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Abstract

Microfluidics is a growing technology in the arena of medical diagnostics. Daktari
Diagnostics is a startup located in Cambridge, MA that seeks to introduce a lab-on-a-chip
device for monitoring HIV in patients. This work investigates hot embossing as a
prototyping process for Daktari's microfluidic device. A hot embossing machine was
designed and built for the purpose of prototyping a critical feature of their microfluidic
network. The machine was designed for an embossing area of 6 square inches, and was

found to have a maximum positional repeatability of 43 microns.

The microfluidic feature that was prototyped is known as the assay channel. This
feature is a high aspect ratio channel with a depth of 50 microns and width of 4 mm. A 10-
micron ridge is adjacent to the channel. Several measurement methods were evaluated
with gage repeatability and reproducibility studies to determine the methods most capable
of quantifying the quality of embossed parts. The end determination was that quality of
parts should be defined by the completeness of formation of the ridge lining the channel.
The height and width measurements of the ridge were used as quality metrics. The
precision to tolerance ratio (P/T ratio) of the measurement method used for finding ridge
height was found to be 0.44 and the P/T ratio of the ridge width measurement method was
found to be 0.33.

Thesis Supervisor: Dr. Brian Anthony
Title: Research Scientist
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1 Introduction

This thesis explores using hot embossing as a prototyping process of microfluidic

channels for Daktari Diagnostics. The capabilities of the process were investigated with

specific emphasis placed on reproducing a key feature of their current product.

1.1 Background and Research Motivation

Daktari Diagnostics is a startup company that is currently specializing in affordable

and accurate Human Immunodeficiency Virus (HIV) diagnostics. HIV replicates in the

human body by invading helper T cells (specifically the CD4+T cells). As the virus spreads,

the patient's CD4 cell count declines and their ability to fight infection diminishes. Thus,

CD4 cell count (cells/microliter of blood) correlates to the severity of the infection. A

measurement of CD4 cells cannot be used to diagnose a patient as HIV positive; however, it

is an effective and essential measurement for determining if a patient is responding to

medication. Measurement of the CD4+ T lymphocytes is a critical part in the staging of the

HIV-infected patients, determining need for antiretroviral medications and monitoring the

course of their infection[1].

In developed countries, the CD4 count (CD4 cells per microliter of blood) is

performed every three to six months using a method known as flow cytometry. This

requires expensive ($30,000 to $150,000) equipment and trained operators. In resource

poor countries, these assets are only available in the largest national hospitals. For many

patients afflicted by HIV, this means that they must send blood out from a local clinic and

wait days or even months for the results to return from the central hospital laboratory.

These economic and technical limitations have made these instruments difficult to sustain

in resource poor environments[2], where there are more than 35 million HIV-infected

people, 6 million of which require urgent anti-retroviral treatment. The need for a low cost

CD4 measurement technique is widely recognized [3].

Daktari is attempting to create a CD4 cell count system that is simple to operate, low

cost and portable. Their product includes a microfluidic cartridge with a circuit of channels

15



for reagents and blood to flow. The CD4 cells are preferentially captured in a basin known

as the assay channel, and then counted using impedance measurements[2]. CD4+ cell size

is on average 8.5 microns in diameter, with 0.2% being above 12 microns[4]. The

microfluidic device contains channels as shallow as 50microns and as deep as 1mm.

1.2 Problem Statement

To arrive at a functional design, it is necessary that Daktari Diagnostics take

advantage of manufacturing methods that are capable of producing parts with features in

this 10s of microns range. For commercial production, Daktari will use an injection molding

process. However, for prototyping this method may not be the most efficient. Daktari is

interested in other manufacturing processes that are capable of accurately and reliably

creating aspects of their microfluidic card for prototyping purposes. This thesis evaluates

hot embossing as a prototyping process.

1.3 Current Prototyping Processes

Currently, Daktari uses several processes in conjunction for the development stage

of the product. These are: Photolithography and Polydimethylsiloxane (PDMS) molding,

micromachining, and injection molding. Each of these processes has limitations that

prevent them from being ideal prototyping processes. The processes and limitations are

discussed in more detail in chapter 3; a brief description of each process is below.

1.3.1 Photolithography

Photolithography is a technique used to produce very precise (nm resolution)

patterns on a substrate. The general principle of the process is that a photosensitive

material is selectively exposed to a UV light source. This exposure cures portions of the

resist in the desired pattern while the remaining material is etched away. The technique is

commonly used to make integrated circuits, but has recently been used as a method for

producing molds for microfluidic applications. One major limitation of this process is the

cost and complexity associated with making the mold. Another limitation, and Daktari's

biggest concern, is that this process does not produce parts that are representative of
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production parts, meaning both the geometry of the parts produced and the material used

differ from production specifications.

1.3.2 Micromachining

Micromachining directly into the substrate is another method that Daktari has used

for prototyping microfluidic designs. Micromachining, either through micro milling, laser

machining or micro-electrical discharge machining (micro-EDM) is a subtractive

manufacturing process that affords great flexibility. This process is capable of producing

complex micron scale features into almost any material desired. The major limitation here

is the time required to produce a single part. It may take several hours to micromachine

one microfluidic design, and Daktari may need up to 50 parts made of a single design to

fully evaluate it.

1.3.3 Injection Molding

Injection molding is the method currently used by Daktari for commercial

production of their microfluidic card. Injection molding is a method in which a mold cavity

is filled with a molten thermoplastic. It allows for highly complex parts to be rapidly

produced. The major limitation of this process is the time and cost required to make a

mold. A single mold cavity may take up to six months to design and manufacture. While this

manufacturing process is desirable for volume production, it is not ideal as a prototyping

process.

1.4 Unmet Needs

The processes described previously do not meet all of the requirements of an

effective development tool for microfluidic devices. They are either prohibitively slow,

prohibitively expensive, or produce parts that are not characteristic of parts produced with

the production process. Therefore, there is a need for a more effective prototyping process.

The process must produce parts that are representative of production grade parts.

This means that the behavior of flow through the channels in the prototyped parts must be

similar to the flow that will occur in production parts. If this is not true, then the process
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cannot be realistically used as a development tool. The new development process must

produce parts that have geometry representative of the final production parts. This

includes tapers, surface roughness characteristics and material.

For the process to be an effective prototyping tool, it should take a relatively short

amount of time to iterate on the design. This need translates to a requirement that has the

entire process, from tooling to prototype production, be as short as possible.

1.5 The Hot Embossing Solution

Hot embossing is a viable solution for filling the prototyping gaps left by the

previous processes[5]. It offers advantages in achievable feature replication[6], correct

prototyping material, low process cycle time, and a variety of tooling options. Most features

producible by injection molding and machining can be achieved by hot embossing, such as

high aspect ratio features[7] and low surface roughness[8]. Mold tools for hot embossing

can be produced through micromachining or lithography processes. The tools in hot

embossing are used to transfer features over to substrate materials. The selection of

substrate materials is very flexible and allows the correct material to be used for

prototyping. The time in which it takes to make a single micro hot embossed part has been

shown to be as low as 2min/part[9]. This bridges the gap between the fast process times of

injection molding to the slow process time of micromachining. Hot embossing is able to

bring prototype designs to production more quickly because the time required for tooling

can be considerably less than that of injection molding where complicated features like

ejection pins add to tooling time. Hot embossing also offers different materials for tooling

that injection molding does not [8,10].

While there are many apparent benefits of using hot embossing, this technology is

still an emerging manufacturing process that is not widely used commercially. The process

exists primarily in academic and research settings and is still in the process of making a

transition into commercial arenas. The true capabilities of the process will depend on the

specific geometries of the parts being produced, and so this process must be evaluated for

Daktari's particular needs.
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1.6 Research Objectives

The focus of this work was to develop a hot embossing machine capable of

prototyping the key aspects of Daktari's microfluidic card and to determine a method to

assess the quality of embossed parts. Developing the hot embossing machine entailed

designing a machine, building the machine, and finally characterizing its performance.

Following construction and testing of the hot embossing machine, a methodology

was developed for inspecting hot embossed parts. The measurement methodology was

developed by first cataloguing the critical dimensions of the features to be inspected. Next,

methods were determined to measure each of these dimensions. These methods were

evaluated with a series of gage repeatability and reproducibility studies that resulted in an

estimate of the measurement error introduced by each method. Finally, a proposal was

made for the singular dimension or group of dimensions that are most capable of being

measured to evaluate the quality of an embossed part.
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2 Background and Product Description

2.1 Microfluidics

The HIV diagnostic product developed at Daktari consists of a variety of parts but

one of the most important and the critical part in the instrument is the microfluidic

cartridge, which is manufactured using Poly methyl methacrylate (PMMA). The

microfluidic cartridge is the component where the blood enters, mixes with different

reagents in precise quantities and accurate measurements of the CD4 count of the blood

are made. The important requirement for such a cartridge is having accurate quantities of

the reagents and the blood flow at a precise rate through the channels. A microfluidic chip

is suitable for this need.

Microfluidics has the potential to significantly change the way modern biology is

performed. Using microfluidic devices we can work with smaller reagent volumes, shorter

reaction times, and the possibility of parallel operation. They also hold the promise of

integrating an entire laboratory onto a single chip (i.e. lab-on-a-chip)[11]. Apart from the

traditional advantages of miniaturization, the greatest potential lies in the physics at the

micro scale. By understanding and leveraging micro scale phenomena, microfluidics can be

used to perform experiments which may not be possible on the macro scale which allows

the introduction of new invention in functionality [12].

A microfluidic approach has been used for a wide range of applications which

include analysis, diagnostics and synthesis [13]. Microfluidics is the analysis of accurate

and precise flows through constrained routes or channels. Typically microfluidics is used to

analyze fluids, which flow, mix, separate and are processed otherwise. Some of the

applications include passive fluid control using capillary forces, rotary drives applying

centrifugal forces for the fluid transport on passive chips. Microfluidic chips can also be

used to enhance rare cell capture and fractionation using biochemical interactions. Many of

the microfluidic devices take advantage of the 3D structure of channels to increase the

surface area available to be coated with the antibody [4].
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There are a variety of ways in which the microfluidic chip can be manufactured

which include soft lithography, micromachining and micro-injection molding. Some of the

important parameters to be considered as shown in Figure 1 while producing the

microfluidics part are:

1. Surface Finish: The surface finish plays an important role in the flow characteristics

of the fluid and it depends on the process used for manufacturing.

2. Dimensional Tolerances on Features: The sides of the channel are important for the

flow characteristics as well as the capture of any cells if relevant. The tolerance on

these features like the width and length of the channels determines the flow

characteristics. Also, the linearity of the features is an important along with the

parallelism of the planes of the features.

3. Positional Tolerance: Parallelism and Perpendicularity with the outside boundary of

the microfluidics may play an important role. Also, the positional tolerance of the

features with respect to the outside boundary may be a crucial parameter.

Parallelism Corner Radius

Positional Dimensional
Tolerance Tolerance

Figure 1: Critical parameters in microfluidics
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Most of the crucial parameters can be further listed down according to the

application of the microfluidic chip, which is in this case the microfluidic cartridge used at

Daktari. The critical features and parameters which are important to the performance of

the device are enlisted the following section. These features in addition to the parameters

listed above will be the basis for evaluating hot embossing as an appropriate prototyping

process for Daktari Diagnostics.

2.2 General Card Features

Several parts of Daktari's microfluidic network have unique aspects that make them

difficult to prototype. These features are also parts of the microfluidic network that need to

be thoroughly iterated upon to reach a functional design. Therefore, it is necessary to

demonstrate that hot embossing is a suitable manufacturing method for these key features

before it can be declared an effect prototyping tool.

Blood is first introduced to Daktari's product through a feature known as the fill

port. This is an inlet that is designed to allow blood to be pulled into the microfluidic

network of the card through capillary action. The inlet resides on an edge of the card. It will

be a channel of uniform depth. The fill port may have uniform width, or it may have a

design with a wide opening that tapers to the narrower width of the rest of the microfluidic

network.

After blood has entered the card, it is important that the volume of blood to be

analyzed be known. The metering channel is a portion of the microfluidic network that

takes in a precise quantity of blood for transfer to the portion of the card that performs the

analysis.

A capillary stop is a passive valve that prevents flow of fluid. By having an abrupt,

large change in channel geometry, a pressure barrier is created that stops the flow of fluid

[14]. Daktari uses capillary stops in their microfluidic network to direct the flow of blood.

Figure 2 below shows an example of a capillary stop and how it operates. The fluid flows in
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the main channel past the capillary stop. Some fluid enters the stop, but its motion is halted

when it reaches the portion of the channel that has a sudden change in depth and width.

Figure 2: Schematic of a channel with a capillary stop

2.3 Targeted Feature: The Assay Channel

The most critical portion of the microfluidic system is a portion of the card known as

the assay channel. This is the region in which a crucial analysis of the blood is performed. It

contains a large collection of tight tolerances and dimensions that are both unique to this

area and common to different features on the card. Therefore, prototyping of this feature

will be a good indicator of hot embossing's capability to prototype various parts of

Daktari's card.

2.4 General Channel Considerations

The microfluidic channels in Daktari's product are in general defined by six basic

geometric parameters. These are:

1. Depth. Channel depth varies widely on Daktari's microfluidic network and can be as

shallow as 50microns or as deep as 1 mm.

2. Width. Channels of widths at large as 2mm in span exist on Daktari's card.

3. Draft Angle. This is a measurement of the verticality of the channel's walls.

Perfectly vertical walls are desirable, but not possible because of the molding

process currently being used.
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4. Upper Radius. This is the radius at the upper edge of the channel. In general this

radius is governed by radius of the tool used to make the mold.

5. Lower Radius. This is the radius at the bottom edge of the channel. The tool can be

made with essentially 0 radius at this point, however there may be a radius left on

the polymer part because of the manufacturing process.

6. Surface Roughness. This is a measure of wall smoothness. Lower surface

roughness is desirable, for more predictable flow patterns and less trapping of cells.

Surface roughness requirements for this product can be as low as several tens of

nanometers.

Ru

Draft
RL

Figure 3: General channel dimensions
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3 Review of Prototyping Processes

Many manufacturing processes can be used to produce parts with micro features.

However, these micro features need to have a certain accuracy and fidelity. They need to

satisfy the requirements of being biocompatible, corrosion-resistant and disposable etc.

The manufacturing process needs to be viable with regards to the materials used and the

feature size to be attained. Some of the potential manufacturing processes are discussed

below based on the requirements listed above and manufacturing challenges. These

processes are being currently used at Daktari for rapid prototyping the assay channel. Each

of these processes has limitations that hot embossing will hopefully overcome.

3.1 Photolithography

Photolithography has been shown to be a cost effect and rapid way for producing

micron scale features[15]. Additionally, photolithography in conjunction with

Polydimethylsiloxane PDMS is commonly used as a means to prototype microfluidic

channels[16].

3.1.1 Process

A positive mold containing the desired features is created using a photolithography

process. The steps of the process are as follows and Figure 4 shows the differentiation of a

positive and negative mold.

1. A photoresist resin is spin coated onto a silicon wafer

2. A mask is applied that covers some portions of the wafer and leaves other areas

exposed

3. The wafer is exposed to UV light, this cures the resin not covered by the mask

4. The uncured resin is etched away leaving the completed silicon tool
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Figure 4 The positive mold (left) holds desired features and the negative mold (right) holds the opposite
geometries of the features

Once this silicon positive mold is completed, PDMS parts can be produced from it.

Liquid PDMS is poured onto the positive mold along with a hardener. Once the PDMS cures,

it is removed from the silicon positive mold and creates a negative.

3.1.2 Limitations

This process can create parts quickly. It may take a couple weeks to receive the

silicon positive mold from a semiconductor foundry. However, once the tool is made, PDMS

copies can be produced rapidly and at low cost. The greatest problem with this process is

that it produces parts that do not have geometry or properties that are entirely

representative of the final production process. Photolithography results in parts that have

nearly perfectly vertical walls and can produce corners with almost non-existent radii[17].

