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Abstract

Task allocation, or how tasks are assigned to the human operator(s) versus to automation, is an
important aspect of designing a complex vehicle or system for use in human space exploration. The
performance implications of alternative task allocations between human and automation can be
simulated, allowing high-level analysis of a large task allocation design space. Human subject
experiments can then be conducted to uncover human behaviors not modeled in simulation but need to
be considered in making the task allocation decision. These methods were applied here to the case
scenario of lunar Ianding‘with a single human pilot.

A task analysis was performed on a hypothetical generic lunar landing mission, focusing on decisions and
actions that could be assigned to the pilot or to automation during the braking, approach, and
touchdown phases. Models of human and automation task completion behavior were implemented
within a closed-loop pilot-vehicle simulation for three subtasks within the landing point designation
(LPD) and final approach tasks, creating a simulation framework tailored for the analysis of a task
allocation design space. Results from 160 simulation runs showed that system performance, measured
by fuel usage and landing accuracy, was predicted to be optimized if the human performs decision
making tasks, and manual tasks such as flying the vehicle are automated. Variability in fuel use can be
attributed to human performance of the flying task. Variability in landing accuracy appears to result
from human performance of the LPD and flying tasks.

Next, a human subject experiment (11 subjects, 68 trials per subject) was conducted to study subjects’
risk-taking strategy in designating the landing point. Results showed that subjects designated landing
points that compensated for estimated touchdown dispersions and system-level knowledge of the
probabilities of manual versus automated flight. Also, subjects made more complete LPD
compensations when estimating touchdown dispersion from graphical plots rather than from memories
of previous simulated landings. The way in which dispersion information is presented affected the
consistency with which subjects adhered to a risk level in making landing point selections. These effects
could then be incorporated in future human performance models and task allocation simulations.

Thesis Supervisor: Charles M. Oman
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Massachusetts Institute of Technology

Thesis Supervisor: Kevin R. Duda
Title: Senior Member of the Technical Staff, Draper Laboratory
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1 Introduction

1.1 Motivation and Problem Statement

In designing a system in which the human is an integral component, one essential question is, “who
does what?” What tasks or functions should be performed by automation, and what tasks are best left
in the domain of a human operator? Instead, the answer is often determined by project constraints on
budget, available technology, desires of the human operators, and current societal attitudes towards
automation. This is especially the case in the resource-intensive, technologically risky, and high-stakes
world of space exploration (Mindell, 2008). There is also the tendency to do things as they have been
done in the past — not only is change expensive, but a system design that has worked sufficiently well in
the past, and the human operators that were trained on it, carry their own resistance to change.

The problem addressed in this thesis is the development of quantitative methods for human-
automation task allocation. The case scenario used in this project is a lunar landing system. The
complexity of such a system allows many decisions to be made on how the human crew and automation
interact, and what tasks are allocated to each. For example, who decides where to land? Who flies the
vehicle? The case scenario of lunar landing is directly applicable to landing systems for other celestial
bodies such as the Earth, Mars, or asteroids. Analogous human vs. automation task allocation decisions
also arise during the design of other complex systems involving humans and automation: aircraft and air
traffic control, ships, trains, nuclear power plants, and patient monitoring systems (Sheridan, 2002).

1.2 Research Aims and Contributions

An objective way to decide the human-automation task allocation question is by running experiments
with different allocations; however, this approach is often too costly to use to explore any given
system’s full design space. An alternative is to create simulations of such experiments. Modeling how a
system would respond to human operators and automation performing a given set of tasks can, in
principle, can generate high-level evaluations of many different task allocations. Such results can be
used to suggest directions in which to narrow the system design space and, further along the
development process, indicate areas requiring special attention in the testing and validation of chosen
designs.

Early methods for evaluating task allocation relied on guiding principles. This project is an application of
the latest trend in task allocation, which is system-level simulation of human performance in
collaboration with automation and the surrounding environment. An overview of tools developed over
the past few decades to aid in determining task allocation is provided in Section 3.2.1.

Three main bodies of work are presented: 1) task analysis of the chosen case scenario, lunar landing, 2)
creation of a computer-based task allocation simulation for selected lunar landing tasks, and 3)
experimental evaluation of human performance on the same modeled tasks. Task analysis is required to
determine the high level tasks, states, and goals before a scenario can be modeled in simulation. The
modeling work demonstrates the advantages of simulation in evaluating the optimality of varying task
allocations for a given system and scenario. Finally, experimentation provides empirical data on human
performance that may be used to partially validate and enrich the simulation.



2 Lunar Landing Task Analysis”

Lunar landing is the case scenario used in this project, although the methods of simulation and
experimentation used here can be applied to exploring human-automation task allocations for any other
case scenario that includes a complex system with a human component.

In the Apollo missions, lunar landing was divided into three phases: braking, approach, and terminal
descent, as shown in Figure 1 (Bennett, 1972).

“High Gate”
Altitude: 7,000 feet
Ground Range: 25,000 ft from landing site
Forward Velocity: 400 ft/s
Vertical Velocity: 160 ft/s downward “Low Gate”
Altitude: 500 feet
Ground Range: 2,000 ft from landing site

SRaxInG PHASE gy

START Poo Forward Velocity: 60 ft/s
P64 i‘o: &% RANGE Vertical Velocity: 15 ft/s downward
smm’nu 31 sec TO TOUCHDOWN
~
223 m ATITYDE

7471m GROUND RANGE
177 sec 1O TOUCHDOWN \\

ALL NUMBERS ARE TYPIC AL AND DO NOT REPRESENT
ANY SPECIFIC APOLLO MISSION

ez TBO,

Terminal Descent Phase
PHASE Poo P66, Altitude: 150 ft

i IR A P67 Vertical Velocity: 3 ft/s downward
PHASE -
umNG-PruSE/
ke L)

-541 m ALTITUDE 4.8m GROUND RANGE
4416 m GROUND RANGE NDING
10 I.:NDING SITE oA SITE

Figure 1: Diagram of Apollo lunar landing phases. P63 through P67 refer to Apollo Guidance Computer software
programs governing specific landing phases. From (Duda, Johnson, & Fill, 2009).

The purpose of the braking phase was to bring the Lunar Module (LM) spacecraft down from a lunar
orbit to a set of guidance target conditions known as "High Gate". Then, in the approach phase, the LM
pitched nearly upright so that the astronauts had a view of the lunar surface and could designate a final
landing aim point (LAP). The vehicle was then navigated close to the landing site to meet a set of
guidance target conditions known as "Low Gate" (Klumpp, 1974). In the terminal descent phase, the
vehicle was navigated to a safe area that appeared level and free of hazards, and its horizontal and
vertical velocities were nulled to bring it to a touchdown on a chosen landing site.

Before exploring task allocations, an analysis was performed of the tasks required in piloted lunar
landing, from the beginning of the braking phase to the end of terminal descent. Normally, a task
analysis would be based on the specifications of a given system and mission under design. However, the
goal of this analysis was to produce a profile of basic command and control tasks that would likely be
common to any piloted lunar landing mission.

The task profile documented for the Apollo LM (Mindell, 2008; NASA, 1971) was used as the baseline for
this task analysis. Tasks and portions of tasks that were deemed specific to the Apollo landing system
were removed. To reflect technology that would likely be included in a modern landing system, tasks

" Adapted from (Wen, Duda, Slesnick, & Oman, 2011)
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were included for the use of an automated landing and hazard avoidance that scans the terrain, detects
hazards, and identifies and prioritizes possible LAPs, allowing the vehicle to land even when visibility is
poor for a human pilot (Epp, Robertson, & Brady, 2008; Forest, Kessler, & Homer, 2007). A cockpit
system that allows human crew to perform supervisory actions, such as selecting a LAP from among
those recommended by the automated hazard avoidance system, was also assumed (Forest et al.,
2007). Finally, Apollo’s rate-control attitude hold (RCAH) mode, in which the pilot had direct control of
the vehicle’s attitude and descent rate, was assumed as the mode of manual flight control (Hackler,
Brickel, Smith, & Cheatham, 1968). A preliminary version of this task analysis, showing the separate
sources drawn from Apollo documentation and modern landing technology, can be found in Appendix 1.

In addition, this task analysis had to produce a description of tasks at a level of detail appropriate for the
modeling in this project. In the absence of specifications for a physical system, low-level human
perceptual-motor primitives (originally defined by Jenkins, Mataric, and Weber (Jenkins, Mataric, &
Weber, 2000)) such as interactions with a cockpit display and button presses were omitted. The
remaining task profile consists of high-level decision making tasks and tasks required by the dynamics of
a lunar landing, regardless of the specific landing system. Hierarchical task analysis (HTA) was found to
be particularly suitable for this purpose (Stanton, 2006). HTA starts with identifying the main goal that
the system is meant to accomplish, and that goal is then “re-described” into a tree of sub-goals that are
necessary to accomplish the parent goal. The re-description of sub-goals continues until, at the lowest
leaves of the tree, tasks are obtained at the desired level of detail. At each node in this tree of goal and
sub-goal re-descriptions, a “plan” describes the temporal ordering of sub-goals and the completion
criteria for the parent goal.

The tasks in the resulting task network are identified as one of three types, to guide the human
performance modeling of these tasks in a simulation. These three types describe typical piloted
spacecraft command and control tasks:

Navigation Task: Involves monitoring and changing the current dynamic state {position,
velocity) of the vehicle. Note: although navigation conventionally means planning the trajectory
and determining vehicle position relative to the planned trajectory, the term is used here to
include the flying portion of the task.

Subsystem Supervisory Task: Involves monitoring an automated function or vehicle state, and

taking action to cause a change in the system if necessary.

Decision Making Task: Involves utilizing information presented by automation, or from an out-

the-window view, to make decisions that affect the mission trajectory at a high level.

The root goal and highest level of HTA for the case of lunar landing is shown in Figure 2. The main goal
is to land at a desirable LAP while avoiding hazardous areas. In this case scenario, the LAP may be
selected by an automated system or manually designated to be as close to as possible to a point of
interest (POI) near which it is desirable to land.
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Figure 2: Top level of hierarchical task analysis for lunar landing. Light blue boxes with solid borders indicate
subgoals that can be further re-described into lower-level goals. Clear boxes with non-solid borders indicate
tasks at the lowest level of re-description.

The root goal can be accomplished only if navigation to High Gate conditions (subgoal 1), then Low Gate
conditions (subgoal 2), and finally to a landing site (subgoal 3) is accomplished. Plan 0 specifies that
while subgoals 1-3 are being accomplished in sequence, there is also a parallel task of monitoring for
situations that call for a landing abort (subgoal 4). More detailed descriptions of subgoals 1-3 are shown
below in Figure 3 through Figure 5.

The main result of subgoal 1 (

Figure 3) is to perform a descent-engine burn to decelerate the vehicle from lunar orbit to High Gate
conditions. Meanwhile, radar data of the lunar surface below is received for the first time. Subgoal 2
(Figure 4) involves the simultaneous tasks of approaching the final landing area and designating a LAP
that is safe for landing within the landing area. Subgoal 3 (Figure 5) consists of the vehicle’s final
descent onto the selected LAP.
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Figure 3: Hierarchical task analysis for the braking phase of lunar landing
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Figure 4: Hierarchical task analysis for the approach phase of lunar landing
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Figure 5: Hierarchical task analysis for the terminal descent phase of lunar landing

Identifying the tasks to be performed in a system is the first step in evaluating task allocations. The task
analysis shown here was used as the master plan from which tasks were selected for modeling in a task
allocation simulation and for human subject experimentation, as well as to keep track of the context in
which the selected tasks are performed. Since this analysis contains tasks that should be common to
many piloted lunar landing systems, it is an applicable starting point from which to analyze the task
allocation of any specific future designs.
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3 Evaluation of Human-Automation Task Allocations in Lunar Landing
Using Task Network Simulation of Human and Automation
Performance*

3.1 Introduction

The purpose of simulating different human-automation task allocations is to obtain an early
understanding of the full human-automation task allocation design trade space, which will guide the
overall system design process. Early in the design process, it may be premature or too costly to evaluate
different system design options using other methods such as building mock-ups and running human
subject experiments. Therefore, simulation can be a useful early-stage design tool that provides
preliminary, high-level evaluations of all possible task allocation designs. Further along the design
process, simulation can be used to discover areas requiring special attention when testing and validating
the chosen system designs. The lunar landing simulation example considered here is intended to
demonstrate the feasibility of this approach.

Although a simulation which contains detailed models of human performance and is used to evaluate
human-automation interactions does exist (see the description of the Air Man-machine Integration
Design and Analysis System (Air MIDAS) in Section 3.2.2.2), its complexity and high level of detail may
make results difficult to trace and understand. Pritchett provides the following advice: “When critical
design decisions are to be made based on their results, a coarser or sparser human performance model
representing simple, well-understood phenomena may be more useful than a more detailed model
based on tentative models of behavior” (Byrne et al., 2008). Therefore, another motivation for this
project is to build a more transparent simulation containing simple, preliminary models of human
behavior.

3.2 Background

3.2.1 Task Allocation Methods

The tools used to tackle the question of human-automation task allocation has evolved through the past
decades from general guiding principles and rules of thumb (Fitts, 1962; Jordan, 1963) to more concrete
quantitative methodologies that prescribe processes by which to answer the question (Marsden & Kirby,
2005; Parasuraman, Sheridan, & Wickens, 2000; Sheridan & Verplank, 1978) and finally to analytical
models that simulate and evaluate different task allocations (Chua & Major, 2009; Connelly & Willis,
1969; Madni, 1988; Sheridan & Parasuraman, 2000).

Early guiding principles came in the 1960’s. In general, machines excel at performing any given task with
consistency, while human operators can provide flexibility in response to dynamic task conditions
(Jordan, 1963). Specifically, Fitts pointed out that a human operator can trade off speed for precision as
needed: if a task needs to be done more quickly, a human can deliver speed by sacrificing precision in
the execution of the task, and vice versa (Fitts, 1962). A machine is not likely to exhibit that flexibility.
On the other hand, Jordan warned against falling into the obvious trap of comparing human and

’ Adapted from (Wen et al., 2011)
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machine performance by the same criteria (Jordan, 1963). Most of the time, this leads to the deduction
that if a task can be modeled, a machine can always be built to do it in a superior fashion, which in turn
leads to the (somewhat unhelpful) conclusion that there is no role for a human in the system. As Jordan
put it, “men and machines are not comparable, they are complementary” (Jordan, 1963).

