software components:

catalog model definition, dependency solving algorithm, pattern generalization algorithm, and

catalog model builder.

Chapter 5 describes several integration scenarios, through which we validate the

effectiveness of reuse features of our design tool. The integration scenarios include the door seal

catalog browser, the evaluation of a power window system with various configurations, and the

finite element analysis (FEA) of the door seal with multiple levels of fidelity.

Chapter 6 presents a concluding remark of this thesis. Future directions of research are

discussed.

13



Chapter 2 Reuse Scenarios

The use case scenarios in this chapter illustrate how our design tool achieves two goals of

reusing integration knowledge. The first scenario demonstrates how the integration structure is

reused in a step-by-step way. The second scenario presents several integration codes containing

exemplary textual patterns and shows how they can be reused.

2.1. Reuse of the Integration Structure

2.1.1. Scenario terminology

In this section, we introduce several new terms that will be used in the integration structure

reuse scenario as follows: implementation, implementation switch, mapping with transformation,

run-mode, and build-mode. The implementation refers to a collection of parameters, relations, and

mappings, which are coordinated to realize a specific behavior of a simulation model. In a new

integration model supporting the reuse of integration structures, a model can have multiple

implementations for one model interface. The implementation switch is a parameter placed in an

integration model that diverts the source of model behaviors from one implementation to another.

While typical mapping just copies the value of a source parameter to a target parameter, the

mapping with transformation is enhanced in that it can perform mathematical transformation of

source parameters and assign the result value of transformation to a target parameter. The run-mode

refers to a state of a simulation model after the model is deployed in the model container of an

integrated design framework. The run-mode is used in contrast with the build-mode, indicating a

state of a simulation model before deployment and possibly under modification.

14



2.1.2. Scenario of reusing the integation structure

A company develops an integration model that analyzes the performance of a power

window system used in a car door. The overall configuration of the integration model is shown in

Figure 2-1 The integration model is aimed at finding the stall force - a force imposed by a window

when its movement is blocked by an object - and the maximum speed of the window. It subscribes

a window geometry model to find geometry data such as pillar lengths and glass widths. It also

subscribes a motor performance model giving torque and rotational speed and a window guide

model calculating the stall force and the maximum speed. Each subscribed model interface has three

to twenty parameters. Thos parameters are mapped to each other in the integration model, and as a

result a fairly complex integration model having four relations and forty seven mappings is created.

Power window system
Integration model

subscribe subscribe subscribe

Window geometry model Motor performance model Window guide model

Figure 2-1: Simulation models for a power window system

After the company evaluates the performance of the current power window system, they

are interested in exploring design alternatives. More specifically, they are interested in a motor from

a new supplier that provides maximum torque and maximum rotation speed similar to the current

motor but has different characteristics in terms of acceleration and electric resistance. They want to

15



know how the system's performance will change if they replace the current motor with the new

motor. Assuming that the company can obtain the new supplier's motor simulation model, two

challenging aspects of the replacement task are observed. First, they want to replace the motor

simulation model without having to rebuild, meaning to create a new integration model and define

all the mappings, the power window system integration model. They want to reuse the integration

structure they have defined in the model: the integration structure refers to a graph composed of all

the mappings and relations defined in an integration model. Second, the simulation model provided

by a new supplier has a slightly different model interface such as it gives resistance instead of

current Figure 2-2 so mathematical transformation on those parameters will be needed.

Inteface of current rrtor modd Interface of new rmtor mode

5 speed at 2 Nm torque 0 speed at 2nm

5 torque at 20 rpm speed 0 torque at 20rpm

* stall current <- - - - - - - - - - - - - -> 5 stall resistance

5 free current <- - - - - - - - - - - - - -> free resistance

5 voltage supply 5voltage
S resistance 5 resistance

Figure 2-2: Comparison between two motor simulation models

As a first step, the company creates an integration model called motor catalog mxdd,

which has the same model interface definition as the current motor model, and maps all parameters

in the current motor model to the corresponding parameters in the model interface. Now the motor

catalog model has the current motor simulation as one of its implementation. The second step is to

add the new motor simulation model as another implementation of the motor catalog model Fgre

2- and to set up necessary mappings between parameters in the new motor simulation model and

those in the catalog model interface. The last step is to replace the motor simulation model in the

power window system integration model with the new motor catalog model and set its

implementation switch to the implementation added in the second step. Since both of the replaced

16



and replacing models have the same interface definition, this step can be done without affecting any

mappings or relations in the power window system integration model. In other words, the

integration structure of the power window system integration model is reused for another

configuration of the integration model.

add implementation rWl-Speed at 2 rlAtorque at 20 reAketam cuwrentNrn H torque qpr speed

Figure 2-3: Adding a new implementation to motor simulation model

Another benefit from using the motor catalog model instead of the previous typical motor

simulation model is that we can switch and execute different implementations in the run-mode.

While we had to go back to the build-mode to change the configuration of the power window

system and re-deploy the modified integration model, now just changing the value of the

implementation switch in the run-mode will activate the selected implementation Figue2-4and

Fiur 5 .

17



Figure 2-4: Implementation can be switched to another in run-mode

Motor catalog model uising the DOME sew
cunent motor sinulation model ''|*

8Eu

Chanvg ng implement ation Aw tch

Motor catalog model using the DOME
new motor simulation model

DOME server

Figure 2-5: By changing the implementation switch, the configuration of the power window system

can be changed from using the current motor simulation model to using the new motor simulation

model.

18



The difference between two subscribed model interfaces is handled by the mapping with

transformation. The new motor model provides noninal voltage and stall resfstance, and therefore

stall current can be calculated from them by dividing voltage with resistance. One method of doing

such a transformation is to write a procedural relation that transforms voltage and resistance into

current. It requires us to create several modeling elements - one relation, three parameters and three

mappings - as well as to specify the causality information. While we are defining a simple

transformation, this method increases the complexity of the integration model considerably;

therefore it is not considered very efficient. However, with the new integration model, we can do the

same task in a simpler way because it supports the mapping with transformation. The mapping with

transformation allows us to write a line of mathematical equation in the mapping script editor, and

the equation is used to transform source parameter values into a target parameter value. Therefore, a

task that used to require several modeling elements can be done with one mapping with

transformation 'Figure 2-6

*motor request > speed at 2nm... *torque at 2r... 9 stall current
type:RWld type:Real type:Real type: Real
u n it nw unit u n itno unid un itrno undt unitno UNit

SZ2Nm rpm *.21 rpm al voltage I
.orqu tostall resistance

f*ree current 9 voitage %Ik
type:Real type:Real P..
unitnouit unitnO unit unitno unit

voltages IfWee voltage resistance

Figure 2-6: Using mapping with transformation to handling differences in interface definition

As a result, we can handle the difference in model interface definition in an efficient,

manageable way. Note that a parser embedded in the mapping script editor generates causality

information for the equation, and users can save time and effort spent on specifying trivial causality

information.

19



2.2. Reuse of the I ntegration Code Pattern

2.2.1. Exemplary reuse problems

Before we describe the reuse scenario of integration code patterns, several exemplary

integration code reuse problems will be presented to clarify the focus of our interest in reuse, and

they will be solved by examining regularity existing in the integration code.

In Problem 1, we have four parameters, two of which have their mapping scripts

completed Figure 2-7 . What would be the mapping scripts for pos3 and po4 then? The answer

would be rdB.p[2 and rdB.p[3. One justification is for this intuitive reasoning is the regularity

found in two completed mapping scripts, which is called the integration code pattern or the code

pattern in short. The code pattern for this problem is expressed using the following set of rules: Text

part of the script, rdB.p[ and ], is the same for both mapping scripts, and the number inside brackets

is one smaller than the number comes after pos.

Builder GUI reprstnation Text reprsentation

pos1 p082 po_3 *po pos_1 = relB.p[O]
type:Real typeReal tjpe:Real type:Real p0s_2 = relB.p[l]
unit no unit un it no ilt unit n1 unit unitno u3t

p [01 rp [1 pos_3 = ?
p0os 4=?

Figure 2-7: The first example of code pattern generalization problem

Problem 2 has four parameters, three of which have mapping scripts Figure 2-8. What

would be the mapping script for a_3_5? Again it is not very difficult to infer that the answer would

be rdB.q[3][5]. We see regularity in three mapping scripts that two numbers inside brackets are the

same as the first and second number in the parameter name.

20



Builder GUI rqeresetnation Text rqresentation
1 *a-21 la ._2 !$a3 a _1_1 = relB.q[1][1]

type:Real type:Real type:Real type:teal a_2_1 = relB.q[2][1]
un it no unit un it no uit un it no ilt unit no ilt

a_1_2 = relB.q[1][2]
a_3_5=?

Figure 2-8: The second example of code pattern generalization problem

Problem 3 have three parameters with one mapping scripts not completed [Figure 2-9. We

are interested to know what would be the mapping script for newDqth. Because two mapping

scripts show that a string coming after new in the parameter name is the same as a string that comes

after old, the answer would be oldDqeth * 0.5.

Builder GUI rqeressination Text representation
SnewHeght *newWldth *newDepth newHeight = originHeight * 0.5
type:Real type Real type ReW newWidth = originWidth * 0.5u n it:no ilt unit no wit u n it:no uilt

re4oIdHelght 0.5 re.oldWIdth 0.5 newDepth=?

Figure 2-9: The third example of code pattern generalization problem

In Problem 4, ten mapping scripts are given, and we are asked to fill a mapping script for

B_7 Figure 2-10 . While previous problems could be explained by one set of rules that applies to

whole examples codes, we can't find such a rule in this case. This problem is not as intuitive as the

last three problems, and it may seem unnecessarily complicated. However, this is a more realistic

case of the integration code pattern reuse. It reflects the complexity of the environment in which the

code pattern reuse should operate: A user provides no explicit information other than which

parameter needs code completion. Also, among many mapping scripts in a simulation model, only

some of them can be generalized into a rule set that can generate valid candidate, while others can

be generalized but their candidate may not be compatible with a given code completion - as we will

see in the last solving step of Problem 4, candidates generated by the first and the third rule sets

21



begin with A_7, which are not acceptable because it is not consistent with the given parameter name

B_7 - still others may not even be generalized into a rule set. After several trial-and-error to

generalize rules, B_7=B[7] *2+B[8] *2is found to be an answer based on justification as follows.

Builder GUI rqeresstnation Text rqrestation

1 10A2 A3 00_3 A1I=B[1]*5+C[l]*5
type:Real type:Real type:Real type:Rel A 2=B[2]*5+C[2]*5unit no unit un it:no unit unit no nit unitno unit

6[1]*5+C[1 1*5 B[21*5+C[2]*5 B[3]*5+C[3]*5 D[3]*2+D[41*2 A_3=B[3]*5+C[3]*5
1_ 11 D_3=D[3]*2+D[4]*2

type:Real type:Real
unit:no unit unit:no unit

D[4]*2+D[5]*2 E[5]*2+E[6]*2

D 4=D[4]*2+D[5]*2
E_5=E[5]*2+E[6]*2
A1 =A[]*2+B[l]*2
A_2=A[2]*3+B[4]*5
A 3=A[3]*4+B[A*5J_

$A_1 I*A2 A_3 A_4 A_4=A[5]*5+B[3]*4
type Real type Real type:Real type Real
un itno unit unit no unit unitno unit unitno uit

A1 =A[ 1*2+B[1 ]*2 A[2]*3+B[4]*5 A[3]*4+6[4]*5 A_4=A[5]*5+B[3]*4 B_7=?

Figure 2-10: The fourth example of code pattern generalization problem

We need three sets of rules to explain all mapping scripts, or all lines in text representation.

The first three lines are explained by a set of rules: "A B, C, 5, _, *, [, and ] are the same for each

line" and "The number after - is repeated for two numbers in the brackets." The second set of rules

explains the next three lines: "The same text string such as D or E is repeated three times - one at

the beginning and two before two [", "The number inside the first brackets is the same as the first

number after _, while the number inside the second brackets is one bigger than it," and "other

numbers are the same as 2 for each line." Similarly, another set of rules explains the remaining four

lines. Given these three set of rules, now we can create three possible answers. The first and the

third rule sets give A_7=B[7]*2+B[8]*2 and A_7=A[7*8+B[$(N+0}]*$(N+1}, in which

$(N+0} is a placeholder for an undetermined number that should be one smaller than the number at

$(N+1). Although the two rule sets have created candidates, their candidates are not acceptable

because they suggest A7 to be the parameter name, not B_7 Only one candidate generated from

22



the second rule set is consistent with the given parameter name B_7, and finally

B_7=B[7]*2+B[8]*2 is displayed as a candidate for the mapping script.

