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Abstract

Since 1921, several experimental methods have been implemented to measure the Griffith
fracture energy. The challenge lies in providing a measure that is intrinsic and invari-
ant with respect to external factors such as specimen geometry, loading conditions and
prescribed rates. In this thesis, by combining multi-scale experiments and advanced the-
oretical modeling, we provide a means to characterize the intrinsic fracture toughness
using microscopic scratch tests.

The scratch test consists in plowing and cutting with a scratch device the surface of a
weaker material and it is relevant in many fields of science and engineering, ranging from
thin films and coatings, to wear of metals and polymers, and strength of rocks. In this
thesis, Dimensional Analysis and Advanced Imaging are employed to demonstrate the
predominance of fracture processes in scratch tests with a Rockwell C diamond probe.
Based on experimental observations, Linear Fracture Mechanics models are developed
that utilize an energy-based approach in order to link the scratch forces to the scratch
probe geometry and the fracture properties of the scratched material. The analytical
models are implemented into inverse experimental methods for the calibration of the
scratch probe geometry and for the determination of the fracture toughness. In particular,
the method for fracture toughness determination is shown to be precise, accurate and
reproducible. This method is then extended to rate-dependent materials in order to
decouple creep and fracture and assess the intrinsic fracture toughness. In particular, for
homogeneous materials, a handshake is achieved between macroscopic and microscopic
scratch tests. Finally this method is applied to gas shale materials, which exhibit a
higher degree of complexity, including heterogeneity, anisotropy and rate-dependence. In
particular, a strong directionality of the fracture behavior is observed at the microscopic
scale, which is also confirmed at the macroscopic scale.

Thus, throughout this work, we elucidate the physical mechanisms of failure underly-
ing scratch tests and build a method for the multi-scale assessment of intrinsic fracture
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properties, which is robust, accurate, precise and reproducible, and which is applicable to
a wide range of material behaviors. This in turn opens additional venues of application
for scratch tests.

Thesis Supervisor: Franz-Josef Ulm
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Industrial Context

A scratch test consists in drawing a stylus across the surface of a material under con-

stant, stepwise or linearly increasing vertical load as depicted in Figure. 1-1. The advance

in instrumented scratch testing has been motivated by the increasing use of ceramics,

metals and polymers and thin films and coatings in industrial, medical and army appli-

cations. For instance the field of applications of thin films and coatings[33, 51, 42, 61, 67]

includes automotive applications (wheel bearings, polymer varnishes, rubber seals, Di-

amond Like Carbon-coatings,...), aerospace applications (thermal barrier coatings for

gas-turbine engine applications, surface coatings,...) and biomedical applications (dental

implants, arterial implants, hip prostheses...). Therefore, there is a crucial need to assess

their performance under normal loading conditions. For instance scratches in automotive

coatings can lead to a degradation of the optical, aesthetic and mechanical properties

[98]. As for metals and ceramics, that are often used under severe conditions including

high temperatures, high pressure or highly corrosive environments; it is crucial to study

their tribological performance so as to reduce the maintenance work and increase the

components' lifetime.
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Figure 1-1: Scratch test with an axisymmetric probe.

Typically, a single scratch test under increasing vertical force is used to investigate

the failure mechanism and multi-pass scratches under constant vertical force are used

to study material wear [26]. Acoustic emission, optical microscopy and friction force

measurements are some techniques used to identify and characterize specific failure events

during the test. Acoustic emission enables to capture subsurface crack nucleation and

crack growth during the test whereas microscopy (optical microscopy or scanning electron

microscopy) makes it possible to qualitatively characterize the damage at the surface.

Moreover, several analytical models [103, 96, 27] have been developed to quantitatively

predict the wear resistance assuming a ductile failure mode. Initially two critical loads

where defined: the critical cohesive load L, that corresponds to the minimum load for

crack initiation within the coating and the critical adhesive load LA that corresponds to

coating detachment from substrate. However, further investigations[85, 28, 29] revealed

additional failure modes depending on the nature of the coating and the substrate. For

instance, plastic deformation prevails at low normal loads in the case of soft coatings

on hard substrates, whereas through-coating cracking occurs for hard coatings on hard
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substrates. Finally in the case of hard substrates on soft coatings, adhesive failure at the

coating-substrate interface, characterized by spalling and buckling, takes place.

The difficulty lies in providing a quantitative and intrinsic measure of the material

resistance to fracture. For instance, the "critical load", L, or LA, has been shown[52, 88]

to depend on extrinsic parameters such as the substrate properties (elasticity, hardness,

surface roughness prior to coating), the coating properties (elasticity, hardness, surface

roughness) and the friction coefficient between the tip and the coating. There is also a

dependence on rate and geometry parameters such as the loading rate, the scratching

speed, the indenter tip radius, the diamond tip wear and the machine stiffness and design.

This makes it challenging and imperative to come up with innovative scratch-test based

methods to characterize the fracture resistance of materials.

1.2 Research Motivation

As said previously, the fast development of thin films and coatings in the past decades

has given rise to a high demand for mechanical testing procedures at the micro scale,

including fracture toughness testing techniques. At that scale, most conventional fracture

testing methods such as the three-point bending tests on single edge notched specimen or

the compact tension test do not apply, due to the requirement of having all dimensions

at least an order of magnitude greater than the material fracture process zone. In turn,

several methods have been developed that evaluate the fracture toughness through micro

indentation with a sharp probe. Most popular is the Vickers Indentation Fracture Test

where the fracture toughness, Kc, is determined using a Vickers probe and according to:

EP
Ke =_ a -iv

where P is the indentation load, E is the Young's modulus, H is the hardness, c0 is the

average length of the radial cracks generated by the indentation and a is a dimensionless

constant. Several refinements to the equation above have been put forward so as to
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account for the nature of the cracks, the residual stresses and the plastic dissipation

inside the material. Although these expressions were derived from a combination of

dimensional analysis and empirical observations, they are not supported by a closed-form

analytical or by a numerical model. Moreover, indentation fracture testing techniques

require considerable care to measure the average length of the cracks that expand from the

four corners of the probe. Despite recent advances in optical imaging devices, considerable

uncertainties can arise due to the observer skill and subjectivity or due to possible spalling

around the indentation impression. The question is then to build an objective and

rigorous framework for the characterization of fracture properties at the microscopic

scale based on a closed-form analytical model.

1.3 Research Objectives

Our research objective is then to answer the following three questions:

" Can micro scratch tests provide an alternative means to evaluate the fracture tough-

ness of materials?

" What is the influence of the displacement/loading rate on the measured fracture

toughness during a scratch test?

" What is the influence of the heterogeneity on the fracture toughness?

Our research approach closely combines multi-scale experiments with advanced an-

alytical tools such as Dimensional Analysis, Linear Fracture Mechanics modeling and

numerical simulations.

1.4 Outline of Thesis

This thesis is divided in three parts. The first part investigates physical evidence of

fracture processes at work in the scratch tests through dimensional analysis, numerical
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simulations and advanced imaging of the residual groove after scratch test. Part II

builds analytical models based on Fracture Mechanics to relate the force and depth

measurements from the scratch test to the material fracture toughness and the probe

geometry considering consecutively a linear elastic isotropic and a linear visco-elastic

mechanical behavior. Part III deals with the experimental validation of the analytical

models and the development of experimental standards, protocols and procedures for the

incorporation of the analytical models in daily scratch testing applications. Finally part

III applies the inverse methods to a specific class of materials, shale, characterized by a

high anisotropy, heterogeneity and by rate-dependence, in order to identify trends and

patterns in the fracture resistance.
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Chapter 2

Scratch Test as a Fracture-Driven

Process

The scratch test has been used in the industry for over 30 years for a wide range of appli-

cations ranging from the adhesion of coatings and thin films to the strength of ceramics

[7, 16, 27, 29, 41]. In this chapter, we establish the predominance of fracture processes

and determine the shape of the cracks generated during the test. First, we introduce the

scratch test technique as well as the apparatus employed to perform the test. Second,

Dimensional Analysis and Finite Element simulations enable us to predict the scaling

of the horizontal scratch force for both a strength-dominated and a fracture-dominated

process. The theoretical predictions are then confronted to experimental measurements

to assess the dominant dissipative process. Finally, with optical and scanning electron

imaging, we investigate the shape of the cracks generated during a scratch test.
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2.1 Scratch Test Technique and Instrumentation

2.1.1 Technique

Scratch test consists of drawing a diamond stylus across the surface of a sample under

increasing or constant vertical load. The test presents three phases: 'prescan', 'scratch'

and 'panorama'. In the 'prescan' phase a surface profiling is performed at low loads to

measure the background profile of the surface of the sample. In the 'scratch' phase, the

vertical force is prescribed (constant or linearly increasing) whereas the resulting hori-

zontal force, penetration depth and acoustic emission are simultaneously recorded. The

penetration depth is obtained as the difference in displacement of the indenter between

the 'prescan' and 'scratch' phase. This allows one to account for any tilt or curvature of

the surface. After the first two phases, the sample is brought under an optical microscope

to image the residual groove. In particular, in the panorama mode, multiple images are

taken along the scratch path and digitally stitched resulting in a panoramic view of the

entire scratch that is later synchronized with the measurement taken during the test.

2.1.2 Instrumentation

Scratch test experiments were performed on two platforms: the CSM Intruments Revetest

Scratch Tester and the CSM Instruments Micro Scratch Tester illustrated on Figure 2-1

respectively a) and b). Although both apparatus have similar operating principles, they

differ in terms of load range and sample positioning system. In particular, the Revetest

Scratch Tester has a load capacity of 200 N, much higher than that of the Micro Scratch

Tester, 30 N. On both platforms, acoustic emission is detected with a high resolution

piezoelectric transducer. Furthermore, both equipments feature a motorized X-Y stage

for precise positioning of specimen within 1 pm of lateral resolution and high quality

optical microscopes to select the area to be tested. The stylus is mounted to a double

cantilever design system that reduces the torsional effect and increases the accuracy of

measurement by maintaining the stylus in a vertical plane during the test. This double
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a) b)

Figure 2-1: Scratch test equipments. a) CSM Instruments Revetest Scratch Tester. b)
CSM Instruments Micro Scratch Tester.
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Specification
Maximal Normal Load
Load Resolution
Frame Compliance
Maximum Scratch Length
Scratch Speed
Maximum depth
Resolution
XY Stage Resolution

Revetest Scratch Tester
200 N
3 mN
0.37 pm
70 mm
0.4 to 600 mm/min
1 mm
1.5 nm
0.25 pm

Micro Scratch Tester
30 N
0.3 mN
0.79 pm
120 mm
0.4 to 600 mm/min
1 mm
0.3 nm
0.25 pm

Table 2.1: Technical Specifications for the Revetest Scratch
Tester. Data courtesy of CSM Instruments [35].

Tester and the Micro Scratch

cantilever system is connected to a piezoelectric displacement actuator that monitors the

load applied to the displacement head at a high rate, with a response in the order of a

few milliseconds. Moreover, an active force-feedback loop that ensures that the load ap-

plied remains at the programmed level, yields reproducible test results even with complex

geometries such as rough, curved, non-parallel or non-uniform surfaces. Finally, experi-

mental control, data acquisition and preliminary data analysis can be programmed via a

computer interface. The technical specifications for the Revetest Scratch Tester and the

Micro Scratch Tester are given in Table 2.1. In particular, both equipments are extremely

accurate with a load resolution of 0.0015% the maximum possible load and a depth reso-

lution of 0.00015% the maximum possible depth. Moreover, the testing can be performed

over a wide range of scratch speeds, spanning three orders of magnitude. Furthermore,

the Micro Scratch Tester has a higher force resolution, which makes it adequate for low

force testing. In contrast, the Revetest Scratch Tester exhibits a lower frame compliance,

which makes it fit for high force testing. In practice, the Revetest Scratch Tester is used

to characterize hard materials such as metals, whereas the Micro Scratch Tester is used

to characterize soft materials, such as polymers, rocks and cementitious materials.
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0.116 mm .

0 mm

y: 0.35 mm
x: 0.35 mm

Figure 2-2: 3-D Geometry of a Rockwell diamond indenter with tip radius of 200 pm and
a half-apex angle 0 = 600. The picture was obtained using a CSM Instruments ConScan
surface profilometer.
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2.1.3 Scratch Probe

The probe used for scratch testing is a 200-pm Rockwell diamond indenter, which consists

in a cone of half-apex angle 0=600 ending into a hemispherical tip of radius R=200 pm.

The transition from the cone to the sphere occurs at a depth of do = (1 - sin 0)R =

0.134 R = 26.8 pum. Figure 2-2 represents a 3D image of the tip of the indenter, obtained

with a CSM Instruments ConScan surface profilometer. In the next section we introduce

basic concepts of Dimensional Analysis and then apply them to characterize the scaling

of the horizontal scratch force.

2.2 Dimensional Analysis

Dimensional analysis is a problem-solving method that enables to simplify complex phys-

ical problems and has broad application in experiment design or data analysis in several

fields of engineering (aerodynamics, hydraulics, astrophysics, etc) [13, 38]. In this sec-

tion, we apply Dimensional Analysis to express the dependence of the horizontal scratch

force FT in function of relevant parameters such as the geometry of the probe, the probe-

material interface, the mechanical material properties and the prescribed loading. The

geometry of the scratch probe, Rockwell C, is accounted for via the half-apex angle, 6,

and the tip radius, R. The probe-material interface is assumed to be described by Amon-

tons' laws of friction: this means that the friction coefficient, A, is a material property

independent of the contact area [19]. Moreover, we assume the material to be isotropic

linear elastic characterized by a Young modulus E and a Poisson's ratio v. A rate-

independent plasticity model with isotropic exponential hardening is used to capture the

work hardening at high level of stresses. In particular, three material constants are in-

troduced: yield strength, Y, hardening coefficient, H, and hardening exponent, n. The

material resistance to fracture propagation is represented by the fracture toughness Kc.

Finally, the last category of parameters relates to the loading conditions: neglecting any

rate variable we can either choose the depth of penetration d or the prescribed maximal
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force Fvmyx; however, we cannot choose both as they are not independent. The physical

relation we are thus interested in reads as:

FT = f (R, 0, p, E, v, Yo, H, n, K, d) (2.1)

2.2.1 Physical Quantities and Dimensions

The basic idea of Dimensional Analysis is that physical laws are independent of the

units arbitrarily chosen to measure physical variables. As a result, the mathematical

functions expressing physical laws must be homogeneous. This in turn allows us to

contract the number of arguments involved in a given relation between physical quantities,

by examining the units of measurement of the relevant physical parameters as expressed

in a given system of units. For instance, the length/mass/time system is commonly

adopted in Newtonian Mechanics. As a consequence, for any physical quantity x, the

dimension function denoted by [x], is invariant with respect to the units chosen, and can

be shown to be a power function of the base dimension LMT:

[x] = L MT? (2.2)

where L, M and T are the dimensions respectively of length, mass and time variables.

The exponents a, # and -y are real and associated with x. We can then conveniently

summarize the dimension functions of the physical variables of our problem (2.2) in form

of a matrix in which the columns list the exponents as expressed in the base dimension:

[FT] [R] [0] [p] [E] [v] [Y] [H] [n] [Kc] [d]

L 1 1 0 -1 0 0 -1 -1 0 -1/2 1 (23)

M 1 0 0 1 0 0 1 1 0 1 0

T -2 0 0 -2 0 0 -2 -2 0 -2 0

Before proceeding any further, we will introduce the 11-theorem.
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2.2.2 II-Theorem

The H-theorem resides

independent quantities

Theorem 1 Consider

... ,qN of the form:

at the heart of Dimensional Analysis and reduces the number of

in the problem. It is stated below:

a relation between N + 1 dimensional physical quantities qo, q1 ,

qo = f (qi, - - - , qN) (2.4)

Let k be the number of dimensionally independent

complete dimensionally independent subset of {q1,...

can be reduced to a dimensionless relation between N

H1 , ... , IN-k:

H0 = ( 1 ,..., N-k)

variables. Let {q1,... , qk} be the

qN }. The initial physical relation

- k + 1 similarity parameters H0 ,

(2.5)

defined by:

Iiq .; i= , N-k
a 2 kq1q 2 *"k

(2.6)

where the exponents al,. .. ,a are determined from the dimension functions:

[qi] = [q1]ai [q2]ai ... [q]ai; (2.7)

2.2.3 Application to Scratch Testing

By application of the H-theorem to the physical relation Eq. (2.1), the rank of the

dimension matrix (2.3) is k = 2. We can thus choose two dimensionally independent
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variables, (Kc, d), and express the others:

[FT] = [Kc][d]3/ 2 ; [R] = [Ke]0 [d]'; [E] [Y] = [H] = [Kc][d]-1/2

[0] [v] = [n] = [Kc]0 [d]0 ; (2.8)

This allows us to reduce the problem to:

H0 FT H - R2
Ked3/2 R' (KC/Y) 2 '

YE H
H3 =- EH 4  - ,1 5=0,H 6=v,H7 -- n,Hs=[p (2.9)

Table 2.2 gives typical numerical values of the invariants H2  R/(K/Y 2 ) and H3 =

Y/E for metals, polymers and ceramics. 1 2 is the ratio of the scratch probe tip radius, R,

to a quantity proportional to the fracture process zone of the material, 1/(27r)(Kc/Yo) 2.

Whereas H3 is usually two orders of magnitude below unity, H2 values span three orders

of magnitudes from approximately 10-3 for metals to 1 for ceramics. As a consequence,

in the ideal case of a purely brittle fracture-driven mechanism, the horizontal force FT

depends only on the fracture toughness, the depth of penetration and the probe half-apex

angle and tip radius:

=T F d-R 101 V P (2.10)
Kd3/2 (R' (Ke/Y)2

In particular, if the probe is a perfect cone, (R -+ 0), then the horizontal force scales as

the penetration depth to the power 3/2.

To validate those findings, scratch tests were performed on three polymers with a

Vickers probe. The Vickers probe is a square-based pyramidal cone with a half-included

angle of 0 = 680 and a tip radius of R = 150 nm, which is almost three orders of magni-

tude smaller than the maximum depth of penetration. The materials considered include

amorphous (polycarbonate Lexan 9034 and polyvinylchloride) and semi-crystalline (poly-

oxymethylene Delrin) polymers. Each test consisted of a series of seven three-millimeter
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Material E (GPa) Y (MPa) K, (MPavfi) 112  H3
Steel AISI-1045 210 310 50 7.69 10- 3  1.5 10-3

Lexan 9034 2.5 62 2.8 9.81 10-2 0.02
Aluminum Oxide 300 250 3.5 1.02 8.3 10-4

Table 2.2: Typical values of the invariants II2 = R/(Kc/Yo) 2 and H3 = Y/E for a metal
(Steel AISI-1045), a polymer (Lexan 9034) and a ceramic (Alumina Oxide). E is the
Young's modulus, Y is the yield strength and K, is the fracture toughness. The indenter
radius is R = 200 pm.

scratches arranged two-millimeter apart. The prescribed maximum force was 30 N and

the scratching speed was 6 mm/min; finally, all tests were performed on the CSM In-

struments Micro Scratch Tester, which exhibit a high load resolution convenient for low

normal force range (0.01- 30 N). Figure 2-3 displays the evolution of the measured hor-

izontal force in function of the depth of penetration. The microscopic scratch test is

seen to be repeatable, because, for each material, all seven tests collapse in a single red

curve. The resulting horizontal force increases from 0.01 N to 16.23 N for Lexan, 0.01 N

to 16.31 N for polyvinylchloride (PVC) and 0.01 N to 10.76 N for Delrin. The resulting

maximum penetration depth is 135.46 pm for Lexan, 118.83 pm for PVC and 108.29 pm

for Delrin. In Figure 2-3, the theoretical fracture law scaling in 3/2 is represented by a

black line. The power law scaling in 3/2 is valid only for depths of penetration greater

than 2 pm. Therefore, these experiments suggest that, during scratch tests with a conical

probe, brittle fracture becomes predominant at large depths of penetration. In the next

section we investigate the presence of plastic flow by performing numerical simulations

with a purely elasto-plastic mechanical behavior.
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Figure 2-4: 3-D Finite Element mesh for numerical modelling of scratch test in ABAQUS.
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2.3 Numerical Simulations of Scratch Tests

2.3.1 Finite Element Model

Three-dimensional simulations were confronted with experiments in order to investigate

the predominance of plasticity during scratch tests with a Rockwell C diamond probe.

The finite element simulations of scratch tests were performed using ABAQUS (Dassault

Systemes, Nanterre, France). To reduce the computation time, only one half of the

geometry was modeled as illustrated in Figure 2-5, and symmetric boundary conditions

were prescribed. The probe geometry, an ideal Rockwell C probe, consisted of a cone

of half-apex angle 600 ending in a sphere of radius 200 pm and 4-node (C3D4) linear

tetrahedron elements were used for meshing. As for the material, it was meshed using

either 6-node (C3D6) linear triangular prisms or 8-node 9C3D8R) linear bricks. The

contact between the probe and the material was frictionless and the hard contact law

was used to model the normal behavior so as to prevent any interpenetration.

During the simulations, the vertical and horizontal displacement of the scratch probe

was prescribed. The horizontal and vertical displacement were both set to be linearly

increasing from zero to maximum values of (u, = 500 pm, uY = -140 pm) for Lexan

and (u, = 500 ptm, uY = -55 pm) for Steel AISI-1045. The maximum vertical displace-

ment represents the maximum penetration depth that was reached during micro scratch

tests on Lexan (respectively steel AISI-1045) with a Rockwell C probe and a prescribed

maximal vertical force of 30 N (respectively 150 N).

2.3.2 Material Properties

Both a soft, Lexan, and a hard, Steel AISI-1045, material behaviors were simulated.

Figure 2-5 displays the stress-strain behavior, based on data from the scientific literature

[30, 78]. In particular, for steel in uniaxial tension, the behavior is initially linear, followed

by strain hardening after a strain of e = 2%. As for Lexan in uniaxial compression, the

curves at both strain rates, low ( = 10- 3 s- 1) and high ( = 5050 s- 1), exhibit an
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Material E (GPa) v Y (MPA) H (MPa) n

Diamond (probe) 10 3  0.2
Steel AISI-1045 210 0.33 452 702 0.33
Lexan

i = 10- 3 s-1 1.14 0.37 57.2 177.8 4.21
Lexan

= 5050 s-1  2.09 0.37 114.8 244.5 4.19

Table 2.3: Material elasto-plastic constants used in the numerical simulations of scratch
test with a 200 pm Rockwell probe. E is the Young's modulus, v is the Poisson's ratio,
Y is the yield strength, H is the hardening coefficient and n is the hardening exponent.

initial linear portion, then a yield peak followed by strain softening and eventual strain

hardening at large strains ( E > 0.5). Moreover, the yield peak increases with the

strain rates. We choose to represent both materials using a rate-independent plasticity

model with isotropic hardening, where the flow strength obeys a power-law hardening

relationship of the form: Y = Yo + H (P)', where 0 is the accumulated plastic distortion,

Yo is the yield strength, H the hardening coefficient and n the hardening exponent. Table

2.3 lists the elasto-plastic constants for steel AISI-1045 and Lexan that were fitted from

data found in the scientific literature [30, 78] and plotted in Figure 2-5. In particular,

the Young's modulus for steel AISI-1045 is two orders of magnitude greater than that of

Lexan where as the hardening exponent for Lexan is an order of magnitude greater than

that of steel AISI-1045.

