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Abstract

A high-order panel code capable of solving the potential flow equation about arbitrary
curved geometries is presented. A new method for integrating curved, high-order
panels using adaptive Gaussian quadrature is detailed. Furthermore, automated wake
handling is addressed and a method to robustly solve for the steady-state free-wake
rollup is proposed. Finally, a Fast Multipole Method with a complexity that scales
as O(N) is also presented so that large problems can be handled using only a linear
mesh. Results are presented to demonstrate high order accuracy and agreement with
other inviscid solvers for a variety of test cases.
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Chapter 1

Introduction

Panel methods are currently capable of rapidly solving the potential flow equation on
rather complex geometries using only a workstation. These methods, which originated
in the early 1960’s and are a special case of the Boundary Element Method or BEM,
continue to be attractive since the governing equations only need to be solved at the
boundary [13, 17, 15, 8]. This eliminates the need for a volume mesh, as is needed
when using Finite Difference, Finite Volume, or Finite Element methods, and results
in a system which is of comparatively lower dimension. However, there are still two
primary open issues in aerodynamic panel methods that this work seeks to address.
The first is that panel methods result in a system of equations that is dense,
and memory requirements and matrix assembly complexity grows as the square of
the number of degrees of freedom. Additionally, the quantity of interest is usually
pressure, which for panel methods is generally obtained by differentiating a piecewise-
linear potential field, resulting in only a first-order convergence in pressure compared
to the second-order convergence usually obtained with standard CFD solvers. For
example, a well-resolved Euler mesh in three dimensions will typically consist of over
100,000 surface elements. If this same mesh and approximation order was used in a
potential flow solver the required memory would be at least 40GB and the pressure
would converge at a rate onc order lower than the corresponding Euler solution.
The second open issue is treatment of the wake. Vorticity must be shed into the

wake in order to produce circulation (and hence, lift) about a lifting body. In practice,
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this is usually accomplished by shedding a planar wake extending to infinity from the
trailing edge of all lifting surfaces. However, this approach is not physically accurate
since the wake should be force-free and convect with the local velocity. Approaches

to address these two obstacles are discussed below.

1.1 Operation Count and Memory Requirements

Two methods are proposed for dealing with the dense system of equations that results
from the BEM discretization of the potential flow equation. The first is to use high-
order curved elements to represent the geometry of interest [25, 26, 29, 6, 16], and
the second is to implement the Fast Multipole Method (FMM) and therefore never

store the system in memory [12]. These two methods can be used together if desired.

1.1.1 Mitigation Strategy 1: High-Order Curved Elements

Various methods have been proposed to integrate single and double-layer potentials
over curved elements including polynomial fitting [26, 29], element subdivision [6],
and integrand desingularization through Taylor series expansions [16]. Polynomial
fitting approaches are expensive and have only been demonstrated up to second or-
der for doublet distributions [26]. Element subdivision approaches have not been
capable of accurately computing self-term influences [6]. The integrand desingular-
ization approach relies on a B-Spline surface parametrization while also using adaptive
quadrature for near-field influences [16]. The integral desingularization approach pre-
sented in [16] is difficult to implement and is not extendible to the more general case
of NURBS. These high order curved element approaches are particularly attractive
for the simulation of rigid geometries since the influence matrix can be computed

once and stored in memory for the remainder of the computation.
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1.1.2 Mitigation Strategy 2: The Fast Multipole Method

The FMM was developed by Greengard et al. [12] and reduced the computational
complexity of performing matrix-vector products in particle simulations from O(N?)
to O(NV), with a memory requirement that scales as O(N log N). In the early 1990’s,
the FMM was coupled with a Boundary Element Method in order to rapidly simulate
circuits [18]. In the late 1990’s, this same approach was applied to acrodynamic cases
with a computational complexity of O(Nlog N) [2, 23, 3]. The FMM is attractive
for aeroelastic problems where the geometry is deformable since computing a single
maftrix-vector product with FMM is significantly faster than assembling a new influ-
ence matrix at each iteration. The FMM is also useful for large meshes where the
system of equations resulting from the BEM discretization is too large to be stored

in memory.

1.2 Approaches to Automated Wake Treatment

One of the primary advantages of the BEM is that it has the potential to require
minimal pre-processing by the user, in contrast to volumetric methods which may
require an experienced user to generate an acceptable volume mesh. However, it is
not clear how automatic wake handling for lifting bodies should be treated. There are
four popular approaches: (1) fixed-wake, (2) free-wake with panels, (3) free-wake with
particles, and (4) vorticity transport. The fixed-wake approach is the simplest and
least expensive since it does not involve time marching, but also the least accurate
since the fixed wake geometry is somewhat arbitrarily chosen by the user and will vio-
late the force-free wake requirement. The second and third approaches are free-wake,
meaning that the wake elements or particles travel with the local velocity, satisfying
the force-free wake requirement. They are computationally expensive since the only
way to robustly obtain the wake position is through time marching. The primary
issue with using panels in the wake is that they are singular at their surface. This
is problematic if the wake is self-intersecting or intersects the geometry, although an

approach using discontinuous basis functions has been proposed to remedy this [27].
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Alternatively, vorticity in the wake can be represented with de-singularized vortons
at the cost of decreased accuracy. The last approach involves converting the shed
vorticity sheet into volumetric vorticity and solving the vorticity transport equation
using any of the standard volumetric PDE approaches [4]. However, this requires a
well-resolved geometry-conforming volume grid and may be nearly as expensive and
require the same amount of pre-processing as solving the full incompressible Euler

equations.

1.3 Thesis Contributions

This thesis proposes three approaches to deal with to the aforementioned aerodynamic

panel method obstacles:

1. A new algorithm for the integration of arbitrarily high-order single and double-

layer potentials on curved elements using an adaptive quadrature scheme.

2. A new method for solving for the steady-state potential solution and wake roll-
up about lifting bodies by casting the BEM and wake evolution equations into

a fully coupled nonlinear system.

3. A Fast Multipole-accelerated BEM with a cost that scales as O(N) compared
to previous potential flow solvers using a similar technique which scaled as

O(NlogN) [3, 2] .

The remainder of this thesis is organized as follows. Chapter two will introduce
the equations governing incompressible potential flow and the required boundary
conditions. Chapter three will detail the discretization in both space and time of
the potential flow equation using the BEM. Chapter four will then introduce a new
method for integrating the Green’s function for Laplace’s equation over high-order
curved elements. This will be followed by a description of the nonlinear steady-
state free-wake solver. Results will then be presented to demonstrate high order

convergence, steady-state wake treatment, and application of the solver to complex
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geometries. Lastly, conclusions will be drawn and suggestions for further research

will be proposed.
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Chapter 2

Incompressible Potential Flow

This chapter details the equations governing incompressible potential flow and the
necessary boundary conditions. The pressure-velocity relationship governed by Bernoulli’s

equation and the Kutta condition will also be introduced.