2.2.2. Scenario of reusing the integration code pattern

Assuming a pattern generalization algorithm that can systematically solve problems

described in Section 2.2.1 has been developed, a user will go through the following steps to reuse

the integration code pattern. We suppose that a user is working on the same simulation model used

in Problem 4. The user just have finished writing mapping scripts for parameter D_4 and E_5 and is

about to write a mapping script for B_7. If the design tool did not support automatic code

completion based on code pattern reuse, she would copy the mapping script of D_4,

D[4]*2+D[5]*2 and modify it to B[71*2+B[8]*2. Even though changing characters and index

numbers seems to be a trivial task to do, people often miss to modify some indexes and characters,

creating a bug in the simulation model. The bug not only generates unexpected, wrong results, but it

also requires considerable time and effort to be fixed, especially when it is an index-related bug.

Now that the design tool offers code completion feature, enabling the user to reuse the

integration code pattern, the user decides to use it. After having applied the same pattern for the two

mapping scripts of D_4 and E_5, the user activates the code completion feature to generate a

mapping script for B_7. The code completion feature is accessible either by hitting a space key with

control down or clicking a mapping script editor with control down. The list of code completion

candidates pops up in the mapping script editor (Figure 2-11). The user finds that B[7]*2+B[8]*2 is

the only code completion candidate. After selecting the candidate, the user accepts it either by

double-clicking the candidate or by hitting an enter key. Note that the user does not have to provide

any extra information to the computer other than which parameter needs code completion.

Information such as which mapping scripts should be used as a reference of the code pattern

23



generalization might be helpful for the code pattern generalization algorithm to solve the problem

easily, but requiring such information each time of code completion would make the code pattern

reuse process inconvenient and inefficient, possibly damaging usability of the integration code

pattern reusing feature. When the code completion finds many candidates, the user has an option to

narrow down the candidates by typing more literals, which match the beginning of the desired

mapping script.

IOA1 IA_2 OA_3 OA_-4
tvpe:Reai t p Real tvpe Real type Real
unitan unt -im t no unr u nit no unrd u n t no unrd

A[1 ]*2+B[1 ]*2 A[2r3+8[41*5 A[314+B[4]*5 A[5]*5+B[3]'4

10 A_1 A_2 A_3 _3
tvptReal typeReal typeRemal tvpe:Real
-init:no unit unitno unit unitno uit u no unit

B[1 I5+C[1 *5 B[2]*5+C[2*5 B[3]*5+C[3r5 D[3r2+D[4 2

type:Real tpe: Real type:Real
unitno unit u nitmnounr unit no unit

D[41*2+D[5]*2 E(51*2+E[61*2
B[7]*2+B[8r2

ty pe:Rfaw Ityp e:l typ :el

unitro unit u nit nko unit unitin unit

type Real type.Real
unito unit un nounit

Figure 2-11: Reusing integration code pattern: after activating code completion

24



Chapter 3 Related Work

This chapter reviews most relevant branches of research that address the issues of software

reusability. These include software engineering, user interface design, and data mining. Section 3.1

describes concepts and techniques developed in those disciplines. Section 3.2 discusses the current

support of reusability in major integrated design frameworks, identifying what kind of features are

missing or need improvement.

3.1. Approaches

3.1.1. Software engineering approach to reusability

Simulation models being a kind of software, software engineering concepts developed for

software reusability is helpful to solve our problem of reusing simulation models. Some of the

useful concepts are found in object-oriented programming, which is the most popular programming

paradigm to date. Given the list of concepts that characterize the object-oriented programming [1],

we have chosen the following concepts since they are closely related to the issue of reusability:

instantiation, polymorphism, and inheritance

Instantiation is a concept on the way how an object is created. In a language supporting

instantiation, multiple objects can be created from a class. Because behaviors and data structures

defined for one class can be reused to create many objects, it improves reusability [2].

Polymorphism is a mechanism that allows multiple implementations to be associated with a class

[3]. It decouples the external representation of a class, called the interface, from its internal

implementations; therefore, programmers can modify implementations without affecting other

classes using the class. To implement polymorphism, behaviors of a class need to be chosen based

25



on the target of the invocation. The implementation dispatching mechanism is used to achieve this

in most object-oriented languages [4]. Inheritance is also related to software reusability because it

suggests that specialized behaviors of a sub-class be built on the implementation of super-classes.

In addition to concepts derived from object-oriented programming, we have other software

engineering concepts, which are also essential to achieve software reusability: composition and

interoperability. Composition a concept that allows simple software modules to be combined to

build up a complex one [5]. Because it provides a simple, yet powerful way of reusing software

components, it is supported by most programming languages. Interoperability is also an important

concern for reusability since a software component cannot be reused if it is not accessible to other

software components. Some of existing solutions addressing the interoperability issue include COM

[6], CORBA [7], and SOAP [8].

3.1.2. Source code mining approach to reusability

Source code mining is an application of data mining techniques to find relationships and

correlations hidden in a large amount of source code [9]. While software engineering approaches

described in Section 3.1.1 try to invent new mechanism for reusability and embed it in a

programming language, code mining approach focus on how we can use a given programming

language in a better way promoting reusability. For this reason, code mining approaches have

developed a range of tools that help programmers produce reusable code.

Two categories of the code mining tool are reviewed in detail because they address the

similar technical issues we have to deal with when implementing our feature for reusing integration

code patterns. The first category is a tool that detects undesirable, not-easily-reusable code

fragments, called code clones. The code clone is a code fragment the same or equivalent copies of

which are found in another part of source code [10]. It has been reported that code clones degrade

26



the reusability and maintainability of the software [10-14]. The second category is a tool that helps

programmers to find reusable code from a repository of source code. Because the tool automatically

completes the remaining part of source code a programmer is working on, it is called example-

based code completion tool.

Research on the code clone detection tool has focused on developing fast and reliable

algorithm that can locate the same or equivalent code fragments. We identify two broad approaches,

namely, lexical-analyzer-based and textual-pattern-based. The lexical-analyzer-based approach

employs a parser to transform a source code into a specialized data structure for clone detection [12,

14]. Such an approach is computationally more expensive than the textual-pattern-based, but has an

advantage in detecting non-contiguous code clones because lexical information, such as program

dependence graph [14] depicting a relationship among non-contiguous code fragments, can be used.

Some of the initial works done in the textual-pattern-based approach suffer from not being able to

detect code clones that contain slight modification or span over multiple lines [11, 15]. Later works

address this problem by utilizing token-based representation [10, 13, 16]. Because the textual

pattern-based approach does not require a parser, which needs to be developed for each

programming language, it can be applied in language-independent manner [17], an advantageous

aspect over the lexical-analyzer-based approach.

Several example-based code completion tools have been developed based on the code

mining technique [18-21]. Code completion is achieved by a two-step process: building a code

example repository and querying relevant code from the repository. To perform the first step, each

code completion tool has been found to be using different data representation of source code

depending on the search algorithms they employ. A code completion tool described in [20]

represents source codes with a graph of method signatures because it generates code completion

candidates based on a graph search algorithm, while another presented in [21] stores vectors

27



because its search algorithm is based on structural similarity measured by the vector distance.

Regarding the second step, most tools address the issue of automatic generation of search queries

[18-21] because it is an essential feature for code completion feature to be usable: Few

programmers would use code completion feature if they have to learn new query syntax and write a

query each time they use it [20].

3.1.3. User interface design approach to reusability

User interface design is a technique to improve usability of an artifact. Based on the

assumption that the actual performance of a tool is determined by both the functionality and the

usability the tool provides, user interface design is another important technique for reusability. A

design tool's user interface that employs appropriate visualization techniques not only improves an

engineering designer's understanding of simulation models, but also it increases the chance of

applying reuse features of the design tool. Moreover, it reduces the number of mistakes during

model editing and reusing. For example, an engineering designer is editing a simulation model

having a number of parameters connected by complicated causalities. Because the designer has

limited knowledge of the model, he or she may define an erroneous mapping that will cause a loop

in causality. Such an erroneous manipulation of simulation models can be prevented by improving

the design tool's user interface so that it gives visual feedbacks on causality information. Extensive

studies on information visualization techniques along with justification for them based on the recent

founding on human vision and cognitive can be found in [22]. Useful guidelines provided by user

interface specialists are also available in [23, 24].

3.2. Challenges

The integrated design framework is a computational environment where simulation models

28



are built, integrated, and reused for engineering analysis. This section aims at identifying reusability

problems in current integrated design frameworks. We begin our discussion with a survey result

showing how software engineering concepts for reusability, which have been described in Section

3.1.1, are supported in three integrated design environments [25-27] and a simulation modeling

languages [28]. What we observe in Table 3.1 is that even major integrated design frameworks do

not support some of the key concepts, while object-oriented simulation languages [28-30], such as

Modelica, have a support for them.

29



Simul

Integrated design framework ation modeling

language

DOME Fiper Model Mode

Center lica

Instantiation:

Creating multiple
O 0 0 0

objects from one simulation

model

Polymorphism:

Decoupling interface X X X 0

from implementation

Inheritance:

Implementing a model
x x x 0

using inherited implementation

of other model

Composition:
O A A

Creating a simulation
(declar (master (master 0

model by aggregation of
ative approach) model approach) model approach)

multiple simulation models

Interoperability:

Subscribing simulation 0 0 0 X

models in a remote server

Table 3.1: Comparison of the reuse support in major integrated design frameworks

30



One way of explaining this difference in support is that some of the object-oriented

progranmming concepts are not as effective as they promise for reusability. Interestingly, critics on

the object-oriented programming have pointed out that the gain from inheritance is often

outweighed by the inflexibility it introduces to a system [31, 32]. Any change to a super-class has

far-reaching effects on all its sub-classes [33], and as a result the system gets less flexible in

adapting itself for subsequent changes in requirements [31].

In contrast to inheritance, polymorphism is considered as a missing, needed feature for

improving reusability. The integration structure reuse, whose benefits have been demonstrated in

the use case scenario in Section 2.2, is one application of the polymorphism concept to a simulation

model because both - integration structure reuse and polymorphism - share the same key idea of

decoupling the implementation from the interface. Thus, by developing integration mechanism

implementing the integration structure reuse, we complement the missing support of the key

concept in integrated design frameworks. As a platform for developing the integration mechanism,

DOME (Distributed Object-oriented Modeling Environment) will be used. The DOME is an

integrated design framework which has addressed several major reusability issues such as

instantiation, composition, interoperability, portability, and user interface design, making it the most

reuse-supporting platform among compared integrated design frameworks [25, 26].

We decompose our problem of the integration code pattern reuse into two sub-problems so

that we can identify how and which of source code mining techniques can be utilized for our work.

The first sub-problem is to find relevant integration code from the whole integration code, and the

second is to find rules that capture the regularity within the relevant codes. Based on our discussion

on the clone code detection and the example-based code completion, we need to decide which

approach will be taken for the first sub-problem: lexical-analyzer-based or textual-pattern-based.

The textual-pattern-based approach, more specifically the token-based representation, has been

31



chosen because we aim to make our pattern reuse mechanism be language-independent and widely

applicable to other text editing software components. Some researchers have also found that a

relatively simple textual-pattern-based approach for code detection performs effectively when

compared to sophisticated lexical analyzer approaches [34]. Other issues such as the code repository

organization and automatic query generation can be addressed accordingly based on the code

representation scheme, and the solution will be presented in Section 4.4. For the second sub-

problem of generalizing rules from the relevant codes, we could not find relevant previous work, so

a new mechanism addressing this problem will be developed in Section 4.4.

As for the user interface design of the design tool reusing two kinds of integration

knowledge, most of visualization and user interaction techniques discussed in [22-24, 35] are found

relevant, and they will be selectively adopted and adapted to meet the design tool's needs. Issues to

be addressed by the user interface of the design tool include 2-D structures for parameters, relations,

mappings visualization; interaction for model definition and reuse; focus and context management

during model navigation; and data mapping for model understanding. Considering a number of

useful user interface design techniques available to solve our design problem, the focus of our

research, in terms of user interface design, will be exploiting available knowledge to build an

effective user interface, specialized in reusing integration knowledge in simulation models. Further

details on the application will be explored in Section 4.5.

32



Chapter 4 Implementation

This chapter describes how we build the design tool for reusing integration knowledge.