2.3.3 Results

Figures 2-6 and 2-7 display the residual groove after numerical scratch test. In particular,

the ratio of the yield strength to the Young's modulus, Y/E, influences the pattern of

deformation. For Lexan, the value is high, Yo/E = 0.02, and this leads to material

sink-in behind the scratch probe. Whereas for low values, Y/E = 0.0015 for steel AISI-

1045, there is a pile-up of material in front of the scratch probe. Similar results were

obtained by Bucaille et al. [25] who performed numerical simulation of scratch tests on
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Figure 2-6: Deformed mesh. Numerical simulation of scratch test on Lexan with a 200

pAm Rockwell probe assuming a frictionless contact and a high strain rate, = 5050 s-1.

Figure 2-7: Deformed mesh. Numerical simulation of scratch test on steel AISI-1045
with a 200 prm Rockwell probe assuming a frictionless contact.
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elasto-plastic materials with a conical probe.

To identify the dominant dissipative mechanism, fracture or plastic flow, the hori-

zontal scratch force FT(t) and the penetration depth history d(t) were fitted to a power

function, y = axb, for both experiments and numerical simulations. For a strength-

dominated process, Dimensional Analysis predicts the following relationship between the

horizontal force FT and the penetration depth d:

FT d o H
=Td F d , p (2.11)

Yod2 R' El' El'

Meanwhile, for fracture-driven process the scratch force, FT, is a cubic function of the

penetration depth, d, as expressed in Eq. (2.10).

Figure 2-8 displays the horizontal force, FT, versus the penetration depth, d. For

steel AISI-1045, FT steadily increases with the penetration depth. Whereas for Lexan,

FT increases and then reaches a plateau for penetration depths greater than 100 Jim.

This saturation of the force signal might be due to the hardening exponent, n, which is

an order magnitude greater for Lexan (n = 4.21 for low strain rate and n = 4.19 for high

strain rate) than for steel AISI-1045 (n = 0.33). Moreover, for both Lexan and steel, the

horizontal force, FT, admits an horizontal initial tangent due to prescribed frictionless

contact conditions.

For both Lexan and steel AISI-1045, the numerical simulations predict a scaling of

the scratch force, FT, close to d2 ; with the penetration depth, d, being equal to the

displacement of the scratch probe, as is the case in experiments. In fact, numerical

simulations on Lexan yield a power law exponent, b, equal to 2.34, assuming a slow

strain rate ( = 10- 3 s-1), and equal to 2.47, assuming a high strain rate (i = 5050 s-1).

As for steel AISI-1045, the simulated power law coefficient, b, is 1.91.

In parallel to numerical simulations, micro scratch tests were performed on both Lexan

and steel AISI-1045 with a maximum vertical force of 30 N and 150 N, respectively.

The resulting horizontal force- penetration depth curves are also displayed in Figure

2-8. In particular, the experimental scratch force for both materials, Lexan and steel
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AISI-1045, exhibits a scaling in d3 /2 , characteristic of a fracture-dominated process. The

exponent b calculated from micro-scratch tests measurements is 1.44 for Lexan and 1.53

for steel AISI-1045. The Finite Element simulations of scratch tests slightly differ from

the experiments in that the vertical displacement (and not the vertical force) is prescribed

and frictionless conditions are assumed. Nevertheless, these simulations capture the

essence of scratch tests, pushing a hard probe across the surface of a softer material,

and therefore can provide meaningful insights in the physics of the test. Based on the

Dimensional Analysis and the Finite Element simulations, we conclude that a scaling of

the scratch force in d3/ 2 is an indicator of the predominance of fracture processes during

scratch testing. Moreover the evidence presented supports the assumption that crack

propagation is the main dissipative process in scratch tests with a Rockwell C diamond

probe and for penetration depths in the conical range: d,,, = 55 pim for steel AISI-1045

and dmax = 140 pm for Lexan. In the next section, we investigate the pattern of crack

formation with optical imaging and scanning electron microscopy.

2.4 Imaging of the Crack

Optical imaging and scanning electron imaging were used to look for physical cracks on

the residual groove after scratch tests. Scratch tests were performed on alumina using

a 200 ym Rockwell diamond probe on the CSM Instruments Revetest Scratch Tester.

Alumina was purchased from Accuratus (Phillisburg, NJ) as a cylinder of 25 mm diameter

and 12 mm height. Prior to testing, the specimen was polished on a rotating lapping

plate using a Texmet P polishing cloth, and a diamond suspension oil solution using

the following abrasive sizes: 15, 9 and 1 ptm. Afterward, a scratch test was carried out

with a maximum vertical force of 30 N and a scratch speed of 6 mm/min. After scratch

testing, pictures of the residual groove were taken using the CSM Instruments Micro

Scratch Tester optical microscope, at a magnification level of 800X. At the beginning of

the scratch the surface is almost-crack free. However, as the probe moves deeper into
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Figure 2-9: Cracks on residual grooves. Scratch tests on alumina with a maximal pene-
tration depth of d.,ax = 15pm. The arrow indicates the scratch direction.
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Figure 2-10: Transverse cracks on residual grooves. Scratch tests on cold drawn steel
AISI-1144 with a maximal penetration depth of dmax ;> 50m. The scratch direction is
from right to left.
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the material, several curved cracks appear and material removal occurs as can be seen in

Figure 2-9.

A similar process was observed on cold drawn steel AISI-1144. Figure 2-10 displays a

scanning electron image of the residual groove after scratch testing. Steel AISI-1144 was

provided by McMaster-Carr (Robbinsville, NJ) as a rod with a diameter of 12 mm. The

specimen preparation procedure involved machining with an horizontal metal cutting

band saw and a diamond table top saw, coarse dry grinding with alumina oxide paper

sanding discs on a rotating lapping table, coarse wet polishing with a 15-pm diamond

suspension oil solution and finally dry fine polishing with a polishing cloth on a rotating

lapping table. The scratch tests were performed with the CSM Instruments Revetest

Scratch Tester at a maximum vertical force of 150 N, resulting in a maximum penetration

depth of 50 pm. After scratch testing, environmental scanning electron microscopy was

used to image the residual groove. For low penetration depths, the groove is smooth.

However as the penetration depth increases, there is an accumulation of curved cracks

perpendicular to the scratch direction. The fracture pattern observed here is not through-

thickness cracking, which has been reported during the scratch testing of coatings [29,

85]. On the contrary, the cracks are horizontal. Thus, with increasing depth, crack

propagation is the dominant mechanism of failure.

2.5 Chapter Summary

The goal of this chapter was to investigate the presence of fracture processes at work

during scratch tests. First, Dimensional Analysis was used to investigate the scaling of

the force, assuming a brittle fracture-driven material failure mode. It was found that

for a perfect cone, and an elasto-plastic material, the horizontal force is proportional

to d3/2. This scaling was witnessed on scratch tests on polymers with a Vickers probe.

The question was then whether this scaling of the horizontal force in d'/ 2 is a sufficient

condition for predominant brittle fracture processes.
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To this purpose, numerical simulations of scratch tests with a Rockwell probe on

metals and polymers were carried out using ABAQUS, assuming a frictionless contact.

In both cases, an elasto-plastic behavior led to a force proportional to the square of the

penetration depth. However, there was a discrepancy between the force scaling from nu-

merical simulations and the experimental measurements, for which the horizontal scratch

force scales as d3/2 . Therefore, crack propagation is the predominant dissipative process

for scratch tests on metals and polymers with a Rockwell C probe and for penetration

depths in the conical range.

Furthermore, optical imaging and scanning electron microscopy were chosen to inves-

tigate the pattern of physical cracks or surface discontinuities after scratch testing. For

both ceramics and metals, as the penetration depth increased, there was an increase of

fracture phenomena characterized by material removal, and curved cracks perpendicular

to the direction of scratch testing. Moreover, the crack was not vertical, but slightly

inclined with respect to the horizontal axis.

Therefore, fracture processes can be assumed to be predominant for scratch tests

performed with a 200 pm Rockwell probe and for large depths of penetration. In the next

part, based on the experimentally observed fracture pattern, we develop an analytical

model that employs Fracture Mechanics to link the forces to the geometry of the probe

and to the material elastic and fracture properties.
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Part II

Theoretical Analysis
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Chapter 3

Linear Elastic Fracture Mechanics

Model

In Chapter 2 we have shown that, during scratch tests with a Rockwell C probe, fracture

processes becomes predominant as the penetration depth increases. For subsequent the-

oretical developments, we shall assume that brittle fracture is the main mode of energy

dissipation. In this chapter in particular, we express the forces in function of the pene-

tration depth, the scratch probe geometry and the mechanical properties of the material.

In fact, most mechanical models developed in the scientific literature have assumed

plowing or plastic flow to be the main model of material failure, as opposed to debris

formation. In particular, several models have been proposed to predict the forces involved

during the sliding of a rigid indenter over a ductile material [39, 115] based on the slip-

line field theory [115] or on numerical simulations [25, 24]. Two quantities are usually

introduced: the scratch hardness, Hs, which is the ratio of the horizontal force FT over the

horizontally projected load-bearing contact area A and the friction coefficient, p which is

the ratio of the horizontal force FT to the applied vertical force FV. However, there is a

lack of consensus and both the scratch hardness H and the friction coefficient P are not

intrinsic as they usually depend on the material behavior (elastic, perfectly plastic, elasto-

plastic with work hardening,..) and the probe geometry (spherical, conical, Vickers,

52



Berkovich, Rockwell, etc) [23, 115]. Another limitation of these models is the necessity

to image the surface after scratching in order to measure geometrical quantities such

as the residual groove width or depth. This introduces inaccuracy in the measurement,

linked to the observer's subjectivity or skills. Therefore there is a need for an alternative

quantitative approach to relate the scratch test results to intrinsic material properties.

In this part Linear Fracture Mechanics is used to relate the forces to the material

fracture toughness and to the geometry of the test. In particular, Chapter 3 studies linear

elastic isotropic materials, whereas Chapter 4 focuses on linear visco-elastic isotropic

materials. In both cases, an energy balance of the dissipation processes (fracture, plastic

yielding, viscous bulk dissipation,...) is performed. A path-independent contour integral

is then used to evaluate the energy release rate. Finally, a threshold criterion is introduced

to define the onset of crack propagation.

This chapter is articulated as follows: first, the Airy stress function method is in-

troduced as a powerful tool to solve for the stress and strain fields for plane stress and

plane strain problems. Secondly, a brief presentation of the essential concepts of Linear

Elastic Fracture Mechanics is given. Thirdly, a fracture model applicable to scratch test

is developed by neglecting or taking into account the contribution of the vertical force to

the fracture process. Finally, the validity of the analytical model is tested by confronting

it with experimental data.

3.1 Airy stress function

This section succinctly introduces the Airy stress function concept; for an exhaustive

presentation, the reader is referred to [36]. An Airy stress function Wp(x, z) is a suffi-

ciently smooth scalar function introduced to satisfy the equations of equilibrium of plane
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problems when the body forces are negligible:

7+ - z 0 (3.1)
Dx +Oz

-o+ ZZ 0 (3.2)
ax + z

The Airy stress function p is then defined by (3.3).

O - - 2 W O = -92 (P. (3.3)

With this definition, it is straightforward to verify that the equilibrium equations (3.1)

and (3.2) are automatically satisfied. Moreover, if the material is linear elastic isotropic,

the compatibility equation, expressed in terms of stress, reads:

a 9
0 (Oa12 + Ozz) + jz2 (Or + u-z) = 0 (3.4)

Therefore, p is biharmonic, that is:

AAp = 0 (3.5)

where A is the Laplace operator defined in 2-D by:

AW(X, z) = 2 + (3.6)ax2 19Oz 2

Eq. (3.5) is exact in plane strain conditions and yields a good approximation for thin

plates in plane stress conditions [4]. Therefore, solving for a statically compatible stress

field boils down to finding an Airy stress function p(x, z) satisfying Eq. (3.5) in a way

that verifies the stress boundary conditions.

Moreover, denoting by E and v respectively the Young's modulus and the Poisson's
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ratio, the displacements are related to the Airy stress function by:

UX(X, z) = - -(1 + +) + ) + UX (3.7)
E 9X 09z

UZ( , z) = - (+ V) + V) + Uz (3.8)
E az 49X

where (Ux, Uz) is a rigid displacement, that does not provoke strains, and V(x, z) is a

potential function that satisfies:

82 v
AV = 0; - p (3.9)

3.2 Linear Elastic Fracture Mechanics

Linear Elastic Fracture Mechanics describes the behavior of materials to fail, under load-

ing, in a brittle manner that involves the propagation of cracks or surface displacement

discontinuities. When a fracture occurs in a quasi-brittle material, the elastic energy

stored in the system is released in an almost instantaneous way and is dissipated through

the formation of new crack surfaces. Moreover, fracture occurs when the energy provided

from the outside reaches a critical energy threshold called the "fracture energy". Frac-

ture mechanics deals with the description of fracture processes. In the next paragraph,

we will introduce elements of Fracture Mechanics, restricting ourselves to isothermal and

quasi-static variations.

3.2.1 Thermodynamics of Irreversible Processes

Given a material domain Q of boundary 0Q, the energy balance of the system is expressed

by the First Law of thermodynamics:

dU = SWext + 6Q (3.10)
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The First Law states that the internal energy variation, dU, is the sum of the energy

supplied in form of work, 6West, and heat, 6Q. Moreover, the Second Law of thermody-

namics yields the entropy balance of the system:

J pdtdQ = dD = OdS - 6Q 0 (3.11)

where cpdt is the dissipation volume density and 0 0 is the reference temperature expressed

in the absolute scale. Inequality (3.11) asserts that the entropy variation of the system,

dS, must be greater or equal to the entropy supplied in form of heat, 6 Q/Oo, from the

outside of the system. The difference between the first and the second term on the right

hand side of Eq. (3.11) is the dissipation of the entire system, dD: it is the amount of

useful mechanical energy that is irreversibly transformed into heat form; it has units of

Joules ([dD] = L2 MT-2 ).

We introduce the global free energy of the system, which is its maximum capacity to

do work:

W = j dQ = U - 60S (3.12)

where 0 is the Helmholtz free energy volume density and S is the total entropy of the

system. A substitution of (3.10) in (3.11) allows us with the help of (3.12) to rewrite the

Second Law in terms of the Clausius-Duhem inequality:

dD = DIext - dW > 0 (3.13)

In particular, an elastic system is non-dissipative (dD = 0), meaning that the externally

supplied work is entirely stored as recoverable energy in the system.

We define the potential energy of the system as the difference between the free energy
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and the external work due to prescribed body and surface forces:

spot = W - 4P = I - pdQ -[ pf. dQ + T -dQ] (3.14)

Using the Theorem of Virtual Work, it can be shown that, for a distribution of vol-

ume force density, prescribed surface forces and prescribed displacements that is time-

invariant, the dissipation is the negative of the variation of the potential energy:

dD = -dEpot > 0 (3.15)

3.2.2 Energy Release Rate and Fracture Energy

Consider a crack surface I in a linear elastic body. Let Epot(F) be the potential energy

associated with the fracture surface under prescribed loading conditions. We assume

that the prescribed surface forces Td and displacements d are increased until the onset

of crack propagation and then held constant. Our goal is to evaluate whether or not the

crack will continue to propagate under fixed loading. For this purpose, we express the

intrinsic dissipation:

dD = -dpot(F -+ dF) = 9dF > 0; g =6-pot(F) (3.16)

g is the amount of potential energy stored in the system which is released when the

crack propagates by d1'. Eq. (3.16) identifies the energy release rate g as the global

thermodynamic force associated, in the dissipation, with the crack propagation dr.

We use a threshold law to define the onset of crack propagation:

f := g - gf ; 0; dF > 0; (g - gf)dF = 0 (3.17)

Eq. (3.17) is the standard format of evolution laws set up within the framework of

thermodynamics of irreversible processes. The crack propagates when the energy release
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rate g reaches a threshold gf, which is the fracture energy. It is also the amount of

potential energy, Spot, dissipated per unit of newly created crack surface.

Eq. (3.17) is a global fracture criterion based on energy balance. Alternatively a local

fracture criterion can be written, based on the singular stress field at the crack tip [53]:

f := KI - K, <; 0; dF > 0; (K 1 - Kc)dF = 0 (3.18)

In (3.18), K 1 is the stress intensity factor that depends on the stress/displacement bound-

ary conditions and on the geometry of the system. Meanwhile, K, is a material property

called fracture toughness and it is related to the fracture energy, gf through the Griffith-

Irwin relationship:

Kc E'g (3.19)

where E' = E in plane stress and E = E/(1 - v 2) in plane strain.

3.2.3 J-Integral

The J-integral is a way of evaluating the energy release rate, g, using a contour integral

surrounding the crack tip, that was proposed simultaneously by Rice [89] and Cherepanov

[32]. Consider a crack F oriented in the direction e that propagates from length f to

f + df at a velocity iel. The objective is to evaluate the energy release rate 9 from the

variation of the potential energy, -&5p0 t/&F, in a sub-domain Q' of a material domain

Q enclosing the crack surface (cf. Figure 3-1 a)). As can be seen on Figure 3-1 a),

the boundary &Q' of the material sub-domain Q' comprises the crack front F and the

remaining boundary C. Here, the crack surface, F, is assumed to be stress-free, and C,

is a displacement boundary. Therefore the change of potential energy is equal to the
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X2

Figure 3-1: Crack propagation from the perspective of a) a fixed observer b) of an observer
attached to the tip of the crack . Source [106]

change in the free energy in Q':

ddW _ d f dQ' (3.20)
dt dt dt i,

In a moving reference system attached to the crack tip (cf Fig. 3-1 b)), the change in

free energy has two contributions: one due to the change of free energy in the material

sub-domain Q', the other due to the energy release that is convectively transported at a

speed U - n =- past the boundary &Q':

fdQ' =jf d ' + (U -n) ds (3.21)

For a linear elastic system, the change of free energy is the double product of the stress

tensor with the strain rate tensor: 00/Ot = a : (aE/8t) = : (V8/&t). Moreover, in

the absence of body forces, the local momentum balance states that the divergence of
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the stress tensor is zero. We then have the equality:

div(a. ) =div(a) -+ oa:rV (3.22)

Using the Divergence Theorem, we can then express the local change of free energy in

the material sub-domain Q' using a surface integral:

SdQ' = T - -ds (3.23)
a t J'.', at

where T = a - n is the traction vector on the boundary Q'. The crack faces are traction-

free (a - n = 0 on F) and oriented along el (U -n = 0 on F), therefore, the right hand

side of Eq. (3.21) and the convective term in Eq. (3.23) need only to be evaluated along

the boundary C of Q'. Assuming that the displacement boundary C remains fixed during

the fracture process, the rate of variation of displacement on C can then be related to

the crack velocity i: a(/&t =i a(/ax1. We can then rewrite the variation of potential

energy as:

=-eJ; J = n, - _ ds (3.24)
dt c . xi.

On the other hand, from Eq. (3.16), the variation of potential energy is the negative of

the product of the energy release rate 9 and the crack velocity i. The energy release rate

is thus given by the J-integral:

g=j [ni - T - ds (3.25)

Case of an oblique crack In the case of an oblique crack propagating in both direc-

tions el and e2 , two contour integrals are involved; and Eq. (3.15) becomes:

i 1 -n1 - qT- ds+ 2 [n2 - T - ds (3.26)
JC . a1. fc [ x2.
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Figure 3-2: Axisymmetric scratch probe geometry. x is the scratch direction due to the
application of the scratch force FT. The scratch probe is maintained at a depth d through
the application of a vertical force. a) Longitudinal view. b) Transverse view.

If the crack propagates more rapidly in direction el than in direction e2, then fi > 2.

As a consequence, the second term on the right hand side of Eq. (3.26) can be neglected;

and the energy release rate can be evaluated using Eq. (3.25). This is the assumption

that will be used for the fracture mechanics analysis of scratch tests.
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3.3 Linear Elastic Fracture Model for Scratch Tests

In this section we apply the concepts of Linear Elastic Fracture Mechanics presented

previously to develop an analytical model in order to derive the expression of the forces

during scratch test. Consider thus an axisymmetric scratch probe. The origin of the

coordinate system is at the tip of the probe (cf. Fig. 3-2) and the shape of the probe

is defined by a single variable monomial function of the form, commonly used to study

nano-indentation [70]:

z = BrE (3.27)

where B (of dimension L"-) is the height at unit radius and E is the degree of the ho-

mogeneous function. The degree E and the proportionality factor B for common probe

shapes considered is given in Table 3.1. Some geometric relations will turn out use-

ful for the following developments. These are the outward unit normal at the scratch

probe/material interface, (S):

cBre- 1 cos# ~ 1
n =~ --Co , + 1, (3.28)

V1 + (EBr-1)2 V1 + (EBr6-1)2

for r E [0(d/B)1/E] and # E [-7r/2, 7F/2]; and the differential line element ds and surface

element, dS:

ds = ,1+ (eBrf- 1)2dr (3.29)

dS =r do ds (3.30)

(3.31)

Some derived geometric quantities of interest are the contact area projected in the
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Probe Type f B
Conical 1 cot 0
Spherical 2 1/(2R)
Flat Punch -+ +00 (1/RE- 1)

Table 3.1: Degree c of the homogeneous function and proportionality factor B for several
scratch probes

scratch direction nr = n - ex:

ALB(d) = - d 2B ( d (3.32)
(s) o5+ 1 B

and the perimeter of the scratch probe projected onto the scratch direction (Fig. 3-2):

p(d) = s)dS = d (3.33)

with # a noteworthy dimensionless paramter:

/3=2J 1 + (d)2 j) 2<- 2 dx (3.34)

It was shown in Chapter 2 that the cracks generated during scratch testing are not

radial, but lateral. Figure 3-3 in particular displays a section of the residual groove of

steel AISI-1045 after scratch testing with a Rockwell C probe and at a maximum vertical

force of 150 N. There are two crack fronts perpendicular to the direction of scratch testing

(from left to right). Within each crack front, there is the presence of several oblique

fracture surfaces. From this figure we can conclude to the presence of several cracking

events during a micro-scratch test. In our theoretical model we consider a single cracking

event. Moreover, we assume that, the fracture energy, which is the energy required to

propagate a unit fracture surface, is intrinsic and independent on external factors such

as crack length and crack orientation.

We thus hypothesize the existence of a semi-circular lateral crack of length f emanat-
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Figure 3-3: Crack pattern during a scratch test on steel AISI-1045 with a Rockwell C
probe. The scratch direction is from right to left.

64



ing from the tip of the scratch probe. The crack is assumed to propagate in the direction

e, and the crack area is F'= pf, with p the perimeter of the probe defined by Eq. (3.33).