2.1 Scalar and Vector Potentials

Incompressible potential flow can be decomposed into two types of potential: A vector
potential ¥ and a scalar potential ¢ [28]. The fluid velocity at any point in the domain
can be represented as the superposition of the gradient of the scalar potential, curl

of the vector potential, and the freestream velocity:
U=Vop+V xP¥+V, (2.1)
The continuity equation for an incompressible fluid is
V-U=0 (2.2)

Equation 2.1 can be substituted into Equation 2.2 to yield Laplace’s equation which

governs inviscid, incompressible, and irrotational flow

Vip=0 (2.3)

19



since V- Vo =0 and V- (V x ¥) = 0. The vorticity field, w, is simply the curl of
the velocity field:
w=VxU (2.4)

The evolution of vorticity in time can be derived from the incompressible Euler equa-

tion below:

0 _ Vp
<a+V-U)U— . (2.5)

where p is the pressure and p is the fluid density. The vorticity equation is obtained

by taking the curl of Equation 2.5 and rearranging:

Oow Dw

where DF(t) denotes the substantial derivative. The right hand side of Equation 2.6
represents vorticity stretching due to the presence of a velocity component in the
vorticity direction. Note that this term will vanish in the 2D case since the vorticity

vector and stream velocity will always be orthogonal.

2.2 Boundary Conditions

For the case of incompressible potential flow, the correct boundary condition is a

no-penetration condition requiring that U -7 = 0 on the boundary
U n=(Veg+VXx¥T+V,)-n=0 (2.7)

where 7 is the unit normal vector to the aerodynamic surface. The no-penetration
condition can either be enforced explicitly with a Neumann boundary condition on
the velocity or implicitly with a Dirichlet boundary condition on the potential inside

the body, as will be discussed later.
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2.3 Unsteady Bernoulli Equation

Pressure and velocity in an incompressible flow are related through the unsteady

Bernoulli equation:

o6 1
ot T2

d¢ 1 p

UlP= -2 +4=||[Vo+Vx T+ V_|P=EF (2.8)
ol = 5842 =2
The coefficient of pressure, C,, is defined as:

D~ Do
C, = - (2.9)

where py, = %Vo% is the freestream dynamic pressure. The coefficient of pressure can

be re-written in terms of Equation 2.8 as

op 1

op 1 2
_ at-|-2HV¢>-|—VX\IJ-I-VC,OH -

’ 31Vl

(2.10)

2.4 Kutta Condition

Inviscid lifting flows require invoking the Kutta condition to enforce pressure conti-
nuity at the trailing edge [25]. This work imposes a linearised Kutta condition which
requires that the strength of the wake sheet potential ¢, must equal the jump in

potential from the upper trailing edge surface to the lower trailing edge surface [14]:

u— P = Pu (2.11)

Note that a nonlinear Kutta condition could be imposed instead, where the pressure
at the upper surface of the trailing edge is forced to equal the pressure at the lower
surface using a Newton method. A nonlinear Kutta condition is necessary to capture
highly unsteady effects, but since this work is primarily concerned with steady-state

solutions, it has not yet been implemented.
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Chapter 3

Discretization

The potential flow equation is discretized in space using the Boundary Element
Method and in time using an explicit Runge-Kutta method. The spatial and temporal

discretization schemes implemented in this work are detailed below.

3.1 Boundary Integral Equations

Laplace’s equation is discretized using the BEM based on the Morino formulation [17].
Morino’s formulation ensures that the perturbation potential is equal to zero inside
the aerodynamic body, forcing the surface to become a streamsurface. In practice,
this is accomplished by imposing a Dirichlet boundary condition on the perturbation
potential an infinitesimal distance inside the surface. A diagram of the surfaces,

potentials, and vorton representation used in this work is shown below.
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Figure 3-1: Potential shed into the wake in a direction that bisects the trailing edge
with a strength equal to the jump in potential between the upper and lower trailing
edge surfaces. The wake doublet potential is then converted into discrete vortons

which are propagated in time.

The perturbation potential at some point r just inside the aerodynamic body.
due to double-layer (doublet) densities distributed over the aerodynamic surface S
and wake surface Sy, and the single-layer (source) densities distributed over the
aerodynamic surface, is the superposition of the two potentials and must equal zero

inside the surface.

o(r) = [9 (Ga(p, 1) + Gy(os(r), 7)) + Ga(p,r) =0 (3.1)

Sw

Here Gy is the Green’s function for the double-layer potential satisfying Laplace’s
equation and G is the corresponding kernel for the single-layer potential. r is the
scalar distance between r and a point r, on surface S. The wake surface Sy is
required to accurately enforce the Kutta condition. The Green’s function for single-

layer potential due to a source of strength o is:

Gs(o(r),r) = — (3.2)

The corresponding Green’s function for double-layer potential with strength ;o and
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surface normal 7, is:

1 0
Ga(p, 1) = Ea—ﬁg (3.3)

The source strength o, in Equation 3.1 is chosen to equal the component of the wake
and freestream velocity influences in Equation 2.1 in the direction normal to the

surface:

0s(r) = (Voo + Vu(r)) - 7 (3.4)

where the second term is the vector potential velocity contribution from the wake

vortons:

Va(r) =/ V x (w, 1) (3.5)
D
Here D denotes the entire domain. The vector potential is defined as

1l w

V(w,r) = Ay +e

(3.6)

where € is a parameter that removes the vorton singularity and mimics a viscous core.
The volume vorticity term w is a function of the shed doublet strength p prescribed
by the Kutta condition. Therefore, the only independent variable in Equation 3.1 is
the doublet strength p. The conversion of the wake vorticity sheet to volume vorticity
is thoroughly detailed in Willis, et al. [7]. Finally, the velocity at any point r given

in Equation 2.1 can be written in terms of Equations 3.1, and 3.5 as:

U(r)=/SV(Gd(u,T)+GS(a$(r),T))+ VGd(M,T)“i‘/DVX‘I’(w,T)-FVoo (3.7)

Sw

One of the advantages of the Morino formulation is that the surface doublet den-
sity distribution is cqual to potential distribution, and surface vclocities can be ob-
tained by simply differentiating the surface doublet density. Note that the Morino

formulation allows the Kutta condition to simply be written as p, — (i = .