The first section of the chapter provides an overview of software components. Instead of just

showing the end result, the section explains the way how our software components are derived and

the reason why they are suitable for our needs. The proceeding sections give details on major

software components: catalog model definition, dependency solving algorithm, pattern

generalization algorithm, and catalog model builder.

4.1. System Overview

Section 4.1.1 and 4.1.2 formulate and analyze the design of the design tool based on a

design methodology called axiomatic design. Further description on the design methodology with

extensive application examples can be found in [36].

4.1.1. Functional requirements

We find the functional requirements for the design tool by sequentially following what the

system performs and writing down what conditions should be met at each step to proceed. In order

to reuse the integration structure, we suppose that the design tool should have a system that

performs the following steps. First, the system has a data structure defining modeling elements in an

integration model. When the system receives a request for executing a model interface, it looks up

the data structure to create an execution plan. The execution plan is translated into an executable

form such as script code, which is executed by a script engine. After executing the executable form,

the execution result is collected and sent out to the DOME runtime environment. In addition to

these run-mode steps, we suppose that following build-time steps are needed. First, the system

33



provides a programmable interface to create and modify an integration model. Next, based on the

programmable interface, the system provides a graphical user interface so that users can easily build

integration models.

In order to reuse the integration code pattern, we assume that the system should perform

the followings. First, the system needs to store the whole collection of mapping scripts in an

integration model; also the collection needs to be queried to find mapping scripts relevant to the

parameter name to which code completion is requested. Next, the system is expected to employ an

algorithm to generalize patterns from the relevant mapping scripts; the generalized patterns are used

to generate code completion candidates. The system should interact with the user interface of the

design tool. It provides a programmable interface to access the code completion feature. A user

interface component, such as a code completion popup, is integrated with the programmable

interface and displays the code completion candidates. The functional requirements for the design

tool are summarized as follows (Figure 4-1):

I ~:Reuse integration structure
FRI.1: Manage data structures defining the new integration model

FR1.2: Generate execution plans for the currently selected implementation

FR1.3: Provide programmable interface for building integration models

FRI.4: Provide user-friendly interface for building integration models

FR1.5: Run the execution plan for the selected implementation

FRl.6: Interface with DOME runtime environment to send out the results

FR2: Reuse integration code pattern

FR2. 1: Retrieve relevant code from the whole collection of code

FR2.2: Generalize patterns, each which is expressed as a rule set, from the retrieved code

FR2.3: Generate code completion candidates by applying rule sets

FR2.4: Provide programmable interface for executing the algorithm

FR2.5: Integrate the algorithm into design tool user interface

Figure 4-1: Function requirements identified for the design tool

4.1.2. Design parameters

34



Given the functional requirements, finding design parameters is to find a set of software

components that can satisfy all the functional requirements. Because there can be multiple sets of

software components satisfying the requirements, we try to come up with a design that is close to an

ideal design, characterized by having no coupling within design parameters. Minimizing coupling is

an important issue for software components since it significantly affects their reusability. Finally,

Figure 4-2 summarizes the design parameters of our design tool.

DP1: Software components for integration structure reuse

DPI.1: Catalog model definition classes
(mit.cadlab.dome3.plugin.catalog.core)

DP1.2: Dependency solver classes
(mit.cadlab.dome3.plugin.catalog.core)

DP1.3: Catalog model builder API classes
(mit.cadlab.dome3.plugin.catalog.core)

DP1.4: Catalog model builder GUI classes
(mit.cadlab.dome3.plugin.catalog.ui)

DPl.5: Groovy Script generator, Groovy script engine, and DOME API
(mit.cadlab.dome3.plugin.catalog, mit.cadlab.dome3.api)

DP1.6: Catalog model plug-in and DOME-specific file generator classes
(mit.cadlab.dome3.plugin.catalog, mitLcadlab.dome3.plugin.catalog.serialization)

DP2: Software components for integration code pattern reuse

DP2. 1: Code repository classes
(mit.cadlab.dome3.plugin.catalog.pcc)

DP2.2: Rule generalization classes
(mit.cadlab.dome3.plugin.catalog.pcc)

DP2.3: Rule application classes
(mit.cadlab.dome3.plugin.catalog.pcc)

DP2.4: Pattern generalziation API classes
(mit.cadlab.dome3.plugin.catalog.pcc)

DP2.5: Code completion popup classes
(mit.cadlab.dome3.plugin.catalog.ui)

Figure 4-2: Design parameters identified for the design tool

We analyze the design matrix shown in Figure 4-3 to evaluate how desirable our selection

of design parameters is. Design matrix visualizes which design parameters are used to satisfy a

certain functional requirement; for example, to satisfy FR1.2 Generate execution plan, we use two

35



components for the catalog model definition and the dependency solving algorithm. Generally,

uncoupled or decoupled design is considered as an acceptable design because all FRs can be

satisfied by choosing DPs in a certain sequential order, which can be solved from the design matrix.

As Figure 4-3 shows, our design matrix is a decoupled one, having only lower triangular elements.

DPI DP2

a)

E E 0

FR1. Prvid roramabl 0nerfce CXC

.A_- C:4'k

FR14 Povdo oerfrendCineraceX

FR4.6 I r wt
I- a)

0 W 0
-9 CL C L. tn U

-~- U or Ln CL2

F2 Gd 0
Cd 0 03

0 0 3 CL >
0

15- W. 0 .~ -" - i"
(U03 U (D Cy. 0 A o U 0

F c. Pb X a

FR2) an)gt int usa rnec -a X

'n-40 mD 'C C) C, W-4 0 - C 0~
0 C-0-0-44 0 01 CS M1 "

Figure 4-3 DesFg maFru sh3in F -:seaisi af aur new Dg a)

U. 0i U U CL 0. .C L

FRiyaManage data structures X
FR 1. 2 bGenerate executi on d .pan X X
FR1.3eProvide programm able interface X X X

LL~ FR1.4:Provide user-friendly interface X X
FRe.5Run execution plan X X

e FR.6fInterface with DOME P x f eX ep
FR2. 1e : Retrieve relevant code X 
FR2,2iGeneralize patterns X X

cc FR2.3::Generate candidates X X
FR2.4: Provid e pro ram m abl e i nterface __X XIX X _

11FR2.SiIntegrate into user interface IIX X

Figure 4-3: Design matrix showing FFP-DPS relationship of our new design tool

Modularity analysis on the design matrix reveals that our concern on the reusability of

software components has been effectively addressed. Some of our software components such as the

dependency solving algorithm and the pattern generalization algorithm are elaborated

implementation works, and thus we want to organize the software components so that those

expensive components can be used for other applications. FR1.5 Rin the execution plan, which is

decoupled from other DPs but DP1.3 and DP1.5, is one example of effectively decoupled FRsL The

current implementation retrieves an execution plan through DP1.3 Catalog nvdel buildr API, and

36



translates the execution plan into a Groovy script, which is finally run by Groovy script engine.

Because DPJ.5 has no interaction with complicated implementation in DPi.] and DPJ.2, the script

engine can be easily replaced and even multiple script engines can be supported. We also notice that

FR1.6 Interface with DOME is decoupled from other DPs but DPJ.6. This implies that we can

make the integration model interact with other type of computational environments by

implementing additional DPJ.6. This decoupling provides considerable flexibility to enhance the

interoperability of the integration model. Possible applications include deploying the integration

model, supporting integration knowledge reuse, in other integrated design frameworks and

subscribing simulation services from standard web service containers. Lastly, the design matrix of

FR2.5 Integrate pattern generalization algorithm into user interface suggests that the pattern

generalization algorithm can be integrated into different kinds of user interfaces through DP2.4

pattern generalization API; therefore, text editors or software development tools embedding the

pattern generalization algorithm can be easily developed.

4.1.3. Component map

The following component map illustrates interactions between software components.

Figure 4-4 depicts build-time interactions among participating software components. In the build-

time, the model builder GUI (Graphic User Interface) component initiates interactions. Upon a

user's request, it modifies model definition and queries code completion from the pattern

generalization algorithm component. When the user invokes a save command, the integration model

will be serialized into a DOME model file.

37



Build-mode components

Model Builder GUI
code

analyze mton modify model

get N
c dates Model Definition Persistence create DoME

Dat Structure Provider Model Fi e
model

'use (to serialize metadlata)

DOME-specific
File Gerneration

classes for reusing mapping script class )other supporting classes

Class 7 classes for reusing integratbon structure data file or text data

Figure 4-4: A component map showing interactions among software components in the build-mode

Figure 4-5 shows interactions in the run-time. In the run-time, a model interface execution

request drives the interaction. When a DOME server receives a model interface execution request, it

instantiates a catalog model runtime using DOME Plug-in API. The catalog model runtime first

invokes the script generator component to create script code, which will be evaluated by the script

engine. The script generator component relies on the model definition component and the

dependency solver component to generate script code. When evaluating the script code, the script

engine uses DOME run-mode API to access and execute simulation models in other DOME servers.

38



Run-mode components

DOME Client

request model interface execution

claEso eusin inerain structureale orsextdt

M c oen m DOME Sercrt mog sftme DOME Plug-in API

parse use

DOME CoModel odel Definiion DOME
File Parser Date Structure rRun-Mode A

read execute

Dependency Script generatorSrptTx

classes for reusing mapping script class other supporting classes

class classes for reusing integration structure daao file or text data

Figure 4-5: A component map showing interactions among software components in the run-mode

4.2. Catalog M od- Deinition

4.2.1. Data structure

Catalog model is a name for our new integration model supporting the reuse of the

integration structure. This section illustrates how the catalog model organizes its model definition

data. The model definition data are created by catalog modd builde, which refers to GUI for

creating and modifying the catalog model. The script generation component uses the model

definition data during the run-mode to convert an execution plan into script code. The catalog

model is defined by five modeling elements: paraneta, rdation, rrapping, inteface, and

irrplerentation. The parameter represents an atomic unit of data in a simulation model with data

types of integer, real, Boolean, vector, matrix, enumeration, string, and file. It contains unit

information, which allows the system to perform data conversion automatically between different

39



units and to check dimensional conformity when assigning a value to a certain parameter. The

parameter further decomposed into four categories based on its parent entity and causality: interface

input/output parameters and relation input/output parameters.

The relation is used to define a mathematical relationship among parameters within a

catalog model. Depending on the source of the mathematical relationship, we have two

implementations of relations: local relation defined by Groovy script code [37] inside a model and

remote relation defined by a subscription of a model interface outside a model. Mapping in the

catalog model is called mapping with transformation. It not only copies the values of source

parameters to a target parameter, but it can also perform mathematical transformation before it

assigns a value to the target parameter. In implementation point of view, the mapping with

transformation is similar to the relation, but it does not require users to specify causality information

when defining it because it has mechanism to generate causality information from the mapping

script.

Interface and implementation are the modeling elements that distinguish the catalog model

from other integration models that do not support the reuse of the integration structure. The

interface is defined by a set of input and output parameters and causality information between

parameters. Implementation is defined by a collection of relations and mappings, which transforms

the values of input parameters into those of output parameters. Because the definition of a certain

interface is shared by all implementations associated with the interface, one-to-many relationship

exists between interface and implementations (Figure 4-6). The interface defines a kind of

communication protocol between a catalog model and other simulation models subscribing the

catalog model, and therefore we gain flexibility to vary the internal implementation without

affecting the overall integration structure.

40



The same interface links

Figure 4-6: One-to-many relationship between the interface and the implementations

4.2.2. Addresing mechanism

The catalog model introduces new mechanism for addressing modeling elements, which is

implemented by a software component called naming sewice It is based on a namespace concept,

which has been applied to many languages such as XML, Java, or C#. Using the naming service,

any modeling element can be accessed by a reference string: rdB for a relation or re/Armx peed

for a parameter in the relation. We assign a separate namespace for each relation, and the namespace

is accessed using an alias of the relation, which is unique in an implementation of the integration

model: For example, re/A and re/B are aliases for two local relations. Because we may have

multiple subscriptions of the same model interface in an implementation, such a unique alias is

needed to address them efficiently. A dot (.) has a special meaning in the reference string and is

called the scope-resolution operator. It is used to navigate between namespace and sub-namespace,

namespace and a model element, or sub-namespace and a model element. A parameter named max

speed in a relation aliased as re/B can be addressed using a reference string, re/B.nex oeed

Therefore, we can use the same parameter name multiple times in a simulation model as long as

they belong to different namespaces. The namespace-based addressing mechanism is more user-

friendly than GUID (Globally Unique Identifier)-based reference systems because it allows a short

and human-understandable reference string such as re/B.x speed when compared to a GUID-

41



based reference string such as 33158ded-bf9d-1004-8eOf-20d36b5298a. Table 4.1 gives a brief

overview of classes used to define the catalog model.