An extension of the contour integral method presented previously yields the following

expression of the energy release rate:

a = dA (3.35)

Compared to the classical form of the J-integral for planar cracks (Eq. (3.25)), in which

the fracture perimeter coincides with the fracture width, dA = pds, we have chosen to

consider a difference between these lengths, in order to employ the technique for different

scratch geometries. For the scratch problem at hand, we choose a closed volume that

includes the probe-material interface, the stress-free surface at the top (n1 = 0; T = 0),

the stress-free fracture surfaces in prolongation of the scratch probe surface (nr = 0; T =

0), and closing material surfaces far removed from the surfaces (0 = 0; 09/x = 0); so

that the only contribution to the surface integral comes from the probe-material interface

S:

O]- n - _ dS (3.36)
P, (s) . 09X

Physically speaking, the energy release rate so defined can be associated with the energy

stored, prior to chipping, into a material domain in front of the scratch probe.

3.3.1 Uni-axial Stress Field

In a first approach, we consider that the sole stress contributing to energy changes ahead

of the scratch device is ax, which is related to the applied scratch force by:

FT = S) xxnxdS = HTALB (3.37)
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The free energy volume density is V) = (1/2)no-,,/E and the work of the stress vector

along &9_/Ox = Exx is rxx = Kalenx/E (E is the Young's modulus and K = 1 in plane

stress and = 1 - v2 in plane strain; v= Poisson's ratio). The energy release rate thus

obtained is the quadratic stress average over the projected contact area nx dS = dSx:

9 = f xndS = J da (3.38)
2pE J(s) x 2pE LB)

The problem to be solved amounts to combining the linear stress average of the bound-

ary condition Eq.(3.37) with the quadratic stress average of Eq. (3.38). For instance,

assuming a constant stress field over the probe surface, we have:

= K F 2 
-KALBH2

2PALBE T - 2pE T (3.39)

where we note that ALB -Sx is the nominal projected surface area defined by Eq.

(3.32), and p the perimeter defined by Eq. (3.33). Then using these expressions in Eq.

(3.39), we obtain the following expression of the energy release rate for any axisymmetric

probe:

K I + E (B) (2/c)+1 2 BE d) T
9 = -1 (EB)- 1  Fj = Hj (3.40)

E 40 d E #(e + ) B

Finally, when the fracture propagates, the energy release rate equals the fracture energy,

gf, which in turn relates to the fracture toughness by gf = (K/E)Kc2. We thus obtain

the following criterion for fracture propagation:

FT <_ Fe = 2Ke (d (B (3.41)
B 1

or in terms of scratch hardness:

F 1/21 +(3.4
HT <; He - "L - Ked-/ (3.42)
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The previous relation thus reveals that the scratch force and scratch hardness, upon

fracture propagation (i.e. FT F , HT = He) scale with the scratch depth according to:

Fe(Ad) _ (Ad)) 1/2 A(1/E)+(1/2) (3.43)
Fe(d) ( #(d) )

Hc(Ad) _ #(Ad) 1/2 A --1/2 (3.44)
He(d) # (d) )

Due to the lack of geometrical self-similarity of the dimensionless perimeter function

Eq. (3.34), that is #(Ad) # A>3(d), there is no reason that the scratch force or scratch

hardness should obey to self-similar transformation rules, except for special yet highly

relevant cases; as illustrated later on.

3.3.2 Theory Refinement: Account for Shear Stresses

Arguably, the assumption that the axial stress solely contributes to energy changes may

be an oversimplification of the actual stress field that develops ahead of the scratch probe.

A refined analysis will, in addition consider (at least) shear stresses at the probe-material

interface due to the presence of a vertical force, Fv, that maintains the scratch probe at

depth d (Fig. 3-2). The focus of this section is to incorporate this effect. Instead of Eq.

(3.38) we thus consider the following force-stress boundary condition:

_= Fef, Fvez=j (a - n)dS (3.45)
J(S)

with

FT = (uzxnr + oxznz ur)dS (3.46)
Js)

- Fv =(S (o-xznx)dS (3.47)
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The stresses, a-x and a-zz are estimated using an Airy stress function approach as pre-

sented in Section 3.1. In particular, assuming an Airy stress function of the form:

p(x, z) = bx (z3 - zd)2 + cz 2

- d2)

(3.48)

We can derive the stress components by using Eq. (3.3).

(3.49)

(3.50)

(3.51)

U-2 = b (3z2

O-zz = 0

where (b, c) are constants that are determined from the force boundary condition Eq.

(3.45):

(2c + 1)(3c + 1)
b = 62 (B) 

Fv
\d d3

(3.52)

(3.53)(c+(1 B)6 FT

4c d d

To evaluate the displacement field, we introduce the following potential function V(x, z)

that satisfies Eqs. (3.9):

V = - -X4 + Z4 +3 (xZ)2) + 2cxz (3.54)

where (b, c) are defined by Eqs. (3.52) and (3.53). In particular, the gradient of displace-

ment along the x direction is given by:

a9-x + )2v)a
+2V

+ Kazax)
K

- O'xxE
aB 1 ( 2 ~ a2yv i
Ox F I-(1 + v) + (I + v)O-z +ax E(_ 0zax 1OX2,) E

(3.55)

r 2) (3.56)_5
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Replacing the displacement gradient in the expression of the energy release rate given by

Eq. (3.36), we obtain:

E= J n + uxz (o-xnz + 2- ) dS (3.57)

After integration - ( see Appendix A for details ) - we thus obtain an expression of the

energy release rate that is similar to (3.40):

I + EB _ B: (2/ )+2

B 43 BFF (3.58)

where the equivalent force, Fq, accounts for both the scratch force, FT, and the inden-

tation force, Fv:

F +/T±(42 ++1)(2 +1) (3E 1) (
F 2  E(E + 1)(4,6+ 1)(5E 51)

The fracture criterion is of a similar form as Eq. (3.41):

Fe :Fc- Kc(d )(1/c)+(1/2) ( B1/2 (-0
B 1 + e

The most important result of the refined analysis is that a consideration of shear

stresses at the probe-material interface does not affect the scaling relations, but only the

scratch force definition, Eq. (3.59), the weighting function of the vertical force being a

function of only the degree of the homogeneous function e.

3.3.3 Application to Common Scratch Probes

To summarize, the forces during scratch test are linked to the fracture toughness and the

depth of penetration according to:

Feq =Ke yV 2PALB (3-61)
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a) b) C) 2R

2 
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d d4I1W

Figure 3-4: Common scratch probe geometries. a) Cone. b) Sphere. c) Flat punch.

Shape perimeter p shape function 2 pALB
Cone 2dcosO 2 sinOd3

Sphere 2Rcos- 1 (1 - d) 3 Rd2
Flat Punch 2R + d 8R 2d

Table 3.2: Perimeter,p, and shape function, 2pALB, of common scratch probe geometries

where F, is either equal to the horizontal force or given by Eq. (3.59) depending on

whether or not we account for the shear stress. Table. 3.2 gives the expression of the

scratch probe area function, 2pALB for common scratch probe geometries, cone, sphere

and flat punch, as illustrated in Fig. 3-4. In what follows we illustrate the resulting

scaling by considering these common scratch probes with the geometrical characteristics

defined in Table 3.1.

Conical Scratch Probe

For a conical scratch probe of half apex angle 6 (cf Figure 3-4 a)), the degree of the

homogeneous function and the height at unit radius are given by respectively: E

1; B = cot 6. Applications of Eqs. (3.32)-(3.34) gives:

1 2 t 1 +2[ 2
ALB= - cod ~ P3 =1±0- I+(cotO0)2ds=sn (3.62)

ct, c ot - osi0
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The energy release is given by:

K Cos 2 0 F 2 2T. < 9 = -K2 (3.63)
E 4sinO d3 - E

We then derive the following fracture criteria:

FT Fe = 2Ked3 / 2 ;sin HT < Hc = 2Ked-1/2 (3.64)
cos 0 ,sin9

Thus, due to the invariance of the #-function with respect to the scratch depth d of the

conical probe, the scratch force and scratch hardness obey to self-similar scaling relations:

Fe(Ad) - A3/ 2Fc(d); Hc(Ad) = A- 1/ 2 H (d) (3.65)

with A a strictly positive real number. Finally, the force-scaling relationship remains

valid if one replaces FT by Fq defined by Eq. (3.59), using c = 1 for a cone:

3Feq= F + F (3.66)

Last, to put these developments in context, it is interesting to note that the scaling of

the fracture force with depth d'/ 2 was derived in Chapter 2 using Dimensional Analysis.

Moreover, a similar scaling has been otained in the past from LEFM analysis of the pull-

out force of axisymmetric anchors ([10, 58]). Given the difference in load and boundary

conditions, and associated stress fields between a pull-out test and the scratch test, this

scaling is readily attributed to the particular axisymmetric geometry.
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Flat Punch

Consider a flat punch of radius R as illustrated in Figure 3-4 c) . The perimeter of the

flat punch is then

P := 2R 1+ d ) (3.67)

Using the monomial

and an upper bound

function formulation ( c -+ oc; B = R'-) we can derive a lower

for the dimensionless perimeter function 3. In fact, we have:

-=lim 1 + ed (
2 -oo B

From the triangle inequality applied with the Euclidean norm we have: Vy; V1 + y 2 <

1 + I Iy1. We thus obtain:

2 1 E ( d _-(1/)- B
(3.69)

It follows:

/3 d1< -1 + d

where the lower bound is relevant for small dIR ratios, whereas the upper bound is

relevant for larger depth-to-radius values of the flat punch. As for the projected contact

area ALB, it reads:

ALB lim 2er 1 ~ ( d (1/E)+1
E-+00 C + I R'-E

= 2Rd (3.71)
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Expression (3.40) thus permits evaluating the energy release rate as:

limg= 1 F 2 - dHT< Q -K2
C-400 E 8R2d (1 + T 2 E (+ A) - ~ Ef c

The fracture criteria for the flat punch is therefore:

FT Fe = 2R 2d (1+ )Kc;
HT CZ=2Kc d

HT :! c1= --
R~

thus, for small depth-to-radius values only, the fracture force and hardness obey to self-

similarity:

(d/R) < 1; Fe(Ad) = A1/ 2 Fe(d); Hc(Ad) = A- (d) (3.74)

It needs to be emphasized that the LEFM solution derived here neglects by design any

plastic zone ahead of the sharp corner of the punch, which may well affect the scaling

even in a brittle material.

Spherical Scratch Probe

The loss of self-similarity found for the flat punch is even more pronounced for the

spherical) scratch probe, which is classically approximated by a parabolic shape,

B = 1/(2R), for which:

ALB 3(2Rdp3/2 = V2Rd 3

±d = + 1# z v 1+ 2x + -arcsinh (V/Ix)
R v/f2 /

(hemi-

o = 2,

(3.75)

(3.76)
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Figure 3-5: Scaling of the normalized fracture force and the perimeter function /, of the
spherical scratch probe. The linear fit of the normalized force is almost indistinguishable
from the actual curve within d/R E [0, 1].

74

I III I ~ w~vji I
-_,3(d/R)
-Linear Fit

- I .



The energy release rate is given by:

S3F2
< =f -=K2 (3.77)

Whence the fracture criteria:

FT F = 4KdvyR' - (3.78)

HT Hc = j ji) (3.79)

Except for small values of d/R < 1, for which # 2, and for which FT(Ad) AF(d)

and HT(Ad) = A- 1/ 2 HT(d), there is strictly no self-similar relation for the parabolic

scratch probe. On the other hand, for all practical ranges of hemi-spherical scratch

probes (that is, d/R E [0, 1]), (d/R) varies little between 2 and 2.5425, and does little

affect the scaling as evidenced in Fig. 3-5; so that the following self-similar scaling

relation can be used in a first, but very good approximation:

FT(Ad) AFt(d); HT(Ad) )A1/2 HT(d) (3.80)

Finally, replacing FT by Fq as defined by (3.59) provides a means to account for shear

force transmission over the interface:

2 6652
Feq 6 658+ F (3.81)

1188

3.4 Chapter Summary

Linear Elastic Fracture Mechanics provides a means to link the forces during a scratch

test to the geometry of the scratch probe and to the fracture properties of the scratched

materials. In this chapter, we considered only fracture-related dissipative mechanisms

and showed that, upon crack propagation in linear elastic isotropic bodies, the equivalent
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scratch force, Feq, is proportional to the fracture toughness K, and to the scratch probe

area function, 2pA; where Fq is related to the horizontal and vertical force.

The scaling of the force is also rationalized. In particular self-similarity applies only

for a conical scratch probe; in which case the force scales as d0 2 , d being the depth of

penetration. This scaling is in agreement with results from Dimensional Analysis, as

demonstrated in Chapter 2. For other probes, additional length scales are involved and

the scaling of the scratch force does not strictly obey self-similarity relation. Nevertheless,

an approximation can be made for shallow penetration depths with a spherical probe; in

these cases the force scales linearly with the depth of penetration.

In this chapter the only mode of energy dissipation considered was crack propagation;

this can be a restrictive assumption especially for rate-dependent materials where viscous

dissipation is susceptible to occur. Therefore, the objective of the next chapter is to

extend the solution derived here to account for possible rate effects.
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Chapter 4

Linear Visco-elastic Fracture

Mechanics Model

Rate and time-dependent crack propagation is pervasive in science and engineering. For

instance, visco-elastic crack growth can be used to explain stick-slip crack motion [75].

In geotechnical engineering and geology, the gradual failure of dams led to the need to

characterize the rate-dependent fracture toughness of concrete [14, 15, 17, 57]. In natural

gas distribution, the creep crack growth of polyethylene generated expensive maintenance

costs due to the time-dependent failure of plastic pipes [20].

In fact, most materials exhibit some rate-dependence, especially at the microscopic

scale. [105, 14, 71]. Thus, the extension of the Linear Elastic Fracture Mechanics model

of Chapter 3 to account for rate effects on fracture properties is the focus of this chapter.

In particular, herein we neglect any temperature dependence of the mechanical behavior,

and investigate the influence of a linear visco-elastic behavior of the scratched material

on the scaling of the scratch forces. The first step is to develop a three-dimensional

constitutive model under isothermal and quasi-static conditions. Then we present some

generic methods to solve boundary value problems involving linear visco-elastic materials.

Finally, these methods are applied to relate the forces and the geometry to the fracture

and visco-elastic properties in the scratch test.
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4.1 Three-Dimensional Constitutive Model for Lin-

ear Visco-elastic Materials

4.1.1 Stress-strain Relation

Consider an elementary system in a reference relaxed state aO = 0. We decompose the

stress and strain tensors (relative to the relaxed reference state) into a deviatoric and

spherical part [31, 34]:

O +a -l;

1
E= e + -l;

3 3=

1
omn = g - : 1

In a linear visco-elastic material, the deviatoric stress (resp. spherical strain) tensor

is related to the deviatoric strain (resp. spherical strain) tensor through linear partial

differential equations of the form:

dt-poUM(t) + Pi d t

do-n(t)
mou-m(t)+m1 dt

d2 _

d2 Orn (t)
dt2 +---=noeft)

d
+1 eij(t) +

This can be rewritten in a more compact form using the differential operator D = d/dt:

P(D)qd(t) = Q(D)e(t)

M(D)o-m(t) = N(D)E(t)

(4.5)

(4.6)
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d t d 2  +
+ 1dt + 2dt2+-

(4.3)
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where

N N

P(D) IPkDk; Q(D) = qkD (47)
1=0 1=0

N N

M(D) ZmkD; N(D)= nkDk (4.8)
1=0 1=0

Equations (4.3) and (4.4) admit the following integral form:

/__ dT; T) dTr

-f(t) = 2 G(t -T) = dr; a,,(t) = K (t - r) dT (4.9)
__T_) 0r

where G(t) and K(t) are respectively the shear and bulk relaxation modulus.

Before proceeding further, we introduce the Laplace transform operator, which is a

powerful tool to solve differential equations [92]. The Laplace transform of a function

f (t) of the real variable t, is a function of the complex variable s, which is denoted here

by F(s) or C (f) (s), and which is defined by:

+00
M (f) (s)= F(s) = j f(t)e-st dt (4.10)

In particular, the Laplace transforms of the time -derivative and of the time-integral

of f(t) can be expressed in function of F(s) according to:

d 1t
£ -f(t) = sF(s) - f(0); £ ( f(t)dt = -F(s) (4.11)

(dt ( o )=s

Equation (4.11) enables one to transform a differential equation of the real time

domain into an algebraic equation of the complex s-domain. Hence, we will refer to the

complex s-domain as the Laplace domain.
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4.1.2 Energy Balance

We consider a decomposition of the strain tensor into an elastic part and a viscous part:

E = E e + Ev (4.12)

Similarly, the strain energy involves two contributions: an elastic and a viscous one.

= - (f ) + Oel (,e) (4.13)

The volume density of elastic strain energy, )el, is the amount of energy stored within

a unit volume of material that is recovered upon unloading. The energy u (CV) is not

recovered due to viscous effects and is often referred to as frozen energy [34]. At the

microscopic level, this results from residual stresses within the material, similar to hard-

ening effects in plasticity. However, there exists an essential difference between plasticity

and visco-elasticity. In the plastic case, the frozen energy value changes only when plas-

tic loading occurs, and thus when the loading evolves. However in visco-elasticity, the

frozen energy evolves and is dissipated into heat form until a relaxed equilibrium state is

reached.

From the Clausius-Duhem inequality, the volume density of dissipation rate due to

viscous processes reads: Vv = a : (ae/Dt) - f/8t. Given that the elastic strain does

not generate any energy dissipation, it comes that the stress tensor is the derivative of

the elastic strain energy function, i, with respect to the elastic strain tensor. Moreover,

if we assume the elastic strain energy to be a quadratic function of the elastic strain, a

linear relationship between the stress and the elastic strain tensor is obtained:

el C el (4.14)
= 2 De

80



a)

Go

b)7 I

G

qM

G m

C)

Figure 4-1: Schematic representation of classical linear visco-elasticity mechanical mod-
els. a) Three-parameter Maxwell model b) Four-parameter Zener model. c) Five-
parameter Burger model. Source [112]

The final expression for the viscous dissipation rate is then:

au (e) aE
p"-= g-t: (4.15)

In the next section, we will illustrate the constitutive equations (4.12), (4.13) and (4.14)

by looking at four particular linear visco-elastic models.

4.2 Classical Linear Visco-elastic Behaviors

Several rheological models have been suggested to model the response of linear visco-

elastic materials under diverse loading conditions. These models usually consists of an

assembly of linear elastic springs and linear viscous dashpots: the springs store strain
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energy whereas the dashpots dissipate mechanical energy into heat form. Herein, we con-

sider a three-parameter Maxwell model, a four-parameter Zener model, a five-parameter

Burger model and a generalized Maxwell model. Moreover, for the sake of simplicity, we

assume a constant Poisson's ratio: this means that the shear and bulk moduli relaxation

functions evolve in similar fashion according to:

2 1 + ii
K(t) = - ~ G(t) (4.16)

31-2v

As a consequence, the stress-strain relationships read in the Laplace domain:

2 1+ v
u(s) = sG(s) [2e(s) + -1- Es 2417

1~ 1 - 112v

E(s) = - ad(s) + - _ .m(S) 1(4.18)
sG(s) .2 2 1 + v

In particular, the elastic strain is given in the time domain by:

Eel(t) = [ Id(t) + - 2vm) (4.19)
Go .2 2 1+v_

where Go = G(t = 0) is the initial shear modulus. As for the viscous strain, it is the

difference between the total strain and the elastic one:

(t) = e(t) - e"l(t) (4.20)

4.2.1 Maxwell Model

The Maxwell model is the simplest mechanical model for linear visco-elasticity and it

consists of a spring and a dashpot in series as illustrated in Figure 4-1. The relaxation

shear modulus reads in the Laplace domain:

G(s) = - + - (4.21)
Go 77m
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There is no frozen energy is a Maxwell material, which means that the elastic strain

energy is given by:

(4.22)

The viscous dissipation rate associated with the viscous strain is given by:

oV M[
aev(t)

at
aev(t) 2 1+v

at 31-2v
( ae(t))2]

(4.23)

4.2.2 Zener Model

This model is illustrated in Figure 4-1 b) and consists of a spring in series with a Kelvin-

Voigt unit (a spring and a dashpot in parallel). The relaxation shear modulus reads in

the Laplace domain:

(4.24)
s

G, + s?7v

While the elastic strain energy is still given by Eq.

frozen energy:

(4.22), the Zener model has a

u(e) =I Gv 2 ev(t) : v(t) +
2 1+v (Cv(fl2

31-2v ( "

Finally the expression of the viscous dissipation rate is:

aev(t)

at
aev(t) 2 1 +v

at 31-2v
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(4.25)

acv(t)) 2]( tJ (4.26)

O/e" = - Go 2 e'l (t) : el (t) +2 - + (el(t))2
2 1 31-2vI

s
G(s) = -+

(Go



4.2.3 Burger Model

The Burger Model consists of a Maxwell and a Kelvin-Voigt unit in series, as shown in

Figure 4-1 c). The relaxation shear modulus reads in Laplace domain:

G(s) - + - + (4.27)
Go nm G,+ s)

The viscous strain can be decomposed into a contribution from the Maxwell element, E,

and a contribution from the Kelvin-Voigt element, eV. Their Laplace transforms read:

1 [1 - 11 - 2v- 1
EM(S) + - ) cim(s) 1(428)

sT M _2 2 1 + (
11 - I1I - 2 V

EV(S) c. [ (S) + - -mn(s)_ (4.29)
Gv + s77v 2 1+ v

The elastic strain energy is given by Eq. (4.22) and the frozen energy is given by Eq. (4.25).

Finally, the viscous dissipation rate has two contributions associated respectively with

the viscous Maxwell strain and the viscous Kelvin-Voigt strain:

aBe"t aem(t) 2 1 -Ev BM2]

Mev(t) aev(t) 2 1+v DcM(t)) 2]

IV 2 : + (4.30)
t at 31-2v (avt

4.2.4 Generalized Maxwell Model

The Generalized Maxwell model consists of n Maxwell units in parallel as illustrated in

Figure 4-2. The relaxation shear modulus reads in Laplace domain:

Go e n s t ~in
G(s) =- E + -- (4.31)

s Gi qj

For each Maxwell unit i, Z = I1... n, the strain tensors in the spring, Ee, and in the
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Figure 4-2: Schematic representation of generalized Maxwell model. Source [102]

dashpot, Ev. are given in Laplace domain by:

e) +I s) (4.
Gi 77i

S+1
G r 77 (4.

The total free energy is then the sum of the contribution from each element:

= Go 2 e(t) : e(t) +

+ G 2 i1(t)

2 1+ v 

el 2 1+v) e l

ee =(t) + 2 1( v

As for the viscous dissipation rate, it is the sum of the energy dissipation rate in each

Maxwell unit:

n

O VS

12

e (t)
at

aev.(t)
at

2 1+v
31- 2v ( &c(t) 2]at (4.35)
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4.3 Stress Analysis for Isothermal Quasi-static Bound-

ary Value Problems

In this section we develop methods to solve boundary value problems in linear visco-

elastic material under isothermal conditions. First, we introduce the correspondence

principle that enables solving boundary value problems by using the solution from the

linear elastic case. Then, we develop a thermodynamic framework for the study of crack

propagation.