25



3.2 Surface Discretization

A Galerkin method is implemented to discretize the Boundary Integral Equations in
space, in a similar approach to the standard Finite Element Method. A Galerkin
method was chosen over collocation due to increased accuracy [25]. Let Q be a
boundary in R?® composed of S and 7 be a collection of elements representing the
triangulation of 2. Furthermore, let {2~ be the limit of {2 as approached from the
the interior of the surface S. The Dirichlet boundary condition on the perturbation

potential given in Equation 3.1 can now be written in terms of this new notation as:
d(p)=0 in Q" x (0,7 (3.8)

The following approximation spaces are introduced, which reside in each element K

in 7, and are used to represent the potential solution x and the test function w:
Wy, ={w e C%Q7) : w|k € P(K),VK € Ty} (3.9)

where P, (K) is the space of polynomials of degree k which reside in K and C°(Q27)
denotes the space of piecewise-continuous functions on the boundary 2~. In the
current implementation, these polynomials are chosen to be the set of orthonormal
Koornwinder polynomials in R?. The projection of Equation 3.1 onto a test function

w € W ensures that the solution is orthogonal to the test function:
(o (), w)x =0, Yw e W(K) (3.10)

where, for compactness, the inner product is defined as (a,b)x = [  ab. The potential

on each element K in Equation 3.10 is:

brc(p) = / (@ + G .) (3.11)

where o,(r) is determined from the freestream and wake velocities and also depends

on the surface normal 7n,. Formally, the Galerkin method seeks to find p, € W), that
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satisfies the projection of Equation 3.8:
{qbK(uh),w)Th =0, YweW(T) (3.12)

which results a system of equations consisting of only the unknown doublet strengths

Hh-

3.3 Discretization in Time

One of the advantages of this particular boundary element formulation is that the
governing equation (Equation 3.1) does not explicitly include a time-derivative term.
This is a result of the fact that the flow is incompressible and that the only condition
being enforced is the no-penetration condition on velocity [14]. However, there is
an implicit dependence on time since the source strength o(r) depends on the wake
position and vorticity strength which are permitted to evolve in time. The time-
discretization of the governing equation then reduces to the time-discretization of the
wake only.

The positions of the wake vortons at time ¢ are denoted as x(¢) and convect with

the local velocity U(x,t) according to the system of ODEs:

dx_

=V (3.13)

Similarly, the time-evolution of the vorticity governed by Equation 2.6 is

Dw
D = (w-V)U (3.14)

The above two equations are integrated in time with a constant time step of At using
an explicit Runge-Kutta method with s stages. All results presented in this work were
obtained using the 1 stage explicit (Forward Euler) Runge-Kutta method, although
any of the implicit or explicit Runge-Kutta methods could be used instead to obtain

increased temporal accuracy and stability. The descretization of the wake evolution
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using Forward Euler is:

xn+1 —x"
= Uk (3.15)

where the superscript n denotes the time step. Similarly, the discrete vorticity evo-

lution equation is:

wn+1 —w"

= (" V)UK (3.16)
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Chapter 4

High-Order Element Integration

Curved element integration is performed using adaptive Gaussian quadrature. The
solution on each element is represented with basis functions which are chosen to be the
set of orthonormal Koornwinder polynomials of degree k defined in reference space
& — 1. The geometry of each element is defined by the mapping X(&,7) from the
reference triangle to the physical element. Two levels of integration are needed. At
the innermost level the single and double-layer kernels must be evaluated on each of
the elements for each Gauss point used to integrate the test functions. The outer
level is the integration over the test functions.
. Gauss Points

mmm Target Element
mmm Source Element

A
. X&)
n
Xi(&on
- >
Figure 4-1: Subdivision of two neighboring elements of order & = 2 showing the

subdivided master element (L) and the subdivided source and target elements (R).
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Since the self-term integrands are singular and the near-field interactions are close
to singular, standard numerical quadrature approaches will fail in these cases. It is
easy to compute the rate of integrand decay for both single and double-layer po-
tentials, and this rate can be used to create an efficient quadrature algorithm. The

following adaptive quadrature scheme is proposed.

for K, € T, do
for x; € K; do
move target gauss points a small distance 7 inside surface
for K, € T, do
for x, € K, do
r=|lx — x|
if fx(r) < C then
Evaluate G4(o,r) and G4(u,r).
else
Divide K
Compute trial functions on divided K
go to [for x; € K do]
end if
end for
Integrate trial functions over K,
end for
end for
Integrate test functions over K;

end for

where the subscripts s and ¢ denote the “source” and “target” elements and x are the
Gauss points belonging to each element K. fx(r) is a distance function which dictates
the threshold for which a source element should be divided. In three dimensions the
potential due to the single-layer kernel decays at a rate of ATK while the double-layer

kernel decays at a rate of (”;f# where Ay is the area of element K. A reasonable

3

choice for a cut-off function should satisfy max{( 2, 2K} < C where C is a constant
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indicative of the quadrature error committed. In this work, the following threshold

function is implemented:

(4.1)

bl

e e {05 )

C =1 and 7 = 107'° have proven to be sufficient parameters for the test cases

considered in this work.
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Chapter 5

Steady-State Solver

In this section, a method is developed to solve the nonlinear free-wake steady-state
potential flow problem. The nonlinearity arises from the dependence of the doublet
potential on the vorton positions and strengths. Currently, the nonlinear system
if solved with the standard Newton method if FMM acceleration is not used. For
cases where the FMM method is used to accelerate wake interactions, a Jacobian-free
Newton method is used since the resulting analytical Jacobian would be cumbersome

to implement.

5.1 The Residual Vector

There are three equations governing the potential flow model detailed above: (1) the
condition that the perturbation potential vanishes just inside the body (Equation
3.1), (2) the ODE governing the wake evolution (Equation 3.13), and (3) the ODE
governing the vorticity evolution (Equation 3.14). These equations can be written
as a system consisting of the N, surface doublet distribution degrees of freedom, the
three components of the Ny vorton spatial coordinates, and the three components of
the Ny vorton vorticity vector. A residual vector written from the three governing

equations mentioned above can be defined as:

T

F:[(I)l P, ... (DNu X X; ... Xun W1 W2 WNV =0 (51)

\%
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where ® is the residual resulting from the Galerkin BEM in Equation 3.12, X is a
residual from the Forward Euler discretization of Equation 3.13, and W is the residual
from the forward Euler discretization of Equation 3.14. The vorton position residual

at time step n is then

x" — xn—l

X" = QA Ux"" =0 (5.2)

Assuming that the wake behavior is non-chaotic, the wake can be forced into lock-

step, providing the following relationship:
XP=x]"n, Je{N;+1,..,Ny} (5.3)

where N, is the number of vortons shed at each time step. Since the system is in
lock-step, the superscripts can be eliminated from the Forward Euler discretization
and the residual vector can be written in terms of the indices x;_n, and x; instead.