CParameter

CInterfacelnputParameter

CInterfaceOutputParamet

er

CRelationlnputParameter

CRelationOutputParamet

er

Defines name, data type, unit, and solving state.

CnterfaceOutputParameter and CRelationlnputParameter

can have a mapping associated with the parameters.

CRelation Defines a set of relation parameters.

CLocalRelation CLocalRelation defines a script and causality.

CRemoteRelation CRemoteRelation defines subscription and causality.

CMapping Defines a mapping script and causality

Clmplementation Defines a collection of relations and mappings

transforming inputs into outputs

CInterface Defines a set of interface parameters and

causality

CNamingService Implements namespace-based naming service for

accessing model elements

Table 4.1: Description of Catalog model definition classes

4.3. Dependency Solving Algorithm

42



4.3.1. Overview of the algorithm

Dependency solving algorithm finds a sequence by which mappings and relations should

be executed. It solves a graph search problem where the goal is propagating value changes in some

nodes to all other nodes affected by them, under the constraint that the navigation between nodes is

restricted by dependencies imposed by mapping and relations. The algorithm first creates a

directional graph using causality information in mappings and relations; in the graph, a node is a

parameter and an arc is either a relation or a mapping. The algorithm searches for a acceptable

navigation sequence, called execution plan, by following steps described in Section 4.3.2. The

output of the algorithm, the execution plan, is a list of mappings and relations; for example, a

execution plan of [mapping: relA.A, mapping: relA.B, relation: relA, mapping: itf.Z I indicates that

we can make all parameters consistent by executing mappings and relations in the given order.

Therefore, the model execution will start with executing the mapping for parameter A in relA and

finish with executing mapping for parameter Z in the interface. The algorithm uses a queue called

green queue to keep track of parameters which are consistent and thereby available as input of

mappings or relations. The key idea of pseudo code presented in the next section is as follows:

* A graph connected by directional arcs is created.

* The modification in input parameters makes some nodes green and others red.

* The algorithm propagates green color from a green node to a red node along directional

arcs.

* Propagation is allowed when all input parameters of a mapping or a relation are green.

* The algorithm keeps on propagating the green color until it meets the following exit

condition:

L Success when there is no red node in the graph.

[I Failure when there are red nodes in the graph, but there is no relation or mapping that

can propagate the green color.

43



4.3.2. Pseudo code

Nomenclature

[GQ] : a queue containing green parameters.

[EP] : a list containing mappings and relations in an order to be executed

{ mi-param}: a whole set of modified interface input parameters

{io-param}: a whole set of interface output parameters

{ri-param}: a whole set of relation input parameters

{param I query condition} : a set of parameters queried by a condition

{mapping I query condition} : a set of mappings queried by a condition

{ mapping node I query condition} : a set of mapping nodes queried by a condition

-> green or red : turns parameter or mapping node into green or red

- [EP] or [GQ] : put an item into [EP] or [GQ]

Each {mapping A} : $mapping : each element in {mapping A} will called $mapping

Algorithm

1. The system is given a set of modified input parameters denoted as {mi-param}

2. Turn {mi-param} into green, indicating consistent status, because the input parameters are

consistent.

{mi-param} -> green

3. Push modified interface input parameters into green queue [GQ].

{mi-param} 4 [GQ]

4. Find all parameters driven by {mi-param}, and turn them into red, indicating inconsistent

status. Each time such a parameter turns red, all mapping nodes mapped to the parameters

turns red, too. When it is the first time executing this implementation, {mi-param} should be

44



given the same as {ii-param}

{param I driven by {mi-param}}- red

{mapping node I mapped to {param I driven by {mi-param} } } 4 red

5. When it is the first time executing this implementation, add relation input parameters and

interface output parameters having no driver to [GQ]. For later execution, skip this step

because those parameters will not change their value.

{param I driven by {empty} among {ri-param} } 4 [GQ]

{param I driven by {empty} among {io-param} } 4 [GQ]

6. Start a loop popping a green parameter from [GQ].

6.1. For each popped green parameter, turn all mapping nodes mapped to it into green

Each popped parameter : $popped

{mapping node I mapped to $popped} 4 green

{mapping node I mapped to $popped} : {mapping node A}

6.1.1 For each mapping node turning green, find the mapping that is made executable by the

iterated mapping node (A mapping becomes executable when all input mapping

nodes of the mapping are green)

Each {mapping node A}: $mappingnode

{mapping I made executable by $mappingnode} 4 {mapping A}

6.1.1.1. For each executable mapping, put the mapping into [EP], turn its output mapping

node into green, turn a parameter mapped by the mapping into green, and put

the parameter into [GQ].

Each {mapping A} : $mapping

$mapping 4 [EP]

Output mapping node of $mapping. 4 green

Parameter mapped to the output node 4 green

45



Parameter mapped to the output node 4 [GQ]

6.2. If [GQ] has remaining green parameters, repeat A.

6.3. If [GQ] has no remaining green parameter, do the followings.

6.3.1 Check if all interface output parameters are in a consistent status. If so, the

dependency is solved successfully. Exit the popping loop of Step 6 and return [EP].

6.3.2 Find executable relations - A relation becomes executable when all input parameters

are green. If no executable relation is found, the dependency solving has failed. Exit

the popping loop of Step 6, and report an error message containing which parameters

remains inconsistent.

6.3.3 If several executable relations are found, select one that creates the most number of

new green parameters

a relation selected from {relation I executable}: $relation

6.3.4 Turn output parameters of the picked relation into green, and push the parameters into

[GQ]. (If there is a derived parameter associated with an output parameter, it will

need the same treatment.)

$relation 4 [ES]

output parameters of $relation 4 green

output parameters of $relation 4 [GQ]

7. This execution point is not reached because the popping loop exits either at 6.3.1 or at 6.3.2.

4.4. Pattern Generalization Algorithm

4.4.1. Overview of the algorithm

Pattern generalization algorithm finds code completion candidates based on the given hint

46



literals, which consist of a parameter name and a partially completed mapping script in our case. It

first retrieves relevant code lines from the whole collection of script code and generalizes patterns

from them. A pattern is expressed as a rule set describing regularity discovered from the code lines.

The algorithm then applies using rule sets to the hint literals to generate code completion candidates.

Generalizing the rule sets from a given set of code line is the most challenging part of the algorithm

for the following reasons:

First, more than one rule set can be generalized from a given set of code lines. Some of the

code lines are generalized into one rule set, and some others are generated into another rule set. Still

others may not be generalized and dismissed as not generalizable. For example, when we have ten

code lines, eight lines can be generalized into three rule sets, while two code lines are left as not

generalizable. We call such a dismissed code line as an unexplained code lines because they are not

explained by any rules sets generalized from the set of code lines.

Second, we don't have information on which code lines are grouped and generalized into a

rule set. Let us assume that, among the eight code lines that could be generalized into three rule sets,

row 1, row 2, and row 3 are grouped together and generalized into a rule set, while row 4 and row 6

are generalized into another rule set. Unfortunately, such grouping information is not provided to

the algorithm. The algorithm needs mechanism to group rows efficiently so that each group of code

lines can be generalized into a certain rule set.

Third, there can be more than one way of generalizing rule sets, so we need to

quantitatively differentiate them. We can state the goal of the generalization algorithm quantitatively

that it aims at explaining the most numbers of rows using the least number of rules. A method we

suggest to quantify the closeness to the goal is a score calculated from weighted sum of the number

of unexplained rows and the number of rule sets: The smaller score a generalization has, the more

desirable way of generalization it is.

47



The algorithm follows the steps described in Section 4.4.3 to address the challenges. The

first and second challenges are solved by two techniques called hasty rule set generalization from

pairs and rule set merging, which are described in Step 4.3.1 and Step 4.3.3, respectively. The third

challenge is addressed by a technique called rule set permutation, described in Step 4.5.2 and 4.5.3.

4.4.2. Algorithm terminology

Followings are new terms introduced to describe our algorithm: code line, code token,

code token signature, code base, code hint, and code token matrix. The code line is a piece of source

code, which is used as a unit of pattern generalization. Logically, a code line may span over

multiple lines. However, in most case, one line of source code is served as a code line because we

assume that users are interested in a pattern discovered when source code is examined in a line-by-

line manner. The code token is an atomic element of a code line, created by the code tokenizer. Four

types of code token are defined: delimiter token, string token, integer token, and double token. Code

tokens that belong to one code line form an array of code tokens, called the token row. The code

tokenizer splits a code line into a set of code tokens based on regular expression rules; it not only

splits a code line at a symbolic character like + or [ but also splits it at a point where numeric

character begins or ends and alphabet character changes capitalization, which helps splitting code

lines in camel case. The code token signature is a simplified representation of code tokens. It is

created by following transformation rule: delimiter tokens are kept as they are, string tokens are

replaced with S, and integer and real tokens replaced with N. For example, A_1 =B[J]*5+C[1]*5 is

transformed into SN=S[N]*N+S[N] *N.

The code base is a repository of code lines. It allows us to index code lines into the

repository and to query code lines relevant to a code hint. The code hint is a string used to generate

code completion candidates. When a user request code completion, the user specifies a parameter

48



whose parameter needs to be completed, and the parameter name is passed as a code hint to the

pattern generalization algorithm. If a mapping script editor has a string in it, the string will be

combined with the parameter name and served as a code hint. The code token matrix is a a data

structure representing multiple code lines. All code lines in the code token matrix have the same

code token signature, and thus it can be organized in a matrix-like form. For example, if we create a

code token matrix from AJ=B[1]*5+C[1]*5, A_2=B[2]*5+C[2]*5, and A_3=B[31*5+C[3]*5,

the matrix will be as follows (Figure 4-7):

A _ 1 = B [ 1 ] * 5 + C [ 1 ] * 5
A _ 2 = B [ 2 ] * 5 + C [ 2 ] * 5
A _ 3 = B [13_] * 5 + C [ 3 ]5*15

Figure 4-7: An example of the code token matrix

4.4.3. Pseudo code

1. Create a code base, and index code lines. For each code line indexed to the code base, the code

base indexes a code token signature, a code line string, and a source id. For example, if it

indexes mapping script B[1]*5+C[1]*5 from parameter A_1 in a relation aliased as reiC in

implementation ExcelImpl, a record of code token signature SN=S[N*N+S[N*N, code line

string A_1=B[]*5+C[1]*5, and source id ExcelImpl/relC/A_1 is stored in the code base. We

assume that the code base has following records (Table 4.2):

SN=S[N]*N+S[N]*N A_l=B[l]*5+C[l]*5 ExcelImpl/relC/A_1
A_2=B[2]*5+C[2]*5 ExcelImpl/relC/A_2
A_3=B[3]*5+C[3]*5 ExcelImpl/relC/A_3
D_3=D[3]*2+D[4]*2 ExcelImpl/reC/D_3
D_4=D[4]*2+D[5]*2 ExcelImpl/reC/D_4
E_5=E[5]*2+E[6]*2 ExcelImpl/relB/E_2
A_l=A[1]*2+B[I]*2 ExcelImpl/reB/A_1
A_2=A[2]*3+B[4]*5 ExcelImpl/relB/A_2
A_3=A[3]*4+B[4]*5 ExcelImpl/relB/A_3
A 4=A[5]*5+B[3]*4 ExcelImpl/relB/A 4

S N=S N*N G 1=Z[]*2+W[O]*2 ExcelImpl/relD/G_1

49



G_2=Z[1]*2+W[1]*2 ExcelImpl/relD/G_2
G_3=Z[2]*2+W[2]*2 Excellmpl/relD/G_3

S_N=N A_1=1.0 ExcelImpl/relFIA_1
A_2=1.0 ExcelImpl/relE/A_2

Table 4.2: Records in the code base

2. Code completion is requested for a parameter named B_7. A code hint, B_7, is created, and a

code token signature for the code hint, SN=, is created.

3. Query the code base to get code token signatures which starts with the code token signature of

the code hint. The code base will look up the first column code token signature and return all

code token signatures satisfying the query condition.

{ signature I starts with the signature of a code hint} : $relevantsignaturejlist

4. Prepare a list to collect code completion candidates : $candidatejlist.

For each queried code token signature, which will be denoted as $relevant-signature, do the

followings:

For each item in $relevant-signaturelist : $relevant-signature

4.1. Query the code base to get code lines whose code token signatures are the same as

$relevant-signature. The query result, a list of code lines, will be called

$relevantcodelines, and the number of relevant code lines will be denoted as N.