4.3.1 Correspondence Principle

Under the assumption of isothermal, quasi-static evolutions and negligible body forces,

the equations of equilibrium for a linear visco-elastic material involve the constitutive

equation (4.9) and the momentum balance:

div a(t) = 0 (4.36)

The compatibility equation reads:

2, 2 E 2 Eik a2Ej
+ = + (4.37)

a9XkaXl &9XiO9Xj (9X3 a Ox1 Xi(9Xk

The traction and displacement boundary conditions read:

g(t) : n = Td(t) on aQTd (4.38)

((t) =d ((t) on a0cd (4.39)

where QTd and QOd are complementary portions of the boundary oQ of the material

domain Q. Finally, the initial conditions of stress-free state must be taken into account:
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(t) = 0; f(t) = (t) = 0 (4.40)

It can then be shown [31] that equations (4.36) to (4.40) admit a unique solution provided

that the initial values of the shear and bulk relaxation moduli are positive:

G(0) > 0 and K(0) > 0 (4.41)

Under these conditions, the elasticvisco-elastic correspondence principle stipulates

that, in the Laplace domain, the visco-elastic solution is obtained from the solution of the

corresponding elastic problem where the shear and bulk moduli are replaced respectively

by sO(s) and sK(s). The time-dependent visco-elastic solution can then be evaluated

by performing a subsequent Laplace transform inversion.

The form of the correspondence principle presented above applies strictly only when

the displacement and traction boundary conditions are time-invariant. However the

correspondence principle can be extended to time-dependent boundary conditions [31]

such as crack propagation provided that the loading is monotonically increasing, which

is the case in scratch testing.

4.3.2 Thermodynamic Framework for Crack Propagation in Lin-

ear Visco-elastic Materials

Consider a steady-state propagation of a crack at a velocity i e,. Let Q' be a sub-domain

of the material which encloses the crack surface so that its boundary 0Q' is comprised of

the crack face o9F and of a displacement boundary C. The global dissipation rate in the

sub-domain Q' during crack propagation equals with opposite sign the rate of change of
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the potential energy:

d19 d E,
_ dt > 0 (4.42)dt dt

On the other hand, the change in potential energy is given by:

d j L bdQ' = j dQ' + 0 (U -nrdS (4.43)
dt dt /(t fQ

Using the Clausius-Duhem inequality along with Eq. (4.15), Eq. (4.43) can be developed

as follows:

dt og iG'+( $ ( -n)dS - 9U :v gd' (4.44)

Finally, by using the Theorem of virtual work, we have the following expression of the

global dissipation rate:

dt -}[i T ajdSI +j ,- ) :dQ' (4.45)

The second integral on the right hand side of Eq. (4.45) is the viscous dissipation taking

place in the bulk of the material. The first term is the fracture dissipation and the

thermodynamic force is the energy release rate, g, which is still given by a contour

integral:

S= n1 - - dS (4.46)JC~ 1

4.4 Linear Visco-Elastic Fracture Scratch Model

Consider then the scratch testing of a visco-elastic material as illustrated in Figure 4-3.

We are looking for stress and strain fields that satisfy the linear visco-elastic constitutive
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Figure 4-3: Scratch test on a visco-elastic material. Top) Side view. Bottom) Front view.
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law (4.9), the momentum balance (4.36), initial conditions (4.40) as well as the traction

boundary conditions relevant in our problem. With the origin of the coordinate system

being at height d/2, the traction boundary conditions include:

" Stress-free boundary conditions on the crack face and on the top:

azz(r, 0, ±d/2, t) = 0 (4.47)

" The traction boundary conditions at the interface (S) between the scratch probe

and the material: where we neglect the contribution to the crack propagation of

shear stresses due to the vertical force :

JS -XX (r, 0, z t )nxdS = FT (t ) (4.48)
(s)

For the sake of simplicity, we assume a constant Poisson's ratio. Moreover,the axial strain

rate is assumed to be constant Exa = 0t and the following shape of the strain tensor is

considered:

e(t) = Ot e9 - e 9 ezl (4.49)

The resulting stress tensor reads in the Laplace domain:

_(s) = 2sG(s)- [1ivfx® 1 ei 0 e (4.50)
s2 11 -ex +1-

In particular, the stress field satisfies the traction boundary condition (4.47). We intro-

duce the plane strain relaxation modulus:

3sK(s) + s(s) 2sM(s) = 4sG(s) , - V sG(s) (4.51)
sK(s) + 4sG(s) -
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Then, the axial stress is related to the axial strain via uo-(s) = sM(s)el-(s). As a

consequence, we introduce the plane strain visco-elastic coefficient defined by:

A(t) = IL (s ) (4.52)
Mt s2

where t-'(.) stands for the inverse Laplace transform, and M = 4G(3K+G)/(3K+4G)

is the instantaneous plane strain modulus. The axial stress is then related to the axial

strain via:

O-22 = A(t)MExx(t) (4.53)

Furthermore, the elastic strain energy is given by ,e = 1/2ot2/M 1. We introduce the

frozen energy correction factor defined as the ratio of the frozen strain energy to the

elastic strain energy

X = (4.54)
2 M

Using Eq. (4.46) to evaluate the energy release, we then find:

M2PLF 2 -
I t 2 1 - x(t) (4.55)

M 2pALB IA(t)

The fracture criterion then reads:

FT

F < V MGe W7(t) (4.56)

'It can be shown that this expression of the elastic free energy is valid provided that the Poisson's
ratio is constant.
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where W(t) is given by:

22
1 A(t) = I - x(t) (4.57)

K, = VMGc is the intrinsic fracture toughness of the material. In summary, in the linear

visco-elastic case there is a an apparent fracture toughness due to the coupling between

the fracture and the visco-elastic constants as well as the presence of frozen energy in

the bulk of the material. In what follows, we will specify the expressions of the plane

strain visco-elastic coefficient A(t) and of the frozen energy correction factor X(t) for the

visco-elastic models presented above.

4.5 Application to Some Visco-elastic Models

4.5.1 Maxwell Model

There is no frozen energy associated with a Maxwell material. Therefore the frozen

energy correction factor is zero, while the plane strain visco-elastic coefficient is given by:

1-e Go t

X(t) = 0; A(t) =- et (4.58)
'7M

In particular, the total strain tensor can be decomposed into its elastic and viscous

components:

E x(t) e - e 0 e,- ez1 (4.59)
IfX I1 - V- I

,= [1 - A(t)] e2x(t) e9 eX - ez 0 ez (4.60)
IfX I - V

Because there is no frozen energy, the volume density of work provided to the system is

either dissipated in the bulk of the material or stored as elastic strain energy. This elastic

strain energy is later released to propagate the crack: W = _ : dt = ft cv dt + Oe'.
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Figure 4-4: Energy balance in a Maxwell material during a scratch test.

Both the viscous dissipation rate and the elastic strain energy can be evaluated from

Eqs. (4.19) and (4.23); that is,

t t 2 d 2 2 2 -x -2x
p"d =G - (Exm - dt '7M -2 Xi=

J o 1  [- dt XX X - v Go x+2x 2x

(4.61)

1 1 1 Me2 X 21 - 2e- e-2x-
= G [AVx] 2 o =I x 2 I=1-- 1-iG0 x2 _

(4.62)

where x = t/r and T = TM/Go is the characteristic relaxation time of the material.

Figure 4-4 plots the ratio of the viscous dissipation, D' = fo ov to the total work,

W = D' + v/A, as well as the ratio of the apparent to the intrinsic fracture toughness,
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FT/(K / 2 pALB). The x-axis displays the ratio of the characteristic time T to the crack

propagation time t. When the crack propagation time is very small compared to the

characteristic time, the behavior is essentially elastic with a negligible viscous dissipation.

As a result, the apparent fracture toughness accurately reflects the intrinsic fracture

toughness. However, for long periods over which the loading is applied, viscous dissipation

becomes predominant and the apparent fracture toughness, FT/ /pAi, is very small

compared to the intrinsic fracture toughness, Kc.

4.5.2 Zener Model

By combining Eqs. (4.24) and (4.52) we get the following expression of the plane strain

visco-elastic coefficient for the Zener model:

_ Go+GVt

A(t) + (4.63)Go + Gv Go + Gv Go+Gv (
7v

The viscous strain tensor is still given by Eq. (4.60). Using Eq.(4.25) to calculate the

frozen energy, we find the following expression for the frozen energy correction factor:

X(t) =G [ 1 (4.64)
Go I A(t)

4.5.3 Burger Model

The plane strain visco-elastic coefficient is calculated from equations (4.27) and (4.52).

The elastic strain is still given by: E" = A(t)6xx [ex 9 ex - v/(1 - v)ez 0 ez] and the

viscous strain can be decomposed into a contribution from the Maxwell unit and a con-

tribution from the Kelvin Voigt unit according to:

__ M f (T)dT M J jA(ut)u2 duE (4.65)1 MtMtf1'qM 0 - 7M 0

EV = E - E el - M - A(t) - A(Ut)U2du E (4.66)
= - TM Jo
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We thus derive the frozen energy correction factor in the form:

X(t) = -uU2dU (4.67)Go(t) r / (_M 0 At

4.5.4 Generalized Maxwell Model

For a generalized Maxwell model, the elastic strain in each Maxwell unit is given by:

= Ai(t)E (4.68)

where the functions Ai are given by:

Ao = I; Ai = et i = I1... n (4.69)
i-t

The plane strain visco-elastic coefficient is given by a weighted average of function Aj:

n

Moreover, the total free energy is the sum of the contribution from each Maxwell unit.

Using M = 2/(1 - v) E'o GL we obtain the following expression of the frozen energy

correction factor:

x(t)n= G A( - (4.71)X E Gi .A(t)_

4.6 Chapter Summary

The goal of this chapter was to relate the force measurement to the intrinsic fracture

toughness considering a linear visco-elastic behavior of the scratched material. To this

end, we introduced the correspondence principle, which enables to extract the linear
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Rheological behavior plane strain visco-elastic coef- frozen energy correction factor
ficient A(t) X W)

Maxwell 1-e 7" 0

GO+V t 2

Four Parameter Go+Gv +G 1e G -ZoGv Go+Gv GoGt G A(t) J
77V

Gy t lA(ut) 2dBurger Go A (t) - mf (t) du

Generalized Maxwell -A(t) 1 - En_j=O Z2 Gi L ~= Gi [A(t)

Table 4.1: Analytical expressions of the plane strain visco-elastic coefficient A(t) and of
the frozen energy correction factor X(t) for the linear visco-elastic models detailed in
Section ??

visco-elastic solution from the linear elastic solution. Using this principle, we proposed a

framework to study crack propagation in linear visco-elastic materials. Using an energy

approach based on the thermodynamics of irreversible processes we showed that the

energy release rate remains the driving force for crack propagation, and that it can

still be evaluated via a contour integral. These developments were illustrated for some

common linear visco-elastic materials. Upon crack propagation the apparent fracture

toughness had the generic form:

FT ~c 2
= K[ - x(t)] (4.72)

V/-2pALB _A(t)

where A and X are respectively the plane strain visco-elastic coefficient, and the frozen

energy correction factor, given by Eqs. (4.52) and (4.54), respectively. Table 4.1 sum-

marizes the expression of A and X for some classical linear visco-elastic behaviors.

Moreover, the ratio of the apparent to the intrinsic fracture toughness reflects the

contribution of the respective dissipative mechanisms to the overall dissipation. In fact,

the work rate is either dissipated via viscous processes or stored as an elastic or frozen

strain energy that is later released to create new fracture surfaces. The ratio of the char-

acteristic time to the crack propagation time, T/t is crucial: for small values of this ratio,

the viscous dissipation is negligible: the material behavior is essentially elastic and the
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apparent fracture toughness, FT/V 2pALB, provides an accurate measure of the intrinsic

fracture toughness, Kc. However, for large values of this ratio, the viscous dissipation is

predominant compared to the fracture dissipation, and the apparent fracture toughness

is very negligible compared to the intrinsic fracture toughness. For intermediate values,

the knowledge of the visco-elastic properties is essential to decouple creep from fracture.

The model presented rests on several limiting assumptions: quasi-static isothermal

evolution, constant Poisson's ratio,uni-axial stress field in front of the probe and fracture

behavior influenced only by the horizontal scratch force. The hypothesis of a time-

independent Poisson's ratio assumes a similar relaxation behavior for both the shear

and bulk modulus. In practice, however, the shear modulus relaxes faster than the bulk

modulus. Therefore this assumption is valid for extreme time ranges only (t < T or

t > T). Finally a quasi-static and isothermal evolution neglects any local temperature

rise at the crack tip. On the other hand, despite these limitations, we now have a model

in hand, that can be used for calibration and validation, as shown in the next part of

this thesis.
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Part III

Calibration and Experimental

Validation
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Chapter 5

Scratch Probe Calibration

In Part II, analytical models were developed to express the forces in function of the

probe geometry, the testing conditions- penetration depth, scratch speed, loading rate-

and the material mechanical properties, assuming predominant brittle fracture processes

during the scratch test. In particular, fracture properties can be measured by pulling

an axisymmetric probe across the surface of a material as pictured in Figure 5-1. The

fracture toughness, Kc, is calculated from:

FT < Kc (5.1)
N/2PALB

where FT is the horizontal force, p is the probe perimeter, ALB the projected horizontal

load bearing contact area and 2 pALB is the scratch probe shape function.

The third part of this thesis is devoted to the calibration and validation of these

analytical models. For any axisymmetric probe, it is imperative to calibrate the shape

function with a material of known fracture toughness. Specifically, the goal of this chap-

ter is to develop a calibration procedure suited for scratch tests with a 200 Pm Rockwell

diamond probe. Based on calibration, we then an develop inverse method in order to pre-

dict fracture properties using scratch tests. Chapter 6 validates the method for fracture

determination on metals, polymers and ceramics. Finally, Chapter 7 builds a method
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Figure 5-1: Schematic representation of a microscratch test.

to characterize the intrinsic fracture resistance for rate-dependent materials at both the

microscopic and the macroscopic level.

In this chapter, we build a protocol to calibrate the shape function of a Rockwell C

probe in the spherical range (d < 10 pm) and in the conical range (d > 26 [m). First

we identify relevant reference material and develop a specimen preparation procedure.

Finally we show that the measured shape function depends solely on the scratch probe

geometry and not on extrinsic parameters such as surface cleanliness, probe tip wear,

chosen reference material and scratched material.

5.1 Reference Material

The ideal reference material is homogeneous, isotropic, linear elastic, quasi-brittle, easily

available and with a known fracture toughness. In this work, we choose two reference

materials corresponding to the range of penetration depths. For the spherical range,

(d < 10 pm), we choose 99.995 % silicon dioxide also known as fused silica. For the conical

range, (d > 26 pm), we choose Lexan 9034. Lexan 9034 is an amorphous polycarbonate

that has a known fracture toughness of 2.69 MPav'iii [49], and can be easily provided
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Figure 5-2: Storage of Lexan 9034 specimen in a glass jar with a tight lid.

for as 1/2-inch thick sheets by SABIC Innovative Plastics. As for fused silica, it can

be purchased from Mcmaster Carr (Robbinsville, NJ) and has a fracture toughness of

0.58 MPav/ii [46]. It is important to cleanse and dry the calibration specimens prior to

testing. For instance, surface impurities or moisture content are known to degrade the

mechanical performance of polycarbonate [55, 69].

5.1.1 Material Preparation Procedure

The material preparation procedure described below applies to both Lexan 9034 and

fused silica. 25 mmx 25 mm x 12 mm Lexan 9034 specimens are cut from 12-mm thick

sheets using a saw stop table and the protective plastic film is removed, meanwhile fused

silica specimens are cylindrical with a diameter of 25 mm and a height of 12 mm, and

they are purchased from McMaster-Carr (Robbinsville, NJ). Forty-eight hours prior to

scratch testing, the calibration specimens are washed by ultrasonication for five minutes

consecutively in a 1% Alconox solution and then in distilled water. Next, the samples are

rinsed by exposing the surfaces to be tested to a jet of running water. After cleansing,

the samples are laid in open glass jars and dried in an oven at 250 F for twenty-four

hours. Finally, the samples were allowed to cool in closed glass jars with tight lids at
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Figure 5-3: Block of Lexan 9034 mounted on a steel plate and held with a CSM Instru-
ments rectangular sample holder prior to scratch testing.

Scratch length (mm) Scratch speed Loading rate Maximum vertical

(mm/min) (N/min) force (N)
3 6 60 30

Table 5.1: Testing parameters for the scratch probe calibration.

room temperature as depicted in Figure 5-2.

5.1.2 Rockwell Diamond C Probe

The scratch probe most commonly used is a Rockwell C diamond probe: a cone of half

apex angle 600 that ends in a half-sphere of radius R=200 pm. Figure 5-4 a) shows an

intact probe whereas Figure 5-4-b) shows a broken one; both optical images were taken

with the Micro Scratch Tester optical microscope at the magnification level of 800X. A

broken probe can alter the scaling of the scratch forces. Therefore, it is imperative to

check the integrity of the probe prior to scratch testing. Furthermore, the probe must

be cleansed by gently rubbing a cotton swab saturated in Isopropyl alcohol.
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Figure 5-4: Optical images of intact and broken 200 pm Rockwell diamond probe. a)
clean and intact probe. b) broken probe.

5.1.3 Calibration

After the specimen have been washed and dried, and after the scratch probe has been

cleansed, the next step is to test the calibration specimens. Each specimen is glued to

a square stainless steel plate, 25-mm wide and 12-mm thick, and then mounted on a

scratch rectangular holder as shown in Figure 5-3. In particular, this way of gluing and

mounting specimen was shown to yield the least amount of specimen compliance during

scratch testing. A matrix of scratch tests are then performed with a clean and unbroken

Rockwell C diamond probe, the parameters of each test being summarized in Table 5.1:

twenty-four tests are performed on Lexan 9034 and two tests are performed on fused

silica. After testing, the recorded horizontal force and penetration depth are extracted.

The analytical model predicts the following expression of the shape function 2 pALB,

for a cone of half-apex angle 9 and for a sphere of radius R, respectively:

2pALB =4 tan d3 , 2pALB = 3 2 d2R (5.2)
cos0 3
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The maximum depth of penetration ranges within 7 - 10 pm for fused silica and 120-

160 pm for Lexan 9034. Below the sphere-to-cone transition depth, 26 Pm, the probe

is assumed to be a perfect sphere and the horizontal scratch force is expected to be a

square function of the penetration depth. As for Lexan 9034, the maximum depth of

penetration is four times above 26 pm. As a consequence, the scratch probe is assumed

to behave as a perfect cone in that range, and the horizontal force FT is expected to

be a cubic function of d. Therefore, a nonlinear regression is then performed to fit the

squared horizontal force-penetration depth curve, FT/ (R3K2) (d/Ro), to functions of the

form, y = 3x 2 for fused silica and y = ax3 for Lexan 9034; with RO = 200 pm. Figure

5-5 a) and b) show an example of shape function curves for both fused silica and Lexan

9034. In particular, the fitted functions matches well the experimental data with high

coefficient of correlation, R 2 = 0.9923 for fused silica, and R 2 = 0.9901 for Lexan 9034.

From the values of the fitted coefficients, a and 3, 14.61 and 54.51 respectively, we can

derive the effective cone half-apex angle, 0, and probe tip radius, R, using Eq. (5.2). The

calculated effective half-apex angle is 60.74', well within the manufacturer's specification

range 600 ± 5'. The calculated effective tip radius is R = 1.02 mm. This value is five

times greater than the theoretical value, 200 pm, which is indicative of high blunting at

the tip of the probe (d < 10 pm). Having shown the scratch probe calibration method,

we will focus on the conical range and show that the measured scratch probe function

is a geometrical property that is independent on external factors such as the surface

cleanliness, the probe wear or the choice of reference material.
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Figure 5-5: Example of calibrated shape function curves for scratch testing with a 200
ym Rockwell diamond probe. The shape function is 2 pALB = FT/(K2R3) where Ro =
200 pm. a) Tests on fused silica. b) Tests on Lexan 9034.
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Figure 5-6: Optical image of Lexan 9034 specimens surface after cleansing and drying. 1) Specimen 1. 2) Specimen
2). 3) Specimen 3). 4) Specimen 4. 5) Specimen 5. 6) Specimen 6. 7) Specimen 7). 1) 3) and 4) are "clean" surfaces
whereas 2), 5), 6) and 7) are "dirty" surfaces.
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5.2 Influence of Surface Cleanliness and Scratch Probe

Tip Wear

5.2.1 Influence of the Surface Cleanliness

Several factors can affect the depth and force measurement during a scratch test: room

temperature, humidity, specimen moisture content, etc. The goal of this investigation

is to assess the influence of surface impurities on the measured calibration function. To

this end, 7 specimens were prepared following the procedure described in Section 5.1.1,

with a major modification. In fact, after drying, the specimen were stored for four days,

heated again in an oven for twenty-four hours to release any moisture and then cooled

for twenty-four hours prior to testing. The storage allowed the deposition of impurities

on the surface.

Figure 5-6 shows the optical images of the specimen surfaces, obtained with the Micro

Scratch Tester optical microscope at a magnification level of 800X. Figs. 5-6-1), 5-6-3)

and 5-6-4) are clear and clean. By contrast, Figs. 5-6-2), 5-6-5), 5-6-6) and 5-6-7)

present stains, dots and scratches that can be attributed to contaminants, dust or dirt

particles that accumulate on the surface. To ensure a clean surface as much as possible,

we recommend to prepare the Lexan specimen exactly 48 hours prior to testing, wear

hand gloves, and avoid any direct contact with the surfaces to be tested.

For each specimen, a set of 24 scratches were performed with the same scratch probe.

The first test was discarded and only the remaining twenty-three were considered in

the statistical analysis. Then for each individual scratch test, the squared horizontal

force-penetration depth curve, FT/(R 3 K2)(d/R), was fit to a function of the form, y =

ax3 . Figure 5-7 displays the resulting histograms for the calibration coefficient a for all

specimen meanwhile Table 5.2 lists the values of a as well as the equivalent effective

half-apex cone angle. For "clean" surfaces, (specimen 1, 3 and 4), the range of coefficient

a is between 10 and 16 and the average values vary from 11.87 to 13.47. For most

"dirty" specimen, the range for a is lower, between 6 and 11 and the average values are
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Specimen Calibration coeffi- Effective half-apex Condition of the
cient a angle 0(0) surface

1 13.47±1.41 59.60 Clean
2 12.61±1.29 58.64 Dirty
3 11.87+1.08 57.74 Clean
4 12.21± 0.80 58.16 Clean
5 9.58±1.33 54.37 Dirty
6 9.40± 1.02 54.06 Dirty
7 9.38±1.02 54.02 Dirty

Table 5.2: Testing parameters for the scratch probe calibration.

also lower, ranging from 9.38 to 9.58. For "clean" specimen the effective half-apex cone

angle is within the manufacturer's specification range, 600 ± 5 0; which is not the case

for "dirty" specimen, except for specimen 2. Moreover, knowing that all specimens were

tested with the same 200 pm Rockwell diamond probe, we see that there is a variation

of 7% in the fitted value of a for "clean" specimens. This means that the calibration

procedure is extremely precise within a Lexan specimen (23 scratch tests) and from one

Lexan block to another (here 23 scratch tests X 3 blocks). We can thus conclude that

the cleanliness of the surface is of paramount importance in order to get an accurate and

precise calibration of the scratch probe shape function.