The wake evolution equation can then be re-writen as:

X, — X5 .
Xj = ]T;NS - U(xj——Ns) - 0, J € {Ns + 17 ~"7NV} (54)

The same principal can be used to write a residual vector for the vorticity evolution

equation in lock-step:

w; — wji_ ;
W, = _J#N —(w; - V)U(xj_n,) =0, j€{Ns+1,...,Nv} (5.5)

5.2 The Jacobian

The Jacobian of the residual vector with respect to the vector of unknowns u is

_9F

=5

(5.6)
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where

T
u:[ﬂl M2 - HUN, X1 X2 ... Xp, W1 W2 wNV] (5.7)

Differentiating F with respect to u yields the Jacobian matrix

00 00 09
0 ox Ow
(9#( 0X 90X
== = == (5.8)
0 ox Ow
6&7 oW OW
| O Ox  Ow

and the following system is solved for the update vector du at each step of the Newton

method until the L?-norm of F is sufficiently small.

Jou=-F (5.9)

The terms of the Jacobian matrix in Equation 5.8 are somewhat tedious to derive
and are therefore listed in Appendix A. Additionally, it should be noted that the
Jacobian is dense and grows rapidly in size with the number of vortons since there

are 6 degrees of freedom associated with each vorton.

5.3 Jacobian-Free Newton Method

The Jacobian-free Newton method is used for cases where the Jacobian cannot be
easily computed, as is the case when the Fast Multipole Method is invoked, and where
the analytical Jacobian is too large to store in memory. The Jacobian-free Newton
method approximates the Jacobian with a finite difference along a search direction.

A good search direction is obtained by a Krylov subspace solver. The Jacobian is

approximated as:

T A F(u) — F(u +es) (5.10)

€
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where s is the direction obtained from driving a Krylov subspace solver residual to
a specified tolerance a. € = 107® and a = 1072 have proven to be sufficient for the

cases encountered in this work.
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Chapter 6

The Fast Multipole Method

This section presents the theory of the Fast Multipole Method and it’s application
to the panel method presented in this work. A more detailed description of the
method and associated translation operators can be found in Appendix B. The FMM
is composed of three primary routines: the octree domain decomposition, the upward
pass, and the downward pass. Each of the three routines are detailed below. Figure
6-2 depicts the primary steps of the FMM algorithm.

The cost of the FMM implemented in this work scales as O(N) were N is the
number of elements in the FEM triangulation. This has a lower cost than previously
implemented aerodynamic FMM-accelerated panel methods such as [25] and [3] which
scaled as O(N log N). The reduction in operation count compared to these methods
is obtained by implementing the translation operators described below, at the cost of

increased implementation complexity.

6.1 Octree Decomposition

A cubic domain is generated spanning all the sources, doublets, and vortons in space.
The cube is recursively divided into eight boxes, until there are no more than Ny ax
elements in a box. Boxes with no elements in them are deleted. The FMM mcthod
requires that each cell know who its nearest neighbors and second nearest neighbors

are. A nearest neighbor is defined as a box which touches another box, even if they are
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just touching at a point. Nearest neighbors can be easily computed by traversing down
the octree, searching through the children of each box’s parent. The second nearest
neighbors can be computed by searching through the nearest neighbors of each box’s
nearest neighbors. The computational cost of the octree domain decomposition can
range from O(N log N) to O(N), depending on the homogeneity of the singularity

distributions where N is the sum of the number of elements and vortons in the domain.

Figure 6-1: All childless boxes in an octree decomposition about a business jet mesh.

6.2 Upward Pass

The upward pass is composed of two steps: (1) Multipole Generation and (2) the
Multipole-to-Multipole (M — M) translation. In the Multipole Generation step,
multipole expansion coefficients are computed due to all sources, dipoles, and vortons
in each childless box. This will result in five expansion coefficients for each box,
corresponding to the source distribution, doublet distribution, and three components
of vorticity due to the vortons. The complexity of this step is O(Np?), where p
is the order of the multipole expansion. The Multipole-to-Multipole translation is
the recursive translation of the multipole coefficients up the tree, starting with the

childless boxes. The computational complexity of this step is O(Np?).
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6.3 Downward Pass

The downward pass is composed of four steps: (1) the Multipole to Local (M — L)
translation,(2) the Local to Local translation (L — L), (3) the Direct Evaluation, and
(4) the Local Expansion evaluation. The (M — L) translation involves the conversion
of all the multipole expansions of the boxes in a box’s interaction list into a Taylor
series expansion about the box’s center. The interaction list can be chosen to be all
the second nearest neighbors of a box, or a more complicated criteria [12]. This is
the most expensive part of the FMM algorithm due the large number of boxes in the
second nearest neighbor list and since this operation has a complexity that scales as
O(Np*). The L — L translation is a recursive translation of local coefficients down
the octree from each box to it’s child. The complexity of this operation scales as
O(Np*). The Direct Evaluation step computes the interaction between all sources,
dipoles, and vortons in a box and that box’s nearest neighbors directly without using
multipole expansions. The complexity of this operation is O(Ns), where s is a measure
of the cost required to analytically integrate the source and dipole distribution over
a clement. The final step is the evaluation of the Local Expansions in each childless
box. This step has a complexity of O(Np?) since it is not a translation operation,

only a local evaluation.
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Figure 6-2: Diagram of FMM translations and interaction lists between two levels of
a 2D grid. Note that the grids on the right and left are identical, and are duplicated

for the purpose of visualizing the upward and downward passes.
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Chapter 7

Implementation Details and

Results

This section discusses implementation and presents results including demonstration
of high-order convergence, validation of the nonlinear steady-state solver, and the

extension of Fast Multipole accelerated BEM to large problems.

7.1 Implementation

The high order solver is written in C++ and heavily relies on the Armadillo C++
linear algebra library [21] which provides an intuitive syntax and simple access to
BLAS routines which are typically cumbersome to invoke. The Armadillo library is
linked to Intel’s Math Kernel Library for best performance. Additionally, the matrix
assembly routine is parallclized with OpenMP to reduce runtimes. Armadillo provides
a simple, MATLAB-like syntax that allows for easy prototyping. An example of a

code fragment written in Armadillo is shown below:
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timer.tic();
state.mu = solve(pmats.d,—pmats.s*sigma);I
cout << "solution time: " << timer.toc() << endl;

// Compute the potential gradient
mat gradsol = solution_gradient(master, mesh.elements,mesh.nodes, state.mu);

Figure 7-1: Code fragment taken from the steady-state solver routine.