However, guidelines alone are not sufficient to bring the problem of task allocation from the realm of
art into that of science. The original and simplest quantitative methodology is what Marsden and Kirby
called “tables of relative merit” (Marsden & Kirby, 2005). The most well-known example is Fitts’ table of
general task types for which humans and machines are best suited to perform (Chapanis et al., 1951).
Although these guidelines make logical sense, it is difficult to apply them in practice. Real tasks,
performed in disparate environments, often defy categorization into one of the types described by the
list.

Another lens through which to view task allocation is through levels of automation. Sheridan and
Verplank identified a spectrum of ten levels for characterizing the degree to which the decision making
in a task is performed by automation versus by the human operator (Sheridan & Verplank, 1978).
Parasuraman, Sheridan, and Wickens took this further by breaking a task down into four information
processing stages — sensory processing, perception / working memory, decision making, and response
selection — and applied the ten levels to each of the stages (Parasuraman et al., 2000). Thus, the degree
to which a task, and the separate information processing components of the task, was performed by a
human or the automation can be characterized according to a scale.

Finally, analytical models and simulations were introduced that can potentially search a large task
allocation design space and provide wide-ranging characterizations of system performance at a high
level. The simplest models take the form of databases that do not model how tasks are performed but
store knowledge that affects the choice of a task allocation, such as human task performance
parameters and the technical costs, benefits, and feasibility of implementing automation to perform
tasks (Connelly & Willis, 1969; Madni, 1988). Although these databases help organize information
needed to make task allocation decisions, they do not contain descriptive models of human and system
behavior or answer how system performance is impacted by task allocation. Other models take the
form of algorithmic descriptions, such as expected-value calculations to decide whether a task that
involves failure detection should be allocated to a human or automation (Sheridan & Parasuraman,
2000) and task time analyses (Chua & Major, 2009). Such algorithmic descriptions, however, are not
descriptive behavioral models and can provide only rough evaluations of task allocations according to
one metric (such as failure detection probability or task time).

The latest genre of task allocation models attempt to simulate the internal behavior of individual
elements within a system, such as the human operator, any automated components, and the
environment in which tasks are performed. The Function Allocation Methods (FAME) tool models the
human operator as using a cyclical information processing model that continually guides future actions.
The model also includes an automation component and allows for easy transfer of tasks between the
human or automation models to evaluate different task allocations (Hollnagel & Bye, 2000). The task
allocation simulation work in this project continues this tradition of modeling.
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3.2.2 Human Performance Modeling

NASA conducted a Human Performance Modeling (HPM) project over the course of 6 years, ending in
2008, in which five different human cognitive modeling efforts were applied to analyze system design
impacts and human error in aviation (Byrne et al., 2008; Foyle et al., 2005). Ideas and lessons learned
were drawn from these efforts to guide the simulation work in this project. This HPM project was used
for inspiration because it too uses a piloted flight system as the case scenario, although for aviation and
not planetary landing. Also, it is a convenient collection of diverse architectures and modeling
approaches applied to the same type of system. In particular, lessons learned about architecture and
level of detail in modeling were drawn from the Improved Performance Research Integration Tool /
Adaptive Control of Thought-Rational ( IMPRINT/ACT-R), Air Man-machine Integration Design and
Analysis System (Air MIDAS), and Attention-Situation Awareness (A-SA).

3.2.2.1 Architecture

There are two human performance modeling architectures: reductionist and first-principle modeling
(Laughery, Lebiere, & Archer, 2006). The former uses a task network drawn from a task analysis as its
overarching structure. The core of the latter architecture is a model of human cognition; all other
components of the system, such as a task network or parts of the system external to the human
operator, are treated as peripheral interfaces. The organizing features of both architectures — the task
network and the human cognitive model — are equally important to the task allocation simulation in this
project.

One of the HPM efforts, “IMPRINT/ACT-R” (Foyle & Hooey, 2007), is a hybrid of two previously existing
models, each of which is based on one of the two architectures: Improved Performance Research
Integration Tool (IMPRINT) (Archer, Lebiere, Warwick, Schunk, & Biefeld, 2002) and Adaptive Control of
Thought-Rational (ACT-R) (Anderson, 1996). IMPRINT retains the network of tasks, which includes the
ordering and conditions of task transitions, required for operations in a given system (Archer et al.,
2002). ACT-R s a first-principle model of a human operator’s visual and motor interaction with the
world, declarative and procedural memory, and actions chosen by pattern-matching information
processed from the outside world with procedural memory (Anderson, 1996).

Together, the IMPRINT/ACT-R hybrid is a tool in which a task network is backed with models of human
cognitive behavior. This structure is the foundation of the architecture of the simulation presented in
this thesis. Its advantage for this project is that by making tasks the primary organizing feature, neither
human or automation performance is implicitly assumed in the task network, allowing an objective
study of human-automation task allocations.

3.2.2.2 Level of Detail

Another question that any simulation effort encounters at some point is, to what level of detail should
the modeling be. One of the NASA HPM efforts notable for its modeling detail is Air MIDAS (Pisanich &
Corker, 1995). Unlike ACT-R, which is based on a “unified theory of cognition,” Air MIDAS contains many
separate detailed modules on various aspects of human behavior. A sampling of its modules includes
visual and auditory perception and attention, working memory, domain knowledge, physical motor and
anthropometric models, mental goal and task queues, and activity generation and scheduling which
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feeds into the queues (Foyle & Hooey, 2007). At the lowest level, human behavior is represented as
different types of “primitives”: motor (e.g., button push), visual (e.g., fixation on object), cognitive (e.g.,
recall), and auditory (e.g., monitor audio signal) (Tyler, Neukom, Logan, & Shively, 1998). Air MIDAS also
includes a detailed simulation of the external world (Foyle & Hooey, 2007), and the outputs of this
human behavior model are the effects of primitive actions on the external world model (Tyler et al.,
1998). The downside to this model’s rich level of detail, however, is that outputs can be difficult to trace
and validate.

At the other end of the spectrum, the Attention-Situation Awareness (A-SA) model is a simpler effort
that focuses on a small subset of human cognition: attention and situation awareness (Wickens,
McCarley, & Thomas, 2003). It is based on an algebraic formulation of the probability that an external
event will be attended to by a human operator. This is back-ended by a model of situation awareness
(SA) in which SA is rated by a numerical value from 0 (no awareness) to 1 (perfect SA). SA can be
improved or degraded by correct or incorrect information. Its value also decays when there is old or
irrelevant/distracting information.

Following the example of A-SA’s simplicity, the human behavior models in this project are based on
basic and reasonable general assumptions of human cognition that are easy to understand and trace as
the complexity of the simulation grows.

3.2.3 Human Information Processing

Models of human task performance behavior in this simulation were structured on a four-stage
information processing model put forth by Parasuraman, Sheridan, and Wickens, as shown in Figure 6
(Parasuraman et al., 2000). It describes how information is attended to and perceived by a human
operator and then used to select and generate appropriate actions on the external environment. This
open-loop linear model is a simplification of Wickens’ closed-loop model in which information on the
effects of an executed action is attended and perceived, forming a feedback loop (Wickens & Carswell,
2006). Wickens’ model also includes working and long-term memory and attention resources, which are
not included in this simplified model.

Human
Behavior Model

-
Decision |-
Makin

Action |

| Attention [={ Perception |

Figure 6: Four-stage model of human information processing

Assumed models of the four information processing stages are as follows:

Attention: Attention determines when and whether the human picks up an information input signal. An
information input is assumed to be received, or it is not. This model is of focused attention; temporal
changes in attention, as in visual search or guided attention, were not assumed (Wickens & Carswell,
2006).

17



Perception: Metadata and parameters needed for the next stage, decision-making, are extracted from
information inputs that were successfully attended to in the previous stage. In addition, perceptual
errors, namely errors in the calculation of needed decision-making parameters, are assumed.

Decision: Two types of decision making blocks are implemented to accommodate the different types of
subtasks: rule-based decision making, in which actions are selected based on criteria applied to
perceived information, and multi-attribute utility theory (MAUT) (Lehto, 1997). MAUT is a rational
decision making model that takes account of the multiple objectives that the decision maker may pursue
in making a decision (such as choosing a LAP that is far from hazards, close to a POI, as well as fuel-
efficient). Each objective is given a weighting, or priority. Of the alternatives available to the decision
maker, the alternative with the greatest expected value summed over the different weighted objectives
is chosen.

Action: Since human behavior is being modeled at the abstract cognitive level rather than at the level of
physical primitives, the action block is not needed for subtasks in which the action resulting from a
decision is, for instance, a button press.

3.3 Method

Unlike previously developed human performance models, the central focus of the simulation presented
here is not to model human performance; rather, the focus of this approach is analysis of a system’s
human-automation task allocation design space. Equal importance is given to human and automated
components, and system performance, rather than just human performance, in response to task
allocations is evaluated.

The simulation here is also an extension of the latest trend in modeling tools: system-level simulations
containing models of human operators, automated systems, and the surrounding system dynamics. Its
models of human behavior, however, are simpler than those of MIDAS to enable understandability and
traceability of results. Also, it draws on the architectural lessons of IMPRINT/ACT-R, as described in
Section 3.2.2.1.

The approach was as follows: a subset of tasks from the lunar landing task analysis performed in Section
2 was selected and further elaborated for modeling (Section 3.3.1). A task allocation simulation was
constructed based on a task network architecture. Within the simulation, models of human (Section
3.3.2.1) and automation (Section 3.3.2.2) behavior were implemented for each selected lunar landing
task. The simulation was run for all possible combinations of human-automation task allocations
(Section 3.3.3).

3.3.1 Modeled Tasks

From the lunar landing task analysis described in Section 2, landing point designation (LPD) (task 2.3 in
Figure 4) and final vehicle touchdown (task 3.1 in Figure 5) were selected for modeling, as shown in
Figure 7. The “automated system” listed in Figure 7 refers to automated technology that scans a
landing area, creates a digital terrain map to identify hazards to the vehicle, and generates prioritized
LAPs within the scan area, as assumed in the task analysis in Section 2. This system presents this
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information to the user, who can choose to select one of the recommended points or free-select from
other areas on the map (Epp et al., 2008; Forest et al., 2007).

LPD was elaborated into 3 subtasks incorporating the use of such an automated system. First, a decision
has to be made on whether or not to use the automated system in LPD. If the decision is “yes,” then
one of the LAPs suggested by the automation is selected. If decision is “no” (if faults are detected in the
automated system, for example), then the alternative is for the human operator to free-select a LAP
using the out-the-window (OTW) view or, if judged trustworthy, use the highest ranked selection based
on the automated system’s terrain scan. The four resulting subtasks in Figure 7 were selected so that all
three task types — Navigation, Supervisory, and Decision Making — can be demonstrated in human
performance modeling in simulation.

Landing Point Designation

2. Select an LAP

Yes ;
> suggested by
automated system Touchdown
1. Decide whether
or not to use LAP J 4. Flyto
automated system 3. Select LAP using | | S€'¢¢ted[T"| selected LAP
in designation out-the-window view
=  and automated

No| system’s scan of
terrain

Chowan ]

Figure 7: Task network, containing LPD and Touchdown subtasks, of the case example to be modeled.

Each subtask may potentially be allocated to a human operator or to automation (the approach for
developing these models is in Sections 3.3.2.1 and 3.3.2.2, respectively). Note that free selection of a
LAP, subtask 3, can only be performed by the human.

Some of these subtasks modeled in simulation were later selected for human subject experimentation
(Section 4). The models of human task performance in this simulation were implemented at a
preliminary level of detail; therefore, the purpose of experiments is to uncover behaviors from human
subjects which can potentially enrich these human performance models.

3.3.2 Simulation Implementation
The overall architecture of the task allocation simulation framework is depicted in Figure 8.
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Figure 8: Architecture of task allocation simulation framework

Two models, one that describes human behavior and another one for automation behavior, were
implemented for each subtask in Figure 7 (subtask 3 only has one model of how it is carried out by a
human operator). For each simulation run, either the human or automation behavior model can be
switched on for each subtask. By running all possible permutations of subtask allocations, system
performance outputs can be obtained for every possible task allocation. This is possible since this
scenario only has 8 task allocation combinations (Section 3.3.3, Table 1); scenarios with a larger number
of combinations should consider segmented runs.

The task network scheduler, depicted in Figure 8 as a dotted-line box, is structured on the task network
shown in Figure 7. The scheduler is the timing engine that drives the model. It triggers the appropriate
performance model - human or automation, depending on the assigned allocation - for each subtask
and directs the model to transition to the next task once a valid output is obtained from a previous task.
For instance, the simulation transitions from subtask 1 in Figure 7 and begins executing subtask 3 or 4
(depending on the output of subtask 1) as soon as a non-null output, “0” for “no” or “1” for “yes,” is
read from the model of subtask 1. Likewise, subtask 4 begins executing as soon as a valid LAP location is
output from subtask 3 or 4.

The model was implemented in MATLAB Simulink, with the task network scheduler implemented as a
state machine in Simulink Stateflow.

Inputs to the human and automation behavior models include an out-the-window (OTW) 1-meter
resolution view of a 180m x 180m lunar terrain area in which the vehicle may land, and its
corresponding digital elevation map (DEM) (Cohanim, Fill, Paschall, Major, & Brady, 2009) generated by
an automated landing and hazard avoidance system’s scan of the terrain. Both are represented as
180x180 matrices of elevation values. There is also a digital hazard map (Forest, Cohanim, & Brady,
2008) calculated by an automated system based on the DEM and represented as 180x180 matrix of “1”
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(hazard) and “0” (non-hazard) values. In addition, inputs include the coordinates of three LAPs
generated by the automated system and ranked by desirability (Forest et al., 2008), as well as
coordinates of a point of interest (POl). The POl is a location in the landing area to which it is desirable
to land close, such as a lunar base camp, a geological feature of interest, or a grounded vehicle requiring
assistance (Needham, 2008). Finally, inputs include current vehicle position, velocity, and attitude. The
ways in which these inputs are used by the human and automation task performance models are
detailed in 3.3.2.1 and 3.3.2.2, respectively.

Outputs from the simulation include the selected LAP location and fuel usage over the touchdown

trajectory. The following vehicle dynamics are also output over the touchdown trajectory: position
(altitude and location), velocity (descent rate and horizontal velocity), attitude (pitch and roll), and
attitude rates.

3.3.2.1 Human Behavior Models

Perception and decision models for the subset of the task network selected for simulation (Figure 7) are
shown below. To simulate errors in and the variability of human performance, the human task
performance models contain numerical parameters that can be varied between simulation runs (see
Section 3.3.3).