5.2.2 Scratch Probe Tip Wear

The goal of this experiment was to investigate the presence of tool wear due to prolonged

usage of the tip. For this purpose, seven scratch probes were examined, with an operating

time ranging from 1 to 17 months, with an average daily use of five scratches per scratch

probe. Seven different Lexan 9034 specimens corresponding to the seven probes were

prepared and tested. For each probe and each Lexan block, a matrix of 8 x 3 scratch

tests was carried out. After testing, the recorded horizontal force and penetration depth

were extracted. A nonlinear regression was performed on each individual scratch test to

fit the horizontal force-penetration depth curve, FT(d), to a function of the form, y = ax'.

Table 5.3 lists the fitted calibrating coefficients, a, as well as the corresponding effective
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Figure 5-8: Calibration coefficient a as a function of the number of scratches performed.

cone half-apex angle. Figure 5-8 plots a versus the number of scratch tests performed

with the probe. A linear regression is performed and yields y = 8.4910-4 X + 14.21: this

means that prolonged use of the probe leads to a slight blunting of the probe. However

the correlation is very weak: R2 = 0.2010; and the slope- 8.4910-4/scratch- is very small.

Therefore, we can neglect the tool wear on the scratch probe. However, we recommend

to keep the number of scratches less than 150, which ensures that the relative increase

of a remains less than 1%.

5.3 Repeatability

In summary, the following conditions must be met for the scratch probe function to be

a purely geometry factor: the scratch probe must be clean, unbroken and new (less than

150 scratch tests performed) and the Lexan 9034 specimens must be prepared as indicated

in Section 5.1.1. In the next section we show that the scratch probe function does not

depend on the choice of the calibrating material and that in the conditions specified, the

fracture toughness determination method is highly reproducible.
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Probe serial Operating time Number of Calibration co- Effective half-
number (months) scratch tests efficient oz apex cone an-

performed gle 0
D-214 1 150 12.59±0.60 58.61
H-298 1 150 14.67 ± 0.89 60.80
H-297 4 600 16.73±0.62 62.57
E-259 9 1350 13.33±1.04 59.45
G-209 10 1500 16.83±1.01 62.85
G-200 12 1800 16.4+0.85 62.31
E-266 17 2550 15.80 ± 0.64 61.80

Table 5.3: Influence of the use on the probe shape function. The number of scratch tests
performed is calculated assuming a daily use of 5 scratches per day per probe.

5.3.1 Reference Calibration Material

Lexan 9034 was chosen as a calibrating material for scratch testing with a Rockwell

C diamond probe in the conical range, because it can be easily provided by plastic

manufacturers and because of its softness, which enables the calibration within the range

of penetration depth commonly used for geologic materials. In this section we verify the

claim that the calibrated shape function is independent on the reference material. For

this purpose, a paraffin wax mixture was chosen as an alternative reference material.

The mixture consisted of paraffin wax (Exxon Mobil brand) with 2% additive Vybar

260. Both the wax and the additive were purchase from Polygon Corporation, Boston.

In order to assess the fracture toughness, three-point bending tests were performed on

58mm X 180mm X 34 mm specimens with a single edge notch at a cross-head speed of

25.4 mm/min. The measured fracture toughness value was 0.082+0.017 MPavii. Table

5.4 summarizes the mechanical properties of both Lexan and paraffin wax. Whereas the

Young's moduli are of the same order of magnitude, Lexan has a uniaxial compressive

strength and a fracture toughness more than an order of magnitude greater than those

of paraffin wax.

Scratch tests were performed with the same scratch probe, G-209, on both Lexan

9034 and paraffin wax. The Lexan sample was prepared according to the procedure
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Material Young Modulus Uniaxial Com- Fracture Toughness

(GPa) pressive Strength (MPax/iii)
(MPa)

Lexan 9034 2.5 86 2.69
Paraffin wax 1.2 2 0.082 ±0.017
(Exxon Mobil)

Table 5.4: Mechanical properties of Lexan 9034 and paraffin wax

Scratch length Scratch speed Loading rate Maximum vertical

(mm) (mm/min) (N/min) force (N)

3 6 60 30
3 6 4 2

Table 5.5: Testing parameters for Lexan 9034 and paraffin wax.

described in Section 5.1.1. As for the paraffin wax, the sample preparation procedure

involved machining, coarse and fine grinding, cleansing by ultrasonication in Alconox

solution and then distilled water and finally drying in a glass jar at room temperature.

The testing parameters were different for paraffin wax. In particular, the prescribed

maximum force was 2 N, an order of magnitude smaller than that of Lexan, to reflect

the difference in strength between both materials and to achieve comparable ranges of

penetration depths. On the other hand, the scratch length and the scratch speed were

kept equal. Table 5.5 summarizes the testing parameters for both materials.

Figure 5-9 displays the shape function curves obtained for the scratch probe G-209

with Lexan 9034 and paraffin wax. Table 5.6 lists the resulting calibration coefficients and

effective half-apex cone angles. The relative error between the calibration coefficient of

Lexan and that of Paraffin wax is small, 13 %. Therefore the calibrated shape function is

independent of the reference material, as long as it is homogeneous, linear elastic isotropic

and soft enough to reach similar penetration depth ranges. Nevertheless we recommend

the use of Lexan 9034, following the procedure detailed above in order to calibrate the

scratch probe shape function.
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Figure 5-9: Calibrated shape function
a) Lexan and b) Paraffin Wax

obtained on the same scratch probe G-209 with

Material Calibrating coeffi- Coefficient of corre- Effective half-apex
cient a lation R 2  cone angle 0 ( )

Lexan 9034 16.76 0.9896 62.59
Paraffin wax 14.53 0.9554 60.67
(Exxon Mobil)

Table 5.6: Calibrating coefficient obtained with Lexan and Paraffin wax on the scratch
probe G-209.

113

XAN
a) -

5-

3-,24

0*
0

b)
8

%.6

r

PW

I.0.6 0.2 0.

LE

Ic r

'WO



4 ,,
D-214

3-

2-

0.
0 0.2 d/R 0.4

4
H-298

3-

2

1

C)

0.2 d/R 0.4

4

3

2

0
0) 0.2 d/R 0.4

Figure 5-10: Assessment of the fracture toughness of Delrin using three different scratch
probes: a) D-214, b) H-297 and c) H-298.
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Probe serial num- Calibrating coeffi- Effective half-apex Predicted frac-
ber cient a cone angle 6 (0) ture toughness K,

(MPaViii)
D-214 11.68 57.49 2.23±0.09
H-297 16.70 62.55 2.08±0.06
H-298 14.62 60.75 2.06±0.04

Table 5.7: Fracture toughness values predicted for Delrin using three different scratch
probes.

5.3.2 Repeatability of the Fracture Toughness Determination

Method

The goal of this paragraph is to verify the claim that Eq. (5.1) leads to measurements of

the fracture toughness that are reliable, consistent and repeatable when the scratch probe

is calibrated using the method described in Section 5.1.1. For this purpose micro scratch

tests were performed on polyoxymethylene Delrin using three different scratch probes: D-

214, H-297 and H-298. The material was provided by McMaster-Carr and was prepared

using the procedure described for Lexan: cleansing with Alconox and distilled water,

drying in an oven and at room temperature. Each scratch probe was calibrated prior

to testing using Lexan as described in Section 5.1.3. Then a set of three micro-scratch

tests was performed using the testing parameters given in Table 5.1. Table 5.7 shows

the calibrating coefficients and the predicted fracture toughness. Figure 5-10 displays

the variation of FT/ 2pA versus d/R. For each scratch probe the predicted half-apex

cone angle falls within the manufacturer specification range, 600 ±5'. Moreover, the

curve FT/ 2pA converges towards an asymptotic value, which reflects the shift from an

initial state where fracture dissipation is negligible to a fracture-driven process where the

fracture resistance can be assessed by Eq. (5.1). For a given probe the uncertainty on

the predicted fracture toughness is less than 4%. From the individual fracture toughness

values, 2.23±0.09 MPaNi/i, 2.08±0.06 MPaNi/i and 2.06±0.04 MPa'iii we can estimate

the overall fracture toughness: 2.18t0.04 MPa/mii. Thus, the uncertainty on the mea-

surement of the fracture toughness remains less than 4%.
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5.4 Chapter Summary

A protocol has been established to calibrate the shape function of a 200 pam Rockwell

diamond probe, using 99.995% silicon dioxide and Lexan 9034 as reference materials,

for testing in the spherical (d < 10 pm) range and in the conical (d > 26 [n) range

respectively. This protocol involves the adequate preparation of calibration specimens

through washing, rinsing and drying. For the conical range, the prediction of the probe

half-apex angle is in agreement with the specifications from the manufacturer. However,

for the spherical range, there is considerable blunting of the probe tip. Moreover, the

presence of impurities or debris at the surface of Lexan can degrade locally the fracture

properties thus leading to an erroneous shape function. Therefore, the cleanliness of the

surface to be tested is of paramount importance. Moreover, the wear of the probe tool

due to prolonged usage is negligible as long as the number of scratch tests is less than

150. Moreover, the shape function is independent on the reference material as long as

the reference material is homogeneous linear elastic isotropic and the penetration depth

ranges are similar. Finally, for homogeneous materials, the predicted fracture toughness

value is independent of the scratch probe within 10% of relative uncertainty. We thus

have an operational probe calibration procedure in place that can be used for refined

scratch test applications, such as the study of rate effects. This is shown next.
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Chapter 6

Experimental Validation

In part II, an analytical model was developed to express the fracture toughness in function

of the force and depth measurement during a scratch test with an axisymmetric probe.

In particular, the horizontal scratch force FT is related to the fracture toughness Kc via:

FT 
(6.1)

V2PALB

where p is the scratch probe perimeter, ALB is the horizontal projected load-bearing

contact are and 2 PALB is the scratch probe shape function. Chapter 5 has shown that

the probe shape function is independent of external factors such as the choice of reference

material, the probe tip wear or the calibration material surface cleanliness. Moreover

a protocol has been developed and validated in order to calibrate the scratch probe

shape function. Given a clean unbroken and new (less than 150 scratch tests performed)

scratch probe and by using Lexan 9034 as a reference material as specified in Chapter

5, the method for fracture determination was shown to be reproducible for homogeneous

materials, with a relative uncertainty less than 13%.

The goal in this chapter is to validate the accuracy of the fracture determination

method on homogeneous materials, by confronting the fracture toughness measured at

the microscopic scale to macroscopic measurements, obtained via conventional fracture-
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testing methods such as the three-point bend test on single-edge notched specimens. First

we introduce the materials, then we take a closer look at the scaling of the horizontal

scratch force. Finally, the predicted fracture toughness values are compared with data

from the scientific literature.

6.1 Materials and Methods

6.1.1 Materials

The materials investigated in this chapter are summarized in Table 6.1. They were chosen

to cover at least two orders of magnitude in fracture toughness. They include three ceram-

ics (soda lime glass, Pyrex glass and fused silica), three polymers (paraffin wax Japanese

Brand, Delrin® 150E, and Lexan), one soft metal (Aluminum 2024-T4/T351), and three

hard metals (cold drawn steel AISI-1045, cold drawn steel AISI-1144 and annealed Tita-

nium 6A1-4V). Metals and ceramics were supplied by McMaster-Carr (Robbinsville, NJ)

as rods with a radius ranging from 1.3 cm to 1.9 cm. Delrin® 150 E was also supplied as

a 1.3 cm-diameter rod, whereas a 1.3 cm thick Lexan plate was purchased from General

Electric. Finally, slabs of paraffin wax (Japanese brand) were purchased from Polygon

Wax.

6.1.2 Material Preparation Method

The main objectives of the surface sample preparation are: (1) to achieve as flat as

possible a surface, (2) to increase the accuracy of the determination of the fracture

toughness, and (3) to obtain repeatable results. The procedure described below is inspired

from standard materials polishing methods used for nano-mechanics testing such as nano-

indentation [77] .

The first step consists in cutting a specimen of appropriate size with a brand saw

or with a water-jet cutting machine. The specimens were cylindrical with a diameter
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DescriptionMaterial
Ceramics
Fused silica
Pyrex glass
Soda lime glass
Polymers
Paraffin wax
Delrin 150E
Lexan
Metals
AA 2024-T4/T351
AISI-1045

99.995% SiO2
Heat-resistant borosilicate glass

Japanese brand
Polyacetal homopolymer
Bisphenol-A polycarbonate

High strength aluminum
High strength medium-carbon steel, cold
drawn
High strength carbon steel, cold drawn
Grade 5 titanium, annealed

AISI- 1144
Titanium 6A1-4V

Table 6.1: Materials description

ranging from 1.3 cm to 1.9 cm and with a height less than a centimeter.

The second step consists in flattening the faces of the specimen with a milling machine.

The third step is a coarse grinding step. The aim of this step is to improve the parallelism

of the top and bottom faces. This is done with a 240 grit Aluminum Oxide sanding

paper (McMaste-Carr). Afterward, the sample is cleaned in an ultrasonic water bath for

5 minutes.

The last step is manual dry polishing. A Fibremet@ (Buehler) abrasive disc of a given

size is mounted on a flat glass surface and the surface of the specimen is gently brushed

against the abrasive disc for 30 seconds to 1 minute. Four different sizes of abrasive are

consecutively used: 9 pm, 3 pm, 1 pm and 0.3 pm.

The final arithmetic average roughness achieved, Ra, ranged from 0.01 pm to 1.55

pm with an average of 1.17 um and a standard deviation of 1.21 pm. These values were

more than an order of magnitude smaller than the maximal depth of penetration during

the scratch test.
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Material Equipment Prescribed
maximal normal force (N)

Ceramics
Fused Silica Micro scratch tester 7
Pyrex glass Micro scratch tester 7
Soda lime glass Micro scratch tester 7
Polymers
Paraffin wax (Japanese Micro scratch tester 30
brand)
Delrin® 150E Revetest scratch tester 50
Lexan Micro scratch tester 30
Metals
AA2024-T4/T351 Revetest scratch tester 150
AISI-1045 Revetest scratch tester 150
AISI-1144 Revetest scratch tester 100
Titanium 6A1-4V Revetest scratch tester 150

Table 6.2: Testing parameters. In all tests the scratch
lasted 30 s

length was 3mm and each test

6.1.3 Test Parameters

Because for a conical indenter the forces scale in a self-similar way, the maximal vertical

load for testing was chosen so as to have, for each material, a maximal depth in the

conical range of the indenter. For metals and polymers, the maximal load ranged from

50 N to 200 N for tests with the Revetest Scratch Tester and was equal to 30 N for

tests with the Micro Scratch Tester. However, due to their high brittleness, ceramics

exhibited a lot of chipping when tested at such high loads: this led to some fluctuations

of both penetration depth and horizontal force. To reduce the amount of chipping, very

low loads, 7 N, were used and, consequently, the tests occurred in the spherical region

of the indenter. For all tests, the scratch length was 3 mm and the loading rate ranged

from 14 N/min to 300 N/min so that each test lasted 30 s. The parameters of the testing

procedure are summarized in Table 6.2.
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6.2 Scratch Test Results

6.2.1 General Characteristics of the Load-Penetration Depth

Curves

Figure 6-1 displays the horizontal load-penetration depth curves obtained for the mate-

rials used in this study. The horizontal force FT in these different tests spans two orders

of magnitudes: FT < IN for ceramics, FT < 10 N for polymers and FT < 100 N for

metals. The ratio of penetration depth-to-indenter radius, d/R, is in the range 0-0.04

(0 < d < 8pm) for ceramics and in the range 0-2.5 (0 < d < 500pm) for polymers and

metals.

The theoretical horizontal force- penetration depth relationships obtained in Chapter

3 for a cone of half-apex angle 0 and for a sphere of radius r are recalled below:

/sin 0 4V/2
FT = 2 Ked 3 / 2 ; FT Kdv'R (6.2)

cos 0 3

In particular, for the horizontal scratch force scales as d for a sphere and as d3 / 2 for a

cone. The curve FT vs d/R was fitted, using a nonlinear least squares procedure, to the

model function y = a(x - c)b. The fitting parameters for all materials are summarized

in Table 6.3. For ceramics, the penetration depth lie within the spherical range of the

Rockwell indenter. As predicted by the theory, the exponent, b, is very close to 1. This

agreement between theory and experiments persists in the conical range. As for polymers

with maximum penetration depths well in the conical range, dmax/R > 0.6 (d > 120 pm)

, the exponent b is close to 1.5, except for Delrin® 150E. Finally, for metals, except for

AISI-1144, the exponent b is between 1 and 1.5. This indicates that both the spherical

and the conical part of the indenter are influencing the test.
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diamond probe. The shape function is 2pALB = FT/(K2R3) where Ro = 200 pm. a)
Tests on fused silica. b) Tests on Lexan.
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Material a(N) b c R2

Ceramics
Fused Silica 18.50 1.11 0.00 0.9901
Pyrex glass 24.33 1.16 0.00 0.9977
Soda lime glass 31.27 1.20 0.00 0.9947
Polymers
Paraffin wax 1.56 1.5 0.00 0.9907
(Japanese
brand)
Delrin® 150E 29.02 1.19 0.09 0.9992
Lexan 27.85 1.47 0.00 0.9995
Metals
AA2024- 291.10 1.38 0.03 0.9973
T4/T351
AISI-1045 401.82 1.30 0.02 0.9917
AISI-1144 1048.8 1.74 0.00 0.9972
Titanium 6A1- 634.85 1.39 0.00 0.9958
4V

Table 6.3: Fitting parameters for
function being y = a(x - c)b.

the horizontal load-penetration depth curves, the model

6.2.2 Calibration of the Indenter Shape Function

The scratch probe, a 200-pm diamond probe, was calibrated following the method de-

scribed in Chapter 5 and the resulting calibrated shape functions is plotted in Figure

6-2. In particular, fused silica was used to calibrate the spherical range, d < 10 Pm,

whereas Lexan is used to calibrate the conical range, d > 26 pm. In particular, from the

coefficient of the cubic function, a = 14.61, we calculate the effective cone half-apex angle

using Eq. (6.3), 0 = 60.740, which is within the range of manufacturer's specifications,

6 = 60' ± 5'. The evaluation of the effective tip radius, R = 1.02 mm, reveals a severe

blunting of the tip for shallow penetration depths, d < 10 pm.

6.2.3 Fracture Toughness Predictions

In Figures 6-3 and 6-4, the quantity FT/V 2 pALB , reminiscent of a stress intensity factor,

is plotted versus d/Ro, where RO = 200 p. Herein, we correct the quantity (FT)/R! by
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Material Predicted K, Macroscopic K, Reference

(MPa-/iii) (MPavimi)
Ceramics
Pyrex glass 0.68±0.016 0.63 [46]
Fused Silica 0.71±0.03 0.7 [46]
Polymers
Paraffin wax 0.14±0.01 0.15±0.01 Three-point bend-
(Japanese brand) ing tests
Delrin® 150E 2.59±0.05 2.8 [48]
Metals
AA2024-T4/T351 27.5±1.15 26 (S-L direction) [5]

32 (T-L direction)
37(L-T direction)

AISI-1045 43.25±2.12 50 [73]
AISI-1144 58.9±2.43 57 (T-L direction) [73]

67 (L-T direction)
Titanium 6A1-4V 71.77±3.06 75 [5]

Table 6.4: Predicted scratch fracture toughness values versus macroscopic fracture tough-
ness values.

substracting the off-set value of the linear fitting relation, (Fj)/Ri vs. 2pALB/R'. For

all materials, the dimensionless force converges toward a constant value as predicted by

Eq. (6.1). At small depths of penetration, there is some deviation that can be attributed

to localized plastic deformation. This convergence of FT 2 pALB towards a straight line

supports the hypothesis of the predominance of fracture processes at large penetration

depths, which was postulated based on experimental evidence (cf Section 2.4).

Table 6.4 compares the fracture toughness values predicted from scratch tests with

macroscopic values. The macroscopic fracture toughness values were obtained suing

conventional fracture toughness testing such as the three-point bending test on single-

edge notched specimens or compact tension tests [6]. For ceramics (pyrex and soda lime

glass) and polymers (paraffin wax and Delrin@ 150E), there is an excellent agreement

between the predicted fracture toughness and the literature value, with a relative error

ranging from 2% to 8%. Given the homogeneous, isotropic and elastic nature of these

materials, the good agreement between experimental and literature fracture toughness
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values validates the proposed fracture approach for scratch test interpretation. A similar

agreement is generally found for the tested metals where the relative error is less than

10% for steel AISI-1045 and Titanium. As for Aluminum AA2024 and steel AISI-1144,

the method proposed here does not account for anisotropic fracture behavior, which is

the focus of Part IV of this thesis. However, the predicted K, values are within the range

of literature values. Finally, the method for fracture determination is very precise with a

relative uncertainty less than 7%, which is in agreement with the conclusions of Chapter

5.

6.3 Chapter Summary

Throughout this thesis our method has been to closely combine experiments and theory

in order to elucidate the physics behind microscopic scratch tests. In Chapter 2, we con-

sidered the scaling of the horizontal force and compared the theoretical predictions from

Dimensional Analysis and Finite Element simulations with scratch test measurements.

This in turn allowed us to conclude as the predominance of fracture processes in scratch

tests. Furthermore, advanced imaging of the residual groove after scratch tests (Figure

??) indicated that this predominance is valid at large depths of penetration and the

generated cracks were found to be horizontal, curved and perpendicular to the direction

of scratch testing. Based on the experimental observations, a rigorous Linear Elastic

Fracture Mechanics was developed, that employed an energy-based approach in order to

relate the scratch force to the scratch probe geometry and to the fracture toughness of

the scratched material. The following relationship was obtained:

FT
T = Kc (6.3)

Chapter 5 developed an experimental protocol in order to calibrate the scratch probe

function, 2 pALB, for scratch tests with a 200 pm Rockwell diamond probe . In particular,
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it was demonstrated that 2 pALB depends solely on the scratch probe geometry and is

independent of external factors such as the scratch probe wear or the choice of reference

material.

In this chapter, a method for fracture toughness using scratch tests was introduced

and applied to ten materials including ceramics, metals and polymers. The following

experimental observations were made:

" The scaling of the horizontal scratch force was in agreement with the predictions

of the LEFM model (Chapter 3) as well as with the prediction of Dimensional

Analysis ( Chapter 2) for a fracture-driven process.

" The quantity, FT/V/2 pALB converged towards a straight line, which confirms the

predominance of fracture processes at large depths of penetrations as postulated in

Chapter 2.

" Using the scratch probe calibration method described in Chapter 5, the microscopic

fracture toughness were calculated from Eq. (6.3). The predicted K, values were

in agreement with macroscopic values obtained with conventional fracture testing

methods, with a relative error of less than 10%, and a relative uncertainty less than

7%.