{codeline I whose code token signature is $relevant-signature } : $relevantcodelinelist

The size of $relevantcodelines : N

4.2. Create a code token matrix from the queried relevant code lines. For example, if we make

a code token matrix from code lines in the second row of Table 4.2, it will be the matrix

shown in Figure 4-8

50



] B 1 5 +TC I1 1 5
A 2 - B_ 2 * 5 _+ C _[ 2 * 5A3 B [13 * _+IC [ 3 ] *15
D 33 ] * 2 + D [ 4 ] * 2

E [4 5 [ 2 + E 2
..... A 1 -----B I

1 ] * 2 +5. ..... - --- -----
AJ 21 A [3 *4 + B 14 ] 5A A[ Li5 B J 4 *_.._ ._.. 3 .3.*.4.+ B [ 44

Figure 4-8: Code token matrix for the second row

4.3. For each pair of rows in the matrix, do the followings:

For each pair of rows in the code token matrix: $firstrow, $secondrow

4.3.1 For each columns of the selected two rows, do the followings - this step is called the

hasty rule set generalization from pairs because we try to generalize a rule set based on

just two rows):

4.3.1.1. If two tokens in the column have the same number, assign the same number rule

for the column. For the following pair of the fourth and fifth rows in Figure 4-8

column 10 and 17 will be assigned the same number rule (SN) as shown in Figure

4-9

2 3 4 6 7 8 9 101 13 4'1 16 7

3 = [ ] * 2 + [ 5 24 [ 4
SV SV

Figure 4-9: The same number rule (SN) is assigned to column 10 and 17, denoted by yellow. The

same string rule (SS) is assigned to column 1, 5, and 12, denoted by blue.

4.3.1.2. If two tokens in the column have the same string, assign the same string rule (SS)

for the column. For the pair of the fourth and fifth row, column 1, 5, and 12 will be

assigned the same number rule as shown iI Figure 4-9

4.3.1.3. If a certain group of columns in the first row have the same gap with a certain

51

A



group from columns, which should be the same group we have chosen for the first

row, in the second row, assign the gapped number rule (GN) for those columns. For

the pair of the fourth and fifth row, column 3, 7, and 14 are gapped with zero for

both rows, so they are assigned a gapped number rule with gap information of (N,

N+0, N+0), which means if the value of first column is 2 (N=2), the values for the

second column and the third column is 2 (N+0), and 2 (N+0).

| 1 2 3 4 | 6 7 8 9 10 '11 12 13 141 15 16"j 17
D 3 = D [ 3 ]|* 2 + D [ 4 ] * 2
D 4 = D [ 2 + D* 2

r__ IG N GN

Figure 4-10: The gapped number rule (GN) is assigned to column 3, 7 and 14, denoted by green.

4.3.1.4. If a certain group of column has a repeated string in the first row and if a certain

group of column, which should be the same group we have chosen for the first

row, has a repeated string in the second row, assign the repeated string rule (RS)

for those columns. For the pair of the fifth and sixth row iI Figure 4-8 column 1,

5, and 12 have a repeated string for both rows, so they are assigned a repeated

string rule.

1 -2 3 4 5 6- 7 81 9 10r 11 1 1-3 14 15 15 17|
4 D 4 2 + D 5* 2

E _ 5 = B [ 5 ] * 2 + E [ 6 ] * 2

Figure 4-11: The repeated string rule (RS) is assigned to column 1, 5 and 12, denoted by orange.

4.3.2 After iterating all columns, check if we could find a rule set that can explain all

columns. If so, the rule set will be accepted for the next step of rule set merging and

denoted as $acceptedruleset. If not, the rule set will be abandoned.

4.3.3 When a rule set accepted for rule merging reaches this point, do the followings:

4.3.3.1. At this point, we have a map of rule sets called the rule set map, which is

52



initialized as an empty map at the beginning of loop at Step 4.3 and later populated

by a process called rule set merging, described in Step 4.3.3.2 to Step 4.3.3.4. The

rule set map stores a rule set as its key and supporting rows as its value. For

example, if we have generalized a rule set from row 4 and 5 and if the rule set has

been added as an entry in the rule set map, the resulting rule set map will be as

follows:

[same number rule: column 10, 17]
[same string rule: column 1, 5, 12] row 3, 4
[gapped number rule: column 3,7,14 with (N, N+0, N+0)]

Table 4.3: A rule set map having a rule set generated from row 1 and row 2

4.3.3.2. Once a new $accepted-ruleset is generalized from a row pair, the

$acceptedruleset is compared with each of the rule sets in the rule set map, which

denoted as $comparedruleset.

A. If $comparedruleset is the same as $accepted-ruleset, the row pair

that have generated the $acceptedruleset is added to supporting rows

of $ comparedruleset.

B. Even though $comparedruleset and $accepted ruleset are not exactly

the same, there are cases when they can be merged into one. It is because

some columns with the same number rule can be re-assigned as the

gapped number rule and also because some columns with the same

string rule can be re-assigned as the repeated string rule. In that case,

two rule sets are merged into one rule set, and their supporting rows are

also merged. The following example shows a case when

$comparedruleset found in Table 4.3 is merged with

53



$acceptedruleset generalized from row 5 and 6 in Figure 4-8

[Source] $compared rule set supported by row 4 and 5

2 34 67 8 9 10 7)
. 3 [ 3 ] * 2 +

GN GN SN

[Source] $accepted ruleset supported by row 5 and 6

45 6 819 I~ 1 1 ~ 13
4 =D 2 + D

E = [ 2 + E [
| S GNI 0S GN | SN RS

15 16 17
2

S2

__SN_

FResult] Merged rule set supported by row 4, 5 and 6

S |2" 3 1 4 5 6
D 3 D

E E
RS __GN __RS

7 8 19 &10 |11 T1 13
3 ] 2 + D [
41* 2 + D[

5~ 1 + -E- [f
GN.... __... ____NISN RS __

] I 
F 27]I* 2

2
]----*--2--

Figure 4-12: Rule set merging of $compared ruleset and $accepted ruleset

C. If $compared rule set and $accepted ruleset are different and if they

cannot be merged into one, $acceptedruleset is added as a new entry

in the rule set map.

4.4. Now the loop of Step 4.3 has finished. The final rule set map will have several rule sets

supported by two or more than two rows as shown i Table 4.4

[same string rule: column 1, 5, 12]
[gapped number rule: column 3,7,14 with (N, N+0, N+O)] row 1, 2, 3
[same number rule: column 10, 17]

[repeated string rule: column 1, 5, 12]
[gapped number rule: column 3,7,14 with (N, N+0, N+0)] row 3, 4, 5
[same number rule: column 10, 17]

54

{

{

1I 14 115 16 I 1~
4 *2

_5 ] * 2
___ G ___SN

{



[same string rule: column 1, 5, 12]
[gapped number rule: column 3,7,10 with (N, N+0, N+1)] row 6, 7, 8, 9
[gapped number rule: column 14,17 with (N, N+1)]

Table 4.4: A rule set map having a rule set generated from row 1 to row 9

4.5. The resulting rule set map can have rows that support more than one rule sets, the rule set

permutation is performed to adjust the rule set map so that the most number of rows can

be explained by the least number of rule sets. The algorithm creates all possible sequences

of lining up the rule sets in the rule set map. For each sequence, we do the followings:

4.5.1 We have two lists: one for storing explained rows, denoted as $explained rowlist and

the other for storing unexplained rows, denoted as #unexplainedrowlist. We also

have a list containing active rule sets, denoted as $activerulesetlist. All lists are

created empty.

4.5.2 As iterating through each pennutated sequence of rule sets, we do the followings:

4.5.2.1. Count how many of the supporters of the rule set are not in $explainedjrowlist

4.5.2.2. If the count is equal or more than two, the rule set is added to

$activerulesetlist, and the supporting rows of the rule set are merged into

$explainedrowlist.

4.5.2.3. If the count is less than two, the rule set will not be added to $activerulesetlist.

If the counter is one, the counted supporting row is added to

$unexplainedrowlist.

4.5.3 Compute a score for this sequence based on the size of $active-rulesetlist and the

size of $unexplainedjrowlist. The score is computed by the equation of (weight_1 *

the size of $active-rulesetlist + weight_2 * the size of $unexplainedrowjlist).

Because we want to have a small size of $active rulesetlist and a small size of

55



$unexplainedrowlist, a smaller score indicates that this sequence is more desirable.

4.6. The rule set permutation has finished, giving scores for all the permutated sequences. We

sort it to find the best sequence with the lowest score, and the sequence's

$activerulesetlist will be returned.

4.7. Combine the code hint with $active-rulesetlist to create a code completion candidate.

Stored it in the $candidatelist

5. Return a list of code completion candidates stored in $candidatejlist.

4.5. Catalog Model Builder

In this section, we present how user interface of the catalog model builder has been built.

The first section describes the layout of the catalog model builder to illustrate how it interacts with a

user to create a catalog model. The second section addresses the issue of model representation.

Questions such as what kind of graphical structure is used to represent a relation in the model

builder will be answered. The next part explains how we visualize dependency among parameters to

help users in the mapping process. The remaining three sections describe features related to the

mapping script editor: reference-by-click, color-coding, and code completion popup

4.5.1. Layout of the catalog model builder

The catalog model builder has three panels for navigation, interface definition, and

implementation definition (Figure 4-13). After creating or opening a catalog model, a user chooses

one of model implementations from the navigation panel, and it makes the selected model

implementation displayed in the implementation definition panel. The user can add local and remote

relations into the implementation definition panel. After adding all necessary relations, the user

defines mappings. Mapping script editor is used to define mappings between parameters; it is

56



placed on the input parameters of relations and the output parameters of an interface.

Figure 4-13: Catalog model editor layout

The local relation definition dialog is used to add or edit a local relation. It is accessed by

add(+) button in the tool bar or edit... button on the center block of the relation and interface bar.

When adding a new local relation, a user first populates a list of parameters using add or remove

button on the left side of the parameter definition section in Figure 4-14 Next, using the relation

script editor in the middle oI Figure 4-14 the user writes script code, which will be evaluated by the

Groovy script engine, to define a transformation from input parameters to output parameters. The

script editor help users write the script code efficiently by providing parameter name completion

and parameter name highlighting: the parameter name completion shows a popup containing

parameter names, and the parameter name highlighting set the color of input parameter names blue

while setting the color of output parameter names red. In the causality definition section, the user

57

type Raw type R"
.mtdollw mitnowa 4nitrounft



specifies dependency among parameters, and clicks confirm button to add a local relation into the

implementation definition panel.

Figure 4-14: Local relation definition dialog layout

The remote relation definition dialog and the local relation definition can be switched by a

radio button located at the top of both dialogs. The remote relation definition dialog is used to add

or replace a subscription to a model interface. After switching to the remote relation definition

dialog, a user specifies server URL, user name, and password to establish a connection to a DOME

server as shown in Figure 4-15 Once connected to a DOME server, the user uses the navigation

panel to navigate through simulation models in the server. The user clicks add button to add a

remote relation into the implementation definition panel. This dialog is also used to replace the

subscription of a model interface with the subscription of another model interface. Because the

mapping script of the replaced subscription is copied to the replacing subscription if they have the

58



same parameter names, we can save the effort of re-defining mapping scripts.

Figure 4-15: Remote relation subscription dialog layout

4.5.2. Modd representation

This section will describe what kinds of graphical structures have been used to represent

parameters, relations, interface, and mappings in the catalog model builder. A parameter is

represented by a small square, called parameta cel [Figure 4-16 . Four types of parameter cell are

provided corresponding to four types of parameter: interface input parameter, interface output

parameter, relation input parameter, and relation output parameter.