Errors in perception are modeled using variable gains and biases on information signals. For example, a
perceived scalar distance between two points can be multiplied by a gain or have an added bias to
simulate human misperception of that distance. Two simple visual perception behaviors are modeled
here: calculating distances between points on terrain (such as between a potential LAP and the POI) and
extracting characteristics of a visual field (such as slopes between elevation values in terrain).

Variability in human performance is simulated by varying decision weights (such as the relative
importance of being far from a hazard versus being close to a POl while performing LPD), decision limits
(such as the maximum percentage of a DEM display that can be deemed “blacked out” and still be used
for LPD), and gains and time delays in the control loops used to model manual flying.

These variable parameters are shown in red in Figure 9 through Figure 13 and are listed in Appendix 2.
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Figure 9: Human perception and decision models for subtask 1 (decide whether or not to use automated system
in LPD)

In the two models of LPD (Figure 10 and Figure 11), a LAP is determined to be more fuel-optimal the
more it lies in the direction of the vehicle’s initial horizontal velocity and the farther it is from the
vehicle’s initial position (close to where the vehicle would land if all the pilot made no other maneuvers
than to gradually decrease descent rate. See Section 3.3.3 for map of landing area and vehicle initial

conditions).
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Figure 10: Human perception and decision models for subtask 2 (select LAP suggested by automated system)
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Figure 11: Human perception and decision models for subtask 3 (select LAP using OTW view and automated
system’s scan of landing area)
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Figure 12: Human perception and decision models for subtask 4 (fly to selected LAP)
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Physical actions resulting from a decision were not modeled. An exception is subtask 4, flying the
vehicle to a selected LAP, in which the manual action of controlling the vehicle’s dynamics substantially
affects system performance. Human control of vehicle dynamics is divided into the vertical and
horizontal axes of movement, as shown in Figure 12. To approximate human attention switching and
workload limitations, only one control loop — descent rate or attitude rate — is active at any given time.

This switching between control loops is governed by whether the perceived error in the vehicle’s current
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velocity is increasing more quickly in the vertical or horizontal direction. The control loops are based on
the “crossover model,” which models human manual tracking behavior as a transfer function in a closed
feedback control loop, as shown in Figure 13 (McRuer & Krendel, 1974). For the preliminary level of
modeling used in this project, gains and time delays in the control loops were chosen so that a stable
flight trajectory can be completed to LAPs selected almost anywhere within the landing area. The
numerical ranges from which the gains and time delays were drawn are listed in Appendix 2.

Note that, here, the pilot is modeled as closing the loop on vehicle position and velocity. In future-
generation vehicles, the pilot is likely to be aided by a flight director, which allows him to close the loop
on attitude errors instead. The manual control modeled here is more analogous to how flying was
performed in the Apollo program, with only an OTW view and instrument readings or callouts of
position and velocity (Mindell, 2008).
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Figure 13: Closed feedback control loops modeling human manual control of vehicle movement vertically (top
figure) and horizontally (bottom figure)

3.3.2.2 Automation and System Behavior Models

Models of automation behavior provide the automated counterparts to the human task performance
models. They are based on, or incorporate previously generated outputs of, two existing models: an
automated system for detecting hazards and selecting prioritized LAPs (Epp et al., 2008) and a control
and dynamics model of a lunar landing vehicle (Hainley, 2011). The automation behavior models
implemented for each of the subtasks in Figure 7 are as follows:
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Subtask 1 (decide whether or not to use automated system in LPD): In the current implementation of

the simulation, the automated system always decides to use itself in LPD.

Subtask 2 (select LAP suggested by automated system): After compiling a DEM from a scan of the
terrain, the automated system may identify areas that are hazardous and generate candidate prioritized
LAPs (Forest et al., 2008). The automation always selects the highest-ranked (prioritized) LAP. If this
subtask is allocated to the human behavior model, these prioritized LAPs are the same ones presented
to the human for selection.

Subtask 3 (select LAP using OTW view and automated system’s scan of landing area): This subtask can

only be allocated to a human behavior model.

Subtask 4 (fly to selected LAP): Automated behavior for the Flying subtask is governed by guidance
equations developed by Bilimoria for a lunar landing trajectory to the selected LAP (Bilimoria, 2008) and
implemented by Hainley for human subject cockpit experiments (Hainley, 2011). The vehicle was
controlled along a reference trajectory in which the horizontal velocity was proportional to the range to
the selected landing point and the descent rate decreased linearly until the vehicle was at a near hover
within a certain altitude and range of the LAP.

The system model, labeled as “model of vehicle or system under control” in Figure 8, simulates the
dynamics of a lunar landing vehicle. It was developed by Hainley (Hainley, 2011) and was based on an
early lunar vehicle design for the Constellation program (Duda et al., 2009). The model takes as input
the starting location of the vehicle and commanded descent, roll, pitch, and yaw rates from the human
or automation models of the Flying subtask (subtask 4). The descent engine was modeled to be fixed-
gimbal. When the vehicle was commanded at a non-vertical attitude, the thrust was proportionally
increased to maintain the commanded descent rate. Therefore, larger attitudes resulted in larger
horizontal accelerations. Fuel usage was calculated based on the descent engine’s thrust output and
specific impulse. The model’s outputs — vehicle fuel consumption, location, velocity, and attitude over
time — are used as system performance metrics, and also as feedback information to aid the human and
automation performance models for the Flying subtask.

3.3.3 Simulation Procedure

Figure 14 shows the sample lunar terrain area, in which a LAP can be selected and the lunar landing
vehicle can touch down, used for all simulation runs. The terrain includes a POl near which a human
pilot may desire to land.

The vehicle starts at an altitude of 500 ft., descending at 16 fps (feet per second). It is initially located at
the center bottom edge of the map as shown in Figure 14, and has a starting constant horizontal velocity
of 30 fps forward (towards the top of the map) and an initial vertical upright attitude. The locations of
the LAPs and POI relative to the vehicle’s initial position are as follows: POl — 262 ft. (50 m) to the north,
98 ft. (30 m) to the east; LAP 1 — 335 ft. (102 m) north, 180 ft. (55 m) west; LAP 2 — 427 ft. (130 m) north,
20 ft. (6 m) east; LAP 3 — 233 ft. (71 m) north, 190 ft. (58 m) east.
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Figure 14: DEM of 591 ft. x 591 ft. (180x180m) terrain area used in simulation scenario. The scenario includes 3
ranked LAPs suggested by automated system (“1” = most highly suggested), a POI, and the starting location of
the vehicle.

Since three out of the four subtasks selected for modeling can be allocated to either the human or the
automation (see Figure 7), there are 2° = 8 possible different task allocations as shown in Table 1.

Table 1: Task allocations for simulation

1. Decide to use 2. LPD using 3. LPD without

automated automated automated 4, Flying
system or not system system

Human Human Human Human
Human Human Human Auto
Human Auto Human Human
Human Auto Human Auto
Auto Human Human Human
Auto Human Human Auto
Auto Auto Human Human
Auto Auto Human Auto

For each allocation, the simulation models were run 20 times, for a total of 8 x 20 = 160 simulation runs
on the one DEM show in Figure 14 (the number of runs was chosen based on limitations on computer
processing time). For each of the 160 runs, all human model parameters were randomly generated
afresh from a uniform distribution over predefined ranges to simulate the stochastic nature of human
performance. Figure 15 summarizes the parameters varied in the human task performance models, and
the numerical ranges from which parameters were generated can be found in Appendix 2.
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Figure 15: Summary of parameters in human performance models which were varied from one simulation run to
the next

3.4 Results

The models developed here are a concept demonstration for the use of simulation in task allocation
design. The resulting data analysis should be viewed likewise — not as an end in themselves, but as an
example of how such simulation results may be useful in informing human-automation task allocation
during early-stage system design.

Figure 16 below shows, for a given terrain map, the locations of LAPs (blue asterisks) selected by the
human model.
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Figure 16: DEM of terrain with LAPs suggested by automated system (squares), a POI (green star), and LAPs
independently selected by human model (blue asterisks) over all simulation runs

Figure 17 shows how each possible task allocation fares on fuel savings and landing accuracy based on
simulation outputs.
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Figure 17: Simulated performance of each task allocation, based on mean remaining fuel and range from
selected LAP at moment of touchdown. Each allocation is denoted by 4 digits, with each digit signifying the
allocation of a subtask: “<subtask 1> < subtask 2> < subtask 3> < subtask 4>.” “1” = assigned to human, “0” =
assigned to automation. Error bars indicate standard error in the mean.

The task allocation that appears to yield the best fuel and accuracy performance is allocation “0110,” in
which the human does the decision-making but aided by automation, and automation does the flying.
Judging by the standard error bars in Figure 17, it appears to be significantly superior in final landing
accuracy, even if it is not significantly superior to its neighboring allocations — “0111,” “1010,” and
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“1110” — in fuel remaining (allocations with overlapping standard error bars are not likely to be
significantly different from each other. Note that the standard error bars for “0110” along the final
range axis do not overlap those of neighboring allocations; hence, this allocation is likely to be
significantly different from the others). Thisis to be expected: the human decision-making models take
into account the location of a LAP for fuel savings, and automated flying is more capable than a human
pilot would be of following an optimal flight trajectory. Note, from the spread of the data points in
Figure 17, that the allocation of the flying subtask 4 is not by itself a strong predictor of fuel and
accuracy performance; automated flight (the allocations ending in “0”) do not necessarily all produce
the most fuel-optimal and accurate landings. This effect is further explored below, by looking at the
variability in fuel and landing accuracy due to different task allocations.

The standard deviations in remaining fuel and final range, as shown in Figure 18 and Figure 19, provide a
more nuanced view of the results above. The variability in fuel savings (Figure 18) obtained when the
human model is performing the subtask of flying is greater than that obtained from automated flying —
this is to be expected. This was verified by performing a Levene's test between allocations that differ
only in the human-automation allocation of the flying task (last digit). In all cases, the test was
significant with p <= 0.001 (Levene’s test was not performed between “0000” and its counterpart
allocation, as a fully automated allocation has no variability). Note, however, that not all allocations
with human manual flight use more fuel than automated flight — only that there is more variability in
fuel use in task allocations in which flying is allocated to the human. For instance, there was no
variability in fuel use when the allocation is fully automated (“0000”) because the automation always
selects the same LAP location and executes an identical flight trajectory for every simulation run.
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Figure 18: Plot highlighting standard error in the mean of remaining fuel amounts for each task allocation (see
Figure 17 caption for explanation of allocation notation)

Although the allocation of the Flying subtask is the sole determining factor of variability in fuel use, this
is not the case for landing accuracy (Figure 19). In the allocations “1110,” “1010,” and “0110” the
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human performs much of the LPD decision making and the automation flies the vehicle. The opposite is
true for allocations “0111” and “0011”: the automation has a share in LPD, but the human model
controls the vehicle (in this model, the automation will always make the decision to use the automated
system in LPD). Interesting, the variability in landing accuracy is similar for these five allocations, as seen
in Figure 19. Bonferroni-corrected t-tests were performed between a group containing the allocations
“1111” and “1011” and another group containing the allocations ““1110,” “1010,” “0110,” “0111,” and
“0011.” The two groups were significantly different in their means (p = 0.042) and their variances (p <
0.0005) estimated from the variances inferred from the variances of the different allocations within a

group.

This suggests that human involvement in LPD can cause just as much variability in landing accuracy as
human involvement in flying does. One possible reason is that human-performed LPD results in a
greater variety of selected LAP locations, not all of which are as easy to navigate to as LAPs selected by
the automated system, given the location and velocity of the vehicle. The automated guidance and
control system has its own landing dispersions; in other words, its landing accuracy depends on how far
the targeted LAP is located from the initial vehicle position and whether the LAP lies in line with the
vehicle’s initial horizontal velocity vector. This would account for the fact that allocations ending in “0,”
in which flying is automated, do not necessarily produce landings with zero range error (this includes the
fully automated allocation “0000” — an automated flight to an automated-selected LAP will still have a
landing dispersion, even if the dispersion does not vary because the LAP selection and flight trajectory
does not vary). Therefore, the variability in human LAP selection is likely to cause variability in landing
accuracy, even if flying is automated. Figure 20 summarizes the general trends in landing accuracy
variability as a result of task allocation.
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Figure 19: Plot highlighting standard error in the mean of final range from selected LAP for each task allocation
(see Figure 17 caption for explanation of allocation notation)
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Figure 20: Trends of relative variability in landing accuracy for different task allocations (see Figure 17 caption
for explanation of allocation notation). Note: if subtask 1, “Decide whether or not to use automated system in
LPD,” is allocated to automation, the automation will always decide “yes.”

3.5 Discussion

One drawback of simulation is that it is impossible to fully model all human behaviors that would affect
system performance under any given task allocation. Human behavior at the cognitive level is complex
and difficult to model; research is ongoing in understanding and modeling the true mechanics of human
visual processing, attention, and decision making. These behaviors are currently implemented in the
model as idealized, simple algorithms that attempt to capture the essence of how a task would be
completed at the abstract level, but will require validation against human experimental data. For
example, numerical values that were chosen for the human model parameters and varied between
simulation runs (Appendix 2) would realistically be highly specific to a given pilot, system, and lunar
landing scenario. Here, representative values were chosen for a hypothesized system.

Aspects of human behaviors not currently represented in this model are long-term memory, situational
awareness, workload, and fatigue. Also, ranges of system performance are lost when aspects of human
performance simply cannot be modeled. Humans are often put in supervisory control of systems for
their judgment, flexibility to a range of off-nominal situations, and high-level pattern recognition. These
intangible traits help keep system performance high when off-nominal situations are encountered;
however, such situations are difficult to predict and model. Therefore, it is all the more important to
perform human subject experiments as a next step to uncover such un-modeled human behaviors that,
within the context of task allocation, affect system performance.

3.6 Conclusion
An approach was introduced by which to generate high-level performance evaluations for a system
given different allocations of tasks between a human operator and automation. The tasks of Landing
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Point Designation (LPD) and Touchdown in lunar landing were selected for modeling. Models of human
and automation behavior were implemented for all subtasks included in these two tasks.

Results from the simulation show the magnitudes and variability of system performance in response to
different allocations of the subtasks to human and automation behavior models. For instance, system
performance was predicted to be optimized if the human performs decision making tasks, and manual
tasks such as control of vehicle dynamics are automated (as in the allocation “0110” in Figure 17,
modeled in this simulation scenario). Variability in fuel use can be directly attributed to human
performance of the flying task. Variability in landing accuracy appears to result not only from variability
in human manual flight but also from the variability in human performance of the LPD task (even when
flying is automated). Results indicate that a mixed human-automation allocation increases the chances
of optimized system performance.