Conversely, injection molding (the production process) produces parts with tapered walls

and corners with radii. Additionally, this process produces fluidic channels in PDMS, which

is not the production material. Material certainly has an effect on flow characteristics and

because of this results from testing PDMS parts may not be representative of how the

design will perform with production material.

Another limitation of this process is that it is best suited for creating features with

uniform height. Daktari's actual product is a microfluidic network with complex geometry

with steps and ramping inclines. Therefore, this process is best for prototyping only

portions of the design.
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3.2 Micromachining

Micromachining can be used to produce parts with microfluidic applications because of the

available working materials, machinable geometries, achievable feature sizes and surface

roughness[18].

3.2.1 Process

Like traditional milling, a micro mill uses endmills with sizes as small as five

microns that can cut into metals and softer materials. During the milling process, the

endmill is moved relative to the work piece. This allows features to be cut directly into the

thermoplastic substrate. In micromachining, the microfluidic channels are cut directly into

the thermoplastic substrate. This process allows for complete control of the end part and is

capable of producing many types of geometries.

3.2.2 Limitations

An advantage of micromachining is the flexibility afforded by the process. Once a

micro mill is acquired, designs can be quickly iterated on. However, the benefit of not

requiring custom tooling for each design is balanced by the relatively long cycle time of this

process when compared to injection molding or producing PDMS parts from a silicon tool.

Daktari anticipates needing 20-50 of any given prototype design for testing. This

requirement makes the cycle time of micromachining each part undesirable.

A potential problem with micromachining is that tool marks left by the process may

produce surface roughness characteristics that are undesirable. As mentioned previously,

the cells of interest for Daktari are on the order of 1-10 microns. It is possible to achieve a

surface roughness several orders of magnitude lower than this [18], however if the process

is not carefully controlled then this characteristic might be problematic. Another artifact

and problem with machining is the introduction of burrs, which could have an impact on

the performance, or assembly of microfluidic devices. Burrs are introduced when material

is not fully removed or becomes welded on the edges of a corner. Figure 5 depicts a cross

sectional view of burrs and shows tool marks and potential burrs left by micro machining

on aluminum.
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Machining Burr

Figure 5 Cross sectional depiction of burrs on the edge of a possible machined channel (left). An interferometer
image of a machined feature showing tool marks and possible burrs (right).

Micromachining also limits features such as sharp convex corners, which are

sometimes used in microfluidic devices to control fluid flow. An example of this use of

sharp corners is to control capillary action where the sharp corners can be used to stop

fluid flow. The radius of the endmill usually dictates the achievable radius on the interior of

a corner, but usually not the exterior. Control and prediction of the corner milling

resolution has also been seen as an issue in automated machining for mass production [19].

Figure 6 shows the common process for milling a corner.

Figure 6 The standard process for milling the outside radius (left) and inside radius (right) of corners.
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3.3 Injection Molding

Injection molding is a common process used to make parts containing micro-features. It

offers the ability to use a wide variety of thermoplastic materials, many of which are

biocompatible.

3.3.1 Process

Micro-injection molding is a process of transferring a thermoplastic material in the

form of granules from a hopper into a heated barrel so that it becomes molten and soft. The

material is then forced under pressure into a mold cavity where it is subjected to holding

pressure for a specific time to compensate for material shrinkage as shown in Figure 7. The

material solidifies as the mold temperature is decreased below the grass transition

temperature of the polymer. After sufficient time, the material freezes into the mold shape

and is ejected. This cycle continues to produce a number of parts. A typical cycle lasts

between few seconds to few minutes [20]. The process has a set of advantages that make it

commercially applicable. Advantages include the wide range of thermoplastics available

and the scope for complete automation with short cycle times [21,22], cost effectiveness for

mass-production process, especially for disposable products, very accurate replication and

good dimension control, low maintenance cost of the capital equipment, when compared to

the lithographic methods and applicability of the large amount of industrial information

and technical know-how available for the traditional injection molding process. Also,

because the working materials are injected into the cavities at a quasi-liquid state, the high

mobility of the material makes making high aspect ratio, larger than 10, devices possible

[23]. The process requires relatively inexpensive equipment and a metal mold to be

produced. Additionally, the complexity of geometry possible is only limited by mold making

capability. The dimensions of the injected parts fall into a region from 500 nm to several

hundred micrometers.
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Figure 7: Injection Molding Process

3.3.2 Limitations

However, because the working materials are processed under wide temperature

range, from the room temperature to 10 to 20 degrees above the polymer melting

temperature, the shrinkage of the material is large, and hence good uniformity in the walls

with different thickness is hard to achieve[24].

Daktari will finally use the injection molding process for the manufacturing of the

device on a mass-level. Once tooling is completed, their contract manufacturer is able to

produce their backbone (cartridge) in a high volume and at relatively low cost per unit. If

Injection molding is used as a prototyping tool, then parts produced are completely

representative of what the parts will be like from a production run.

The major limitation of this process is the monetary and time investment required

to make the mold. Lead times for precision micro molds can be in excess of 6 months, and

changes to the mold design can take weeks to complete. While the fidelity achievable
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through injection molding is desirable, the time required to make tooling is too long for this

process to be an effective development tool. Daktari needs a prototyping tool which gives

them a part which has the same material properties as the final part, which is made out of

PMMA, be robust and function like the final product in a short period of time. This will

enable reiterations of the design at a faster rate with a prototype, which is actually similar

to how the product will work.
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4 Hot Embossing Process

Hot embossing is a promising technique for manufacturing micro-fluidic devices due

to its excellent feature transfer capabilities from master molds, with high aspect ratios and

low roughness, onto polymers[7,25]. This meets the requirement for prototyping

microfluidic devices that have varying feature sizes, surface roughness and complex

geometries. It has also been shown that hot embossing has the capability for producing

Poly methyl methacrylate (PMMA) parts with microfluidic features and low cycle

times[9,26].

The cost associated with creating the hot embossing master tool can be equal to or

lower than injection molding in most cases [11]. On the other hand, the cost for the

embossing equipment and materials are relatively low in comparison due to lesser heat

and force requirements. Hot embossing requires much less force and heat in comparison to

casting or injection molding. The working substrate is normally only heated to, or a little

above, its glass transition temperature (Tg) and needs only a few MPa of pressure to

transfer features from a master mold onto the substrate[27]. Hot embossing is a very

flexible process that often only requires the change out of the master tool between

prototype designs. The simplicity flexibility of the system drives engineering, material and

energy costs down.

4.1 Selection of substrate

Daktari currently uses PMMA as the primary material for their diagnostic chip for

many reasons. PMMA is used for the purpose of hot embossing and injection molding at

Daktari because it is an economical alternative to polycarbonate, especially when extreme

strength is not necessary. Also, PMMA does not contain the potentially harmful bisphenol-A

subunits found in the polycarbonate. PMMA is often preferred as the polymer because of its

material properties, easy handling and processing and low cost. The glass transition

temperature (Tg) of atactic PMMA is 105 C (221 F). The forming temperature starts at the

glass transition temperature and goes up from that point. PMMA is a strong and lightweight

material with a density of 1.17-1.20 g/cm 3, which is less than half of that of glass and has an
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ignition temperature of 460 C and burns forming carbon dioxide, water, carbon monoxide

and low-molecular weight compounds including formaldehyde. PMMA is the least

hydrophobic of all the common plastic materials. Moreover, its optical clarity is also a

significant benefit for the testing purposes. PMMA will be the primary material used in this

work since it is commonly used in hot embossing and is the material used for Daktari's

diagnostic chip.

4.1.1 Basic Properties of Thermoplastics

A thermoplastic is a thermo-softening polymer that becomes pliable with an

increase in the temperature and returns back to the original solid state with cooling. Most

of the thermoplastics have a high molecular weight and its massive molecular chains have

high intermolecular forces binding them together. These forces help in the binding of the

material once the temperature cools down and hence the polymer can set back into its solid

state. Above its glass transition temperature Tg and below its melting point Tm the physical

properties of a thermoplastic change drastically without an associated phase change.

Within this range, the thermoplastic is a rubbery mass due to alternating rigid crystalline

and elastic amorphous regions approximating random coils. This makes hot embossing of

these thermoplastics possible without working in a broad temperature range like in case of

injection molding. Brittleness might be a deterring factor for the hot embossing process

and this can be reduced with the addition of plasticizers, which interfere with the

crystallization to effectively lower the Tg. Modification of the polymer through co-

polymerization or with the addition of non-reactive side chains to monomers before

polymerization can also reduce the Tg.

4.2 The Hot Embossing Process

Hot embossing is the process in which a substrate is impressed with features from a

master tool. The master tool holds the negative of the desired features so that the positive

of the features may be transferred. It is also very common to heat up the master mold and

usually results in better feature transfers and lower cycle times[25]. Figure 8 depicts the

process overview with the master tool and substrate.
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Figure 8: The master tool (top) and substrate (bottom) are heated up (1), then pressed together (2) and finally
released (3)

Figure 9 shows the force and temperature cycle of the hot embossing process. The process

cycle starts when the substrate begins heating up to or past its glass transition

temperature, Tg, from To to Ti. At T1, the master tool is pressed into the substrate and held

for a period of time at a constant molding force. The holding time lasts until T2, at which

time the substrate is set to cool. At T3 the substrate temperature reaches below its Tg to a

desired de-molding temperature and the molding force is released, ending the process

cycle.
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Figure 9: General hot embossing temperature and force cycles. The process cycle begins from T = 0 to T = T3
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4.2.1 Initial Heating Stage

Referring to Figure 9, the heating stage occurs between To to Ti. During the initial

heating stage, the substrate is heated up to or a little past its Tg. It is also very common to

heat the tool up at this time to the same temperature of the substrate or a bit cooler[28].

This initial heating prepares the substrate to be malleable and less viscous for the

embossing stage. The higher the substrate temperature is, the less force is required. Also, a

higher replication accuracy is correlated with better material flow[29]. Uniform heat

distribution is preferable because it can dictate the quality of the part and complexity of

process control and analysis. Control and repeatability of the temperature during this stage

is desired for quality and process control purposes.

4.2.2 Embossing Stage

The embossing stage spans from T1, the time in which the master tool and substrate

come into contact, to T4 , when the tool and substrate start to separate. The embossing stage

initiates from T, to T2, during which time the tool and substrate come into contact and

force begins to be applied and ramped up to a desired load. Once a desired force is reached,

it is kept constant from T 2 to T4 . Constant force as well as constant position can be kept

during this time, depending on the types of features required. For example, a part may have

to be made to a certain thickness. This would only be achieved under constant position

holding and not force. The holding time occurs between T2 to T3 and defines the amount of

time that the substrate is placed under constant force and heat, or position and heat.

4.2.3 Cooling Stage

Cooling happens after T3 and is the stage that brings the substrate below its Tg. De-

molding temperature plays a large role in the final shape of the embossed part and is

usually set well below the substrates Tg. Releasing the molding force at too high of a

temperature may cause the substrate material to flow and fill in the features that were

created[29]. Cooling rates also has an effect on thermal stresses, which would affect part

quality[30,31]. For the purposes of this work, the cooling rate does not have to be rapid and

can be kept such that the best quality parts are produced. A long cooling time (-10mins)

would be acceptable.
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4.2.4 De-Molding Stage

De-molding begins at T4, at which point the substrate has been cooled below its Tg to

a desired de-molding temperature. Force application is released at this point and the tool

and substrate are pulled apart until there is no longer contact, at Ts. De-molding can

require a considerable amount of force depending on the size of the part, features, and

amount of friction between the tool and substrate[32]. Materials such as mold release may

be used in order to facilitate the de-molding process, but could potentially yield

undesirable part quality, especially for a feature that requires tight tolerances. The de-

molding process has been shown to contribute greatly to the quality of the part, especially

when friction and substrate shrinkage are considered. Parts have been seen to have poor

quality because of high friction and shrinkage[33]. Control of how the tool and substrate

separate can also have an effect on the part quality. It has been recommended that the tool

and substrate be separated initially at a single location or edge, then "peeled" away from

one another[32].

4.3 Consideration of Process Capabilities

To consider hot embossing as a viable rapid prototyping process for Daktari, it must

have capabilities in replicating a wide range of features. This section will provide an

overview of some of the features that may be challenging for hot embossing to accurately

and precisely produce. These features include many of the channel parameters introduced

in chapter 2, as well as features that are specific to the assay channel.

4.3.1 Sharp Radii

Many features such as the assay channel require a sharp radius on raised edges.

During the hot embossing process, the substrate exhibits a "dragging" behavior where the

sidewalls, near the tip of the tool feature, "drags" the substrate as pressure is applied

between the tool and substrate. This dragging process can wear the tip of the tool out while

creating air gaps. Figure 10 shows a cross section of a channel and how air gaps can

increase the radius on the raised edge. These air gaps can be reduced by increasing forming

temperature so that the substrate can more easily flow and fill the gaps[34]. Increasing

pressure and embossing hold time can also help reduce these gaps.
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Figure 10 The left image shows the dragging effect where the arrows indicate the direction of the tool a nd
material movement. The right image shows air gaps that can reduce feature radius.

4.3.2 Unfilled Extruded Features

The filling of high aspect ratio cavities can be difficult and can depend on the

temperature, pressure, and hold time. The effects that cause incomplete filling in corners

may also contribute to this incomplete filling of extruded features. Figure 11 shows an

unfilled cavity during the embossing process. The substrate is pushed into the cavity, but if

the hold time, pressure and temperature are not adequate, then the substrate may not be

able to flow and fill the cavity.

Figure 11 Cavities in the mold can be unfilled during the embossing process if temperature, pressure, and holding
time are not adequate.
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4.3.3 Features Ending on Edges

It may be necessary to have features that reside directly on the edge of an embossed

card, such as a fill port. Producing features that reside on the edge of an embossed part may

be difficult for the hot embossing process. Figure 12 displays a possible fill port design,

which can be referenced back in section 2.2. The image on the left is the ideal part

produced through hot embossing. The image on the right displays a part that is more

representative of the process. The reality of the process is that edge distortions are often

present on the embossed part. This is because the heating and pressing on the substrate

causes material flow that is unconstrained at the boundaries of the substrate. This may be

problematic when producing features that must reside on the edge of a part. Boundary

bowing may also occur if the tool is smaller or of the same size as the substrate. Material

that is not under constant pressure from the tool will deform with random warping during

cooling.

Ideal edge condition Actual edge condition

Figure 12: Substrate edge distortion

4.3.4 Control of Tolerances and Variability

It will be necessary to demonstrate the capability of hot embossing to produce

features with tightly controlled dimensional tolerances. Referring to the assay channel in

section 2.3, it is important that this feature maintains very low variability in the dimensions

of the channel card to card and that the dimensions are precise as possible. The assay

channel is a straight rectangular channel with a defined ridge around its perimeter. Figure
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13 below shows what the assay channel may look like. The two holes represent inlet and

outlets for a fluid.

I E lI
A
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Figure 13 Schematic of a general cuvette feature

For hot embossing to be an effective method of producing this channel it is

necessary that the variability of the process be well understood. This feature will also test

the capability of hot embossing to fully transfer the mold onto the substrate. It will be

critical to know what percentage of the mold geometry is transferred into the substrate.

For example, if the mold has a feature with a cross section that is 10 microns deep and 10

microns wide, it will be important to know how closely the corresponding feature on the

embossed part matches these dimensions.

4.3.5 Abrupt and Variable Geometries

Another common feature for this microfluidic network are areas where multiple

channels come together at a junction. These junctions may bring channels together that

have different depths and different widths. The hot embossing process must be capable of

producing features of variable depth, either with a gradual incline at the bottom of the

channel or with a step. The process must also be capable of producing features with

variable width. Figure 14 below displays one possible design for a junction of multiple

channels. Notice the change in channel width from the left to the right. This sudden change

in width may be a necessary aspect of Daktari's product. It will be necessary to investigate

the capability of the hot embossing process for producing channels with sharp corners, like

those seen at the junction. Another variable dimensional control would be in the depth of
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channels. The channels should be a constant depth along the length and width so that their

functionality can be more predictable.