7.2 High Order Solver

Convergence results for the potential flow around the unit sphere are presented using

increasing orders of polynomial approximation k. The analytical solution is known,

and the polynomial degree is increased from k = 1 to & = 4 while uniformly refining
the mesh from n = 32 to n = 512 elements. The meshes were generated using the

open-source mesh generation software GMSH [5, 1]. All errors are computed in the

L?- norm.
Table 7.1: Convergence of L? norm for 7 = 10~1°
Degree  Mesh  ||¢ — dell 2 lICp - Cp,ll 2 1S = Sell 2 time
k n Error Order Error Order Error Order seconds order
1 32 4.5520e-02 - 1.0900e+400 - 3.4498e-01 & 1.9545e-01 -
1 128 6.1641e-03  2.8845 5.4974e-01 0.9875 9.8850e-02 1.8032  5.2792e-01 1.4335
1 512 1.1592e-03  2.4108 2.7628¢-01 0.9926 2.5515e-02 1.9539  1.8446e+00  1.8049
2 32 1.8532e-02 " 2.2278e-01 - 2.4082e-02 . 1.5543e+00 =
2 128 2.7602e-03  2.7472 9.5314e-02 1.2248 2.9575e-03 3.0255  7.3099e400  2.2336
2 512 3.4791e-04  2.9879 2.8276e-02 1.7631 3.6802¢-04 3.0065  3.4328e+01  2.2315
3 32 6.4849e-04 - 1.4817e-02 . 8.0852e-04 # 4.8245¢+00 5
3 128 3.9157¢-05  4.0497 1.7070e-03 3.1177 5.2930e-05 3.9331  2.2005e+4+01  2.1893
3 512 2.4267e-06  4.0122 2.1460e-04 2.9917 3.3540e-06 3.0801  9.6249¢4+01  2.1200
1 32 5.8016e-05 - 1.7437e-03 - 6.4195¢-05 s 1.6343e+01 -
4 128 1.8612e-06  4.9844 1.6132¢-04 3.4342 1.8704e-06 5.1011  6.6156e+01  2.0172
1 512 5.7827¢-08  5.0084 1.1044e-05 3.8685 5.8608¢-08 4.9939  2.8882e+02  2.1262

Table 1 shows that the potential converges at the optimal rate of k + 1, while the
coefficient of pressure only converges with rate k. This loss of an order is expected
as the coefficient of pressure is obtained by differentiation of the surface potential.
Additionally, the geometry converges with the optimal rate of £ + 1. Note that the
computational time grows approximately quadratically with the element size and

linearly with the number of elements, since the cost of computing self-term influences
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is far greater than computing far-field terms.

In order to test a slightly more challenging case the pressure coefficient about a
finite aspect ratio wing at a = 0 is compared to a well-resolved XFOIL [9] solution.
The comparison between the current three-dimensional solver and XFOIL (which is
a 2D code) should be valid provided the aspect ratio is large enough, since the angle
of attack is zero and hence there are essentially no three-dimensional effects. A series
of meshes of a rectangular wing with a NACAQ0012 airfoil and aspect ratio of eight
were generated in GMSH for increasing values of polynomial approximation k. Each
of the meshes are composed of 1652 elements with refinement near the leading and
trailing edges. The solutions obtained with the high order BEM are then compared

to a grid-resolved XFOIL solution computed using 900 linear elements.
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Figure 7-2: Coeflicient of pressure for an AR=8 wing with 1652 elements at o = 0
compared to XFOIL using 900 panels. k& = 1 solution (L) and k& = 3 solution (R).

It is clear that a significant error is committed in the coefficient of pressure for the
standard linear (kK = 1) panel method since the pressure is piecewise-constant on
each element. However, the pressure distribution computed with & = 3 lies on top of
the XFOIL solution, indicating that a third-order solution using the current mesh is
k-converged.

Finally, results for the case of a lifting wing of aspect ratio 4 with a NACA0012

airfoil section are presented and compared to second-order-accurate incompressible
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Euler solutions computed with FUN3D [11]. A low aspect ratio was chosen in order
to test the ability of the current method to capture moderate 3D effects. The surface
mesh specifications are identical to the non-lifting case presented above, except for
the fact that the aspect ratio is now 4 instead of 8. For this case, a fixed, planar
wake consisting of 20 stream-wise elements extending 10? chord lengths downstream
is implemented. The FUN3D mesh consists of 4.1 million tetrahedral elements, with
the wing boundary being composed of 221,862 triangular elements. The leading and
trailing edge spacing for the FUN3D mesh is ¢ - 10~ where ¢ is the chord length.

Figure 7-3: Top view of the Cp distribution at o = 5° computed with the current

BEM solver for £ = 3 and the corresponding mesh.

o ¥/2) = 0.0 o VibI2) = 0.75
A5k |
i C,. FUN3D L= '\ C,. FUN3D
) . C,. k=1 I \ C,. k=1
aF i |
s . 0.5 - ey
05k 3 i . \
- | R .
W [ R < of o J\"Q% 4
0 E_ L] », = . '.X
5 05|
05k
r L
|+
1.5 1 1 1 il 1 1 J 1.5 I 1 1 e | 1 T | i |
02 0 0.2 0.4 0.6 0.8 ] 12 02 0 0.2 0.4 0.6 0.8 ] ]
X X

Figure 7-4: Coeflicient of pressure distribution on an AR = 4 rectangular wing at
a = 5% at the root (L) and 3/4 semispan (R) comparison with FUN3D computed

using k = 1.
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Figure 7-5: Coefficient of pressure distribution on an AR = 4 rectangular wing at
a = 5% at the root (L) and 3/4 semispan (R) comparison with FUN3D computed

using k& = 3.

Figures 7-4 and 7-5 show the pressure distributions at two slice locations along the
span, b, computed using £ = 1 and & = 3, respectively. It can be observed that
there is a significant error in the pressure distribution for the & = 1 case at both
span-wise locations, but this error is significantly reduced by using a high polynomial
degree. The pressure computed using & = 3 lies on top of the FUN3D solution
at the wing root, and there is only a slight over-prediction of the upper surface
pressure at 3/4 semi-span when compared to FUN3D. Note that a difference between
the FUN3D solution and the current method should be expected since the results
presented above are computed using a fixed planar wake which violates the force-
free wake requirement. An angle of attack sweep is conducted in order to validate
accuracy over a range of conditions. The angle of attack is increased from 0 to 12
degrees in two degree increments for & = {1,2,3}. The resulting lift and drag polars

and shown in Figure 7-6.
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Figure 7-6: Lift polar (L) and drag polar (R) for several values of polynomial approx-

imation & compared to the incompressible Euler solution computed with FUN3D.