The work presented here shows the value of simulation in quantitatively evaluating system performance
in response to many possible task allocations in a system’s design space; such broad and high-level
evaluations would have been difficult to obtain by other means, such as human experiments.

Simulation results indicate which types of allocations are likely to be superior and how sensitive system
performance is to the allocation of a given task for a given set of human and automation model
parameters. In addition, the simulation framework presented here differs from previous developed
human performance models in that it is specifically tailored to evaluate ranges of human-automation
task allocations.

4 Effect of Perceived Risk on Lunar Landing Point Selection

4.1 Introduction

4.1.1 Motivation

No matter how tasks are allocated in a crewed lunar landing system, a human operator will still be in the
role of supervisor. The task allocation simulation described in Section 0 does not capture the
adjustments in decision making and manual flying that a pilot with high-level knowledge of the system
performance is capable of making. Such behaviors are best understood by studying the performance of
human subjects in a lunar landing simulator. The resulting evidence could then eventually be used to
enrich a task allocation model.

One such issue is the case in which the POl is located very near hazardous terrain. If the human pilot
decides to re-designate the currently selected LAP, the selection of that new aim point will likely depend
on whether the pilot anticipates the terminal descent will have to be flown manually or automatically.
In addition, the dispersion of actual touchdown points relative to the LAP when either flying manually or
automatically will likely also be factored in to the decision. The pilot knows that his manual flying
accuracy when following guidance cues to touchdown will likely not be as good as that of the automatic
system. Placing the LAP close to hazardous terrain requires estimation of the risk of touching down in
the hazardous area. LAP placement thus requires the pilot to make trade-offs among the perceived
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benefit of landing close to the desired POI, the perceived risk that the actual touchdown may occur in
hazardous terrain, and the likelihood of having to take over and fly manually. It may also depend on the
individual pilot’s personal willingness to take risks. A human subject experiment was performed to
explore how human pilots tailor LAP placements in response to different terminal descent task

allocations.

4.1.2 Problem Statement
From the subtasks modeled in the simulation (Section 0), subtasks 3 and 4 — “Select LAP using OTW view

and automated system’s scan of terrain” and “Fly to selected LAP” — were chosen for human subject
experimentation (Figure 21). Due to the difficulty of simulating a realistic lunar OTW view, subtask 3
was modified so that a LAP would be chosen using only an automated system’s scan-based map of the
landing area, i.e., simulating a landing in darkness at the lunar pole or dark side, for example (Epp et al.,
2008).

Landing Point Designation

Yes‘é 2: Séiectiai? .LAP :
suggested by —
_ ) automated system Touchdown
| 1. Decide whether | | | HUMAN | AUTO
| ornottouse | | LAP 4. Flyto
| automated system | | | 3 Select LAP using selected selected LAP
in designation | out-the-window-view
CHUMAN | AaUTO |  aadautomated
No| system's scan of
terrain

Figure 21: Subset of tasks modeled in simulation that was selected for human subject experimentation. Subtask
3 is implemented in the experiment without the use of an OTW view (i.e., only automated system scan).
Subtasks 1 and 2 (grayed out) were not used in the experiment.

The landing area map included hazardous and nonhazardous regions, with a POl located on the edge of
a hazardous region (Figure 23 and Figure 24). Subjects were asked to place the guidance LAP target so
that, anticipating the likely touchdown dispersion, the actual touchdown would be as close as possible
to the POI but never in the hazard region. Pilots were told they would be evaluated based on their
average performance (whether vehicle was out of the hazard region, close to the POI, and within fuel
and dynamic safety limits at contact) over multiple trials. On each run, the pilots were told the
probability that they would have to take over and fly manually. They estimated the touchdown
dispersion (scatter and bias) based on their experience in initial practice sessions, and later from plots
shown to them depicting typical dispersion of simulated runs. This scenario of landing close to a POI
located near hazard area is typical of several anticipated precision landing scenarios (e.g. land near a
base camp but not on top of it, or landing near a geological site that, in itself, is hazardous for landing).
It is also representative of an operational scenario in which repeated landings are made, such as
supply/resupply missions to a lunar base camp.
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Scientific question:

How does the allocation of the second task (manual vs automatic terminal descent flying)
influence pilots’ performance of the first task (manual placement of the LAP)?

ie.,

Will pilots risk landing closer to a POl — and hence, closer to a hazard region — if the chances of a
precise automated landing are greater? Will they choose LAPs that correctly account for landing
accuracy errors in their own flying ability and in the automation, if they know who will, or may*,
be doing the flying?

*In an operational scenario, the pilot may be aware of the (usually small) probability of a flying task
allocation changing in the midst of a mission. For example, he may have to take over flying manually in
case of an automated system failure or late-stage discovery of undetected hazards in the targeted
landing point.

4.2 Background

Previous research on decision making in LPD studied how information display affected the choice of
LAPs. Forinstance, Needham researched different levels of automation aid in selecting a LAP, and
discovered that higher levels of aid (for example, presenting subjects with a winnowed selection of LAPs,
or ranking the LAP selections) increased the safety of LAPs chosen by subjects (Needham, 2008). In her
experiment scenario, subjects had the objective of selecting LAPs that were close to a POI; therefore,
higher levels of automation allowed them to minimize the loss of safety in pursuing that objective.

This experiment, however, attempts to uncover how human decision making biases and factors affect
LAP selection. Such biases and factors would cause decision making to deviate from rational or
normative models, such as the rule-based and multi-attribute utility decision making modeled in the
task allocation simulation in Section 3 (Wickens & Hollands, 2000). In this experiment’s scenario,
rational behavior would call for subjects to adjust the LAP location according to knowledge of the flying
task allocation and manual vs. automated landing accuracy (presented to or achieved through
experience by the subject) to achieve the goal of landing as close to a POI as possible without landing in
a hazard region over several flights. In other words, subjects would maximize “expected long-term gain,
which after all can only be realized following a long-term average of the outcome of several decisions
(Lehto, 1997)” (Wickens & Hollands, 2000).

4.2.1 Memory Factors

Humans utilize shortcuts in their recall of past observations that may prevent them from making
decisions based on the “long-term average of the outcome of several decisions” referred to above
(Wickens & Hollands, 2000). The following factors could conceivably influence memory of previous
touchdown accuracies if the subject observed them successively over time:
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e Availability factor: Certain past observations may be easier to recall than others, especially

those that are more recent, simpler to understand, or whose details are salient enough to aid
their encoding into long-term memory (Tversky & Kahneman, 1974).

e Anchoring factor: Early observations are weighted more heavily than later observations
(Tversky & Kahneman, 1974).

e Recency factor: The opposite of anchoring — the most recent observations are weighted the
most heavily (Baddeley & Hitch, 1974).

e Limitations of working memory factor: Since not all past observations can be kept in short-term

memory, the above factors dictate which ones are remembered (Baddeley & Hitch, 1974).

One way to mitigate the effects of these heuristics is to remove the time factor from the way in which
landing error information is presented to the subject. For example, subjects could be asked to make LAP
selections based on plots simply depicting touchdown dispersion data for all previous landings in a single
plot.

4.2.2 Biases in Perception of Risk and Reward

Rationally, the greater the difference in the landing accuracies of the subject and the automated system,
the more the subject’s LAP selections should compensate for the difference when presented with
manual vs. automated flying task allocations. However, this may not be the case if a subject is risk-
averse and biased towards planning for the worst case rather than to maximize long-term gain. To avoid
any risk of landing in a hazardous area the subject may always designate LAPs far from a POl located on
the edge of a hazard, no matter what the chances are of automated versus manual flight. In other
words, the subject aims for a future in which all landings are safely away from hazards, rather than to
maximize the number of landings that are close to the POI at the cost of a higher risk of landing in a
hazardous region.

Kahneman and Tversky identified this bias as “loss aversion,” in which losses are seen as worse than
gains of the same magnitude (Kahneman & Tversky, 1984). In lunar landing, selecting a LAP close to a
POl and having the automated system execute an accurate landing that avoids the hazardous region
would yield a large reward. However, the loss-averse subject may consider the possibility that the flight
may have to become manual in an off-nominal situation, in which case the decreased accuracy of a
manual flight may result in touchdown in a hazardous region. This high cost is perceived to outweigh
the reward, even if the cost and reward are of equal magnitudes. This is depicted by the plot of
subjective vs. real-world value (utility) in Figure 22, left. The large slope on the left-half plane indicates
that losses are perceived as worse than they really are; the relatively gentle slope on the right-half plane
shows that gains are perceived as less than their actual value.

A corollary to this is the tendency to overestimate the frequency of low-probability events and
underestimate higher-probability events (Kahneman & Tversky, 1984). Even when explicitly informed of
the high chance of automated flight compared to the lower chance of manual flight, a cautious subject
may overestimate the probability of the less desirable outcome (manual flight). This bias is illustrated by
the hypothetical relationship between subjective and real-world probability in Figure 22, right. When
probability is low, the perceived subjective probability (solid line) is greater than the real-world
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probability (dotted line). At higher probabilities, the opposite is true. Therefore, low-probability events
are overemphasized compared to high-probability events.
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Figure 22: Subjective versus true probability and.*xtility (Kahneman & Tversky, 1984)
4.3 Methods

4.3.1 Independent Variables and Trial Schedule
Three independent variables in the LPD task were manipulated in this experiment: 1) flying task
condition 2) landing dispersion information presentation condition, and 3) hazard area location.

1. Flying task condition: Subjects were told that either a) they would definitely be flying manually
(100% probability), or b) that the descent would be initially flown automatically, but there was a
25% probability they would have to take over and fly manually once they have selected a LAP
(representative of an automated system failure). It was expected that if pilots knew there was a
chance they might fly manually, they would deliberately adjust the guidance LAP relative to the
hazard area to compensate for manual touchdown dispersions, unlike if automatic flight was
expected (this adjustment may put the LAP closer or farther to hazards, depending on the
distribution of manual touchdown dispersions).

Based on preliminary runs of the experiment, a 25% chance of manual flight and 75% chance of
automated flight were chosen to elicit expected-value decision-making in the LPD task: the
chance of a precise automated landing should be high enough to encourage subjects to select
LAPs differently from the way they would if they knew that flying would be manual, yet the
chance of a possibly less accurate manual landing was also high enough to be considered.

(Since a manual LPD option was provided, and there is always some chance of a human pilot
having to take over manual flight in case of off-nominal situations, the 0% probability of manual
flight case was not studied.)

1. Landing Error Information condition: There are two ways in which the subject could acquire
information on manual landing dispersion: a) previous direct experience, and b) scatter plot of
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representative errors. The first way is for the subject to fly successive trials in manual mode and
observe the consistency and bias in his landings relative to the guidance LAP. However, as
discussed in Section 4.2.1, the subject’s memory may be influenced by recall biases and the
limitations of working memory. To avoid these biases, the subject could be shown a scatter plot
of synthetically generated landing errors, and told that they are representative of a previous
pilot’s manual touchdown dispersion. The subject would then be asked to set the LAP based on
the scatter plot data. In both instances, the subject was expected to bias the LAP in a direction
towards or away from the hazardous area by a distance that depends on the anticipated
touchdown dispersion and the personal loss aversion tendencies of the subject. To assess the
effect of the character of the scatter plot data on the subject’s performance, the scatter plot
synthetic data was derived from a normal distribution, but with three different bias levels and
two different standard deviations, for a total of six different scatter plots (Section 4.3.4.2).

Landing Area Map condition: Approaches were always flown north, but in one condition, the
vehicle had to overfly the hazard area to reach the POI, and therefore had to be landed in the
safe zone “long” of the POI. In a second condition, the vehicle overflew safe terrain to the POI
and had to land “short” of the hazardous region.
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Table 2 shows the design of trials in this two-part experiment. After a PowerPoint briefing (Appendix 3),
subjects were allowed a total of 12 trials (9 manual and 3 automated) to practice selecting a LAP and
flying to the LAP when the flying task was allocated to them. This also allowed them to gain a
preliminary impression of the character of their manual landing errors, prior to “Part 1” of the formal
experiment.

Part 1 of the experiment allowed the subject to gain manual landing error information by performing
successive manual flights. After subjects completed Part 1, they underwent “Part 2” in which landing
error information was presented in scatter plots. In both parts of the experiment, the two flying task
allocations were presented to the subject during LAP selection.
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Table 2: Number of trials in each part of experiment

Part 1 (Landing error information Part 2 (Landing error
= subject’s own manual flights) information = scatter plots)
100% chance of manual flying: 2 flying task conditions (100% or 25%
2 landing area maps x 5 repetitions = 10 trials chance of manual flying)
25% chance of manual flying—=> but flying turns out to be x 6 scatter plots (Section 4.3.4.2)
automated (no manual flying performed, touchdown not
simulated): x 2 landing area maps

2 landing area maps x 3 repetitions = 6 trials
x 2 repetitions per trial type
25% chance of manual flying = but flying turns out to be
manual (subject manually flies to LAP): =48 trials
2 landing area maps x 2 repetitions = 4 trials

=20 trials

All subjects completed Part 1 before Part 2, since it was necessary for the subject to gain hands-on
understanding of the manual flying task before selecting LAPs based on scatter plot landing dispersions.
Within each part of the experiment, trials were pseudo-randomized: the order of conditions was
random, but balanced so that all distinct trial types had approximately the same average trial age so that
there would be no confounding of possible learning effects with the effect of trial type. Each set of
conditions had at least 2 repetitions, as seen in
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Table 2. In Part 1, the “100% chance of manual flight” flying task conditions were repeated 5 times to
allow more data on subjects’ manual flights to be collected, and the “25%” flying task conditions, in
which flying turns out to be automated, were repeated 3 times to give subjects the feel that, when
presented with that condition, there was indeed a greater chance of the flight turning out to be
automated rather than manual. All subjects received the same schedule of trials, shown in Appendix 4.

4.3.2 Hypotheses
1. The greater the individual subject’s manual landing error, the greater will be the effect of flying

task condition on the risk level of selected LAPs.

This hypothesis assumes that subjects use rational decision making in LPD — the greater the
subject’s manual landing error, the more the subject should adjust LAPs to compensate for the
error when there is 100% rather than 25% chance of manual flight.

2. The presentation of landing error information (successively observed landings vs. scatter plot of
previous landings) affects the risk level of selected LAPs.

This hypothesis assumes that subjects’ recall of their manual landing errors are subject to
memory factors described in Section 4.2.1. If this is not the case, then their recall would, in
theory, be similar to their looking at a scatter plot of landing errors; the LAPs selected under
both cases would not have significantly different risk levels (risk level given the landing accuracy
of whoever the LAP is selected for, the subject or the hypothetical pilot represented by the
scatter plot).