Figure 14: Schematic of 3-way junction

4.3.6 Surface Roughness

The cuvette feature requires not only tight tolerances, but also a low surface

roughness. This feature is a wide and very shallow basin (roughly 50 microns in depth).

Therefore, tight dimensional tolerance of the channel depth and width are critical.

Additionally, surface roughness of the bottom surface is of paramount importance in the

assay channel. The CD4 cell counting is occurring in this channel; therefore surface

roughness must be maintained at a level that does not cause unwanted trapping of cells.

The assay channel will also challenge the capability of hot embossing to produce large and

smooth surface area features.
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5 Machine Design Approach

This chapter will outline the design requirements needed for an embossing machine

that is capable of making Daktari's assay channel. The general effects of different operating

parameters will be described so that a basic idea of how different components and their

operating ranges can work together to make parts. Design requirements will then be

discussed. Current design practices that are in-line with this study will then be highlighted

to help with the design.

5.1 General Effects of Operating Parameters

Hot embossing feature replication is largely dependent upon three factors;

embossing temperature, pressure, and embossing time. The combination of values of the

three settings effects not only the cycle time of the embossing process, but the achievable

quality of the embossed substrate. For example, low embossing temperatures would

require high pressures in order to achieve the same results as high embossing temperature

and low pressures (Hale, 2008). The lower embossing temperature would decrease the

heating and cooling time resulting in a possible decreased cycle time. This assumes that the

embossing time is equal for both settings.

The tradeoff between these different settings would be in equipment size, cost,

process cycle time, and achievable feature resolution. It is important for this design to be

flexible with embossing temperature and pressure in order to accommodate future tool

designs. Embossing and cycle time is not as important because it has been decided that low

volume (20-50) production is required for prototyping.

5.2 Design Requirements

The following design requirements help guide machine design so that it may be able to hot

emboss Daktari's microfluidic feature.
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5.2.1 Tool and Substrate Fixture Requirements

It was decided that the embossing system should be able to accommodate the

master tool and substrate material with surface sizes ranging from 25mm x 90mm to

65mm x 100mm. All sub features of the microfluidic device are able to fit on a 25mm x

90mm area, which provides flexibility in designing and testing of such features. The

microfluidic device is able to fit into the 65mm x 100mm area, allowing for prototyping of

the entire device. The substrate normally has the same surface size as the master tool, so

the fixture holding the substrate should be positioned and orientated in the same manner

as the tool. Repeatable placement of the substrate is not critical as long as the tool is able to

emboss all features onto the substrate without deformation. The substrate can be

reworked after embossing so that deformed edges can be taken off, so long as features do

not reside on them. The fixture should also be able to hold down the substrate during the

de-embossing phase so that the tool and part can be separated.

5.2.2 Force Requirement

Daktari has chosen PMMA to be the working material for the microfluidic device.

Forming pressures as low as 1MPa can be used for high temperatures and long embossing

times, but on average, 2MPa is used for embossing micro features on PMMA, and 4MPa

being a rare case (Wang, 2006). 2MPa is used as the standard requirement, hence with the

entire microfluidic chip measuring 63mm x 100mm, a working force of 12.6OkN would be

required. It should be noted that the working force could be lower than 12.6OkN since

increasing embossing temperature or time could achieve the same results as working with

this load. Also, pressure is the least sensitive variable in the embossing process because it

normally only needs to be above a certain threshold (David Hardt, 2005). The machine

should also be able to meet de-molding forces, which could be high for large parts. It was

determined that the machine did not have to initially meet 12.6OkN of force since the

largest embossing area that would be tested initially would be 22.50cm 2 . For a 2MPa

application pressure, a working force of 4.5kN would have to be met.
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5.2.3 Heating Requirements

Commercially available PMMA has a Tg of between 85 to 1650C, thus the embossing

temperature must be able to reach above this temperature. The specified maximum

operating temperature was chosen to be 2000C in order to accommodate any future

changes in plastic selection for prototyping. Popular plastics such as polycarbonate,

polystyrene, and Zeonex have, on average, Tgs below 2000C. It should be noted that hot

embossing can tolerate embossing temperature tolerances of +/- 30C, so the accuracy of

temperature control is defined by this tolerance (Wang, 2006). Heating rate is not as

important because the entire process is not aimed to be rapid and is allowed to take up to

half an hour. The substrate only needs to be brought to a desired temperature and kept

there. Uniform heating should be considered in order to increase process control and part

quality.

5.2.4 Cooling Requirements

It has been shown that the de-embossing temperature has an effect on not only the

cycle time, but also on the quality of the embossed substrate (Matthew E Dirckx, 2011). The

cycle time, in the case of prototyping 20-50 microfluidic parts, is not as important as the

quality of the part itself. A cycle time of up to 30 minutes is acceptable in this case.

Although cooling rate has an effect on part quality, the system does not require precision

control of this parameter as long as it is consistent with every embossing run and fits

within the 30min process window. As noted earlier, cooling over a longer period of time

typically provides for better parts that suffer less from thermal stresses.

5.2.5 Alignment Requirements

Alignment of the heating platens is important because part planar uniformity is

dependent upon this. Figure 15 shows how platen alignment can affect a part.
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Embossed Part

Figure 15: Depiction of misalignment

Alignment requirements, defined primarily by Daktari's microfluidic chip, concern planar x

and y travel, angular rotation and vertical parallelism. Daktari has expressed interest in

possibly embossing features on both the top and bottom surfaces of a substrate. This

double embossing would require features from one side to line up with features on the

opposite side. Unfortunately, there is currently no specified high precision x, y and angular

alignment requirements because of a lack of understanding on how top and bottom

features will perform together under misalignment. However, planar alignment and

vertical parallelism should be designed to as high tolerance as possible while considering

costs and time.

5.3 Common Design Practices

Simple thermocouples and liquid cooling systems have been shown to be an

effective way to measure and facilitate in temperature control[9]. Effective cooling and

heating systems help to drastically reduce the process cycle time. The cost associated with

this system is associated with the desired cooling rate, accuracy, and thermal mass to be

cooled. Temperature control has been shown to be an important parameter in reducing

embossed part defects[32].

Force application and control can be achieved using different motors or

hydraulics/pneumatics. Servomotors allow for great position control, but can be limited to

the amount of force they can apply. Hydraulics and pneumatics offer much greater forces,

but can be challenging in position controlling. Constant force application is generally more
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common and important than constant position, so pneumatics and hydraulics are generally

used. It should also be noted that in most embossing cases there is a force threshold, that

once achieved, most embossed features do not change drastically in quality, from process

to process, beyond this threshold [9].

In most cases, two heated platens are used for heating up and controlling the

temperature of the substrate and master tool. The cost and effectiveness of the platens are

related to the size and material used. Platens are normally not sized much larger than the

master mold and would only require the increase in size to accommodate a heating source.

Aluminum and brass are common materials used due to their low cost, machinability, and

effective thermal conductivities.
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6 Machine Design and Evaluation

This chapter will provide an over view of the machine design and describe its operating

parameters and procedures [35]. Important operations performed by subcomponents and

the characteristics of the machine will then be discussed.

6.1 Full Assembly

Lead Screw -

Toggle Head -

Force Sensor -

Top Plate

Cold Plate

Heating Platen

Middle Plate -

Figure 16: Full assembly view
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6.1.1 Operating Parameters

A design of experiments was performed in order to determine optimal operating

parameters [35]. Parameters may change according to changes in tool features. Parameters

that produced the best parts are listed in the table below.

Table 1 Machine Operating Pararneters[36]

Tool Temp 140 C
Substrate Temp 130 C
De-Embossing Temp 70 C
Pressure 3500 N
Holding Time 12 min

6.1.2 Operational Procedure

a. The toggle is not engaged

b. The top and middle stacks are set to their starting positions by rotating the linear

traveling lead screw that moves the toggle head

c. The master tool and substrate are loaded onto the top and middle fixtures,

respectively

d. The heating platens are then raised to their desired temperatures

e. Once the desired temperature of both platens are reached, the embossing head is

moved down using the lead screw

f. The force sensor indicates when contact is made by the output voltage reading

begins to change

g. The lead screw is turned until the desired force is indicated by the sensor

h. The hold time begins and the temperature and force are kept constant (the force can

be allowed to decrease slightly because of substrate flow)

i. After the holding period, heating is shut off and the liquid cooling system is turned

on

j. The toggle head can be raised using the lead screw once the platens reach a

temperature below the substrates Tg
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6.2 Load Bearing and Tilt Compensation

The embossing system frame handles the loading application as well as the

alignment between the tool and substrate. The definition of what the frame consists of can

be seen in Figure 17. This system uses a Schmidt model 15F toggle head and frame capable

of applying 12.OOkN of force. The tool and substrate can be brought into contact using

either the toggle action, which has a working stroke of 34.8mm, or the linear traveling lead

screw, with a working range from 80mm-325mm.

Bearing-

Top
Parallel
Plate

Guiding Rod

Middle Parallel Plate

Air Bladder

Bottom Plate

z

x

y

Figure 17 Frame assembly and cross section views.
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Referring to Figure 17, the top and middle plates ride on guide rods using linear

roller bearings. The bearings have individual inner bore diameter tolerances of

12.7mm+0.0/-6.35pLm and tilt allowances of 15 minutes. The guiding rods have a diameter

of 12.7mm+0.0000/-5.08pm. Maximum tilts of the stacks are dictated by the allowable tilt

of the bearings. The frame also consists of an air bladder, rated for 6.67kN at 100psi, which

couples the bottom plate to the middle plate, allowing for tilt compensation and equal

pressure distribution between the tool and substrate. When the tool and substrate contact,

the air spring distributes pressure evenly, theoretically making the top and middle plates

parallel. Tilt may have an effect on feature quality by introducing gaps into the substrate

during the initial stages of embossing. Figure 18 shows how such gaps may form. The figure

also shows how repeatability of feature location, relative to a locating point, could be

affected by tilt. During the tilting process, the top and middle plates may be misaligned

since they can move relative to one another.

Center Line

Figure 18 Visualization of misalignment air gaps.

6.3 Tool and Substrate Fixturing

The embossing tool was mounted directly to the heating platen and did not require

a fixture because it was not removed in between experiments. The tool and substrate were

positioned in line and orientated with one another. A fixture was designed so that the

general placement of the substrate could be somewhat repeatable. The substrate fixture
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has three outer locating pins that rest on the perimeter of the PMMA. This fixture also has

three secondary inner pins that are embossed onto the backside of the PMMA. These

embossed pin features were used to assess the machines x, y and angular repeatability, and

as locating features for attachment to a measurement fixture. The PMMA is held down

using side clamps, which in the event of substrate shrinkage onto the tool, helps to hold

down the PMMA as the tool is lifted upwards and de-embossed. This fixture is mounted

directly to the heating platen through four bolt patterns. Figure 19 shows how the

substrate was fixtured.

Fixture Base

Substrate

Inner Pin

Side Clamp

Outer Pin

Figure 19 Substrate fixture

6.4 Heating and Cooling

Both the tool and substrate had dedicated heating platens and cooling plates. Figure

20 shows the tool and substrate assemblies. A single 150W-heating cartridge was inserted

into each platen and was oriented in the direction of the tool and substrate lengths. These

cartridges were used because of their rated heating temperature of 5380C and low cost.

They are aligned in the same direction as the tool and substrate to provide uniform heating

from the mid line. An Omega CN7500 series temperature controller capable of maintaining

20C accuracy and a 2000C rated adhesive thermocouple were used to control the heating of

each platen. The thermocouples were placed on the surface of the heating platen. Precise

control of heating rate was not considered to be an important aspect of the machine

because of the allowable 30-minute embossing process time window. Ceramic Macor
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insulation was used to reduce thermal transfer to the frame components through

conduction. Convection and radiation heating were assumed to be negligible in comparison

to conduction. Figure 20 shows the conduction path blocked by the insulation at the top of

the bolt heads and bottom of the cold plates.

Fixture

Heating Platen

Heater

A

Cold Plate

Insulation

Heating Zone

Figure 20 Substrate heating assembly and cross section

Cooling was achieved by using cold plates placed directly in contact with the heating

platens. The cold plates ran a double loop, with 11L of recirculating room temperature

water as the acting fluid. A pump provided flow of 38L/min over 1.83m of head (47L/min

at 1.5m of head). This system was able to cool each platen from 140C to 40C in 2 minutes.

Figure 21 shows experimental cooling data. The top plate was designed with the same

configuration setup, minus the substrate fixture, and was bolted directly onto the heating

platen.
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Cooling Temp. Vs Time
140 - - Top Heating Platen

120 - - Lower Heating Platen

100 -

80 -

60 -

40 -

20 -
20

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time [s]

Figure 21 The cooling profile of the top and lower heating platens over a period of 2.5 mins.

6.5 Load Sensing

The load sensor was used to determine the amount of force applied between the

substrate and tool. A Futek LCM200 sensor was chosen based on its size, 4.45 kN sensing

capacity and in line mounting option. The sensor limits force application to 2MPa since the

embossing area is 22.50cm 2. The sensor is bolted to the top parallel plate and de-coupled

from the toggle head. De-coupling the sensor from the toggle head allows for the frame

assembly to be unconstrained from top to bottom. This allowing for any vertical

misalignment at the point of the toggle head to be resolved after the toggle head applies

pressure on the force sensor. The alignment correct was thought to help reduce any errors

that could occur in constraining the frame assembly and having the load sensor pick up

stresses such as shearing. Figure 22 shows the placement and mounting of the sensor. De-

coupling was achieved by providing a gap between the flange that connects the toggle head

to the force sensor and the top aluminum block that the sensor was screwed into.
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Cross Section A-A

Toggle Head

Gap Flange

Force Sensor-.. Al Blocks

oR Top Plate

Figure 22 De-coupling of force sensor

6.6 X & Y Repeatability

Referring to Figure 17, the alignment system consists of the top and middle plates, air

spring, guiding rods and bearing. To evaluate the x and y positional repeatability of the

embossing system, the distance between fiducials that resided on the back and front of

embossed parts were measured. By measuring the variability of these distance

measurements over 10 parts, an estimate of the positional repeatability could be

calculated. This positional repeatability was then decomposed into purely x and y planar

slip, and rotational error.

The fiducials used were marks left by the 3 locating pins embossed onto the back of

parts and surface features on the fronts of these parts left by the embossing tool. Figure 23

shows the three embossed pin fiducials, on the top images, with their corresponding

embossing tool fiducials, directly below. The planar distance between corresponding

fiducials were taken for the three locations and used to estimate planar misalignment.
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Figure 24 shows a sample of how the planar distance between corresponding fiducials was

measured.

Figure 23 Fiducials used for x, y repeatability measurements

Figure 24 Distance between fiducials
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Table 2 shows the measurements taken at the three locations for the 10 samples. All

the parts had the same set of parameters with the tool temperature being at 140 C, the

substrate temperature at 120 C, pressure of 600 lbs, holding time of 10 minutes and the de-

embossing temperature of 30 C. The measurements were taken on a Nikon Eclipse Ti-SR

optical microscope with a magnification of 1oX.