59



Sclimatetype * refrigerator_..
type:Enumeration type: tagr
u n itna unit unitno unit

iff.climate Jtf.no of
refrigerator

hal_count * room count
type:wagw tvpe:ltew
unit no unr unitno unit

tf.no of hall tf.no of room

noofsolar_-
type:Real
u n it wadt4our

R.panl count

power-sum - applicancejp... $ heating-power
type:Real type:Real typeRAeal
unitvwat-hour unitno unit un it:no unit

@Mount-Count Omount cost *mount_co2
type:Real type:Real type: Real
un it~dclar un itno unit u n itno uit

Iwatt-hour_pe-.. . panei _cOUnt lopenel-cost panei-wo
type:R@aW type:lnteWe type:Real type:R"a
u n itirno unit unit no unit unitdollar linit~kilogram

Upower sum

Figure 4-16: Graphical representation of parameters and relations in the model editor

All parameter cells commonly have fields for the parameter name, the data type, and the

unit, while the mapping script editor is only placed on the interface output parameter cells and the

relation input parameter cells as shown in Figure 4-16 and Figure 4-17 Each parameter cell has a

blue or red cube icon at the top left corner of a parameter cell, which is used to provide causality

information: the blue color means input causality and the red color output. Further description on

dependency visualization will be covered in Section A relation is represented by a bar

consisting of three blocks: a left block for input parameters cells, a right block for output parameter

cells, and a center block for the relation name and the relation alias.

* cimate * no of refriger... fno of room lifecycle cost Ifecycle co2
type:Enuertaion typeeWer type:ner typeRaLc type Rute
u n itno unM u n itno unit unitna und R un it dollar un it klOOrMM

N penet-Post + l ( -eco2+1
nVunt cost) ount co2)*

no of hall no of compuoter
type:tegw type:ltegw
u nitno urit U n itrno UnKt

60



Figure 4-17: Graphical representation of the model interface in the model builder

4.5.3. Dependency visualization

We have developed a visualization technique to inform users of relevant dependency

information and help them avoid erroneous mappings causing a loop in dependency. When we edit

a mapping script of a certain parameter denoted, the loop in dependency is created if the mapping

script refers other parameter that is affected by the parameter. Therefore, visualizing which

parameters are affected by the current edited parameter would prevent users from creating such an

erroneous mapping.

aftr mapping editor opens

before mapping editor opens

Figure 4-18: Dependency visualization with colors: Parameters affected by the edited parameter

turn gray, indicating that they are not valid targets of reference-by-click.

To visualize the information, we decided to use the color change of cubes on the parameter

61



cells: In the initial status, cubes of input parameter cells are blue, and cubes of output parameter

cells are red, but, when the mapping script editor of a certain parameter opens, all parameters

affected by it will change the color of their cubes to grey. An example of the color change is shown

in Figure 4-18: When a user opens the mapping script editor for an input parameter, all parameters

affected turns grey - some are directly affected, while others are affected through a chain of

dependency starting from the parameter. When this colorized visualization is compared to the

matrix-based dependency visualization used for defining local relation shown in Figure 4-19, it

shows that the same dependency information can be utilized more effectively for mapping

depending on the way how the information is delivered.

Figure 4-19: Matrix-based dependency visualization: efficient for editing, but not so for mapping

4.5.4. Reference-by-click

The reference-by-click feature has been invented to ease the burden of writing reference

strings in the mapping script editor. Instead of typing a reference string, clicking on a parameter

name will add a reference string to the parameter in the mapping script editor. As shown in Figure

4-20, when a user wants to map power required in solar panel calculator relation to powersum in

power requirement relation, it can be accomplished by clicking on the parameter name of power

sum.

62



'pnct-Cost
tvp . Real
urt dollar

*pneiLcea
SP e- Real
unt kilogram

pow41eum
typ Real
uitwat-hour

Spowmr_roqudr.. pelCount
tP Real f iteger

u r. t no unit u ni t no unit

Pe Enunraton t'Pe tgr OW f ? ewe
-j r it no unt u nit no unit un if no unit

refrigerator

Spower requir... panrmiont
type:ReaWp:Ngr
-init:no und-I-tw777 n it*.o ut

power 
sum

10 a~mete-type rerrigerstor_... ecompter-co...
type:Enumeration ty'Pe:w-swge type:Itegwr
u nitno unr un i tnouniAt unitnouift

if.cuimaile Ifino of
refrigerator

Spua-pl~ost panvel-co2
ty pe:Raw type:Real
unit'dollar unit~kdlogram

powersum
Real

power-sum

Figure 4-20: A click on parameter name allows user to insert a reference string to the parameter.

However, there is a case when reference-by-click becomes less usable. When mapping

source parameters are far from a mapping target parameter, because of other relations placed

between them, users may need to scroll down the model editor pane until they can click the name of

the source parameter. Moreover, if other parameters next to the target parameter need similar

mappings to other parameters in the remote relation, they may have to scroll up and down

laboriously.

One way to solve this problem is to allow users to reorder relations in the editor pane and

put two relations of their interest next to each other. Such flexibility in visualization is accomplished

because the dependency solving mechanism decouples the execution sequence of relations from the

spatial sequence of relations and generates the proper execution plan from the causality information.

Using code completion feature is another way of solving it. Once we have defined mapping scripts

for the first a few of the mapping target parameters with reference-by-click, mapping scripts for

others can be generated by reusing the code patterns.

63



4.5.5. Color-coding

The mapping editor utilizes color-coding technique to give a colorized visual

feedback of the typed string; as a result, it not only prevents typing errors but also ease the

visual search of the source parameter. When a typed string is not valid, having no match

with parameter names in the simulation model, the string will be displayed with no

decoration as a thin black font. For a valid string having a match to one of the parameter

names, the relation alias part of the string will have the same background color as the center

block of the referred relation; also the parameter name part will be made bold. Figure 4-22

and Figure 4-21 show how this color-coding strategy has been implemented in the editor.

One issue to be addressed in the future is to provide secondary cues that convey the

information to those have color blindness; the differentiation in other graphical properties

such as brightness or texture pattern can be used as secondary cues. Also, because several

forms of color blindness such as red/green blindness are much more common than others,

the current randomized color selector could be improved so that it avoids picking specific

combination of colors in a simulation model.

Typing error No error

("4penel cost + relC.mount-cost) * 2 4ponei-cost + rdC.mount-cost) * 2

.o ok X car" A4 ok X ot A-2

Figure 4-21: Color-coding helps detecting typing errors

64



*Irecyeie cost
tepe Real
Ur tdollar

tvpeRevlieitgr ap Rea iv. Re*l
qrktno unit u - o und jrat jrot kilogrm

powm~m __ v__

tv - ReaW ! p Real Tt Rtv t ,o Real
j r t vem ~or dollar M r wtno it r n ni

Figure 4-22: Color-coding helps ease visual search of source parameters.

4.5.6. Code completion popup

Pattern generalization algorithm generates candidates for the mapping script completion.

Code completion popup is used to display, narrow down, and finally select from the candidates. The

usability of the code completion popup has a significant effect on the productivity gain we can

achieve from the algorithm, and therefore it should be designed as efficient as it can be. We

approach this problem in two steps. First, we learn interaction conventions from code completion

features of software development tools; users who have an experience of using such tools are

expected to try to use our code completion feature in the same manner. This kind of interaction

conventions includes "code completion feature is accessed by hitting a space key with control

down," "users can iterate through code completion candidates using the arrow-up key and the

arrow-down key," "hitting enter-key inserts the selected candidate into the code editor," and "the list

of code completion candidates can be narrowed down by typing more literals" Figure 4-23 .

65



SpoS_1 1 poG_1 *p01T
type:Real type:Real type:Rea
unit:no unit unitno unit un itno uret

h
relC.weightpos relA force1 *3 relAh [1i, reA.i [1]relAforce_1 f 3 '1reAh[reA.i [1] k
relA.h [1] * relA.i [I)
Math.round(reE.c [0])

Figure 4-23: A user can narrow down the code completion candidates by typing more literals.

As a second step, we identify the difference between user behaviors assumed by the

current interaction conventions and those observed from the catalog model builder; it leads us to

improve the interaction specialized for the catalog model builder. As we can infer from the fact that

the current interaction conventions for the code completion popup are mostly based on keyboard-

based interactions, the current conventions assume that both hands are on the keyboard when the

code completion is requested. However, in the case of the catalog model builder, we observe that

users' hands stay on the mouse most of the time. It is because when users define mapping scripts, a

task that accounts for a significant portion of the time spent for the model integration, most

mapping scripts can be done with mouse control: Many mapping scripts can be completed by one or

two reference-by-clicks bridged with mathematical symbols such as +, *, and /. Therefore, the

conventional interaction of pressing a space with control down and using arrow keys for navigation

is not considered as the best way to use our code completion feature. We suggest that the code

completion feature of the catalog model builder be easily accessible with mouse control, without

having to move a hand to the keyboard. Clicking with control down is a proposed solution, whose

combination is expected to be easy to remember using the analogy of pressing a space key with

control down.

The final implementation of code completion popup supports three modes of activation

Figure 4-24 . It can be activated by pressing the space key with control down, clicking on the

mapping script editor with control down, and clicking on the mapping script editor with both

66



control and shift down. The last mode is the same as the second mode except for the fact that it

clears the existing mapping script before it generates code completion candidates. The default

behavior of code completion, which is activated by the first and second mode, consumes all written

literals in the mapping script and generates candidates based on that. However, in some cases when

a user thinks the existing mapping script is not relevant and wants to replace it, the default behavior

will supply too many unrelated literals and leave no room for generating fresh candidates.

Introducing the third mode solves this problem by giving us an option to ignore the existing

mapping script; thereby it accommodates the case when a user needs to replace the existing

mapping script with one of the code completion candidates.

nst mode
Space+CTRL

tyjpe Rfal bt p Real btp- Real tp Real t - Real
r"tn~oun~it ___m -no-tt 1  tno4 t 1 r itnou, i % i t

rgIAeforcj -3
relAb(i)-re *l ) rJrAh.1)lrailA. h)
MelhtmunmE~c [PD Melhround(reEzc JOD

2nd mode-
Click+CTRL OCcCLH

F e 4 Cde o pe Real te Real t - R" 
uret o unt urt nounnit no unit urt no unit

retA.ftrme_13 iV x Xam !Od/ - tidlmorc *3

relAh 1)*A MA- (1) relhh (I)V-reIAJ
MelhxoungrEzc PD MMhOUngrWE-C (OD 3rd mode .C IOD

Click+ CTRL+ SHF T

Figure 4-24: Code completion popup supports three modes of activation

67



Chapter 5 Evaluation

In the first part of this chapter, we describe several integration scenarios, through which we

validate the effectiveness of reuse features of our design tool. The integration scenarios include the

door seal catalog browser, the evaluation of a power window system with various configurations,

and the finite element analysis (FEA) of the door seal with multiple levels of fidelity.

5.1. Door Seal Catalog Model

5.1.1. Evaluation goal

The first demo application called door seal catalog model is built to evaluate if the catalog

model satisfies the basic requirement of decoupling the implementation from the interface. The

requirement can be further decomposed into two sub-level requirements: allowing multiple

implementations to be associated with one interface and supporting switching between

implementations in the run-mode. An implication of this decoupling goal is that we can utilize a

parametric model that allows substantially larger variations than typical parametric models. From a

user point of view, the catalog model is seen as a typical parametric model having an

implementation switch as one of its model parameters. However, the catalog model can exhibit a

much wider range of model behaviors, when compared to typical parametric models, because its

variation in behavior is not based on parameterization of one simulation model, but on many

different simulation models.

5.1.2. Configuration of the door seal catalog model

The variation in geometry originating from different design concepts is one of the tricky

68



variations that are not easily handled by parameterization. Our test application, the door seal catalog

model, will deal with that kind of geometric variation. We have two door seal designs which are

derived from two significantly different design concepts. The first is the current door seal design

with a round-shape bulb, while the second is a new door seal design inspired by an idea that a

convex-shaped bulb, having the shape of a deformed round bulb, may reduce door closing force and

energy while providing a comparable level of wind noise blockage. Because the variation between

two door seal designs cannot be handled by parametric changes to the existing round-shaped model,

a new door seal geometry model has been built for the test application. Two door seal geometry

models are created using CATIA [38], a computer aided modeling tool, and they are named as

round-seal. CATPart and convex-seal. CATPart (Figure 5-1).

This door seal geometry model will be used as a part of another integration model, and we

assume that the role of this door seal geometry model is to provide other simulation models with an

IGES file and a VRML file so that they can perform further engineering analysis, such as estimating

door seal stiffness and estimating door closing force.

width
\Midt h

step-widthl

door seal with a round bulb door seal with a convex bulb

(round-seal.CATPart) (convex-seal.CATPart)

Figure 5-1: Two door seal designs modeled in CATIA

The following steps have been taken to create a catalog model satisfying the requirements

described above:

69



1. Two DOME CATIA plug-in models wrapping each of the two CATIA files is created and

deployed on a DOME server. They are named as round door seal model and convex door seal

model.

