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ABSTRACT

Fracture mechanics has been used for many years to study the mechanical behavior of brittle
and quasi-brittle materials like concrete, rock, wood, and ceramics. To date, the application of
fracture mechanics to soils has been limited to dry and partially saturated soils where soil
consistency changes due to suction and tends to be harder exhibiting a quasi-brittle behavior.
Of late, studying fracture propagation in clays and mudrocks has become of interest as it
provides a means to extract oil from oil bearing strata.

While crack initiation in soils can be analyzed using basic soil mechanics theories,
development and propagation of a crack is energy driven and requires application of fracture
mechanics principles. An essential parameter in Linear Elastic Fracture Mechanics (LEFM),
the main analytical tool in studying fracture in rock, is the critical stress intensity factor that
defines stress concentration near a crack tip beyond which a fracture would propagate.

The basic mode of crack loading can be obtained by applying a normal stress that has a
corresponding opening mode of crack surface displacement, called mode-I (tensile mode),
with a critical stress intensity factor termed fracture toughness, denoted by Kic.

In this experimental research, K1c is measured indirectly using a modified Brazilian Test
configuration where load is applied normally on flattened Brazilian disk specimens without
the need to introduce a flaw into the specimen. Intact natural specimens from four different
deposits; Boston Blue clay, San Francisco Bay Mud, Presumpscot Maine clay, and Gulf of
Mexico clay; are tested in oven-dried state under atmospheric conditions. In addition, two
Clay-like materials; molded Gypsum and Plaster of Paris; have been investigated.

Based on the analysis of the test data, the relation between mode I fracture toughness and
tensile strength for the six tested materials agrees to a great extent with reported trends in the
literature even for different fracture toughness and tensile strength testing techniques and for
wider tested range of soils, rocks, geomaterials, clay-like, and rock-like materials. However,
no clear relation between mode I fracture toughness and elastic modulus or any other physical
parameter was determined.

Thesis Supervisor: John T. Germaine
Title: Senior Research Associate of Civil and Environmental Engineering
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Chapter (1)

INTRODUCTION

1.1 Background

Since the discovery of the Burgess Shale in the Canadian Rockies of British Columbia in

1909, scientists, engineers, and oil producers have realized the significance of shallow

mudrocks to the oil and gas industry. Mudrocks, including clays and shale, are natural gas

and petroleum bearing materials that are characterized with low porosity and permeability

values. These rocks cover fifty percent of the Earth's sedimentary geological formations and,

hence, any economically extracted product from such formations can provide significant

quantities. This potential has encouraged researchers to study the properties of these materials

and explore, in particular, the potential of recovering natural gas from shallow mudrocks

through hydraulic fracturing; a process that is essentially associated with fracture mechanics.

Fracture mechanics has been used in studying the mechanical behavior of brittle and quasi-

brittle materials like concrete, rock, wood, and ceramics. To date, the application of fracture

mechanics to soils has been limited to dry and partially saturated soils; where the soil

consistency changes due to suction. Dried soils tend to be harder and exhibit a quasi-brittle

behavior as compared to the saturated material. And while cracks in dry soils / rocks can be

analyzed by basic soil mechanics theories, the development and propagation of a crack is

energy driven and requires applying fracture mechanics principles. An essential parameter in

Linear Elastic Fracture Mechanics (LEFM), main analytical tool in studying fracture in rock,

is the critical stress intensity factor that defines stress intensity value near a crack tip beyond

which a fracture would propagate.

The basic mode of crack loading can be obtained by applying a normal stress that has a

corresponding opening mode of crack surface displacement, called mode-I (tensile mode),

with a critical stress intensity factor, named fracture toughness and denoted by Kic.

To date there are no certain reliable standards for testing methods to determine the critical

Mode I fracture toughness value, KIc. The International Society for Rock Mechanics has

suggested three methods for the determination of fracture toughness mainly for rocks and can
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be applicable to soils. Despite the suggested standard methods of the ISRM, several other

methods, with advantages and disadvantages, were developed and conducted by researchers

to better quantify the fracture toughness Kic, however, most reported methods suffer from

difficulty in creating the precrack condition and impracticality in specimen preparation,

loading method, experimental set-up and equipment.

Hence, a simpler more practical convenient means of determining K1c was needed. With

recent advances in fracture mechanics experimental research, the concept of the flattened

Brazilian disc (FBD) has developed; which is considered a modification to the conventional

Brazilian test. In FBD test, both the top and bottom edges of the circular disc specimen are

flattened and are subjected to normal static loading until center crack intimates and the

specimen fails. Using the FBD testing approach, three parameters were investigated from the

test record of a single specimen; mode I fracture toughness, tensile strength, and the elastic

modulus. In the conducted experimental work six different materials have been investigated

covering both natural soils and clay-like materials; Boston Blue Clay, San Francisco Bay

Mud, Presumpscot Maine Clay, Gulf of Mexico Clay, molded Gypsum, and Plaster of Paris.

1.2 Objectives

The main objectives of performing this research/ experimental study are:

1. Investigating the fracture properties of six different dry clays and clay-like materials.

2. Using a simple convenient means to quantify mode I fracture toughness, tensile

strength, and the elastic modulus for different materials.

3. Applying the flattened Brazilian disc (FBD) testing method on new materials besides

rock such as: Boston Blue Clay, San Francisco Bay Mud, Presumpscot Maine Clay,

Gulf of Mexico Clay, molded Gypsum, and Plaster of Paris.

4. Studying the relation between mode I fracture toughness and the corresponding tensile

strength, unit weight, and the elastic modulus. And correlating this empirical relation

statistically.

5. Comparing the relation between mode I fracture toughness and tensile strength for the

tested materials with the trends reported in the literature for different materials (soils,

rocks, geomaterials, shale, clay-like, and rock-like materials) tested using other

different techniques.
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6. Using the tensile strength value as an indirect method to estimate the mode I fracture

toughness.

1.3 Organization of Thesis

This thesis is divided into six chapters. Following this introduction, Chapter 2 presents a

general review of the literature available on fracture toughness and its significance for rocks

and soils. The chapter provides a description of the different modes of loading / fracturing

with an illustration to the means of stress intensity factor evaluation and better understanding

to the factors affecting its value. The chapter presents a summary of the different

experimental methods used to quantify mode I fracture toughness. In addition, the chapter

summarizes the relationships between fracture toughness and other physical mechanical

parameters with an emphasis on the tensile strength.

Chapter 3 presents a general review of the literature on the Brazilian testing method and

provides a summary of the modifications to the Brazilian test including the flattened Brazilian

approach. The chapter covers the theory behind the flattened Brazilian test with an emphasis

on the stress and displacement distributions within the flattened discs. Then appropriate

methods to obtain the maximum stress intensity factor for the flattened discs are discussed.

The chapter presents methods to evaluate the mode I fracture toughness, tensile strength, and

the modulus of elasticity of the same specimen.

Chapter 4 presents a detailed description of the laboratory testing program performed for this

research. First the soils and materials tested are described, including a summary of their

origin, index and strength properties. Next, a description of the Flattened Brazilian Disc

(FBD) testing equipment is presented, which includes details pertaining to testing device,

measuring transducers, specimen preparation technique, and testing procedures.

Chapter 5 presents the results of the experimental study conducted on six different materials;

four different natural soils and two clay-like materials; to investigate the relation between

mode I fracture toughness, tensile strength, unit weight, and modulus of elasticity using

flattened Brazilian disc (FBD) specimens. The chapter provides an explanation to the

methodology implemented in interpretation of the results and the governing equations to

quantify the parameters of interest. Then a detailed description to the experimental results of

the conducted tests is presented for both natural soils and clay-like materials. In addition, an
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explanation to the failure modes of FBD specimens is presented. Afterwards, different

correlations relating mode I fracture toughness and corresponding tensile strength, unit

weight, and elasticity modulus are presented followed by a comparison with data values

reported in the literature. Finally concluding all the available data including experimental

results of current research into one single equation relating fracture toughness to tensile

strength.

Finally, Chapter 6 presents the conclusions drawn from this experimental study as well as

recommendations for further areas of research.
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Chapter (2)

LITERATURE REVIEW- FRACTURE TOUGHNESS

2.1 Introduction

This chapter presents a general review of the literature available on fracture toughness of

rocks and soils. The chapter starts with a background on fracture toughness and introduces

fracture mechanics in different fields of science and engineering. Then the significance of

fracture toughness in rock/soil fracture mechanics is highlighted, followed by an explanation

to some of the topics related to fracture toughness; starting with discontinuities in rocks and

rock like materials then the process of fracturing then the types of cracks growth. The chapter

also provides a summary on the basis behind fracture toughness evaluation methods by

introducing Griffith's theory and linear elastic fracture mechanics (LEFM). Then a

description of the different modes of loading / fracturing is reviewed with an illustration to

the means of stress intensity factor evaluation and better understanding to the factors

affecting its value. Then a review on fracture toughness determination using different

experimental methods whether suggested standardized methods or alternative methods from

the literature. Finally, the chapter summarizes the relationships between fracture toughness

and other physical mechanical parameters with an emphasis on the tensile strength.

2.2 Background

It has been suggested that a material's fracture properties should be characterized in terms of

the particle strength, specific breakage energy, and the breakage fragment size distribution of

the material (Bourgeois et al., 1992). In this case, the strength is measured in terms of the

tensile strength become the particles of brittle materials break in tension under compressive

loads due to the pre-existence of natural flaws within the material. However, tensile strength

does not fully describe the fracture process as it can only quantify the particle's resistance to

an applied load. Tensile strength does not consider inherent flaws present in brittle materials,

or the concentration of the stresses around these flaws when the material is loaded, and their

effect on the fracture process. Thus, particle strength should be replaced by another, more

descriptive measure of a material's ability to withstand fracture (Donovan, 2003). Hence,
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fracture toughness is introduced as a means of quantifying and describing the material's

resistance to fracturing.

Fracture toughness is an intrinsic material property expressing a material's resistance to crack

propagation. It is a measure of the energy required to create a new surface in a material

(Donovan, 2003). Fracture toughness is the critical value of the stress intensity factor; which

is a quantity characterizing the severity of the crack situation within a material as affected by

crack size, stresses near the crack tip, and the geometry of the crack, material specimen, and

loading configuration (Dowling, 1999). Providing sound theoretical foundation, evolving

from the study of fracture mechanics and Griffith's theory of fracture, fracture toughness can

offer a fundamental basis for describing size reduction processes. It is already used as an

index for rock fragmentation processes such as tunnel boring and scale model blasting, as a

key element in modeling rock cutting and blasting, and in the stability analysis of rock

structures (Whittaker et al., 1992).

2.3 Applications of Fracture Mechanics

The occurrence and propagation of a crack or flaw; due to applied load in a structure; can be

best described and explained using fracture mechanics. As cracks can occur anywhere, many

disciplines of science and engineering study fracture mechanics in their applications such as:

Medical Sciences, Petroleum Engineering, Aerospace Engineering, Mechanical Engineering,

Civil Engineering, Geological Engineering, and Mining Engineering.

Shi (2006) illustrates an example for the application of fracture mechanics in adhesive joint

applications used in material sciences, where discontinuous interfaces are caused in electronic

packages when adhesive bonding is used during packaging for electronic devices integration.

As the packages arrive under different environmental conditions; influenced by thermal,

mechanical, moisture, and electrical loadings; they are subjected to different failures as crack

occurrence in the adhesive layer causing damage to the solder joint and the total failure of the

whole electronic device. Thus, understanding fracture mechanics principles is essential to

prevent further failures.

Another field where fracture mechanics is commonly used is medicine where basic fracture

principles are used to determine fracture resistance of bones. Experimental testing similar to

ones used in determining the fracture toughness of rocks and metals are used to determine the
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fracture toughness of bones. Cook (2005) thoroughly investigated the application of fracture

mechanics in medical sciences where he used disc-shaped compact specimens and three-point

bending specimens to determine the fracture toughness of cancellous bones.

Fracture mechanics has also been applied in Aerospace engineering where many accidents

and planes crashed in the past due to fracture failure and fatigue occurrence. For instance, an

Aloha Airlines Boeing 737-200 aircraft lost a major part of its upper fuselage because of the

multiple fatigue cracks in 1988.

The applications of fracture mechanics manifest in the different fields of civil engineering

such as crack propagation analyses in large concrete structures like dams, weirs, and bridges.

Fracture mechanics is also applied in the design and building of asphalt pavements suffering

from low temperature cracking as in Northern united states and Canada. Li (2004) presented a

standard method to quantify and analyze the cracking resistance of different asphalt mixtures.

Also, Othman (2006) studied the fracture resistance of rubber modified asphalt mixtures that

are subjected to cycles of high temperature aging.

Other disciplines of science and engineering including petroleum engineering, mining

engineering, and geological engineering utilize rock fracture mechanics which is a major

branch of fracture mechanics, covering different engineering applications from hydraulic

fracturing to rock fragmentation to blasting to rock slope analyses to in-situ stress and strain

determination (Alkiliggil, 2006). Other geological applications applying the principles of

fracture mechanics include earthquake mechanics, earthquake prediction, plate tectonics,

magmatic intrusions, hot dry rock geothermal energy extraction, fluid transport properties of

fracturing rock masses, propagating oceanic rifts, the development of steeply dipping

extension fractures that are nearly ubiquitous at the earth's surface and are formed through

folding, upwarping and rifting and the modeling of time-dependent rock failure (Atkinson,

1987; Whittaker et al., 1992; and Alkiliggil, 2006).

2.4 Importance of Fracture Toughness in Rock/Soil Fracture Mechanics

Fracture toughness is considered a very important parameter in different earth sciences and

engineering disciplines; it has been used as a parameter for rock material classification as in

the research studies by Gunsallus and Kulhawy (1984) where fracture toughness was used as

a rock classification index. In addition, Bearman (1996) used fracture toughness value to
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classify and to estimate comminution behavior. Fracture toughness is not a strength, but

independent natural property.

Fracture toughness has also been used as an index for tunnel boring and model scale blasting

and other fragmentation processes. In a study by Nelson and Fong (1986), they proved the

possibility of predicting cutter forces and force penetration relationships by the knowledge of

the fracture toughness value. In a more recent study Momber (2006), used fracture toughness

value to verify a proposed transition index which was eventually used in the design and

execution of non conventional drilling and cutting methods such as hydrodynamic

fragmentation, cavitation drilling, and hydrodemolition (Alkiliggil, 2006).

Moreover, fracture toughness has been used as a material property with an application in

modeling of rock fragmentation processes such as explosive simulation of gas wells, radial

explosive fracturing, hydraulic fracturing, stability analyses, and crater blasting. According to

Chen and Chen (1995), fracture toughness has been widely accepted as a criterion for fracture

propagation in the simulation of hydraulic fracturing where the fracture is expected to extend

and propagate when K1 >_ Kjc. Chen and Zhang (2002) added that for underground rock

materials located at great depths, the fracture toughness value is essential in the simulation of

hydraulic fracturing treatments of reservoir pay-zones in the oil and petroleum industries.

Finally, Balme et al. (2004) highlighted the importance of fracture toughness determination to

better evaluate the mechanical behavior of rocks under high pressures and temperatures to

better model different volcanolgical problems like lava flows and dike emplacement

(Alkiliggil, 2006).

2.5 Concepts Associated with Fractures

2.5.1 Discontinuities in Rocks

Different terminology is often used to describe discontinuities in rocks and in rock-like

materials, which causes confusion to the reader as no clear specified meaning is provided.

Also various nomenclatures evolve from different fields and applications. Backers (2004)

summarized the different discontinuities that can occur; a crack can be considered any

opening in the material that has one or two dimensions smaller than the third one. According

to (Simmons and Richter, 1976) the ratio of width to length in a crack is in the order of 10- to
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1-5.10-1

Cracks can be divided into three subcategories; micro, meso, and macro cracks. A

microcrack is a planar discontinuity with the largest dimension in the size range of a few

grain diameters which according to En-gelder (1987) can reach 1*100 - 1*104 microns. And

based on the location of its occurrence can be considered either grain-boundary crack if

located at interface between grains or considered intra-granular crack if concentrated within

one grain or can be considered inte-rgranular crack if the cracks penetrate more than one

grain. A mesocrack extends and penetrated over more grains than a microcrack, it is usually a

result of complicated rupture incidents that finally joins several microcracks. According to

Backers (2004) a mesocrack extends hundreds of microns to few milli-metres. Finally a

macrocrack extends several millimeters to decimeters and can be referred to as a fracture

which is the interest of our study. A macrocrack consists of a clear separation and is

surrounded by a fracture process zone (FPZ) consisting of a number of micro and meso

cracks as illustrated in Figure 2.1. The development of a fracture and the fracture process

zone under a tensile load perpendicular to a starter notch is shown in Figure 2.2 where a

sketch shows the schematic sequence A to D shows (micro-crack) to (meso-crack) to (macro-

crack) development with the load increase.

In other sciences and disciplines such as tectonics and engineering geology, the term joint or

fault can be used to describe fractures. According to Pollard and Aydin (1988), a joint is a

discontinuity that shows displacement normal to its surface or trace and does not show

displacement parallel to its surfaces. While a fault; usually results from shear displacements;

which evidently shows displacement parallel to the surface. Figure 2.3 shows a comparison

between the lengths of different types of discontinuities starting from a microcrack to a joint.

2.5.2 The Process of Fracturing

Over the years scholars and researchers have studied the process of fracturing in rocks, soils,

and rock like materials. This was done for different loading conditions and for different

materials, using different observation scales and techniques such as interpretation of

mechanical data, microscopy at different scales and detection and interpretation of Acoustic

Emission (AE) events (Backers, 2004). A number of classical references and textbooks

should also be considered for example Pollard & Aydin (1988), Atkinson (1991), and Dresen
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& Gudguen (2004).

Under compressive loading, both tensile and shear stress concentrations develop at

preexisting inclined in-homogeneities at both the mesoscopic and macroscopic observation

scale. When compressive stresses are applied, tensile cracks will initiate at the tips of the pre-

existing fractures. These cracks are called wing cracks and they grow progressively into the

direction of the remote major principal stress then stop (Brace and Bombolakis, 1963;

Kemeny and Cook, 1987, Petit and Barquins, 1988). At the early stages of crack propagation

the growth of the stable wing crack is dominated by the stress field of the originated fracture.

As it extends, it starts to interact with neighboring microcracks and this interaction might lead

to coalescence and ultimate failure (Backers, 2004).

Depending on the geometry and pattern of the interacting fractures, and also the stress

condition, different coalescence behavior can take place. Generally, wing cracks initiate at the

fracture tips for uniaxial and low confinement biaxial conditions as illustrated in Figure 2.4.

Bobet and Einstein (1998) reported that the location of crack initiation moves to the middle of

the flaw upon the increase of confining pressure and macro/mesoscopic wing cracks vanish

completely for higher confining stresses. Eventually, secondary fractures probably connect

with the pre-existing fractures. The secondary fracture follows the direction of shear and was

found to be unstable (Sagong & Bobet, 2002). The most preferable geometry for shear

fractures to develop in a set-up with two initial fractures as shown in Figure 2.4 is to organize

them co-planar, as well as with no confining pressure (Bobet & Einstein, 1998).

According to Lockner (1995), shearing will take place along surfaces oblique to the

maximum principal stress, o, and play an important role in the development of local stress

concentrations. The local stresses induced near a fracture tip loaded in shear contain a

component of tension as well as shear. This will in general lead to tensile failure before shear

failure. It is worth noting, that two mechanisms take place during the loading of fractures

under compressive shearing. First mechanism is propagation of extensional cracks decreasing

the stress intensity; accordingly, additional deviatoric stresses should be applied to cause

further fracture propagation. At some point the extensional crack propagates out of the area of

high stress concentration and ceases. The second mechanism is the propagation of diagonal

flaws out-of-plane parallel to the major principal stress direction. These flaws are favorably

oriented to act as initiation points for shear failure (Backers, 2004). When the flaw density
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becomes high enough for crack interaction to occur, arrays of cracks will develop (Costin,

1987; Lockner, 1995). Finally, the stress concentration becomes high enough to initiate shear

fractures propagating in plane and being governed by their own stress field.

2.5.3 Fracture Growth

Fracture propagation can be described using two different terminological frames; one frame is

function of fracture propagation velocity and the other frame is stress intensity dependent. In

the velocity frame, the fracture can be either static or dynamic. While for the stress intensity

frame, the fracture can be described as either stable or unstable. The different regimes of

fracture propagation are exhibited in Figure 2.5.

For crack instability the stress intensity should be equal to the fracture toughness value. (K

=> Kc, and that dK/dc > 0, where c is the crack length) (Lawn, 1993). In other conditions, the

crack can be considered stable; a stable crack extends relatively slow, stopped at any stage,

and requires further stress / load application for each increment in the crack growth. On the

contrary, an unstable crack can be accelerated by excess energy and propagates at speeds

approaching a terminal velocity that is governed by the speed of elastic waves (Backers,

2004). In this situation the crack is called dynamic. Intermediate conditions for instability can

be either achieved by reaching a critical crack length or by impact loading. According to

Backers (2004), the term critical is used for the onset of unstable crack growth, reflecting the

transition from stable to unstable. In terms of stress intensity factor it is called the critical

stress intensity factor, Kc. Any fracture propagation taking place at fractions of KC is referred

to as subcritical crack growth (Atkinson, 1984); it is governed by several competing

mechanisms such as diffusion, dissolution, ion exchange, microplasticity and stress corrosion.

2.6 Griffith's Theory

Griffith is considered one of the earliest scientists conducting research in fracture mechanics

where he began his studies around 1920s. He proposed that brittle material failure is a result

of the existence and extension of inherent cracks; which eventually yield a new crack surface

that consumes the energy applied by work done due to external forces or by the release of

internal stored strain energy. Failure takes place when the energy; due to the externally

applied force or due to the release of internal strain energy; is more than the energy of new

crack surface (Donovan, 2003).
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According to Griffith's theory for failure to take place in a brittle material the local stress

should be high to overcome the molecular cohesive strength of the material. This condition

can take place by stress concentrations around cracks or inherent flaws within the material. In

addition, sufficient potential energy should be released to overcome the material's crack

propagation resistance. This condition can take place when the work done by external forces

is high enough.

Griffith utilized the stress analyses of Inglis for an elliptical crack in an infinite plate to

develop a relation between crack size and stresses associated with fracturing. The total energy

for an infinite plate with an elliptical crack was defined as follows:

U = Ut + Uc - W + U, (2.1)

Where, U, is the initial elastic strain energy of non cracked plate, U, is the elastic energy

release caused by the introduction of a crack, W is the work done by externally applied forces,

and U, is the change in the elastic surface energy due to new crack surfaces.

Whittaker et al., (1992) used elastic theory expressions and definitions to quantify the energy

components in the previous equation which gave the following equation:

a 2A Ia 2 a 2  acA
U = --- -+ 4ays (2.2)

2E' E' 2

Where, A is the infinite area of the plate, E' is the effective Young's modulus for plane stress;

and is defined as (E/ (1-v2)) for plane strain where v is Poisson's ratio, F is the value of strain,

ys is the specific surface energy, and a is the crack length.

The specific surface energy term y, was defined by Griffith as a constant material property

which represents the energy needed to induce and create a new crack surface. The crack will

propagate when the increase in the crack length does not change the net energy of the plate,

which can be expressed as dU/da >= zero. And by differentiating the previous equation with

respect to the crack length, the following the relation can be obtained:

27rUz a
4 y ' = zero (2.3)

The logical extension from this fundamental concept explained by Griffith yields the energy

release rate, G (Irwin, 1958) for a constant applied external stress. The parameter has been

denoted G in honor of Griffith.

G 22=
G El (2.4)
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For crack extension to occur G needs to reach a critical energy release rate value, GC, which

is defined at the failure stress, 0 F-

Though Griffith's Theory was so significant, there have been some limitations on its

applications as he only considered elastic, brittle materials where no plastic deformations

took place. It was eventually proven that plastic deformation within a material yielded an

energy requirement for crack extension and propagation that was ten times more than that

predicted by Griffith's original theory.

Orowan (1949) and Irwin (1948) extended Griffith's theory of brittle materials to include

ductile materials. Irwin hypothesized that there is a definite limited energy from plastic

deformations of ductile materials and this energy needed to be added to the strain energy

previously defined by Griffith. However, he realized that the surface energy term for ductile

materials is so small that it can be neglected if compared to the remaining energy associated

with the plastic deformation.

Irwin (1957) used a stress intensity approach to relate the critical strain energy release rate Ge

to the critical stress intensity factor Kc. Rather than follow Griffith's global approach, Irwin

considered the crack tip region, which is small compared to the rest of the body but large

enough with respect to atomic dimensions such that linear elastic theory applies (Knott,

1972). Irwin determined the work required to close up a small portion of a crack by

superimposing tensile forces along the crack surfaces and hypothesized that this work is equal

to the energy released when the crack extends (Donovan, 2003). Thus the work required to

close a unit length of the crack is the strain energy release rate and, based on the stresses and

displacements occurring as a result of the tensile forces, is equal to:

G - (1 -V 2 )K 2  (2.5)
E

Since crack propagation occurs when G reaches a critical value, the critical value of stress

intensity can be defined as:

GCE
Kc = (2.6)

(1-V2)

By demonstrating the equivalence of K and G, Irwin provided the basis for the development

of Linear Elastic Fracture Mechanics (LEFM). In LEFM the crack tip stresses, strains, and

displacements can be characterized by K as long as plastic yielding ahead of the crack tip is
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small. The advantage of LEFM is that it provides a universal approach for determining a

material's resistance to fracture, as defined by Kc. As long as an explicit function for the

stress intensity near a crack tip is known for a given crack geometry and loading

configuration, K, can be measured experimentally (Donovan, 2003).

Then in 1958 Irwin showed the equivalence of energy release rate and stress intensity factors,

with the aid of the principle of superposition the relation can be written as follows:

K/ Kf; KA 1;(1 +v)
G = -+ -+ E' 1(2.7)

Where v is Poisson's ratio, K stress intensity factor under a specific mode of loading and E'

identifies Young's modulus of elasticity (plane stress or plane strain condition).

Later in the 1960s, researchers and scientists started to focus on the plasticity of the crack tips

and associated plastic deformations and in 1968, Rice was the first to model the plastic

deformation as nonlinear elastic behavior. Moreover, he extended the energy approach to

include nonlinear materials. He figured out that the energy release rate G can be expressed as

a path-independent line integral, named the J integral. Rice's theory has provided the

development of fracture mechanics in United States.

Particle size effect is one major issue related to Griffith's theory that was thoroughly

investigated, it has been proven that for a given material, as particle size decreases strength

increases. This can be explained due to the distribution of flaws and cracks within the

material. Weibull's weakest link theory (1951) suggests that the particle strength is dependent

on its most critical flaw. From this critical flaw, fracture initiates independently of all other

flaws within the particle. As the size of the particle decreases the existence of such a critical

flaw becomes less probable leading to an increase in the strength with the decrease in particle

size. Defining a material's fracture resistance should account for the effect of size or be

independent of it (Donovan, 2003).

Schoenert (1972) also explained particle size effect using energy considerations. He stated

that as the failure of brittle solids takes place when the energy by an externally applied force

or by the release of internal stored strain energy is greater than the energy of the new crack

surface, then smaller particles will mostly have less capacity for storing elastic energy (Ut is

proportional to volume) which indicates that smaller particles will need further work by

external forces or higher stresses in order to fracture. Smaller particles also exhibit a more
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plastic response than larger ones, which leads to much irreversible deformations when

subjected to high stress levels, these plastic deformations alter stress distributions within the

particle leading to much coarser fragments upon fracture.

2.7 Linear Elastic Fracture Mechanics

The basics of the Linear Elastic Fracture Mechanics (LEFM) were developed by Irwin in the

1950s; LEFM assumes that the material is isotropic and linear elastic. Figure 2.6 illustrates a

typical stress-strain behavior of an isotropic and linear elastic material. The behavior implies

that the material properties are independent of direction and these materials have only two

independent elastic constants which are Young's Modulus (E) and Poisson's ratio (U).

Applying the basic principles of the LEFM, the stress field near the crack tip is calculated by

considering the theory of elasticity. Moreover, it is applicable to brittle fracture situations

where the load-deflection response of the cracked body is essentially linear up to the point of

fracture (Alkiliggil, 2006).

LEFM is only applicable when the plastic (inelastic) deformation is much smaller than the

size of the crack. If large zones of plastic deformation develop before the crack propagations,

Elastic Plastic Fracture Mechanics (EPFM) should be used instead of LEFM.

The general expression of LEFM equation is presented in the following equation:

_K 1
0 -0 = fij (0) + .... (2.8)

Where ci is the stress tensor in Cartesian co-ordinates, r and 0 are cylindrical coordinates of a

point with respect to the crack tip, fij is a geometric stress factor depending solely on angle 0

(for notations see Figure 2.7), and K is the stress intensity factor which is a factor depending

on the outer boundary conditions (applied loading and geometry). K1 is the stress intensity

factor that gives the grade of stress concentration at the tip of a crack of length a at a given

loading and has the dimension of stress* (length)" 2, in units Pa m1.

K = a VFrr* a = uj 1 v2wT* r; 0 = zero

F
Dimension (K) = - VT = F * L/2 = Stress * Length = PaVi (2.9)
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2.8 Rock Fracture Mechanics and Fracture Toughness

The development of fracture mechanics was started after several modifications to Griffith's

theory. As earlier mentioned fracture mechanics quantifies fracture initiation and crack

propagation and provides both qualitative and quantitative descriptions to the material

behavior. As rocks, rock-like materials, and soils contain discontinuities, fractures, and flaws,

continuum methods of macroscopic failure like Mohr-Coulomb cannot be used and fracture

mechanics principles should be applied. Despite having several critical applications outside

rock and soil mechanics, fracture mechanics was primarily developed for geomaterials.