Table 2: Measurement Data for XY Repeatability Analysis

L1M1 L1_M2 LM3 Li Avg L2_M1 L2_M2 L2.M3 L2 Avg L3_M1 L3_M2 L3_M3 L3Avg
R1 139.30 139.58 139.30 139.39 79.00 78.86 79.23 79.03 71.09 71.42 70.42 70.98
R2 129.77 129.77 128.33 129.29 98.37 97.21 96.93 97.50 78.01 76.49 76.58 77.03
R3 126.83 128.81 128.25 127.96 81.52 81.66 83.33 82.17 58.30 58.84 58.10 58.41
R4 138.64 140.40 138.79 139.28 93.57 95.08 96.48 95.04 73.24 72.90 74.32 73.49
R5 144.61 143.15 143.69 143.82 66.06 65.17 67.82 66.35 39.27 39.69 40.29 39.75
R6 127.91 128.32 128.59 128.27 76.49 77.28 75.69 76.49 53.66 52.92 53.80 53.46
R7 138.70 139.51 139.00 139.07 73.94 74.80 72.95 73.90 76.71 76.72 76.71 76.71
R8 153.38 152.53 152.54 152.82 58.09 57.29 57.95 57.78 80.40 80.30 80.29 80.33
R9 151.12 152.52 151.68 151.77 58.93 59.29 58.21 58.81 79.23 78.67 78.36 78.75
R10 148.06 147.50 146.70 147.42 56.62 56.96 58.58 57.39 76.74 77.79 77.07 77.20

Interval Plot of M1, M2, M3
95% CI for the Mean

150-

140

130

120

110

S100

90

80

701

60
M1 M2 M3

Figure 25: Error Band for the three Locations

Figure 25 depicts a plot of the 95% confidence interval on these fiducial

measurements. The width of this confidence interval is what was used to estimate

positional repeatability. If there was no angular component to this repeatability, then all

three measurement positions should have confidence intervals of similar widths. However,
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the confidence interval on the measurements taken at position 1 is visibly narrower than

the intervals for positions 2 and 3. This difference is attributable to angular misalignment,

and indicates that location 1 is located closer to the central axis of the press than the other

two locations.

A summary of these error bands (95% confidence intervals on measurement) is

seen in Table 3. Calculated error band for the three locations and the distances of these

locations from the central axis are as follows:

Table 3: Error Relation to Distance

(All values in microns) Location 1 Location 2 Location 3

Error Band 26.55 41.75 41.13

Center Distance 8690 33448.559 33448.559

To decompose the measurements summarized in the above table into errors

attributable to pure x and y planar slip and angular error, the below equation was used.

E= e+al (1)

E is the total positional error, e is the static x and y error component, and the al

term is angular error. Angular error is a function of distance from the central axis of the

press, a is a constant describing the severity of this error, and 1 is the radial distance from

the central axis. The axis that 1 is measured from can be seen in Figure 26 and Figure 27.

The axis runs down the toggle head, along the center of force application.
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Figure 26: Central axis: ISO view

@ 
2

Ce tr Ai

Figure 27: Central axis: top view

The x and y planar slip (e) was found to be 21 microns. The constant describing

angular error was found to have a value of 0.000614. Using this data, the maximum

positional error for embossing with our tool was calculated. With the spatial error

remaining constant at 21 micron, the angular error at a distance of 3.6 mm (maximum

distance of a feature embossed from the center for the cuvette) is equivalent to 22 microns.
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Hence, the total XY repeatability is equivalent to 43 microns. This is the positional error

located at the via furthest from the center of the tool.

6.7 Parallelism

As shown in Figure 17 the setup includes the three plates, with the guiding rods and

the air bladder as a subsystem for the purpose of alignment. The bearings used are linear

roller bearings with re-circulating stainless steel balls and a ceramic cage. For attaining

greater accuracy in the parallelism between the plates, the plates were precision

manufactured with 12.5 micron (0.0005 inch) tolerance for parallelism.

The guiding rods are used with linear roller bearings (AISI 52100 Steel balls and

DURACON M90 cage), which allow an angular misalignment of 0.250 that incorporates a 43

micron clearance (allowable wiggle room for the air bladder) across the width of the

cuvette at a distance of 10 mm from the center. The air bladder (Single-Tire Style Air Spring

rated @1500bs) is used to absorb the inaccuracy in parallelism to make the plates parallel.

For analysis of the capability of the system to provide absolute parallelism, two methods

were shortlisted as options:

- Use of the Nikon Eclipse Ti-SR-optical microscope to focus on one fiducial on one

side of the part produced and then recording the z direction travel to focus on a

different fiducial on the other side of the part.

e Use of a Vernier Callipers with a precision of 10 microns to measure the 4 corners of

the part to find out the parallelism accuracy across the length and the width of the

part.

The Nikon Eclipse Ti - SR optical microscope was tested for repeatability for the z

travel measurement and it was repeatable with a precision of 25 micron. The Vernier

Callipers instrument with precision of 10 micron was the better of the two options.

To analyze the parallelism of the parts the method used was the measurement of the

thickness at four locations on the part. The positions of these measurements are shown in
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the Figure 28. These measurements were used to find the parallelism across the length of

the part and across the width of the part. Ten parts were measured at these 4 locations to

find out the tolerance of the system for parallelism. Table 4 shows the results of the

analysis.

± 1 -- 2±

10 MM

± 80 mm

Figure 28: Measurement Locations for Estimating Platen Parallelism

Table 4 Parallelism Measurements

(all values in M1 M2 M3 M4 Along the Across
mm) length Width
R1 3.05 3.04 3.04 3.05 3.07 3.07 3.08 3.08 0.00 0.03
R2 3.02 3.01 2.99 2.99 3.01 3.01 3.04 3.05 0.03 0.02
R3 3.01 3.01 3.04 3.05 3.05 3.06 3.04 3.04 0.03 0.02
R4 2.95 2.94 2.93 2.92 2.96 2.98 2.99 3 0.02 0.05
R5 2.97 2.97 2.99 2.99 2.99 2.98 2.96 2.98 0.02 0.00
R6 2.93 2.93 2.95 2.95 2.96 2.95 2.96 2.95 0.01 0.01
R7 2.97 2.95 2.97 2.98 2.98 2.99 2.98 2.97 0.01 0.01
R8 2.9 2.89 2.89 2.88 2.94 2.92 2.95 2.95 0.02 0.05
R9 2.95 2.95 2.93 2.93 2.95 2.94 2.95 2.98 0.02 0.02

R10 2.94 2.95 2.93 2.93 2.98 2.98 2.98 2.98 0.01 0.04
R11 2.98 2.98 3 3 3.01 3.01 3.02 3.02 0.00 0.02

0.02 0.03

The parallelism achievable with this system was

width of the part and 20 microns across the length.

found to be 30 microns across the
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7 Critical Dimensions

7.1 Description of the part

To evaluate the capability of hot embossing as a prototyping process for Daktari, the

assay channel of their microfluidic network was chosen for replication. This specific feature

was selected because it represents a location that has undergone extensive iterative design,

and therefore would likely benefit from the ability to be prototyped with greater speed and

fidelity. Additionally, this feature contains some of the tightest tolerances and smallest

dimensions on the microfluidic product and so represents one of the most difficult features

to replicate.

The assay channel is a rectangular channel that has a high aspect ratio. The depth of

this channel is 50 microns, while its width is 4 mm. A microscope image of the complete

channel cross section can be seen in Figure 29. Immediately adjacent to the channel, is a

10-micron ridge. A microscopic image of this feature is seen in Figure 30. This feature

poses one of the largest challenges for the embossing process. It is a tightly toleranced

feature with small dimensions, which is adjacent to a zone of high material displacement.

This chapter will detail the critical to function dimensions of the assay channel.

These dimensions include cross-sectional measurements of the channel as well as

measurements of channel uniformity, surface roughness and bow. One or more of these

dimensions was chosen as a metric to describe embossed part quality. This quality metric

was used as a response variable for a DOE optimization of the embossing process.

200 microns

Figure 29: Microscope Image of Channel Cross-Section
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50 microns

Figure 30: Microscope Image Close-up of Ridge

7.2 Cross-Sectional Dimensions

Several critical dimensions of this channel can be described as 2-dimensional

measurements taken from a cross-section of the channel. These dimensions are the depth

and width of the channel, the height and width of the ridge, the draft on the channel walls,

and the radius of the inner edges of the ridge. This section will detail the relative

importance of each of these dimensions.

7.2.1 Width and Depth

Correct depth and width of the channel are critical for proper performance of this

device. As mentioned previously, the specification for the width of this channel is 4mm and

the depth is 50 microns. The tolerances for these two dimensions are 10 microns and 1

micron respectively. Figure 31 displays the definition of channel width and depth.

The height and width of the ridge, as seen in Figure 32 are also dimensions of

critical importance. The specification for this ridge height is 10 microns and its width is 50

microns. This ridge feature presents a difficult challenge for replication with hot
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embossing, and its dimensions will likely be a clear indicator of the quality of finished

parts.

Figure 31: Channel Depth and Width

--H Ridge Width
zr

Figure 32: Ridge Height and Width

7.2.2 Edge Radius and Draft

A cover will be attached over the top of the channel. Therefore pinch points exist at

the location of the upper edges of the channel. The radius of these edges must be

minimized in order to limit the possibility that cells are trapped in these pinch points. A

smaller radius at this edge is also indicative of more complete filling of the mold cavity.

Figure 33 shows the location of this upper edge. Ideally, this radius would be non-existent.
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Draft of the channel wall is another dimensional quality of the channel that can

affect the performance of the embossed part. The production parts are injection molded

and therefore have a designed-in draft. The parts produced with hot embossing are being

made with a tool that has vertical walls. Draft should be essentially absent from fully

formed parts. In the future, Daktari may design embossing tools that have a designed-in

draft. If this were the case, measuring this draft angle would be critical to examining the

quality of embossed parts.

I R

Draft

Figure 33: Channel Draft and Edge Radius

7.3 Overall part dimensions

In addition to cross-sectional measures, there are several measures of embossed

part quality that must be obtained through measurements across the part as a whole.

Channel uniformity, warping of the part, and surface roughness are all critical metrics that

could have a significant effect on the performance of a finished part.

7.3.1 Channel Uniformity

Channel uniformity is a measure of within part variability. This metric will be used

to measure how constant the cross sectional dimensions of a channel are along the length

of a channel. The uniformity of channel width and depth are important for the performance

of this product, as variations in these dimensions can cause anomalous flow of fluid

through the assay channel. Taking cross-sectional measurements at several locations along

the length of the channel and reporting the standard deviation of this sample of

measurements will measure uniformity of these dimensions. An ideal channel, with perfect
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uniformity would have identical width and depth measurements at all points along the

channel.

7.3.2 Warping

Card bow is a measure of warping that occurs during the hot embossing process.

After the load applied during the embossing process has been relaxed, it is possible for

uneven cooling rates to cause the part to warp. Allowing the part to cool more thoroughly

before removing the embossing load can reduce warping. However, this will lock residual

stresses into the part and could make the part more difficult to de-emboss from the tool.

Bowing or warping of the embossed part is undesirable and should be measured as

a quality metric. Bowing will be measured by scanning the entire length of an embossed

channel. The height data of a cross section along the length of the channel, as seen in Figure

34 is obtained from the interferometer scan. This height data is then cropped to only

include the data points that reside on the bottom of the channel. The resulting data should

ideally be a flat line. Any large regular deviation away from flat can be attributed to general

warping of the part. Figure 35 depicts measurement data of a channel that exhibits

warping. The warping metric will be measured in microns and will be calculated as the

maximum difference in height data from a set that should represent a flat plane.

Figure 34: Scan of the Entire Length of an Embossed Channel
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Figure 35: Along Channel Cross-Sectional Data Exhibiting Warping

7.3.3 Surface Roughness

As mentioned previously, achieving low surface roughness in microfluidic channels

is important for proper performance of the device. Surface roughness must be minimized in

order to reduce wall drag, ensure smooth flow and limit cell capture on channel walls.

Surface roughness will be measured by scanning the bottom of an embossed channel using

the procedure described previously. Figure 36 shows an image obtained from scanning the

flat surface of a micro-machined hot embossing mold with an interferometer. The tool

marks produced by the machining operation can be clearly seen.

Figure 36: Interferometer Scan of Tool Marks on a Micro machined Tool

65



It is important to characterize the surface roughness of embossed parts; however,

surface roughness will likely not be chosen as the response variable for process

optimization. The hot embossing process accomplishes high fidelity transfer of surface

features between the mold tool and the embossed part. Therefore, the surface roughness of

the embossed part will likely match the surface roughness of the tool, and not be affected

much by the process parameters.

7.4 Requirements of a Quality Metric

Of the measurements described in this chapter, one or more must be selected as a

descriptor of part quality. Selecting the correct quality metric is necessary before

performing a DOE optimization. This metric must be an accurate indicator of the effect of

process parameters on embossed parts. It must be able to be precisely and accurately

measured. The following chapter will describe the methods used to choose this quality

metric.
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8 Measurement Methodology

8.1 Overview of Motivation

After a part has been made with the hot embossing system, it is necessary to assess

the quality of the embossed part. This chapter will detail both the measurement methods

used to measure the critical to function dimensions described in the previous chapter

(channel depth, channel width, ridge width, ridge height, surface roughness, channel bow,

and channel uniformity), and describe the methods used to evaluate the effectiveness of

these measurement techniques.

Quality of embossed parts will be determined by taking geometric measurements of

the critical to function dimensions of an embossed part. The exact measurement technique

used will depend on the dimension being measured. The effectiveness of each

measurement method will be assessed with a Gage R&R study. This study will produce in a

precision to tolerance ratio (P/T ratio) for each measurement method, which will be the

end metric describing the effectiveness of the method. Once this P/T ratio has been

computed for each measurement method, the best method for determining part quality will

be selected.

8.2 Measurement Equipment and Methods

Two pieces of measurement equipment were used to inspect embossed parts. These

were a traditional optical microscope and a surface scanning interferometer. The

interferometer was used for depth, width and surface roughness measurements and the

microscope was used to inspect the radius and draft of channel cross-sections. The merits

of each piece of equipment and the methods used for each will be discussed in this section.

To take depth, width and height measurements, a piece of equipment capable of

measuring features as small as 10 microns in height and as large as several millimeters was

needed. Additionally, surface roughness will be taken as a measure of quality and thus the

measurement instrument had to be able to resolve nanometer variations in a surface. A

Bruker Interferometer (ContourGT Inmotion 3D optical microscope) was chosen to take
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surface measurements of both the molding tool and the embossed parts. This instrument is

specified by the manufacturer to be capable of measuring features from 0.1nm to 10mm in

height, with sub nanometer vertical resolution.

Interferometry is limited in its ability to make measurements around vertical

sidewalls. Because of this limitation, it is not an ideal measurement process for determining

wall draft or edge radius. To take these measurements, PDMS replication of the part to be

measured combined with traditional optical microscopy were used. The basic procedure

being to make a cast of the part of interest with a soft silicone that can be easily be cut into

cross-sections. These silicone cross-sections were then be imaged and measured with a

calibrated optical microscope.

8.2.1 Interferometry Background

Interferometry is a measurement technique that takes advantage of interference

patterns to superimposed light waves to produce information about these two waves. The

general process of an interferometry measurement is first to divide a source beam into two

beams using a partially reflective mirror. One of these beams is used as a reference beam;

the other is used for measurement. The two beams travel along different paths before

being recombined. The recombination of the beam creates an interference pattern that is a

result of the two beams now being out of phase. By measuring the interference pattern, the

phase shift of the measurement beam can be determined. This phase shift is a result of the

measurement beam traveling along a longer path than the reference beam, and thus is

indicative of how much further the measurement beam traveled than the reference beam.

This difference in path distance is the measurement of the distance the measured surface is

from the focal plane of the microscope.

The Interferometer used outputs a contour plot of everything in the measurement

window. The time taken to perform this measurement depends on the total area to be

measured as well as the range of depths to be scanned. Generally, this instrument performs

a rapid quantitative measurement of the object of interest and is thus an effective tool for

this application.
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This measurement instrument does have some limitations. There are occasionally

black regions on the finished scan that represent areas where data was lost. This occurs

when the measurement beam is reflected from the object of interest such that it is not

directed back at the lens of the instrument. Vertical sidewalls and highly varied topography

commonly cause this loss of information. This limitation of interferometry means that the

instrument is not ideal for measuring draft on a wall, or edge radii. Another point to note is

that frequently parts measured produce a contour with a constant tilt. Tilt is compensated

for within the measurement software.

8.2.2 PDMS Casting and Optical Microscopy

In order to view the cross section of an embossed channel and take edge radius and

draft measurements, a casting technique combined with optical microscopy was used. The

first step in taking this measurement was to take a PDMS casting of the part to be

measured.