4.3.3 Scenario Design

In each trial, one of the two different landing area maps shown in Figure 23 was presented to the
subject for LPD. Each map represents an 800 ft. x 600 ft. area, and a LAP could be selected anywhere on
the map. Regions that are hazardous for landing were colored red, and each map contained one POI
(green star) that lay on the edge of a hazardous region. To avoid hazard regions, the vehicle must be
landed short of the POl in one map (called the “short” map) and long of the POl in the other map (called
the “long” map). The POl was offset about 100 ft. east of center in the short map and west of center in
the long map. These maps are representative of the DEMs that would be generated by an automated
system that scans a landing area on the lunar surface and calculates hazardous parts of the terrain.
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Figure 23: Maps of landing areas used in human subject experiment. Short map at left, long map at right.

Two additional maps, called the “northern POI” and “southern POI” maps (Figure 24), were presented in
which subjects may decide to land long or short of a hazardous region. In the northern POl map (Figure
24, left), flying over the hazardous region would allow a landing closer to the POI, but would consume
more fuel (the vehicle always approaches from the south). In the southern POI map (Figure 24, right),
landing short of the hazard region would allow a landing closer to the POI, but there is a risk of
overshooting the POl and landing in hazards. These were presented during the second half of training
when subjects had more familiarity with their landing errors.

Figure 24: Additional maps included in training session. Northern POl map at left, southern POl map at right.

Using a set of PowerPoint briefing charts (Appendix 3), subjects were instructed to land as close to the
POI as possible without any part of the vehicle intersecting a hazardous region. To encourage this
behavior, a landing scoring system was introduced which penalized subjects for landing in a hazardous
region and rewarded them for landing close to the POI. A numerical scoring system also provides all
subjects with the same weightings for the two competing objectives of landing away from hazards yet
close to the POI. To encourage expected-value decision making, subjects were told they should
“maximize your total landing score summed over all your trials,” so competitive subjects would not take
exceptional risks to achieve the highest single run score. Due to the difficulty of calculating the location
of landings relative to the edge of hazardous region as seen on the display in the midst of an
experiment, subjects were not told their landing scores.
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The scoring system was as follows:

®* Any part of vehicle intersecting hazardous region: -10 points

* Vehicle completely in nonhazardous region: 5/x points, in which x = distance from center of POI
to center of vehicle, in widths of the vehicle (vehicle width = 30 ft.). The maximum possible
score is 10 points for a landing in which an edge of the vehicle is as close to the center of the POI
as possible while barely touching the red region (score = 5/ 0.5 vehicle widths = 10).

During LPD in each trial, subjects are informed either that they will have to do the flying (100% manual)
or that there is a 75% chance that flying will be automated (25% manual). Subjects were also told that
the automated system always lands the vehicle no more than 10 feet off the center of a selected LAP. In
manual flights, subjects must stay within safety limits on vehicle velocity, attitude, and fuel at
touchdown (Bilimoria, 2008); otherwise the landing will be scored at -10 points. Subjects were shown a
fuel contour map over the landing area which indicates that selecting LAPs towards the south and center
of the landing area map would result in less fuel usage for the vehicle, allowing more hover time to
reduce landing errors. Instructions to the subjects on the scoring system, touchdown safety limits, and
the fuel contour map are shown in the subject training slides in Appendix 3.

The initial conditions of the vehicle at the start of each flight are listed below. Contact occurred when
the vehicle’s center of mass is 12 ft. above the ground.

e Horizontal range: 1,046 ft. south of the center of the landing area map. This range was chosen
to be large enough so that no matter where a LAP was located on the landing area map, the
vehicle’s calculated trajectory would not have to overshoot and curve back southward towards
the LAP.

e Altitude: 500 ft. altitude

e Attitude: pitched 19 degrees upward

e Horizontal velocity: 45 ft. per second (fps) northward

e Descent rate: -16 fps

e Attitude rate: none

In between parts of the experiment, the subjects were verbally asked what they perceived their manual
landing dispersions to be, to describe their strategies in selecting LAPs, and to rate their personal risk-
taking behavior on a scale from 1 to 5 (Appendix 6). Written notes on their responses were taken by the
experimenter.

4.3.4 Equipment and Displays

Experiments were conducted in Draper Laboratory’s lunar landing vehicle cockpit fixed-base simulator.
Subjects were seated in a chair in front of three LCD screens arranged in a row at eye height, as shown
in Figure 25, and interacted with the displays and simulation using a computer mouse and commercial
gaming joysticks.
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Figure 25: Experimenter seated in lunar landing simulator.

4.3.4.1 Landing Aimpoint Selection and Manual Flying
For the training session and Part 1 of the experiment, the LCD screens displayed — from left to right —a
flight display, the landing area map, and a landing rating screen, as shown in Figure 26.

Landing Performance

Actual Desired Rating

Figure 26: Displays for training and Part 1 of experiment. From left to right: flight display, landing area map, and
landing rating screen.

As detailed in Appendix 3 instructions to subjects, the flight display, used by Stimpson in human subject
cockpit experiments (Stimpson, 2011), provided real-time information about the vehicle to aid in manual
flight. Such information included vehicle altitude (ft.), attitude (deg.), descent rate and horizontal
velocities (fps), percentage of fuel remaining, and guidance cues for attitude and descent rate. In
addition, the simulator provided recorded voice call-outs when 60 and 30 seconds of hover time
remained before reaching the fuel safety limit.

The landing area map displayed a timer for the 20 seconds in which subjects must make a LAP selection
before each flight. During that time, the flying task condition (100% or 25% chance of manual flight) was
also displayed. After 20 s have expired, if the flight turns out to be manual, the vehicle began a flight
trajectory from its initial dynamic conditions. A right-hand computer mouse was used to click on the
map to select a LAP.

At the end of each manual flight, the rating screen showed the landing error and whether any safety
limits were violated at vehicle contact.
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Subjects controlled vehicle attitude with a right-hand joystick (Saitek Cyborg Evo). The mode of flight
control was Rate Control — Attitude Hold, used in the Apollo lunar module (Hackler et al., 1968). A
forward deflection of the joystick would result in the simulated vehicle pitching forward at a constant
rate, which increases the rate of acceleration in the forward direction. (Note that the control system
was modeled with a 2 ms time delay. This, combined with a large vehicle moment of inertia and
thruster control power limits, resulted in approximately fourth order manual control — control of
attitude acceleration rather than rate — when large attitude rates were commanded (Hainley, 2011)). If
the subject lets go of the joystick, the vehicle’s attitude is held. Subjects were only required to control
vehicle attitude in the pitch and roll axes; yaw was not exercised. Vehicle descent rate was controlled
using a left-hand throttle button (Saitek X52), which could be clicked to increase or decrease the descent
rate in increments of 1 fps.

For more information on the displays and use of the joystick and throttle button, see subject training
slides in Appendix 3.

Vehicle dynamics were provided by a system model developed by Hainley for human subject cockpit
experiments (Hainley, 2011), based on an early lunar vehicle design for the Constellation program (Duda
et al., 2009). The model takes as input the starting location of the vehicle and commanded descent, roll,
pitch, and yaw rates from the pilot. The descent engine was modeled to be fixed-gimbal. When the
vehicle was commanded at a non-vertical attitude, the thrust was proportionally increased to maintain
the commanded descent rate. Therefore, larger attitudes resulted in larger horizontal accelerations.
Fuel usage was calculated based on the descent engine’s thrust output and specific impulse. The
model’s outputs — vehicle fuel consumption, location, velocity, and attitude over time — were fed to the
flight display.

Flying guidance cues for descent rate and attitude were generated by a slightly modified version of the
automated guidance system in Hainley’s model, which calculated a reference trajectory based on
guidance equations developed by Bilimoria (Bilimoria, 2008). The reference trajectory was calculated so
that the horizontal velocity was proportional to the range to the selected landing point and the descent
rate decreased linearly until the vehicle was at a near hover within a 150-ft. altitude and 22-ft. range of
the LAP.

4.3.4.2 Scatter Plots of Synthesized Landing Errors
In Part 2 of the experiment, the left screen displayed a scatter plot of synthesized landing errors and the
center screen displayed a landing area map as shown in Figure 27. The right screen was unused.
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Figure 27: Displays for Part 2 of experiment. From left to right: scatter plot of synthesized landing errors and
landing area map.

In each trial, the subject had 20 s to select a LAP that will maximize total future landing scores for a pilot
whose landing performance is characterized by the scatter plot, for a given map and flying task
allocation. The subject was not required to perform the task of flying. Verbal instructions read to the
subject for Part 2 can be found in Appendix 5.

Six scatter plots were used in the experiment. Each contained 14 synthetic landing locations, relative to
a LAP (corresponding to the 14 manual landings the subject performed in Part 1 of the experiment). The
error of each landing from the LAP in the north-south (NS) (i.e., long-short) and east-west (EW)
directions were derived from a normal distribution with a mean of -2, 0, or 2 vehicle widths (mean radial
landing error = 2v2 to the southwest, 0, or 2v2 to the northeast) and a standard deviation of 1 or 3
vehicle widths. The six different scatter plots are shown in Figure 28 below. The SDs of 1 and 3 were
chosen to create two visually distinct patterns of landing errors; scatter plots with SD=1 contained
landings that were noticeably more consistent and clustered than those with SD=3. To help put these
synthetically generated scatter plots into context before running Part 2 of the experiment, the subject
was shown the scatter plot generated from his landing errors in Part 1.
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Figure 28: Scatter plots of synthesized landing errors. Black squares represent where landings are located
relative to a target LAP (magenta square with crosshairs). From left to right: mean landing deviation = -2, 0, and
2 vehicle widths in both north-south and east-west directions. Top row: SD of landing deviations = 1 vehicle
width. Bottom row: SD of landing deviations = 3 vehicle widths.

4.3.5 Subjects

Eleven subjects were recruited for this experiment (2 female, 9 male), ranging in age from 19 to 34
(mean age = 23). Five subjects had some prior experience with computer-based flight simulators, and 2
had experience with lunar landing simulators. No subjects have had previous flight experience. All
subjects gave informed consent in accordance with the MIT Committee on the Use of Humans as
Experimental Subjects (see Appendix 7).

4.3.6 Measurement Collection and Data Calculation
The following measurements were collected at 10Hz over the course of the experiment:

e Locations of LAPs selected by subject
e Vehicle parameters during flight
o Altitude and horizontal position (ft)
o Descent rate and horizontal velocity (fps)
o Pitch and roll (deg)
o Fuel percentage remaining
e Flying guidance cues shown to subject on flight display
o Pitch and roll (deg)
o Descent rate (fps)

The following parameters were then calculated:

e Locations of each selected LAP relative to POl on each map

e Vehicle’s final landing error relative to selected LAP

e Estimated “risk level” associated with the LAP selection, or “risk t,” as explained below

e Subjects’ mean square error in descent rate, pitch, and roll relative to guidance cues during each
manual flight

Figure 29 shows how LAP locations and the vehicle’s landing error are referenced.
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Figure 29: LAP location (crossed magenta square) and landing error (blue vector)

In this experiment, the POl was always located at the boundary of a hazard region. Each subject is
assumed to have a landing error directional bias with some normally distributed dispersion around it.
Hence, the risk of landing in the hazard region increases if subject places the LAP close to the POI, even
if the LAP is in the non-hazard region. Quantitatively, the risk depends on the subject’s directional bias
and touchdown dispersion (measured in Part 1 or assumed based on the synthetic scatter plot data in
Part 2). A measure of the overlap with the hazard zone was obtained, as illustrated in Figure 30, by
overlaying the landing error distribution on the subject’s LAP, and then computing the distance (in the
north-south, along-approach-track direction) between the mean of the distribution to the edge of the
hazard. This distance (labeled “x” in Figure 30) was computed in vehicle widths. To estimate the
associated risk of hazardous landing, this distance was divided by the standard deviation (denoted “s” in
Figure 30) of the landing dispersion. This non-dimensional ratio is referred to as “risk t” since it should
be distributed as (Student’s) t with n-1 degrees of freedom for a landing error data sample containing n
points. The more positive risk t is, the safer the landing. Conversely, if risk t is nearly zero or is
negative, a hazardous area landing is more probable. Figure 30 illustrates how risk t values are
calculated for two example LAP selections.
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Figure 30: Risk t derived from the mean of a set of landings on a single map

For Part 1, risk t's were calculated using the mean and standard deviation of the subject’s own landing
errors over all manual flights in this part of the experiment. The calculations were done separately for
the two landing site locations. For Part 2, risk t’s were calculated using the known mean and standard
deviation of the synthesized landing error scatter plots.

A corresponding “t” parameter was also calculated for the across-track EW direction. Note that,
because hazard edges are approximately horizontal, the along-track NS risk t can be interpreted as an
indicator of the riskiness associated with a LAP. A positive t in the EW direction means only that the LAP
was placed too far to the east given the distribution of the subject’s EW landing errors; a negative t
means the LAP was placed too far to the west.

Mean square error in descent rate, pitch, and roll relative to guidance cues for each manual flight was
calculated by squaring the difference between actual and guidance values at all time points (measured
at 10Hz) from the start of manual flight control to contact, then taking the average.

Vehicle width, 30 ft., was used as the unit of measurement for all data. All data analysis was performed
using MATLAB (The MathWorks, Inc.) and Systat 13 (Systat Software, Inc.) software.
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4.4 Results
4.4.1 Overview of Flying and Landing Performance in Part 1

4.4.1.1 Mean Square Error, Landing Scores, and Safety Limit Violations

Table 3 below shows, among all subjects, the number of landings in Part 1 that exceeded safety limits
upon contact and mean square errors in descent rate and attitude with respect to guidance cues (tallies
of such landings by subject can be found in Appendix 8). Mean square errors for each manual flight
were calculated from the start of the trajectory to contact.