Therefore, we have validated our method for fracture toughness determination for

a wide range of materials, ceramics, polymers and metals and over a range of frac-

ture toughness values spanning almost three orders of magnitude, from 0.15 MPav/ii

for paraffin wax Japanese, to 75 MPa/iii for Titanium 6A1-4V. This method is reliable,

accurate, precise and reproducible. In the rest of this thesis, we extend the fracture tough-

ness determination method to more complex material behavior such as rate-dependence,

anisotropy and heterogeneity.
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Chapter 7

Coupling Indentation and

Scratching For The Assessment of

The Intrinsic Fracture Toughness

With a well calibrated and validated method in hand, the goal of this chapter is to apply

the technique for the study of rate-dependent fracture behavior of visco-elastic materials.

In fact, despite the wealth of analytical models [76, 11, 79] and experimental studies

[14, 71, 37, 20, 63] of rate-dependent fracture processes, a handshake between theory

and experiments remains still to be achieved, in order to distinguish intrinsic from rate-

dependent fracture properties of rate-dependent materials. This is in short the focus

of this chapter: to implement the analytical model developed in Chapter 4 to decouple

creep from fracture via scratch tests performed on polymers. This chapter is composed of

three sections. In the first section, the experimental program is presented. In the second

section an inverse method based on the linear visco-elastic fracture model is developed,

assuming either a Maxwell or a Generalized Maxwell visco-elastic behavior. The last

section deals with the multi scale characterization of rate-dependence in the fracture

behavior via a combination of macro and micro-scratch tests performed on paraffin wax.
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7.1 Material and Methods

7.1.1 Materials

Polymers consist of chains of structural units created through the polymerization of dif-

ferent monomers. At temperatures much below the glass transition temperature, T,,

the mechanical behavior is glassy, whereas it is rubbery at temperatures above. In the

range near T, the behavior is visco-elastic. Four polymers relevant for several mod-

ern engineering applications ranging from sound walls and sewage pipes to mechanical

heart valves [86, 62, 45] are considered. These are amorphous polymers, namely paraffin

wax Exxon Mobil, polycarbonate and polyvinyl chloride, and a semi-crystalline polymer,

polyoxymethylene. Paraffin wax Exxon Mobil was provided by Polygon Corporation and

mixed with an additive, Vybar 260 at a 2% concentration to reduce shrinkage. As for

polycarbonate (PC), polyoxymethylene (Delrin®) and polyvinyl chloride (PVC), 1/4-

inch thick sheets were purchased from McMaster-Carr under the trademarks respectively

Makrolon, Delrin@ and type I PVC. The glass transition temperatures are [86] 333 K for

paraffin wax, 423 K for polycarbonate, 448 K for Delrin® and 344 K for polyvinylchloride;

whereas the ambient temperature for all tests was 298 K.

The material preparation procedure for PC, POM and PVC was performed following

the guidelines given in Section 5.1.1. The first step was to machine, with a saw stop

table saw, specimens that are squares with a width of 25 mm and a height of 12 mm.

Afterward, these specimens of PC, Delrin@ and PVC were washed with a 1% solution

of Alconox, rinsed under running water and annealed for 24 hours at 373 K to ensure a

stress-free and moisture-free state. All specimens were then stored at room temperature

in glass jars with tight lids and tested 24 hours later to prevent surface contamination.

7.1.2 Methods

Two sets of scratch tests were performed. For tests performed under a linearly increasing

vertical force, the scratching speed values ranged from V = 0.2 mm/min to V = 20
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mm/min and three loading rates were considered: Fv = 45, 60 and 90 N/min for Delrin@

and PVC and Fv = 3, 4 and 6 N/min for paraffin wax. The prescribed maximum vertical

force was Fvm = 30 N for Delrin®, PC and PVC and Fva = 2 N for paraffin wax.

For each combination of scratching speed and of loading rate, three scratch tests were

performed. The resulting apparent fracture toughness, K,, was derived using:

FT = (7.1)

Additional tests were performed under a constant vertical force (Fv = 0) and with

scratching speed values ranging from V = 0.4 mm/min to V = 20 mm/min. For those

tests, given a value of the speed, ten values of the vertical force ranging from FV = 0 to

Fv = 30 N (for Delrin®, PC and PVC) and FV = 2 N (for paraffin wax Exxon Mobil)

were considered. The apparent fracture toughness was then evaluated from the resulting

depth of penetration and horizontal force following Eq. (7.1). For all tests, Lexan 9034

was used as the reference material to calibrate the scratch probe area function, 2pA,

according to the method developed in Chapter 5.

7.1.3 Scratch Test Results

We use Dimensional Analysis to rationalize the dependence of the apparent fracture

toughness K, upon relevant parameters such as the loading rate, Fv, the scratching

speed, V, the intrinsic rate-independent fracture toughness, K,, and the visco-elastic

parameters, represented here by an initial stiffness M and a discrete distribution of

relaxation times T, i = 1 ... n. That is,

K V1 M2 VM 72 v u s e
= 2' . . T. (7.2)

Ke Kc Py KC'T' '7

Figures 7-1 and 7-2 plots the dimensionless quantity K,'/K ef versus respectively
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the scratching speed V, and the scratching-speed-to-loading-rate ratio, V/Fv. Herein,

K ef is a reference fracture toughness value. For Delrin@, PC and PVC, the following

literature values of Kref were considered: 2.8 MPaV/mi [48], 2.2 MPaViii [84] and 3.0

MPav/iii [72]. As for paraffin wax, three-point bending tests performed on 180x56x34

mm notched specimen at a cross-head speed of 25.4 mm/min yielded a reference fracture

toughness value of 0.08+0.017 MPaV'ii. For tests with a constant vertical force (Fv

= 0 N/min) the apparent fracture toughness slowly increases with the velocity (Figure

7-1): for Delrin®, PC and PVC there is an increase of 25% over almost two decades

and it is quasi-constant for paraffin wax. For tests with a linearly increasing vertical

force (PV > 0), the apparent fracture toughness initially rises with the speed, followed

by a decline in the rate of growth. Moreover, for small scratch speeds, V < 1 mm/min,

the apparent fracture toughness decreases with the loading rate. Interestingly, when

plotting Ka/Kref as a function of the scratching-speed-to-loading-rate ratio, Pv/V, for

each material, all test results (PV # 0) collapse into a single curve that presents three

phases: a sharp rise, a steady growth and a convergence towards an asymptotic value.

This observation confirms the dimensionless relation (7.2). In the next section Linear

Visco-elastic Fracture Mechanics is used to quantify and determine the intrinsic fracture

toughness.

7.2 Decoupling Creep and Fracture

We here recall the result from Chapter ?? for rate-dependent scratch fracture processes:

FT
VT < KcH(t) (7.3)

'P A LB

where W(t) is a viscoelastic correction factor that depends on the material's visco-elastic

behavior. As a consequence, the determination of the visco-elastic behavior is required in

order to assess the intrinsic fracture toughness. In the particular case of polymers, creep

occurs as a result of micro-mechanisms such as molecular entanglements, polymer chains

135



stretching and relative slippage or chain-segment rotation. Generally, the different micro-

mechanisms involved present different characteristic times; this is why a Generalized

Maxwell model is used to attempt a more accurate representation of the plane strain

visco-elastic relaxation modulus.

7.2.1 Plane Strain Relaxation Modulus

In order to measure the visco-elastic properties, micro-indentation tests were performed

on Delrin@, polycarbonate, polyvinylchloride and paraffin wax Exxon Mobil. The pre-

scribed load history was trapezoidal with a loading/unloading phase lasting 30s and a

holding phase lasting 480 s. The prescribed maximum force was 100 mN for Delring,

polycarbonate and polyvinylchloride and 10 mN for paraffin wax Exxon Mobil, resulting

in a maximum penetration depth of 10pm. The contact creep compliance was evaluated

from the depth variation during the holding phase according to the method developed

by Vandamme et. al. [113, 114]. In this model, the indentation creep compliance L(t) is

related to the applied maximal force Pmax, to the indentation stiffness So, and the change

in depth Ah(t) during the holding phase by:

__ Sodh(t)\L(t) = A + (7.4)
M0( Pmax

In particular, Vandamme et al. [114] showed that the measured viscoelastic behavior is

intrinsic to the material and independent of loading parameters such as the maximal force

or the loading and unloading rate. For the tested polymers, the creep behavior, which is

displayed in Figure 7-3 was found to be time-logarithmic. That is, the indentation creep

compliance is related to the indentation modulus MO, the contact creep modulus, C, and

the characteristic relaxation time, T according to:

1 +-l (75
L(t)= + In -+1 (75)

MO 4C ('

In order to estimate the visco-elastic constants, the average change in depth Ah(t)
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during the holding phase was fit to a logarithmic function of the form: Ah(t) = X1 ln(x 2 t+

1) + x 3t + x 4 . The coefficient x3 represents the thermal drift of the equipment, and was

found to be equal to -0.04768 nm/s. The coefficient X4 captures the inaccuracy in

determining the beginning of the creep phase; the ratio £X4I/Ahmax was equal to 1.4%

for Delrin®, 4.5% for polycarbonate, 5.3% for polyvinylchloride and 3.4% for paraffin

wax Exxon Mobil. Therefore X4 is negligible and only x1 and X2 relate to material

properties. Finally, the characteristic time T and the contact creep modulus C were

estimated from: T = 1/x2 and C = Pmax/(4Sxi)Mo. Table 7.1 displays the value of the

visco-elastic constants for all four materials together with the coefficient of correlation. In

particular there is a high correlation between the fit and the experimental measurement.

Moreover paraffin wax Exxon Mobil presents a contact creep modulus which is two order

of magnitude smaller, and a characteristic time which is two orders of magnitude greater

than that of the other materials- Delrin®, polycarbonate and polyvinylchloride.

Once the indentation creep compliance is extracted, the next step is to calculate the

plane strain relaxation modulus which is given in the Laplace domain by:

sM(s)= (7.6)
sL(s)

To this end, a numerical Laplace inversion algorithm [111] - implemented via the MAT-

LAB function INVLAP- is used. The resulting relaxation modulus M(t) is then fitted

assuming a Generalized Maxwell visco-elastic behavior with a constant Poisson's ratio:

M(t) = Mo E pi exp(-t/ri). The last step is to confirm the accuracy of our prediction

of the visco-elastic behavior. To this end, the method of partial fraction decomposition is

used in MAPLE in order to estimate the plane strain creep function L'(t) yielded by the

Generalized Maxwell model fit: s2 L 1 (s) = [Mo E pi/(s + I/ri)]. Figure 7-3 plots both

L(t) and L 1(t) for all four materials, showing a good agreement between experimental

data and predictions provided by the Generalized Maxwell model.

In summary, the plane strain relaxation modulus can be calculated using the following
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Material Indentation Contact creep Characteristic Correlation co-
modulus modulus relaxation time efficient R 2

Mo(GPa) C(GPa) T(s)

Delring 4.29 21.22 0.78 0.9999
Polycarbonate 2.95 15.16 0.59 0.9971
Polyvinylchlorid 4.29 6.94 0.61 0.998
Paraffin wax 2.63 0.0158 57.21 0.9995
Exxon Mobil

Table 7.1: Visco-elastic constants from micro-indentation

Material K, (MPav/iii) c (mm s/N) 1 (mm)
Delring 2.72±0.06 95.27±22.74 45.80±16.87
Polycarbonate 2.85±0.11 78.56+26.10 0
Polyvinylchloride 2.96±0.07 73.30±10.48 10.31+5.04
Paraffin wax Exxon 0.078±0.0027 0.22+0.08 0
Mobil I

Table 7.2: Predicted intrinsic fracture toughness

two steps: the first step consists in performing micro-indentation test. The indentation

creep compliance is calculated from Eq. (7.4) and fitted to a logarithmic function accord-

ing to Eq. (7.6). The second step uses a numerical Laplace inversion scheme to calculate

the plane strain relaxation modulus M(t) for the time period considered and fits the

obtained plane strain relaxation modulus to a series of decaying exponential functions.

7.2.2 Intrinsic Fracture Toughness

The visco-elastic correction factor for a generalized Maxwell model with a constant Pois-

son's ratio reads:

'2(t) = - pi (; 2

[ pE = ) i= iop A (t) .
Ai = i

t
Ti

(7.7)

where t is the time-to-fracture that needs to be linked to rate parameters such as the

loading rate FV or the velocity V. To this end, we relate the prediction of the analytical

model to the experimental observations. In particular, the analysis of the particular case
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of a Maxwell model with a constant Poisson's ratio ( Section 4.5.1) has shown that the

apparent fracture toughness increases with 1/t and then converges towards the intrinsic

fracture toughness K, for infinite values of 1/t. On the other hand, micro-scratch test

have revealed that KePP decreases with the loading rate, and increases with the scratch

speed. Therefore, we postulate the existence of two material constants, c and 1, that link

the time-to-fracture to the scratching speed and the loading-rate-to-scratching speed

ratio: t, = c.v/V + 1/V. 1/c has units of a surface power density, and represents

the rate of surface energy dissipation that depends on the visco-elastic properties of

the material; whereas 1 is a length-parameter introduced by the fracture process that

enables us to capture the influence of the scratching speed for tests performed with a

constant vertical force. Knowing the visco-elastic properties, a constrained optimization

was performed using MATLAB to calculate the parameters (Kc, c, 1) that minimize the

sum of the squared error between the left and the right hand side of Eq. 7.2.

Table 7.2 summarizes the predicted values of Kc, c and A for all four polymers, and

Figure 7-4 confronts the prediction of the analytical with the experimental data. The

overall trend is that the analytical model represents of the experimental fracture behavior

fairly well. Moreover, the predicted intrinsic fracture toughness values were 2.72±0.06

MPav/'ii for Delrin®, 2.85±0.11 MPav'iii for polycarbonate, 2.96±0.07 MPav'iii for

polyvinylchloride, and 0.078±0.0027 MPav'iii for paraffin wax Exxon Mobil. The pre-

dicted intrinsic fracture toughness values are in the range of the literature reference frac-

ture toughness values indicated previously: 2.8 MPav'ii [48] for Delrin@, 2.2 MPav/ii

[84] for polycarbonate, 3.0 MPa.'iii [72] for polyvinylchloride and 0.08±0.017 MPayiii

for paraffin wax Exxon Mobil. In other words the inverse method developed here, which

combines micro-scratch and indentation tests yields predictions of the intrinsic fracture

toughness at the microscopic scale that matches macroscopic measurements for homoge-

neous linear visco-elastic materials.

Figure 7-5 deals with the physical meaning of the parameters in our model, both c
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and 1. From dimensional analysis, we find:

K2 C
K = Y (7.8)

where K, is the intrinsic fracture toughness, MO is the initial plane strain relaxation

modulus, T is characteristic time of the logarithmic creep, and C is the logarithmic creep

modulus. Figure 7-5 shows is a linear correlation between cK2/MoT and C/Mo. As for

the parameter 1, it represents a length parameter which is activated during scratch test

with a constant force. Thus we have built a comprehensive scratch model that captures

the rate-dependence of fracture properties in microscopic scratch testing, over a wide

range of scratch speeds, loading rates and penetration depths. In the next section, we

investigate the presence of rate effects at the macroscopic scale and establish a handshake

between the macroscopic and the microscopic scratch tests on homogeneous materials.

7.3 Rate Effects in Macro Scratch Tests

The goal of this section is to investigate the rate-dependence of fracture properties during

macroscopic scratch tests and compare the macroscopic scratch tests results to results

from microscopic scratch tests. As illustrated on Figure 7-6, in our experiments, a paraffin

block (dimensions 3.4 x 5.7 x 22 cm) was clamped at its lateral sides, set on a linear stage

and moved at constant velocity against a vertical steel cutter-blade at depth d (measured

from the block's top surface). This blade of rectangular cross section (6.35 mm thick and

w wide) was held by a rigid frame that ensured a constant depth and a zero back-rake

angle during the test. The values of w and d were varied such that their aspect ratio was

in the range 1 < w/d < 10, spanning an order of magnitude. For each test, the horizontal

and vertical forces generated, FT and FV, respectively, were recorded using load cells.
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Figure 7-6: Chip formation during macro scratch tests on paraffin wax. Source [2]
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7.3.1 Macro Scratch Tests Results

Previous investigation [3, 2] have shown that macro scratch tests can be used to assess

the fracture toughness of materials with a blade of width w and depth d. In contrast to

micro-scratch tests, where the probe is axisymmetric, for macro scratch test, it suffices,

indeed, to consider 2pALB = 2wd(w + 2d); hence:

FT FT < KC (7.9)
V 2 pALB w v/ 2d

A series of macro scratch tests was performed on paraffin wax Exxon Mobil at five

velocities, 0.34, 0.68, 1.7, 3.4 and 6.8 mm/s, spanning an order of magnitude. All tests

were performed at a constant room temperature of 298 K. For each velocity, tests were

conducted with several widths of blade ranging from 2.5 mm to 20 mm and for several

depths of penetration ranging from 2.5 to 6.25 mm. Each test consisted in pushing a

parallelepiped block of paraffin wax against a rigid firmly-held steel blade of given width

at a given constant depth of penetration and at a given constant velocity, as depicted in

Figure 7-6.

For a given velocity, the corresponding fracture toughness was calculated as the

asymptotic value of the curve FT/(wVd) for large width-to-depth, w/d, ratios. From

Eq. (7.9), for large width-to-depth ratios, the function y=f(x), where y = FT/(w\_d)

and x = w/d admits a Taylor series expansion in 1/x. Kc was then estimated by fitting

FT/(w VD) to a function of the form y = a + b/x + c/X 2 . Figure7-7 displays the curves as

well as the fitted functions for all scratch speeds. The calculated asymptotic values of the

fracture toughness were 0.0837±0.0179 MPaFm, 0.0699±0.0120 MPaxF/, 0.0869±0.0164

MPa/m/, 0.1067±0.0169 MPaFm, and 0.114±0.0236 MPad/-, corresponding respectively

to the velocities of 0.34 mm/min, 0.68 mm/min, 1.7 mm/min, 3.4 mm/min and 6.8

mm/min.
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7.3.2 Upscaling Fracture Properties: From the Microscopic to

the Macroscopic scale

Our goal here is to compare the predictions from macro and micro scratch tests. Figure

7-8 displays the ratio of the apparent fracture toughness to the reference 3-point bending

test fracture toughness of paraffin wax Exxon Mobil for micro scratch tests performed at

constant vertical force and for macro scratch tests. In the stationary state, both micro

scratch tests with constant vertical force and macro scratch tests operate under the same

principle: a hard probe is scratching a soft material under a constant penetration depth,

yielding a constant vertical and horizontal forces. However, there is a difference in the

length-scale at which the test is performed, macroscopic for macro-scratch test and mi-

croscopic for micro-scratch tests; and from the geometry of the probe used: axisymmetric

predominantly conical for micro-scratch tests, and parallelepiped for macro-scratch tests.

Yet, from Figure 7-8, both configurations of testing predict that the apparent fracture

toughness is independent of the scratching speed and yield close predictions for the intrin-

sic fracture toughness: 0.0917±0.017 MPav for macro scratch tests and 0.078±0.0027

MPax/- for micro scratch tests. Moreover, both values are in excellent agreement with

the reference value, determined via macroscopic three-point bending tests: 0.082±0.017

MPav/m. This handshake between macro-scratch tests, micro-scratch tests and conven-

tional fracture-testing methods comprehensively validates the inverse method presented

in this chapter as a way to characterize the intrinsic fracture toughness of homoge-

neous isotropic linear visco-elastic material. Intrinsic means that the predicted fracture

toughness depends only on the material and is independent of rate-parameters, loading

configurations, probe geometry, and so on.

7.4 Chapter Summary

This chapter implemented a novel experimental technique that allows separating creep

from fracture, and the determination of an intrinsic, i.e. rate-independent, fracture
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toughness. To this end, micro scratch tests were performed on both amorphous and

semi-crystalline polymers at different loading rates and for velocities spanning two orders

of magnitude. For a given loading rate, the apparent fracture toughness increased with

the velocity and for strictly positive loading rates a convergence was observed towards

an asymptotic value. Moreover, when the chosen x-variable is Fv/V, all data points

from all loading rates and velocity collapse into a master curve: the apparent fracture

toughness initially rises as Fv/V increases and then converges towards an asymptotic

rate-independent value.

The Linear Visco-Elastic scratch model was turned into an inverse method to predict

the rate-independent fracture toughness, Kc. The visco-elastic behavior is measured via

micro-indentation. The time-to-fracture is evaluated from t c~v/V + l/V, and K, is

evaluated from:

FTFT < KcNi(t) (7.10)

where W(t) is the visco-elastic correction factor that depends on the visco-elastic con-

stants. The analytical model matches the experimental apparent fracture toughness

values. Moreover, the predicted K, agrees with measurements from conventional macro-

scopic fracture tests. The coefficient c which represents a rate of dissipation of surface

energy, is proportional to the logarithmic creep compliance C, whereas the coefficient

1 captures the dependence of the scratch speed for scratch tests performed at constant

penetration depth.

Macro scratch tests were also performed on paraffin wax for several velocities. The

predicted apparent fracture toughness was quasi-insensitive to the scratch speeds. More-

over, the predicted Kc values were close to the prediction from micro scratch tests.

Therefore, for homogeneous materials, the intrinsic fracture toughness does not depend

on the loading conditions, the prescribed rate parameters, the scale of measurement or

the geometry of the test.

With the method now in place, we can attempt an application to more complex ma-
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terials, as encountered in many geomechanical engineering applications. Such materials

exhibit a high degree of heterogeneity. An application to gas shale is developed in the

next part of this thesis.
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Part IV

Application to Gas Shale
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Chapter 8

Fracture Characterization of Gas

Shale Using Micro-Scratch Tests

In this part we attempt to characterize the fundamental fracture properties of gas shale

using microscopic scratch tests. In contrast to the homogeneous isotropic elastic mate-

rials investigated in the development of the technique, gas shale is highly heterogeneous

and exhibits anisotropic elastic behavior [65, 82]. Knowing the fracture properties of gas

shale is of some importance, specifically in the context of hydraulic fracturing and other

stimulation methods [100, 68] . Although several methods have been suggested in the

scientific literature, characterizing the fracture toughness of rocks remains a challenge.

For instance, the three-point bending test on single edge notched specimen [6, 93] or the

semi-circular bend specimen [8, 60] require extensive machining and fatigue pre-cracking

of the specimen, which makes them inappropriate for brittle materials such as gas shale.

The short rod specimen and the chevron bend test, two standard methods suggested by

the International Society of Rock Mechanics [97, 54, 83, 741 are often too expensive for

routine applications to a large number of specimens. Moreover, the measured apparent

fracture toughness depends on geometrical parameters such as the specimen diameter of

the crack extension. To overcome these limitations, some criteria were introduced as well

as fracture resistance curves where the fracture toughness rises with the crack extension
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and then converges towards an asymptotic value [83]. Finally, other methods include the

fracturing of pre-notched thick walled hollow cylinder test [120] or the punch-through

shear test [9], which require laborious specimen preparation (machining, notch creation

etc.), and which rely on numerical procedures instead of closed-form LEFM expressions

to determine fracture properties. In contrast, the specimen preparation procedure for mi-

croscopic scratch tests is much simpler given that no pre-notch or pre-cracking is needed,

and the fracture determination method relies on a closed-form Fracture Mechanics model

presented in Chapters 3 and 4. Moreover, the amount of material needed is much smaller,

which makes it suitable for applications where the material supply is limited. This chap-

ter thus aims at defining a standard protocol for the fracture characterization of gas shale

whereas Chapter 9 explores the relevance of scratch tests, both macro and micro, to ap-

prehend the fracture behavior of gas shale at both the microscopic and the macroscopic

scale.