The PDMS used was a commercially available silicone produced by Dow Corning

(184 Slygard Silicone). This PDMS was chosen because it has been shown as a suitable

method to accurately replicate micro and nano-scale features down to 50nm [37]. It comes

as a two-part resin and hardener set. The resin was mixed 10 parts to 1 by weight with the

hardener and stirred in a weigh boat for 90 seconds. The fully mixed PDMS was then

poured over the part to be replicated and both were then placed in a vacuum chamber for

degassing. The vacuum chamber was set to 25inHg of vacuum. After 3 hours of degassing,

the PDMS was cured in an oven set to 50 C for 2 hours. This curing temperature was chosen

as it minimizes the shrinkage of the final PDMS part to roughly 1% [38]. Once the PDMS is

cured, it was removed from the part and cut into cross sections. The PDMS cross-sections

were measured with a Nikon Eclipse Ti - SR optical microscope.

It is also possible to inspect the cross-sections of embossed parts by breaking them

across the channel. Parts inspected this way were first scored and then chilled prior to
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breaking to ensure a clean fracture. This technique destroys the inspected part, and is not

suitable for inspection of the molding tool's geometry.

8.3 Measurement Procedure and Data Processing

8.3.1 Interferometer Measurement Procedure

The first step in evaluation was a qualitative visual inspection of the tool and

embossed parts. This inspection was for any obvious defects or damage. Figure 37 below

shows an example of such a defect. This is damage on a micro machined aluminum tool. If

such a defect were observed on a tool, the tool was retired. Defects like this on a part would

cause the part to be rejected outright.

Figure 37: Interferometer Scan of Micro machined Tool with Defect

Following visual inspection, the part or tool was placed on the interferometer stage

and the area to be inspected was scanned. All parts had 3 locating holes embossed into the

back of the part. These three holes are aligned with pins on a fixture attached to the

interferometer stage. These alignment pins are seen in Figure 38. A part loaded onto the

measurement fixture is seen in Figure 39.
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Figure 38: Fixture on Interferometer Bed. Alignment Pins are circled

Figure 39: Measurement Fixture with Part Loaded

Scanning location was constant between parts and tools. Consistency of

measurement location ensured that when the measurements of parts were compared any

differences observed were attributable to differences in part geometry and not variation
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introduced by differing location of measurement. The embossing tool was scratched at

several locations to mark measurement locations. The stage of the interferometer was

aligned with these reference marks as seen in Figure 40. The image on the left is the view

seen by the operator. The crosshairs of the interferometer are aligned such that the

horizontal line is collinear with the upper edge of the channel ridge, and the vertical

crosshair is on the left edge of the alignment mark. The image on the right displays the

resultant scan.
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Figure 40: Alignment of Interferometer for Scan

8.3.2 Interferometer Data Processing

Measurements were obtained from the surface scan by two methods. One method

was to use the built in data processing features of the Interferometer software, Vision-64.

The second method was to export raw data for external processing.

Figure 41 below displays a contour plot of the height data produced from a scan at

one location along the channel edge. The three colored regions correspond to three

features of different height. Average height data of these 3 regions is obtained directly from

the interferometer software. First, three masks are applied to the raw data to separate the

height data of these three regions. Figure 42 displays the raw data in Figure 41 separated

into three sets of data. Once separated, the heights of all the points in each region are

averaged together to obtain a singular height value for the region.
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Figure 41: Contour plot of scanned channel edge

Figure 42: Regions separated by masking. From left to right: Cuvette surface, cuvette ridge, electrode surface

To calculate surface roughness, first the raw data must be filtered to include only

height variation due to surface roughness. Figure 43 below displays 3-dimensional scan

data of the bottom of an embossed channel. This raw data has not been corrected for
"waviness" and thus a surface roughness calculation taken from this raw data would over-

estimate the value. Figure 44 below shows cross-sectional data taken from the raw scan

data. Curvature is visible in this data. To get an accurate measurement of surface

roughness, this raw data must be flattened to remove height variation caused by this gross

surface distortion.
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The raw data is filtered using a Gaussian regression filter that is built in to the Vision

64 software. When using this filter two cut-off frequencies must be specified, a high and

low frequency. Filtering low frequencies removes data that is attributed to large-scale

variation in part geometry, such as warping. The wavelength of the low cut-off frequency is

dictated by ISO standard 4288 [39]. This standard gives a cut off wavelength to be used for

different ranges of expected surface roughness. In Daktari's case, they are expecting a

surface roughness between 100 nm and 2 microns; therefore a cut off wavelength of 800

microns will be used.

The right image in Figure 43 displays raw data that has been filtered to only include

the surface roughness component of the scan. Figure 45 shows cross sectional data taken

from this filtered data. Notice that the data is now flat and fluctuates around a value close

to 0. The mean for this data is calculated to determine the true location of the surface. This

mean height is denoted by y in the below equation. Surface roughness, Ra, is then

calculated by averaging the deviations of each height measurement from the mean height.

The below equation was used to perform this calculation.

N

1Ra %InY1 (2)

This calculation was done within the interferometer software and uses all data

points in the scan window to calculate surface roughness.

Figure 43: Surface Roughness Scan. Raw data and filtered data
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Figure 44: Raw Cross-Sectional Data Exhibiting a High Degree of Curvature
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Figure 45: Filtered Surface Roughness Data

8.3.3 Processing Cross-sectional Interferometer Data

An alternative measurement method is to export the cross sectional data from the

instrument software for processing. Figure 46 below displays a plot of the output point

data along a scanned channel cross section. A Matlab script was developed to process this

raw cross-sectional data (See Appendix B: Matlab). The script first identifies the location of

the two edges. These are the transition from the bottom of the channel to the top of the

ridge, and the transition from the top of the ridge to the surrounding area. The width of the

ridge is estimated as the distance between the first and last data points on the top of the

ridge. The heights of the three regions (the channel bottom, the top of the ridge, and the
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exterior surface) are calculated by averaging all the data points that reside in these three

regions. A plot of a channel represented by the averaging of this data is seen in Figure 47.

Figure 48 displays a microscope image of the same cross-section for comparison. The final

values for ridge width, ridge height and channel depth are averages of 5 cross sections

taken from the same scan data.
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Figure 46: Channel Cross-Section Output Data
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Figure 47: Channel Cross-Section Averaged
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Figure 48: Microscope Image of Cross section

8.3.4 Microscope Measurement Procedure

Cross-sectioned PDMS casts of parts or broken embossed parts were photographed

with a 40X optic to inspect the edges of the channels. Figure 50 below displays an image of

the edge of the channel profile. The microscope software, NIS - Elements BR, allows for

direct measurement after proper calibration. The resolution of this measurement software

is 320nm per pixel.

Several measurement tools were utilized in the software. For measuring distance, a

point-to-point measurement tool was used. This tool requires the operator to click the

bottom and top edges of a channel to take a depth measurement. To measure the radius of

the edge at a channel bottom, a circle must be placed at the corner of interest such that it is

tangent to the bottom surface of the channel and the channel's sidewall. The software then

outputs the radius of this circle. Figure 49 shows a pair of radius measurements taken from

an embossed part.
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Figure 49: Measuring Radius of an Embossed Part (Magnification is 40X)

To measure taper two lines must be drawn, one collinear with the wall of interest

and another that is parallel with the plane that would represent a perfectly vertical wall.

The angle between these two lines is then taken as the draft of the wall. Each of these

measurement tools requires the operator to choose the start point and end point of the

measurement; therefore the major limitation of this method is that it introduces a lot of

user error. This measurement method was reserved for dimensions that could not be

reliably measured on the interferometer.

Figure 50: Microscope Image of PDMS casting of Channel Cross-Section (Magnification is 40X)
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8.4 Evaluation of Measurement Methods

A gage R&R study is commonly used to evaluate the capability of a measurement

system. Total variability of a measured part can be broken down into variability introduced

by measurement and part-to-part variability, as seen in equation 3.

U2 -2 2~g (3)
UZotal = Upart + U~age

The goal of a gage R&R study is to determine how much of the observed variability

is attributable to measurement error. This determination is necessary to assess the

capability of the measurement system to make the measurement of interest. This section

will detail the statistical procedure employed to perform this study.

8.4.1 Gage R&R

The precision of the measurement method can be decomposed into two terms.

These are repeatability and reproducibility, as seen below.

2 =2 + (4).(TGage = CRepeatability + CrReproducibility

Repeatability is defined as the measurement variability that is present during

subsequent measurements of the same sample under the same measurement conditions.

The measurement conditions include having the same operator perform a measurement of

the same sample at the same location using the same measurement equipment with the

same procedure as the previous measurement. Reproducibility is the measurement

variability that is introduced when a measurement is performed under differing conditions.

These conditions may include different operators or different measurement equipment.

Performing an experiment that contains multiple operators taking multiple

measurements of a set of sample parts, and then performing a random effects model

analysis of variance can obtain estimates of the repeatability and reproducibility variance.

For this study, 10 parts will be measured for each dimension of interest. These samples will
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be produced with the same operating parameters and will be selected so that the full range

of the measured dimension's variability is seen in the study. Each sample will have its

dimensions measured by two operators two times. The order of these measurements will

be randomized in order to minimize the effect of any noise factors on the study. See

Appendix B: Order of Measurements for the run order. The decomposition of total

variability was calculated using Minitab following data acquisition.

8.4.2 Precision to Tolerance Ratio

The precision to tolerance ratio is a measure of the overall capability of the

measurement system. This ratio is calculated by dividing the estimate of variability

introduced by the gage to the tolerance band of the measurement. The equation below

displays the equation used to calculate the precision to tolerance ratio. K is commonly set

to 5.15 to represent a confidence interval for 99% of all measurements.

PIT = kUGuage (5)
USL - LSL

The lower the precision to tolerance ratio, the more capable the measurement

system is for measuring the dimension of interest. Generally, a P/T ratio of less than 0.1 is

desirable and a P/T ratio of up to 0.3 is acceptable. This ratio will be calculated for the

measurement methods used for each critical dimension of the hot embossed part to

determine the effectiveness of the method.
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9 Measurement Results

9.1 Overview

This chapter will summarize the results of the gage repeatability and reproducibility

studies performed for each measurement method described in the previous chapter. For

each measurement method, the width of the tolerance band for the specification of this

feature is listed along with the estimate of gage variance, the components of gage variance

attributable to repeatability error and reproducibility error, the precision of the

measurement method and the precision to tolerance ratio. Precision here is defined as 5.15

times the square root of total gage variance. This value is the 99% confidence interval for

measurements taken. Recall that a P/T ratio of 0.10 is preferable, while values of up to 0.30

are acceptable. Table 5 contains the findings for all the studies.

In summary, the measurement methods utilizing PDMS casting and optical

microscopy were too imprecise to be useful quantitative metrics of quality. The two

measurement methods that are most capable are the ridge height and width

measurements. The results for each measurement will be discussed in detail in the

subsequent sections. Following discussion of each measurement method, a proposal will be

made for the best metric to be used as a response variable for the DOE study.

Table 5: Summary of Gage RR Results
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9.2 Measuring Channel Depth and Ridge Height

Both channel depth and ridge height measurements were taken on the Bruker

interferometer using methods described in the previous chapter. These two measurement

methods were found to have gage variances that are higher than ideal. However, the ridge

height measurement method has a precision to tolerance ratio that is close to acceptable.

Table 6 summarizes the results of the gage RR study for these two dimensions.

Table 6: Gage RR results for the Channel Depth Measurement and Ridge Height Measurement

Both of these methods have a small portion of error contributed by reproducibility

variability. This means that the method is somewhat immune to changes in operator, and

that the main source of variation in measurement is the equipment used. Figure 51 and

Figure 52 plot the average measurements of each operator for the ridge height and channel

depth measurements over the 10 sample parts. These plots show the consistency of

measurements between operators.
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Figure 51: Averages of Ridge Height Measurements for Operators 1 and 2
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Figure 52: Averages of Channel Depth Measurements for Operators 1 and 2

The precision of the channel depth measurement method was 1.80 microns and the

precision of the ridge height measurement method was 0.88 microns. When compared to

the tight tolerance bands of 2 microns for both dimensions, these methods are not ideal for

discriminating small variations between embossed parts. The small variance component

attributed to reproducibility shows that the measurement equipment being used may be

limiting the measurement precision found for the channel depth and ridge height

measurement methods. Ideally, a more precision piece of measurement equipment would

be used to inspect parts with such tight tolerances.

9.3 Measuring Ridge and Channel Width

The width of the ridge was not directly measured on the Interferometer, but was

instead estimated from cross sectional scan data as the horizontal distance between the

first and last data points of the top of the ridge. Similarly, channel width was estimated as a

distance between the first and last points scanned on the bottom of the channel. A

summary of the results of the two gage RR studies for these width measurements is

presented in Table 7.
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Table 7: Gage RR Results for the Ridge Width and Channel Width Measurements

Both of these methods do not have the same level of precision as the height and

depth measurements. This is because the values were inferred from the surface scan data

rather than directly measured. However, the tolerance bands on these width

measurements are considerably wider than the tolerance bands on the height and depth

measurements. The tolerance band on the ridge width is 10 microns wide, and the

tolerance band on the channel width measurement is 20 microns. The precision of the

ridge width measurement is 3.33 microns, resulting in a precision to tolerance ratio of 0.33.

This ratio is just over the acceptable limit. The ridge width measurement procedure is not

ideal for discriminating between conforming and non-conforming parts, but is almost at an

acceptable level of capability. The precision of the channel width measurement was found

to be 15.38 microns. This measurement method has a precision to tolerance ratio of 0.77.

Higher precision for both of these measurements is desirable. It may be possible to

increase the repeatability of these measurements by averaging a greater number of cross

sections together when calculating width. This would make the measurement procedure

less sensitive to variations introduced by cross section selection.

9.4 Measuring Radius and Draft

The measurement methods for channel radius and draft both were found to have a

high amount of gage variance. A summary of the gage RR study results is presented in Table

8. It is important to note that for both dimensions, most of the variability in measurement

is a result of operator-to-operator variation. The error in repeatability only accounts for
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about 20% of the total gage variance when measuring radius, and about 14 % for the draft

measurement.

Table 8: Gage RR results for the Radius Measurement and Draft Measurement

The consistency of measurement for a single operator can be seen in Figure 53 and

Figure 54. These two plots display the replicate measurements for radius of parts 1

through 10 for operators 1 and 2 respectively. Notice that sample-to-sample, both

operators tend to make a pair of measurements that are of similar values.

5 6
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Figure 53: Replicate Measurements of Radius M1 and M2 for Operator 1
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Figure 54: Replicate Measurements of Radius M1 and M2 for Operator 2

Both radius and draft measurements were taken on the Nikon Eclipse Ti - SR optical

microscope with the NIS - Elements BR software package. This measurement procedure

required operators to define the radius on a cross sectioned part by a circle drawn on a

captured image. Similarly draft was measured as the angle between two edges identified by

the operator. The relatively low variance component attributed to repeatability shows that

operators have a tendency to make these two measurements in a consistent way. While

there is some consistency of measurements part-to-part for the same operator, there is a

large amount of variability in measurement operator-to-operator. Figure 55 is a plot of the

average radius measurement of parts 1 through 10 for operators 1 and 2. Sample-to-

sample there is not a lot of measurement agreement between the two operators. Samples 3,

6 and 10 are examples of measured samples where the reported values of each operator

differ by more than 30%.

The overall precisions of the radius and draft measurement methods were found to

be 6.69 microns and 10.60 degrees respectively. Compared to the tolerance band on the

radius value of 6 microns, and the tolerance band on draft of 2 degrees, both of these

measurement methods are too imprecise to be effective, having P/T ratios above 1. Neither

of these dimensions will be chosen as the response variable for the DOE. However, they will

still be used as qualitative tools to inspect embossed parts, and understand how the
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process is affecting part formation. If necessary to take radius measurements for

comparative analysis between parts, it is recommended that only one operator be used to

take the measurements. By eliminating operator induced variability, the precision of this

measurement method can be increased roughly two-fold.
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Figure 55: Averages of Radius Measurements

9.5 Measuring Surface Roughness

for Operators 1 and 2

Daktari does not currently have a specified tolerance on the surface roughness of

the bottom surface of the channel. Therefore no precision to tolerance ratio is reported for

this measurement method. Additionally, this measurement will not be selected as a

response variable for DOE optimization. The embossed parts tend to replicate the surface

roughness of the embossing tool regardless of embossing parameters selected, and so it is

not a good indicator of the effect of parameter variation on part quality.