2. A catalog model named door seal catalog model is created. An existing implementation called

default implementation is renamed as round seal implementation. A new implementation called

convex seal implementation is added to the catalog model.

3. Modify interface parameters of the catalog model so that it has input parameters of width and

height and output parameters of IGESfile and VRMLfile.

4. Use the implementation navigation panel to open the implementation of the round seal

implementation. Add a remote relation subscribing a model interface of the round door seal

model. Map interface input parameters to input parameters of the remote relation. Also map

output parameters of the remote relation to interface output parameters.

5. Use the implementation navigation panel to open the implementation of the convex seal

implementation. Add a remote relation subscribing a model interface of the convex door seal

model. Map interface input parameters to input parameters of the remote relation. Also map

output parameters of the remote relation to interface output parameters.

6. Save the door seal catalog model, and deploy the generated files to a DOME server.

7. Now the door seal catalog model can be opened and executed by a DOME browser. To allow

an access to the model with standard web browsers like Mozilla Firefox, a web page has been

developed based on DOME run-mode API and Java Server Page (JSP) technology (Figure 5-2).

70



Seal Catalog Browser
Public > catalog demo > seal catalog model > default interface

* primary length

~sa ~heigt j.016 [m]

WKth P02 [m]

" seat type
round seal section B (as an implementation switch)

" CA TIA models

- seal name - seal name - seal name
- what's different? - what's different? - what's different?
- why is that? - why is that? - why is that?

" VR4L flie
more Info & options...

- file name: sealsection.wrl
- download VRML file

reload VRML file to viewer

-- -- -- --- -- -G E ------ -- - -- --- ---- -- - ---- - -- -- -- - -- --" IGES file sealsection.igs (download the IGS file)

Figure 5-2: A web page developed for executing the door sel catalog nvdd

5.1.3. Evaluation remilt

As we see in Step 4 and Step 5 in previous Section 5.. the catalog allows us to add

multiple implementations associated with one interface. This feature is achieved by the model

definition component's capability to organize implementation and interface data with many-to-one

relationship as well as the implementation dispatch mechanism that transform the model definition

71



data into an executable form. Also the second sub-level requirement of switching implementation in

the run-mode is satisfied, because the door seal catalog model provides a parameter named

irrplemTentation switch which allows us to decide which implementation to use for each execution of

the model interface as shown in Figure 5-3 Finally, the door sa catalog ndd, utilizing two

different implementations based on two CATIA models, has shown that it can produce IGES file

having a large geometric variation: Not only width and height can be changed, but also the shape of

the seal can be varied. From this representative application of the catalog model, we can conclude

that the catalog model accomplishes the goal of decoupling the implementation from the interface.

implementation swich a mund n,

Otputs

1W Weterminates

Figure 5-3: The door sed catalog modd opened in a DOME browser

5.2. Power Window System Template

5.2.1. Evaluation goal

The second demo application called power window system terrplate is to demonstrate how

the catalog model can be used to realize the goal of reusing integration structure. As we have

72



described in Section 2.1, we can reuse the integration structure of an integration model if the

integration model is built with simulation models supporting the decoupling of the implementation

from the interface; we call such an integration model as system template, indicating that the

integration model can be served as a template for creating many different systems. The catalog

model provides the decoupling mechanism, so it can be employed to build a system template. To be

a practical solution for the integration structure reuse, the catalog model also needs to satisfy

another implementational requirement: it has to be interoperable with existing DOME models. Not

only the catalog model should be able to subscribe DOME models, which has already been

implemented by the remote relation and demonstrated in Section 5.1, but also the DOME

integration project should be able to subscribe the catalog model as its resource. As a test of the

interoperability issue, the power window system template will use a DOME integration project as

an integration model and import catalog models as resources for the DOME integration project.

5.2.2. Configuration of the power window system template

The power window system template, which itself is a DOME integration project, integrates

three catalog models: window catalog model, motor catalog model, and guide catalog model. The

information flow inside the power window system template is shown in Figure 5-4.

73



Stant

/' v ehicle type

power vndow /system template CconfiglUrator
rtlation

window size d /y pe m\r type

motor catalog
model

N\ uide Tpe mtrdt
geometry data motor data

guids catalog

model

force, speed

Figure 5-4: Data flow among simulation models

When the system template receives values for vdide type and window sze from its model

interface, it passes vdiide type and window szeto a local relation called configurator relation and a

remote relation of the window catalog model, respectively. The configurator relation is a procedural

relation to select appropriate window type ntor type and guide type based on veiside type, it has

been implemented by a set of if-then rules. Once the configurator relation passes window type to the

window catalog model, the model is executed, and as a result window properties, described inTl

[7] are passed to the guide catalog model. Similarly, motor type is passed from the configurator

relation; the motor catalog model is executed; and the motor properties, described injTbe5.1 are

passed to the guide catalog model.

Caao n-ck *.n /. nu / oupu peaameters

Window catalog model Input:
implementation switch (window type: F 150 or Fusion)

Output:
A pillar length, B pillar length

74



A upper pillar length, B upper piller length
A lower pillar length, B lower pillar length
glass area, A to B edge length

Motor catalog model

Guide catalog model

Input:
implementation switch (motor type: Danaher or Groschopp)

Output:
speed at 2nm torque, torque at 20rpm speed
stall current, free current, voltage, resistance

Input:
A pillar glass length, B pillar glass length
A pillar upper runner length, B pillar upper runner length
A pillar lower runner length, B pillar lower runner length
glass mass, A to B edge length
motor speed at 2NM, motor torque at 20 rpm
current draw at stall, motor free current
power supply voltage, inline resistance

Output:
max velocity, max stall force
speedO, speedi, speed2, speed3, speed4, speed5
force0, force 1, force2, force3, force4, force5

Table 5.1: Model interface of three catalog models

Finally, when the window catalog model and motor catalog model copy their results to the

guide catalog model, the guide catalog model calculates force and speed and copies them to the

model interface of the power window system template, whose definition is shown in Table 5.2.

Integration prqject name Input / outpul paramelers
Power window system
template

Input:
vehicle type (F150 or Fusion)
window width, window height

Output:
max force, max speed, guide type, geometry type, motor type
speedO, speedi, speed2, speed3, speed4, speed5
force0, forcel, force2, force3, force4, force5
torque at 20 rpm, rpm at 2 Nm, glass area,
base width, stall current, free current, A lower pillar length

Table 5.2: Model interface of the power window system template, a DOME integration project

The following steps have been taken to set up the power window system template based on

three catalog models, which are assumed to be already built through the same steps we have

described in Section 5.1.2:

75

,



1. First create A DOME integration project called power window system tearpata

2. Create an integration model called iModd in the project, and add resources of three catalog

models to the power Windw syste terpiate Figure 5-5

9eom y d o Mdel k h:s8080

Figure 5-5: Three catalog models are added to a DOME integration project as available resources

3. Open iModd, and subscribe three model interfaces from the catalog models.

4. Add a procedural relation containing input and output parameters defined in Table 5.1 Write a

script that transforms vdiide type into window type, motor type, and guide type based on a set

if-then rules

5. Define all necessary mappings among subscribed parameters and relation parameters.

6. Create a project interface having input and output parameters defined i Tab

7. Deploy the power window syste tnTplate on a DOME server.

8. Now the power window systen te'rpate can be opened and executed by a DOME browser. A

web page for accessing the system template has been developed based on DOME run-mode

API and JSP technology.

5.2.3. Evaluation resilt

As depicted in the graphical user interface of the power window systen ter pate shown in

76



Figure 5-6, the resulting system template lets us explore various design opportunities without

having to modify underlying integration structures. The successful execution of the demo

application also signifies that the issue of interoperability between the catalog model and the

DOME integration project has been resolved effectively. Because we have built the system template

by subscribing catalog models, instead of by subscribing a certain simulation model directly, we can

switch the implementation of its catalog models without having to affecting the overall integration

structure; consequently our goal of reusing integration structure is achieved. The power window

system template also addresses the issue of model configuration. Because implementation switches

of catalog models can be mapped and transformed just like other parameters, we have developed a

relation, called the configurator relation, which can coordinate implementation switches within the

power window system template. The current version of the configurator is a simple procedural

relation based on a few if-then rules, but it considerably reduces the burden of configuring catalog

models one by one.

77



Power Window System Template
Public > catalog demo > power window system template > default interface

7

torque at 20 rpm [Nm]
speed at 2 Nm [rpm]

tI

max speed 14 78 [cm/s]

max stall force 1713 [N)

2337

60%

31047

60%

22.97

80%

30.48

1%

22866

11%open
301.33

11%open

23.83

318.02

40%

Figure 5-6: The power window system template demonstrating integration structure reuse: catalog

models can switch their implementations without having to change the integration structure

78

vehicle type Fsoni
B-pilllar length ____ [mm]

pillar distance [mm]

A N glass area P.7 [square meter]

[guide width r80 [mm]
sumtchanes I

- system config.

" glass velocity

" stall force

speed
upward

window
opening

stall
force

window
opening

248

Idosed43
closed

24.3

20%

321 7

20%



5.3. Simulation models with Different Levels of Fidelity

5.3.1. Evaluation goal

The goal of the third demo application is to show the catalog model's capability to create a

simulation model that can provide different levels of fidelity, which are also configurable in the run-

mode. Such a capability is valuable when a simulation is used for multiple purposes which have

different preferences on the trade-off relation between accuracy and time: some may prefer a very

accurate, but rather slow simulation model, while others may prefer a fast model because of the

tight time constraint. One solution to this challenge would be utilizing two simulation models

serving different needs; however, this approach is not very efficient because it will require us to re-

integrate simulation models for each level of fidelity. Also having to manage multiple simulation

models with similar functionality can be another source of inefficiency because of the version

control issues. The catalog model is a promising solution to meet the need because one catalog

model can hold multiple implementations from simulation models with different levels of fidelity. A

catalog model called seal FEA catalog will be built to verify this promising option.

5.3.2. Configuration of the seal FEA model

The seal FEA model subscribes two simulation models: ABAQUS-based seal FEA model

called full FEA model and MATLAB-based neural-network model approximately emulating the

behavior of the ABAQU-based model called approximated FEA model. The full FEA model is

based on an ABAQUS model utilizing a time step analysis technique. To emulate the behavior of

the full FEA model, a neural network is trained from fifty sample points and also validated against

fifty points. The setup of neural network used in training is as follows:

* Number of inputs : 4 (sealwidth, sealheight, sealthickness, seal-gap)

79



* Number of outputs: 3 (contact-length, deflectionnom, loadperjength)

* Number of sampling points: 108

sealwidth: 20, 21, 22, 23 [mm]

sealheight: 11, 12, 13 [mm]

sealthickness: 0.85, 1.0, 1.15 [mm]

seal_gap: 7, 8, 9 [mm]

* Transfer function:

input layer: logsig

output layer: logsig

* Training performance: net error 0.0018-0.0041 (depending on randomly-generated seeds)

The model interface of the FEA emulation model has been created so that it matches the

model interface of the full FFA model (Table 5.3). Note that both models have an output parameter

called deform video, but the approximated FEA model will not generate a video file because the

current neural-network setup lacks the capability to generate a video data from a given set of video

data; instead, parameter deform video returns an empty file.

Full FEA model Input:
(ABAQUS plug-in model) seal width

seal height
and seal thickness

seal gap
Approximated FEA model Output:
(MATLAB plug-in model) final contact length

deflection nom
load per 100 mm
deform video

Table 5.3: To emulate behaviors of the full FEA model, the model interface of the approximated

FFA model has been copied from that of thefull FFA model

Now we have two simulation models that have the same model interface, but provide

different levels of fidelity. Following steps will create a catalog model and add the two simulation

models as its implementations:

80



1. Create a catalog model called se/ FEA catalog mndd.

2. Rename default implementation as full FEA irrplemetation.

3. Add a new implementation called approxdmated FEA irrplerr tation.

4. Open full FEA irrplaremtation. Add a remote model subscribing full FEA nodd and define

mapping between interface parameters and relation parameters.

5. Open approirrated FEA irrplerentation. Add a remote model subscribing approirmated FEA

model and define mapping between interface parameters and relation parameters.

6. Deploy the Sl FEA catalog modd on a DOME server.

7. Now the power window system tefrplate can be opened and executed by a DOME browser.

Also a web page for accessing the catalog model has been developed.