The lift and drag computed with k& = 1 differ significantly from the results obtained
with FUN3D and higher order polynomial approximations. This indicates that for the
current mesh, the solution is not k—converged with £ = 1. The solutions computed
with £ = 2 and £ = 3 are almost identical. For k& = 3 the lift differs from the
Euler solution by approximately 5% while the drag differs by 17% at o = 12°.The
discrepancy between the polars computed using the high order BEM and the Euler
case is likely a result of using a fixed wake in place of the more expensive but also
more accurate free wake. Although the drag computed with the potential solver
differs from the Euler values, it exhibit the correct trend and grows with the square
of the angle of attack. Note that the drag at o = 0 obtained with FUN3D is not
zero as it should be, and the k = 2 and k = 3 BEM solutions appear to be better at

predicting zero lift at zero angle of attack.

7.3 Steady Solver

Two methods for obtaining a steady-state solution are presented. In the first, the wake
is seeded with vortons extending in a plane from the trailing edge. A Newton solver
is then invoked and the residual is driven to zero. However, this initial condition may
not be sufficient for cases where the wake strongly interacts with bodies downstream.

Therefore, a second method is presented whereby the wake is time-stepped for a
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prescribed number of steps, and then the nonlinear steady-state solver is invoked.
Additionally, either an exact or approximate Jacobian may be used depending on
Ys g

whether or not FMM acceleration is enabled.

7.3.1 Planar Initial Wake and Exact Jacobian

An AR = 4 swept wing with a leading edge sweep angle of A = 15° and taper ratio
of A = 0.8 composed of 996 linear elements is used to validate the steady state solver
against an unsteady solution. The wake is seeded with 100 lock-steps of vortons
spaced ||V ||At = 0.2 apart. A Newton solver with line search is used to drive the
norm of the residual to a small tolerance, chosen to be 107!V, Preconditioned GMRES
[20] is used for the linear solve since it was found to be faster than a direct solver.
GMRES without preconditioning is significantly slower than using a direct solver
since the condition number of the system is generally between O(107) and O(10”)
(it was later discovered that the condition number could be substantially reduced by
re-ordering the wake degrees of freedom). The LU decomposition of the Jacobian
computed during the first Newton iteration is used as the preconditioner for the
remainder of the Newton iterations. The steady-state solution and lift comparison

with the unsteady solver are shown below.
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Figure 7-7: Newton solver residual convergence history (L). The unsteady lift solution

compared to the steady-state value (R).
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Figure 7-8: Potential distribution and wake rollup about an AR = 4 swept wing at
a = 5° computed using the nonlinear steady-state code. Front view (L) and top

view(R)

After Vt/c = 20, the unsteady Cj, is within 0.05% of the steady-state value,
indicating that the unsteady solution is converging to the steady-state result. Figure
7-7 shows that the Newton solver only requires 15 iterations to converge to a tolerance
of 1071°. The solution time required for the case above was 865 seconds, 10 of which
were spent computing the preconditioner and 3 of which were spent solving the linear
systems with GMRES. The remainder of the time was spent in the Jacobian assem-
bly routine, since the Jacobian must be completely re-assembled for each Newton

iteration. 441MB of memory was required to store the dense Jacobian matrix.

7.3.2 Time-stepped Wake and Approximate Jacobian

Three cases are presented to demonstrate the robustness of the steady state solver.
The first is for two second-order accurate wings of the same geometry as described in
the previous section flying in tandem. The wings are separated by a distance of three
root chord lengths. The second case is for the same second-order wing but with a
sphere located at a distance of five root chord lengths downstream instead of a second
wing. The last case is that of two first-order accurate Falcon business jets flying in

tandem at an (unrealistically) close distance.
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Figure 7-9: Steady-state Cp distribution and wake roll-up about two second-order

wings in tandem computed after 60 time steps.
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Figure 7-10: Steady-state C'p distribution and wake roll-up about a second order wing

and sphere computed after 40 time steps.
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Figure 7-11: Steady-state C'p distribution and wake roll-up about two Falcon business

jets flying in tandem computed after 50 time steps.

The above three cases demonstrate the robustness of the current wake model. For
each of these cases, the wake is evolved for a specified number of time steps, after
which the nonlinear fully-coupled solver is turned on. For the two-wing test case, the
wake of the front wing travels over the aft wing, and interacts with the aft wing’s
wake. The wake shed from the wing in the wing-sphere case travels around the sphere
as expected. Note that this case would be impossible to evaluate if linear panels were
used to represent wake vorticity since the singular wake panels would intersect the
sphere. The two-jet case demonstrates that the wake model is readily extendible to
complex geometries, and the wake of the fore wing can be observed interacting with

the second jet’s surface and wake.



7.4 FMM Accelerated BEM

This section presents results for three cases of increasing complexity. The first is for
flow about the unit sphere in order to demonstrate FMM convergence. The second is
for non-lifting flow about a four-engine jet aircraft. The third is the case of a lifting

business jet with a fixed wake.

Although the cases presented below all use linear meshes, the FMM is readably
extendible to high order meshes as well. Solutions have been computed using the
FMM-accelerated BEM with high-order meshes using the current solver. However, in
the current implementation there is no benefit to coupling the two methods since the
high-order integration techniques already scale as O(N) due to the rate-limiting self-
term influence integral. If a more efficient method for computing self-term integrals
for high-order elements is developed in the future, then the benefits of both high order
accuracy and the reduced FMM operation count could be realized at a fraction of the

cost of the current high-order solver.

7.4.1 Sphere Convergence Study

The case of a unit sphere represented with 855 linear elements is chosen to demon-
strate the convergence of the FMM method in multipole expansion order p. The error
is quantified by computing the L2-norm of the difference between the FMM solution
and the solution generated with the direct BEM solver. Both the FMM and BEM
system of equations are solved with GMRES to machine precision, and the only dif-
ference is in the approximate matrix-vector product of the FMM compared to the

machine precision matrix-vector product of the direct BEM solver.

92



i

O error

o CP error

10 F

0t

't

-0.5

Figure 7-12: Potential over a sphere for p = 2 and V, = [1,0,0] (L) and error between
the FMM and direct BEM (R).