Despite these facts, it is necessary to be able to characterize the surface roughness

of embossed parts. Table 9 summarizes the results of the gage RR study performed for

surface roughness measurements. The precision of this measurement method was found to

be 39 nanometers.
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Table 9: Gage RR results for Surface Roughness Measurements

9.6 Selecting a Quality Metric

Measurements of the initial rounds of hot embossing trials seem to indicate that the

embossed parts replicate the channel depth and width dimensions of the mold accurately

in a wide range of embossing parameters. In comparison, the ridge tends to be more

sensitive to embossing parameters. This would indicate that the dimensions of the ridge

would be a good indicator of embossed part quality.

Ideally, the quality of this ridge could be fully measured as its height, width, edge

radii and draft. However, the results of the gage RR study for the radius and draft

measurement procedures conclude that these measurement methods are not capable of

characterizing the radius or draft with the desired precision. The two measurement

methods with the highest precision to tolerance ratio were ridge width and ridge height.

These two measurements should be used in conjunction to approximate the filling of the

ridge.

The measured ridge width and ridge height of embossed parts can be directly

compared to the measurements of these dimensions taken on the molding tool. A higher

quality embossed part is defined as a part that has ridge height and width dimensions that

closely match the dimensions of the embossing tool. A perfectly formed part would have

ridge height and width measurements that are identical to these dimensions on the tool.

For each embossed part, two ratios will be calculated. These are the ratio of the embossed

part's ridge height to the tool's ridge height, and the ratio of the embossed part's ridge
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width to the ridge width of the tool. These two ratios should then be multiplied together to

get a single metric that estimates the total formation of the ridge.

This metric will underestimate the actual filling of the ridge. This is because the

ridge width that is measured on embossed parts will be equal to only the width of the

surface of the ridge that is perpendicular to the interferometer head. Regions that lie within

the radiused portion of the ridge are not read by the interferometer and will appear as

missing data on the resultant surface scan. Figure 56 depicts the interferometer contour

scan and a microscope image of the cross-section of a part that had accurate ridge

formation. On the microscope image, the boxed portion of the ridge is the area of the ridge

that is perpendicular to the interferometer head and is the only portion of the ridge that

will be picked up by the interferometer. On the interferometer contour scan the white band

is the portion of data that corresponds to the top of this ridge and the black bands on either

side are areas of missing data that correspond to the radiused portion of the ridge.

Figure 56: Ridge with Good Formation. Interferometer Scan and Microscope Image

Figure 57 depicts a part with poor ridge formation. The edge radii are much larger

on this part and so the interferometer scan has a larger region of missing surface data. The

corresponding ridge width for this part is small compared to the part shown in Figure 56.
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Figure 57: Ridge with Poor Formation. Interferometer Scan and Microscope Image

A method that could be used to more accurately estimate the total filling of the ridge

would be to approximate the ridge as a trapezoid rather than a rectangle. Figure 58 depicts

how each area approximation would represent that area of the ridge.

Figure 58: Trapezoidal and Rectangular approximations of Ridge Area

The problem with the trapezoid method is that there is no accurate way to estimate

the length of the base of this trapezoid. A solution to this problem could be to assume the

width of the base is constant for all embossed parts and that the only two dimensions that

vary are the length of the top base and the height. This may not be such a bad assumption,

as even partial filling of the ridge cavity of the mold will result in the base of the ridge

having a width dimension that matches the tool. However, with this method the total fill

ratio will weight the ridge width measurement less than the ridge height dimension. Ridge

width should be weighted more heavily than ridge height, as it is the only dimension that
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can be used to approximate the size of the edge radius. Edge radius is an important

indicator of the functionality of an embossed part and so should at least be indirectly

measured for determining the quality of a finished part.
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10 Recommendations

It is recommended that embossed parts be evaluated by the accuracy of formation

of the channel ridge. The width and height measurements of this ridge should be used to

characterize this feature. These two dimensions should be converted into ratios of the

corresponding dimensions on the embossing tool, one ratio for the percentage fill of ridge

width, and one ratio for the percentage fill of ridge height. These two ratios should then be

multiplied together to obtain a single metric that describes the quality of embossed parts.

An ideal part will have a width fill ratio of 1, a height fill ratio of 1 and a total area ratio of 1.

This would mean that both the ridge height and width perfectly match the dimensions of

the tool.

Ridge height should be measured by scanning embossed parts with a Bruker

Interferometer, and extracting surface data using the masking method described in section

8.3. Ridge width should be measured by processing cross-sectional data obtained from the

Bruker Interferometer using the method and Matlab script described in section 8.4. The

measurement error present with this proposed part evaluation scheme is roughly 800nm

for the ridge height dimension and 3 microns for the ridge width measurement.

If more thorough characterization of parts is required, the other measurement

methods discussed should be used with their respective errors kept in mind. Their

precisions were: 6.6 microns for radius measurements, 10.6 degrees for draft

measurements, 1.8 microns for channel depth measurements, 15.3 microns for channel

width measurements and 40 microns for surface roughness measurements.
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11 Conclusion and Future Work

This thesis is based on research conducted as part of the combined efforts of Viren

Kalsekar [35], Khanh Nguyen [40] and myself to investigate the capabilities of hot

embossing as a prototyping process for Daktari Diagnostics. This chapter will detail the

conclusions drawn collectively from the team and present suggested next steps for Daktari.

11.1 Conclusion

The research concluded that hot embossing is a prototyping process capable of

producing one of the critically toleranced features of Daktari's microfluidic backbone.

When the process was optimized, fill rates of 98% and 91% were achieved for the height

and width of the channel's smallest feature. To support this result the measurement system

was validated using Gage R&R analysis. The precision-to-tolerance ratios of the critical

measurements were between 0.30 and 0.50.

With optimal operating parameters, the 6a process variation of this hot embossing

system was within the specification limits of the assay channel. Surface roughness of the

embossed part matched the surface roughness of the molding tool. In this work, micro-

machined tools with surface roughness values of 150 nm and 350 nm were used. In

summary, the quality of embossed parts is strongly dependent on the quality of the

molding tool used.

The process is best suited for prototyping small (-10) to medium volume (-50)

batches of parts. The tooling used for this study was purchased for roughly $1000 and took

one week to machine. It is best to make this investment when multiple parts are necessary

to evaluate a design. With the hot embossing machine detailed in this work, a cycle time of

20 minutes per part was achieved.

11.2 Future Work

This section overviews areas of work that could be pursued by Daktari to more fully

understand the hot embossing process and increase the capability of the machine. First,
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possible improvements to the existing machine will be outlined. Next, suggestions for

further experimentation will be suggested.

11.2.1 Machine improvements

The machine designed for this research was suitable as a proof of concept device;

however there are several improvements that should be made if Daktari will actively

pursue hot embossing as a prototyping process. In general, these are improvements that

would give greater control over the process and improve the repeatability of its operation.

Alignment

The maximum positional error of this machine was found to be 43 microns, and

parallelism was found to be 20 microns over the width of the assay channel. Daktari is

interested in the possibility of simultaneously embossing microfluidic features on the front

and back of a part. Higher precision in x y positional repeatability is required from the

embossing machine for it to be possible to align features on two sides of a part.

Force Control

The current system used for the prototyping of the microfluidic part using the hot

embossing process uses displacement-control and it does not have a feedback control on

the applied force. When a part is loaded for embossing above the glass transition

temperature, the material starts flowing and the load relaxes over time, which is

undesirable. A force-controlled system will also allow for control over embossing velocity.

Analysis of the effect of this variable was not possible with the current system.

Cooling system control

The cooling system currently used is a recirculating pump with lines passing

through the cold plates, which are in contact with the heating platens. The purpose of using

the cooling system in this research was to reduce the cycle time by decreasing the time to
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cool down to the de-embossing temperature. A cooling system with control over the

cooling rate would help in analyzing the effect of the cooling rate on the performance of the

process.

Thermal insulation

Currently the machine uses an insulation material to isolate the force sensor and the

air bladder from the heating platens. The middle plate and the top plate tend to heat up to

100 C after 4 cycles of heating and cooling the platens to around 150 C. In addition to the

risk of damage to the load cell and air bladder, having a thermal path to the press frame

drastically increases the thermal mass of the system and makes heating less efficient. A

better insulation system using a more efficient insulator or using an air gap will be

beneficial.

Tool alignment

If a better alignment system is integrated to make the embossing machine more

precise with regards to the X and Y repeatability and parallelism, then a stage could be

designed and integrated within the tool assembly to actively change the position of the tool

for embossing. This may be a bigger issue when trying to emboss on both sides of the part

or embossing on a part with pre-existing features.

Vacuum Control

The best width fill achieved by this system was 91%. The incomplete filling of width

indicates that material is not flowing fully into the mold cavity. This results in a radius

being left on edges of the channel. It may be possible to reduce the size of these edge radii

by performing the embossing within a vacuum chamber. This would naturally complicate

the embossing process and increase cycle time. Before this action is taken, the effect of

larger edge radii on the end functionality of the part should be understood.
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11.2.2 Further Experimentation

Further experimentation could be performed to better characterize the capabilities

of hot embossing. These experiments could include studies to better understand variation

in the process, to select optimal tooling options and to characterize the type of features that

are well suited for the hot embossing process.

Robust Design

The current research focuses more upon the most significant factors and the main

effects and interactions affecting the performance of the process. A further study using the

Taguchi Array could be done to analyze the signal to noise ratio to characterize the

robustness of the process. Another important future step would be to carry out a greater

number of experiments with different optimal settings giving the same predicted response

to find the most suitable set of parameters.

Feature Capability Tool

This work has demonstrated that the assay channel could be prototyped. More work

could be done to catalogue the range of features that Daktari may have interest in

prototyping and to study which of these features can be made with hot embossing. For

example, a patterned tool could be designed such that it can be used to test hot embossing

for a wide variety of features. Questions that could be answered by such a study are:

1. How closely can features be placed to one another?

2. What are the minimum and maximum feature sizes that can be embossed?

3. What aspect ratios of channels are achievable?

4. How can sharp and gradual changes in height be best prototyped?

5. Can features be placed on the edge of a part?

A further study of tool wear could be conducted with a higher quality tool so that

measurement precision is not highly affected by defects on the tool. Characterizing the tool

wear accurately is important to understanding the limits on tool use.
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Experimentation with different Tools

Other tooling options should be considered and tested to compare the differences in

their performance in terms of tooling accuracy, durability and feature transferring

capability. For example, silicon tools may be able to provide a surface roughness below

100nm, but offer low durability. Titanium machined tools on the other hand can offer

higher resistance to wear and complex feature geometries, but may have a higher surface

roughness.

Future work on resin tools can be expanded to cover methods for combining qualities of

different tools into an all-encompassing resin tool. The study in question could concern the

methods and accuracy analysis of combining the low surface finishes of a silicon tools with

complex geometries of a machined tools.
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ITEM NO. PART NUMBER DESCRIPTION QTY.
I 2-400105co Schmidt Press Frame 1
2 92855A722 McMaster M8-l itch: 1.25 mm - 2

_______25mm

3 93615A510 McMaster: 38-16 - I/T 4
4 n Valve - McMaster: AirSpring Valve 1

5 Ral Block 2
6 Haff in rodx2 SDP SI Rod 2
7 __Mm_ e I
8 8
9 CoPlate 2

10 MACOR 2
11 91253A251 8
12 WOsTrare PTe 1ASMB
13 92220A161 4
14 heater 2
15 Sensor Block 2
16 mek1
17 Sensor lnstAator 1
18 We-vw-d lo-pIHeating plate
19 cuvette mold 1
20 91306A311 4
21 92855A522 5

22Range shaft 1
23 Smal TOp 1
24 99642A229 McMaster: MI2--Ffch: 1.5 mm - 212mm
25 94000A037 4
26 9414Th1 2
27 Bottom ASMB I

28 Ahrspring - 9539K41 McMaster: Airspring 1
29 Middle Plate 2
30 - bv - SDP S Bearing 4

31 -s73w2-j 0- SDP SI e-clip for bearing 8

32 Top_-olderNew

Figure A 1: Full Hot Embossing Machine Assembly
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Engineering Drawings:

Assembly Drawing:
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rFM NO. PAPI NLMBER DESC PPTN 10Y

I h late_______________
3 COld INW010

7 5 1253A-%tl 1 24 1 1 14 WW-fl ipal lloclc 4

7 2220A 161 0 24 1 1 41 t'4b tin W 4

9 1M at-PUG I

5 9 icse Pt3

FouFComers Bottom ASM

Figure A 2: Lower Heating Stack Assembly

6
7

155

*_ c

2

3

14

Is

PART tjUMBER DESCRIPTIOtl GTY.

Revised Top
Heating plate

2 Corner Insulator A
Block

3 Con: PaQTe 1

4 lnsuiation Material MACOR 1
5 M5 0.8X25 Low Head Screw 4

6 civette mold 1

7 4-40 X 25 Screw butor ieaa Screw A

8 Meater Cortridge Heater 1
9 Top Plate 1

10 Sensor Insbaor Mocor I

I Futel: LCM200 Loaa Cell 1Sensor

12 Sensor BoclC 2
13 Flange snaft 1
14 M5 0.8X25 nut Acron Inur 8

15 MS 0.8X25 Low Head Screw 8

SIE DWG. r1 tEV

Top 'Aomplete Assembly
SCALE 1-8 WGHT: SI-EET 1 Of I

Figure A 3: Top Heating Stack Assembly
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ITEM NO. PART NUMM.R CESCRW)ON Otr.
1.1 2,4W 10500 scefif" t*"s Fro"," 1
2.1 Boftom ASMi
3 R Stock 2
4 HUWk.Jod126n SOP 1 Sod 2

I. MAkkft Pkfte I
SA' Su.ao" pInW AsMI

SA.9 hAkft Pkht_ 1

6.1 TOptoker.Nsw 1
6.2 B____O99W C600S8 SOP SI &&cdnS 2
6.3 _ a p73bwZ 10047 SP St *-CAp tv bdeat 4

9 9SSASIO McMateq 3jr 10 r 2

EI 99442A229 McMcswj. MI 2-Ptc*. 1.S mmr, Imr" 2

41

- -6

SA

Figure A 4: Frame and Guide Rail Assembly

S-Obstrate plate ASM8

Figure A 5: Substrate Plate Assem
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1EM NO. PAWT sMBS DESCRP1tC 0

I pkdt. I

2 P hUK ~ rmOdai 1
3 JS&UAabt. F"-rQo _

4 91304315 4-4 3lSbicfhte cap *Cw 4

5 [7395A439 I M inch diWNWier dowel pin 3

e 07395A401 i 14 Wnch diwrmtwr dowel pkI 3

Embossir M= nine
Promo ASMS
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PARTS

.0.2!0

4 x 0 U1.50 11H RJ All 4326

ifL_
~il

0

TITLE:

Bottom Heating plate

SIZE DWG. NO.

A
REV

SCALE: 1:2 WEIGHT: SHEET I OF I

Figure A 6: Bottom Heating Plate

x 11 .250

4 x 0 0.08 IHRU All
*1 A4l UNC lHlA All

2..9, 6

wJ-L

IV T~k
4.01,2

Al. I

~ffi

TITLE:

Top Heating Plate

Figure A 7: Top Heating Plate
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xxf~
xxii

Ii

RI.:4

SIZE DWG. NO.