Seal FEA Model with Various Levels of Fidelity
Public > catalog demo > FEA catalog model > default interface

" geornetry setup
seal width 2T [mm] (20.S ~ 22.5 mm)

seal height 12 [mm] (11 ~ 13.5 mm)

seal thickness 1T [mm] (0.9 ~ 1.1 mm)

door seal gap B [mm] (7.6 ~ 8.6 mm)

" analysis method time-step analysis by ABAQUS (4 mi) (as an implementation switch)

" analysis method

- time-step analysis - trained by 144 real FEA data
- 4 min per evaluation - 0,5 sec per evaluation
- running on Server A - running on Server B

Sanalysis result
final contact length .5 [mm]

deflection 113.12 [mm]

load per 100mm 2.41 [N per 100mm]
deflection video deform avi (download the AVI file or pay it)

Figure 5-7: The seal FEA catalog allows switching between simulation models having different

81



levels of fidelity. While the higher fidelity seal FEA model takes 4 minutes for one execution, the

lower fidelity one takes less than 1 second.

5.3.3. Evaluation result

Through the steps described in the previous section, we have built a catalog model called

the seal FEA catalog. The seal FEA catalog provides two levels of fidelity: a higher fidelity based

on ABAQUS-based simulation and a lower fidelity based on neural network approximation. The

implementation switch allows us to adjust the level of fidelity in the run-mode. As a result, the

catalog model successfully accomplishes the goal of our demonstration: one simulation model that

can be used for multiple purposes requiring multiple levels of fidelity. To estimate the level of

fidelity of approximated FEA model, the net error of the model has been measured at fifty

validation sample points. The error - the normalized vector distance between estimated and original

output vectors - is quite small, ranging from 0.0018 to 0.0041, depending on randomly generated

seeds used in the neural network training algorithm. The time required to execute each model has

shown significant difference: the full FEA model takes average 4.8 min for one evaluation, while

the approximated FEA model takes less than 1 second, excluding training time less than 3 seconds,

when both models are deployed in the same computer.

A simulation model that can flexibly adjust the level of fidelity has interesting application

areas. For example, it can be applied to enhance the optimization process. For a problem with large

search space, optimization engines often employ an exploration technique at the beginning of its

search steps to create a rough map of the search space. At this step, a faster simulation model with

an acceptable level of fidelity is preferred over a slower model with a high level of fidelity because

the faster model allows the exploration of many interested areas in a short time. Meanwhile, in the

82



later step of optimization, when the engine is confident about in which region the optimum is, a

simulation model with high fidelity is essential to find the exact location of the optimum. Therefore,

the catalog model like the seal FEA catalog will be a valuable tool to realize such an adaptive

optimization strategy.

83



Chapter 6 Conclusion

6.1. Summary

The goal of our new design tool to reuse two aspects of integration knowledge: the

integration structure and the integration code pattern. The integration structure is defined as a graph

structure consisting of parameters as nodes and mappings as arcs, which our design tool aims at

reusing for other simulation models that are structurally compatible, but functionally different. The

integration code pattern is a pattern based on regularity found in the script code of simulation

models; the new design tool includes a pattern generalization algorithm and a code completion

feature that enables designers to reuse the pattern.

The first use case scenario - in which a car company tries to replace a motor simulation

model, which is part of a power window simulation model, with another without having to rebuild

or modify the overall integration model - shows reusing integration structure can ease the process

of design exploration by saving redundant integration efforts. In the second use case scenario, we

have provided several exemplary code patterns, which can be easily generalized by human, but have

not handled that well by computers. An algorithm that can perform similar generalization process

human can do would saves integration effort because many of mapping scripts used in simulation

models have regularity, within one model or within a group of models closely related to each other.

Since a simulation model is a kind of software, we have reviewed concepts for software

reusability studied in software engineering to find which can be related to and utilized for our

problem of reusing integration knowledge in simulate models. The missing and needed feature for

integrated design frameworks is found to be a support of the polymorphism concept. The concept

84



proposes decoupling between implementation and interface, and when it is implemented in a tool

for designing integrated simulation models, the concept enables us to reuse the integration structure

in simulate models. Another research discipline of code mining provides several techniques relevant

to our implementation of integration code pattern reuse. Especially, previous research on code clone

detection and example-based code completion has developed various code representation

techniques including graph-based, vector-based and token-based.

We derived the list of software components based on the decomposition of functional

requirements and design parameters using the axiomatic design method. Major software

components implementing two goals of integration knowledge reuse include the catalog model

definition, the dependency solving algorithm, the implementation dispatch mechanism, the pattern

generalization algorithm, and the user interface components. Consequently, a design tool called the

catalog model builder and an integration model called the catalog model have been developed.

We have evaluated how our new design tool satisfies its intended goal using three demo

applications: the door seal catalog model, the power window system template, and the seal FEA

catalog model. The applications not only show that the basic capability of the catalog model,

decoupling implementation from interface and reusing the integration structure, is accomplished,

but it also shows that the model can be used for creating simulation models having multiple levels

of fidelity.

6.2. Future Work

The catalog model is a tool for integrating simulation models, and naturally the value of a

catalog model as an engineering analysis tool relies on those of simulation models it subscribes.

Because it allows subscription to DOME simulation models, the catalog model is considered to

competent from this point of view: any computational tool for engineering analysis and modeling is

85



represented as a standardized parametric model in the DOME integrated design framework, and

thus the catalog model has a transparent access to various computation tools such as ABAQUS,

CATIA, and MATLAB. However, the catalog model still has room for improvement because the

current implementation subscribes DOME simulation models only, but cannot subscribe other

potentially useful simulation models deployed outside the DOME integrated design framework.

Since the inherent architecture of the remote relation allows more than one type of remote

simulation services, it can be extended to support other simulation services. Considering the fact

that the web service is widening its acceptance in the IT industry, supporting subscription to

simulation services deployed on a web service container will be a valuable extension of the remote

relation.

Supporting a new integration mechanism called implementation delegate also interests us.

If a catalog model has N kinds of implementations for M interfaces, we need to define N x M

implementation instances. For example, when we create a catalog model having five kinds of

implementations with four interfaces, we need to twenty implementation instances, which is not a

trivial task to do. However, we can reasonably reduce the effort when there are duplicated

implementation instances. Such duplication is often introduced because an implementation may

have different implementation instances for some of its interfaces, but have shared implementation

instances for others. The implementation delegate will allow us to delegate the definition of an

implementation instance, called source implementation instance, to other implementation instance,

and therefore we can save the effort of copying the same implementation instance from one to

another. Moreover, the catalog model becomes easier to maintain because a change made to the

source implementation instance will be immediately reflected to other implementation instances

which have delegated their definition to the source implementation instance.

The pattern generalization algorithm has an ability to find patterns in the source code. In

86



our application to the code completion feature, the pattern is used to generate missing part of the

code. Another interesting application of the algorithm is to find irregularity existing in the source

code in order to detect possible errors. This task is challenging because it requires us to tell

irregularity from randomness. The pattern generalization algorithm is a promising start point to

develop an algorithm that can differentiate them because the irregularity is characterized by a

consistent pattern in the source code having a few exceptions to the pattern. Introducing additional

rules for generalization is also worth investigating. It is more interesting because a trade-off relation

regarding introduction of a new rule should be considered: while a new rule may help capture

regularity that could not be handled before, it may increase false positive code completion

candidates because the added rule may lead the algorithm recognize unacceptable generalization.

87



Reference

[1] B. Meyer, Object-Oriented Software Construction, Second Edition: Prentice Hall,
1997.

[2] G. C. Cay S Horstmann, Core Java 2: Prentice Hall, 2001.
[3] L. Cardelli and P. Wegner, "On Understanding Types, Data Abstraction, and

Polymorphism," ACM Computing Surveys, vol. 17, pp. 471--522, 1985.
[4] C. Strachey, "Fundamental Concepts in Programming Languages," Higher-Order

and Symbolic Computation, vol. 13, 2000.
[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software Addison-Wesley, 1995.
[6] D. Box, Essential COM: Addison-Wesley, 1998.
[7] D. Slama, J. Garbis, and P. Russell, Enterprise CORBA: Prentice Hall, 1999.
[8] R. Englander, Java and SOAP: O'Reilly, 2002.
[9] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining. Cambridge, MA:

MIT Press, 2001.
[10] T. Kamiya, S. Kusumoto, and K. Inoue, "CCFinder: A multilinguistic token-based

code clone detection system for large scale source code," IEEE Transactions on
Software Engineering, vol. 28, pp. 654-670, 2002.

[11] B. S. Baker, "A Program for Identifying Duplicated Code," presented at Proc.
Computing Science and Statistics: 24th Symposium on the Interface, 1992.

[12] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier, "Clone detection using
abstract syntax trees," Bethesda, MD, USA, 1998.

[13] H. A. Basit and S. Jarzabek, "Detecting higher-level similarity patterns in
programs," Lisbon, Portugal, 2005.

[14] R. Komondoor and S. Horwitz, "Using Slicing to Identify Duplication in Source
Code " presented at International Symposium on Static Analysis (SAS), 2001.

[15] B. S. Baker, "On finding duplication and near-duplication in large software
systems," Toronto, Ont, Can, 1995.

[16] F. Van Rysselberghe and S. Demeyer, "Evaluating clone detection techniques from a
refactoring perspective," Linz, Austria, 2004.

[17] S. Ducasse, M. Rieger, and S. Demeyer, "Language independent approach for
detecting duplicated code," Conference on Software Maintenance, pp. 109-118,
1999.

[18] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer, "Detecting Similar Java Classes
Using Tree Algorithms," presented at MSR, Shanghai, China, 2006.

[19] R. Holmes and G. C. Murphy, "Using structural context to recommend source code
examples," St. Louis, MO, USA, 2005.

[20] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman, "Jungloid mining: Helping to
navigate the API jungle," Chicago, IL, United States, 2005.

[21] R. Hill and J. Rideout, "Automatic method completion," Linz, Austria, 2004.

88



[22] C. Ware, Infornetion Wsualimtion: Percqtion for Dggn- Morgan Kaufmann
Publishers, 2004.

[23] J. Nielsen, Deagning M/& Usability: The Practice of Srrplicity. New Riders Press,
1999.

[24] P. Wildbur and M. Burke, Inforrrtion Graphics- Innovative Solutions in
Contenporary Dedgn: Thames & Hudson, 1999.

[25] N. Senin, D. R. Wallace, and N. Borland, "Distributed object-based modeling in
design simulation marketplace," Journal of Mechanical Degn, Transactions of the
ASWE, vol. 125, pp. 2-13, 2003.

[26] D. R. Wallace, E. Yang, and N. Senin, "Integrated Simulation and Design
Synthesis," MIT CADLAB 2002.

[27] E. software, "The Federated Intelligent Product EnviRonment (FIPER)
project,," E. software, Ed.lhttp://www.engineous.com/product FIPER.htm 2003.

[28] H. Elmqvist, S. E. Mattsson, and M. Otter, "Object-oriented and hybrid modeling in
Modelica," Journal Europen des SystemesAutorntias, vol. 35, pp. 395-416, 2001.

[29] M. Otter, H. Elmqvist, and F. E. Cellier, "Modeling of multibody systems with the
object-oriented modeling language Dymola," Nonliner Dynarics, vol. 9, pp. 91-
112, 1996.

[30] J. S. Glaser, F. E. Cellier, and A. F. Witulski, "Object-oriented power system
modeling using the dymola modeling language," Atlanta, GA, USA, 1995.

[31] R. Mansfield, "Buzz Words - OOP vs. TOP," in Inheitance (and it's problerm).
htt ://www. eocities.com/tablizer/buzzword.htm 2002.

[32] R. Mansfield, "OOP Is Much Better in Theory Than in Practice," vol. 2006.
http://www.devx.com/opinion/Article/26776 2005.

[33] D. Rahmel, Client/Sver Applications with Wsual Basc 4: Sams Publishing, 1996.
[34] S. Ducasse, 0. Nierstrasz, and M. Rieger, "On the effectiveness of clone detection

by string matching," Journal of Software Maintenance and Evolution, vol. 18, pp.
37-58, 2006.

[35] S. K. Card, J. Mackinlay, and B. Shneiderman, Readings in lnformation
Wsualization: Udng Wson to Think Morgan Kaufmann, 1999.

[36] N. P. Suh, Axionrtic Desfgn : Advances and Applications Oxford University Press,
2001.

[37] J. Strachan, "Groovy User Guide," inlhttp://roovy.codeha.org/ 2006.
[38] D. Systemes, "CATIA product overview," vol. 2006. Ihtt: 3ds.com/vroducts-

solutions/plm-solutions/catia/overview/ 2006.

89