Even with p = 2, the error in potential is small, however the error in pressure
is more significant. This is due to the fact that the velocities are obtained by dif-
ferentiation of the potential field, leading to a reduction in pressure accuracy. If a
higher pressure accuracy is needed, the multipole order can be increased to obtain
the desired fidelity. Note that the errors do not decay very fast in p. Therefore, if a
high accuracy is desired then a sufficiently large value of p must be chosen. This can

become expensive since the cost of the FMM presented in this work grows as O(np).

7.4.2 Non-lifting Four-Engine Jet

In order to test a more complicated case, a four-engine jet represented with 175,712
linear elements is simulated using the FMM with a multipole expansion of order
p = 2. The mesh was generated with the SUMO [22| mesh generator. This case does
not include a wake influence, and is therefore non-lifting. The near-field interactions
are computed directly, and stored in the box data structure once at the beginning of
the simulation for efficiency. Additionally, a preconditioner is implemented in order
to reduce the number of Krylov subspace iterations required.

Since the FMM provides a method of de-coupling near field and far-field terms, it
also provides a very straightforward framework for generating a preconditioner. The

preconditioner is applied in a box-by-box manner. For each childless box, the direct



influence matrix is assembled into a square matrix based on the Galerkin discretiza-
tion. The resulting matrix is then inverted and stored in memory for the remainder
of the computation. The FMM matrix-vector product is computed first, and the

preconditioner is applied to the result by looping through the list of childless boxes.

Figure 7-13: Potential solution about four-engine jet (L) and corresponding pressure

distribution (R). Solution time is 240s using multipole expansion order p = 2.

A total of 39 GMRES iterations were required to reach a residual tolerance of 1075.
The solution time for this rather complicated test case was 240 seconds using four
processors. The memory required to store the preconditioner was 141MB. and the
memory required to store the multipole coefficients and octree structure was 278MB.
If this case were to be solved with the standard dense BEM, 62GB of memory would

be required.

7.4.3 Lifting Business Jet

Lastly, case of lifting potential flow about a fine business jet mesh is demonstrated.
A fixed panelled wake is implemented, extending to infinity. Since the wake extends
to infinity, the octree decomposition of the domain required by the FMM cannot
be generated. Therefore, the wake influence is computed directly. Note that this
should not be problematic, since the wake influence matrix is much smaller than the
full aerodynamic influence matrix would be. The mesh was generated in GMSH and
consists of 31,398 linear elements. The process of generating the mesh from a .stp

file was essentially hands-free, and only required specifying one parameter controlling
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the mesh fineness. The pressure distribution at a = 5° is shown below.

Figure 7-14: Interpolated pressure coefficient for a business jet operating at o = 5°.

Note that there is a band of low pressure aft of the wing trailing edge. This is
due to the edge of the wake dipole sheet being close to the fuselage surface. In the
future, the wake sheet will intersect the fuselage elements and a jump in potential on
the element will be permitted using discontinuous basis functions as described in [24].
Also note that the pressure distribution in figure 7-14 is continuous on the surface,
and not piecewise-constant as in the previous results. This is a result of a post-
processing step where the pressure is interpolated at each node from the surrounding
elements. This is common practice for aerodynamic panel methods since it creates a

more visually appealing solution, although it does not increase the pressure accuracy.
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Also note that the maximum pressure coefficient is only approximately 0.9, and this
only occurs at the wing root. The pressure coefficient should be 1.0 at some point
along all leading edges, since there should always be a stagnation point near the

leading edge. This effect is more clearly observed in the figure below.
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Figure 7-15: Comparison of the interpolated and non-interpolated pressure coefficient
at a slice plain of ¥ = 2.5. The distribution on the left is the C'p over the wing, and

the distribution on the right is the tail Cp.

The maximum interpolated pressure coefficient at the leading edge of the wing
at a slice location of ¥ = 2.5 is 0.5, and is 0.2 at the trailing edge. Note that this
is lower than the non-interpolated pressure coefficient and varies considerably from

the true maximum Cp of 1.0. This behavior is observed in commercially available
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panel codes as well [19]. Note that the interpolated pressure is less accurate than the
non-interpolated pressure. Therefore, integrated quantities (forces, moments) should
always be generated from the raw non-interpolated Cp. The error in pressure is due to
the low-order surface discretization and relatively coarse leading edge mesh resolution.
A more accurate leading edge pressure could obviously obtained by refining the mesh
near the leading edge.

Currently the process from geometric representation via a .stp file to solution
is fully automated, but the meshing step is not highly refined. Additional work is
needed in order to develop an automated method for generating accurate (perhaps

anisotropic or adapted) meshes from geometry files.
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Chapter 8

Conclusions and Future Work

A fully unstructured, high-order potential flow solver based on the Boundary Element

Method has been developed and validated. The solver has the following capabilities:

1. Arbitrarily high-order spatial accuracy due to a new method of integrating

Green’s function for Laplace’s equation over high-order curved elements.

2. An automated method for both steady-state and unsteady wake treatment due
to using vortons in the wake and casting the wake terms and BEM into a fully

coupled nonliner system.

3. A Fast Multipole Method that scales as O(N) for accelerating far-field potential

interactions.

The solver is wrapped into a single, stand-alone code written in C++. The entire
solution process is automated and scripted, from geometry definition via an .igs or
.stp file all the way to obtaining pressure distributions and forces.

There are still many areas for improvement and continuing work, some of which

include:

1. The Development of a hybrid doublet-vorton wake model. The current work
uses vortons in the wake which act as a velocity influence on the surface. How-

ever, when the vortons approach surfaces, the velocity influence becomes nearly
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singular and is not capable of being accurately represented by the test func-
tions. A new hybrid method is proposed where wake-surface interactions are
computed as potential influences (which are less singular than velocity influ-
ences) due to point doublets. The wake velocities would be computed using the

current vorton model.

2. Coupling of the current inviscid code to a viscous boundary layer solver such
as the one developed by Drela in [10]. This would enable the computation of

viscous drag and separation effects.

3. The development of a more robust method of going from a parametric geometry
file to an accurate surface mesh. It may be worthwhile to investigate adjoint-
based grid adaptation using anisotropic meshes or a more robust high-order

mesh generator for this purpose.

4. The implementation of a method for dealing with panelled wake-body intersec-

tions via discontinuous basis functions.