Hence, the main differences between the behavior of soils/rocks and other materials including

manmade materials such as metals should be highlighted. Whittaker et al. (1992) gave a

comprehensive detailed list and explanation of these differences, which can be summarized

as:

a) Stress state: Structures are mainly subjected to compressive stresses more than tensile

stresses. However, in comminution and crushing the induced stress state is tensile (from

point-load compression) and thus tensile fracture is seen in rocks and soils.

b) Rock and soil fracture: Rock materials usually fracture in a brittle or quasi-brittle manner

and usually do not exhibit plastic flow.

c) Fracture process zone (FPZ): Plastic behavior ahead of a crack tip in rock takes the form of

micro-cracking as opposed to excessive shear strain and the resultant plastic process zone

seen in metals. If the size of the FPZ is small, then linear elastic fracture mechanics applies.

d) Crack surface: Crack surfaces in soils and rocks can be non-planar with friction and inter-

locking occurrence, but linear elastic fracture mechanics assumes that no forces are

transmitted across the surface of a smooth planar crack.

e) Crack propagation: In rocks and rock-like materials there is a tendency for crack

propagation to extend along grain boundaries or planes of weakness. The area of newly

created surface is then larger than the assumed planar fracture area.

f) Heterogeneity: Changes in local structure and strength ahead of a crack tip affects the

continuity of crack growth.

g) Presence of discontinuities: Pre-existing discontinuities affect the local stress states and
42



crack propagation.

h) Anisotropy: Rocks and soils can be anisotropic affecting measured fracture parameters as a

function of crack orientation.

By understanding the previously mentioned differences researchers and scientists were able

to develop more reliable, practical and relevant concepts of fracture mechanics with special

application to soil and rock behavior. The most fundamental aspect of rock / soil fracture

mechanics is establishing a relation between rock / soil fracture strength and the geometry of

the flaws that result in fracture (Donovan, 2003). Through this relationship an intrinsic

material property that describes a materials' resistance to crack propagation can be measured.

This property is called fracture toughness. Fracture toughness represents a critical level above

which crack extends and fracture occurs. When individual rock or soil particles are subjected

to the applied forces of size reduction, it is most likely that the intrinsic property measured as

the fracture toughness will control breakage (Bearman, 1998). Since the amount of energy

input into a size reduction process and the amount of size reduction achieved (are related to

the type of loading and the crack pattern in the material, there should be a relationship

between these parameters and fracture toughness (Donovan, 2003).

2.9 Stress Intensity Factor and Modes of Loading

In fracture mechanics, cracks and fractures can be classified as three basic types, namely

Mode I, Mode II and Mode III, from a mostly mathematical viewpoint (Irwin, 1958). The

classification is based on the crack surface displacement (Lawn, 1993), or crack tip loading

(Engelder, 1987; Whittaker et al., 1992). In the literature, this is indicated as either mode of

crack propagation, mode of fracturing or mode of loading. Relating the modes of fracturing to

the modes of loading is appropriate for most metals given that the fracture propagates within

its own plane (Rao et al., 2003). However, for rocks and soils a specific mode of loading is

not necessarily leading to the same mode of fracturing. Unfortunately, the reference of mode

regarding the applied loading and fracture propagation is often mixed up in literature. There

should be a clear distinction between 'mode of loading' - for the applied boundary stresses -

and 'mode of fracturing or failure' - for the mechanical breakdown process defined by

relative displacement (Alkiliggil, 2006).

In terms of crack surface displacement (mode of fracturing), there are three basic modes;
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Mode I, Mode II, and Mode III, which are displayed in Figure 2.8. In Mode I, known as the

opening (tensile) mode, the crack tip is subjected to displacements perpendicular to the crack

plane and the crack propagation is in the crack plane direction. The crack carries no shear

traction and no record of shear displacement is visible. In Mode II, known as the in-plane

sliding mode due to shearing, the crack faces move relatively to each other in the crack plane.

Crack propagation is perpendicular to the crack front. Shear traction parallels the plane of the

crack. Finally, Mode III which is known as the tearing mode or out of plane mode also due to

shearing. Shear displacement is acting parallel to the front in the crack plane. Any

combination of the three basic modes is referred to as mixed mode. The principle of

superposition is sufficient to describe the most general case of crack tip deformation

(Atkinson, 1987). Mode I is the most commonly encountered mode in engineering

applications and is also the easiest to analyze, produce experimentally on laboratory

specimens, and apply (Schmidt and Rossmanith, 1983). In LEFM, most formulas are derived

considering these modes by assuming either plane stress or plane strain conditions. Plane

Stress Condition can be defined as in the case of a thin plate where the stress through the

thickness (cyz) cannot change noticeably owing to the thin section and it is equal to zero (az

= 0). While the Plane Strain Condition can be defined in the case of a thick body where the

material is constrained through the thickness and strain in the z-direction is equal to zero (c,

= 0). Illustration of the two conditions with associated stresses and strains is displayed in

Figure 2.9.

Each mode is characterized with specific stress symmetry properties near the crack edge

(Broberg, 1999) defining the directions for maximized stress intensity. In a Cartesian co-

ordinate system, the modes may be specified based on linear elastic calculations as follows:

In Mode I, the lateral stress component (fyy) and the directional stress component (fx) are

symmetric with respect to the crack trace. The shear stress component (fxy) shows point-

symmetry as shown in Figure 2.10. In Mode II, both the lateral (fyy) and the directional stress

components (fxx) are point-symmetric, while the shear stress component (fxy) is the only

component to be symmetric with respect to the crack trace as shown in Figure 2.10. And in

Mode III, fyz appears to be symmetric with respect to the crack trace while fxz shows point-

symmetry (Backers, 2004).
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2.9.1 Evaluating Stress Intensity Factor

Using the theory of elasticity which is known as the stress analysis methods of Muskhelishvili

(1963) and Westergaard (1939), the crack tip stress (and hence K) and displacement fields for

each mode of loading can be determined (further derivation and explanation can be found in

Pook, 2000). The coordinate system measured from the leading edge of a crack as shown in

Figure 2.11, the Mode I stress components are given according to the following equations:

- 1 = Cos - 1 - sin -sin--- (2.10)25~ 2 2 2

SCos- 1+ sin0 sin-- (2.11)

K, 0 0 30 2.2T = COS sin - cos- (2.12)
-2n 2( 2 2

For Plane strain conditions, a, = v (ax + ay)

For Plane stress condition, crz = zero

TxZ = Tyz = zero (2.13)

Where, K1 is the stress intensity factor for Mode I. The displacements at the crack tip can be

found by substituting the previous equations into Hooke's Law.

By examining the previous equations, it can be observed that the stresses at the crack tip

reach an infinite value when the value of r approaches zero (indicating the crack tip location).

Since no value of stress at the crack tip can be given, and all non-zero stresses of the previous

equations are proportional to K1, with the remaining factors varying only with r and 0, the

stress field near the crack tip can be determined by giving the value of KI, which has a formal

definition of (Dowling, 1999; Pook, 2000):

K = limu -2n * r (2.14)
r,O -40

The previous equation can be arranged to account for the crack size, stress condition, and

geometry as follows:

K1 = F a - 27T* a (2.15)

Where, F is a dimensionless constant dependent on the geometric configuration, Y is the

stress averaged over the gross area, and a is the half-crack length.

F is described as a function of loading geometry and (a/w) relation where w is defined as the
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maximum possible crack length. When F is determined for a given geometry, the critical

value of stress intensity, known as the fracture toughness, can be determined as long as

inelastic yielding ahead of the crack tip is small and the conditions for LEFM are met

(Donovan, 2003). Equations and values of F for a wide range of crack, specimen, and loading

geometries are determined using different analytical, numerical, and experimental methods

and have been compiled in various handbooks such as Tada et al., 2000; Murakami, 1987;

Rooke and Cartwright, 1976; Sih, 1973.Figures 2.12 and 2.13 show the stress intensity

relationships for some of the more common loading and geometry conditions.

2.10 Determination of Mode I Fracture Toughness

To date there are no certain reliable standards for testing methods to determine the critical

Mode I fracture toughness value, Kic. The earliest approach to determine KiC in rock fracture

mechanics was employing the ASTM standard method (ASTM-E399) that was primarily

used for metals. Initially, ASTM-E399 seemed to be effective and beneficial for rock testing,

however, general consensus for rock testing were to develop an ideal methodology that

would determine a representative fracture toughness value and yet to be simple and practical,

requiring neither pre-cracking, nor crack length and displacement measurements, nor

sophisticated complicated evaluation techniques (Ouchterlony, 1989). According to the

mentioned requirements ASTM-E399 is neither convenient nor practical, and most testing

methods for rock now employ core-based specimens. Accordingly, the International Society

of Rock Mechanics (ISRM) has suggested two guidance methods; Chevron Edge Notched

Round Bar in Bending (CB), the Chevron Notched Short Rod (SR); that can be used as

standardized tests in order to determine accurate, compatible, and reproducible Kjc values for

rocks (ISRM, 1988). However, to overcome some of the reported disadvantages of the CB

and SR testing methods, the ISRM recommended a third method (ISRM, 1995) for

determining the fracture toughness of rock using Cracked Chevron Notched Brazilian Disc

(CCNBD) specimen. Figure 2.14 shows the three testing methods that have been introduced

by the International Society for Rock Mechanics (ISRM) as Suggested Methods

(Ouchterlony, 1988; Fowell, 1995).

According to the ISRM suggested methods, there are a few factors that need to be taken into

consideration to be able to determine Kic value accurately. These factors include the crack
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requirements, the testing level, the loading rate, and the testing method.

2.10.1 Crack Requirements

To be able to determine the fracture toughness value for any specimen, the specimen should

be "cracked". This crack should be representative of a natural crack, a crack that is sharp and

free from the effects of residual stresses, specimen boundaries, and pre-fabricated notches

(Whittaker et al., 1992 and Donovan, 2003). In the case of testing metals, the specimens are

pre-cracked by fatigue to simulate a naturally sharp crack. However, in rocks and clays (soils

in general) fatigue pre-cracking is a difficult process as the load requirement for fatigue

crack growth is relatively high and special attention and care is required in order to prevent

further propagation of the induced pre-crack after it has been initiated.

Over the years researchers and scientists developed more convenient methods to create a pre-

cracked rock or soil specimen, the simplest method is utilizing a thin saw-cut. Despite the

ease of notching there is evidence that notched specimens tend to underestimate fracture

toughness (Donovan, 2003). In their experimental studies Sun and Ouchterlony (1986)

showed that apparent fracture toughness values obtained using a notched specimen are

evidently lower than those obtained using a pre-cracked specimen, they concluded that the

use of notch length in the calculation of Kjc ignores micro-crack growth prior to crack

extension. Later Fenghui (2000) created a numerical model, based on the size of the fracture

process zone (FPZ) and notch radius, that estimates the fracture toughness value based on the

measured fracture toughness of a notched specimen as long as the notch radius is not greater

than the average grain size of the rock.

The most common and widely accepted method of pre-cracking samples is producing a

chevron-notch, which is a V-shaped notch that allows the development of a stable the crack

front as the crack propagates. An increase in the applied pressure (load) is needed for further

crack propagation and inherent monotonic pre-cracking is produced during testing (Sun and

Ouchterlony, 1986). A sharp natural crack is eventually created and the resistance to

propagation becomes fully developed after initial crack growth. However, creating a chevron-

notch is not an easy procedure if compared to a standard or a straight-through saw-cut notch,

and the decision to use one or the other is based on the "level" of testing required which is

explained in the following section.
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2.10.2 Testing Level

The International Society of Rock Mechanics ISRM (1988) suggested two testing levels to

guide researchers and practitioners to decide what combination of screening and accuracy is

best for a given application of the measured fracture toughness values. They defined level I

testing as the type of testing that can be carried out using portable equipment and requires

only the registration of maximum load. The associated estimated value of fracture toughness

in this case acts as an index property more so than of a material property. Level I testing is

more appropriate for screening purposes or for the rapid estimation and comparison of

fracture toughness values.

On the contrary, level II testing requires both load and displacement measurements, and thus

is laboratory based and is considered more complicated and sophisticated to perform. This

testing level is recommended for the determination of accurate, compatible, and reproducible

fracture toughness values.

2.10.3 Loading Rate

Barton (1983) reported that different loading rates have been prescribed for rock fracture

testing, ranging from 0.01 to 0.03MPam 2/sec. For the testing methods suggested by the

ISRM, loading rate is not supposed to be greater than 0.25MPam1 /2/sec or such that failure is

recorded within 10 seconds (ISRM, 1988). Although general rock and soil strength properties

depend on loading rate and their behavior differ greatly upon changing the loading rate, there

is no agreement on whether or not KIc is affected by a change in the loading rate. The size of

the FPZ should be affected by the loading rate and whether the load is applied statically or

dynamically. In the case of dynamic loading, where fracture would occur before the full

development of the FPZ, an underestimated fracture toughness value is expected. Khan and

Al-Shayea (2000) reported that by testing in accordance with the suggested recommendations

of the ISRM it has been shown that loading rate has a negligible effect on measured fracture

toughness value.

2.10.4 Testing Method

The International Society for Rock Mechanics has suggested three methods for the

determination of fracture toughness mainly for rocks and can be applicable to soils. These
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methods are the Chevron Edge Notched Round Bar in Bending (CB), the Chevron Notched

Short Rod (SR), and the Cracked Chevron Notched Brazilian Disc (CCNBD). Each method

is core based, the only viable specimen alternative as rock is often available in the form of

core pieces (Ouchterlony and Sun, 1983).

Despite the suggested standard methods of the ISRM, several other methods, with advantages

and disadvantages, were developed and conducted by researchers to better quantify the

fracture toughness Kic. Whittaker (et al., 1992) and Chang et al. (2002) provide an exhaustive

review of these alternative methods. The alternative methods include the commonly used

method of the Semi-Circular Bend (SCB) test. The SCB can be prepared from rock cores and

is adaptable to small, compact samples (favorable for soils) that require duplicate samples to

test parameters that may affect Kic such as loading rate, specimen thickness, and crack length

(Karfakis et al., 1986; Chong, 1980; and Chong and Kuruppu, 1984). The Semi-Circular

Bend (SCB) test is sometimes referred to as single edge Half Disc specimen in three point

Bending (HDB) test. Other specimen geometries and conditions are used in other alternative

methods such as the Chevron Notched Semi-Circular Bend (CNSCB) test (Kuruppu, 1997),
the uncracked Brazilian Disc (BD) test (Guo et al., 1993), Straight Notched Brazilian Disc

(SNBD) Specimens (Chong and Kuruppu, 1984), the Radial Cracked Ring (RCR) test

(Shiryaev and Kotkis, 1982), the Modified Ring (MR) test (Thiercelin and Roegiers, 1986),
Straight Edge Cracked Round Bar Bend (SECRBB) method (Ouchterlony 1982), the hollow

Pressured Cylinder (PC) (Abou-Sayed and Simonson, 1977), the Double Torsion (DT) test

(Evans, 1972), Punch Through Shear (PTS) Tests, Vicker indentation method (Atkinson and

Avdis, 1980), Hertzian indentation methods (Lawn and Wilshaw, 1975a; Warren,1978; and

Laugier, 1984, 1985), Diametric Compression (DC) test (Szendi-Horvath 1980), Cracked

Straight Through Brazilian Disc (CSTBD) method (Awaji and Sato 1978), Flattened

Brazilian Disc (FBD) method (Wang and Xing 1999), and Hole Cracked Flattened Brazilian

disc (HCFBD) method (Zhang and Wang 2006).

In order to choose the simplest fracture testing method with reasonable fracture toughness

results, methods can be compared with each other in terms of specimen preparation, loading

method, experimental set-up and equipment, and applicability of the method to the mixed

mode fracture toughness estimation, this comparison is illustrated in Table 2.1. It should be

noted that most studies are relevant to mode I (opening mode) with some studies on mode II
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(in-plane shear mode) or the mixed-mode.

A brief description of the main testing methods, highlighting the main advantages and

disadvantages, is provided in the following section followed by summary tables of reported

fracture toughness Kic values from the literature using the different testing techniques in

Table 2.2.

2.10.5 The ISRM Suggested Methods:

2.10.5.1 Chevron Edge Notched Round Bar in Bending (CB)

Ouchterlony was the first to propose the Chevron Bond specimen configuration in 1988. A

chevron bend specimen and test set up are illustrated in Figure 2.15.

The test requires a long cylindrical specimen which can be obtained from a rock core or soil

Shelby tube, the specimens are cut into the suggested lengths, then with the aid of a rotary

saw, two notches which form a v-shaped ligament are achieved in opposite angles. The v-

shaped notch, which is called chevron notch, is sawed in the middle of the specimen and

perpendicular to the specimen (core) axis. After preparation, the specimen is loaded under

three-point bending and the loading and resulted crack/fracture propagation are servo

controlled by a clip on gauge that measures the chevron notch opening or what is called crack

mouth opening displacement (CMOD). Two roller supports are used for the specimen to rest

on and a compressive load is applied to cause crack propagation and transverse splitting of

the specimen. A complete review and background of the test are thoroughly described in

research by Sun and Ouchterlony (1986), ISRM (1988), Ouchterlony (1989), Ouchterlony

(1989a), and Whittaker (et al., 1992).

The following equations can be used to calculate fracture toughness of CB according to the

ISRM (1988). For level I testing the following equation should be used:

KCB = CK 24.0 Fmax/D1-S (2.16)

Where Fmax is the load at failure, D is the specimen diameter; Ck is a correction factor to

account for size variation of the specimen and can be computed from the following equation:

CK 1 - 0.6W+ - 0.01 (2.17)
D D

Where W is the specimen height, ao is the initial position of the chevron notch apex, and 0 is
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the chevron notch angle.

For level II testing, the previous two equations can be used to obtain a preliminary value then

a correction factor to account for the non linearity should be calculated and applied. By using

the readings of a load and crack mouth opening displacement (CMOD) curve (a typical curve

is shown in Figure 2.16 to illustrate terms used in the calculating formulae), the correction

factor can be computed as follows:

1 + p

Accordingly,

KCB 7- KCB (2.18)

Where KjB is critical fracture toughness value according to CB method, KCB is the stress

intensity factor obtained from previous equation (Level I testing), and p = Axo / Ax

(definitions of both terms are illustrated in Figure 2.16).

The main advantages of the CB method include utilizing core based cylindrical specimens

which are convenient in the case of testing rocks or soils, the chevron-notch, stable crack

growth, ability to account for non-linearity while calculating the fracture toughness value, and

multiple testing levels (Level I and II). However, the specimen geometry and required

dimensions and loading configuration are not simple, the chevron notch might appear an easy

simple approach yet it is still a rather difficult pre-crack to machine. Furthermore, the

advantages of the CB test seem only to be significant in terms of Level II testing. If Level I

testing is sufficient then other more straightforward techniques are available for the rapid

estimation of fracture toughness (Donovan, 2003).

2.10.5.2 Chevron Notched Short Rod (SR)

The short rod specimen configuration was first developed by Barker (1977), the configuration

of an SR specimen and test set up are illustrated in Figures 2.17 and 2.18.

The SR specimen utilizes a cylindrical specimen similar to the CB test but in an SR specimen

a chevron-notch is cut parallel to the core axis. A tensile load is applied at the notch mouth

causing crack growth and lengthwise splitting of the specimen. To obtain a loading surface in

tension, a rectangular grip groove is machined in one end of the short rod specimen. After the
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grip groove is machined, two slots are cut at opposing angles, forming a triangular ligament

which is called the chevron.

For fracture toughness calculation, tensile load and displacement measurements are made at

the grip groove. Fracture toughness computation is done by an analytical method which is

achieved by ISRM (1988) and a correction factor for the nonlinear behavior of the material is

calculated with another equation depending on the Load-CMOD curve of the fracture

experiments. There are two levels of testing in SR method. In Level 1 testing, maximum load

during bending is recorded and in Level 2 testing, load and displacement measurements are

taken into account. For a complete background review and detailed analysis see Barker

(1977), Bubsey (et al., 1982), Sun and Ouchterlony (1986), ISRM (1988), Ouchterlony

(1989), Ouchterlony (1989a), and Whittaker (et al., 1992).

The following equations can be used to calculate fracture toughness of SR according to the

ISRM (1988). For level I testing the following equation should be used:

KSR = CK 24.0 Fmax/D1-S (2.19)

Where Fmax is the load at failure, D is the specimen diameter, Ck is a correction factor to

account for size variation of the specimen and can be computed from the following equation:

CK =(1W- + - 0.01 / (2.20)
D D

Where, W is the specimen height, a is the initial position of the chevron notch apex, and 0 is

the chevron notch angle.

For level II testing, the previous two equations can be used to obtain a preliminary value then

a correction factor to account for the non linearity should be calculated and applied. By using

the readings of a load and crack mouth opening displacement (CMOD) curve (a typical curve

is shown in Figure 2.16 to illustrate terms used in the calculating formulae), the correction

factor can be computed as follows:

+ P

i-p

Accordingly,

KSR = 1p SR
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Where KsR is critical fracture toughness value according to SR method, KSR is the stress

intensity facot obtained from previous equation (Level I testing), and p = Axo / Ax

(definitions of both terms are illustrated in Figure 2.16)

The advantages of SR testing method are the same as those for the CB test. The SR method

uses a shorter length of core sized specimen and according to the ISRM, two SR specimens

can be obtained from one fractured CB test (since the length to diameter requirement of the

CB test is 4:1 and for the SR it is 1.45:1). This saves material and allows for the measurement

of fracture toughness using two crack orientations. However, the disadvantages of the SR

testing method are mainly related to specimen preparation, notably the chevron-notch, is

difficult to reproduce consistently and that for Level I type testing it is too complex

(Alkiliggil, 2006).

2.10.5.3 Chevron Notched Brazilian Disc (CCNBD)

Shetty et al. (1985) was the first to use Chevron notched Brazilian discs to measure the

fracture toughness of ceramics, and applied the stress intensity factor solutions of a cracked

straight-through Brazilian disc (CSTBD) with a through notch to the CCNBD by means of

the straight-through crack assumption (STCA) method (Donovan, 2003). Afterwards, the

ISRM presented the suggested method for determining mode I fracture toughness using a

CCNBD specimen as it has many advantages over other methods (Fowell, 1995).

The cracked chevron-notched Brazilian disc (CCNBD) specimen, which is illustrated in

Figure 2.19, has the same geometry and shape as the conventional Brazilian disc used for

measuring the indirect tensile strength of rock, except that the CCNBD specimen has a

chevron notch. The chevron notches are machined using slow speed circular saw, where the

circular disk is first marked on both sides along the diameter of the disc to show the two

extreme points up to which the saw can cut. The marked Brazilian disc is pressed against the

rotating circular saw until the saw reached the two marked extreme points. Then the disc is

removed and turned and the same procedure is repeated from the other side of the disc as

shown in Figure 2.20. During the notch-making process, the discs are held manually against

the saw, making it difficult to obtain precise dimensions and crack geometry (Alkiliegil,

2006). A strain controlled loading frame is used for the load application. The applied load and

load point displacement are obtained using a computerized data logger as displayed in Figure
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2.21.

Fracture toughness is calculated by an equation which depends on normalized stress intensity

factor. Stress intensity factor is computed with numerical methods and an equation can be

derived by fitting the numerical results. CNBD specimen is used not only to achieve fracture

toughness in Mode I but also fracture toughness in Mode II and mixed modes.

Fracture toughness is calculated by using the following expression as suggested by ISRM

(1995):

K1c = Bmax Y* in (2.22)

Where D is the diameter of the Brazilian disc = 2R, B is the thickness of the specimen, Pmax is

the compressive load at failure, and Ymin* is a critical dimensionless stress intensity factor

and can be computed as follows:

Y* gn = ueva (2.23)

Where u and v are constants determined by aO/R and B/R and obtained from a corresponding

chart and a is equal to a/R and a is half the notch length.

2.10.5.4 Concluding Remarks on ISRM Suggested Methods

The standardization of the suggested methods aided in obtaining more reliable and

representative values of Kjc yet with a variation of 20-30% in both the Chevron Bend (CB)

and Short Rod (SR) test values. Researchers have attributed this variation to several factors

including the size of specimens, anisotropy of rock or soil being tested, size of fracture

process zone near crack tip, micro- and macro-structure of tested material, and moisture

conditions of tested specimens (Iqbal and Mohanty, 2007). Indications of specimen size effect

were observed to exist in Kjc determination in a number of studies, recently Cui et al. (2010)

conducted mode I fracture toughness tests on SR specimens of four diameters prepared from

weak weathered sandstone cores and it was observed that Kjc value for the smallest diameter

group was approximately 1.2 times lower than Kic value for largest diameter group.

Accordingly, specimen size in addition to anisotropy can be considered as the main reasons

for the variation in the calculated values, accordingly a number of improvements had been

suggested such as empirical relations to accurately determine the required minimum diameter

of the core specimens (Ouchterlony, 1989; Matsuki et al., 1991; Ouchterlony et al., 1991).

However, other issues were problematic and were not overcome such as: the relatively low
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loads required to initiate fracture (in the order of 1-2 KN) which resulted in less precision in

measurements, a large number of specimens is needed to reach the correct testing orientation,

complicated inconvenient fixtures for specimen installation and loading, and complex

procedure of specimen preparation for the SR method (Fowell and Xu, 1993).

Even after the standardization of the Chevron-Notched Brazilian Disc (CCNBD) method in

1995, research on fracture toughness of rock used other similar simpler methods. The main

reason behind that is the difficulty of the notch making process in the disc specimen

preparation for the CCNBD test. Moreover, experimental research showed that fracture

toughness values obtained with the CCNBD test were considerably lower (30-50%) than the

values obtained with the CB and SR tests, for the same rock type (Dwivedi et al., 2000).

Several reasons have been offered to explain this deviation. These include the critical

dimensionless stress intensity factor (SIF) value for the disc specimens used in formula for

the CCNBD test, the anisotropy of rock, and the micro- and macro-structure of rock. The

stress intensity factor corresponds to the critical state of the specimen when the crack front is

somewhere between the initial and the final notch lengths, accordingly the critical crack

length and the critical dimensionless SIF values are specimen geometry dependent only

(ISRM, 1995; Fowell and Xu, 1993; Xu and Fowell, 1994). The critical dimensionless SIF

value has been considered as the major factor for the lower values of fracture toughness

obtained with the CCNBD method (Iqbal and Mohanty, 2007).

2.10.6 Alternative Methods from the Literature:

2.10.6.1 Semi Circular Bend (SCB)

The semi circular bend technique was first developed and proposed by Chong and Kuruppu

(1984) in order to have a test method that was simple to fabricate and load. Then the

technique was advocated by Lim et al. (1994). The pre-crack can be a saw cut notch that is

fatigue loaded in order to produce a natural crack, a chevron-notch, or a very thin saw-cut

notch. The kinematics of the test are similar to that of the CB test as a vertical compressive

load is applied under three-point bending and transverse splitting of the specimen (Akram,

1991). A more detailed description of the test is given by Chong and Kuruppu (1984),

Karfakis et al., 1986, Chong (et al., 1987), and Whittaker (et al., 1982).

Testing material cores are obtained then sliced into circular disks, using a high-speed
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diamond plated rotary saw. Then the discs are polished to ensure uniform thickness using a

sander or similar tools. The disks are cut along the diameter into two equal halves as shown in

Figure 2.22. Finally, a radial line is marked at the required orientation with respect to the

loading direction. Then a notch of the required length is made along this marked line by using

a wire saw. It is worth noting that the test is difficult to perform on standard NX core

specimens (approximately 50 mm in diameter) and larger diameter specimens are usually

required in order to obtain stable loading and crack growth. The specimen geometry and

loading configuration of the SCB test are shown in Figure 2.23.

A strain-controlled loading frame is then used for load application. The applied load, load

point displacement, and crack opening are acquired using a computerized data logger as

illustrated in Figure 2.24.

Chong et al. (1987) developed a formula for Kic by using both the strain energy release rate

method and the elliptical displacement approach.

K1
Yk K,(2.24)

Where, Yk is normalized stress intensity factor, K is stress intensity factor under mode I

loading, a is the notch or crack length and a is the applied stress at failure and can be

computed as follows:

P
Oo = 2RB (2.25)

Where P is the load at failure, R is the specimen radius, and B is the specimen thickness.

The normalized dimensionless stress intensity factor, Yk can be computed as a function of the

dimensionless crack length, a/D (where D is the specimen diameter). Y can be approximated

by a third-order polynomial as follows:

YK= 4.47 + 7.40 a - 106.0 @) + 433.3 () (2.26)

By using same equation fracture toughness is calculated with experimental data and

normalized stress intensity factor calculated by numerical results.

2.10.6.2 Chevron Notched Semi Circular Bend (CNSCB)

In 1997 Kuruppu carried out numerical 3D finite element analyses to obtain a relation

between the crack tip stress intensity factors of a chevron notched semi circular bend
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specimen (CNSCB) and the crack length. The shape of the chevron notched SCB specimen is

illustrated in Figure 2.25 According to the reported methodology; an initial crack length a, of

6 mm and a thickness t of 25 mm are required. All specimens should have a span to radius

ratio (S/R) of 0.8 and a chevron notch angle o of 90(Chang et al., 2002).