A
REV

SCALE: 1:2 WEIGHT: SHEET 1 OF I

n"w-rv co-nm
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0o 375 THipu
0 6SOTO 2:W1

\,/ 0 )75-,, X 9*

Ov 500 IHRU
\/ soc s0xos

00 80() THRU 3.25SQ

0.875

3.500

0.750
0 0413 THRU

MI 2x.5 - 6H THkU

X
0050X 45*

0 397 fHPU
00.625W0o375

S\ 00 72, X Y('(

0oc.6a THR U

. 5.0X 90+

RG.250

- 6 BOTTOM PLATE

. OW d 3 BO 3- of 3
A-kIWW6 be .. 6 w66 6 3IMd be -d i ef B 3 of 3

--2----1 ', P1E

Figure A 8: Bottom Plate

SECTION A-A

4 1 0G.16 I S 0. 30C)

0 13

2.005
I 000

r- AJ50 
X 

45 
5

I 00 5-

050

0 650

0005 oo 1/ .0005|

5505 45'

t"6164

TCOP PL ATE
T AT~0TO P LAT 6

-w"" B 1 of 3

Figure A 9: Top Plate
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SECTION A-A

//.0005 //.0005l

(AAT'~AI 0 *0o 3 paft, . i
wN, be Md . . -iy

d -

Middle Plate
E -, 3

B 1 of I

Figure A 10: Middle Plate

0

TITLE:

SENSOR BLOCK
SIZE DWG. NO. REV

A
SCALE: 1:1 WEIGHT: SHEET I OF I

Figure A 11: Sensor Attachment Block
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SECTION A-A

0o*. (.39

0 . 0

TITLE:

FLANGE SHAFT
SIZE DWG. NO.

A 

WSCALE: 1:1 WEIGHT:

REV

SHEET I OF I

2

Figure A 12: Mounting Flange

C

1~II~

0.375

0.750

0 0.221I H RU ALL
'/ 0.385 X 82'

X8
TITLE:

Comer Insulation Block

SIZE !DWG. NO.

Al
T REV

SCALE: 2.1 WEIGHT: 1 SHEET I OF I

Figure A 13: Insulation Block
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3.900

0. /0

00.313 T HRU (5/16 Drilli

n

~f)

J.tM. : A-N I 1, I A

TITLE:

Cold Plate
SIZE DWG. NO.

A
SCALE: 1:2 'WEIGHT:

REV

SHEET 1 OF I
3

Figure A 14: Cold Plate
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Bill of Materials

Table A 1: Complete Bill of Materials

Unit
Part Vendor Part No. Material Quantity Cost Total

Top Assembly

Flange First Cut Aluminum 1 $353.00 $353.00

Top Sensor Block First Cut Aluminum 1 $75.00 $75.00

Force Sensor FUTEK 1 $575.00 $575.00

Ceramic Insulator In house Macor 1 $179.00 $179.00
Zero
Hour

Top Plate Parts Aluminum 1 $620.00 $620.00

Cold Plate Mcmaster Aluminum 1 $100.00 $100.00

Heating Plate In house Aluminum 1 $37.00 $37.00

Catridge Heaters Mcmaster 1 $18.57 $18.57

Hose Pipes Mcmaster 1 $29.00 $29.00

Tool Atometric Aluminum 2 $975.00 $1,950.00
S99LBC-

Bearings SDP-SI 050088 2 $17.12 $34.24
A 7X 1-

Shafts SDP-SI 1612A Aluminum 2 $22.82 $45.64

Substrate Plate First Cut Aluminum 1 $198.00 $198.00

Substrate Flanges First Cut Aluminum 2 $42.00 $84.00

Heating Plate In house Aluminum 1 $0.00 $0.00

Cartridge Heater Mcmaster 1 $18.57 $18.57

Cold Plate Mcmaster Aluminum 1 $100.00 $100.00

Ceramic Insulator In House Macor 1 $0.00 $0.00
Zero
Hour

Bottom Plate Parts Aluminum 1 $675.00 $675.00

Bearings SDP-SI Steel 2 $17.12 $34.24

Air Spring Mcmaster 9539K41 1 1 $94.50 $94.50
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Zero
Hour

Base Plate Parts Aluminum 1 $375.00 $375.00

Fasteners Mcmaster $0.00

Mcmaster Stainless
8mm hex bit Carr 7397A48 Steel 1 $5.76 $5.76

Mcmaster Stainless
M8-1.25 D5 Tap Carr 25235A43 Steel 1 $27.86 $27.86

Mcmaster Stainless
M8-1.25 rod Carr 94185A160 Steel 1 $12.86 $12.86

Mcmaster Stainless
Metric M8 Bolt 25mm Carr 9285SA722 Steel 1 $7.86 $7.86

Mcmaster Stainless
M5 Size, 60 mm Length Carr 92855A543 Steel 1 $9.51 $9.51
Hose Clamp for the piping of
the cooling system for the hot Mcmaster Stainless
embossing project Carr 45945K63 Steel 8 $3.61 $28.88

M5x18 - Metric Class 12.9 Mcmaster Stainless
Alloy Steel Carr 91290A238 Steel 1 $11.66 $11.66
18-8 Stainless Steel Low Head
Sckt Cap Screw 3/8"-16
Thread, 1/2" Length, packs of Mcmaster Stainless
5 Carr 93615A510 Steel 1 $7.72 $7.72
Alloy Steel Cup Point Set
Screw M12 Size, 12mm Long, Mcmaster Stainless
1.5mm Pitch, packs of 5 Carr 99642A229 Steel 1 $12.18 $12.18
Alloy Steel Flat Head Socket
Cap Screw 10-24 Thread, 1-
1/2" Length, Black, packs of Mcmaster Stainless
25 Carr 91253A251 Steel 1 $10.36 $10.36
Alloy Steel Low Head Socket
Cap Screw 10-24 Thread, Mcmaster Stainless
1/4" Length, packs of 25 Carr 92220A161 Steel 1 $7.31 $7.31
Zinc-Plated STL Button Head
Socket Cap Screw 4-40
Thread, 1/4" Length, packs of Mcmaster Stainless
50 Carr 91306A311 Steel 1 $8.31 $8.31
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Valve Mcmaster 9538K42 1 $11.39 $1139



Zinc-Plated STL Button Head
Socket Cap Screw 4-40
Thread, 3/8" Length, packs of
50

Mcmaster
Carr 91306A315

Stainless
Steel 1 $8.63 $8.63

Corrosion Resistant Dowel
Pin Type 316 SS, 1/8"
Diameter, 5/16" Length, Mcmaster Stainless
packs of 10 Carr 97395A606 Steel 1 $6.95 $6.95

Metric 18-8 Stainless Steel
Acorn Nut M5 Size, .8mm
Pitch, 8mm Width, 10mm Mcmaster Stainless
Height, packs of 25 Carr 94000A037 Steel 1 $4.95 $4.95

Metric 18-8 SS Low Head
Socket Cap Screw MS Size, 25
mm Length, .8 mm Pitch, Mcmaster Stainless
packs of 25 Carr 92855A522 Steel 1 $8.89 $8.89

Mcmaster S73HW2- Stainless
E clips Carr 100-087 Steel 8 $1.72 $13.76

Dowel Pins 1/8th dia 1/4 th Mcmaster Stainless
length Carr 97395A439 Steel 1 $6.14 $6.14

Corrosion Resistant Dowel
Pin Type 316 SS, 1/16"
Diameter, 1/4" Length, packs Mcmaster Stainless
of 25 Carr 97395A401 Steel 1 $10.48 $10.48
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Data Sheets

Product Information

Encapsulants

FEATURES

* Flowable
* RT and heat cure
* High tensile strength
" Same as Sylgard 182 but with RT cure

capability
" UL and Mil Spec tested

BENEFITS

* Rapid, versatile cure processing
controlled by temperature

* I ligh transparency allows easy
inspection of components

* Can be considered for uses requiring
UL and Mil Spec requirements

COMPOSITION

* 2-part
* 10:1 mix ratio
* Polydimethylsiloxane elastomer

APPLICATION METHODS

* Automated metered mixing and
dispensing

* Manual mixing

Dow Corning®
184 Silicone Elastomer
Transparent encapsulant with good flame resistance

APPLICATIONS
* General potting applications
* Power supplies
* Connectors
" Sensors
* Industrial controls
* Transformers
* Amplifiers
* High voltage resistor packs
" Relays
* Adhesive/encapsulant for solar cells
" Adhesive handling beam lead integrated circuits during processing

TYPICAL PROPERTIES
Specification Writers: These values are not intended for use in preparing specifications.
Please contact your local Dow Coming sales office or your Global Dow Coming
Connection before writing specifications on this product.

Property
Viscosity (Part A)

Viscosity (Mixed)

Specific Gravity (Uncured Base)

Specific Gravity (Cured)

Working Time at 25*C (Pot Life -
hours)
Cure Time at 25*C

Heat Cure Time @ 100"C

Heat Cure Time @ 125*C(

Heat Cure Time @ 150"C(

Unit
cP
mPa-sec
Pa-sec

cP
mPa-sec
Pa-sec

hr

hrs

minutes

minutes

minutes

Value
5175
5175
5.2

3500
3500
3.5

1.03

1.04

1.4

48

35

20

10

Figure A 15: PDMS
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DESCRIPTION
Dow Coming silicone encapsulants
are supplied as two-part liquid
component kits. When liquid
components are thoroughly mixed, the
mixture cures to a flexible elastomer,
which is well suited for the protection
of electrical/electronic applications.
Dow Coming silicone encapsulants
cure without exotherm at a constant
rate regardless of sectional thickness
or degree of confinement. Dow
Coming silicone elastomers require
no post cure and can be placed in
service immediately following the
completion of the cure schedule.
Standard silicone encapsulants require
a surface treatment with a primer in
addition to good cleaning for adhesion
while primerless silicone encapsulants
require only good cleaning.
Underwriters Laboratory (UL) 94
recognition is based on minimum
thickness requirements. Please
consult the UL Online Certifications
Directory for the most accurate
certification information.

MIXING AND DE-AIRING
The 10:1 mix ratio these products are
supplied in gives one latitude to tune
the modulus and hardness for specific
application needs and production
lines. In most cases de-airing is not
required.

PREPARING SURFACES
In applications requiring adhesion,
priming will be required for many of
the silicone encapsulants. See the
Primer Selection Guide for the correct
primer to use with a given product.
For best results, the primer should be
applied in a very thin, uniform coating
and then wiped off after application.
After application, it should be
thoroughly cured prior to application
of the silicone elastomer. Additional
instructions for primer usage can be
found in the information sheets
specific to the individual primers.

PROCESSING/CURING
Thoroughly mixed Dow Coming
silicone encapsulant may be
poured/dispensed directly into the

TYPICAL PROPERTIES, continued

Property
Tensile Strength

Elongation

Tear Strength (Die B)

Durometer Shore A

Dielectric Strength

Volume Resistivity

Dielectric Constant at 100 Hz

Dielectric Constant at 100 kHz

Dissipation Factor at 100 hz

Dissipation Factor at 100 kHz

Mil Specification

Agency Listing

Shelf Life at 25*C

Refractive Index @ 589 nm

Refractive Index @ 632.8 nm

Refractive Index @ 1321 rum

Refractive Index @ 1554 nm

container in which it is to be cured.
Care should be taken to minimize air
entrapment. When practical,
pouring/dispensing should be done
under vacuum, particularly if the
component being potted or
encapsulated has many small voids. If
this technique cannot be used, the
unit should be evacuated after the
silicone encapsulant has been
poured/dispensed. Dow Coming

Figure A 16: PDMS Properties

Unit
psi
MPa
kg/cm2

ppi
N/cm

volts/mil
kV/mm

ohm*cm

NA

months

Value
1025
7.1
71

120

5
2

44

475
19

2.9E+14

2.72

2.68

0.00257

0.00133

Mil Spec

UL 94V-0

24

1.4118

1.4225

1.4028

1.3997

silicone encapsulants may be either
room temperature (25*C/77*F) or
heat cured. Room temperature cure
encapsulants may also be heat
accelerated for faster cure. Ideal cure
conditions for each product are given
in the product selection table. Two-
part condensation cure encapsulants
should not be heat accelerated above
60*C (140*F).
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CYfTEC:

CONAPOXY* FR-1080

CONAPOXY FR-1080 is a two-part high temperature epoxy
potting system designed to meet Class H (I 80'C) operating
requirements.

TYPICAL PRODUCT CHARACTERISTICS

Resin
Piopertles

Part A
4,000 cps

1.03
Amber

TYPICAL CURED PROPERTIES

2VC
9.7 x 1016
5.5 x 10%

3.12
0.004
600

RECOMMENDED PROCESSING PARA

Curative
Properties

Part B
300 cps

1.23
Dark Brown

90
8200

2
250

1.42
1050C

2.9 x 1014
5.7 x 1014

3.29
0.004
450

12,789
388,650

4230

STORAGE AND HANDLING

The shelf life of CONAPOXY FR-18) resin and hardeners is
18 months from date of manufacture when stored in the original
unopened containers.

Some settling of fillers may occur in the resin. Mix resin
thoroughly before each use.

CAUTION: FOR INDUSTRIAL USE ONLY!

Lpoxy resins and hardeners can cause skin rashes,
dermatitis, and eye irritation. Use only in well
ventilated areas. 'Ihe use of appropriate clothing
and safety glasses is recommended. Avoid breathing
of vapors and protect skin and ckys from contact
with material. Should skin contact occur,
immediately clean with suitable hand cleaner, then
scrub with soap and water. For eye contact,
immediately flush with water for at least 15 minutes
and obtain medical attention.

FOR COMPLF'E SAFF'AY AND HEAILTH
INFORMATION, RlIFLIR TO TI IF NIATFRIAI
SAFElY DATA SI lEET (MSDS) FOR TI IIS
PRODUCT.

AVAILABILITY

CONAPOXY FR-1080 is available in gallon, 5-gallon, and 55-
gallon containers. An evaluation kit of CONAPOXY FR-l1080 is
available for a nominal fee.

CAUTION
METERS Responsible handling of Cec products requires a thorough preview of

METERS safety, health, and environmnrtal i'ssues prior to use. Review the Material
Safern Data Sheets(s) for the specific Cytec proluct(s) and container
label information before opening containers. Fnsttre that emplovee

100/83 exposure issues are understood, communicated to all workers, and

100/67 controls are in place to prevent exposures above Pennissible Exposure
Limits (P.E.L's). Review safety and environrmental issues to be certain

2500 cps controls are in place to prevent injury to employees, the community, or
the environment, and ensure comphince with all applicable Federal,

>2 hours State, and Local laws and regulations. For assistance in this review

1-2 hours process, please call your Cytec representative or our office noted below.

4-16 hours

2 hours

ww.cytec.com/conap
e Email: custunfo@cytec.com Worldwide Contact Info: www.cytec.com/conap Tel: 716.372.9650 Fax: 716.372.1594 .

QW hwka& .,i s a 55s W bwo tofo nxw r..rataroy WWI. as" N AMusW5.sarWWA nsss.0 Orina.0" a"
--ft 0 " W .a.N.uW M~,s WOWa W,

5 
M900V "t. .,* VW.1 R. i., W t-3d5,tn i,.,t . ft .5

0,2("t Cyice Industries Inc. All Rights Rcesd.

Figure A 17: Epoxy
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FUTEK MODEL LCM200
Drawing Number: F11064-B
INCH [mm] I R.O.= Rated Output_

WIRING CODE (WC1)
+Exdtfio Z Edlaio +SOW~ I -SOW~

RED BLC GREEN IWHITE

UL TR4 LIGHTMINIATURE UNIVERSAL THREADED LOAD CELL

00.8 [020.31 S/

NON LO
SU

0
1.32 [341 CO

0.35 [8.91

00.4 [010.21

3/8-24 UNF-2A X 0.40 *NOTE: STRAIN R
(BOTH ENDS) AVAILABL

IF I*SRN
*STRAIN RELIEF 0.2R 11G

14.7)2nom. 
0.1 [2

1.2 [29.8] 0.2 [4.81

1---
0.5 [12.41 I I

N: ON TOP

ADING
RFACE
0 NOT
NTACT

+OUTPUT
(TENSION)

-OUTPUT
(COMPRESSION)

FUTEK
LABEL

ELIEF AND SPRING ONLY
E BEYOND S/N: 305196

CABLE
00.08102.01 nom.