Table 3: Flying and landing performance over all subjects for Part 1

Number of flights that exceeded safety limits at Mean square error from
Safety limits contact (11 subjects x 14 manual flights per guidance cues = (root mean
subject= 154) square error)’
Descent rate >= 3 fps 9/ 154 (4 subjects) (2.2
Pitch <=+ 6 deg. 12 / 154 (5 subjects) (1 1.8)2
Roll < = 6 deg. 5/154 (2 subjects) (2.4)°
Horizontal velocity < 4 fps 37 /154 (7 subjects) N/A
Fuel > 5% remaining 15/ 154 (5 subjects) N/A
# of landings in hazard area 30 /154 (10 subjects) N/A

Landings that exceeded safety limits were included in the analysis, because subjects did take these
landings into account when building an understanding of their landing dispersions in Part 1. Such
landings give insight into which aspects of manual control subjects found the most difficult. The task of
nulling the vehicle’s horizontal velocity at contact to within safety limits was apparently the most
difficult aspect of the flying task. Of the other three quantities — roll, pitch, and descent rate — on which
subjects controlled during the flying task, they exhibited the greatest mean square error from guidance
cues on pitch control. This is to be expected since the task primarily involved pitch maneuvers to slow
the vehicle along the direction of flight and null horizontal velocities prior to touchdown.

Subjects achieved an average score of -2.2 per landing (SD of average scores among all subjects = 5.0).
Since a violation of a safety limit earns -10 points, and it is extremely difficult to reach a score of 10 for a
successful landing (highest individual landing score = 6.9), it is not surprising that the average landing
score was negative. The lowest scoring subject (average score = -9.2) had 10 out of 14 manual flights
that violated at least one safety limit; the highest scorer (average score = 5.4) had no flights that violated
safety limits. A mixed hierarchical regression found a significant effect of the landing area map
condition on score (p = 0.026); scores that equaled -10 were excluded; residuals of fit were normally
distributed and had stable variances). On average, scores were 1.2 points lower for the long map. One
reason could be that, in the long map, the POl is located farther south than the POl in the short map
(see Figure 23). Since the vehicle’s starting location is south of the map (Section 4.3.3), LAPs selected for
the long map would result in shorter flight trajectories, allowing less time for the pilot to close guidance
errors or steer clear of the hazard region before contact. A significant effect of map is also reflected on
risk t's (LAP t's in the NS direction), as shown in Section 4.4.2. There was no significant effect of flying
task condition, or a cross-effect of map and flying task condition, on score.
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4.4.1.2 Landing Errors

There was no significant effect of the landing area map condition on landing error. The effect of map
was examined for 22 combinations of subject and EW/NS directions (11 subjects x 2 directions = 22) by a
two-sample t-test for each. Those differences were significant in 4 of the 22 cases (listed in Appendix 9),
which is approximately what would be expected for a test applied at p=0.05. That number of significant
results is also not significant according to the Sign test, which is consistent with the conclusion that
there is no effect and that any apparent effect is a false positive. (Typically, one would apply a
hierarchical regression with several independent variables to the analysis of data like this. That
hierarchical fit was performed, but the results did not meet the requirements of normal distribution and
stable variance among the residuals. As an alternative, less general methods were applied.)

Subjects’ average landing error relative to the selected LAP for each flight in Part 1 was 0.46 +0.87
(mean +/- SD) vehicle widths to the west and 0.37 * 1.2 vehicle widths to the south. Most subjects
tended to land south-west of targeted LAPs, as seen in Figure 31, except for 2 subjects whose landing
errors were substantially larger and had a different directional bias than the others.
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Figure 31: Mean landing errors for each subject. Error bars indicate SD in EW and NS directions. Units = vehicle
lengths. Each data point contains landings for both landing area maps, as no significant effect of map was found
on landing error.

Finally, landing accuracy remained consistent over Part 1 of the experiment; no significant effect of trial
number on EW/NS landing error was found using linear least squares regression. Therefore, subjects
were sufficiently trained so that their landing accuracy did not significantly increase during Part 1.

4.4.2 Landing Aim Pointt's

There was no effect of trial number on LAP t's in the EW or NS direction in Part 1 of the experiment (for
Part 1, there was a possible learning effect since subjects acquired knowledge on their manual landing
dispersions over the course of trials, but no significant effect was found).

A linear least squares regression was performed on risk t’s, calculated in both the NS, and LAP t's,
calculated in the EW direction, versus trial number. This represents 88 combinations of subject, map,
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and flying task condition (11 subjects x 2 maps x 2 flying task conditions x 2 directions (NS and EW) = 88
cases). Of these, 88 x .05 = 4.4 false positives are to be expected at p = 0.05. Seven false positives were
found (listed in Appendix 9), which is consistent with the expected number of false positives. The test
did find significant effects of trial number on LAP or risk t. Therefore, the risk levels (t) in Part 1 of the
experiment are consistent with the null hypothesis that the risk taken is constant over time.

A mixed hierarchical regression test yielded a significant effect (p < 0.0005) of map on risk t’s (t's in the
NS direction) in Part 1 of the experiment. On average, risk t’s for the long map were 0.45 less than those
for the short map, which implies that subjects’ LAP selections on the long map was slightly more risky
than for the short map given their landing dispersions. This is consistent with the result found in Section
4.4.1.1 that subjects scored lower on the long map. Therefore, analysis was performed separately for
the two landing area maps.

Hypothesis 1: The greater the subject’s landing error, the greater will be the effect of flying task
condition on the risk level of selected LAPs.

It is hypothesized that there is an effect of the size of the subject’s landing error on the observed effect
of flying task condition. The difference between the average t's for the two flying task conditions —i.e.,
the effect of flying condition for each subject — was calculated for each subject separately for t’'s in the
NS and EW directions. A linear least-squares regression was then performed on the effects of flying
condition against landing error. In Part 1, that landing error is the subject’s average landing error. In
Part 2, it is the mean of the landing errors in the scatter plot shown to the subject during LAP selection.

Results for Part 1 of the experiment are shown in Figure 32 below. A significant slope (in units of 1/ft.)
was found for both the short (p=0.015) and long (p=0.005) maps in the NS direction (the deviations from
the best-fit line were normally distributed and satisfied Levene’s test). The large errors in the calculated
slopes imply that they are not significantly different between maps. However, a mixed hierarchical
regression yielded a significant effect of map on the difference in t's due to flying condition in the NS
(p=0.038) and EW (p=0.05) directions (residuals were normally distributed, variances of residuals for
each map were stable over the range of predicted values). No significant slope was found in the EW
direction. This suggests that subjects are more attentive to the NS rather than to EW positioning of their
LAPs in Part 1. Since the edge of the hazardous region runs horizontally east to west on both maps, it is
not surprising that LAP placement and landing error in the NS direction, which is relevant to hazard
avoidance, may be more salient to subjects than in the EW direction, which is irrelevant to hazard
avoidance.
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Figure 32: Effect of flying task condition on t plotted against subjects' mean landing errors in Part 1. A positive
effect (difference in t) means that LAPs selected for the 25% manual condition were safer than those selected
for the 100% manual condition. Each data point contains 10 LAP selections (5 for each allocation) by one subject
for one map type.

For Part 2, however, there was a significant slope in both EW and NS directions (p < 0.0005), as shown in

Figure 33. Again here, as inferred from the error in the slopes relative to their difference, there is no
significant effect of map. Mixed hierarchical regressions did not yield a significant effect of map either.
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Figure 33: The effect on the t-risk parameter of flying task condition and mean synthesized landing error in Part
2. A positive effect (difference in t values) means that LAPs selected for the 25% manual flying task condition
were safer than those selected for the 100% manual condition. In the two upper charts, each data point
contains 8 LAP selections (4 for each flying task condition) by one subject for one map type. The lower two
charts contain box plots of the same data. **=The effect of flying task condition (the difference in t values) is
significant (p < 0.05) for both maps.

The positive slopes of these effects against subjects’ landing deviations can be interpreted differently in
the EW and NS directions.

In the EW direction, if subjects tended to land east of the targeted LAP, they placed LAPs farther to the
west under the 100% manual flying condition. However, LAPs selected under the 25% manual condition
were not moved westward. The result is a positive difference in t's when subjects had eastward landing
errors, and vice versa. This occurred only when they were viewing synthesized scatter plots of landing
dispersions, and not in flight, in Part 1 of the experiment.

In the NS direction, if subjects had tended to land on the side away from hazards, they placed LAPs
closer to the hazard edge under the 100% manual condition. LAPs selected under the 25% manual
condition did not include this compensation. The result is a positive difference in t's when subjects’
landing errors were in the direction away from the hazard edge, and vice versa. This occurred no matter
how subjects were presented with landing error information.

Therefore, subjects selected LAPs that compensated for their mean landing errors. The compensation
was less when they knew there was only a 25% chance that the flight would be manually flown. The
only case that showed no evidence of landing error compensation was in the EW direction in Part 1 of
the experiment.

Hypothesis 2: The presentation of landing error information (successively observed landings vs. scatter
plot of previous landings) affects the risk level of selected LAPs.
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Variance in t's

A paired t-test was performed between t's of LAP selections made in Part 1 and in Part 2 of the
experiment separately for the four combinations of map and direction (NS and EW). A significant
difference (0.482, p=0.021) was found between parts of the experiment only in the EW direction for the
long map. Although the t-tests indicated a significant difference between Parts 1 and 2 for only one
case (long map, EW direction), the results shown earlier in Figure 32 and Figure 33 suggest that scatter
plots caused subjects to compensate more systematically for their landing errors in the EW direction.
Therefore, there is no significant effect of the landing error information on LAP risk levels. Moreover,
since Part 1 always took place before Part 2 (for all subjects) any effect observed might also be
attributed to that effect of order.

The way landing error information was presented to the subject appeared to affect the consistency of
t's. The box plots in Figure 34 below show the range of subjects’ variance in t’s for Part 1 and Part 2 of
the experiment. In addition, for Part 2, separate variances in t are shown for the two different standard
deviations (SD=1,3) used in separate sets of trials as the basis of the synthesized scatter plots.
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Figure 34: Variance in t's of target selections vs. landing error information. Horizontal bars show significant
difference by paired t-test, p < 0.05. Each box plot contains 11 data points, one for each subject (20 data points
per subject for Part 1, 24 data points per subject for each Part 2 box plot). Note that the EW plot excludes an
outlier subject for the short map. *=Variances are significantly different (p < 0.05) only for the long map.
**=Variances are significantly different (p < 0.05) for both maps.

Landing error scatter plots with the smaller SD of 1 vehicle width were apparently associated with larger
variance in t's. In fact, the variances of t's in Part 1 are not significantly different from the variances of
t's selected using scatter plots of SD = 3 vehicle widths. One of the subjects had a very large outlier
variance for the short map in the EW direction. That outlier subject, however, was not the source of the
significant differences between variances (the significant results persisted when that subject was
omitted). One possible explanation for this is that subjects may have been most willing to try different
risk levels to maximize score when presented with highly consistent (small SD) landing dispersions, and
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less so when presented with their own or inconsistent (large SD) landing dispersions. This is supported
by the observation that 73% of subjects reported that they were more willing to put the LAP closer to
the POI when viewing scatter plots with the smaller SD of 1 vehicle length. Understandably, these
subjects felt that such distributions indicated more consistent and predictable landing performance; one
subject, “assumed that they [pilots represented by landing error distributions of SD=1] were better
pilots.”

4.4.3 Subjective Responses

4.4.3.1 Self-Reported Landing Dispersions and Landing Point Designation (LPD) Strategy
When asked about their landing errors, 45% of subjects were able to provide descriptions that
encompassed landing errors for 100% of their manual flights in Part 1; subjects usually described their
landings errors as being “no more than” and/or “no less than” some distance from selected LAPs. The
other 55% provided descriptions that appeared to exclude a portion of their flights; 27% excluded the
worst 16% (SD = 11%) of their flights, 18% performed better than stated, and 9% performed much worse
than stated (i.e., all the actual flights were excluded by their description).

All subjects stated that they used different LAP selection strategies for the two flying task conditions in
at least one part of the experiment (55% of subjects for Part 1, 82% of subjects for Part 2). Almost
always, the difference in strategy put the LAP closer to the POI, which lies on the edge of a hazard
region, under the 25% manual condition. 18% of subjects used the opposite strategy: in the 100%
manual condition, they put the LAP closer to, or even into, the hazard zone to compensate for expected
landing errors. Then, for the 25% manual condition, they made sure to keep the LAP clear of the hazard
region in case of a precision automated landing.

4.4.3.2 Subsidiary Results

A mixed hierarchical regression test was performed to find effects of the subjects’ self risk ratings on
both t and the difference in t due to flying task condition (the map condition was included as an
independent variable to account for effects not attributed to the risk rating). A significant effect of risk
rating was found only on t’s in the EW direction for Part 1 (p = 0.005, residuals of fit were normally
distributed and had stable variances, no significant effect of map was found). The higher the subject’s
risk rating, the further to the east they placed their LAPs. This result is counter-intuitive, as most
subjects tended to have westward landing errors (Figure 31); if anything, subjects who judged
themselves to be more conservative (lower risk rating) should have placed their LAPs further to the east
in compensation, rather than subjects who had higher risk ratings. Ratings are listed in 0.

When shown the northern and southern POl maps (Figure 24) in the training session, subjects selected
LAPs as close to the POI as possible most of the time. However, 36% (4 out of 11) of subjects chose LAPs
on the other side of the hazard island 28% of the time for the northern POl map, and 18% (2 out of 11)
of subjects did so 33% of the time for the southern POI training map.

Operationally, there are possible advantages to sacrificing proximity to a POl when presented with the
terrain situations in these two maps. In the northern POl map, flying over the hazard island to land close
to the POl would consume more fuel, and hence decrease available hover time for a precision landing.
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In the southern POl map, one risks overshooting the POl and landing in the hazard region if the vehicle’s
northward velocity is not nulled in time (the vehicle always approaches the landing area from the
south). Therefore, there may be an advantage in planning to overshoot the hazard island completely.
However, if it is a scientific point of interest, there is the risk of contaminating the site with exhaust by
flying over it. Also, the surface operations costs of landing across a hazard from the POl need to be
considered, such as the amount of time and resources required to traverse through or around the
hazard region to reach the POI.

4.5 Conclusion and Discussion

The most significant result revealed by this experiment was that human operators systematically altered
their LPD task performance according to system-level knowledge of the probabilities of manual versus
automated flight. Subjects selected LAP locations that compensated for flying task condition, and the
magnitude of that compensation was correlated with the size of subjects’ own landing errors (Figure 32)
or of synthesized pilot landing errors that were shown to them (Figure 33). (Note that when the landing
errors are the subjects’ own, the compensation was only along the NS direction — the direction of flight —
as seen in Figure 32.)