The average value of the stress intensity factor determined along the crack front can be

normalized as follows:

K,
Knd = - t V (2.27)

p

Where Knd is normalized stress intensity factor, P is the applied load and t and R are the

specimen thickness and radius, respectively. The relation between the normalized stress

intensity factor and the normalized crack length (a/R) is illustrated in Figure 2.26.

The stress intensity factor of the chevron-notched SCB specimen has a minimum value in the

same way as other chevron-notched specimens. Initial crack growth in a chevron notch occurs

in a stable manner during which the load increases and the specimen fails immediately

beyond its maximum load bearing capacity. Therefore, the maximum load was used as the

critical fracture load. This value along with the minimum value of the stress intensity factor

of 7.269 as shown in Figure 2.26 was used to determine the mode I fracture toughness.

Hence, the critical mode I fracture toughness can be determined as follows:

= 7.269 Pmax (2.28)
t V

2.10.6.3 Uncracked Brazilian Disc (BD) Test

An uncracked Brazilian Disc Test (BD) specimen has the same geometry as a conventional

Brazilian disc without any notch or crack (Guo et al., 1993). The main advantage of this

testing method is lack of requirement of a notch or crack for specimen preparation which

makes this method the quickest, the most controlled and the easiest. One of the features of the

BD specimen is that it uses the local minimum load as the critical load instead of the

maximum load (Chang et al., 2002). The local minimum load is defined as Pmin in Figure

2.27. The behavior of the tested specimen can be divided into three main behaviors; oa where
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elastic deformation occurs, ab where unstable crack propagates and finally bc where crushing

and secondary cracking occur. The local minimum load utilized in evaluating Kic can be

defined at the beginning of bc stage. Detailed further explanation of the Brazilian test, its

modifications, introduction of the flattened Brazilian disc configuration, and how to obtain

the fracture toughness value is covered in Chapter 3.

2.10.6.4 Straight Notched Brazilian Disc (SNBD) Specimens

Straight Notched Brazilian disc (SNBD) testing was first developed by Chong and Kuruppu

(1984). Specimens are obtained from rock cores or soil Shelby tubes, they are cut into

circular discs taking the Brazilian configuration using a high speed diamond plated rotary

saw. Then the circular discs are sanded to ensure uniformity and flatness of surfaces. Then a

drill bit in a lathe is used to initially create a hole in the center of the disc, the bit penetrates

half the thickness of the circular disc then the disc is flipped to drill the remaining thickness

half. A wire saw is inserted through the drilled hole and used to machine a straight notch with

a specific length (2a) in the disc. Figure 2.28 shows the geometry of the prepared SNBD

specimens. The testing equipment and setup are similar to that of CCNBD specimen test

discussed earlier.

Fracture toughness is calculated by a mathematical expression. The expression includes the

normalized stress intensity factor, which is determined using numerical methods. Atkinson et

al. (1982) proposed a mathematical expression to compute the stress intensity factor under

Mode I loading as follows:

P iai
KIc = N, (2.29)

krRB

Where Kic is the critical stress intensity factor under mode I loading, R is the Brazilian disc

radius, B is the thickness of the specimen, P is the compressive load at failure, a is half the

length of machined notch, and N, is a non-dimensional coefficient which depends on a/R.

N, can be evaluated by the following equation derived by Shetty and Rosenfield (1985) by

fitting the numerical results of Atkinson et al. (1982).

N = 0.99 + 0.141 a + 0.863 @2 + 0.886 (a (2.30)
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2.10.6.5 Concluding Remarks on Alternative Methods from the Literature:

Krishnan et al. (1997) pointed out the SNBD specimen is the most convenient configuration

when the soft sand stone is considered since the SNBD specimen configuration permits the

use of the same setup and conditions for mode I, mode II and mixed mode I-II testing with

fewer preparations than other type of tests. Also the effect of anisotropy and bedding planes

in fracture toughness can be evaluated easily by orienting the notch with respect to the

direction of interest (e.g. bedding planes).

Then Khan and Al-Shayea (2000) used SCB specimens under three-point-bending and

Brazilian disk specimens under diametrical compression in their mixed mode I-II study to

investigate the effect of testing method and specimen geometry such as diameter, thickness,

and crack length and type on measured fracture toughness. The results show that specimen

diameter and crack type have a substantial influence on the measured fracture toughness;

however, loading rate, crack size, and specimen thickness seem to have a negligible effect on

the fracture toughness. Mode I fracture toughness is significantly influenced by specimen

diameter and crack type. The different specimens (Brazilian disc, and semicircular) can give

comparable results only when the proper span to diameter ratio is used. The Brazilian disc

with a straight notch was found to be the most convenient geometry to use for fracture

toughness determination.

Then in a later study Chang et al. (2002) investigated rock fracture toughness under mixed-

mode conditions using the straight through crack assumption (STCA) applied to the CNBD

specimen and SCB specimen. Size effects, in terms of specimen thickness, diameter and

notch length on fracture toughness, were investigated. The CNBD specimen can be used to

measure mixed-mode and mode II fracture toughness values by the STCA method. It is also

unnecessary to perform pre-cracking for the CNBD specimen because it uses a chevron notch

which induces self-pre-cracking during testing and leads to a stable crack propagation. As a

result, it is concluded that the CNBD specimen is the most preferable and versatile among

disc-type specimens used in this study. Chang et al. (2002) summarized the main differences

between the different testing methods performed on disc type specimens, where they

compared between ISRM suggested methods; chevron bending specimens (CB), short rod

specimens (SR), and the Chevron Notched Brazilian Disc (CCNBD) and other alternative

methods from the literature; semi circular bend specimen (SCB). This summary is presented
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in Table 2.3.

2.11 Relationship between Fracture Toughness and other Physical

Mechanical Parameters

The application of fracture mechanics theory requires the evaluation of fracture toughness of

the rock or soil. However, standard sampling techniques are often unable to supply suitable

samples for fracture toughness testing (Haberfield and Johnston, 1989). And despite the

standardization of fracture toughness testing, its use for rock or soil characterization and

indexing purposes is not common mainly due to the lengthy sample preparation time,

premature failure of samples and difficulties in obtaining consistent notch dimensions to the

tolerances required and other preparation related problems (Zhang, 2002). Hence, a simple

alternative method for determining fracture toughness may be required.

Great attempts are being made to predict the fracture toughness of rocks and soils based on

their relationship with other mechanical and physical parameters. Gunsallus and Kulhawy

(1984) and Bhagat (1985) experimentally found that Mode I fracture toughness Kic of several

types of rock and soil is directly proportional to their tensile strengths. Furthermore,

Whittaker et al. (1992) obtained some approximate relations between fracture toughness and

different index tests such as hardness index, uniaxial tensile strength, uniaxial compressive

strength, and elastic modulus. Chen and Chen (1995) performed tentative research on the

relevant relationships between the acoustic speed and fracture toughness of rock materials.

After that, Brown and Redish (1997) explored an experimental relation between Mode I rock

fracture toughness and density, and Bearman (1999) experimentally investigated the relation

between Mode I fracture toughness and the point load strength.

2.11.1 Relationship between Fracture Toughness and Tensile Strength

As fracture toughness and tensile strength are material parameters indicating the ability of the

specimens to resist failure induced by critical tensile stresses under mode I loading and

uniaxial tension conditions, researchers believed that Mode I fracture toughness, the opening

mode, should be related to the tensile strength, in which the material is separated by tensile

stresses.

The earliest studies were carried out by Gunsallus and Kulhawy (1984) where they

investigated the variation in strength for eight lithologically similar, Silurian sedimentary
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rock units from the northeastern United States. They carried out fracture toughness, uniaxial

compression, point load index and Brazil tensile tests. The tested specimens mainly

dolostone, limestone, and sandstone; were obtained from Silurian rock from tunnel projects in

Buffalo, Rochester and Chicago. Fracture toughness determination was carried out using the

short rod (SR) configuration and strength was obtained using three different mechanisms:

uniaxial compressive strength test, point load index test, and Brazil tensile strength test

following the suggested methods developed by the ISRM. From their experimental results

and regression analyses they were able to obtain the following relations between fracture

toughness and uniaxial compressive strength (displayed in Figure 2.29):

KIc = 0.0044 Qu + 1.04, with a coeffiecient of determination r2 = 0.72 (2.31)

And relation between fracture toughness and point load index (displayed in Figure 2.30):

KIc = 0.0995 Is so + 1.11, with a coeffiecient of determination r2 = 0.67 (2.32)

And relation between fracture toughness and Brazil tensile strength (displayed in Figure

2.31):

KIC = 0.0736 at + 0.76, with a coeffiecient of determination r2 = 0.73 (2.33)

Similar studies were carried out by Haberfield and Johnston (1989) where they argued that

there are many situations in foundation engineering, especially in the case of weak and

weathered rocks / soils, where tensile failure governs behavior. In such cases, tensile failure

should be considered using fracture mechanics theory. Accordingly, they investigated the

relation between tensile strength and Mode-I fracture toughness for a wide variety of rocks

and soils, such as Melbourne mudstone; which is a soft rock, Johnstone; which is a synthetic

rock developed to minimize the scatter in the behavior and simulates natural soft rocks. They

also investigated oil shale, granite, marble, micrite, basalt, syenite, and clay. Fracture

toughness was experimentally determined using three point loading of single edge cracked

beams (SECB) and the tensile strength was determined using three or four point bend tests on

un-notched prismatic specimens (Haberfield, 1987). The results of their tests are summarized

and plotted with other values from the literature is shown in Figure 2.32. The results

indicated that a strong correlation between fracture toughness and tensile strength exists

regardless the wide range of strengths, mineral compositions and formation methods. A linear

correlation can be used to express the results of the used data points as follows:
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KIc = 0.0761 ut , with a coeffiecient of determination r2 = 0.80 (2.34)

It is worth noting that Haberfield and Johnston included a single reference from the literature

for the behavior of clays as studied by Lee et al. (1982). They observed that clay lies above

the extrapolated curve of the remaining rocks behavior which indicates the relatively higher

ductility of clay if compared to rocks.

Over the years much experimental work was carried out to investigate the relation between

the fracture toughness and the tensile strength. Whittaker et al. (1992) carried out an

experimental research and concluded that the relation between Mode I fracture toughness and

tensile strength of various types of rock including coal can be expressed as follows:

Ut = 9.35 Kc - 2.53 , with a coeffiecient of determination r 2 = 0.62 (2.35)

More details on the testing method used to determine each quantity are illustrated in Table

2.4.

However, the previous equation was questionable as it indicated that at zero tensile strength

the material still had a certain value for fracture resistance which is certainly not the case for

soils and rocks. Accordingly, Zhang et al. (1998) changed the format of the relation to a

power law regression instead of a linear relation. Making use of their own experimental data

they obtained a relation between Mode I fracture toughness and the tensile strength for

several rock types as follows:

Ut = 8.88 Kc 0.62 , with a coeffiecient of determination r2 = 0.94 (2.36)

Further details on the testing method used to determine each quantity are illustrated in Table

2.4.

Other researchers investigated the behavior of soils and weak rock, Harison et al. (1994)

experimentally obtained a strong correlation between Mode I fracture toughness and tensile

strength of soils using the ring test. He also considered the dependency of the tensile strength

value on the testing method so he converted the tensile strength values obtained earlier by

Haberfield and Johnston (1989) to equivalent splitting tensile strengths that would agree with

his testing methodology using ring tests. The obtained results were expressed in the following

format:

Ut = ao Kjc (2.37)

where ao is a constant, they concluded that ao is equal to 15.4 for soils and a0 is equal to 13.6
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for soft rocks. For the tested cohesive soils using ring tests, the relation between Kic (in

MPa.m0 5 ) and tensile strength (in MPa) can be expressed as follows:

KIc = 0.022 (a) 0at, With a coeffiecient of determination r2 = 0.93 (2.38)

Where Pa is the atmospheric pressure and yw is the unit weight of water. Since the

atmospheric pressure and the unit weight of water can be considered constant, then the

previous equation can be written as follows:

Kjc = 0.0706 ot , with a coeffiecient of determination r2 = 0.88 (2.39)

Then Li and Zhu (2002) used conventional three point bending fracture test on soil beams and

uniaxial tensile strength test on soil columns from frozen Lanzhou (city in Western China)

loess. From their results they concluded that the relationship between the two parameters can

also be regarded as linearly correlated as expressed below:

Kjc = 0.1456 ot , with a coeffiecient of determination r2 = 0.63 (2.40)

The correlation of the two parameters (expressed in MPa.m0 5 and in MPa) and detailed

testing data from both Harison et al. (1994) and Li and Zhu (2002) can be shown in Figure

2.33. By comparing the two studies, it can be concluded that the main reason behind the

difference in the proportionality coefficients is the difference of the tested soils and the test

methods.

Then in 2002 Zhang compiled all the reported tensile strength (in MPa) and fracture

toughness (in MPa.m0 .5 ) data from experimental research by Whittaker et al. (1992), Zhang et

al. (1998), Nordlund et al. (1999), Khan and Al-Shayea (2000), and Yu (2001). The compiled

data is plotted in Figure 2.34, and an empirical correlation was developed as follows:

-t = 6.88 Kjc , with a coeffiecient of determination r 2 = 0.94 (2.41)

Or for convenience can be written as: Kjc = 0.1453 at (2.42)

More details on the testing method used to determine each quantity are illustrated in Table

2.4.

Figure 2.35 compares the results of Haberfield and Johnston (1989) and Zhang (2002), it is

found that the values of proportionality coefficient and the coefficient of determination in the

empirical relationship differ due to the difference in the tested rock and the adopted testing
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method.

Finally, in 2007 Wang et al. investigated the fracture toughness of a specific clay type in

Western China using single edge cracked soil beams loaded using an improved three point

bending beam loading assembly which minimized the influence of specimen's weight. The

Tensile strength was determined using uniaxial tension loading assembly on cylindrical

compacted specimens. Based on the testing data (shown in Figure 2.36), a linear empirical

relationship between the two parameters of the tested clay was suggested as follows:

Kjc = 0.3546 o , with a coeffiecient of determination r2 = 0.88 (2.43)

2.11.2 Relationship between Fracture Toughness and Confining Pressure

In a recent study by Zhenfeng and Mian (2006), fracture toughness experiments were

performed for fabricated specimens with clay content of 60% and 30%, under confining

pressure conditions and at room temperature. In their study the fracture toughness value was

calculated with the help of the finite element model established by Chen and Zhang (2004).

Using statistical methods, the relationship between the fracture toughness KIc and confining

pressure Pc is regressed as shown in Figure 2.37.

From their analyses it can be seen that the fracture toughness is directly proportional to the

confining pressure, and the toughness under zero confining pressure may be far below those

under confining pressure conditions, especially in the case of high confining pressures.

Hence, the fracture toughness under confining pressures should be used in practical

engineering, rather than the ones under zero confining condition (Zhenfeng and Mian, 2006).

2.11.3 Relationship between Fracture Toughness and other Physical Mechanical

Parameters

In the same study by Zhenfeng and Mian (2006), other mechanical and physical parameters

were investigated and correlated with the fracture toughness value. In their study they

included compressive wave velocity vp, shear wave velocity vs, density p, uni-axial

compressive strength, and modulus of elasticity. The acoustic velocities were measured using

a conventional acoustic velocity apparatus, uni-axial compressive strength and the static

modulus of elasticity were measured using an MTS system, and the dynamic modulus of

elasticity was calculated from the measured acoustic velocity. The relationship between the
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previously mentioned parameters and the mode I fracture toughness is shown in Figure 2.38.

From their analyses, it can be observed that statistic results obtained with the least square

method that fracture toughness increases linearly with acoustic velocities, dynamic and static

moduli of elasticity, and uni-axial compressive strength, but it decreases linearly with the clay

content. In practice, density, different acoustic velocities, and clay content can be determined

from logging data. Then fracture toughness can be predicted with acoustic logging data,

density logging data and gamma logging data.

Similar findings were reported in an experimental study by Chang et al. (2002), where rock

fracture toughness was determined using disc-type specimens. Keochang Granite and Yeosan

Marble produced in Korea were the main rock types that were used for testing. Rock fracture

toughness under mixed-mode, mode I and mode II conditions were measured by using the

straight through crack assumption (STCA) applied to the cracked chevron-notched Brazilian

disc (CCNBD) specimen and the semicircular bend (SCB) specimen. Figure 2.39 presents a

summary of the relationship between mode I fracture toughness and other parameters

including acoustic wave velocity, uni-axial compressive strength, Young's modulus of

elasticity, Poisson's ratio, specific gravity, and porosity.

From the previous studies, it can be concluded that the value of proportionality coefficient

and the coefficient of determination in the empirical relationships is soil or rock type

dependent. The value is also dependent on the testing method used and the accompanying

loading / testing conditions.
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Table 2.1 Comparison between different fracture testing methods

(after Keles and Tutluoglu, 2011)

Notch Type Mixed

Method Straight Chevron Method equipment Precrack Evuation
Rotary Wire Rotary
Saw Saw Saw

CB - - Yes Bending Complex - No

SR - - Yes Tensile Complex - No
CCNBD - - Yes Compressive Simple - Yes

BD - - - Compressive Simple - No

FBD - - - Compressive Simple - No

HCFBD Yes - - Compressive Simple - No

MR - - - Compressive Simple - No

CSTBD - Yes - Compressive Simple Yes Yes

DC Yes - - Compressive Simple Yes No

SECRBB Yes - - Bending Simple Yes Yes

SCB Yes - - Bending Simple Yes Yes

CNSCB - - Yes Bending Simple - Yes
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Table 2.2: Summary of Fracture Toughness Values for Different Geomaterials.

Mode I
Experimenta Fracture

Tested Material 1 Testing Toughness Reference
Method Value (Kic)

(MPa.m1 )

Coarse grained SCB 0.35 Singh & Sun, 1990
Fine grained SCB 0.28 Singh & Sun, 1990
Fine grained SC3PB 0.56 Whittaker, 1992
Fine grained CCBD 0.62 Fowell & Chen, 1990

BDT 0.67 Whittaker, 1992
Ruhr CB 1.03 MUller & Rummel, 1984
Ryefield SECBD 1.04 Whittaker, 1992
Flechtingen CB 1.15 Backers et al., 2003
Montcliffe CB 1.18 Bearman, 1999

Grimsby SR 1.47 Gunsallus & Kulhawy,
1984

Alvdalen SR 1.91 Ouchterlony, 1987
Alvdalen CB 0.73 Ouchterlony, 1987
Pennant CB 2.1 Bearman, 1999
Pennant SR 2.56 Meredith, 1983

CB 1.67 Rao et al.,2003

CB and SR 0.67 - 2.56 Guo, 1990; Ouchterlony,
1988; Meredith, 1983

P = 0.1MPa CB 1.08 Muller, 1984

P = 40MPa CB 2.21 Muller, 1984
P = 80MPa CB 2.54 Muller, 1984

Whittaker et al, 1992.
Coarse-grained HDB 0.28 Zhang et al, 1998.

Zhang, 2002.
Whittaker et al, 1992.

Fine-grained HDB 0.38 Zhang et al, 1998.
Zhang, 2002.

Fine-grained SC3PB 0.56
Whittaker et al, 1992.
Zhang et al, 1998.
Zhang, 2002.

Aspo CB 3.21 Staub et al., 2003
Diorite CB 2.22 -2.57 Bearman et al. , 1989

Bolton hill CB 2.22 Bearman, 1999
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Mode I
Experimenta Fracture

Tested Material 1 Testing Toughness Reference
Method Value (Kic)

(MPa.m )

Aspo SENRBB 3.21 Nordlund et al., 1999
Cliffe hill CB 2.77 Bearman, 1999

SR 0.81 - 2.57 Gunsallus & Kulhawy,
1984

Falkirk SR 1.66 Gunsallus & Kulhawy,
1984

Kankakee SR 1.66 Gunsallus & Kulhawy,

Dolostone 1984
Oatka SR 1.78 Gunsallus & Kulhawy,

1984

Markgraf SR 1.8 Gunsallus & Kulhawy,
1984

Romeo SR 2.47 Gunsallus & Kulhawy,
1984

CB 1.88 Rao et al., 2003
Muller & Rummel,

CB 0.65 - 2.47 1984, Ouchterlony, 1988
Ouchterlony & Sun,
1983

SECBD 1.65 Whittaker, 1992
Utinga (Rift CNBD 0.6 Almeida et al., 2006
plane)
Falkenberg CB 0.65 Muller & Rummel, 1984
Utinga (Grain CNBD 0.73 Almeida et al., 2006
plane)

Granite Utinga CNBD 0.82 Almeida, et al., 2006(H ardw ay C N B D__.9 Ae dt__,2_
Favela (Grain CNBD 0.9 Almeida et al., 2006
plane)______

Favela (Rift pla CNBD 0.97 Almeida et at., 2006
ne)
lidate SR 1.12 Takahashi et al., 1986

arda CNBD 1.16 Almeida et al., 2006

Daejeon BDT 1.18 Yoon & Jeon, 2004
Cornwall CB 1.32 MUller & Rummel, 1984
Bohus CB 1.42 Ouchterlony, 1987
Falkenberg CB 1.52 MUller & Rummel, 1984
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Mode I
Experimenta Fracture

Tested Material 1 Testing Toughness Reference
Method Value (Kic)

(MPa.m"1 )

Newhurst SCB 1.72 Whittaker, 1992
lidate CB 1.73 MUller & Rummel, 1984
Epprechtstein CB 1.74 MUller & Rummel, 1984

Stripa SECRBB 1.74 Sun & Ouchterlony,
1986

Merrivale SR 1.8 Meredith, 1983
Westerly SR 1.82 Meredith, 1983
Penryn CB 1.83 Bearman, 1999
Pink SR 2.03 Meredith, 1983
TGP SENRBB 2.08 Yu,2001
Krakemala CB 2.16 Ouchterlony, 1987

Staladale SR 2.19 Meredith, 1983

Krakemala SR 2.22 Ouchterlony, 1987
Iidate CB 2.26 Takahashi et al, 1986
Westerly SR 2.27 Ouchterlony, 1987

Stripa SR 2.36 Sun & Ouchterlony,
1986

Bohus SR 2.4 Ouchterlony, 1987
Stripa SR 2.7 Ouchterlony, 1987
Westerly CT 2.7 Schmidt & Lutz, 1979

Westerly CT 2.7 Sun & Ouchterlony,
1986

Rasjb SR 2.8 Ouchterlony, 1987
D = 75 mm CCNDB 1.3509 Chang et al., 2002
D = 54 mm CCNDB 1.3376 Chang et al., 2002

SCB 0.6836 Chang et al., 2002

BDT 1.2894 Chang et al., 2002
CNSCB 1.3932 Chang et al., 2002

Stripa SCR3PB 2.15 Zhang et al., 1998

Bearman et al., 1989,
CB 0.82 -2.21 Guo (1990)1, Ouchte

Limestone rlony & Sun (1983)

P = 0.1MPa CCBD 0.42 Al-Shayea et al., 2000
P = 28MPa CCBD 1.57 Al-Shayea et al., 2001
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Mode I
Experimenta Fracture

Tested Material 1 Testing Toughness Reference
Method Value (Kic)

(MPa.m")

Middleton CB 0.73 Bearman, 1999
Harrycroft CB 0.82 Bearman, 1999
Welsh SCB 0.85 Singh & Sun, 1990

Indiana SECB 0.97 Ingraffea & Schmidt,
1979

Indiana CCP 0.97 Sun & Ouchterlony,
1986

Indiana SC3PB 0.99 Whittaker, 1992

Irondequoit SR 1.36 Gunsallus & Kulhawy,
1984

White BDT 1.38 Whittaker, 1992
Shelly SR 1.44 Meredith, 1983
Grey BDT 1.58 Whittaker, 1992
Wredon CB 1.7 Bearman, 1999
Klinthagen SR 1.87 Ouchterlony, 1987

Reynales SR 2.06 Gunsallus & Kulhawy,
1984

Saudi Arabia SENRBB 0.39 han & A-Shayea,

CB 2.21 Rao et al., 2003
CB 0.46 - 2.25 Muller & Rummel, 1984
SR 0.46 - 2.26 Ouchterlony, 1988
CB 0.46-2.27 Guo 1990

Fine grained BDT 1 Whittaker, 1992
Coarse grained BDT 1.12 Whittaker, 1992
Carrara CB 1.38 MUller & Rummel, 1984

Treuchtlingen CB 1.7 MUller & Rummel, 1984

Marble Ekeberg CB 1.76 Ouchterlony, 1987
Ekeberg SR 2.25 Ouchterlony, 1987
D = 75 mm CCNDB 1.0605 Chong et al., 2002
D = 54 mm CCNDB 1.815 Chong et al., 2002

SCB 0.8711 Chong et al., 2002

BDT 0.9865 Chong et al., 2002
FS-Fangshan SR 0.21 - 1.13 Zhang et al., 1998
FS-Fangshan CNRBT 0.36 Zhang et al., 1998
FS-Fangshan CNSCB 1.1133 Chong et al., 2002
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Mode I
Experimenta Fracture

Tested Material 1 Testing Toughness Reference
Method Value (Kic)

(MPa.m" 2)

SECBD 1.8 Whittaker, 1992

Basalt SC3PB 2.27 Whittaker, 1992
BDT 3.01 Whittaker, 1992

Whittaker et al, 1992.
Coal SC3PB 0.03 - 0.27 Zhang et al, 1998.

Zhang, 2002.

Anvil points D- Whittaker et al, 1992.

80 PB SC3PB 1.08 Zhang et al, 1998.
Zhang, 2002.

Anvil points D- Whittaker et al, 1992.

80 PB SC3PB 0.98 Zhang et al, 1998.
Zhang,2002.

Anvil points D- Whittaker et al, 1992.

Oil shale 160 PB SC3PB 0.67 Zhang et al, 1998.
Zhang, 2002.

Anvil points D- Whittaker et al, 1992.

160 PB SC3PB 0.6 Zhang et al, 1998.
Zhang, 2002.

Anvil points D- Whittaker et al, 1992.

160 VB SC3PB 0.37 Zhang et al, 1998.
Zhang, 2002.

Colorado SCB 1.02 Chong et al., 1987

Siltstone SECBD 0.8 Whittaker, 1992
Whittaker et al, 1992.

Dark grey SC3PB 1.55 -1.93 Zhang et al, 1998.

Syenite Zhang, 2002.
Whittaker et al, 1992.

Greyish white SC3PB 1.21 -1.51 Zhang et al, 1998.
Zhang, 2002.

w =18% SECB 0.05 Harberfield & Johnstone,
Jhso SECB0.1990

Johnstone w=18% SCB 0.06 Harberfield & Johnstone,
w~18 SCB0.061990

Tampomas CB 1.26 - 1.68 Abrahamsson et al, 1987

Andesite Andese MR 1.59 $ener, 2002

Whitwick CB 2.17 Bearman, 1999

Greywacke Ingleton CB 2.38 Bearman, 1999
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Mode I
Experimenta Fracture

Tested Material I Testing Toughness Reference
Method Value (Kic)

(MPa.m/ 2)

Comish CB 3.15 Bearman, 1999
Kallax SR 2.58 Yi, 1987
Kallax SR 3.23 Yi, 1987
FS-Fangshan SR 0.34 Zhang et al., 1998
FS-Fangshan CNRBT 0.58 Zhang et al., 1998

Ogino SR 1.06 Matsuki et al, 1987
Tuff Ogino CB 1.08 Matsuki et al, 1987

G6yn0k SR 1.29 $antay, 1990

Norite Grey SR 2.69 Meredith, 1983
Dolerite Whin Sill SR 3.26 Meredith, 1983

CNRBT: Circumferentially notched round bar in tension, CT: Compact specimen in tension, HDB:

Single edge cracked half disc in three-point bending, RBDT: Round bar in direct tension, ReBDT:
Rectangular bar in direct tension, SC3PB: Single edge straight through cracked rectangular plate in
three-point bending, SCR3PB: Single edge straight through cracked round bar in three-point bending,

SECBD: Single edge cracked Brazilian disk in diametral compression, SENRBB: Single edge notched

round bar in bending, SR: Short rod.
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Table 2.3 Comparison between fracture toughness testing methods for disc type

specimens

(after Fowell and Chen, 1990; Lim et al., 1994b; and Chang et al., 2002)

Item of comparison CCNBD SCB CB SR

Method of obtaining Rotate specimen Vary notch angle None None
mixed-mode conditions

Q; n f, C-nA'-pman CM-allCm l n m l
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Table 2.4: Summary of Fracture Toughness and Corresponding Tensile Strength for

Different Soils and Rocks.