SPECIFICALQN:

RATED OUTPUT
SAFE OVERLOAD
ZERO BALANCE
EXCITAT N(VDC OR VAC)
BRIDGE RESISTANCE
NONLNEARITY
HYSTERESIS
NONREPEATABILITY
TEMP SHIFT ZERO
TEMP. SHIFT SPAN
COMPENS ATED TEMP.
OPER ATING TEMP.
WEIGHT
MATERIAL
DEFLECTION
CABLE: #29 AWG, 4 Conductor,

1 mVN nom (250 b); 2 mVN nom.
150% of R.O.
*3% of R.O.
15 MAX
35011 nom.
±0.5% of R.O.
±0.5% of R.0.
±0.1% of R.O.
0.01% of R.OJ.F10.018% of R.OJ*C]

±0.02% oLOADPF0.036% of LOAWC]
60 1o250*Ff15to 121-C
-60 to 285F-50b 140*C}
0.6oz[17g]
174PH S.S."
0.002 [0.05) nom.

SpiW Sh*ied Tefnn CaNe 10 lft 3 m} Long
ACCESSORIES AND RELATED INS TRUMENTSAVAILABLE
CALBR ATiON (STD) 5 pt TENSION; 60.4 Kt SHUNT CAL VALUE

100 KA FOR 250 lb SHUNT CAL. VALUE
CAUBRATION(AVAILABLE) COMPRESSION
CAUBR ATION TEST EXCIT ATION 10 VIC

I I 10 THOMAS INTERNET:F IU UaE mun of~lia~u. ft%0I d Db *IUT E K m~whorw bIRVINE, CA 92618 USA http://www.fttek.m
ADVANCED SENSOR TECHNOLOGY INC pib IU 1-800-23-FUTEK (38835)

Figure A 18: Load Cell
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FSH019321 1000 14448



%2 DIN Ramp/Soak
Controllers

CN7500 Series

soo Dual 4-Digit LED Display
tf 8 Ramp/Soak Programs,

8 Segments Each
ioo Universal inputs

Autotune
&-0 Dual Control Outputs
& RS485 Communications Standard
w Alarm Functions
W Free Software

The CN7500 Series temperature/process controller's
advanced control features can handle the most
demanding temperature or process applications.
Enclosed in a compact % DIN housing, the CN7500
has dual, 4-digit LED displays for local indication of
process value and setpoint. Control methods include
on/off, PID, autotune, and manual tune. PID control is
supported with 64 temperature and time (ramp/soak)
control actions. The dual-loop output control allows
simultaneous heating and cooling. The second output
can be configured as an alarm mode using one of the
13 built-in alarm functions.
RS485 communications is standard. Up to
247 communication addresses are available,
with transmission speeds of 2400 to 38,400 bps.
Other features include universal inputs, selectable
temperature units (*C/*F), selectable resolution,
quick sampling rate, and security protection.

Specifications
Inputs: Thermocouple, RTD, DC voltage or DC current
Display: Two 4-digit, 7 segment 6.35 mm H (25') LEDs;

PV: red
SV: green

Accuracy: *0.25% span, *1 least significant digit
Supply Voltage: 100 to 240 Vac, 50/60 Hz
Power Consumption: 5 VA max
Operating Temperature: 0 to 50*C (32 to 122*F)
Memory Backup: Non-volatile memory
Control Output Ratings:

Relay: SPST, 5A @ 250 Vac resistive
Voltage Pulse: 14 V, 10 to -20% (max 40 mA)

Current: 4 to 20 mA
Communication: RS485 MODBUS* A-5-1 1/RTU
communication protocol
WeIght: 114 g (4 oz)
Panel Cut-Out: 45 x 22.5 mm (1.772 x 0.886')
Maximum Panel Thickness: 3.40 mm (0.14*)
Panel Depth: 99.80 mm (3.86')

-200 to 13000C (-328 to 2372-F)
J -100 to 12000C (-148 to 2192-F)

-200 to 400*C (-328 to 7520 F)
0 to 600-C (32 to 1112-F)

-200 to 13000C (-328 to 23720F)
0 to 17000C (32 to 30920F)
0 to 17000C (32 to 30920F)

100 to 18000C (212 to 32720F)
-200 to 8500C (-328 to 15620F)

U -200 to 500*C (-328 to 932*F)
P1100 RTD -200 to 600*C (-328 to 11 12 0F)
0 to 50 mV -999109999
O to 5 V -999 to 9999
0 to 10 V -999 to 9999
0 to 20 mA* -999 to 9999
4 to 20 mA* -999 to 9999

*Requires extemal 250 9 precision shunt resistor, OMX-R250
(sold separately).

;Ni 3 I Liual output, 1x pulse/relay, H5485"
CN7533 Dual output, relay/relay, RS485*
CN7553 Dual output, 4 to 20 mA/relay, RS485*

Accessories (Field Installable)

N C HARC Noise suppression RC snubber
(2 leads), 110 to 230 Vac

OMX-R250 250 0 precision resistor
CN7-485-USB-1 IRS485 to USB mini-node converter
Comes complete with operators manual.
* Free CN7-A software download available at omege.comicn7500
Orderlnp Example: CN7523, dual-output controller, DC pulse and a
mechanical relay output, RS485 communications.

P-23
Figure A 19: Omega Temperature Controller
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tokDi Pro

a Linear Ball Bearings - Closed Type
'cte/Sterling Instrument N Phone: 516-328-3300 U Fax: 516-326-8827J

N LOW FRICTION COEFFICIENT 0 HIGH POSITIONING ACCURACY
N HIGH LOAD CAPACITY 0 QUIET MOVEMENT N LONG TRAVEL LIFE

L s

O.D. OD - -B

MATERIAL: Sleeve and Balls - AISI 52100 Steel
Retainer - Duracon M90

E W D
Catalog Number Ball B* oAX L Groove Groove Groove Dynmic StaticC~cut or LnghDistance Width 1Wf 1W

SOOLBC-0250750 4 .2500 .5000 .750 .511 .0390 .4687 46 60
SOOLBC-039063 .3750 .6250 .875 .636 .5880 51 71
S9LBC-05008S[ 4 .5000 .8750 1.250 .963 .0459 .8209 115 176
SOOLBC-0631131 .6250 1.1250 1.500 1.104 .0559 1.0590 174 265
99LBC-075125C 5 .7500 1.2500 1.625 1.166 .0559 1.1760 194 308
SBOLBC-100156] 6 1.0000 1.5625 2.250 1.755 .0679 1.4687 220 353
SOOLBC-125200 6 1.2500 2.0000 2.625 2.005 .0679 1.8859 353 616
S9LBC-150238E] 1 1.5000 2.3750 3.000 2.412 .0859 2.2389 490 904

NOTE: To order bearings with no seals, use catalog numbers as they are. To order bearings with seals
at both ends, add "" to the end of catalog number.

BEARING TOLERANCES

* B Tolerance: .2500, .3750, .5000 & .6250 +.0000 / -.00025
.7500 & 1.0000 +.0000 / -.00030

1.2500 & 1.5000 +.0000 / -.00035

DO.D. Tolerance: .5000 +.0000 /-.00045
.6250, .8750 & 1.1250 +.0000 /-.00050

1.2500 & 1.5625 +.0000 /-.00065
2.0000 & 2.3750 +.0000 /-.00075

A L Tolerance: .750, .875, 1.250, 1.500 & 1.625 +.000 /-.008
2.250, 2.625 & 3.000 +.000 / -.012

E Tolerance: .511,.636, .963, 1.104 & 1.166 +.000 /-.008
1.755, 2.005 & 2.412 +.000 /-.012

72

Figure A 20: Bearings Used
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UNDERSIZE, NOMINAL AND OVERSIZE
DIAMETERS

> MATERIAL
303 Stainless Steel

Other lengths and diameters
available on special order.

PHONE: 516.328.3300 * FAX: 516.326.8827 * WWW.SDP-SI.COM

I ' I I I I I
Inch

0 1

CHAMFER 1
10/ OTH ENDS

L .

0
Diameter

+.0000
-.0002
.0311
.0313
.0317
.0622
.0626
.0630
.078
.0781
.0786
.0934
.0935
.0938
.0942
1247

.1250

.1252

.1255

.1560
1562

.1567

.1872

.1875

.1877

.2184

.2187

.2192

01~

000

L
Lengt

*.12
in.
12
12
12
12
12
12
12
12
12
12
12
12

24
24
24
24

24
24
24
24
2424
24

D
Diameter

+.0000
-.0002

.2497

.2497

.2500

.2500

.2502

.2505

.3122

.3123

.3125 1

.3125

.3127

.3130

.3747--

.3747

.3750

.3750

.3752

.3755
.4997
.4997
.5000
.5000
.5000
.5002
.5005

L
Length

.125
in.

24
36
24
36
24
36
247-
16
16
24
16
24

1636
16
36
16
36

-----16 -_
36

r 12
16
36
16

Figure A 21: Cartridge Heater
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Appendix B

Matlab:

Readall.m:

This function reads the raw cross-sectional data and removes points that contain
missing scan data.

function cleaneddata = readall(filename)

format short

cd('Profiles/')

fid = fopen(filename);

c = textscan(fid,'%s','HeaderLines',2,'delimiter',',');

finds all missing data points donated b 1.#QNAN entries and replaces

them with a numerical value of 999999

idx = find(strcmp([c{l1, '1.#QNAN'));

nmissing = length(idx);

data = c{1};

fclose ('all');

for i = 1:nmissing

data(idx(i),1) = {'999999'};

end

rawdata = str2double(data);

columnates string data into x and y coordinates

npoints = length(rawdata)/2;

columnated=zeros(npoints,2);

for i = 1:npoints

columnated(i,1) = rawdata(2*i - 1);
columnated(i,2) = rawdata(2*i);

end
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Rotates data so that left and right side of channel scans can he compared

if columnated(1,2) > columnated(end,2)

columnated(:,2) = flipud(columnated(:,2));

end

remove rows with missing data (given by 999999)

remove=find(columnated(:,2)==999999);

nremove = length(remove);

if nremove == 0

cleaneddata = columnated;

end

for i = 1:nremove+1

if i==l

cleaneddata=columnated(l:remove(i)-1,:);

elseif i == nremove+1

cleaneddata=[cleaneddata; columnated(remove(i-1)+l:end,:)];

else

cleaneddata=[cleaneddata; columnated(remove(i-1)+l:remove(i)-,:)];

end

end

makes first data point at 0 height

cleaneddata(:,2) = cleaneddata(:,2) - cleaneddata(1,2);

cleaneddata(:,2) = cleaneddata(:,2)/1000;

determines if scale is mm or micron and scales to microns if necessary

if cleaneddata(2,1)-cleaneddata(l,1) < 0.1

cleaneddata(:,1) = cleaneddata(:,1)*1000;
end

cd

end
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Depthmeasure.m:

This script looks at cross-sectional data files and looks for edge locations. It then
divides the data into regions based on these edge locations and calculates the average
height of each region. Finally the width of the regions are computed.

function [filelist, ridgewidth, regionheighti = depthmeasure

clear all
close all

burwidth = 5; 'data not to average if seen a burth with this width
burheight = 3;

set region finding sensitivity

files=dir(fullfile('Profiles/*.CSV'));

cd('Profiles/')

nfiles = length(files);

steplocation = zeros(nfiles,2);
regionheight = zeros(nfiles,3);
basewidth = zeros(nfiles,1);

cd ..

for i = 1:nfiles

Read in cross sectinal data
currentfile = (files(i).name);
readfile = readall(currentfile);

ndatapoints = length(readfile);

Look for Edges

differences = zeros(ndatapoints,l);

for j = 2:ndatapoints

differences(j) = abs(readfile(j,2) - readfile(j-1,2));

end

edgel = find(differences == max(differences));

edge2 = find(differences == max(max(differences(1:edgel-burwidth)),
max(differences(edgel+burwidth:end))));

differences(edge2) = 0;

edges=[edgel,edge2];
edges=[min(edges),max(edges)];
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,ook for Burs

edgelzone = differences (edges (1)-burwidth:edges (1) +burwidth);
edge2zone = differences (edges (2)-burwidth:edges (2)+burwidth);

if max(edgelzone) > burheight

burs = find(edgelzone > burheight) - burwidth - 1;

if max(burs) > 0

edges(l) = edges(l) + max(burs);

end

end

if max(edge2zone) > burheight

burs = find(edge2zone > burheight) - burwidth - 1;

if min(burs) < 0

edges(2) = edges(2) + min(burs) - 1;

else

edges(2) = edges(2) - 1;

end

else

edges(2) = edges(2) - 1;

end

edges(2) = edges(2) - 1;
store edge locations

steplocation(i,1)
steplocation(i,2)

= readfile(edges(l),l);
= readfile(edges(2),1);

calculate region heights (ignoring
to be a burr

regionheight(i,1)
regionheight(i,2)
regionheight(i,3)

region around edge that is assumed

= mean(readfile(l:edges(l)-burwidth,2));
= mean(readfile(edges(l):edges(2),2));
= mean(readfile(edges(2)+burwidth:end,2));

Plot Cross Sectional Data
moves data so 0 is Location of first step

readfile (:,1) =readfile (:,1) -readfile (edges (2) +1,1);
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plot(readfile(:,1),readfile(:,2),'g')
hold on
axis equal
axis([-100,50,-25,100])

Plot Edge Locations

plot(readfile(edges(1),1),readfile(edges(1),2),'* r')
hold on

plot(readfile(edges(2),1),readfile(edges(2),2),'* r')

hold on

Function to Plot Averaged Cross Section

plotaverage(edges, ndatapoints, regionheight, readfile, i);

end

ridgewidth = (steplocation(:,2)-steplocation(:,1));
regionheight = regionheight - kron(regionheight(:,3) ,ones (1,3));

cuvette depth

regionheight(:,2)-regionheight(:,1);

ridge height

regionheight(:,2);

filelist = {files.name};

[averageridge, averageheights] = averagemultiple (ridgewidth, regionheight);

averageridge
averageheights(:,2) - averageheights(:,l)
averageheights(:,2)

end

optional functions

function [averageridge, averageheights] = averagemultiple(ridgewidth,
regionheight)

ncross = 5; tnumber of files to average over

n = length(ridgewidth)/ncross;
averageridge = zeros(n,1);
averageheights = zeros(n,2);

for i = 0:n-1
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nstart = ncross*i +1;
nend = ncross*i + ncross;

averageridge(i+l) = mean(ridgewidth(nstart:nend));

averageheights(i+1,1)
averageheights(i+1,2)

= mean(regionheight(nstart:nend,1));
= mean(regionheight(nstart:nend,2));

function plotaverage(edges, ndatapoints, regionheight, readfile,

averagedcontour = zeros(ndatapoints,2);

averagedcontour(1:edges(1)-1,2) = regionheight(i,1);
averagedcontour(edges (1) :edges (2) ,2) = regionheight(i,2);
averagedcontour(edges(2)+1:end,2) = regionheight(i,3);
averagedcontour (:, 1) =readfile (:, 1);

plot (averagedcontour (:, 1) , averagedcontour (: ,2))

end

Order of Measurements:

Below is the order of measurements performed. This order was generated using Minitab.

Part
Run Order Number Operator

1 8 Operator 2
2 9 Operator 1
3 5 Operator 1
4 9 Operator 2
5 2 Operator 1
6 6 Operator 2
7 1 Operator 1
8 3 Operator 1
9 10 Operator 1

10 7 Operator 2
11 6 Operator 1
12 8 Operator 1
13 4 Operator 1
14 2 Operator 1
15 4 Operator 2
16 1 Operator 2
17 1 Operator 2

end
end

i)
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19 7 Operator 2
20 1 Operator 1
21 10 Operator 1
22 9 Operator 2
23 3 Operator 1
24 6 Operator 1
25 5 Operator 2
26 2 Operator 2
27 4 Operator 2
28 7 Operator 1
29 4 Operator 1
30 3 Operator 2
31 5 Operator 2

32 10 Operator 2
33 10 Operator 2

34 8 Operator 1
35 5 Operator 1
36 3 Operator 2

37 9 Operator 1
38 8 Operator 2

39 7 Operator 1
40 6 Operator 2
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