There was no strong evidence of loss aversion or subjective probability biases described in Section 4.2.2.
Had there been, it would have been expected that subjects would not have accounted for different
flying task conditions in a way that is related to the sizes of human vs. manual landing errors, or they
would have been insensitive to flying condition altogether. It is possible that in a real-life lunar landing
scenario with higher stakes, astronauts may rely heavily on human risk and reward biases; rather than
optimize expected reward, they might be more likely to plan for the worst-case scenario no matter what
they know or estimate the probability of manual or automated flight to be. Here lies a limitation of this
experiment: subjects were specifically instructed to maximize expected reward (proximity to POl over all
landings) and were strongly cued to pay attention to the implications of different task allocations. This
was done to elicit more variable decision making in the context of this experiment, but may not be
representative of the “look and feel” of the stakes in a real lunar landing mission.

Memory heuristics, discussed in Section 4.2.1, may have had a small influence on subjects. There was
no net significant effect of the way in which subjects acquired landing error information. However,
there were other effects: subjects paid more attention to compensating in a less critical direction (EW)
when making decisions based on scatter plots of landing errors (Figure 33), and the way in which landing
error information is presented affected the consistency with which subjects adhered to a risk level in
making LAP selections (Figure 34). This suggests that when relying on memory alone, subjects retain
critical information such as landing error in the NS direction. When receiving information in a way that
is not subject to memory heuristics, subjects appear to incorporate less salient information as well
(landing error in EW direction, size of landing error distributions). The operational benefit of pilots
incorporating as much information as possible at the moment of decision is clear; in this experiment,
scatter plots allowed subjects to more fully compensate for different task allocations (EW as well as NS
direction) and with varied sensitivity (SD of scatter plot affected consistency of t’s).
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5 Conclusion

Simulation has the advantage of rapidly traversing an entire task allocation design space and providing
high-level trends in system performance in response to different allocations. The simulation
implemented in this project, with its current level of fidelity and for a given landing scenario, predicted
that fuel and landing accuracy may be optimized if decision making tasks are allocated to the human
operator and manual tasks such as control of vehicle dynamics are automated. The simulation also has
the potential to predict which specific subtasks contribute to variability in fuel usage and landing
accuracy.

However, ranges of system performance are lost when aspects of human performance simply cannot be
modeled. Therefore, human subject experiments were conducted on a subset of the tasks modeled in
simulation. It was observed that subjects are capable of incorporating system-level information —the
allocation of the flying task — and making LPD compensations that were proportional to the difference in
landing performance between human and automation. Also, subjects were sensitive to the way in
which landing performance information was presented; they made LPD compensations only along the
NS direction , the direction of flight, when estimating their own landing dispersions from manual flights,
but made compensation in both NS and EW directions when presented with dispersions in plots. They
were even found to be sensitive to the visual distribution of landing information in the plots; subjects
exhibited the greatest variance in the risk level of their LAP selections when presenting with plots of
tightly-clustered landing dispersions.

The work presented in this project is a functional demonstration of how computer simulation and
human experiments can be used in tandem to analyze diverse aspects of task allocation design.
Simulation provides broad sweeps of a full task allocation design space that would be extremely difficult
to perform through live experiments. Moreover, experiments yield unpredicted or un-modeled human
behaviors that need to be considered in making the task allocation decision.

6 Future Work

Individual future work for the simulation and experimental aspects of this project are discussed in
Sections 6.1 and 6.2 below, respectively. The major next step for this project as a whole would be to
incorporate human behaviors observed from the experiment into the simulation’s human performance
model of the LPD free selection task (subtask 3 in Figure 7). This closes the design loop of implementing
a simulation model, running experiments to uncover human behaviors not accounted for in simulation,
and modifying the simulation model to capture those behaviors.

Other future work items in tying simulation and experiments together are as follows:

e Implement the other subtasks modeled in simulation as human subject experiments to uncover
un-modeled human behaviors in the performance of those subtasks. For example, how does
visual perception of an OTW view affect the decision of whether or not to allow the automated
system to select a LAP (subtask 1 in Figure 7)? How does actual human flying performance
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adhere to the control loops used to model human performance of the same task (subtask 4 in
Figure 7)?

e Model human and automated fault detection and error handling behavior. The human traits of
flexible decision making and judgment may help keep system performance high when off-
nominal situations are encountered; however, such situations are difficult to predict and model.
One way to do this may be a backwards approach: implement off-nominal situations as
experiments, and then develop human performance models that fit experimental data.

6.1 Future Work for Task Allocation Simulation

e QObtain valid ranges for parameters of human performance models, which allow for meaningful
data analysis of system performance in response to human performance parameters. Validate
structure of those models, using human subject experiments.

e Improve the fidelity of human performance models by implementing improved visual pattern
search, and attention that switches among information signals according to task context.
Models of different human decision making strategies can also be implemented, which include
satisficing, minimax, and lexicographic ordering, among others (Lehto, 1997) .

e Preliminary modeling of cross-task aspects of human behavior such as memory and situational
awareness, workload, and the performance of parallel tasks.

e Assemble a MATLAB/Simulink library of commonly used human cognitive behaviors that can be
modified and used in a broad range of human performance modeling. This facilitates the
formulation of the human as a component within a system model to allow for system-level
analysis.

e Perform Monte Carlo simulation over human model parameter space and sensitivity analysis of
multiple system-level metrics according to those parameters.

6.2 Future Work for Human Subject Experiment

One way to extend the human subject experiment is to explore subjects’ responses to a continuum of
task allocation probabilities, such as including 25% and 50% chances of automated flight. In this
experiment, subjects produced a difference in t in response to a 75% chance of automated flight; would
a proportion of that difference still appear with other probabilities of automated flight? Is there a
probability of automation below which subjects would be insensitive to different task allocations?

An operational limitation of this experiment is the lack of a realistic OTW view. Free selection of a LAP is
performed when the decision has been made to not use the automated system in LPD, and therefore
takes advantage of the human pilot incorporating an OTW view in addition to the DEM (Figure 21). An
experiment that provides subjects with this additional information source would uncover complexities in
decision making related to visual perception of a terrain, responses to conflicting information between a
DEM and OTW view, and the workload of perceiving two rich visual information sources.
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Appendix 1
- ,: en,

Preliminary Lunar Landing Task Analysis

Numbers in brackets refer to the procedure number in the appropnate section of the "Apolio Lunar Operations Handbook: Lunar Module, LM 11 and Subsequent,” Vol. II. Braking:

Section 4.10.2.1. Approach: Section 4.10.2.2. Landing: Section 4.10.2

"AFM" = Design of a Human-Interactive Autor Flight M
"DA" = "Digital Apolio” by David Mindell
KEY
{Landing Phase)
OVERARCHING TASKS AND DISPLAYS

(Tasks and dsp'ay info that apply to the entirely of the landing phase)

HRONOLOGICAL TASK SEQUENCE
[ -ma’h.‘w
(Subtask or display info (Subtask or display info (Sulxask or display info related
reiated fo Task 1) related to Task 2)

.3
(AFM) for Crewed Lunar Landing” by L. M. Forest, L. J. Kessler, and M. L. Homer

Display info: inertial
"Delta_Vvm" (?) [18]

Monitor thrust %, error in
altitude between landing radar
and inertial calculations,
descent rate, and altitude [22]
If descent thrust fails, 1)
approve automatic failure
routine or 2) cancel failure
routine and exit braking burmn
(then what?) [20]

Can enter manual RCAH mode
122]

Display info: inertial velocity,
rate of descent, altitude [DA p.
~200]

throttle control for p  alarms abort situation [L 9 or
[Braking 16, 22, 25; such as if landing radar did not
Approach 2 Landing 2]  come in, or came in with foo
(AFM p. 7) much of a difference from
inertial navigation (DA p. 201),
or because of, alarms
. . 2 {RQ.R ~201) mFll . 7)
Dr¥splay info: desired auto Decide to abort using descent
throttie % (do not exceed), or ascent state (DA p. 200)
H_dot H
BRAKING PHASE
CHRONOLOGICAL TASK SEQUENCE
Preparation Get into attitude for timming  Monitor atfitude maneuver Check landing radar Monitor ullage maneuver
engines [12] [13]. Visually cross-check position and nn
out-of-window Ensure PGNCS is in
view [14] automatic mode [14]
Prepare subsystem Can change minimum Can also be done manually Display info: thrust %,
settings [1,2] altitude at which landing  [12] engine switches in correct
radar stops working [9] position [17]
Set up, verify abort system Display info: time duration
settings [3,8, 15] of bum, time from ignition,
range (do visual cross-
check) [10]
Enable, verfy manual hand
controlier systems [4]
Prepare descent engine
system for braking bum [6]
BRAKING PHASE (cont)
CHRONOLOGICAL TASK SEQUENCE (cont.)
Monitor bum [19] Tum on descent engine If LM is not window-up, Decide whether or not to
command override [23] yaw around manually or  accept landing radar data
automatically to allow 25
landing radar lock [24]

Display info: horizontal
range to landing site, time-

descent rate and along-
track velocity” not on
DSKY (DA p. 201)
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time (DA p. 206-208)

remaining for
‘redesignation, H rate, H [2] design
Display info: deslgnsted
\landing point (DA p. 204-
206)

APPROACH PHASE
 OVERARCHING TASKS AND DISPLAYS

" | Can transition to manual | Display info: horizontal range to| AFM FUNCTION: Make
RCAH mode (PE6) af any ra'admmfs, nms-m-goro

P66 can be entered at any | If in RCAH mode, the
time dxmwmaﬁcamh;de
to null horizontal
|is displayed on FDAI

Monitor display info:
‘forward velocity, H rate, H

'ﬁ]anuuly change rate of
descent, attitude/horizontal
velocity if desired [3]. Can
also switch back to auto
nulling of horizontal
\velocities [6]

|Monitor thrust % to make
|sure it is not above limit [4]
Monitor to make sure
|horizontal velocities are not
below limit -> lose Doppler
tracking [8]

OVERARCHING TASKS AND DISPLAYS

Monitor fuel and oxider levels  Display info available:

throughout (3] horizontal range to landing
site, time-fo-go to engine
cufoff, inertial velocily

Monitor lunar contact light. Confirm touchdown (DA p

Stop engine when light comes  206-208). Perform

on [9] touchdown activities [10]
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Appendix 2 Ranges for Human Model Parameters

Values for the following parameters were all drawn from estimated ranges. Perceptual gain and bias
values were estimates, and will vary by pilot and according to the landing situation. Weights on decision
factors, and limit values used in decision making (such as an acceptable “max terrain slope” or “max
fraction of DEM that can be blacked out or hazardous”), were drawn from a range estimated to be wide
enough to allow for varieties in pilot preference and landing situations for future automated systems.
Gains and time delays for the “Touchdown” task were chosen so that a stable manual flight trajectory
can be completed to LAPs selected almost anywhere within the landing area used for the simulation
runs in this project.

“Decide to use automated system”

*  Max terrain slope: [0.05 - 0.1]
*  Max fraction of DEM that can be blacked out or hazardous: [0 —0.5]
*  Min fraction of perceived OTW hazards that must also be shown on DEM hazard map: [0.5 — 1]

“LPD using automated system”

* All gains: [0.75 - 1.25]
» All biases: [-10 —10]
»  Decision weights: ratios of 1, 2, or 3 for each decision factor. All weights must add up to 1.0

“LPD without automated system”

« All gains on proximity values: [1 - 1.5]

* Gain on OTW terrain elevations: [0.75 — 1.25]

¢ All biases: [-10 —10]

»  Decision weights: ratios of 1, 2, or 3 for each decision factor. All weights must add up to 1.0

“Touchdown”

* Time delays: [0.3 — 0.5 secs]
* Control of change in x, y accelerations
* Gain on location error: [0.04 — 0.06]

* Gains on velocity and attitude errors: [0.4 — 0.6]
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Appendix 3

Subject Training Slides

INTRODUCTION

Your role in this experiment is to fly a lunar
lander vehicle to the surface of the Moon.
This requires you to perform 2 tasks:

1. Select a landing target

2. Fly the vehicle down to the selected landing
target

INTRODUCTION (cont.)

This is the terrain area in which you will land:

MNon-hazardous area:
Safe to land anywhere here

Point of scientific
interest (green star):
Land as close as
possible to here
Red hazardous area:
Do not land here!

INTRODUCTION (cont.)

You will be scored according to where you land...

Land in non-hazardous area:

score = function of "D” {distance ...and according to
landed from center of green starj whether you land
within safety limits
G for fuel, vehicle

attitude, and vehicle
velocity (more on
that later).

Any part of vehide lands in red area:
Score =-10 points

INTRODUCTION (cont.)

Maxamize your score by landing as close to green star as possible,
without vehicle body intersecting the red region!

You will repeat this landing task multiple times in this experiment. Your
goal is to maximize your total landing score, summed over all trials.

Now, you will learn how to perform the
2 tasks needed to land the vehicle:

1. Select a landing target

2. Fly the vehicle to the landing
target

1. SELECTING A LANDING TARGET

* Use the mouse to dick on the
terrain map. A purple square will
appesr.

* When you fiy, you will be
provided with guidance cues to
help you land your vehicle as
sccurstely on the purple square
s possible.

* You ARE sliowed to place this
target in the hazardous region.
For example: if you notice that
you tend to fly and land south of
the target, you may place the
target northward into the red
zone here to compensate for your [
own landing biasz.

You have 20 secs.
to select o landing
target
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1. SELECTING A LANDING TARGET
(cont.)

Ins future lunar outpost re-supply and science mizsions, the landings are typically highly
automated. However, manual control by the pilot may be reguired for the vehicie’s final
descent and touchdown.

If you see this, there iz a 75% chance that
the vehicle wall be fiown by an sutomated
systemn, and a 25% chance that the vehide

will be flown manually.
You will find out the flight mode [sutomated
or manual) only after the 20 seconds is up.

Or._.

This indicates that the vehicle will be

flown to the target manually (by you,
the pilot, with a joystick and throttie).

~

2. FLYING THE VEHICLE

Fush forwarc
on joystice

Forwart scosierstion
d increases st conztar rate

Forwarc sccelemtion
, ﬁ)-., =
= N By Cecrenses &t consant rate
) Y .
\ehide pitches \
oackward st \

o o

2. FLYING THE VEHICLE (cont.)

Qick thvottie

| ik throttle
button ,”‘“ once outton up once
(utton in back of | {utton in becx of
controlier) I controter)

"]

ety ‘? e !

ifs i
&’ A

67

1. SELECTING A LANDING TARGET
(cont.)

The automated system will always land on the purple square with an accuracy
of 10ft. or better. 0L raearedn lend g erfor urder sulormabed
figra mode |resu el by ceete of wetich o
castar of wegwt)

if the flight mode is manual, how accurately the vehicle lands on the purpie
square will depend on how accurately you can follow the guidance cues
during flying.