Fracture Tensile

Toughness Kc Strength at
Tested Material Reference

Testing (MPa.ml) Testing (MPa)

Method Method

SC3PB 0.03 ReBDT 0.12 Bhagat, 1985

SC3PB 0.06 ReBDT 0.22 Bhagat, 1985

Coal SC3PB 0.05 ReBDT 0.12 Bhagat, 1985

SC3PB 0.27 ReBDT 0.93 Bhagat, 1985

SC3PB 0.12 ReBDT 0.36 Bhagat, 1985

Falkirk SR 1.66 B 13.3 Gunsallus KL,

Kulhawy FH, 1984

Kankakee SR 1.66 B 16.4 Gunsallus KL,

Kulhawy FH, 1985

Dolostone Markgraf SR 1.8 B 12.1 Gunsallus KL,

Kulhawy FH, 1986

Oatka SR 1.78 B 13 Gunsallus KL,

Kulhawy FH, 1987

Remeo SR 2.47 B 17 Gunsallus KL,

Kulhawy FH, 1988

Irondequoit SR 1.36 B 11.9 Gunsallus KL,

Kulhawy FH, 1989

Limestone Reynales SR 2.06 B 15 Gunsallus KL,

Kulhawy FH, 1990

Saudi Arabia SENRBB 0.39 B 2.31 Khan and Al-

Shayea [11]

Sandstone Grimsby SR 1.47 B 10.1 Gunsallus KL,

Kulhawy FH, 1991

Anvil points D- SC3PB 1.08 DT 17 Schmidt RA, 1977

80 PB
Oil shale

Anvil points D- SC3PB 0.98 DT 17 Schmidt RA, 1977

80 PB
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Fracture Tensile

Toughness Kc Strength at
Tested Material Reference

Testing (MPa.m) Testing (MPa)

Method Method

Anvil points D- SC3PB 0.67 DT 12.5 Schmidt RA, 1977

160 PB

Anvil points D- SC3PB 0.6 DT 12.5 Schmidt RA, 1977

160 PB

Anvil points D- SC3PB 0.37 DT 3.3 Schmidt RA, 1977

160 VB

0.63 3 Haberfield and

Johnston, 1989

0.63 12 Haberfield and

Johnston, 1989

Gabbro FS-Fangshan CNRBT 0.58 RBDT 6.2 Zhang et al. 1998

Diorite SENRBB 3.21 B 14.7 Nordlund et al. [13]

0.95 4.5 Haberfield and

Johnston, 1989

0.95 5.5 Haberfield and

Johnston, 1989
Granite

2.53 37 Haberfield and

Johnston, 1989

Stripa SCR3PB 2.15 B 15.4 Zhang et al. 1998

TGP SENRBB 2.08 B 9.5 Yu, 2001

0.95 4 Haberfield and
Micrite

Johnston, 1989

1.11 7.5 Haberfield and

Johnston, 1989
Syenite

1.26 12 Haberfield and

Johnston, 1989

SECB 0.63 3PB 18 Haberfield and

Johnston, 1989

Marble SECB 0.95 3PB 22 Haberfield and

Johnston, 1989

SECB 1.26 3PB 17 Haberfield and
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3PB: Three-point bending, B: Brazilian test, BDT: Uncracked Brazilian disk test, CNRBT:

Circumferentially notched round bar in tension, DT: Direct tension, ReBDT: Rectangular bar in direct
tension, SC3PB: Single edge straight through cracked rectangular plate in three-point bending,

SCR3PB: Single edge straight through cracked round bar in three-point bending, SECB: Single edge
cracked Brazilian disk, SENRBB: Single edge notched round bar in bending, SR: Short rod.
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Fracture Tensile

Toughness Kc Strength at
Tested Material Reference

Testing (MPa.m') Testing (MPa)

Method Method

Johnston, 1989

SECB 1.64 3PB 15 Haberfield and

Johnston, 1989

FS-Fangshan SR 2.68 B 17.3 Zhang et al. 1998

FS-Fangshan SR 1.13 B 7.3 Zhang et al. 1998

FS-Fangshan SR 0.21 B 3.5 Zhang et al. 1998

SECB 2.09 3PB 22 Haberfield and
Basalt

Johnston, 1989

Melbourne SECB 0.019 - 3PB 0.2 - Haberfield and
Mudstone

0.17 1.3 Johnston, 1989

SECB 0.044 - 3PB 0.2 - Haberfield and
Johnstone

___________________ _______0.079 ______0.58 Johnston, 1989
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Figure 2.1: The nomenclature of a fracture system; fracture with surrounding fracture process

zone (FPZ). The process zone consists of micro- and mesocracks. (After Backers, 2004 and

Modified from Liu et al., 2000)
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Figure 2.2: The development of a fracture and fracture process zone under a tensile load
perpendicular to a starter notch. The schematic sequence A to D shows (micro-crack) to (meso-
crack) to (macro-crack) development with load increase. (After Backers, 2004 and Modified
from Hoagland at al., 1973)
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Figure 2.3: Length range of different types of discontinuities in rock (After Backers, 2004)

N". shear crack

+

confining pressure

Figure 2.4: Set-up for fracture coalescence in shear and the influence of confining pressure on

the fracture pattern as described by Bobet and Einstein (1998). (Backers, 2004)
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Figure 2.5: Static-dynamic versus stable-subcritical-critical-unstable fracture growth.
Schematic plot of K vs. fracture velocity of Mode I. (After Backers, 2004, Zhang et al., 1999, and
Atkinson, 1984)
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Figure 2.6: Stress - strain curve of the LEFM (after Alkiliegil, 2006)
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Figure 2.7: Notations within Cartesian co-ordinate system for stress tensor (After Backers,
2004)
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Figure 2.8: Modes of displacement for a crack surface corresponding to three basic modes of loading for a crack

(Whittaker at al., 1992)
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Figure 2.9: Plane stress and plane strain conditions for plates under biaxial tensile stresses (after

Alkiliegil, 2006)
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Figure 2.10: Stress distribution in terms of stress factor (fij) around crack trip for different pure modes of loading

based on linear elastic calculations (After Backers, 2004 and Broberg, 1999)
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Figure 2.11: Coordinate system for a crack tip (after Tada el al., 2000)
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Figure 2.12: K, calculations for common loading conditions; a: Semi-infinite plate with a center

through crack under tension, b: Semi-infinite plate with an edge through crack under tension, c:

Infinite plate with a hole and symmetric double through cracks under tension d: Semi-infinite

plate with an edge through crack under tension, (after Alkiliegil, 2006)
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Figure 2.13: K1 calculations for common loading conditions; e: Center cracked specimen
under tension, f: Single edge notched specimen under bending (after Alkiliegil, 2006)

87

4~112a
P

B w

-I

I

K = P
B w



A Force

il
B

*
________________________I

I

C

Figure 2.14: ISRM Suggested Methods for determination of Mode I fracture toughness;

A: Chevron Bend Method by Ouchrerlony, 1988 (CB), B: Short Rod Method by
Ouchrerlony, 1988 (SR), and C: Cracked Chevron Notched Brazilian Disc Method by
Fowell, 1995 (CCNBD) (After Backers, 2004)
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Notations:
A = Ligament area
D = Specimen diameter
1 = Loading span, 3.33D
a =Crack length
a0 = Chevron tip distance from specimen surface, 0.1 5D
h =Depth of cut in notch flank
B = Crack front width
t = Notch width
L = Specimen length
P = Applied load

20 = Chevron angle, 90
Figure 2.15: The CB specimen and testing configuration (after ISRM, 1980; Whittaker

et al., 1992; and Donovan, 2003)
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Figure 2.16: Definitions for computation of correction factor based on load and crack

mouth opening displacement (CMOD) curve (after Sousa and Bittencourt, 2001)
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Figure 2.17: The SR specimen and test configuration (after ISRM, 1988; Whittaker et
al., 1992; and Donovan, 2003)
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Figure 2.18: Short rod specimen dimensions (after Alkiliegil, 2006)
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A-A

Figure 2.19: CCNBD under diametrical compression (after Khan and Al-Shayea, 2000
and Alkiliqgil, 2006)
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(a) First cut

CCNBD Disc

(b) second cut

II

Diamond saw

D.: Saw diameter
Figure 2.20: Cutting Procedure of CCNBD specimen (after Chang et al., 2002)

L\

Figure 2.21: Loading setup for fracture testing on CCNBD specimen (after Khan and Al-
Shayea, 2000 and Alkiliqgil, 2006)
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Figure 2.22: Cutting of Semi circular bend (SCB) specimens (after Alkiliegil, 2006)

P
Loading

4 "'roller

clip
"live Support

roller

2S
Figure 2.23: A semi circular specimen containing an angled edge crack under three point
bending loading (after Khan and Al-Shayea, 2000 and Alkiliegil, 2006)
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Figure 2.24: Loading setup for fracture testing on SCB specimen (after Khan and Al-
Shayea, 2000 and Alkiliegil, 2006)
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Figure 2.25: The Chevron Notched Semi Circular Bend (CNSCB) Specimen (Chang et

al., 2002)
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Figure 2.26: Normalized mode-I stress intensity factor for CNSCB specimen (Chang et al., 2002)
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Figure 2.27: Typical failure curve for a BD specimen (after Chang et al., 2002)
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Figure 2.28: SNBD under diametrical compression (after Khan and Al-Shayea, 2000

and Alkiliegil, 2006)
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Figure 2.29: Fracture toughness versus uniaxial compressive strength of Dolostone,

Limestone, and Sandstone (Gunsallus and Kulhawy, 1984)
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Figure 2.30: Fracture toughness versus point load index of Dolostone, Limestone, and

Sandstone (Gunsallus and Kulhawy, 1984)
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Figure 2.31: Fracture toughness versus Brazil tensile strength of Dolostone, Limestone,

and Sandstone (Gunsallus and Kulhawy, 1984)
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Figure 2.32: Relationship between plane strain fracture toughness and tensile strength for some rocks and soils
(Haherfield and Johnston. 1989)
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Figure 2.34: Empirical relation between fracture toughness and tensile strength of rocks
(After Whittaker et., 1992; Zhang et al., 1998; Nordlund et al., 1999; Khan and Al-
Shayea, 2000; Yu, 2001; and Zhang, 2002)
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Chapter (3)

LITERATURE REVIEW- FLATTENED BRAZILIAN TEST

3.1 Introduction

This chapter presents a general review of the literature available on the Brazilian testing

method and provides a summary of the modifications to the Brazilian test over the years

including the flattened Brazilian approach. The flattened Brazilian disc test is adopted as a

convenient simple means for fracture toughness determination. The chapter covers the theory

behind the flattened Brazilian test with an emphasis on the stress and displacement

distributions within the flattened discs. Then appropriate methods to obtain the maximum

stress intensity factor for the flattened discs are discussed. The chapter presents methods to

evaluate the mode I fracture toughness, tensile strength, and the modulus of elasticity of the

same specimen. In addition, some limitations on the results of the testing method are

discussed.

3.2 Background on the Brazilian Test

The Brazilian test; sometimes known as the splitting tension test; is a simple indirect testing

method mainly used to obtain the tensile strength of brittle material such as concrete, rock,

soils and rock-like materials. In the test, a thin circular disc is diametrically compressed to

failure (Li and Wong, 2013). Four typical loading configurations used in testing are shown in

Figure 3.1. Since it was introduced in the 1940s by Brazilian and Japanese scholars (Carneiro

and Akazawa, 1943; Carneiro and Barcellos, 1953; Akazawa, 1953; and Fairbairn and Ulm

2002) the test method has been popular for determining tensile strength indirectly for rocks

and concrete materials. Based on the history of research on the Brazilian test by analytical,

experimental, and numerical approaches, three main research stages have been identified: the

1 st stage before 1978 (the stage of groundwork for the preparation of the standard suggested

Brazilian test method for rock and rock-like materials), the 2nd stage between 1979-1991;

widespread application of the Brazilian test in rock mechanics, and the 3rd stage from 1992 to

present; the stage of application, modification, and improvement of the Brazilian test in rock

mechanics). Li and Wong (2013) summarized the developmental timeline of the Brazilian test

from 1943 to 2012. The summary; shown in Table 3.1; focuses on the various milestones and
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the research approaches over the past 70 years.

Hertz (1883) was the first to develop a stress solution that was used as a theoretical

foundation for the Brazilian test. It was then improved by J. H. Michell. Since then

researchers and scientists have invested so much in the development of the Brazilian test, its

validity, its credibility, and its applications. In 1959, Hondros developed an experimental

approach to measure the modulus of elasticity and Poisson's ratio of different geomaterials

with an emphasis on concrete using the Brazilian disc. However, additional strain gauge

measurements were required, making the process complicated and difficult. Hondros (1959)

also formulated a complete stress solution for the case of a radial load distributed over finite

circular arcs of the disc, which was considered as a better method of load application when

compared to the original concentrated (line) load; however, the derived approximate

expressions for the stress components did not provide sufficient explanation and in-depth

error analyses making the credibility of the solution questionable. In addition, it was difficult

to ensure the required uniform and radial load distributed over a pair of arcs in real

experiment (Wang et al., 2004).

In 1964, Fairhurst was the first to discuss the validity of the Brazilian test. He stated that

"failure may occur away from the centre of the test disc for small angles of loading contact

area". Then in 1971, Mellor and Hawkes reviewed the opposed strip load, and discussed the

contact stresses under the applied loads, and designed a new load application method using a

test jig with curved platens or jaws (an examples is illustrated in Figure 3.1). However, the

manufacture of the curved jaws is not an easy job and is dependent on the curvature of the

specimens being tested. Furthermore, contact force distributions between the jigs and the

specimen are questionable (Wang et al., 2004). Hudson et al. (1972) conducted experimental

research and realized that, 'In the Brazilian test, it was found that failure always initiated

directly under the loading points if flat steel platens (also illustrated in Figure 3.1) only were

used to load the specimen in a servo-controlled testing machine". They concluded that

neither the Brazilian test nor the ring test could be recommended as a proper method for

measuring the "tensile strength" as a material property. In 1978, the Brazilian test was

officially proposed by the International Society for Rock Mechanics (ISRM) as a suggested

method for determining the tensile strength of rock and rock-like materials. The American

Society for Testing and Materials (ASTM) also standardized the Brazilian test for obtaining
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the tensile strength of concrete materials in 1984.

In 1993, Guo et al. modified the conventional Brazilian test application and proposed a

simple method to determine the opening mode (mode-I) fracture toughness Kic using a

circular disc. In their method the diametrical load is assumed to be uniformly distributed on

an arc of angle 2a as illustrated in Figure 3.2. In their study, tests were conducted on six

Australian rocks; typical specimens' failure after testing is shown in Figure 3.3. The main

advantage of the proposed method is its convenience in specimen preparation; where the

specimen does not need any pre cracking or notch drilling in its configuration, the crack by

the specimen is required to be initiated and extended automatically during testing. In addition,

the critical point used in the quantification of the fracture toughness can be determined easily

from a simple test record between the point load and the vertical displacement without any

crack length measurements. Accordingly, Guo's method can be considered the simplest,

easiest, and most economic method for the determination of fracture toughness of rocks, soils,

and other brittle materials (Wang and Xing, 1999).

However, a number of issues were not addressed in Guo's method; they did not explain how

to guarantee the crack initiation at the center of the disk specimen and then its propagation. In

addition, they did not address how the load angle (2a) variation affects location and behavior

of the crack initiation. According to the analyses by Satoh (1987), whose work was based on

the fracture criterion by Grifith and stress solution for the Brazilian disk by Hondoros (1959),

the angle sustained by the load arc strongly affects the position of crack initiation. Wang and

Xing (1999) proved that when the load angle satisfies the condition 2a >1 9.5', a center crack

initiation can be guaranteed for the Brazilian disk specimen under uniform distributed

diametrical loading. Detailed analyses and explanation can be found in the research by Wang

and Xing (1999).

Moreover, Guo's solution for the stress intensity factor (SIF) for center cracked disk was not

entirely correct as they used Green's function for infinite plate to treat the finite domain

problem in the disk (Wang and Xing, 1999). Finally, the arc loading of the disc specimen as

shown in Figure 3.2 is practically hard to satisfy exactly, and the stress distribution on the

loaded arc can never be uniform; however, it was assumed to be uniform in Guo's analyses.
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3.3 Introducing the Flattened Brazilian Test

Wang and Xing in 1999 proposed a modification to the Brazilian disk specimen for fracture

toughness testing. They pointed out that the key issue with the Brazilian test is primary crack

initiation at the centre region of the disc during the test which needed proper solution. Hence,

the main modifications were introducing two parallel planes of equal width to the Brazilian

disc for load bearing as illustrated in Figure 3.4. The flatness facilitates the load application

to the specimen and can be considered better than the original line loading of the Brazilian

test as it avoids local cracking, breakage or yielding around the loading point due to stress

concentration, and can be considered better than other loading schemes like arc or strip

loading, which use complex curved loading block or load strips stuck to specimen (Wang et

al., 2004). The amount of work needed to prepare and machine the flattened Brazilian

specimen is much less if compared to other testing methods such as the ISRM suggested

cracked chevron notched Brazilian disc (CCNBD), as the only effort focuses on the flatness

and parallelism of the two flat ends.

After verifying the formulae obtained by Wang et al. using finite element results and

comparing measured values with other suggested experimental procedures, the formulae can

be used for the determination of modulus of elasticity, E; with the information obtained from

the slope of the load displacement record before reaching maximum load. Accordingly, the

flattened Brazilian test can be used for determination of three material parameters; modulus

of elasticity, tensile strength, and fracture toughness from different sections of a complete

load displacement test record. It is worth noting, that since two parallel flat ends are

introduced to the circular disc, the original formulae used for tensile strength determination in

un-flattened discs need to be modified (Wang et al., 2004).

3.4 Displacement Analyses for the Flattened Brazilian Disc

In the literature there is no elastic displacement solution for circular un-flattened Brazilian

discs subjected to compressive loading whether line load or concentric arc load, hence, other

approximate solutions are needed. Wang et al. (2004) used software ANSYS to preform finite

element analyses and approximate elastic solutions to study the radial; ar and tangential

normal; ct stresses and the compression displacement; A w of the loaded flattened disc. Wang

et al (2004) obtained an approximate analytical formula for the elastic displacement solution
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after introducing the parallel flat loading ends. Their formula was based on the research of

Cauwellaert in 1994 on uniformly and parallel distributed load applied on a section of a

circular arc. The main difference between the two studies; Cauwellaert used a circular arc

while Wang et al. used two flat ends.

After modifying the formulae of Cauwellaert, Wang et al. were able to provide an

approximate displacement solution for the flat end region in the flattened Brazilian specimen:

A W = (1 - p) - n (1 + 4 ) a (3.1)
iTEt sin2 al sin a

Where P is the resultant of the uniformly distributed force applied through the flattened ends,

t is the specimen thickness, D is the specimen diameter, E is the elastic modulus, sin a

2b/D; 2b is the width of the flat end, and y is Poisson's ratio.

Wang et al. (2004) modified Cauwellaert's formula for the isotropic case by removing an a

term and adding a / sin a factor to consider the difference between flattened end and the

circular arc. The accuracy of the previous equation was verified by comparison with finite

element analyses; Wang et al concluded that the error of the previous equation is less than

5.8%, as compared with the ANSYS results. The comparison between the two methods is

displayed in Table 3.2.

By following the previous equation, the modulus of elasticity; E can be determined from the

slope of the section of load displacement record; this section is just before maximum failure

load to avoid contact problems.

3.5 Stress Analyses for the Flattened Brazilian Disc

For a complete circular Brazilian disc, Timoshenko and Goodier (1970) provided an exact

solution for the stress distribution on the loading diameter within nearly the inner 80% of its

length as follows:

2 P
= D t (3.2)

2 P I 4D2 \
Ur = t 1 - D2 (3.3)

7T D t D2 - 4r2

Where P is the total applied force, t is the specimen thickness, D is the diameter, r is the

distance to the disc centre, ar is tangential normal stress, and ur is radial normal stress.

However, no similar exact elastic solution is available for the flattened Brazilian disc

configuration. Hence, Wang et al. (2004) used numerical analyses (ANSYS software) to
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calculate the stresses for various cases. An illustration for their numerical analyses for stress

evaluation in the case of 2a = 30'is shown in Figure 3.5.

To determine crack initiation location along the diametral line, Griffith strength criterion

(Griffith 1924) was applied as in the studies of Wang and Xing (1999); Wang and Wu (2004);

Wang et al. (2004a) and Kaklis et al. (2005). Analytical expression of the Griffith's classical

fracture theory is as mentioned below (Griffith 1924; Chang 1974; Clausing 1959). In

Brazilian test, crack initiates at the center when 3al + u3 = 0 and when this condition is

satisfied, according to Griffith's theory, tensile strength is, aG = cl for original Brazilian test.

However, when the Brazilian disc is flattened, stress conditions at the center change and 3U1

+ u3 < 0 inequality condition governs the tensile crack initiation. Then for uG estimation,

governing expression involving both cl and u3 becomes:

When 3u 1 + u 3 > 0
Then qG =1a;

When 3u 1 + u 3 < 0,

(a1 - 3)2
Then UG - (3.4)

8 ( 1 + q 3 )
Where, c1, 03, and aG are maximum principal stress, minimum principal stress, and tensile

strength, respectively. Left hand side of this equation is also called equivalent stress aG,and

for Brazilian tensile strength test GG = Ct = 2 P /(7r Dt ).

In a more recent study by Keles and Tutluoglu (2011), they showed the distribution of oG for

various loading angles against the vertical distance from center to the flattened end of the

specimen, (y/ R) for specimen models having a diameter of 75 mm as shown in Figure 3.6. In

the figure, the horizontal scale is dimensionless equivalent stress qG. This was set by

normalizing TG with the stress perpendicular to the crack plane which is 2 P/ (71 Dt).

They concluded that crack initiation takes place when the equivalent stress reaches its

maximum value along the y/R. For instance as displayed in Figure 3.6, equivalent stress is

around 1.13 for 2a = 10- and 1.03 for 2a = 120 curves around y/R = 0.77 and y/R = 0.70,

respectively. This means that crack initiation is expected to start along the diametrical plane,

but out of the center for such 2a values. When 2a values become more than 140 maximum dG

location stays right at the center of the disc specimens with values lower than one for

increasing 2a values. (Keles and Tutluoglu, 2011).

Nearly the same findings were obtained in similar work including interpretation of the crack
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initiation location on Brazilian discs conducted by Wang and Xing (1999); Wang and Wu

(2004); Wang et al. (2004a) and Kaklis et al. (2005). By using boundary element method,

critical 2a was found to be greater than 19.5- (Wang and Xing 1999); where they carried out

comparative stress analyses between the flattened Brazilian disk and the original Brazilian

disk, the result is shown in Table 3.3, from which it can be seen that the stress distribution

along the loading diameter for the two cases is almost identical, thus the condition for crack

initiation at the center of the specimen, i.e., 2a > 19.5', which was initially derived for

the original Brazilian disk can also be applied to the flattened Brazilian disk specimen.

This angle was found to be equal to 150 in Kaklis et al. (2005) by finite element methods, and

equal to 200 in Wang and Wu (2004) and Wang et al. (2004a) where they concluded that when

2a > 2G the disc center has a larger value of G than any point elsewhere as shown in Figure

3.7; it also means that a crack is most likely to initiate at the center.

Keles and Tutluoglu (2011) generalized the relation between principal stresses at the center of

the specimens and the loading angle 2a, where they varied the loading angle 2a from 15o to

600 which corresponds to dimensionless distance between y/R = 0.966 and 0.5, respectively.

Dimensionless principal stresses normalized by dividing them to the at equation 2 P /(w Dt)

of Brazilian test are given in Figure 3.8. By curve fitting for 2a values between 15o and 600,

dimensionless principal stresses at the center of the specimens in terms of a are:

di 0.94 cos a + 0.04 (3.5)
2P/(wDt)

j3 - 3 = -1.08 cos a - 1.92 (3.6)
2P/(rDt)

Horizontal stress which is used to estimate at in Brazilian test is equal to the al, while

vertical stress is equal to the a3. By using the previous two equations, aG can be expressed as

a function of the loading angle a as follows:

UG UG = 0.83 cos a + 0.15 (3.7)
2P/(wDt)

The previous equation can be used as a geometrical factor in at estimation with flattened

Brazilian disc specimens, where the factor is valid for 2a values between 150 and 600.

Dimensionless equivalent stresses normalized by dividing them to the at equation 2 P /(7r Dt)

of Brazilian test are given in Figure 3.9.

A similar approach was developed by Wang et al. (2004), where after choosing the
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appropriate loading angle 2a greater than 2U, the tensile strength Ut can be determined as

follows:

at = k 2Pc (3.8)
irDt

Where, Pc is the critical load applied on the flat ends; which is equivalent to the maximum

load during testing, D is the specimen diameter, t is the specimen thickness, and k is the

coefficient which is dependent on the loading angle. For the given value of 2a; k can be

determined by finite element analyses. According to the Griffith criterion at failure at = UG

hence:

cIG
k = - G(3.9)

2P/wDt
Based on finite-element results obtained by Wang et al. (2004), then the value of k is

obtained: when 2a = 2; k = 0.9644; when 2a = 3; k = 0.9205. An approximate formula for

determining the k value based on the loading angle can be obtained as follows:

(2 cos 3 a + cos a + sin a/a) 2 - a (3.10)
8 (cos a + sin a/a ) sin a

When a = zero, k is equal to I which is the case of the conventional Brazilian test. Wang et al.

(2004) compared the results obtained from the approximate analytical formula with the

results using ANSYS and both methods agreed to a great extent as shown in Figure 3.10.

hence, the previous equation can be used for determining the K factor which is used to

evaluate the tensile strength of the flattened Brazilian discs with central loading angle > 20'.

3.6 Fracture Toughness Analyses for the Flattened Brazilian Disc

According to the study of Wang and Xing (1999), when 2a > 19.50, a crack initiation at the

center of the specimen can be expected, then the crack extends along the diameter. They

provided a schematic diagram for the trend of the stress intensity factor- SIF (#) as shown in

Figure 3.11, the value of the SIF gradually increases from zero, represented by point a, which

corresponds to the crack initiation, to the maximum value, represented by point b, where

max is obtained, after which 4 decreases until final breakage of the disk, represented by

point c. According to Wang and Xing (1999), in the first region (ab), dimensionless SIF '
increases with increment of relative crack length a/R, this region is characterized by unstable

crack growth, as the crack will go on extending even if the applied load is held constant. On

the contrary, in the second region (bc), after reaching a maximum value at point b, 4
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decreases with the increment of relative crack length a/R, this region is characterized by

stable crack growth, as the crack will stop extension if the load is not increased, only when

the applied load is increased can the crack extend further. Point b is the turning point between

unstable and stable regions, this point b corresponds to the local minimum load immediately

succeeding the peak maximum load, and this point is chosen as the critical point, which will

be identified easily in a test record. According to Wang and Xing (1990), the reason for this

choice can be explained as follows: for brittle materials such as rock or dried soils, fracture

toughness KIc can be considered to be a material constant accordingly, any point during crack

extension can be used to determine fracture toughness given that the current load and the

crack length are known. Accordingly, it is more convenient to select point b as the critical

point, as this point has maximum value which can be determined beforehand for any

prescribed specimen geometry, hence, there will be no necessity to measure the critical crack

length, also the determination of the critical load is relatively convenient, which is the local

minimum load occurring right after the peak load as illustrated in Figure 3.12.

Figure 3.12 can be considered a typical test record of the load-vertical total diametrical

displacement behavior of the flattened Brazilian specimen. From the behavior, it can be

noticed that the loading process can be divided into three stages: stage 1 (oa) representing

elastic non linear deformation of the flattened disk, this stage ends with the peak load, which

is point a. The non linear initial behavior can be due to compression of existed porosity and

micro-cracking of the specimen or due to seating at contact surfaces. Then a linear ascending

behavior can be observed until the load reaches its maximum value. Then stage 2 (ab)

representing unstable crack extension, at the peak load of point a, the crack initiates at the

center of the specimen, then the crack develops unstably until the load drops to the local

minimum which is represented by point b; point b is the turning point, which separates the

unstable and stable region; this point b is chosen as the critical point in the test which

corresponds to the critical crack length ac/R. This critical crack length can be determined

analytically and it corresponds to 4max and there is no need for its measurement. Finally,

stage 3 (bc) representing stable crack extension, beginning from point b, the load must

increase for further crack growth until complete breakage of the specimen which marks the

failure of the specimen. The fluctuating behavior of the test might be due to sub crack

formation near the contact area; these irregularities should not affect test results, as the
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critical point b is in advance of their happening (Wang and Xing, 1999). The behavior can be

summarized as unstable initial extension for the crack then it turns to arrest at a critical point

followed by stable crack development. This behavior is very unique and advantageous for the

determination of the fracture toughness. The formula to evaluate fracture toughness K1c using

local minimum load as the critical point is as follows:

P.
Kjc = m Omax (3.11)

V/ht
Where, Pmin is the local minimum load which can be identified directly from the test record,

R and t are radius and thickness of the specimen, respectively and # max is the maximum

dimensionless SIF, which is determined as explained in the following section.

3.7 Maximum Stress Intensity Factor Computations for the Flattened

Brazilian Disc

Analytical solution for the stress intensity factor (SIF) of cracked Brazilian discs was first

given by Guo et al. (1993) when they developed the SIF solution in an infinite plate as the

Green's function. Their solution was questionable and not reliable and cannot be applied to

the flattened Brazilian disc configuration. Hence, researchers and scholars used different

numerical methods to obtain approximate acceptable SIF values. Wang and Xing (1999) were

the first to address this issue for the flattened Brazilian configuration, as they stated that the

load angle should satisfy the condition 2a >19.58, then they selected two random convenient

central angles (2a = 20' and 2a = 30) and used boundary element method to quantify the SIF.

The SIF solution is put into a dimensionless form and fitted into a polynomial form as

follows. For the load angle 2a=20', the dimensionless SIF flattened Brazilian disk is:

0 ,= KiR- = 4.2897 (') - 26.6765 6 + 84.9054 () -93.0870

+ 50.7763 a- 14.3776 (a+ 2.4708 (a (3.12)

And for the load angle 2a =30', the dimensionless SIF of flattened Brazilian disk is:

0 =K, 'R= -33.9811 - 128.5613 ( + 189.8983 s - 146.3809

+ 64.0804 (a)-15.7996 ( )+2.7115 ( a)(3.13)

Where # is dimensionless SIF, a/R is the relative crack length, a is half the crack length, R is

the radius of the disk, t is the thickness, P is the total load (summation of distributed load), KI
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is mode-I SIF. Wang and Xing (1999) confirmed that the error of curve fitting for these two

formulas is less than 0.5%.