In this chapter we will show that micro scratch test yields a fracture measurement

which is size-independent and rate-independent. We will also show that the test is useful

to gain a quantitative understanding of the fracture behavior of gas shale; and it is

amendable to multi-scale characterization of the fracture resistance of gas shale. In

particular, we aim at answering the following points of inquiry:

" Is the scratch test repeatable when applied to gas shale and how do we quantify

the uncertainty related to the fracture toughness determination?

" What is the influence of shale anisotropy on the fracture behavior?

We will answer these questions in three steps. First, we present the materials considered

in this application: EagleFord, EagleFord-SLB and Haynesville. Then, we expand on the

material preparation procedure and the post-processing of scratch test results. Finally,

we examine the fracture behavior of these gas shale materials.
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Material Total Organic Content (TOC)
EagleFord 2.85
EagleFord-SLB 4.31
Haynesville 3.83

Table 8.1: Material TOC data in percentage. Source [117]

8.1 Materials and Methods

8.1.1 Materials

In this study, specimens from two unconventional gas reservoirs, Eagle Ford and Hay-

nesville, were characterized. Eagle Ford is a sedimentary formation that lies below much

of South Texas in the United States. It consists of organic-rich fossiliferous marine shale.

Currently Eagle Ford is the most active drilled target for shale gas in the United States.

The Haynesville formation is located below large part of south western Arkansas, north-

western Louisiana and East Texas. It consists of marine and coastal plain limestone,

shale, mudstone and sandstone; and it is estimated to be the largest natural gas field in

the United States. All three material, EagleFord, EagleFord-SLB and Haynesville, were

provided by Shell and Schlumberger. Table 8.1 lists the total organic content (TOC) of

all three materials. Whereas, Table 8.2 shows their mineralogical composition, based on

X-Ray diffraction tests performed by H&M Analytical Services Laboratory ( 35 Hutchin-

son Road Allentown, NJ 08501). In particular, all three materials are rich in quartz.

However, both EagleFord and EagleFord-SLB have a higher content of calcite whereas

Haynesville is richer in pyrite.

8.1.2 Material Preparation Procedure

The material preparation procedure developed in [77] involved three major steps: ma-

chining, grinding and polishing. During the machining step, specimens are cut along

two directions, parallel and perpendicular to the bedding plane, with a diamond table

saw. Afterward, a coarse grinding step is applied in order to improve the parallelism of
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Mineral EagleFord EagleFord-SLB Haynesville
Calcite 77.8 (3) 67.0 (3) 32.5 (2)
Illite (4.0 (2) 4.2 (1) 26.3 (4)
Quartz 16.2 (1) 26.9 (1) 29.9 (2)
Dolomite 0.6 (1)
Pyrite 1.0 (2) 0.7 (2) 4.8 (1)
Albite 1.3 (2) 5.9 (2)
CHlorite 0.9 (2)

Table 8.2: Mineralogy information in mass percent of the shale samples. The mineralogy
data was obtained by X-ray diffraction (XRD) mineralogy test. The number in paren-
theses is the estimated standard deviation. Test performed by H&M Analytical Services
Laboratory ( 35 Hutchinson Road Allentown, NJ 08501).

the top and bottom faces. This is achieved with a 240 grit Aluminum Oxide sanding

paper (McMaster-Carr). The sample is then cleaned by ultrasonication in N-decane for 5

minutes. The last step involves coarse and fine polishing. The coarse polishing is carried

out on 400 grit hard perforated pads (TexMet P, Buehler) with an oil-based diamond

suspension in order to avoid any chemical reaction. Finally, for the fine polishing, a

Fibremet@(Buehler) abrasive disc of a given size is mounted on a flat glass surface, and

the surface of the specimen is gently brushed against the abrasive disc for 30 seconds to

1 minute. Four different sizes of abrasive are consecutively used: 9 pm, 3 pm, 1pm and

0.3 pm. The sample is cleansed by ultrasonication in N-decane before the fine polishing

step and during the fine polishing step, between each abrasive size.

8.2 Scratch Testing of Gas Shale: Post-processing

In this section we propose a systematic way to extend the use of micro scratch test to

gas shale, taking into account the high degree of heterogeneity, anisotropy and the very

brittle nature of the material. First, we show evidence of fracture processes at work

during the tests. Then we highlight possible sources of errors during testing. Finally, we

focus on the determination of the fracture toughness addressing crucial issues such as the

repeatability of the measurement or the quantification of uncertainty in the measurement.
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Figure 8-1: Scanning electron imaging of a residual groove after a scratch test on Eagle-
Ford. (Image courtesy of Amer Deirieh.)

Scratch length (mm) Scratch speed Loading rate Maximum vertical

(mm/min) (N/min) force (N)
3 6 60 30

Table 8.3: Testing parameters for the scratch probe calibration.

8.2.1 Scratch Testing of Gas Shale as a Fracture-Driven Process

Figure 8-1 shows a scanning electron image performed after a scratch test on EagleFord

gas shale. The testing parameters of the scratch test are described in Table 8.3 and the

scratch direction is from left to right. At the beginning, the scratch groove is smooth;

but as the probe advances deeper into the material, there is an increase of small and large

curved cracks perpendicular to the direction of scratching. These cracks are characteristic

of micro cutting and macro chipping processes occurring during the tests. Moreover, there

is a pile-up of debris ahead of the plow of the scratch and along the edges of the groove.

This experimental evidence points towards the prevalence of fracture dissipation during

the scratch testing of gas shale: scratch tests thus appear as an appropriate technique

to evaluate the fracture resistance of gas shale. However, due to the complexity of the

material, additional inelastic events can occur that could invalidate the test. This will

be the focus of the next section.
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8.2.2 Sources of Error in the Scratch Testing of Gas Shale

Figure 8-2 shows some examples of tests that cannot be used for fracture property de-

termination. A common cause is specimen compliance which is manifested by a sudden

change in the penetration depth signal, either downwards or upwards, as illustrated in

Figs. 8-2 a), b), d) and e). Another frequent cause is the saturation of the vertical

force signal: the vertical force starts to decrease instead of increasing; as can be seen

in Figure 8-2 c) and e). Furthermore, the presence of macro cracking can increase the

relative error during the fracture toughness determination. This is usually accompanied

by simultaneous sudden variations of both the penetration depth (which increases) and

the horizontal force (which decreases) as evidenced in Figure8-2 f). The horizontal slope

can become zero if the signal is too low as shown in Figure 8-2 g). Finally, given that the

material is somewhat soft, the contact between the probe and the material can be hard

to detect, which can lead to a negative initial depth of penetration, as seen in Figure 8-2

h). Thus, the first step in the post-processing of scratch test data is to examine each

individual scratch test, and to discard any faulty test for further fracture property analy-

sis. Following this inspection, we shall concentrate only on 'flawless' tests to characterize

the fracture resistance.

8.2.3 Fracture Toughness Characterization of Gas Shale

As explained in Part II, a micro scratch test consists in pulling a diamond stylus across the

surface of a material under a linearly increasing vertical force. The fracture toughness,

Kc, is then measured from the horizontal force and penetration depth measurements

according to:

FT
Kg = < Kc (8.1)/2 pALB 

-

where FT is the horizontal force and 2pALB is the scratch probe area function that

depends on the penetration depth, with p the perimeter of the probe and A the projected
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Figure 8-2: Scratch tests unsuitable for fracture property determination. A) , b), d)
and e) Specimen compliance. C) vertical signal saturation. F) macro chipping. G) zero
horizontal force. H) initial negative penetration depth.

contact area. This area function is calibrated prior to testing using a reference material

(See Chapter 5).

Once the invalid tests are discarded, Eq. (8.1) is used to calculate the apparent frac-

ture toughness from the remaining batch of valid scratch test. Figure 8-3 a) displays the

typical horizontal force and penetration depth curve as recorded in the test: the hori-

zontal force signal presents some saw-tooth oscillations characteristic of micro-cutting.

Furthermore, as can be depicted from Figure 8-3 b), the curve FT//2pALB converges,
for large penetration depths, towards a constant value, which is the apparent fracture

toughness of the material, as predicted by theory. For each test, the average fracture

toughness and its standard deviation are calculated from:

1 FT

N TPXALB
U'K F T L (2.

N /2P ALB

where the sum is performed on data points above half the maximum penetration depths.
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Figure 8-3: post processing of a good scratch test in shale. A) Force and penetration
depth record. B) Apparent fracture toughness determination.

Usually, two or three individual scratch tests are performed.

8.2.4 Fracture Toughness Characterization of Gas Shale: Scratch

Directions

Unlike polycarbonate and polyoxymethylene, gas shale is anisotropic [65]. At the sub-

millimeter scale considered, the behavior can be assumed to be transversely isotropic [821.

To capture this orthotropic behavior, three scratch directions are defined as illustrated in

Figure 8-4: Kc(x31) is the fracture toughness when a fracture propagates perpendicular

to the beddings direction. Kc(xl3) is the fracture toughness when a fracture crosses

the bedding plane, and Kc(xl2) is the fracture toughness when a fracture propagates

along the bedding plane. In the next sections, we will apply the micro-scratch method

to study the fracture behavior of specific gas shale samples: EagleFord, EagleFord-SLB,

Haynesville.
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Figure 8-4: Scratch directions defined on an orthotropic material

8.3 Scratch Testing of Gas Shale: Analysis of Eagle-

Ford and Haynesville Gas Shale Fracture Prop-

erties

8.3.1 Rate Dependent Fracture Response

The method presented above was applied to three gas shale materials: EagleFord, EagleFord-

SLB and Haynesville provided by both Schlumberger and Shell. In order to analyze the

scratch test data we here made use of the evidence shown in Chapter 6 that the probes

exhibit shape functions close to a perfect cone of half-apex angle 600. If the environ-

mental exposure is properly handled through a proper cleansing and drying procedure

as described in Chapter 5 (Section 5.1.1), there should be no statistically significant dif-

ference in the shape functions. The fact that (1) there is no significant tool wear during

scratch testing and that (2) the apparent fracture toughness is independent of the scratch

probe, support our assumption on the probe shape function. We also applied the filtering

procedure presented above to discard abnormal scratch responses.

For the considered gas shale samples, scratch tests were performed with scratch speeds
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ranging from 0.2 mm/min to 20 mm/min and with three loading rates: 45, 60 and 90

N/min; that allow us to assess the influence of rate effects on the fracture properties of

gas shale1 . For given values of the loading rate and scratch speed, a minimum of two

tests was performed. Figures 8-5, 8-6, and 8-7 display the evolution of the apparent

fracture toughness for all materials and for all values of scratch speed and loading rates.

The measured apparent fracture toughness values range from 0.23 to 3.98 MPav iii.

This upper bound is greater than twice the average fracture toughness measured on

normal shale, 1.46 MPav/iii, by Senseny and Pfeifle [97] using macroscopic short-rod

bend specimen. The relative uncertainty of the measured apparent fracture toughness

ranges from 1% to 45% with an average of 15%. In particular for EagleFord-SLB and

Haynesville, high values of the relative uncertainty are associated with the directions

x13 and x31; whereas the lowest values occur for the direction x12. These values of

relative uncertainty are high compared to values obtained for homogeneous materials,

(for instance 4% for polymers, see Chapter 5 Section 5.3.2); and are attributable to the

heterogeneity and anisotropy of gas shale.

For a given shale, a given direction and a given loading rate, the fracture toughness

increases and then reaches a plateau. In the case of EagleFord, direction x12, a decrease

of the fracture toughness (plotted in light pink) was found for high scratch rates. This

decrease of the apparent fracture toughness has not been observed in other gas shale sam-

ples. In return, the general trend of the apparent fracture toughness, rise and convergence

towards an asymptotic value, has been consistently observed for all gas shale samples and

scratch directions, as well as for polymers. It is a clear result of a competition between

viscous bulk dissipation and crack propagation.

'The scratch tests were carried out by Amer Deirieh in 2012 as part of MIT's engagement in the
X-Shale project enabled through MITEI/
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Figure 8-5: Scratch test data on EagleFord. Two loading rates: 45 N/min and 90 N/min
were considered. Tests carried out by Amer Deirieh, 2012.
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Figure 8-6: Scratch test data on EagleFord-SLB. Three loading rates: 45 N/min, 60
N/min and 90 N/min were considered. Tests carried out by Amer Deirieh, 2012.
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8.3.2 Repeatability

We want to estimate the relative error introduced when testing two different specimen

of the same material in the same direction and with identical scratch parameters. To

this end, two specimens of EagleFord-SLB were prepared and tested in the x31 direction

for scratch speeds ranging from 0.2 mm/min to 20 mm/min and for three loading rates:

45, 60 and 90 N/min. The resulting apparent fracture toughness is displayed in Figure

8-8. The two series of tests yield similar order of magnitude of the apparent fracture

toughness, from 0 to 4 Mav/iin. Moreover, from one series of tests to another, the overall

trend is preserved: for a given loading rate, the apparent fracture toughness increases

with the scratch speed to reach a plateau.

For a given loading rate, the relative error is calculated as the ratio of the area between

the two curves and the area under the curve representing Series 2. In mathematical terms,

the relative error e is given by:

20 |Kaa _ Ka,212d
e = K dV (8.3)

f2 0 Ka,2 dV

e was found equal to 10%, 6% and 15% for the three loading rates: 45, 60 and 90 N/min.

This signifies that the scratch test results on gas shale presented here are accurate within

15%.

8.3.3 Intrinsic Fracture Toughness Determination: Maxwell Model

As shown in Chapter ??, in the case of rate-dependent materials such as gas shale, the

viscous bulk dissipation needs to be taken into account in the energy balance. As a result,

the fracture propagation criterion becomes:

Ka FT < KeW (t) (8.4)
V/2A7LB
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where W(t) is a visco-elastic correction factor that depends on the material's visco-elastic

behavior. For instance, for a Maxwell material with a constant Poisson's ratio, an in-

stantaneous shear modulus G, a shear viscosity r/G and a characteristic relaxation time

TG = rG/G, the visco-elastic correction factor is given by (See Chapter ?? Section 4.5.1):

2 12LAt)t= -- (8.5)W A(t)

where the plane strain visco-elastic coefficient A(t) is defined by:

A(t) = 1 - exp ( (8.6)
(' )G _

As seen in Chapter 7 Section 7.2.2, the time-to-fracture t is related to the loading

rate, Fv, and to the scratch speed, V, via:

t _ fv 1= C + 1- (8.7)
TG V V

where the coefficient c is a measure the rate of dissipation of the fracture energy, and it

is proportional to the creep modulus of the scratched material. 1 is a length parameter

activated by scratch tests performed with a constant vertical force. In particular, for

scratch tests with a positive loading rate, neglecting 1, Eq. (8.7) can be rewritten as:

t = a.v/V. Given the anisotropy nature of gas shale, the coefficient a = c TG is

assumed to depend on both the material and the scratch direction. A nonlinear constraint

optimization procedure was thus performed in MATLAB to determine the constants K,

and a that minimize the sum of the squared error between the left hand side and the right

hand side of Eq. (8.4) for all loading rates and scratch speeds relevant to the direction

and the material specified.

Figures 8-9, 8-10 and 8-11 plot the apparent fracture toughness as a function of V/FV,

and in black is the prediction from the analytical model. In the case of EagleFord and

for the scratch direction x12, the tests that are in light pink and that correspond to
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Figure 8-11: Intrinsic fracture toughness: Maxwell model. Haynesville. Tests carried out
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the unexplained decrease of the fracture toughness, were discarded from the analysis.

There is an excellent agreement between the experimental data and the prediction from

the analytical model. In other words, with only two constants, K, and a, our model

is able to accurately correct for rate effects. The predicted values of the intrinsic frac-

ture toughness K, are listed in Table 8.4 for all materials and all directions. The given

standard deviations for K, correspond to 95% confidence intervals. K, ranges from 1.43

MPax/-i to 3.55 MPay/mi, values that are much higher than the fracture toughness typi-

cally measured on shale using standard macroscopic fracture toughness testing methods.

EagleFord shows no preferred scratch direction; whereas for EagleFord-SLB and Hay-

nesville, we have: Kc(x12) > Kc(x13) > Kc(x31). In other words, the crack is more

likely to propagate when it is in the bedding plane.

EagleFord and EagleFord-SLB have close values of intrinsic fracture toughness whereas

Haynesville has lower intrinsic fracture toughness values. Finally, the uncertainty on the

prediction of K, ranges from 9% to 18% with an average value of 10%. Given the high

complexity of the considered materials, this low uncertainty confirms that micro scratch

tests are a reliable, consistent and repeatable tool for the characterization of fracture

properties of gas shale.
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Material Ke(xl2) MPav/imi Kc(xl3) MPa- /1i Kc(x31) MPay/m--
EagleFord 2.97t0O.47 3.55±0.32 3.36±18
EagleFord-SLB 3.35±0.25 3.37t0.14 2.79±i0. 16
Haynesville 2.47t0.15 2.17±0.38 1.43-40.12

Table 8.4: Intrinsic fracture toughness: Maxwell model. The standard deviations given
correspond to 95% confidence intervals.
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Figure 8-12: Visco-elastic behavior of gas shale: indentation compliance obtained from
micro-indentation tests performed with a trapezoidal force history; the maximal force
being 100 mN and the holding phase duration being 480 s and the loading/unloading
step duration being 30 s. A) EagleFord. B) EagleFord-SLB. C) Haynesville.
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8.3.4 Intrinsic Fracture Toughness Determination: Generalized

Maxwell Model

In the previous paragraph, the intrinsic fracture toughness was determined assuming a

generic Maxwell model. The inconvenient of the Maxwell model is that its simplicity may

lead to overestimating the viscous dissipation since it neglects the possibility of a frozen

energy inside the material. For this reason we recall the fracture criterion developed

in Chapter ??, Section 4.5.4 for a generalized Maxwell model. We consider a constant

Poisson's ratio constant and the following expression for the relaxation shear modulus in

Laplace domain:

N
G(s) = 1 + (8.8)

Si=1 Gi r0

We define the functions Ai:

Ao = 1; Ai(t) = [ 1 - exp (8.9)

Then the plane strain visco-elastic coefficient is a weighted average of the functions Ai:

N G-
A(t) = E G Ai (t) (8.10)

i=0 k=ON Gk

Moreover, the contribution of the frozen energy to the fracture process gives rise to a

frozen energy correction factor y(t):

N Gi A?(t)
A(t) = E T (8.11)

i=0 k=ON Gk A2 (t)
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The final expression of the correction factor depends on both the plane strain visco-elastic

coefficient and the energy correction factor according to:

Wi(t) t)- -(t) (8.12)

Here, we accurately measure the visco-elastic response via micro indentation tests and

then use it as an input to decouple creep and fracture following the method developed

in Chapter 7. Two 10x10 grids of indentations were performed on each gas shale in the

transverse (Xl) and in the longitudinal (X3) directions. The maximal force was 100 mN,

the loading and unloading phase lasted 30 s whereas the holding phase lasted 720 s. The

visco-elastic behavior was assessed from the variation in depth during the holding phase

according to the model developed by [112, 113, 114]. Figure 8-12 displays the average

depth variation during the holding phase for both directions, XI and X3, and for all

three materials. As can be seen, the visco-elastic behavior is anisotropic and direction

X3, perpendicular to the bedding plane, is the most compliant, leading to higher values

of the penetration depth. For all materials and all directions, the creep was found to be

logarithmic. Table 8.5 lists the visco-elastic constants: the indentation modulus MO, the

contact creep modulus, C, and the characteristic relaxation time, r. The visco-elastic

coefficients for both directions XI and X3 are very close for EagleFord, whereas the

anisotropy is more pronounced for EagleFord-SLB and Haynesville.

Knowing the time evolution of the plane strain creep modulus, a numerical Laplace

inversion scheme [111] was used to derive the plane strain relaxation modulus according

to Eq. (8.8), assuming a constant Poisson's ratio. Again, neglecting the parameter 1 in

Eq.

The comparison of the analytical model with experimental data shown in Figures

8-13, 8-14 and 8-15 show a fair amount of consistency, and foremost the high predictive

capabilities of the approach to separate creep from fracture. Table 8.6 summarizes the

calculated values of the intrinsic fracture toughness using the Generalized Maxwell model
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Material Indentation Contact creep Characteristic Correlation co-
modulus modulus relaxation time efficient R 2

Mo(GPa) C(GPa) T(S)
EagleFord
X1 66.71t14.24 178.79+31.95 0.55 0.9992
X3 63.55+16.56 152.69±26.04 0.45 0.9984
EagleFord-SLB
X1 73.05±1.47 212.38±4.26 0.16 0.9904
X3 19.71±4.41 36.80±7.31 0.50 0.9991
Haynesville
X1 34.03±5.95 71.40±18.83 0.43 0.9995
X3 20.93±8.68 41.90±31.11 0.64 0.9986

Table 8.5: Viscoelastic constants of gas shale samples from micro indentation

Material Kc(x12) MPa\/ii Kc(x13) MPav'ii Kc(x31) MPavfii
EagleFord 2.98+0.48 3.57+0.33 3.39±19
EagleFord-SLB 3.43±0.27 3.39+0.14 2.86+0.18
Haynesville 2.48+0.15 2.17±0.40 1.44±0.13

Table 8.6: Intrinsic fracture toughness: Maxwell Generalized model. The standard devi-
ations given correspond to 95% confidence intervals.

by combining scratching and indentation. These values are essentially identical with the

values presented in Table 8.4 determined with a simple Maxwell model for the visco-

elastic behavior. Therefore the previous observations hold.

It is interesting to note the agreement between micro-indentation and micro-scratching.

In particular, for EagleFord, micro-scratch tests show that there is no preferred direction

and the fracture resistance is basically the same in all directions, x12, x13 and x13. In the

same line, indentation show that the visco-elastic constants in both directions, X1 and

X3 are very close, meaning that the visco-elastic behavior is almost independent of the

direction. In the same way, micro-scratch tests reveal that the weakest cracks are those

lying in the bedding plane for EagleFord-SLB and Haynesville; and micro-indentation

exhibits the highest compliance for tests performed perpendicular to the bedding plane.
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8.4 Chapter Summary

The goal of this chapter was to implement a systematic, rigorous, accurate, precise and

robust way to characterize the fracture resistance of gas shale using micro-scratch tests

with a Rockwell diamond probe based on the method developed in Part II for homoge-

neous materials.

After reviewing evidence of fracture processes at work during the scratch testing of

gas shale, a clear recipe was given to process scratch test results on gas shale. This recipe

involves discarding flawed tests, analyzing the forces and penetration depths record of the

remaining valid tests and quantifying the uncertainty of the measured apparent fracture

toughness. In particular, scratch tests have been proven to be repeatable with an average

relative uncertainty of less than 15%.