Ultimately, the goal is to produce a solver capable of accurately predicting both
steady and unsteady inviscid and viscous forces while only requiring specification of

a surface geometry and freestream conditions.
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Appendix A

Steady-State Jacobian Derivation

In order to compute the first term of the Jacobian, the surface potential residual in

Equation 3.12 is differentiated with respect to u:

oo = <a¢l, w> (A1)
ou o .
where
8¢K / ( ags(r) )
—— = Ga(vp,r) + G, T A2
o s, a(vn,7) ( on ) (A.2)
. . . ) do(r) .
and v, € W), is the basis-function representation of p and a—,u— is evaluated as:
dos(r)  [OVy(r)ow) .
T ( oo n (A.3)

The g—i term above is computed from the conversion of wake doublet sheets used to
enforce the Kutta condition into volume vorticity. The second and third terms of the
Jacobian are similarly obtained by differentiating the potential with respect to the
vorton positions x and vorticity w, respectively:

v _ <2@; w>n (A.4)

0x, w ox,w’
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where

Opr 9Gs(0s(r),7) Oos(r)
ox,w /SUSW do(r) 0%, w (A9)
and
Oos(r)  0Vy(r) " (A.6)

ox,w 0x, w

Next, the sensitivity of the vorton position residual X with respect to the doublet
strength u, the vorton positions, and the wake vorticity w must be obtained. The
derivative of the vorton positions with respect to the doublet strength is obtained by
differentiating Equation 5.4:

0X; _ 9U(xj-n,)

=— i€ {N,+1,...,N A.
5 SN e N LN (A7)

where
oU(xj-n,) _ OV(rj-n.)  OVa(r) 0w
ou ou Oow Op

(A.8)

0
The first term is computed as detailed in Equation A.2 and the 8_w term is computed
14

from the wake conversion as mentioned above. The sensitivity of the vorton positions
with respect to themselves is obtained by differentiating Equation 5.4 with respect to

Xj.
8Xj _ i—I _ 6U(Xj_Ns)
ox; At ox;

jE{NS+1,...,Nv} (Ag)
where I is the identity matrix and

oU(x;-n,)  OVo(xj_n,)  OVu(r)
— +
ox. axj 0x.

J J

(A.10)

Note that the first term is a tensor derivative and is computed in a similar manner to
Equation A.5 and the second was already computed in Equation A.3. The derivative
of the vorton positions with respect to vorticity is:

0X; _ 0U(x;_n,)

= oo, je{Nat 1. Ny} (A.11)
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where

0U(xj-n,) _ OVP(@j-n.)  IVu(r)
Oow ow Ow

(A.12)

and the first term again requires a tensor derivative and the second term is computed
as in A.6
The sensitivity of the vorticity residual with respect to the doublet strength p, the
vorton positions x, and the vorton strengths w is obtained almost identically to the
sensitivities of the wake positions with respect to the same variables. The derivative
of vorticity with respect to the double strength is:
OW; _

o (8“’ 'V) Uty ) + (w- V)

Ow OU(x;-n,)
Op

o

je{N,+1,...,Ny} (A.13)

where all of the terms above have been described previously. The derivative of vor-

ticity with respect to vorton position is simply

ow B c?U(xj_Ns)
=(w-V) T ox.

] Ne+1,..., N Al4
e S JE N L ) (A14)

The final component of the Jacobian is the sensitivity of the vorticity residual with

respect to vorticity and is computed as:

6Wj . 1 8U(xj_Ns)
R A C A

J J

je{N,+1,... Ny} (A.15)
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Appendix B

Multipole Operators

The equations presented below closely follow those developed by Greengard [12] for
use in particle simulations. In three dimensions, multipole expansions are expressed
in terms of spherical harmonics. The spherical harmonics have a degree n and order

m and are defined by the following formula[12]:

= Im))

n — mp7|lm|008(9)€im¢ (Bl)

where P’ are associated Legendre functions. A truncated multipole expansion of
order p about a box origin representing a collection of K sources of strength ¢, located
at spherical coordinates (p;, a1, £1)...(px, @k, Bk ) with respect to the box centroid can

be written as:

p n m K
@(7“,9, ¢) = Z Z :Vrfilynm(e,qs), My = Z:laspgyn_m(aSvBS) (B'Q)

n=0m=-n

where (r,0,¢) are the spherical coordinates of the point where the multipole expansion
is evaluated. Similarly, the multipole coefficients M™ of the multipole expansion for

a collection of K dipoles with strength u, and orientation n, is

K
9 —m
My = Zus% (PsY, ™ (s, Bs)) (B.3)
s=1 S
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Each surface panel is represented by a collection of point sources and dipoles, and
their strength and location on each panel is given by the weights and Gauss points of
a numerical quadrature rule. Similarly, the vector of multipole expansion coefficients

representing a collection of vortons with vorticities w, can be computed as:

K
9
M™ = Zws% (P2Y, ™ (s, Bs)) (B.4)
s=1 s

In the Multipole to Multipole step of the algorithm, multipole expansions of child
boxes must be transferred to their parent box. Let (p, o, 3) be spherical coordinates of
the parent box’s centroid with respect to the child box’s centroid. Then the multipole

coeffecients MT' of the parent box are given by the following multipole translation

formula
; n i—m jlk|—|m|—k—m| gm.gk—m y—m(, 3)
R S M n_ion r |k—m|<=p
MTf = {70 o (B.5)
0 |k —m|>p
where
—1)»

" In—ml-n+m]!
The Multipole to Local translation is detailed below. Let (p,a, 3) be the spherical
coordinates of a centroid of a box in a box’s interaction list with respect to the
centroid of the box itself. Let M* be the coeflicients of the multipole expansion of a
box in the interaction list of this same box. Then the corresponding local expansion

coefficients about the center of the box is:

n m | g|lk—m|—|k|-|m m ek
M . jle=ml—lkl-| |.An A?Y;.Fn (a’ﬂ) (B7)

P
Lk = n
J Z (—1)"Aﬁ}k . pitntl

n=0 m=—n

The Local to Local translation is detailed below. Let (p, «, 8) be the spherical coor-
dinates of a child box’s centroid with respect to its parent’s centroid. If L7" are the

coefficients of the parent box’s local expansion, then the corresponding coefficients of
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the local expansion about the child box’s centroid are:

e Ly AR AY Y m = k(e B) - B
_ZZ (—1)n+i . Am (B-8)

n=j m=-n

The Local Evaluation is detailed below. The potential resulting from the evaluation
of the local expansion at spherical coordinates (r, 6, ¢) with respect to a box centroid

is computed as follows:

O(r,0,¢) = ZZLT’c YF0, ) 17 (B.9)

J=0 k=—j
where LT}'C are the coefficients of the local expansion representing the potentials of all
boxes which are not nearest neighbors of the box. Note that there may be as many as
five sets of LT;C coeflicients per childless box, corresponding to the contributions from

the doublet elements, source elements and three components of the vector potential.
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