The trend of SIF solutions for the studied two load angles is similar to the shape of a bell; the

numerical trend ascends to a maximum value then descends. The maximum value of the

dimensionless SIF solution is of the main concern as it will be used in the formula for the

fracture toughness test. Wang and Xing (1999) derived by the numerical calculation that for

2a=20', when a/R = 0.80, 4 reaches its maximum value 4 of 0.78; and for 2a=30', when a/R

= 0.73, 4max=0.58.

Wang and Wu (2004) used the finite element method for specimens with 58, 87, 91 and 108

mm diameter values to verify the accuracy of the computed SIF (4) for central angles of 20

and 30 degrees. Their computation provided the # -a/R curve which is expressed in a plot

between dimensionless stress intensity factor 4 versus dimensionless crack length a/R as

shown in Figure 3.13. Since the relation between the fracture toughness, loading angle,

applied load, and specimen dimensions can be written in the following format:

P a
K, = 0 a,- (3.14)

\fRt R
Then for the two loading angles under the study of Wang et al. (2004), combining Pmin and

4max and substituting them into the previous equation, the fracture toughness can be

computed using the following equations:

_P.

Kc - Pm 0max, Omax = 0.7997 .. ..... for 2a = 20' (3.15)
\f~t

_P.

Kc =m Omax , 0max = 0.5895 ... ... ... ... for 2a = 300 (3.16)
\fRht

As the previous solutions provided maximum stress intensity factors for two loading angle

values only (20 and 30) then the work carried by Wang and Xing (1999) and by Wang et al.

(2004) needed further development to cover a wider range of loading. Keles and Tutluoglu

(2011) extended the work carried on the flattened Brazilian test, KI computations were

carried out by ABAQUS finite element program. ABAQUS program uses J-integral method

in KI computations. A circular (for 2D models) or cylindrical (for 3D models) contour

integral region is defined around the crack tip and the program computes an average stress

intensity factor value for this crack tip.

Modeling results of Keles and Tutluoglu (2011) showed that Kimax is inversely proportional to
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the thickness t and the square root of the radius R, and directly proportional to the load P, as

in Wang and Xing (1999). From Kimax computed in the modeling work, bmax can be found by

using the following equation:

VFR t
0max = K max P (3.17)

The crack length where the maximum KI value is determined can be called ac critical crack

length and is computed numerically. By fitting a sixth order polynomial to KI versus a/ R

distribution, Keles and Tutluoglu (2011) set an equation. Maximum stress intensity factor was

found by setting the derivative of this equation to zero and finding its roots. One of the roots

was equal to the dimensionless critical crack length (acn / R), and this was used in finding the

Kima result of a particular model. #max versus acn / R values of the model are illustrated in

Figure 3.14 for specimens having 54, 75, 100, and 125 mm diameters and 2a values between

150 and 50o.Omax values can be calculated by using the fitted expression below:

Omax = 0.039 exp 15.239 (aa/R) (3.18)
Keles and Tutluoglu (2011) also determined 0max values at the onset of stable crack

propagation corresponding to the Pmin points for various 2a values between 15- and 500 for

specimens having 54, 75, 100, and 125 mm diameters. #max values computed for different 2a

values were plotted in Figure 3.15. Using a curve fitting program for the interpretation of the

numerical modeling results, following expression for variation of qmax with a can be obtained:

1
Omax(a) = 1(3.19)43.31 - 15.63 exp(cos a )
It is worth noting that although the previous equation is valid for #max estimations of disc

models with 2a between 6- and 500, 2a must be greater than 20- to impose central crack

initiation. The previous equation gives a flexibility and chance to determine #max applicable to

particular experimental conditions over a wider range of loading angles.

3.8 limitations on the Flattened Brazilian Test

According to the experimental work of Wang and Wu (2004), for a valid flattened Brazilian

disc method test (as shown in Figure 3.16), the load after the crack propagation should not

exceed the maximum load achieved at the end of the elastic deformation. Otherwise,

secondary cracks may play the leading role instead of primary crack considered in the

computation process, and the disc may be broken into four pieces instead of two halves.
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Wang and Wu (2004) defined validity criteria for the flattened Brazilian test as follows: 1.

After elastic deformation, the crack initiates from the central region of the disc and the

initiation of the crack corresponds to the maximum load; 2. The crack propagates to its

critical point, this fracture process is characterized by the load descending and ascending in

turn, however the ascending load does not surpass the preceding maximum load.

Accordingly, the validity of the test based on the shape of the load-displacement record is

emphasized.

In their research they provided two examples of invalid test results as the ones shown in

Figure 3.17 and 3.18. In an invalid test record (Figure 3.17), the load Pe at the end of elastic

deformation is not the maximum load of the test, the immediately subsequent local minimum

load is only slightly lower than Pe , which implies that the primary crack does not extend to

the critical point and the secondary cracks play the leading role for the rest of the record.

However if the primary crack plays the leading role, the mechanism for the

determination of -t and K IC is completed, then the formation of the secondary cracks does

not violate the principle for their determination, the test is still considered valid (Wang and

Wu, 2004).

Another kind of invalid test is shown in Figure 3.18, where upon reaching the maximum load

there is a drastic sudden load fall, demonstrating that the test is unstable, which occurs

when the disc has no flat ends or their width is not sufficient so this is a total failure of

specimen.
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Table 3. 1: Developmental timeline of the Brazilian test on rocks and rock-like
materials over the period from 1943 to 2011 (Extracted from Li and Wong, 2013)

Authors (year) Contributions Remarks
I . 1A1

Carneiro (1943)

Akazawa
(1943)

Hondros (1959)

Proposing a testing method and giving an evaluation
formula to calculate the tensile strength from the
elastic tensile strength limit

Presenting a method similar to the Brazilian test
independently in Japan almost at the same time as
Cameiro (1943) (firstly published in Japanese only
2 months later than that by Carneiro, and
republished in French in 1953)

Giving a complete stress solution for the case when the

load is distributed over finite arcs with diametral

compression, valid for conditions of both plane stress

(discs) and plane strain (cylinders)

Hobbs (1964, Using the diametrical compression of a disk with a
1965, 1967) central hole (ring test) as a technique for

determining the tensile strength of rocks, and
comparing with Brazilian test results

Fairhurst (1964) Indicating that failure may occur away from the center

of the test disc for small angles of loading contact

area with materials of low compression-tension ratios.

Pointing out that the "tensile strength" as calculated

from the Brazilian test results is lower than the true
value. A parameter called stress severity S was

defined and used

Hiramatsu and Analyzing the stress in an irregular test piece
Oka (1966) subjected to a pair of concentrated loads by three-

dimensional photoelastic experiments as well as by
mathematical analysis, and presenting a new method to
test the tensile strength of rocks

Colback (1966) Using the modified Griffith fracture theory to predict

fracture initiation in a Brazilian loaded disc. Pointing

out that failure must originate at the center of the disc

if the test is to be a valid tensile test.

Jaeger and Comparing three different cases of measurement to
Hoskins (1966b), obtain the tensile strength of rocks both theoretically
Jaeger (1967) and experimentally. Finding that the calculated

maximum tensile stress was of the order of the
uniaxial tensile strength of the material

Hudson (1969) Comparing two indirect testing methods, the Brazilian

test and the ring test, for obtaining tensile strength.
tensile strength by diametral compression of
Brazilian discs and annuli for Griffith-type materials.
Designing a curved-jaw loading jig to reduce the
stress concentration at the loading points.
Observing that failure always initiated directly under
the loading points in the Brazilian test if only flat
steel platens were used in a closed-loop servo-
controlled machine.
Experimentally and numerically investigating the
suitability of indirect tensile tests (the Brazilian test
and the ring test) on anisotropic rocks

Inventing the "Brazilian testing method" to obtain
the tensile strength of concrete

Presenting the work without any communication
with overseas researchers (Brazil and Japan were
on opposite sides in World War II)

Assuming that the material is homogeneous,
isotropic, and linearly elastic

Considering the influence of laminations on the
tensile strength of rocks

Generalizing a Griffith-type fracture criterion to
analyze the failure of Brazilian test specimens.
The applied loading was assumed to have a
uniform radial distribution

This testing method was not perfect because the
stress state in the test piece was not simple and
uniform, and was affected by the nature of the
rock

High-speed photography of the photoelastic patterns
induced in birefringent layers was used to
determine the fracture initiation point and study its
subsequent propagation

Based on the tensile stress calculation

The tensile strength was concluded to be an
experimental property and not a material property

Pointing out that the Brazilian test was capable of
giving a good measure of uniaxial tensile strength

Some scanning electron photomicrographs of a
crack were included to study crack propagation in
the Brazilian test
Two types of anisotropic rocks were tested under
different orientations along the axes of anisotropy
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Table 1 continued

A
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uthors (year) Contributions Remarks Methods
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limestone and discussing the effect of liquids on the

tensile strength of limestone. Finding that, as the
dielectric constant and surface tension of the liquid
increased, the tensile strength of the limestone
decreased

Showing that the three-dimensional "correction" to

the two-dimensional theoretical solution was

considerable, even for rather thin samples in the case of

the Brazilian test. Discussing the influence of

Poisson's number in Brazilian tests and point load

tests

Yanagidani Observing that the crack was not initiated from the
et al. (1978) loading point but from the tensile stress zone in the

Brazilian disc by using strain gages for crack
detection

ISRM (1978) Suggesting a standard Brazilian testing method to

determine the indirect tensile strength of rocks.
Meanwhile, the uniaxial tension test was put forward as
a method for determining the direct tensile strength of
rock

Lajtai (1980) The tensile strength determined by point load testing

and as calculated by the Frocht formula was found to

be consistently lower than that obtained by the

Sundaram and
Corrales (1980)

Pandey and
Singh (1986)

Newman and
Bennett (1990)

Andreev
(1991a, b)

Guo et al.
(1993)

Malan et al.
(1994)

Chen et al.
(1998)

Rocco et al.
(1999a, b)

Brazilian test
Pointing out that the assumption of the same elastic
properties in both tension and compression could
overestimate the Brazilian tensile strength of rocks

Finding that the Brazilian tensile strength was almost
double, and the corrected bending tensile strength
was three times the value obtained in uniaxial
tension. Discussing the deformation characteristics of
rocks under tensile stress

Carrying out statistical experimental studies on the
effect of specimen geometry and stress rate on the
determination of the tensile strength of sandstone by
the Brazilian test

Reviewing two aspects of the Brazilian test for rock
tensile strength determination: calculation formula
and contact conditions. Pointing out that the Brazilian
test was valid for materials which exhibit brittle
failure

Proposing a calculation formula and a testing method
to measure the fracture toughness of rocks by fracture
mechanics analyses of the intact Brazilian disc test

Investigating the influence of an interface on crack
initiation and propagation in the Brazilian test.
Using a computer program to simulate the failure
process based on the displacement discontinuity
method

Presenting a combination of analytical and
experimental methods to determine the tensile
strength and elastic constants of transversely
isotropic rocks by the Brazilian test

Experimentally and theoretically studying the size
effect and boundary conditions in the Brazilian test

s g s
strength of a ring specimen.

The three-dimensional stress distribution was
considered rather than the plane stress or plane
strain problem

A transient recorder (TR) was used to record the
strain variation on the surface of the Brazilian
specimen

Formula to calculate tensile strength

The Brazilian test seemed to yield a more accurate
definition of both the tensile strength and its
variation with direction

Considering the difference of elastic properties of
rocks under tension and under compression

Arguing that tensile strength was an experimental
property rather than a material property

Confirming that the length-to-diameter ratio of the
specimen has a significant effect on the tensile
strength

Arguing that the experimental result should be
abandoned if the failure initiates under the
loading devices

Assuming that the tensile crack initiated from the
center to the outside along the compressive
diameter

Mohr-Coulomb failure criterion with a tension
cutoff was used in the two-dimensional numerical
simulation

The solution is implicit, and the mathematical
computation procedure is complex

A cohesive crack model was used for the
theoretical analysis
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Table 1 continued

Authors (year) Contributions Remarks Methods

Exadaktylos
and Kaklis
(2001)

Presenting explicit expressions for the stresses and
strains at any point of an anisotropic circular disc
compressed diametrically

Claesson and Deriving an explicit solution and giving the stress
Bohloli (2002) charts for the tensile principal stress for anisotropic

(transversely isotropic) rock, particularly the principal
tensile stress at the center of a disc due to opposing

Lavrov and
Vervoort
(2002)

Lavrov et al.
(2002)

Yue et al.
(2003)

Wang et al.
(2004)

Van De Steen et
al. (2005)

Coviello et al.
(2005)

Aydin and Basu.
(2006)

Yu et al. (2006)

normau point loads
Analyzing the influence of the friction force applied
over two opposite arcs on the stress distribution of
the Brazilian test theoretically. Pointing out that the
stress distribution inside the sample is only
marginally affected by the effects of the frictional
conditions at the boundary

Presenting an analysis of the Kaiser effect degradation
with increasing deviation of the principal stress
between loading cycles in Brazilian tests. Using the
displacement discontinuity method to confirm these
experimental results

Presenting a digital image processing-based finite-
element method for two-dimensional mechanical
analysis of geomaterials, taking into account
material inhomogeneities and microstructures

Proposing a flattened Brazilian disc test to determine
the elastic modulus E, tensile strength rt, and
opening mode fracture toughness K1c for brittle rocks
in one test

Proposing that fracturing in the Brazilian test initiated
in shear in the vicinity of one of the platens,
subsequently growing in tension

Presenting a critical assessment of some widely used
laboratory techniques on the basis of experimental
data from the literature and their own investigations.
Performing various types of tests for determining the
tensile strength of soft rocks, including the uniaxial,
Brazilian, ring, three- and four-point bending, and
Luong tests

Proposing an indicator of weathering and
accompanying microstructural weakening of igneous
rocks by using the diametral stress-strain curves in
the Brazilian tension test

Pointing out that the formula for the indirect tensile

strength is inaccurate when the Brazilian disc has

significant thickness. A 3D FEM stress analysis

showed that size/shape effects existed in the Brazilian

test when the disc thickness was increased

Zhu and Tang Studying the deformation and failure process of a
(2006) Brazilian disk of heterogeneous rock subjected to

static and dynamic loading conditions by numerical
simulation based on rock failure process analysis
(RFPA)

Ye et al. (2009) Presenting an analytical formula and an experimental

Lanaro et al.
(2009)

method to obtain the tensile elastic modulus (E) of rock

by using strain gages in the Brazilian splitting test
Discussing the influence of initiated cracks on the
stress distribution, and modeling the crack initiation
and propagation of Brazilian rock specimens
subjected to indirect tensile loading

Discussing the strain distributions of the anisotropic
Brazilian disc

Stress-based analysis on the effect of anisotropy of
rocks. The proposed approximate formula reduces to
Eq. (1) for isotropic rocks

Both inward and outward friction forces acting on
the Brazilian specimen are taken into
consideration

Acoustic emission was monitored during the
Brazilian test, and a two-dimensional (2D)
displacement discontinuity numerical method
was introduced

The inhomogeneities of the material have
significant effects on the tensile stress distribution
along the loading axis of Brazilian specimens

2D stress-based analysis of a flattened Brazilian disc
specimen using FEM code ANSYS

A boundary element code DIGS was used in the
numerical simulations of the experiments

Experimental results indicate that the tensile
strength is strongly dependent on the specific test
used for its evaluation

A 2-cm-long strain gage was placed in a Brazilian
test specimen along its horizontal diametral plane

Stress analysis based on a 3D FEM program was
used, and the influence of specimen thickness was
considered

Considering rock heterogeneity by assuming that
the material properties of elements conform to a
Weibull distribution

The ratios of E, to Ec for marble, sandstone,
limestone, and granite were about 60-90 %,
where Ec is the compressive elastic modulus

A boundary element method (BEM) code
(FRACOD2D) was used to model the Brazilian
tests
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Table I continued

Authors (year) Contributions Remarks Methods

Yu et al. (2009) Presenting a modified Brazilian disk test by using two 3D FEM stress analysis was adopted by assuming [N-3D] ± [E]

special spacers at the loading points to reduce the stress that the test material is a continuous, isotropic, and

concentrations. Pointing out that the traditional Brazilian homogeneous elastic body

test seriously underestimates the tensile strength of the

tested material

Tavallali and Presenting the effects of layer orientation (anisotropy) Three different fracture types were observed for the [E]
Vervoort on the Brazilian tensile strength and failure patterns in particular layered sandstone, namely layer
(201 Oa, b) the Brazilian test. The influences of microscale activation, central fractures, and noncentral

parameters on the macroscale behavior were fractures
discussed

Markides et al. Obtaining closed full-field solutions for the stresses Assuming that the material of the disk is [A] + [E]
(2010, 2011) and displacements in a Brazilian disk under homogeneous, isotropic, and linear elastic. A plane

uniformly distributed radial load and considering the stress problem is assumed for the analytical analysis
influence of a uniform distribution of friction stress at
the loading rims. Pointing out that the fracture may
start at the edge of the load contact points rather than at
the specimen center Based on the linear elasticity assumption and

Markides and Giving analytic full-field formulae for the components ignoring the friction at the loading rims [A] + [E]
Kourkoulis of the stress field developed in a Brazilian disc under

(2012) four types of loading distribution on the actual
contact length The reduction in indirect tensile strength of tuff was

Erarslan and Presenting experimental results for an investigation of found to be 33-37 % for cyclic loading conditions [E]
Williams the stress-strain characteristics of Brisbane tuff disc under the Brazilian test
(2011) specimens under diametral compressive cyclic

loading
Investigating the difference between standard The best loading geometry for indirect tensile

Erarslan et al. Brazilian jaws and various loading arc angles for the testing of rock material was found to be from [E] + [N-2D]

(2011) Brazilian test on Brisbane tuff by experimental and 2a = 20 to 30 based on loading arc simulations

numerical studies

Classification of study approaches: Analytical (A); experimental (E); numerical (N). The numerical studies are further classified into

two-dimensional numerical (N-2D) and three-dimensional numerical (N-3D) analyses.
a

Where W is load, a is the ratio of the internal radius (a) to the external radius (b), and t is thickness
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Table 3.2: A comparison between analytical

compression displacement AW of the flattened

and numerical solution for the diametrical

Brazilian disc (Wang et al., 2004)

2a() AWEirt / 2P AWEict / 2P Error - (Analytical - ANSYS /
Analytical ANSYS ANSYS) %

5 6.954 7.208 -3.52
10 5.575 5.839 -4.52
15 4.777 5.026 -4.95
20 4.217 4.472 -5.70
30 3.445 3.656 -5.77

Table 3.3: Comparison between stress distribution on the loading diameter between arc

loading (Brazilian Disc) and plane loading (Flattened Brazilian Disc) for load angle=20

(Wang and Xing, 1999)

ao/'P/Rt) arr/'P/Rt)
r/R Arc Plane Arc Plane

Loading Loading Loading Loading
0.9 -3.086 -3.076 -8.864 -8.846
0.8 -0.457 -0.454 -7.336 -7.357
0.7 0.403 0.404 -5.839 -5.859
0.6 0.709 0.713 -4.801 -4.819
0.5 0.839 0.843 -4.101 -4.117
0.4 0.900 0.904 -3.627 -3.642
0.3 0.931 0.935 -3.309 -3.324
0.2 0.948 0.952 -3.107 -3.121
0.1 0.957 0.960 -2.997 -3.011
0.0 0.963 0.967 -2.961 -2.975



Loading platen

(a)
Loading platen

shion

(C)

Loading platen

steel rod

(b)

Curved loading jaw

(d)
Figure 3.1: Typical Brazilian tensile test loading configurations: (a) Flat loading platens,
(b) Flat loading platens with two small diameter steel rods, (c) Flat loading platens with
cushion, (d) Curved loading jaws (Li and Wong, 2013)
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Figure 3.2: The Brazilian disk specimen under uniformly distributed diametrical load; the dashed line

representing the crack induced upon loading, P is the summation of the distributed load. (Wang and

Xing, 1999)

Figure 3.3: The fractured specimens of Australian rocks after Brazilian tests (Guo et al., 1993)
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Figure 3.4: The flattened Brazilian disk specimen with two parallel flat ends (Wang et al., 2004)
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Figure 3.5: Radial and tangential stresses along the vertical diameter of the flattened Brazilian disc

calculated using ANSYS for 2a = 30'. (Wang et al., 2004)
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Figure 3.6: Variation of the dimensionless equivalent stress through the dimensionless vertical
distance for specimens with 75 mm diameter (Keles and Tutluoglu, 2011)
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Figure 3.7: Variation of the dimensionless equivalent stress with the dimensionless vertical distance
using numerical analyses software ANSYS (Wang et al., 2004)
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Figure 3.8: Dimensionless principal stresses versus dimensionless

Tutluoglu, 2011)
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Figure 3.9: Dimensionless equivalent stresses versus dimensionless vertical distance plot (Keles and

Tutluoglu, 2011)

130

%X*83 OO1



1.00
0.98 * ANSYS Value

0.96
.94v Analytical

0.941
0.92 -

440.90 -

0 88-

0.86
0.84
0.82
0.80

- 20 250 30"

2a
Figure 3.10: Determination of the k value in the tensile strength equation using

approximate analytical formula and comparing it to ANSYS (Wang et al., 2004)
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Figure 3.11: A schematic presentation for the dimensionless SIF } vs. dimensionless crack

length a/R (Wang and Xing, 1999)
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Figure 3.12: A typical test record of load P versus displacement using the Flattened Brazilian Disc
Specimen (Wang and Xing, 1999)
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Figure 3.13: The dimensionless SIF versus dimensionless crack length for the flattened Brazilian
disc with a central straight through crack (Wang et al., 2004)
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Figure 3.14: Variation of maximum dimensionless stress intensity factor with dimensionless critical

crack length for flattened Brazilian disc models (Keles and Tutluoglu, 2011)
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Figure 3.15: Variation of maximum dimensionless stress intensity factor with loading angle for

flattened Brazilian disc specimens (Keles and Tutluoglu, 2011)
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Figure 3.16: Load - load point displacement record for a valid test of marble using the flattened
Brazilian configuration (Wang and Wu, 2004)
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Figure 3.17: An invalid load - Load point displacement record for the flattened

configuration (Wang and Wu, 2004)
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Figure 3.18: Another invalid load - Load point displacement

configuration (Wang and Wu, 2004)
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Chapter (4)

EXPERIMENTAL WORK

4.1 Introduction

This chapter presents a detailed description of the laboratory testing program performed for this

research. First the soils and materials tested are described, including a summary of their origin,

index and strength properties. Next, a description of the Flattened Brazilian Disc (FBD) testing

equipment used for determination of mode I fracture toughness, tensile strength, and modulus of

elasticity is presented, which includes details pertaining to testing device, measuring transducers,

specimen preparation technique, and testing procedures.

4.2 Materials Used in Testing Program

In the conducted flattened Brazilian disc experiments six different materials were under study;

four of which are natural intact soils which came from different regions over the world: natural

clay from Bangladesh, San Francisco Bay mud from the west coast in the United States, Boston

Blue Clay, and Presumpscot Maine Clay both from the eastern coast of the United States. In

addition, two clay-like fabricated materials were investigated: Plaster of Paris and molded

gypsum. These two materials were chosen as model materials giving nearly uniform repeatable

behavior which minimizes the heterogeneity found while testing natural intact soils.

4.2.1 Natural Soils

Based on the availability of natural soils within the laboratory facilities and feasibility of

obtaining new specimens, four natural intact soils were investigated in this experimental study.

In the following section, a brief description of each soil is provided with details on its origin, its

mineralogy, and its basic mechanical and physical properties as reported in the literature.

4.2.1.1 Bangladesh Clay

Generally, Bangladesh clay is tropical residual reddish brown of intermediate to high plasticity

inorganic (CI to CH) clay. It is mainly composed of illite, kaolinite, chlorite and some non-clay

minerals mainly quarts and feldspar. It contains ferruginous cements, concretions and iron

nodules (Alam et al., 1990; Monsur, 1995). It was observed that these Bangladesh sods showed a
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random open micro fabric of silt and clay. There was also some evidence that alumina silicates,

iron compounds and silica formed bonds between and within the grains. It is established that the

tropical clay soils of Bangladesh are bonded. Bonding has an influence on the development of

stress-strain and stiffness of the soils. An apparent pre-consolidation pressure of 170 kPa to 250

kPa was estimated for the natural soils, which is likely to be due to the bonded structure of the

soils. Under undrained shearing, specimen initially showed peak positive values of excess pore

water pressure followed by negative values at higher strains due to the tendency of the samples

to dilate. No negative pore water pressures were observed at high confining pressures. Only a

few samples at low confining pressures reach the critical state at very large strains approximately

in excess of 20%. High confining pressure samples may not have reached the critical state due to

the formations of distinct shear surfaces. After a final yield, soils' behavior is controlled only by

friction. Generally, the compressibility of the soils is very low to medium (Monsur, 1995).

Bangladesh can be divided into three major physiographic units, namely, (i) the tertiary hill

formations, (ii) the Pleistocene terrace, and (iii) the recent flood plains. On the southern tip of a

Pleistocene Terrace lie the city of Dhaka, where two characteristics units cover the city and

surroundings: Madhupur clay of Pleistocene age and alluvial deposits of recent age. In the

current experimental research, clay samples were obtained from a rice field located in

Bashailbhog village which lies in the Munshiganj district of Bangladesh, which is roughly 30 km

south of Dhaka and 7 km north of the Ganges River (Neumann, 2010). Figure 4.1 shows an

approximate location of the site under study.

According to Neumann (2010), a specific gravity value of 2.78 was assumed, this value was

determined from the mineralogy of a groundwater-irrigated rice soil in West Bengal (Norra et al.

2005). The soil contained 33% quartz which has a specific gravity of 2.65, 8% calcite with a

specific gravity value of 2.71, 2% dolomite with a specific gravity value of 2.85, 14% feldspar

with a specific gravity value of 2.76, 15% illite with a specific gravity value of 2.9, 10%

kaolinite with a specific gravity value of 2.7, 18% other phylosillicates, which based on the work

of Polizzotto et al. (2006) for the field site under study, are likely biotite or hornblede with a

specific gravity value of 3.0. This mineral composition results in a bulk specific gravity of 2.78.

However, there is uncertainty in this value mainly due to the fact that many of the minerals,

including illite, feldspar, kaolinite and biotite, actually have a range of specific gravities due to

natural mineral variations and mineralogical composition of Munshiganj rice field may be
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different than that in the studied West Bengal field (Norra et al. 2005).

For the rice field clay specimens used in the current research, data from the tests carried out by

Newmann (2010) can be summarized as follows for the in-situ conditions: the initial void ratio

e0 , ranged from 0.847 to 1.110, the initial water content, w, ranged from 29.78% to 32.97%, the

porosity n, ranged from 0.46 to 0.53, initial degree of saturation, S ranged from 82.53% to

97.73%, the bulk density, Ybulk ranged from 1.751 g/cm 3 to 1.953 g/cm 3, and the dry density, 7yd

ranged from 1.317 g/cm3 to 1.505 g/cm3.

Neumann (2010) determined the hydraulic conductivity, void ratio and bulk density of sections

of the collected rice field cores; for her PhD research; following the protocol outlined in the

ASTM standard for the constant rate of strain test (ASTM 2006). From the carried out test the

relationship between the hydraulic conductivity and void ratio can be determined from the

stabilized portion of the test which is shown in pink (Neumann, 2010). The in-situ hydraulic

conductivity was calculated from this relationship using the initial void ratio of the specimen. A

typical CRS test result for the Bangladesh clay tested is shown in Figure 4.2.

4.2.1.2 San Francisco Bay Mud

San Francisco Bay is a shallow estuary that forms water drain from approximately 40% of

California for three major cities: San Francisco, Oakland and San Jose. It geologically dates back

to early Pleistocene or to Pliocene. The bay occupies a depression between two uplifted areas:

the Berkeley Hills on the east and the Montara and other mountains on the west. It is affected by

two active faults that parallel the uplifted areas, each about 10 miles from the center of the bay:

the San Andreas fault, which passes through the central part of the mountains to the west, and the

Hayward fault, along the base of the Berkeley Hills to the east. The bedrock east of the Hayward

fault is almost entirely Tertiary sandstone and shale. West of the fault most of the bedrock

belongs to the Franciscan formation (Jurassic), except for a small area of sandstone and shale, of

Merced age (Pliocene), south of the city limits of San Francisco. As the present bay was being

formed, the rocks on the adjoining uplifted areas were eroded, and four sedimentary formations

deposited in the bay: Bay Mud, Merritt sand, San Antonio formation, and Alameda formation

(Lawson, 1914; Louderback, 1939 & 1951; Trask and Rolston, 1965).

The generalized geology near the edge of San Francisco Bay consists of a surface layer of

younger bay mud covering older bay sediments, which extend to bedrock. The younger Bay

Mud, which consists of more than 50 per cent water, is soft, low shear- strength, compressible
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assemblage. The older bay sediments beneath the younger Bay Mud are unconsolidated

sediments of late Pliocene to Holocene age deposited by alluvial processes when sea level rose.

The older bay sediments vary greatly in composition and properties but are everywhere more

compressed than the younger bay mud (Treasher, 1963).

Use of Bay Mud and clay for foundations demands careful engineering design to avoid shear

failure and differential settlement problems. These problems are related to high content of both

water and the swelling clay mineral, montmorillonite, which together cause low shear strengths,

high void ratio, low specific gravity, high consolidation under load and high drying shrinkage.