You must maximize your total score summed over all your flights
in this experiment. Since the automated system is always
guaranteed to land no more than 10 ft. from your selected
landing target, you may consider placing your target closer
to the green star when there is a 75% chance that the flying
will be automated.

2. FLYING THE VEHICLE (cont.)

Left-ward [; ‘ < i) Rprtwnn

i g ¢ AP o

= \

constart rate ‘;' % | [ § v consiant rate
A &

2. FLYING THE VEHICLE (cont.)

Caruintad Ume
wntl fouchdoms

Flight Display i
witkia e

watice b 12
atoee groued.

Current a¥lude

Yelbow bas b cale
yout cofrent phch
e and rol leve’

Pargie bnes stow

bi. Allgs the yulke
bars with camter of
sl
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2. FLYING THE VEHICLE (cont.)

Do not deviate from the guidance cues provided to your
selected landing target.

2. FLYING THE VEHICLE (cont.)

Rating Screen appears when vehicle has landed

At contact (12 ft. above ground),

You will hear verbal warnings when 60 and 30 seconds of landing Performance your conditions must meet the
flight time remain before fuel decreases to 5% (“Bingo”). following:
*% Fuel » 5%
“Draper, 80 *Descent rate <= 3 ft/s
seconds till Bingo.” * Horizontal velogity « 4 ft/s
*Roll and pitch < *6 degrees
"Draper, 30 Otherwise, you will be deducted -10
seconds till Bingo.™ points. Following the purple
jguidance cues on the Flight Display
and stening to “Bingo™ fuel callouts
will help you meet these touchdown
conditions.
2. FLYING THE VEHICLE (cont.) REMEMBER

Remember, you will be penalized -10 points for landing with <5%
fuel remaining. Below is a map of % fuel remaining when the
automated system flies to different locations on the map:

(Winere the vehice would land
it hed not made = ianding
election)

Points decrense b3
1/D

Maximize your score by landing as close to green star as possible,
without vehicle body intersecting the red region!

You mizt maximize your total score cummec over ail your Sl g i
t. Since the automated system is nde syl atmd Tlghe e
10 . from your {etasired by camer of vahicle

fecing your targe: o cmster of tergat]

73% cnance that the

Doserto the gresn siar when there =
fiying wil be automated

REMEMBER (cont.)

If you do not meet the following
conditions at contact, you will be
penalized -10 points:

5 Fusl remaining when automated system
flies to cifferent locations on the map:

8%

*9% Fuel > 5% B

* Descent rate <= 3 ft/s

* Horizontal velocity < 4 ft/s '

*Roll and pitch < 6 degrees "~
i

[End of training presentation]

Now, we will go into the vehicle cockpit
simulator to practice selecting a
landing target and — if the flight mode
is manual — flying the vehicle.
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Appendix 4 Schedule of Trials
Training
Trial Map Flying task condition shown during LAP selection Flying task actually turns out to be
(% chance of manual flight) automated (A) or manual (M)
1 short 25% A
2 long 100% M
3 short 100% M
4 short 100% M
5 long 25% A
6 long 100% M
7 | northem POI 100% M
8 | southern POI 25% M
9 | southern POI 100% M
10 | northern POI 100% M
11 | northern POI 25% A
12 | southern POI 100% M
Part 1
Trial Map Flying task condition shown during LAP selection Flying task actually turns out to be
(% chance of manual flight) automated (A) or manual (M)
1 short 100% M
2 long 25% A
3 long 100% M
4 short 25% M
5 long 100% M
6 short 25% A
7 short 100% M
8 long 25% M
9 long 100% M
10 short 25% A
11 short 100% M
12 long 25% A
13 long 25% M
14 short 100% M
15 short 25% A
16 long 100% M
17 short 25% M
18 long 100% M
19 long 25% A
20 short 100% M
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Part 2

Trial | Map Flying task Scatter plot Trial | Map Flying task Scatter plot
condition shown shown condition shown shown
during LAP (<mean>, <SD> during LAP (<mean>, <SD>
selection in vehicle selection in vehicle
(% chance of widths) (% chance of widths)
manual flight) manual flight)

1 | short 100% (-2, 1) 25 | short 25% (-2, 1)

2 | long 100% 0, 1) 26 | long 100% (0, 3)

3 | short 25% (-2, 3) 27 | long 100% (2,3)

4 | short 25% (0, 3) 28 | long 25% (2, 1)

5 | short 100% (2, 1) 29 | long 100% (-2,3)

6 | long 25% (2,3) 30 | short 25% (0,1)

7 | short 100% (-2, 3) 31 | long 100% (-2, 1)

8 | long 25% (-2, 1) 32 | short 25% (2,3)

9 | short 100% (0, 3) 33 | long 100% (2,1)
10 | long 25% (0, 1) 34 | long 25% (0, 3)
11 | short 25% 2,1) 35 | long 25% (-2,3)
12 | short 100% 0, 1) 36 | short 100% (2,3)
13 | short 100% (2,3) 37 | short 100% 0, 1)
14 | long 25% (-2, 3) 38 | short 25% (2,1)
15 | long 25% 0, 3) 39 | long 25% 0, 1)
16 | long 100% 2,1) 40 | short 100% (0, 3)
17 | short 25% (2,3) 41 | long 25% (-2, 1)
18 | long 100% (-2, 1) 42 | short 100% (-2, 3)
19 | short 25% 0,1) 43 | long 25% (2,3)
20 | long 100% (-2, 3) 44 | short 100% 2,1
21 | long 25% (2,1) 45 | short 25% 0, 3)
22 | short 25% (-2, 1) 46 | short 25% (-2, 3)
23 | long 100% (0, 3) 47 | long 100% 0, 1)
24 | long 100% (2, 3) 48 | short 100% (-2, 1)
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Appendix 5 Verbal instructions for scatter plot portion of
experiment

Now, we will do the last part of this experiment. On this scatter plot, each of the 14 black squares
represents where another pilot (let’s call him or her P) landed relative to a landing target on his or her
manual runs on normal terrain, with no hazards nearby, and there was no effort to land close to any
point of interest (green star).

To put this into context, let me show you your own scatter plot, the one you generated in the 14 flights
you just flew in the first part of this experiment: <switch to subject’s scatter plot>

<switch back to training scatter plot> Now, you will select a landing target for P's next flight. (P—not
you—will fly the trajectory.) Once again, you have 20 seconds and you will be shown one of the same
two flight conditions: (1) With a 25% chance that P will be landing manually and a 75% chance that the
flight will be automated or (2) With a 100% chance that P pilot will be landing manually. In each trial,
you will be shown a scatter plot for P's prior landings and a map of the terrain P will have to land

in. Pilot P always landed with greater than 5% fuel, less than or equal to 3 ft/s descent rate, had a
horizontal drift less than 4 ft/s, was less than 6 degrees in pitch and roll at touchdown — they were only
offset from the landing site, no other touchdown parameters were violated.

Use P's history of landing accuracy to choose a landing target that will maximize his or her total score
over all future landings in the same terrain and flight conditions. Under manual flight, pilot P may fly
slightly better than what is represented in the scatter plot since now there are hazards nearby. It is your
job to estimate the likely decreased landing variance of pilot P, if any, and factor that in when selecting
the landing target for them. In addition, you might choose to place the landing target closer to the
green star when there is a 75% chance that the landing will be automated — therefore, giving allowing P
an overall better chance of scoring higher over all trials. The landing would be more accurate under
automation, if that turns out to be the landing condition, and would potentially give a higher score—
with less risk of landing in the hazard zone. Remember that the automated system is guaranteed to land
no more than 10 ft from your selected target. Alanding in the hazard zone results in a score of -10
points. The best possible landing - as close to the star as possible without touching the hazard zone -
earns a maximum reward of 10 points. Then, the points decrease by 1/ the distance from the

star. Also, selecting targets closer to the center of the map allows more time for P to hover and improve
the accuracy of the landing before hitting the 5% fuel limit.

Let’s do this once for practice.

Do training trial. Do you have any questions, or would you like another practice run?
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Appendix 6 Verbal questions between parts of experiment

After training:

“From your flights in this training session, about how accurately do you think you’re able to land
the vehicle (in feet or vehicle widths relative to the target you choose, and in what direction*)?”

* Whether the landing error lay to the north, south, east, or west of the selected LAP.

After Part 1:

1. “Again, about how accurately do you think you’re able to land the vehicle (in feet or vehicle
widths relative to the target you choose, and in what direction)?”

2. “Canyou speak a little bit about how you selected targets? Any mental rules you might
have used for yourself?”

After Part 2:

1. “Canyou speak a little bit about how you selected targets? Any mental rules you might
have used for yourself?”

2. “How much of a risk-taker would you consider yourself, on a scale of 1-5, with 1 meaning
that you avoid risks whenever possible, and 5 meaning that you greatly enjoy taking
risks? When | say risk-taking, | mean your behavior during driving, whether you enjoy doing
extreme sports, playing games of chance for large sums of money, or making financially risky
investments.”
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Appendix 7 COUHES Forms

aaded g ) ~
I !}(&Lﬂ ik N
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CONSENT TO PARTICIPATE IN WAR L4 200
NON-BIOMEDICAL RESEARCH

Lunar Landing Decision Making and Manual Flight Control
under Different Human-Automation Task Allocations

You are asked to participate in a research study conducted by Charles M. Oman, Ph.D. from the
Department of Aeronautics and Astronautics Man-Vehicle Laboratory at the Massachusetts
Institute of Technology (M.LT.), Kevin R. Duda, Ph.D. from The Charles Stark Draper
Laboratory, Inc., and Hui Ying Wen from the Man-Vehicle Laboratory at M.LT. You were
selected as a possible participant in this study because NASA and the National Space Biomedical
Research Institute are interested in understanding how to best design the human-machine
interface used to control the lunar lander for future lunar missions. You should read the
information below, and ask questions about anything you do not understand, before deciding
whether or not to participate.

e PARTICIPATION AND WITHDRAWAL

Your participation in this study is completel‘f voluntary and you are free to choose whether to be
in it or not. If you choose to be in this study, you may subsequently withdraw from it at any time
without penalty or consequences of any kind. The investigator may withdraw you from this
research if circumstances arise which warrant doing so.

« PURPOSE OF THE STUDY

The goal of this experiment is to study aspects of pilot decision making and manual flying in a
lunar landing mission when different types of aid from an automated system are provided. The
proposed experiments are designed to understand how, during a landing, pilots 1) select a
landing site with and without the computer aiding in the decision, 2) how the expectation of
automation flying affects that decision, and 3) make joystick and throttle control inputs to fly a
simulated vehicle in a fixed-base simulator to touchdown. The results will help in understanding
the effects of different human-automation task allocations in lunar landing.

« PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following things:

You will be seated in a cockpit simulator. You will select a landing site on a digital terrain map
displayed on an LCD monitor. After you have done so, you may be asked to “fly” the simulated

vehicle to the landing site you have selected. In performing these tasks, you will use a joystick,
throttle, mouse pointer, and provided LCD displays.
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Any information that is obtained in connection with this study and that can be identified with you
will remain confidential and will be disclosed only with your permission or as required by law.

No personal information will be collected in this experiment. All simulated flight performance
data collected in this experiment will be coded to prevent the identification of the data with a
specific person. All data reported in journal or conference papers will be group data or de-
identified. The data will be archived when the project is completed and papers published (about
2013). No identifying information will be kept with the data

e IDENTIFICATION OF INVESTIGATORS
If you have any questions or concerns about the research, please feel free to contact:

Principal Investigator: Charles M. Oman, Ph.D., (61 7j 253-7508, coman@mit.edu
Co-Investigator: Kevin R. Duda, Ph.D., (617) 258-4385, kduda(@draper.com
Research Assistant: Hui Ying Wen, (617) 258-2216, hwen@draper.com

« EMERGENCY CARE AND COMPENSATION FOR INJURY

If you feel you have suffered an injury, which may include emotional trauma, as a result of
participating in this study, please contact the person in charge of the study as soon as possible.

In the event you suffer such an injury, M.L.T. may provide itself, or arrange for the provision of,
emergency transport or medical treatment, including emergency treatment and follow-up care, as
needed, or reimbursement for such medical services. M.L.T. does not provide any other form of
compensation for injury. In any case, neither the offer to provide medical assistance, nor the
actual provision of medical services shall be considered an admission of fault or acceptance of
liability. Questions regarding this policy may be directed to MIT’s Insurance Office, (617) 253-
2823. Your insurance carrier may be billed for the cost of emergency transport or medical
treatment, if such services are determined not to be directly related to your participation in this
study.

¢ RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation in this
research study. If you feel you have been treated unfairly, or you have questions regarding your
rights as a research subject, you may contact the Chairman of the Committee on the Use of
Humans as Experimental Subjects, M.L.T., Room E25-143B, 77 Massachusetts Ave, Cambridge,
MA 02139, phone 1-617-253 6787.
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Appendix 8 Landings in Experiment that Violated Safety Limits at
Contact
Number of landings that exceeded safety limit (out of 14 manual flights in Part 1 of experiment)
Subj. | Subj. | Subj. | Subj. | Subj. | Subj. | Subj. | Subj. | Subj. | Subj. | Subj.
1 2 3 4 5 6 7 8 9 10 11
Descent
rate (fps) 0 0 1 0 0 4 0 0 0 1 3
Pitch
3 1 2 2 0 4 0 0 0 0 0
(deg)
Roll
1 0 0 4 0 0 0 0 0 0 0
(deg)
Horizontal
velocity 8 1 2 5 4 7 10 0 0 0 0
(fps)
0,
Fuel (% | 5 4 0 4 1 0 0 1 0 0 0
remaining)
Landings
in hazard 10 1 2 3 2 2 6 2 0 1 1
zone
Appendix 9 False Positives in Human Experiment Results

Cases in which landing errors were different by map (two-sample t-test, p = 0.05)

Subject Direction
5 NS
8 EW
10 EW
11 EW

Cases in which significant correlation was found between ¢ and trial number in Part 1 (linear least squares

regression, p = 0.05)

Subject Map Direction
4 Short EW
4 Long EW
11 Short EW
5 Short NS
6 Short NS
7 Long NS
8 Short NS
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Appendix 10 Subjects’ Self Risk Ratings

Subj. 1 | Subj. 2 | Subj. 3 | Subj. 4 | Subj. 5 | Subj. 6 | Subj. 7 | Subj. 8 | Subj. 9 | Subj. 10 | Subj. 11

Rating 2 1 2 35 3 3 4 2 1,2* 2 3

* Subject voluntarily gave an additional rating of his/her risk behavior within the context of this
experiment.
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