Generally shearing strength varies between 100-1200 pound/square foot.

The upper soil layer (Bay Mud) has up to 100 feet thickness. It is soft mud, becoming firmer

with depth; consists of silty clay containing grains of wind-blown sand. In some areas, the upper

part of the formation includes thin layers of fine- to medium-grained sand alternating with silty

clay. In places, shells and plant fragments are found. Bay Mud usually has stiff crust of

desiccated clay (Trask and Rolston, 1965).

The measured index properties for typical San Francisco Bay Mud (SFBM) as investigated by

Kontopoulos (2012) are as follows: average liquid limit (LL) of 73%, average plastic limit (PL)

of 44%, average plasticity index (PI) of 19%, average clay fraction of 47% and an average

specific gravity of 2.69. For the specimens used in the current research SFBM has an average

unit weight, yt of 16.59 kN/m 3, an average water content, wc of 58.48%, and an average tore

vane shear strength (Tv) of 0.45 kg/cm2. According to Germaine (2010) SFBM has an average

organic content value of 5.03%. San Francisco Bay Mud is considered grey elastic silt with a

Unified Soil Classification System (USCS) classification of silt with high plasticity (MH). A

typical gradation curve of San Francisco Bay Mud is exhibited in Figure 4.3.

Germaine (2001) determined the hydraulic conductivity, void ratio, coefficient of consolidation,

and compressibility of sections of the San Francisco Bay Mud cores used in the current research;

following the protocol outlined in the ASTM standard for the constant rate of strain test. From

the carried out tests the compression behavior of San Francisco Bay Mud can be determined in

addition to the relationship between the hydraulic conductivity and void ratio. A typical CRS test

result for the San Francisco Bay Mud used in this research is shown in Figures 4.4, 4.5, and 4.6.
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4.2.1.3 Boston Blue Clay

Much of the greater Boston area is underlain by thick deposits of glaico-marine illitic clay,

locally known as Boston Blue Clay (BBC). Boston Blue Clay has a low plasticity index (Ip

ranging from 20-25%) and is moderately sensitive. Engineering properties of both natural and re-

sedimented BBC have been extensively studied. Pestana (1994) summarized the average index

properties of Boston Blue Clay as follows: Mineralogy composed of Illite as a major component

and Quartz as a minor component, the origin of BBC is Marine, the Unified Soil Classification

System (USCS) classification of BBC is clay with low plasticity (CL), average specific gravity

of 2.77, average liquid limit (LL) of 42%, average plastic limit (PL) of 21%, average plasticity

index (PI) of 21%, average liquidity index (Ii) of 95%, clay fraction (C) 53 ± 5%, and activity of

0.42. Intact normally-consolidated BBC has an S shaped (double curvature) compression curve.

Typical triaxial compression behavior of reconstituted Boston blue clay at OCR of 1, 2, 4, and 8

shows that, normally consolidated clay (NC) shows a peak at small strains followed by

development of large positive pore pressures that cause a significant decrease in p' and

significant post-peak softening, while over-consolidated clay (OC) shows a decrease in the peak

value of strength, in strain softening and in the development of excess negative pore pressure

(Santagata, 1994). The undrained stress-strain lines of over-consolidated (OC) samples of Boston

blue clay present flat peaks.

Boston Blue Clay (BBC) has low consolidation time, low swelling behavior, and does not exhibit

extreme behavior in any parameter, thus making it good representative clay (Marjanovic, 2012).

The soil's salt concentration is observed to vary between 5 and 20 g/l, with a decrease in salt

content with increasing depth. Berman (1993) reported typical values of compression index of

0.179±0.038, Ko of 0.51-0.60.

For the current research Boston Blue Clay was obtained from three different locations at the MIT

campus in Cambridge, Massachusetts. The intact specimens have average total unit weight, yt of

19.18 kN/m3, average wet unit weight yw of 18.85 kN/m 3, average water content, we of 34.22%,

average initial degree of saturation, Si of 99.94%, average initial void ration, ei of 0.98, and

average tore vane shear strength (T,) of 0.67 kg/cm2 .

Boston Blue clay properties are known to vary spatially as well as by depth (Johnson, 1989). An
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example for this variation; at one of tested Boston Blue Clay locations under study in the current

research; is illustrated in Figure 4.7.

Germaine (2001) determined the hydraulic conductivity, void ratio, coefficient of consolidation,

and compressibility of sections of the Boston Blue Clay cores used in the current research;

following the protocol outlined in the ASTM standard for the constant rate of strain test. From

the carried out tests the compression behavior of Boston Blue Clay can be determined in addition

to the relationship between the hydraulic conductivity and void ratio. A typical CRS test result

for the Boston Blue Clay used in this research is shown in Figures 4.8, 4.9, and 4.10.

4.2.1.4 Presumpscot Maine Clay

The Presumpscot Formation is a glaciomarine silty clay found in the coastal lowlands of Maine

and extending inland along the Penobscot and Kennebec River valleys (Thompson, 1987). As the

ice sheet margin receded, isostatic crustal rebound resulted in the relative uplift of the

Presumpscot sediments above the marine limit. The depositional environment and subsequent

uplift have had considerable effects on the geotechnical properties of the Presumpscot formation.

For the soft Presumpscot clay, most all shear strength values for design are obtained from the

field vane shear test rather than by laboratory testing as is common practice for many clay

deposits elsewhere. Typical values of the peak undrained shear strength measured by the vane

test for the Presumpscot Formation range from 170 to 2400 psf. Typical examples of

Presumpscot strengths have been published by Poulos et al. (1982), MSHC (1969) and Sandford

and Amos (1987). Undrained shear strength implies that shearing occurs rapidly enough to

preclude drainage and the dissipation of excess pore water pressures generated during shear.

According to Adams (2011), the mineralogy of Maine clay resembles that of natural Boston Blue

Clay. Presumpscot Maine clay has an average specific gravity value of 2.78. The clay fraction is

approximately 30% though this may vary spatially and by depth (Vargas, 2013). Reynolds

(1991) reports typical Atterberg limits of Presumpscot Maine clays as 30 % as liquid limit, 20 %

as plastic limit, and 10% as plasticity index. The Unified Soil Classification System USCS

classification is low plasticity clay, CL.

Germaine (2002) determined the hydraulic conductivity, void ratio, coefficient of consolidation,

and compressibility of sections of the Presumpscot Maine clay cores used in the current research;

following the protocol outlined in the ASTM standard for the constant rate of strain test. From

the carried out tests the compression behavior of Presumpscot Maine clay can be determined in
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addition to the relationship between the hydraulic conductivity and void ratio. A typical CRS test

result for the Presumpscot Maine clay used in this research is shown in Figures 4.11, 4.12, and

4.13.

4.2.2 Clay-like Brittle/Semi-brittle Materials

Some of the first experimental tests on fracturing in brittle materials were conducted by Brace &

Bombolakis (1963). Since then researchers have conducted experimental studies to investigate

the cracking processes in various natural and composite brittle materials (Morgan, 2011). In the

current experimental study two composite clay-like brittle materials were investigated: Plaster of

Paris which was previously studied by Lajtai (1970) and Nesetova and Lajtai (1973) and Molded

Gypsum which was extensively investigated in MIT by Reyes (1991); Reyes and Einstein

(1991); Shen et al. (1995); Bobet (1997); Bobet and Einstein (1998); Sagong (2001); Sagong and

Bobet (2002); Wong and Einstein (2009); and finally Morgan (2011).

4.2.2.1 Plaster of Paris

Plaster of Paris is a brittle, porous solid, easy to shape, which has potential as a model material

for the study of brittle, porous, solids such as ceramics, dried clays, rocks and cement (Vekinis et

al., 1993). Plaster of Paris, a chemically hydrated calcium sulphate, is a brittle solid with fracture

properties that resemble to a great extent those of cement, sandstone, and other porous ceramics.

Plaster of Paris is calcium sulphate hemihydrate, CaSO4 MV2H2 0. It can be prepared by heating

gypsum between 120 and 160'c. the following equation expresses the chemical changes during

the formation of Plaster of Paris:

CaSO4 -2H 20 +-+ CaSO4 ./H 20 + 1 2H20 (4.1)

When plaster of Paris is mixed with water the reverse reaction takes place where water is

reabsorbed by the formation of gypsum. The reaction is exothermic and results in a coherent

mass of interlocking needle-shaped gypsum crystals (Vekinis et al., 1993). The chemistry of the

reaction requires only 18.6% by weight water for rehydration, but in practice much more is used

to give the fluidity needed for casting. The excess water evaporates leaving considerable

porosity. According to Vekinis et al. (1993), true density of the hemihydrate is about 2750

kg/m3and of the dihydrate is about 2320 kg/M3, so contraction on setting would be expected but

the arrangement of the crystals is such that setting results in a slight expansion (about 0.5%).

Generally, the mechanical properties of Plaster of Paris depend on powder-to-water ratio, curing
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time, temperature and pressure, and on post-cure heat treatment. Using Environmental Scanning

Electro Microprobe (ESEM) micrograph it can be observed that Plaster of Paris samples may

contain small spherical pores as illustrated in Figure 4.14. The presence of these pores is

probably due to trapped water during casting, which decrease in size with increasing bulk

density of the material (Vekinis et al., 1993).

A number of mechanical and physical properties for plaster of Paris have been investigated over

the years. According to experimental studies carried by Vekinis et al. (1993), Plaster of Paris has

an average density of 1.170 g/cm 3, an average total porosity of 51 (%), an average modulus of

elasticity determined by four-point bending, Ebend of 4.5 ± 0.1 GPa and determined by uniaxial

compression, Ecomp of 4.6 ± 0.3 GPa, an average modulus of rupture determined under four point

bending of 5.8 ± 0.6 MPa, an average fracture toughness, KIC, determined by four-point straight

edge notched beam (SENB) of 0.14 ± 0.015 MPa.m0 5, an average uniaxial compressive strength

of 14.6 ± 0.9 MPa, an average compressive strength under hydrostatic conditions of 19.2 ± 1.4

MPa, and finally an average uniaxial tensile strength of 3.2 ± 0.6 MPa.

4.2.2.2 Molded Gypsum

Molded gypsum has been extensively used as a model rock at the rock mechanics research group

at MIT in the past forty years, researchers and scholars included Nelson (1968), Einstein et al.

(1969), Motoyama and Hirschfeld (1971), Einstein and Hirschdeld (1973), Reyes and Einstein

(1991), Shen et al. (1995), Bobet and Einstein (1998), Ko et al. (2006), Wong (2008), and

Morgan (2011).

The molded gypsum (CaSO4-2H20) is obtained by mixing commercially available gypsum

powder (HYDROCAL B- I TM) with water. The formed gypsum powder is actually hemihydrate

(CaSO4V %H20). Nelson (1968) noted that hemihydrate is obtained by purifying and heating

natural hydrated gypsum:

CaSO4 -2H20 -- CaSO4 - /H20 + 1%2 H20 (4.2)

When the hemihydrate is mixed with water in the laboratory, hydrated gypsum is

reformed (CaSO4 VH20 + 1 V2 H20 -. CaSO4 - 2H20). (4.3)

The gypsum specimens are then stored in a 4U' oven to remove any excessive water after

fabrication, but the water of crystallization (2H 20) associated with CaSO4 is still retained

(Wong, 2008).

A number of mechanical and physical properties for molded gypsum have been investigated over
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the years. According to experimental studies carried by Wong (2008), the average density, p is

1.54 g/cm 3 and the average uniaxial compressive strength, ac is 33.85 MPa and in a more recent

study by Janeiro and Einstein (2010), the compressive strength of Hydrocal was found 37.2 MPa.

And according to earlier studies the average uniaxial tensile strength, GT ranged from 2.4 MPa as

reported by Nelson (1968) and 3.2 MPa as reported by Bobet (1997). Bobet (1997) also reported

the average Young's modulus of elasticity, E to be 5960 MPa and average Poisson's ratio, v is

0.15 which is less than the value reported by Nelson (1968) of 0.24. According to Morgan

(2011), the correct Hydrocal mix should be composed of 85% by weight Portland cement, 10%

by weight hemihydrate (CaSO4 -H20), and 5% by weight crystalline silica.

Wong (2008) carried out environmental scanning electro microprobe (ESEM) images that

revealed that average gypsum crystals are of a plate to needle shape 5 im long and 2 tm wide.

In-between the plates, small inter-connected pores with approximately 1 to 5 pm size which are

exhibited in Figure 4.15.

4.3 Material Processing

4.3.1 Natural Soils

The specimen preparation of natural soils (intact materials) involves two main stages: 1st stage

involves the material inspection, extrusion, cutting into circular discs while the 2nd stage involves

oven drying, trimming, sanding, and obtaining two parallel flat ends. The FBD tests are

performed on specimens that were first used for constant rate of strain (CRS) testing and have

been compressed in the end to the normally consolidated (NC) range.

The first stage can be summarized as follows: Intact materials; in our research Bangladesh Clay,

San Francisco Bay Mud, Boston Blue Clay, and Presumpscot Maine Clay; are obtained from

standard push tube samples. These tubes are usually 2.8" diameter galvanized steel or brass and

are capped and sealed at each end.

Then the tubes are x-rayed according to the protocol suggested by Germaine and Germaine

(2009) where the radiographs as the ones shown in Figure 4.16 are used to determine least

favorable locations of poor sample quality which are not suitable for further testing. Once a

suitable specimen is determined, the section is cut from the tube with a band saw located in the
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trimming room shown in Figure 4.17. Then cut edges of the sample tube are smoothed and

processed to remove metal burs for safety reasons as illustrated in Figure 4.18 (Adams, 2011).

The soil adjacent to the cut portions is disturbed from the cutting process and often contains

metal fragments which are removed via scraping shown in Figure 4.19. The remaining portions

of the sample tube not containing the specimen to be tested are sealed with wax to retain

moisture and taped back together for later use and a log sheet is used to record the location of the

cut section and the testing performed for future guidance (Germaine and Germaine, 2009).

The specimen is extruded from the tube section first by cutting along the inner circumference of

the sample tube with a piece of piano wire as illustrated in Figure 4.20. And the specimen is

pushed out of the tube by placing it against an elevated circular object of equal diameter as

illustrated in Figure 4.21 and pushing the specimen tube down. After the specimen is fully

extruded it is transferred to a plate to prepare for trimming, a partially extruded specimen is

shown in Figure 4.22.

The first stage in trimming involves obtaining a circular disc which is achieved using the cutting

ring technique. A schematic of the technique is displayed in Figure 4.23.

Germaine and Germaine (2009) provide detailed instructions for performing the cutting ring

technique which can be summarized as follows: The ends of the section perpendicular to the axis

of the sample should be squared, then ensure that the section of soil has at sufficient thickness on

all surfaces to allow for trimming. Then place the soil section on a rigid plate covered with a

piece of wax paper. Then place the cutting ring on the soil, as shown in Figure 4.23.

In the procedure followed the soil and the ring were put in a trimming frame as shown in Figure

4.24 to maintain alignment and to provide stability during the trimming process. The majority of

the cutting should be performed using a spatula or knife in advance of the cutting ring. The

spatula is used to cut a taper leading up to the cutting ring. Next, the assembly is advanced in

small increments such that the soil cut away does not cover the beveled portion of the cutting

tool. When trimming the soil away, trim in front of the blade to avoid cutting into the specimen.

The cutting procedure is continued until the cutting ring has advanced into the soil a sufficient

depth to create a specimen a few millimeters thicker than that required for the test.

The cutting ring and soil are removed from the alignment device and a rigid plate is placed

(without wax paper) on the soil and cut off the excess material with a wire saw. While cutting the

surface, a small force is applied to the plate to keep the material in compression and a wire is
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used to saw back and forth using the ring surface as a guide. The process is repeated until the soil

is lifted up and released for testing. After this step the circular disc specimen may be used in any

kind of testing requiring circular specimens like constant rate of strain (CRS) test or direct

simple shear (DSS) test then the un-cracked intact specimen is oven dried and this is when the

second stage of preparation starts.

The second stage of specimen preparation starts with oven drying the specimen at a temperature

of 100' C for at least 48 hours to achieve complete drying of any moisture within the specimen.

The drying process results in large suction which may draw the particles together internally. The

excess negative pore pressure generated upon suction may be much larger than the effective

preconsolidation pressure the specimen has witnessed in its stress history. However, the negative

pore pressure acts on a limited area and its effect on erasing the specimen's stress history is

dependent on the magnitude of the maximum effective stress the specimen s subjected to in the

CRS test.

After oven drying, the specimen is cooled in a humidity controlled container then the desired

dimensions of the finished flattened disc are marked on the specimen using a pencil and a ruler.

The width of top and bottom flat edges is marked to define the loading angle (2a) of the finished

specimen. After marking, the circular oven dried disc is trimmed using a sharp edged blade and a

miter box, the purpose of this stage is to initiate the removal of the curvature of the top and

bottom edges of the circular disc. After careful sawing back and forth with the blade, no further

curvature of the circular edges is observed. The specimen is then hand sanded before machine

sanding to remove any sharp edges that can be broken off by the belt sander. Some specimens

may have sharp pieces on the edges and flaws that cause larger pieces to be broken off if they are

directly sanded with the orbital sander.

Then the partially trimmed no-longer circular disc is brought to a sanding machine like the one

shown in Figure 4.25, for the purpose of these experiments a 6" width belt sander; manufactured

by Delta model No. 31-730; located in the rock mechanics laboratory was used. The top and

bottom edges of the specimen are carefully sanded using the belt sander machine and provided

guides until approaching the initially marked top and bottom flat widths. The guides are used to

maintain parallel flat edges while sanding. After obtaining the desired width for the flat top and

bottom edges, the flattened specimen is hand sanded again to ensure creation of smooth flat ends.

To ensure the parallelism of the top and bottom flat edges, the vertical distance between the top
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and bottom edges is measured at several locations within the flattened edge and at each location

it is measured at least three times. Another means to ensure the flatness and parallelism of the

finished flattened surfaces is using a bubble level.

Afterwards, the specimen's final top and bottom flat widths are measured and the central loading

angle (2a) is separately measured to be used in calculation formulas of fracture toughness and

tensile strength. Hence, the specimen is ready for flattened Brazilian testing. Figures 4.26 and

4.27 show a typical flattened Brazilian disc before and after the specimen sanding and

preparation.

4.3.2 Clay-like Materials

Gypsum and Plaster of Paris specimens were prepared and artificially molded following the

same procedures as in previous studies in the rock mechanics group at MIT such as Reyes and

Einstein, 1991, Shen, et al., 1995, Bobet and Einstein, 1998, Ko, et al., 2006, Wong, 2008, and

Morgan, 2011. Wong (2008) gave detailed instructions on specimen's fabrication which will be

summarized in this section.

The gypsum specimens were cast from a mixture of Hydrocal B-Il powder, celite powder and

water at mass ratios of 700:8:280. The addition of celite powder reduced the amount of bleeding

(migration of water to the top of the fluid mix). In the beginning, measure 6.4 grams of celite

powder, 560 grams hydrocal B-II (gypsum) powder, and 224 milliliters of water. The celite

powder is poured into the mixing bowl followed by the water then the bowl is placed into a

mixer which will be operated for about 20 seconds. Afterwards, the bowl is removed from the

mixer and the gypsum powder is gently poured over the beaten celite and water mix. Then the

bowl is returned to the mixer which will be operated for four minutes to ensure proper mixing to

the gypsum mix, as shown in Figure 4.28. The bowl is removed from the mixer and the beaten

paste is poured from the bowl into cylindrical 3 inches plastic molds slightly greased using WD-

40 with the aid of a rubber spatula. The mold is brought to a vibrator for two minutes to

minimize the trapped air bubbles in the paste. The gypsum molds are placed covered to dry and

set on top of a horizontal bench, as shown in Figure 4.29.

Afterwards, the specimen is removed from the mold and cleaned using a damp cloth to remove

any excess grease. The mass of the specimen is measured and it is placed into an oven set at
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40'C. The mass of the specimen is monitored periodically until it reaches a constant value which

usually takes from 5 to 7 days. Figure 4.30 shows an example for a dried extracted gypsum

specimen.

After obtaining constant mass, the cylindrical specimen is cut into a number of uniform circular

discs using a band saw located in the rock mechanics laboratory. Afterwards, we have circular

discs / rings resembling the intact soils described in the previous section. Using the same

procedures of pre-defining top and bottom flattened widths with a central loading angle followed

by hand and machine sanding the circular gypsum specimens are converted to non- circular

flattened Brazilian discs which are ready for testing.

For the Plaster of Paris specimens, nearly the same procedure is followed but with different

components and ratios. For the plaster of Paris specimens conducted in this research, a number

of plaster powder to water ratios were evaluated and it was found that the optimum powder to

water ratio is 1.75: 1. Hence, for specimen preparation 700 grams of plaster powder and 400

milliliters of water were measured then they were poured into the mixing bowl and were mixed

for under 2 minutes (the author faced difficulties in dealing with the paste if mixed more than 2

minutes as it solidifies and hardens quickly). The mixture is poured into the same plastic molds

as gypsum then vibrated for a couple of minutes then left to set and dry for nearly two hours. The

extracted cylindrical specimen is oven dried at 40'C as well and kept in the oven until reaching a

constant mass value. The cylinder is cut using the same band saw followed by the same sanding

procedure to obtain flattened Brazilian discs ready for testing.

4.4 Testing Equipment

4.4.1 Loading Frame

In the current experimental research two load frames were used to perform the experiments; an

off the shelf mini load frame (shown in Figure 4.31) manufactured by Wykeham Farrance and

has model number: T56B. This mini load frame was mainly used to test the four natural soil

types which did not require high loading capacities. This particular load frame has five different

displacement rates ranging from 0.0037 to 46 cm/hour. For the conducted experiments average

displacement rate of 0.2 mm/min was chosen for testing after trying several different loading

rates. There are two main disadvantages when using this load frame; it is a purely mechanical

device with no electronic interaction with no computer readout, and no computer control to halt
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the device once a certain stress is achieved which means it is entirely operator dependent and

must be operated by an on/off switch. The second disadvantage is that it can only apply a

constant rate of strain and not a constant level of stress.

The second load frame used in testing the clay-like materials (gypsum and plaster of Paris)

requiring higher loading capacities was manufactured by MTS with loading capacity of 110 kips

and has model number: 311.21. This particular load frame is equipped with hydraulic lifts,

hydraulic locks and controls. It is also provided with MTS 35KIP, 3000 PSI Actuator, Model

204.64, S/N 129, with 4" Stroke, LVDT and area = 12.54 sq. in. In addition, it has an MTS Line

Tamer, an MTS 55KIP Fatigue Load Cell, two MTS servo valves, MTS 55KIP 3000 PSI

Hydraulic Grips, Model 641.36 with inserts for 3.88" wide flat specimens, and finally MTS 3000

PSI Hydraulic Grip Control Unit.

4.4.2 Overall Test Configuration

Figure 4.32 presents a schematic diagram for the loading setup of the flattened Brazilian disc

specimens, where the flattened specimen is bound between two flat surfaces (top and bottom) for

load application where the top flat surface is connected to the load cell using a ball for uniform

pressure distribution and minimizing stress concentrations. The clip on extensometers are

attached to the specimen's surface using the wing attachments and rubber bands, in addition, an

attachment is used to hold the linear voltage displacement (LVDT) transducer which is touching

a flat stiff surface beneath the loaded specimen to measure the overall machine/specimen vertical

displacement. Figure 4.33 shows the loading setup for a flattened Brazilian disc tested in the

mini load frame followed by Figure 4.34 which presents a close up on the configuration of the

used LVDT while testing, and Figure 4.35 presents an example for the loading setup using the

MTS high capacity load frame.

4.4.3 Load Cell

The load cell used in the Flattened Brazilian Disc load frame is a Data Instruments Model JP 500

load cell with a capacity of 500 lb (2.225 kN). The load cell; which was used to determine axial

force applied on the flattened Brazilian discs; uses a shear beam geometry to concentrate stains

in an instrumented section. Strains are measured with strain gauges whose output voltage can be

related to the applied load using a calibration relationship. For the load cell used during the

experimental procedures the calibration factor was 6770.033951 (kg/ (V/V)) with a resolution of
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0.05 N (0.001 mV) and stability of 0.1 N (0.002 mV). Figure 4.36 shows a photo of a 500 lb

capacity load cell like the one used in testing.

4.4.4 Axial Displacement Transducers

The axial deformation of the flattened Brazilian disc is preliminarily measured using a Linear

Variable Differential Transformers (LVDT) manufactured by Trans-Tek Inc. The linear range is

approximately 2.5 cm. Adams (2011), gives a brief description for the LVDT used during testing

which is comprised of three coils including one primary coil in the centre and two secondary

coils on either side. An electric current passing in the primary coil creates a magnetic field which

induces a voltage in each of the two secondary coils, and this voltage is proportional to the

mutual inductance with the primary coil. When the ferrous core moves through the centre of the

coils, the mutual inductance is altered, changing the voltage response. A slight movement of the

core produces a nearly linear change in the differential voltage output between the two secondary

coils. This differential voltage can be related to the displacement using the calibration factor. For

the LVDT used during the experimental progress the calibration factor was 1.6444 (cm/ (V/V))

with a resolution of +0.0001 cm (0.1 mV) and stability of ±0.0003 cm (0.3 mV). Figure 4.37

shows a photo of an LVDT similar to the one used in testing.

4.4.5 Extensometers

A pair of extensometers has been used to provide more accurate reliable measurements. The

extensometers are considered the final means of measuring the moduli of a material where they

have been used to measure the displacement over a fixed gauge length within the specimen then

converted to axial strain to compute Young's modulus of elasticity during uniaxial loading. An

extensometer measures small deformations associated with applied stress. Using the stress-strain

relationship during loading, the elastic modulus can be approximated from the slope of the initial

portion of the curve (Marjanovic, 2012). The contact extensometer used in this research was the

Instron Industrial Products series 2620-826 item. These extensometers contain strain gauge units

arranged in a Wheatstone bridge circuit and have the ability to measure dynamic testing up to

+20% strain with an input voltage of 4V which is different from the 5.5 input voltages of

remaining transducers. The differential voltage can be related to the displacement using a

calibration factor. For the extensometers used during the experimental progress the calibration
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factors were 805.3 (mm/ (V/V)) and 865.4 (mm/ (V/V)).

The extensometers measure the displacement that occurs during loading of the specimen over the

length of the gauge section. When calculating the percent of strain, the measured displacement is

taken with respect to the gauge section. In the case of the extensometers used in this research, the

gauge length for the intact clays was 1" 25.4mm and for the clay-like materials (gypsum and

plaster of Paris) was 2" = 50.8 mm.

To attach the extensometers to the specimen, a pair of wing attachments was used to provide

wider coverage to the surface of the circular disc for better holding, as shown in Figure 4.38. In

addition, four rubber bands were used to wrap around and bind one extensometer on either side

of the specimen, as shown in Figure 4.39. While the extensometers are attached, two pins are

engaged to hold the gauge length, as shown in Figure 4.40. Before loading, the pins are

withdrawn, which allows the extensometer to be in range when initializing the experiment to

measure the displacement. The main advantage of using the extensometers is that it avoids the

seating/contact deformation associated with loading, hence can be considered more precise.

However, in the current application there is slight error as the strain is not uniform.

4.4.6 Data Acquisition System

A centralized computer based data acquisition system is used in the MIT Geotechnical laboratory

to provide a single location for collection and storage of all transducer measurements (Grennan,

2010). The computerized system is flexible allowing users to specify customized and sometimes

complicated transducer recording schedules based on experimental needs; multiple schedules can

be run simultaneously. A centralized data acquisition system is a cost effective and efficient

means of recording digital data in large laboratories and is heavily relied upon at MIT. Figure

4.41 presents a schematic drawing of the central data acquisition system which can be sub

divided into four main categories according to Adams (2011):

1) The laboratory testing device, such as the Flattened Brazilian Disc load frame, which includes

the transducers, power supply, junction box, voltmeter and ground.

2) A switching mechanism which allows the data acquisition mechanism to connect to a

particular transducer to make a measurement.

3) An Analog to Digital (A/D) converter that converts the voltage output from each transducer

and the power supply to a digital word which can be read by a computer.
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4) A computer which controls the process and components and performs all administrative and

computational tasks associated with collecting and archiving the measurements associated with

all programmed tasks.

The MIT Geotechnical data acquisition system uses a personal computer equipped with an Intel

486 microprocessor and driven by Microsoft's Windows XP operating system. This computer is

interfaced with an expanded channel Hewlett Packard HP3497A data acquisition unit equipped

with a very low noise 5.5 digit integrating analogue to digital converter with auto ranging

amplification capabilities to four voltage scales (0.1, 1, 10 and 100V). The system is currently

configured to simultaneously monitor 140 channels distributed throughout the laboratory while

providing analogue to digital conversion and data storage capabilities at speeds of up to 1 Hertz

(Adams, 2011).

4.5 Testing Procedures

After finishing with the specimen preparation procedure, the process of flattening the top and

bottom edges of the Brazilian discs, and ensuring the flatness and parallelism of the two surfaces,

the specimens are kept in a 40 degree oven to maintain dry until the testing procedure starts.

Initially, the specimen dimensions are measured at least three times and at different locations and

the specimen is scaled several times to record its mass, these measurements are eventually used

to determine the dry unit weight of the specimen.

Afterwards the specimen is setup in the appropriate load frame, zero readings of the different

transducers (load cell, LVDT, and two extensometers) are recorded, a data acquisition file is

initiated to record at least 500 readings at a rate of reading per 2 seconds, then the load frame is

turned on at the chosen displacement rate which in our study is 0.2 mm/min. The pins of the

extensometers are removed prior loading after the top flat surface touches the loading platen.

Voltage readings of the load, machine displacement, and specimen displacements are recorded

and the value of the load is monitored. The test advances until an increase in the load voltage to a

maximum value followed by a sudden drop in the voltage indicating the critical loading point

which defines the transition stage between the unstable and stable crack growth phases. After

this stage the test is manually terminated and the loading frame is turned off where a central

crack splitting the flattened specimen into two halves (semi-circles) is observed with a popping

sound indicating the initiation of the crack implying the failure of the specimen.
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Figure 4.1: Plan view of rice field site in Bashailbhog village, Bangladesh (Neumann, 2010)
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Figure 4.2: Typical CRS test result showing the relation between void ratio and hydraulic

conductivity of Bangladesh clay (Nuemann, 2010)
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Figure 4.3: San Francisco Bay Mud typical Grain Size Distribution Curve
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Figure 4.7: Variation of Boston Blue clay properties by depth (a) Tore Vane Strength, (b)

Water Content, (c) Total Density, (d) Preconsolidation Pressure, (e) Consolidation Ratio,

(f) Recompression Ratio.
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Figure 4.14: Environmental Scanning Electro Microprobe (ESEM) micrograph showing
the structure of Plaster of Paris (a) 50% relative density, (b) 70% relative density
specimens (Vekinis et al., 1993).
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Figure 4.15: Environmental Scanning Electro Microprobe (ESEM) micrograph of molded

gypsum (a) magnification of 800x, (b) magnification of 12,000x (Wong, 2008)
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Figure 4.16: Three examples of sample radiographs: a) layering in sedimentary clay

deposit; b) significant shear distortion; c) isolated testable material in a generally disturbed

sample (Germaine and Germaine,.2009)

Figure 4.17: Tube set up in band saw for tube cutting (Germaine and Germaine, 2009)
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Figure 4.18: Metal file smoothing the outside edge of the cut tube section for safety

(Germaine and Germaine, 2009).

Figure 4.19: A straight edge is used to remove soil and debris from the surface to create a

level and clean soil surface (Germaine and Germaine, 2009).
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Figure 4.20: Tube section after piano wire has been threaded (Germaine and Germaine,

2009).

Ma ~ ~ -A M, 07M

Figure 4.21: Tube section placed on a cylindrical base and the soil pushed out of the tube

(Germaine and Germaine, 2009).
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Figure 4.22: Soil is being extruded from the tube (Germaine and Germaine, 2009).

Specimen Ring

Cutting Ring

Soil

Wax Paper ]Bottom Plate

Figure 4.23: The cutting ring technique of trimming a sample (Germaine and Germaine,

2009).
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Figure 4.24: Alignment device to aid in trimming a specimen into a ring (Germaine and

Germaine, 2009).
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Figure 4.25: 6" width belt sander used in flattened specimen preparation

Figure 4.26: Typical oven dried clay circular specimen before flattening

170



Figure 4.27: Typical oven dried clay specimen after flattening top and bottom edges

Figure 4.28: Mixer and mixing instrument used for gypsum fabrication (Morgan, 2011)
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Figure 4.29: 3" Cylindrical plastic mold filled with gypsum mixture

Figure 4.30: Cylindrical Gypsum specimens after drying and releasing from molds
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Figure 4.31: Off the shelf mini load frame manufactured by Wykeham Farrance
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Figure 4.32: Schematic diagram for lading setup for fracture testing on Flattened Brazilian Disc specimen
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Figure 4.33: Loading setup for specimens in mini load frame by Wykeham Farrance
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Figure 4.34: A close up on the LVDT configuration while testing
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Figure 4.35: Loading setup for specimens in high capacity load frame by MTS
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Figure 4.36: JP 500 load cell with a capacity of 500 lb

Figure 4.37: Trans Tek 2.5 cm LVDT
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Figure 4.38: A pair of wing attachments to provide a wider coverage over the specimen
surface
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Figure 4.39: Four rubber bands to wrap around and bind one extensometer on either side
of the specimen
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Figure 4.40: One of the extensometers used with an engaged pin for the starting position
before starting a test (Marjanovic, 2012)
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Figure 4.41: Schematic drawing of centralized data acquisition system (Germaine and

Germaine, 2009)
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Chapter (5)

RESULTS AND ANALYSES

5.1 Introduction

This chapter presents the results of the experimental study conducted on six different materials;

four different natural soils and two clay-like materials; to investigate the relation between mode I

fracture toughness, tensile strength, unit weight, and modulus of elasticity using flattened

Brazilian disc (FBD) specimens. A total of 90 FBD tests were conducted on materials of

different origin, mineralogy, physical and mechanical properties to investigate and characterize

its fracture properties. The chapter starts with an explanation to the methodology implemented in

interpretation of the experimental test results and the governing equations / correlations followed

to determine and quantify the parameters of interest. Then a detailed description of the

experimental results is presented for both natural soils and clay-like materials. In addition, an

explanation to the failure modes of FBD specimens is presented. Afterwards, different

correlations relating mode I fracture toughness and corresponding tensile strength, unit weight,

and elastic modulus are presented followed by a comparison with data values reported in the

literature for different soils, rocks, shale, rock-like, clay-like, and geomaterials. Finally

concluding all the available data including experimental results of current research into one

single equation relating fracture toughness to tensile strength.

5.2 Interpretation of the Test Results

By analyzing the data obtained from the data acquisition system and recorded during the

flattened Brazilian test (FBD) until the specimen failure, one can obtain a number of relations,

plots and hence parameters. During the test, data from the different transducers is recorded

giving the record of the total load applied on the flattened ends using the load cell which is then

converted to axial normal stress, the amount of the vertical displacement in the test setup using

the linear voltage displacement (LVDT) transducer which is used as a back-up measurement and

as a reference for strain measurements, and finally the actual vertical displacement within the

specimen upon loading using the clip on extensometers which is converted to axial strain. It is

worth noting that the displacement (strain) values computed using the LVDT were not indicative
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of the actual strain of the test specimen as it included an amount of the machine displacement

which yielded in an overestimated displacement/strain value. By comparing the results of the two

measuring devices, it can be observed that the LVDT overestimated the displacement value by a

factor of about 10 when compared to the extensometers which resulted in an underestimated

modulus of elasticity value using LVDTs by a factor of 10 as well. Hence, the measured values

using the extensometers were the ones taken into consideration while computing the modulus of

elasticity. Figure 5.1 illustrates an example for the difference in magnitude between the LVDT

and extensometers measurements.

From the results of a single specimen one can prepare a plot of the load-displacement (stress-

strain) behavior which is used to quantify the different parameters of interest; mode I fracture

toughness, tensile strength, and Young's modulus of elasticity. In addition, using basic

measuring tools the dimensions of the specimens and its mass can be determined which can be

converted to a density value which can be used to define correlations with other computed

parameters.

Using the basic concept of flattened Brazilian discs developed by Wang and Xing (1999) and the

modifications developed by Wang et al. (2004), the load displacement (stress-strain) record can

be used to determine the modulus of elasticity; E from the local slope of the linear section of

load displacement record just before the maximum failure load. Averaged data for the back and

front of the specimen from the two extensometers are used to define the vertical displacement.

And to account for the effect of the central loading angle (2a) the modulus was evaluated using a

modified relation as described in section 3.4 according to the following equation:

E = " (1 - i) - ln (1 + 4  a (5.1)
IrA wt sin2 a) sin a

Where P is the resultant of the uniformly distributed force applied through the flattened

ends, A w is the vertical displacement within the specimen which was computed by averaging

the readings of the two extensometers, t is the specimen thickness, D is the specimen diameter, E

is the elastic modulus, sin a = 2b/D; 2b is the width of the flat end, and p is Poisson's ratio. In

the conducted research an average estimate of 0.3 was used for Poisson's ratio.

For the determination of the tensile strength, the approach adopted by Wang et al. (2004) was

used. They used the load displacement record, determined the maximum load (peak load) where

failure occurs to define the tensile strength and they used a shape factor, K to account for the

184



central angle (2a). The shape factor k was determined as per the following equation:

k ( 2 cos 3 a + cos a + sin a/a) 2 . a (5.2)
8 (cos a + sin a/a ) sin a

Where a is half the central loading angle.

And the tensile strength of the tested specimen was determined as follows:

at k Pc (5.3)
rDt

Where, Pc is the critical load applied on the flat ends; which is the maximum load during testing

determined from the load displacement record, D is the specimen diameter, t is the specimen

thickness, and k is the coefficient which is dependent on the loading angle.

And finally, mode I fracture toughness was determined according to the basic general equation

proposed by Wang and Xing (1999) and later modified by Wang (2004) in the following format:

Kjc = P,-nt max (5.4)

Where, Pmin is the local minimum load which can be identified directly from the load

displacement test record after the peak load, R and t are radius and thickness of the specimen,
respectively and < max is the maximum dimensionless stress intensity factor which; as described

in section 3.7; can be determined with several methods. For this research, the method developed

by Keles and Tutluoglu (2011) is used as it provides a general equation that is function of central

loading angle (2a) and is not dependent on a specific value as in the work by Wang et al. (2004).

Hence, the maximum stress intensity factor was determined as follows:

0 max a = 1 (5.5)43.31-15.63 exp(cos a)

5.3 Experimental Results

As previously mentioned both natural soils and clay-like materials were used to develop an

empirical relation between mode I fracture toughness and other mechanical physical properties;

Young's modulus of elasticity, tensile strength, and density. In total 90 flattened Brazilian disc

tests were carried out; 75 FBD testsI on the natural soils and 15 FBD tests on the clay-like

materials. In the following sections, a summary table of the conducted experiments on each

Not all tests are presented in this thesis; as some tests were carried out without using extensometers or conducted
with a different load frame.
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material is presented followed by a number of plots showing the trends and dependency between

mode I fracture toughness, tensile strength, modulus of elasticity, and density. Then based on

statistical analyses and further regression analyses, empirical equations and relations between the

different parameters can be defined.

For the mode I fracture toughness - tensile strength correlations, five correlations were chosen

from the literature to compare to this research data. Each correlation was used to back calculate

the mode I fracture toughness value based on the tensile strength value obtained from the FBD

test result then this KiC value is compared with the value computed experimentally from the test

records. The following correlations were chosen to give a wide range of comparison

summarizing twenty years of research (details about each correlation are presented in Chapter 2):

* Gunsallus and Kulhawy (1984)

KIc = 0.0736 at + 0.76 (5.6)

* Whittaker et al. (1992)

a-t + 2.53
K~c = (5.7)Kc 9.35

* Harison et al. (1994)

K = 0.0706 -t (5.8)

* Zhang et al. (1998)

Kc= (at )1.613 (5.9)
8.88

* Zhang (2002)

KIc = 0.1453 at (5.10)

For the mode I fracture toughness - modulus of elasticity, E correlation, a single correlation was

found in the literature by Iqbal and Mohanty (2006) relating the modulus of elasticity E with the

estimated fracture toughness value KIC. This correlation was used to back calculate the mode I

fracture toughness based on the modulus of elasticity value obtained from the FBD test then this

KIc value is compared with the experimentally obtained value.

* Iqbal and Mohanty (2006)

Kfc = 0.13 E0 .65  (5.11)

Where Kfc is the estimated mode I fracture toughness value and E is Young's modulus in GPa.
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5.3.1 Natural Soils

Seventy five flattened Brazilian disc specimens were prepared for four different natural soils;

Bangladesh Clay, San Francisco Bay Mud, Boston Blue Clay, and Presumpscot Maine Clay. The

specimens were prepared with an average diameter of 60 mm, an average thickness of 20 mm,

and an average loading angle (2a) of 44 degrees.

5.3.1.1 Bangladesh Clay

Three flattened Brazilian disc Bangladesh Clay (as described in section 4.2.1.1) specimens were

tested in this study; the specimens had an average diameter (D) of 57.93 mm, thickness (t) of

20.59 mm, and loading angle (2a) of 49.67 degrees. For the determination of mode I fracture

toughness, K1c the tests had an average maximum stress intensity factor of 0.22 and an average

local minimum load succeeding the peak maximum load (defining the critical point) of 206 kg,

yielding to an average KIc value of 0.132 MPam"2 .

The specimens had an average peak maximum load (load at failure) of 218.33 kg, which yielded

an average tensile strength, 6t value of 0.92 MPa, an average modulus of elasticity, E of 6.83

GPa, and an average density, y of 1.75 gm/cm 3. A summary of the test results and specimen

dimensions is presented in Table 5.1.

Figure 5.2 represents the relation between mode I fracture toughness, Kic and tensile strength, 6t

of Bangladesh clay. With simple regression analyses the relation between the two parameters can

be best represented using power trend as follows:

KIc= 0.14566t1. 3039, with a coefficient of determination R2= 0.9997. (5.12)

By comparing the experimentally computed KIc and 6t values and their relation with the back-

calculated KiC values based on tensile strength 6t using the literature correlations, as shown in

Figure 5.3, we find that the coordinates coincide perfectly with the values back-calculated using

the relation developed by Zhang (2002) which is the most recent correlation covering a wider

range of soils, rocks, and geomaterials.

The relation between mode I fracture toughness and modulus of elasticity, E is presented in

Figure 5.4 which shows a strong correlation and dependency between the two parameters that

can be expressed using a power relation as well as follows:

Kic = 2*10-05 E0 9859, with a coefficient of determination R2= 0.9612. (5.13)

However, by comparing the experimentally computed K1c and E values and their relation with
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the back-calculated estimated KiC values based on modulus of elasticity E using the correlation

by Iqbal and Mohanty, (2006) as shown in Figure 5.5, it can be observed that the estimated

fracture toughness value Kfc (literature) is overestimating the value by a factor of 3 if compared

to the FBD experimental results. More tests are needed to better investigate this relation and

probably more accurate means of estimating the modulus of elasticity are required.

Figures 5.6 and 5.7 show relations with the dry unit weight of the tested specimens and the

mode I fracture toughness and tensile strength, respectively. From Figure 5.6 it can be

concluded that an empirical correlation between Kic and Ydy exists and it can be best described

using a power trend as follows:

KIC = 0.0029 Ydy 6.7 9 9 , with a coefficient of determination R2= 0.9257. (5.14)

While Figure 5.7 expresses the empirical relation between the tensile strength and dry unit

weight which can statistically best described using a power trend as well as follows:

Bt= 0.0517 ydry 5 .129 1, with a coefficient of determination R2= 0.9104. (5.15)

5.3.1.2 San Francisco Bay Mud

Eight flattened Brazilian disc San Francisco Bay Mud (as described in section 4.2.1.2) specimens

were tested in the current research; the specimens had an average diameter (D) of 56.71 mm,

thickness (t) of 18.45 mm, and loading angle (2a) of 43.76 degrees. For determination of mode I

fracture toughness, Kic the tests had an average maximum stress intensity factor of 0.27 and an

average local minimum load succeeding the peak maximum load (defining the critical point) of

226.9 kg, yielding to an average Kic value of 0.195MPam.

The specimens had an average peak maximum load (load at failure) of 270.27 kg, which yielded

an average tensile strength, 6t value of 1.35 MPa, an average modulus of elasticity, E of 5.95

GPa, and an average density, y of 1.58 gm/cm3 . A summary of the test results and specimen

dimensions is presented in Table 5.2.

Figure 5.8 represents the relation between mode I fracture toughness, KIc and tensile strength, 6t

of San Francisco Bay Mud. With simple regression analyses the relation between the two

parameters can be best represented using power trend as follows:

Kic= 0.14026t0 .922 3, with a coefficient of determination R2 = 0.8781. (5.16)

By comparing the experimentally computed Kic and 6t values and their relation with the back-

calculated Kic values based on tensile strength 6t using the literature correlations, as shown in

Figure 5.9, we find that the coordinates agree to a great extent (± 15%) with the values back-
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calculated using the relation developed by Zhang (2002) which is the most general correlation

covering a wider range of soils, rocks, and geomaterials.

The relation between mode I fracture toughness and modulus of elasticity, E is presented in

Figure 5.10 which shows a strong correlation and dependency between the two parameters that

can be expressed using a power relation as follows:

K c = 2*10-05 E1.0328, with a coefficient of determination R2 = 0.6983. (5.17)

However, by comparing the experimentally computed Kjc and E values and their relation with

the back-calculated estimated Kic values based on modulus of elasticity E using the correlation

by Iqbal and Mohanty, (2006) as shown in Figure 5.11, it can be observed that the estimated

fracture toughness value Kfc (literature) is overestimating the value by a factor of 2 if compared

to the FBD experimental results. As in the case of Bangladesh Clay more accurate means of

estimating the modulus of elasticity are required.

Figures 5.12 and 5.13 show relations with the dry unit weight of the tested specimens and the

mode I fracture toughness and tensile strength, respectively. From both figures it can be

concluded that there is no dependency between the studied parameters as the same unit weight

value covers a wide range of the other studied parameter, hence, no proportionality can be

concluded. It is worth noting that machining of flattened ends for all the tested materials exactly

to a desired width and 2a target is difficult, and there is usually an error band of a few degrees.

Considering this error band, might explain the scatter and inconsistency of the results for all the

tested materials.

5.3.1.3 Boston Blue Clay

Fifteen flattened Brazilian disc Boston Blue Clay (as described in section 4.2.1.3) specimens

were tested in the current research; the specimens were obtained from three different locations;

MIT campus, MIT housing, and east Cambridge. A summary of the test results and specimen

dimensions of each site locations is presented in Tables 5.3, 5.4, and 5.5. The specimens had an

average diameter (D) of 60.88 mm, thickness (t) of 20.51 mm, and loading angle (2a) of 44.71

degrees. For determination of mode I fracture toughness, Kic the tests had an average maximum

stress intensity factor of 0.26 and an average local minimum load succeeding the peak maximum
1/2load (defining critical point) of 263.17 kg, yielding to an average Kic value of 0.190 MPam

The specimens had an average peak maximum load (load at failure) of 321.88 kg, which yielded

an average tensile strength, 6t value of 1.35 MPa, an average modulus of elasticity, E of 9.8 GPa,
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and an average density, y of 1.70 gm/cm 3. A summary of all the BBC test results and specimen

dimensions is presented in Table 5.6.

Figure 5.14 represents the relation between mode I fracture toughness, K1c and tensile strength,

6t of Boston Blue Clay. With simple regression analyses the relation between the two parameters

can be best represented using a power trend as follows:

Kic= 0.14566t 9725, with a coefficient of determination R2= 0.9048. (5.18)

By comparing the experimentally computed Kic and 6t values and their relation with the back-

calculated KiC values based on tensile strength 6t using the literature correlations, as shown in

Figure 5.15, we find that the coordinates agree to a great extent (± 10%) with the values back-

calculated using the relation developed by Zhang (2002). In addition, it can be seen that the

computed values are site dependent where specimens from the same location show greater

consistency and correlation.

The relation between mode I fracture toughness and modulus of elasticity, E is presented in

Figure 5.16 which shows the scatter in the data points, hence, no statistical correlation can be

concluded for this soil type. And by comparing the experimentally computed Kic and E values

and their relation with the back-calculated estimated Kjc values based on modulus of elasticity E

using the correlation by Iqbal and Mohanty, (2006) as shown in Figure 5.17, it can be observed

that the estimated fracture toughness value Kfc (literature) is overestimating the value by a factor

ranging from 2 to 4; depending on the site location; if compared to the FBD experimental results.

As in the case of previous soils more specimens from different sites are needed to quantify the

modulus value more reliably in addition to more accurate means of estimating the modulus of

elasticity are required.

Figures 5.18 and 5.19 show relations with the dry unit weight of the tested specimens and the

mode I fracture toughness and tensile strength, respectively. From both figures it can be

concluded that there is no dependency relation between the studied parameters as there is much

scatter in the unit weight values covering a wide range of the other studied parameter, hence, no

proportionality can be concluded.

5.3.1.4 Presumpscot Maine Clay

Fifteen flattened Brazilian disc Presumpscot Maine Clay (as described in section 4.2.1.4)

specimens were tested in the current research; the specimens were obtained from two different

locations. A summary of the test results and specimen dimensions of each site is presented in
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Tables 5.7 and 5.8. The specimens had an average diameter (D) of 62.47 mm, thickness (t) of

20.08 mm, and loading angle (2a) of 41.96 degrees. For determination of mode I fracture

toughness, Kic the tests had an average maximum stress intensity factor of 0.29 and an average

local minimum load succeeding the peak maximum load (defining critical point) of 114.55 kg,

yielding an average KiC value of 0.090 MPam" 2 ; much lower than the previous soils.

The specimens had an average peak maximum load (load at failure) of 145.33 kg, which yielded

an average tensile strength, 6t value of 0.62 MPa, an average modulus of elasticity, E of 7.6 GPa,

and an average density, y of 1.76 gm/cm3 . A summary of all the Presumpscot Maine Clay test

results and specimen dimensions is presented in Table 5.9.

Figure 5.20 represents the relation between mode I fracture toughness, Kjc and tensile strength,

6t of Presumpscot Maine Clay. With simple regression analyses the relation between the two

parameters can be best represented using power trend as follows:

Kic= 0.17256t 3547, with a coefficient of determination R2 = 0.8904. (5.19)

By comparing the experimentally computed KIc and 6t values and their relation with the back-

calculated KIC values based on tensile strength 6t using the literature correlations, as shown in

Figure 5.21, we find that the coordinates agree to a great extent (± 15%) with the values back-

calculated using the relation developed by Zhang (2002). In addition, it can be seen that the

computed values are site dependent where specimens from the same location show greater

consistency (narrower variation) and correlation.

The relation between mode I fracture toughness and modulus of elasticity, E is presented in

Figure 5.22 which shows the scatter in the data points, hence, no statistical correlation can be

concluded for this soil type. And by comparing the experimentally computed Kjc and E values

and their relation with the back-calculated estimated Kjc values based on modulus of elasticity E

using the correlation by Iqbal and Mohanty, (2006) as shown in Figure 5.23, it can be observed

that the estimated fracture toughness value Kfc (literature) is overestimating the value by a factor

ranging from 3 to 5 if compared to the FBD experimental results indicating the amount of scatter

and inconsistency in the Young's modulus values obtained. As in the case of previous soils more

specimens from different sites are needed to quantify the modulus value more reliably in addition

to more accurate means of estimating the modulus of elasticity are required.

Figures 5.24 and 5.25 show relations with the dry unit weight of the tested specimens and the

mode I fracture toughness and tensile strength, respectively. From both figures it can be
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concluded that there is no dependency relation between the studied parameters as there is much

scatter in the unit weight values covering a wide range of the other studied parameter, hence, no

proportionality can be concluded.

To define a relationship between mode I fracture toughness and the other computed parameters

for the tested natural soils, several regression analyses with the least square method were carried

out to best describe the relation. It was found that by dividing the tensile strength by the dry unit

weight of the specimen, a linear relation with the facture toughness (as shown in Figure 5.26)

can be concluded as follows:

K,, = 0.2338 " + 0.0053, with a coefficient of determination R2 = 0.9239. (5.20)
Ydry

5.3.2 Clay-like Materials

Twelve flattened Brazilian disc specimens were prepared for two clay-like semi-brittle materials;

molded Gypsum and Plaster of Paris. The specimens were prepared with an average diameter of

76.22 mm, an average thickness of 25 mm, and an average loading angle (2a) of 44 degrees.

5.3.2.1 Plaster of Paris

Five flattened Brazilian disc Plaster of Paris (as described in section 4.2.2.1) specimens were

tested in the current research; the specimens were prepared at powder to water mix ratio by mass

of 1.75:1. The specimens had an average diameter (D) of 76.47 mm, thickness (t) of 27.51 mm,

and loading angle (2a) of 47.48 degrees. For determination of mode I fracture toughness, Kic the

tests had an average maximum stress intensity factor of 0.23 and an average local minimum load

succeeding the peak maximum load (defining critical point) of 156.74 kg, yielding an average

KIC value of 0.070 MPam1 /2 ; much lower than the natural soils.

The specimens had an average peak maximum load (load at failure) of 247.8 kg, which yielded

an average tensile strength, 6t value of 0.60 MPa, an average modulus of elasticity, E of 3.48

GPa, and an average density, y of 1.09 gm/cm 3 (very light material). A summary of all the

Plaster of Paris test results and specimen dimensions is presented in Table 5.10.

Figure 5.27 represents the relation between mode I fracture toughness, Kjc and tensile strength,

6t of Plaster of Paris. It is worth noting, that there is significant variation for fractured specimen

though they all have the same density. With simple regression analyses the relation between the

two parameters can be best represented using an exponential trend as follows:
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Kic = 0.0147e 2.8266t, with a coefficient of determination R2 = 0.9678. (5.21)

By comparing the experimentally computed K1c and 6t values and their relation with the back-

calculated KIc values based on tensile strength 6t using the literature correlations, as shown in

Figure 5.28, we find that the coordinates lie in between the correlations of Harrison et al. (1994)

and Zhang (2002) and does not agree completely with any of the literature correlations. This can

be attributed to the fact that the empirical correlations used for reference are obtained based on

experimental studies on rocks, soils, and geomaterilas not including plaster of paris with the

powder to water ratio used in the current study. The computed fracture toughness values are

lower than prediction, maybe due to more brittle material behavior.

The relation between mode I fracture toughness and modulus of elasticity, E is presented in

Figure 5.29 which shows proportionality correlation and dependency between the two

parameters that can be expressed using a power relation as well as follows:

K1c= 1*10~1 E2.7973, with a coefficient of determination R2 = 0.7315. (5.22)

And by comparing the experimentally computed KiC and E values and their relation with the

back-calculated estimated Kic values based on modulus of elasticity E using the correlation by

Iqbal and Mohanty, (2006) as shown in Figure 5.30, it can be observed that the estimated

fracture toughness value Kfc (literature) is overestimating the value by a factor ranging from 2 to

6 if compared to the FBD experimental results indicating the amount of scatter and inconsistency

in the Young's modulus values obtained. Which implies that the correlation; by Iqbal and

Mohanty (2006); is not suitable for estimating the modulus of elasticity - fracture toughness

relationship.

Figures 5.31 and 5.32 show relations with the dry unit weight of the tested specimens and the

mode I fracture toughness and tensile strength, respectively. From both figures it can be

concluded that there is no direct dependency relation between the studied parameters as there is

much scatter in the unit weight values covering a wide range of the other studied parameter,

hence, no proportionality can be concluded.

5.3.2.2 Molded Gypsum

Five flattened Brazilian disc Molded Gypsum (as described in section 4.2.2.2) specimens were

tested in the current research. The specimens had an average diameter (D) of 76.09 mm,

thickness (t) of 23.44 mm, and loading angle (2a) of 41.81 degrees. For determination of mode I
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fracture toughness, Kic the tests had an average maximum stress intensity factor of 0.28 and an

average local minimum load succeeding the peak maximum load (defining critical point) of

1838.6 kg, yielding to an average Kic value of 1.141 MPam/ 2 ; much higher than the Plaster of

Paris and the natural soils.

The specimens had an average peak maximum load (load at failure) of 2133 kg, which yielded

an average tensile strength, 6t value of 6.38 MPa (relatively high approaching the values of soft

rocks and rock-like materials), an average modulus of elasticity, E of 19.20 GPa, and an average

density, y of 1.56 gm/cm3. A summary of all the molded Gypsum test results and specimen

dimensions is presented in Table 5.11.

Figure 5.33 represents the relation between mode I fracture toughness, KIC and tensile strength,

6t of molded Gypsum. With simple regression analyses the relation between the two parameters

can be best represented using an exponential trend as follows:

Kic= 0.237e 0.24556t, with a coefficient of determination R2 = 0.7859. (5.23)

By comparing the experimentally computed Kic and 6t values and their relation with the back-

calculated Kic values based on tensile strength 6t using the literature correlations, as shown in

Figure 5.34, we find agreement to a great extent but shifted to the high side of the equation with

the values back calculated using Gunsallus and Kulhawy (1984) which was conducted on eight

sedimentary rocks, which implies that the fracture behavior of molded gypsum approaches the

behavior of sedimentary rocks.

The relation between mode I fracture toughness and modulus of elasticity, E is presented in

Figure 5.35 which shows proportionality correlation and dependency between the two

parameters that can be expressed using a power relation as follows:

Kic = 3*10-7 E15349, with a coefficient of determination R2 = 0.8384. (5.24)

And by comparing the experimentally computed KIc and E values and their relation with the

back-calculated estimated Kic values based on modulus of elasticity, E, using the correlation by

Iqbal and Mohanty, (2006) as shown in Figure 5.36, it can be observed that the estimated

fracture toughness value Kfc (literature) agrees to a great extent with the FBD experimental

results indicating the suitability of the empirical correlation with the Plaster of Paris. Which

implies that the behavior of Plaster of Paris resembles that of soft rocks which were under the

study of Iqbal and Mohanty, (2006).

Figures 5.37 and 5.38 show relations with the dry unit weight of the tested specimens and the
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mode I fracture toughness and tensile strength, respectively. From both figures it can be

concluded that there is no direct dependency relation between the studied parameters as there is

much scatter in the unit weight values covering a wide range of the other studied parameter,

hence, no proportionality can be concluded.

5.3.3 Failure Behavior of Tested Specimens

According to Hai-yong et al. (2004), the breaking behavior of the flattened uncracked Brazilian

discs is different from the solid circular Brazilian discs. For the conventional solid Brazilian disc,

when the applied load reaches its maximum value the disc will break along the loading diameter,

and then the load will drop down to a certain level and it will increase again as the two broken

halves are not separated. The failure line is along the loading line bur it is not straight as

illustrated in Figure 5.39.

While for the flattened Brazilian discs the behavior is dependent on the flattened area of discs,

the central loading angle (2a). As previously discussed in Chapter 3 and according to the theory

behind the FBD test, the first crack initiates straight from the center of the specimen when the

load angle (2a) exceeds 19'. However, Hai-yong et al. (2004) observed a different experimental

behavior which contradicts the FBD theory. According to their conducted experimental studies,

when the loading angle is in the order of 200, the breaking crack usually initiates at two sides of

disc along the edge of flattened surface and propagates to the centre of the discs, when the curve

of load versus displacement reaches the first peak. Afterwards, a diagonal crack extending from

the top flattened edge propagates to reach the bottom flattened end as illustrated in Figure 5.40.

Hai-yong et al. (2004), also stated that when the central loading angle is greater than 30', there

are three different possible behaviors: the first one is that the breaking crack initiates at one side

of the disc from the edge of the top flattened surface to the bottom separating the disc into two

halves, semi-discs as shown in Figure 5.41 (a), in the conducted research this behavior was

commonly observed where the crack is initiated and propagated exactly at the middle center of

the specimen. The second possible behavior is similar to the behavior described for the flattened

Brazilian discs with 20' loading angle as shown in Figure 5.41 (b). The third behavior is upon

reaching the critical load value where the disc is fractured along the specimen diagonal line as

shown in Figure 5.41 (c) (Hai-yong et al., 2004). The previously mentioned behaviors contradict

and deviate from the theory of first crack initiation from the center of the specimen when the
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loading angle exceeds 19 degrees, which may be attributed to equipment problems, load

application problems, or material specific problems.

For the flattened Brazilian disc specimens tested in the current research, the average loading

angle was greater than 19 degrees and the observed behavior in the 90 conducted tests totally

agreed with the theory behind the FBD test. The first crack was straight and initiated from the

center of the specimen as described in Chapter 3. The observed behavior showing straight center

crack initiation is illustrated in Figures 5.42 and 5.43 However, in a few tests the specimens

showed different fracturing pattern after the first center crack initiation, where a number of

diagonal cracks were observed at a later stage of the test as shown in Figures 5.44 and 5.45. The

fractured surface of the two split halves (semi discs) of the fractured flattened Brazilian

specimens is presented in Figure 5.46, from the figure it can be concluded that the induced

fractures are tensile fractures rather than shear ones.

5.4 Correlating the Measured Parameters

To define a relationship between mode I fracture toughness and the other measured/ computed

parameters; the tensile strength, the modulus of elasticity, and the unit weight for all the tested

materials; natural soils and clay-like materials, several statistical regression analyses were carried

out to best describe the relation. It was found that by dividing the tensile strength by the dry unit

weight of the specimen, a linear relation with the facture toughness (as presented in Figure 5.47)

can be concluded as follows:

Kc = 0.2873 - - 0.0382, with a coefficient of determination R2 = 0.9829. (5.25)
Ydry

Or the tensile strength of the tested material can be computed in terms of fracture toughness as

follows (shown in Figure 5.48):

Ot= 5.3881 Kjc + 0.2359, with a coefficient of determination R2= 0.9877. (5.26)

With further regression analyses and using the least square error method, the relation between

the predicted tensile strength, ort and the mode I fracture toughness, KIc was assumed to take an

exponential function format:

a't (predicted) = a eb* KIc (5.27)

Using the least square error method between the predicted tensile strength and the actual measure

tensile strength, the parameter a was found equal to 0.930346 and the parameter b was found
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equal to 1.621593 with sum of square error equal to 0.50. Figure 5.49 shows the relation

between the actual measured tensile strength and the predicted tensile strength (having a

coefficient of determination R2 
= 0.9133) using the following equation:

ot (predicted) = 0.93 el. 62 2* KIc (5.28)

To account for the effect of the specimen's unit weight, y and the modulus of elasticity, E further

regression analyses were carried out and a multiple power function regression was adopted and

the relation between the different parameters were assumed to take the following format:

ot(predicted) = a (KIcb )yc Ed (5.29)

Using the least square error method between the predicted tensile strength and the actual measure

tensile strength, the parameter a was found equal to 2.026418, the parameter b was found equal

to 0.893048, the parameter c was found equal to 0.372125, and the parameter d was found equal

to zero with sum of square error equal to 0.20. Having the d parameter equal to zero implies that

there is no general direct relation between the modulus of the elasticity and the remaining

parameters. Figure 5.50 shows the relation between the actual measured tensile strength and the

predicted tensile strength (having a coefficient of determination R2 = 0.9886) using the following

equation:

at(predicted) = 2.026 (KC 0 .893 )y0 372 E0  (5.30)

5.5 Comparing with Reported Values in the Literature

In order to obtain a more general correlation that is applicable to soils, rocks, clay-like materials,

rock-like materials, and geomaterials, data reported in the literature was compiled with the

results from flattened Brazilian tests. By referring to tables 2.2 and 2.4, reported values of mode I

fracture toughness and the corresponding tensile strength were selected (presented in Table 5.12)

and plotted with the experimental results of the current research as shown in Figure 5.51. From

the figure it can be observed that there is a strong proportionality correlation between the two

parameters covering the wide range of material irrespective to the testing method used to obtain

Kic (whether ISRM suggested methods or other methods on disc specimens as covered in chapter

2) and irrespective to the testing method used to obtain ut (whether direct tension or bending

tension or Brazilian tension method)

Considering the results of the tested natural soils and clay-like materials with the literature
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reported values and using statistical regression analyses, the relation between mode I fracture

toughness and tensile strength can be best described in the form of power relation as follows

(shown in Figure 5.52):

Kic= 0.1482 6t'.0165 , with a coefficient of determination R2 = 0.9508. (5.31)

Further data were extracted from the literature including the summary plot of Haberfield and

Johnston (1989), where it is the only reference covering rocks, oil shale, clays and rock-like

materials on the same plot. Experimental results from this research on the six test materials in

addition to some data points from the literature (as presented in Table 5.12) were added to the

summary plot of Haberfield and Johnston (1989) as shown in Figure 5.53. From the figure a

strong correlation between fracture toughness and tensile strength can be concluded. However,

by observing the experimental Johnstone and Melbourne Mudstone data points of Haberfield and

Johnston (1989), it can be seen that there is a shift in the relation compared to other materials

which required further investigation. Looking at the experimental method followed by Haberfield

and Johnston (1989) to estimate the tensile strength of Johnstone and Melbourne Mudstone, they

used three or four point bend tests on un-notched prismatic specimens which reportedly

overestimate the tensile strength value by about 30% if compared to the indirect Brazilian disc

tests (Fuenkajorn, 2011), hence, a modification to the tensile strength values of Johnstone and

Melbourne Mudstone was applied to make the results comparable to the experimental results of

the current research and other data from the literature. Figures 5.54 and 5.55 show the summary

plot of Haberfield and Johnston (1989) in addition to experimental results and results of

Johnstone and Melbourne Mudstone modified by a reduction factor of 0.70.

Considering all the available data; the results of the tested natural soils and clay-like materials

with the literature reported values and modified Johnstone and Melbourne Mudstone results,

using statistical regression analyses, the relation between mode I fracture toughness and tensile

strength can be best described in the form of power relation as follows (shown in Figure 5.56):

Kic= 0.1487 6t' 0179, with a coefficient of determination R2 = 0.965 1. (5.32)
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Table 5.1: Summary of Flattened Brazilian Disc Specimen Dimensions and Tests Results of

Bangladesh Clay

Specimen

ParaeterMean St
Parameter 1 2 3 Mean Deviation

D (mm) 57.39 57.51 58.90 57.93 0.84
t (mm) 19.94 19.74 22.09 20.59 1.31

(2a) 46.20 49.30 53.50 49.67 3.66
+max 0.24 0.22 0.19 0.22 0.02

Pmin (kg) 217.00 217.00 184.00 206.00 19.05

Kic (MPam 1 /) 0.157 0.143 0.095 0.132 0.033
Pmax (kg) 235.00 225.00 195.00 218.33 20.82

k 0.81 0.78 0.75 0.78 0.03
6t (MPa) 1.06 0.99 0.72 0.92 0.18

E (GPa) 8.50 7.00 5.00 6.83 1.76
y (gm/cm3) 1.81 1.75 1.68 1.75 0.07

Table 5.2: Summary of Flattened Brazilian Disc Specimen Dimensions and Tests Results of

San Francisco Bay Mud

Specimen
Parameter 1 2 3 4 5 6 7 8 Mean St Deviation

D (mm) 56.47 55.53 56.10 58.06 56.13 57.23 57.70 56.46 56.71 0.87
t (mm) 19.18 17.76 17.77 18.88 18.15 19.15 18.74 17.99 18.45 0.60
(2a) 47.52 38.92 46.17 45.82 41.75 42.52 47.52 39.87 43.76 3.43
+max 0.23 0.31 0.24 0.25 0.28 0.28 0.23 0.30 0.27 0.03
Pmin 218.0 155.0 204.8 332.0 200.0 267.4 155.0 283.3 226.9 62.67

Kic (MPam1 /) 0.158 0.165 0.168 0.255 0.187 0.228 0.114 0.285 0.195 0.056
Pmax 244.6 182.4 263.7 378.0 278.2 298.0 182.6 334.79 270.27 68.37

k 0.80 0.86 0.81 0.81 0.84 0.83 0.80 0.85 0.82 0.02

6t (MPa) 1.15 1.01 1.36 1.78 1.46 1.44 0.86 1.79 1.35 0.34

E (GPa) 6.00 4.70 5.00 6.50 4.80 7.50 4.50 8.60 5.95 1.49

y(gm/cm3) 1.52 1.47 1.47 1.75 1.55 1.78 1.56 1.56 1.58 0.12
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Table 5.3: Summary of Flattened Brazilian Discs Specimen Dimensions and Tests Results

of Boston Blue Clay from 1st site location in Cambridge

1st Site Location: Cambridge
Specimen

Parameter 1 2 3 4 Mean St Deviation
D (mm) 58.08 58.74 58.02 58.28 58.28 0.33
t (mm) 20.98 19.44 21.56 18.91 20.22 1.25

(2a) 45.00 45.50 39.30 47.00 44.20 3.38
+max 0.25 0.25 0.31 0.24 0.26 0.03
Pmin 271.00 244.00 190.00 362.35 266.84 72.03

Kic (MPaml/2) 0.193 0.182 0.160 0.267 0.201 0.046
Pmax 315.66 351.59 226.00 400.36 323.40 73.63

k 0.18 0.81 0.86 0.80 0.66 0.32
6t (MPa) 1.35 1.59 0.98 1.85 1.44 0.37
E (G Pa) 12 12 10 8 10.5 1.91

y (gm/cm3) 1.75 1.77 1.73 1.65 1.73 0.05

Table 5.4: Summary of Flattened Brazilian Discs Specimen Dimensions and Tests Results

of Boston Blue Clay from 2nd site location: MIT Campus

2nd Site Location: MIT Campus

Specimen
Parameter 1 2 3 4 5 Mean St Deviation

D (mm) 62.42 61.81 61.33 62.17 61.56 61.86 0.44
t (mm) 20.58 20.93 19.77 21.15 20.99 20.68 0.55
(2a) 43.24 47.92 41.54 43.42 45.89 44.40 2.50
+max 0.27 0.23 0.29 0.27 0.25 0.26 0.02
Pmin 114.55 151.70 149.05 225.00 265.60 181.18 62.02

Kic (MPaml/) 0.085 0.095 0.123 0.162 0.178 0.129 0.041
Pmax 140.00 160.00 356.24 242.94 290.47 237.93 90.06

k 0.83 0.79 0.84 0.83 0.81 0.82 0.02
6t (MPa) 0.57 0.63 1.57 0.97 1.16 0.98 0.41

E (GPa) 10.00 10.00 10.00 8.00 10.00 9.60 0.89
y (gm/cm3) 1.72 1.64 1.76 1.74 1.73 1.72 0.05

200



Table 5.5: Summary of Flattened Brazilian Discs Specimen Dimensions and Tests Results

of Boston Blue Clay from 3 rd site location: MIT Housing

3rd Site Location: MIT Housing

Specimen
Parameter 1 2 3 4 5 6 Mean St Deviation

D (mm) 62.05 62.00 61.86 62.05 61.14 61.68 61.80 0.35
t (mm) 21.31 21.06 20.24 19.37 20.29 21.06 20.56 0.73
(2a*) 46.51 49.08 44.15 39.08 43.69 49.35 45.31 3.87

+max 0.24 0.22 0.26 0.31 0.27 0.22 0.25 0.03
Pmin 300.00 400.00 480.00 333.70 250.00 210.57 329.05 98.97

Kic (MPam 1 ) 0.193 0.240 0.352 0.306 0.187 0.126 0.234 0.083
Pmax 346.36 445.33 514.35 410.60 334.17 294.20 390.84 81.42

k 0.81 0.79 0.82 0.86 0.83 0.78 0.81 0.03
6t (MPa) 1.34 1.71 2.15 1.86 1.42 1.13 1.60 0.38

E (GPa) 10.00 7.00 8.00 10.00 10.00 12.00 9.50 1.76

y (gm/cm3) 1.61 1.79 1.63 1.70 1.63 1.63 1.67 0.07

Table 5.6: Summary of all Flattened Brazilian Disc Specimen Dimensions and Tests Results

of Boston Blue Clay

Parameter Mean St Deviation
D (mm) 60.88 1.66
t (mm) 20.51 0.80
(2a*) 44.71 3.14

+max 0.26 0.03
Pmin 263.17 99.87

Kic (MPaml/) 0.190 0.075
Pmax 321.88 101.99

k 0.78 0.17
6t (MPa) 1.35 0.45

E (GPa) 9.8 1.52
y (gm/cm3) 1.70 0.06
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Table 5.7: Summary of Flattened Brazilian Discs Specimen Dimensions and Tests Results

of Presumpscot Maine Clay from 1st site location

1st Site Location

Specimen

Parameter 1 2 3 4 5 6 7 Mean St Deviation

D (mm) 62.08 62.81 62.76 63.06 63.00 62.60 62.61 62.70 0.33

t (mm) 19.74 20.67 20.90 20.86 20.70 20.78 20.18 20.55 0.43

(2a ) 42.50 43.95 33.81 36.03 37.98 43.60 40.17 39.72 3.93

max 0.28 0.26 0.38 0.35 0.33 0.27 0.30 0.31 0.05

Pmin 217.00 142.00 142.00 149.00 188.00 168.00 83.20 155.60 42.09

Kic (MPaml) 0.173 0.102 0.146 0.141 0.166 0.122 0.070 0.131 0.036

Pmax 243.41 162.25 162.25 183.55 219.73 181.00 144.38 185.22 34.93

k 0.83 0.83 0.89 0.88 0.86 0.83 0.85 0.85 0.03

6t (MPa) 1.05 0.66 0.70 0.78 0.93 0.73 0.62 0.78 0.16
E (GPa) 9.00 8.90 11.00 7.30 7.50 7.00 10.80 8.79 1.64

y (gm/cm3) 1.49 1.81 1.81 1.74 1.78 1.73 1.74 1.73 0.11

Table 5.8: Summary of Flattened Brazilian Discs Specimen Dimensions and Tests Results

of Presumpscot Maine Clay from 2"d site location

2nd Site Location

Specimen
St

Parameter 1 2 3 4 5 6 7 8 Mean Deviation

D (mm) 61.34 61.27 62.49 62.5 62.79 61.95 62.86 62.9 62.26 0.66
t (mm) 17.91 18.20 20.56 20.3 19.92 20.15 20.39 19.9 19.67 1.02

(2a) 43.04 44.10 40.74 45.7 44.45 37.67 48.86 46.8 43.92 3.51

+max 0.27 0.26 0.29 0.25 0.26 0.33 0.22 0.24 0.27 0.03

Pmin 89.15 108.5 71.40 60.0 90.00 70.00 80.00 60.0 78.63 16.70

Kic
(MPam1/) 0.077 0.089 0.058 0.042 0.066 0.065 0.050 0.041 0.061 0.017

Pmax 126.23 145.1 102.7 73.00 109.7 112.3 119.1 95.16 110.42 21.47

k 0.83 0.82 0.85 0.81 0.82 0.87 0.79 0.80 0.82 0.02

6t (MPa) 0.61 0.68 0.43 0.30 0.46 0.50 0.47 0.39 0.48 0.12

E (GPa) 6.00 7.00 5.00 10.00 5.00 8.00 5.50 6.00 6.56 1.72
Y (gm/cm3) 2.01 1.98 1.65 1.76 1.69 1.75 1.73 1.76 1.79 0.13
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Table 5.9: Summary of all Flattened Brazilian Disc Specimen Dimensions and Tests Results

of Presumpscot Maine Clay

St
Parameter Mean Deviation

D (mm) 62.47 0.56
t (mm) 20.08 0.90
(2a) 41.96 4.18

+max 0.29 0.04
Pmin 114.55 49.79

Kic (MPaml/) 0.09 0.05
Pmax 145.33 47.39

k 0.84 0.03
6t (MPa) 0.62 0.21
E (GPa) 7.60 1.99

y (gm/cm3) 1.76 0.12

Table 5.10: Summary of Flattened Brazilian Disc Specimen Dimensions and Tests Results

of Plaster of Paris

Specimen

Parameter 1 2 3 4 5 Mean St
______________Deviation

D (mm) 76.01 77.63 76.57 76.18 75.96 76.47 0.69
t (mm) 27.05 28.24 27.39 27.59 27.28 27.51 0.45

(2a) 44.53 48.44 48.59 47.86 48.00 47.48 1.68
+max 0.26 0.23 0.23 0.23 0.23 0.23 0.01

Pmin (kg) 296.50 126.48 208.70 98.50 53.52 156.74 96.43

Kic (MPaml/2) 0.145 0.052 0.088 0.042 0.023 0.070 0.048

Pmax (kg) 365.49 250.34 358.86 187.76 76.53 247.80 121.58
k 0.82 0.79 0.79 0.80 0.79 0.80 0.01

6t (MPa) 0.93 0.57 0.86 0.45 0.19 0.60 0.30
E (GPa) 4.00 3.20 4.10 3.70 2.40 3.48 0.70

y (gm/cm3) 1.09 1.10 1.10 1.10 1.04 1.09 0.03
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Table 5.11: Summary of Flattened Brazilian Disc Specimen Dimensions and Tests Results

of Molded Gypsum

Specimen
St

Parameter 1 2 3 4 5 Mean Deviation

D (mm) 75.85 76.50 75.74 76.53 75.82 76.09 0.39
t (mm) 23.36 23.56 23.36 23.50 23.42 23.44 0.09
(2a) 40.50 46.18 39.35 41.32 41.72 41.81 2.60
4pmax 0.30 0.24 0.31 0.29 0.28 0.28 0.02

Pmin (kg) 1548.0 2014.0 2015.0 1805.0 1811.0 1838.6 192.5

KIc (MPam1
/
2 ) 1.010 1.068 1.370 1.132 1.128 1.141 0.137

Pmax (kg) 1918.85 2265.41 2267.00 2072.48 2144.43 2133.63 145.89
k 0.85 0.81 0.86 0.84 0.84 0.84 0.02

6t (MPa) 5.85 6.46 6.97 6.18 6.45 6.38 0.41
E (GPa) 18.00 17.80 21.00 19.70 19.50 19.20 1.32

y (gm/cm3) 1.54 1.55 1.57 1.56 1.58 1.56 0.02
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Table 5.12: Summary of KiC and -t values as reported in the literature

Ic at
Reference Material Mam Mm05 Mt

M Pa. m'-' MPa.mm. MPa

2.27 71.78 21.50
Haberfield and Johnston, 1989 Basalt

2.09 66.00 22.00

1.58 49.96 7.86
Gunsallus KL, Kulhawy FH, 1990 Limestone 0.99 31.31 5.38

1.38 43.64 8.47

1.12 35.42 5.86

1.00 31.62 5.71

0.95 30.00 22.00
Haberfield and Johnston, 1989 Marble

1.26 40.00 17.00

1.64 52.00 15.00

0.63 20.00 18.00

0.67 21.19 3.09
Gunsallus KL, Kulhawy FH, 1991 Sandstone 0.56 17.71 4.01

0.37 11.70 3.30

Schmidt RA, 1977 Oil Shale 0.38 12.00 3.00

0.63 20.00 12.00

Siltstone 0.80 25.30 2.89

1.55 49.02 13.20

1.11 35.00 7.50
Haberfield and Johnston, 1989 Syenite 1.26 40.00 12.00

1.21 38.26 11.10

Tuff 0.41 12.97 2.80

0.06 1.90 0.22

Bhagat, 1985 Coal 0.27 8.54 0.93

0.12 3.79 0.36

1.72 54.39 15.60

2.53 80.00 37.00

Haberfield and Johnston, 1989 Granite 0.95 30.00 5.50

0.63 20.00 4.50

2.61 82.54 13.70

1.66 52.49 13.30

1.66 52.49 16.40

Gunsallus KL, Kulhawy FH, 1991 Dolostone 1.80 56.92 12.10

1.78 56.29 13.00

2.47 78.11 17.00

Lee et al., 1982 Clay 0.01 0.35 0.04
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Figure 5.2: Relation between Mode I fracture toughness and tensile strength of Bangladesh

Clay.
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Figure 5.3: Comparing Bangladesh Clay experimental results with back-calculated Kic

values using tensile strength dependent literature correlations.
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Figure 5.5: Comparing Bangladesh Clay experimental results with back-calculated KIc

values using modulus of elasticity dependent literature correlations.
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Figure 5.8: Relation between Mode I fracture toughness and tensile strength of San

Francisco Bay Mud.
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Figure 5.9: Comparing San Francisco Bay Mud experimental results with back-calculated

Kic values using tensile strength dependent literature correlations.
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Figure 5.10: Relation between Mode I fracture toughness and modulus of elasticity of San
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Figure 5.11: Comparing San Francisco Bay Mud experimental results with back-calculated

Kic values using modulus of elasticity dependent literature correlations.
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Figure 5.22: Relation between Mode

Presumpscot Maine Clay.

I fracture toughness and modulus of elasticity of

Maine
12000

10000-

8000- - ---- --
14.

00

E Ask
400010

4000-1 11 -
0.01 0.1 1

Mode I Fracture Toughness (MPam 1/2 )

*Iqbal & Mohanty (2006) * Flattened Brazilian

Figure 5.23: Comparing Presumpscot Maine Clay experimental results with back-

calculated KiC values using modulus of elasticity dependent literature correlations.
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Figure 5.39: Solid Brazilian Disc behavior (Hai-yong et al., 2004)
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Figure 5.42: Center crack initiation in the middle of fractured flattened Brazilian discs
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Figure 5.43: Failure pattern of fractured flattened Brazilian disc specimens

Figure 5.44: Failure pattern for fractured flattened Brazilian discs showing diagonal

fracturing
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Figure 5.45: Failure pattern for fractured flattened Brazilian discs showing diagonal

fracturing after center crack initiation
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Figure 5.46: Fractured surface of the two split halves (semi discs) showing tensile fractures
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Figure 5.52: Relation between Mode I fracture toughness and tensile strength of tested

material and literature data.
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Chapter (6)

CONCLUSIONS AND RECOMMENDATIONS FOR

FURTHER RESEARCH

6.1 Introduction

Understanding the fracture properties of different mudrocks such as clays is essential to

adequately model crack propagation in the oil bearing deposits to allow quantifying the needed

fragmentation and resulting permeability from various bed preparation schemes that would

enable cost-effective production. Optimization of bed preparation is only possible with adequate

knowledge of how crack propagation takes place which, in turn, depends on how well the

relevant material properties are determined.

Using simple convenient means to quantify the fracture properties of dry clays and clay-like

materials is a crucial first step. This can be carried out using the flattened Brazilian disc (FBD)

test which is characterized by the ease of specimen preparation, load application, and

interpretation of the results. The FBD method is beneficial in quantifying three different

parameters; mode I fracture toughness, tensile strength, and the elastic modulus, from a single

load-displacement test record.

From the results of the 90 FBD tests conducted for this research, an empirical statistical relation

between mode I fracture toughness and tensile strength is developed. This relation can be used to

estimate mode I fracture toughness indirectly in case of knowing the corresponding tensile

strength which can be determined using easier testing techniques if compared to fracture

toughness. The developed relation is in line with trends reported in the literature for other

materials tested using other approaches.

The main conclusions developed from this experimental study and recommendations for future

research are presented in this chapter.

6.2 Conclusions

1. Flattened Brazilian Disc (FBD) testing is an advantageous method where three material
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parameters; mode I fracture toughness, tensile strength, and elastic modulus; are obtained

successively from only one test record.

2. Specimen preparation of the flattened Brazilian disc specimen is simpler, cheaper, and more

convenient than other published fracture toughness measurement methods, where no artificial

notch or crack is introduced to the flattened specimen; therefore, uncertainties due to the

quality of the notch cut are avoided.

3. Testing method is convenient and easy to conduct using conventional load frame/

compressive test machine provided with diametrical load displacement measurements with no

further special sophisticated machinery.

4. Load application on the flattened ends is more uniform and reliable than concentrated loading

which minimizes local crushing or cracking developed by concentrated loading.

5. All fractured specimens showed center crack initiation regardless the testing material, the

specimen dimensions, and the loading angle (2a).

6. Using an approximate analytical solution for the displacement of the loaded flattened end, the

elastic modulus E can be determined from the slope of the section of load displacement record

just preceding the maximum load.

7. Using the maximum load value in a test record with an analytical equation accounting for the

shape correction of the flattened edges, the tensile strength of the specimen can be evaluated.

8. Using a simple calculation, it is convenient to determine the mode I fracture toughness using

an easily identified local minimum load Pmin; which is just subsequent to the maximum load in

a test record, and the maximum value of the dimensionless stress intensity factor ma;

obtained from an approximate equation based on numerical analyses.

9. From the test records, there appears to be strong correlation between mode I fracture

toughness and tensile strength, and hence, a reasonable estimate of fracture toughness may be

obtained if the tensile strength of the material is known.

10. Based on the testing data and reasonable analyses, no clear relation between mode I

fracture toughness and elastic modulus was determined.

11. The relation between the unit weight and mode I fracture toughness was unclear and

requires further investigation.

12. Based on the testing data and reasonable analyses, the relation between mode I fracture

toughness and tensile strength for the six tested materials agrees to a great extent with
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reported trends in the literature even for different fracture toughness and tensile strength

testing techniques and for wider tested range of soils, rocks, geomaterials, clay-like, and rock-

like materials. The overall empirical relationship considering all tested materials and trends

reported in the literature can be expressed in power relation; Kic= 0.1487 6t' 0179.

6.3 Further Research Recommendations

1. For a better understanding of the flattened Brazilian disc test, the size effect of the

specimen needs further investigation and clarification by varying the specimen radius,

specimen thickness, their ratio, the width of the flattened edges, and the corresponding

loading angle (2a).

2. Investigating the effect of temperature and specimens moisture on mode I fracture

toughness by testing moist specimen at different water contents.

3. Investigating the effect of the loading rate on the development of the center cracks by

varying the displacement rate in the used load frame.

4. Introducing different types of loading to the disc specimens apart from monotonic

loading such as cyclic loading/ unloading conditions. In particular the specimen needs to

be loaded to first crack, unloaded and reloaded to see if the crack opening load is the

same as the minimum load.

5. Experimenting heat treated discs where heat treatment causes thermal cracking, hence,

the mechanical properties change with temperature. In this context, soil/rock heated to

different temperatures can be considered as different materials.

6. Resedimented specimens with different moisture contents should be tested in a similar

manner. The advantage of using resedimented specimens is to create and test a material

that can be used as a base case for fracture studies of mudrocks with common porosity,

modulus and Poisson's ratio values.

7. Supplementary procedures should include taking measurements of lateral strain in

compression tests that can provide indications of the onset of micro-cracking, using high

speed camera for taking high speed photos of the fracturing, introducing internal flaws to

resedimented specimens and testing them to investigate multi-mode fracture effects, and

studying anisotropy by testing on multiple planes.

8. To obtain a more generic relation between mode I fracture toughness and tensile strength,
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it is recommended to use one testing method for either fracture toughness or tensile

strength or, alternatively, a quantitative conversion between the test data from different

methods should be made.

9. Develop empirical relations between mode I fracture toughness and other physical

mechanical parameters such as: uni-axial compressive strength, acoustic wave velocities,

conductance, dynamic elastic modulus, and the clay content; to provide a feasible means

of predicting fracture toughness from geo-physical logging data at a great depth.

10. Using the optical digital image correlation (DIC) technique to monitor the deformation

field on the disk specimen surface during the entire compression process.

11. Introducing different types of soils, rocks, geomaterials, clay-like, and rock-like materials

to cover the whole ductile-brittle behavior range.

12. Comparing the results obtained using flattened Brazilian discs with the ISRM suggested

methods on same materials with same loading and placement conditions. Also, compare

the results with other methods conducted on disc specimens.

13. Further numerical analyses should be performed to better quantify the maximum stress

intensity factor for different loading angles (2a).

14. Investigating the effect of anisotropy in soils/rocks by studying similar specimens in

different loading directions and from extracted from different orientations; parallel to

bedding planes and normal to bedding planes.

15. Introducing concrete as a new testing material using FBD configuration with different

specifications related to the aggregates used, aggregate percentage, additives used, and

the water cement ratio.
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