Scratch tests on three gas shale samples, EagleFord, EagleFord-Shale and Haynesville,

were carried out with scratch speeds ranging from 0.2 to 20 mm/min, covering two orders

of magnitudes, and for three loading rates: 45, 60 and 90 N/min. Three scratch directions

were considered to account for the anisotropy of the material. Ke(x31) is the fracture

toughness when a fracture propagates perpendicular to the beddings direction; Kc(x13)

is the fracture toughness when a fracture crosses the bedding planes, and Kc(x12) is the
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fracture toughness when a fracture propagates along the bedding planes. For a given

material, a given direction and loading rate, the apparent fracture toughness increases

until a plateau is reached. The two methods described in Chapter 7 were applied to cal-

culate the rate-independent fracture toughness values. In particular one method assumes

a generic Maxwell visco-elastic behavior whereas the other measures the visco-elastic re-

sponse via independent micro-indentation tests. For the gas shale materials considered in

this study, the agreement between both methods was excellent, as well as the fit between

the experimental data and the predictions of the experimental model. Except for Ea-

gleFord exhibiting an isotropic fracture behavior, reminiscent of its isotropic viscoelastic

behavior assessed by micro indentation testing, the fracture behavior of EagleFord-SLB

and Haynesville was anisotropic with Kc(x12) ;> Kc(x13) > Kc(x31).

While the micro-scratch technique has thus be shown to be applicable for such highly

heterogeneous materials as gas shale, it should be noted that further development are

required to include the anisotropy in both the visco-elastic and fracture modeling. Nev-

ertheless, the results presented here are encouraging to determine intrinsic fracture prop-

erties of heterogeneous materials.

174



Chapter 9

Multi-Scale Characterization of

Shale Using Scratch Tests

The objective of this chapter is to assess the fracture resistance of shale at different length

scales, using both micro scratch tests and macro scratch tests. In fact, shale can be

viewed as a multi-scale composite material as shown in Figure 9-1. At nanometer length-

scale, there is the elementary clay particle (level 0), that are packed at sub-micrometer

length-zcale to form a porous solid (level I). At larger scales, this porous clay is mixed

up with randomly distributed silt and sand inclusions (level II). With this multi-scale

thought-model in mind, micro-scratching is able to test the fracture resistance of the

heterogeneous composite at level II, while macro-scratching assesses the fracture behavior

of the "homogeneous continuum", at a scale above.

The material for this study is a specimen from the Niobrara formation - Niobrara

is a geological formation that underlies much of the Great Plains of the United States

and Canada- that was provided by Shell. Herein, we analyze consecutively micro scratch

tests and macro scratch tests to gather information about the fracture behavior.
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Level 11
Porous clay -
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composite
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Figure 9-1: Multi-scale structure thought-model of shale. The level II and level I images
come from scanning electron microscopy (SEM) imaging. The level 0 image comes from
transmission electron microscopy (TEM) imaging, reprinted with the kind permission of
Springer Science and Business Media. Source [81, 107, 108, 109, 821
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9.1 Micro-scratch Testing

9.1.1 Materials and Methods

From a sample of Niobrara shale, 150-mm long and 25-mm wide, two sets of two speci-

mens, 25-mm wide and 6-mm thick, were machined using a diamond saw. The two sets

correspond to the directions XI and X3 (thickness) directions. All specimens were then

prepared in several steps comprising a coarse grinding step on a 400 grit alumina oxide

pad, a wet coarse polishing step with a 15 pm diamond suspension oil-based solution,

a fine dry polishing step with a 9 pm alumina oxide pad, a fine dry polishing step with

a 6 pm alumina oxide pad and a fine dry polishing step with a 6 pm alumina oxide

pad. Between each step, the specimen were cleansed by ultrasonication for 5 minutes in

N-decane.

On these four specimens, two series of micro-scratch tests were performed along the

scratch direction x31, x32, x12 and x13, see Figure 9-2, for a scratch speed ranging from

0.2 mm/min to 20 mm/min and for two loading rates: 60 and 90 mm/min. Prior to

testing, the scratch probe was calibrated using Lexan as described in Chapter 5 and the

scratch tests were processed according to the procedure described in Section 8.2. Figure

9-2 displays the variation of the apparent fracture toughness as a function of the scratch

speed for all loading rates, directions and series considered.
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9.1.2 Results

Each data point in Figure 9-2 represents a minimum of two scratch tests performed at

the same scratch speed and loading rate in the same scratch direction. The general trend

found for other gas shale materials in Chapter 8 is confirmed here: for a given direction

and a given loading rate, the apparent fracture toughness increases and converges towards

an asymptotic value. The average relative uncertainty on the apparent fracture toughness

is 20% for the scratch direction 31 and x32, and 8% for direction x12 and Al.

The analytical model developed in Section Chapter ?? is then applied to correct for

rate effects and to predict the intrinsic fracture toughness values. For the sake of simplic-

ity, the visco-elastic behavior assumed was a Maxwell model with a constant Poisson's

ratio. This means that for a given scratch direction the determination of only two mate-

rial constants are required in order to predict the intrinsic fracture toughness. In Chapter

7, we have shown that assuming a simple Maxwell model is as accurate as combining

scratch and indentation tests. Figure 9-3 confronts the prediction of the analytical model

with the experimental data, showing that the analytical model accurately reproduces the

observed fracture behavior. Table 9.1 lists the values of the predicted intrinsic fracture

toughness for all scratch directions and for both series. There is less than 8% of relative

error between series I and series II. This is another confirmation that micro scratch tests

constitute a precise tool for the measurement of the fracture resistance. Some observa-

tions made in Chapter 8 remain relevant. In particular, Kc(x13) > Kc(x31): this has

been observed also for EagleFord-SLB and Haynesville. Moreover, Kc(x12) > Kc(x13),

which has also been observed in Haynesville. These results need to be confirmed by

macro scratch tests.
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Series I Series II
Kc(x31) Kc(x32) Kc(x31) Kc(x32)
2.35±0.18 2.34±0.16 2.19+0.29 2.28+0.21
Kc(x31) Kc(x32) Kc(x31) Kc(x32)
3.26±0.13 3.06+0.12 3.49±0.12 2.83+0.18

Table 9.1: Intrinsic fracture toughness in MPaV'iii for Niobrara samples. The standard
deviation correspond to 95% confidence intervals.

9.2 Macro-Scratch Tests

9.2.1 Macro Scratch Tests Description

Macro scratch tests were performed by TERRATEK with an inclined parallelepiped blade

at a back-rake angle of 6 = 150 for two scratch speeds: 6 and 180 mm/min. Figure 9-4 is a

schematic representation of the test; two blade widths were considered, 5mm and 10 mm,

and the penetration depth, d, varied from 0.1 mm to 0.5 mm. For a given triplet (scratch

speed, blade width and penetration depth), the vertical and horizontal force, FV and FT

were recorded. As can be seen on Figure 9-5, both the vertical and horizontal forces rise

sharply as the blade comes in contact with the material, and oscillates around mean values

to drop as the blade moves past the specimen. The mean vertical and horizontal forces

are summarized in Tables 9.2 and 9.3 for scratching in the X13 and X31 - directions.

When comparing the average force values, the values for shallow depths, (d < 0.4 mm)

are higher in direction X13 than in direction X31. Furthermore, for a given scratch

direction, blade width and penetration depth, there is a slight increase of the average

horizontal and vertical forces as the scratch speed increases from 0.1 mm/s to 3 mm/s.

9.2.2 Macro Scratch Tests Analysis

A Linear Elastic Fracture Mechanics model was developed to to relate the forces and

geometry of macro scratch tests to the fracture properties [3, 2]. The thought-process is

similar to the approach adapted in Section 3.3.2. Assuming an horizontal crack in front
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FT(N)
445.29 ± 173.14
306.47 ± 100.26
211.80 ± 69.41
152.36 ± 45.86
110.78 ± 26.72
64.79 ± 11.51
549.87 ± 270.76
430.80 ± 165.26
315.11 ± 107.50
233.91 ± 68.80
223.54 t 73.31
175.89 t 43.10
120.99 ± 24.76
120.27 ± 32.54
72.21 ± 15.37
238.38 ± 55.06

Fv(N)
341.98 ± 147.80
244.27 ± 83.18
177.84 ± 56.25
134.51 ± 37.73
107.66 ± 23.80
78.99 ± 13.52
460.68 ± 232.11
365.80 ± 143.41
277.80 ± 90.43
215.29 ± 58.74
203.75 ± 61.19
170.17 ± 38.24
129.12 ± 25.22
115.71 ± 28.66
85.95 ± 17.14
227.18 ± 50.69

Table 9.2: Macro-scratch test results on Niobrara sample. Direction x13.

V(mm/s) w(mm) d(mm) FT(N) Fv(N)
0.1 5 0.60 168.97 ± 81.10 127.40 t 64.59
0.1 5 0.50 161.77 ± 116.48 136.41 ± 105.88
0.1 5 0.40 101.31 ± 27.52 88.85 ± 20.14
0.1 5 0.30 79.45 ± 19.35 76.69 + 14.86
0.1 5 0.20 57.86 ± 11.51 65.72 ± 10.26
0.1 5 0.10 34.00 ± 4.68 53.42 ± 6.76
0.1 10 0.50 187.44 4 66.59 163.35 ± 55.67
0.1 10 0.40 165.84 + 40.95 149.55 ± 34.84
0.1 10 0.32 152.34 ± 35.47 143.18 ± 31.27
0.1 10 0.25 127.90 ± 24.02 126.26 ± 21.49
0.1 10 0.18 104.02 ± 16.76 110.42 ± 16.50
0.1 10 0.10 79.16 ± 10.42 91.77 ± 12.20
3 5 0.20 54.03 ± 12.32 65.56 ± 12.15
3 5 0.10 38.44 ± 6.05 56.27 ± 8.45
3 10 0.20 130.74 ± 21.80 132.54 ± 20.71
3 10 0.10 90.15 ± 11.53 101.53 ± 13.20

Table 9.3: Macro-scratch test results on Niobrara sample. Direction x31.
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V(mm/s)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
3
3
3

w(mm)
5
5
5
5
5
5
10
10
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10
10
10
5
5
10

d(mm)
0.60
0.50
0.40
0.30
0.20
0.10
0.60
0.50
0.40
0.30
0.30
0.20
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0.20
0.10
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of the probe as picture in Figure 9-4, the model uses an Airy function to solve for the

stress and strain fields. A contour integral is then used to evaluate the energy release

rate, which upon crack propagation is equal to the fracture energy of the material. The

final fracture criterion reads:

eq < K (9.1)

Herein the equivalent scratch force Fq = /F + 3/5F? comprises the contribution of

both the horizontal an the vertical force to the fracture process. This time the contri-

bution of the vertical force Fy to the fracture process cannot be neglected, because the

blade is inclined, with a back-rake angle of 0 = 15', with respect to the vertical axis.

Figures9-6 and 9-7 display the variation of the quantity Feq/(w 2d) as a function of

the width-to-depth ratio, w/d, for the x13 and x31 directions, respectively; and for the

two scratch speeds, 0.1 mm/s and 3 mm/s. For the scratch speed 0.1 mm/s and for

each direction, Feq/(wV2-d) decreases to converge towards an asymptotic value as the

with-to-depth ratio becomes large. This convergence is characteristic of a shift from a

strength-driven to a fracture-driven process.

Herein, the fracture toughness was calculated by fitting the curve Fq vs. w/d to a

decreasing power function of the form: y = K, + bx-" . The fit was performed using

a nonlinear optimization algorithm in MATLAB; the fitted function is represented with

dotted lines on Figures 9-6 and 9-7 and the predicted fracture toughness values at the

scratch speed V = 0.1 mm/s are listed in Table 9.4. No prediction of the fracture

toughness was performed at the scratch speed for V = 3 mm/s due to insufficient scratch

test data.

The fracture toughness was equal to 1.10 ± 0.22 MPaV'iii for direction 13, and

0.71 ± 0.10 for direction 31. These values are within the range of fracture toughness

values, 0.66-1.98 MPa /7m, obtained by Senseny and Pfeifle (Senseny and Pfeifle, 1984)

on shale with macroscopic short-rod specimen. Moreover, additional This is an additional

184



5
* 0.1 mm/s

4  v 3 mm/s

2

01
00 50 100

w/d

Figure 9-6: Macro-scratch test data on Niobrara sample direction x13.

confirmation of the reliability of macro-scratch tests for fracture property assessment.

The "macro" fracture behavior is anisotropic: Kc(x13) is greater than Kc(x31). This

fact has also been observed with micro-scratch tests on the Niobrara sample but also for

other gas shale materials in Chapter 8.

9.3 Chapter Summary

We postulated [2] that scratch test is a fracture-dominated process and a powerful tool

that lends itself to the multi-scale characterization of fracture properties. The current
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Figure 9-7: Macro-scratch test data on Niobrara sample direction x31.
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M 0.1 mm/s

v 3 mm/s

V(mm/s) Kc(xl3), MPav./m- Kc(x31), MPay/m-
0.1 1.10 + 0.22 0.71 t 0.10

Table 9.4: Macro-scratch tests results on Niobrara sample. Fracture toughness in function
of scratch direction.



study confirms this statement. In fact, using the same principle (i.e., driving a hard ma-

terial through a weaker material (shale)), for different geometries (rectangular inclined

blade versus axisymmetric probe), at different scales (macroscopic versus microscopic),

and with different loading rates, we are able to apprehend two important physical phe-

nomena:

" Energetic size effects: due to a redistribution of stresses during crack initiation and

propagation, the nominal strength depends on the nominal size of the system. In

the case of Linear Elastic Racture Mechanics, the nominal strength is inversely

proportional to the square root of the nominal size of the system. This is seen

in the convergence of FT/ 2 pALB for large d/R in micro scratch tests and in the

convergence of Feq/(wv d) for large w/d ratios in macro scratch tests.

" Increase of the fracture toughness with the scratching speed: this is due to the

competition between fracture dissipation and viscous bulk dissipation. At high

rates, viscous dissipation becomes negligible and the behavior is essentially elastic.

In the case of gas shale, the anisotropy of the fracture behavior is confirmed at both

the microscopic and the macroscopic scale. In particular, the fracture resistance is the

smallest when the crack lies in the bedding plane, x31; and it is the greatest when the

crack is aligned with the bedding plane; while the crack opening is aligned with the

bedding direction, x12. This can be summarized by:

Kc(xl2) > Kc(x13) > KcQr31) (9.2)

However, there is a reduction of 60% in the fracture toughness from the microscopic scale

to the macroscopic scale. This behavior was not observed for homogeneous materials

(paraffin wax, see Section 7.3.2); it may be attributed to the presence of inhomogeneities

and inclusions; that may explain microscopic toughening mechanism of the heterogeneous

materials.
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Part V

Conclusion
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Chapter 10

Summary of Results and

Perspectives

The main goal of this thesis was to formulate a framework to assess the fracture resistance

at the microscopic scale via micro scratch tests. Thus chapter recalls what has been

learned through the development of analytical models and multi-scale experiments. Based

on these findings, we highlight the potential impact of this work from an academic and

industrial perspective, and stress the limitations as well as potential axes for further

research.

10.1 Summary of Main Findings

The main findings of this work can be classed in three categories: analytical models,

experimental methods and application to gas shale.

10.1.1 Analytical Models

The rationale for Fracture Mechanics modeling was the presence of experimental clues

hinting towards fracture processes at work during scratch test. As described in Chapter

2, these clues include the scaling of the scratch force as well as the presence of physical
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fracture surfaces observed on the residual groove after scratch testing on metals and

ceramics. Linear Elastic Fracture Mechanics was thus employed to express the scratch

forces in function of the scratch probe geometry and the material fracture toughness,

Kc, using an energy-based approach. The assumption of the model is that the material

behavior is linear isotropic and rate-independent. Brittle fracture is considered the main

mode of failure, based on the accumulation of cracks experimentally observed at large

depths of penetrations on the residual groove after scratch testing. Advanced imaging

of the residual groove also yielded the geometry of the generated crack surfaces: curved,

horizontal and perpendicular to the direction of scratch testing. The analytical model

considered thus a semi-circular horizontal crack ahead of the scratch tip. For a spherical

probe, the horizontal force, FT, scales linearly with the penetration depth; whereas for a

conical probe, FT is proportional to d312 . In the general axisymmetric case, FT and K,

are linked by the equation:

FT
2 pALB= Kc (10.1)

where p is the scratch probe perimeter, ALB is the projected horizontal load-bearing

contact area and 2pA is the scratch probe function. By appropriately evaluating the

scratch probe function, this framework is easily adaptable to all kinds of scratch probes

used in industrial micro and macro scratch apparatus.

In the case of linear visco-elastic materials, a framework was developed to account for

the viscous bulk dissipation in the energy balance. In particular, the energy release rate,

that can be evaluated via a path-independent contour integral, remains the driving force

of crack propagation. As a result of the visco-elastic behavior, the fracture criterion above

is altered by the introduction of a visco-elastic correction factor, W(t), that accounts for

the rate-dependence of the mechanical constants as well as the presence of a frozen energy:

FT _

Ka 2pA KeH (t) (10.2)
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Herein, t is the time-to-fracture that defines the onset of crack propagation. The expres-

sion of the visco-elastic correction factor, W-(t), and of the viscous dissipation rate was

developed for some classical isotropic visco-elastic models, assuming a constant Poisson's

ratio and plane strain conditions. In particular, for a Maxwell model, it was shown that

the ratio of the apparent to the intrinsic fracture toughness, FT/(KcN2pTB), increases

from 0 to an asymptotic value of 1 due to the competition between viscous and fracture

dissipation. Otherwise said, function WN(t) allows separating creep and fracture in scratch

tests, and the determination of the intrinsic (i.e. rate-insensitive) fracture toughness.

10.1.2 Experimental Methods

The analytical models were transformed into a series of experimental methods that aim

at quantitatively measuring the fracture toughness using micro scratch tests. A rigorous

experimental procedure for the calibration of the scratch probe function, 2 pALB was

introduced, for scratch tests with a Rockwell C diamond probe using Lexan 9034 as a

reference material. For clean, unbroken and new (less than 150 scratch tests performed)

Rockwell C probe, the calibration method yielded a shape function that depends solely

on the geometry of the probe and is insensitive to external factors such as the choice of

the reference material.

Using the scratch probe calibration protocol, the method for fracture determination

using micro scratch tests was applied to ten materials including ceramics, metals and

polymers, and for macroscopic fracture toughness values spanning almost three orders of

magnitude. The scaling of the scratch force were in agreement with the prediction from

the LEFM scratch model. Moreover, the quantity FT/ 2 pALB converged towards an

asymptotic value for large depths of penetration, confirming the shift from a strength-

dominated to a fracture-dominated process, as postulated by the analytical model. Fi-

nally the predicted values of fracture toughness were in excellent agreement with the

values obtained through macroscopic conventional fracture testing methods such as the

three-point bending test on single-edge notched specimens or the compact tension test.
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On these homogeneous materials. the method for fracture toughness determination using

microscopic scratch tests was found to be reproducible, accurate with a relative error of

less than 7% and precise with a relative uncertainty of less than 10%.

Furthermore, the method for fracture determination using microscopic scratch tests

was extended to rate-dependent materials. For these materials, the apparent fracture

toughness, K,, depends on both the scratch speed, V, and the loading rate, Pv. In par-

ticular, given a loading rate, the apparent fracture toughness rises towards an asymptotic

value. On the other hand, K, is a decreasing function of the loading rate. These experi-

mental observations suggest that the time-to-fracture is proportional to the loading rate

and inversely proportional to the scratching speed:

t Fv + 11 (10.3)
V V

Thus, micro scratch testing and micro indentation were combined to decouple creep and

fracture. Micro indentation is applied to measure the material visco-elastic behavior,

which is then entered as input for the scratch test analysis via the correction factor W(t)

defined by Eq. (10.2). The inverse method, which involves only three materials constant,

c, 1 and Kc, is able to accurately reproduce the experimental fracture behavior of four

polymers, Delrin, paraffin wax Exxon mobil, polycarbonate and polyvinyl chloride, for

three loading rates and over a range of scratch speeds spanning two orders of magnitude.

1 is a length scale activated by the fracture process in scratch tests with a constant vertical

force, whereas c is found to be proportional to the material creep modulus. Thus, we

have a reliable inverse method for the determination of intrinsic fracture properties of

rate-dependent materials using microscopic scratch tests.

10.1.3 Application to Gas Shale

In the case of gas shale, new challenges arise due to the heterogeneity, anisotropy and

rate-dependence of the material. A protocol was developed to account for this complex-
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ity. In particular, scratch directions are defined and a filtering procedure of the scratch

test results becomes necessary. The fracture behavior is similar to the one observed

on homogeneous materials. That is, the apparent fracture toughness increases with the

scratch speed and decreases with the loading rate. The application of the experimental

method to decouple creep and fracture yields values of the intrinsic fracture toughness

that depend on the direction. In particular, a crack lying in the bedding plane is more

likely to propagate than a crack normal to the bedding plane. This is expressed by the

following inequality:

Kc(X12) ;> Kc(X13) > Kc(X31) (10.4)

Interestingly, this inequality remains valid at the macroscopic scale. At that scale, the

fracture toughness also slightly increases with the scratch speed. However, there is a

reduction of 70% in the value of the fracture resistance, which could be attributed to the

heterogeneous micro-structure.

10.2 Research Contribution

This work confirms the existence of an intrinsic fracture toughness, hence an intrinsic frac-

ture energy, for homogeneous linear elastic isotropic materials. This fracture toughness

is intrinsic because it is invariant with regard to the geometry of the test (parallelepiped

scratch tool versus axisymmetric scratch probe), the loading conditions (linearly increas-

ing vertical force versus constant penetration depth), the prescribed rates (loading rate

and scratch speed) and the length scale of the test (macroscopic scratch test versus

microscopic scratch test). This is an important development in the physics of fracture.

Another contribution is the fundamental understanding of the underlying mechanisms

behind scratch tests. Despite the intensive use of scratch tests in the industry, from the

introduction of the Mohs scale in 1824 [104, 21] to the development of instrumented

scratch testing devices in the early 1990s [90, 91, 103, 110], the underlying mechanics
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was still aloof. We postulate three modes of dissipation of the provided external work:

plastic dissipation, bulk viscous dissipation and crack propagation. The plastic dissipa-

tion becomes negligible for large d/R ratios for micro scratch tests, and for large w/d

ratios for macro scratch tests. As for the viscous bulk dissipation, it becomes negligible

for small loading-rate-to-scratch-speed ratios, Fv/V. This assumption enables us to ac-

curately match the fracture resistance, at both the microscopic and the macroscopic scale,

for different scratch probe geometries, for several loading rates and scratch speeds, and

for a wide range of rate-dependent materials, including amorphous and semi-crystalline

polymers, gas shale and other geologic materials.

10.3 Industrial Impact

This research work opens new venues of application of micro scratch tests. While scratch

tests are relevant in several fields of science and engineering such as wear and damage of

metals [1, 99, 26], thin films and coatings [85, 29, 33, 51], hardness of ceramics [41, 7] and

strength characterization of rocks [90, 91, 12], this thesis introduces yet another powerful

application of scratch tests as an alternative means to characterize the fracture toughness

at the microscopic scale.

In the field of energy exploration and production, we present an innovative and ro-

bust method to assess the fracture properties of geological materials, which is of capital

importance to address current research topics such as shale gas production or hydraulic

fracturing. In the particular case of gas shale, we found an anisotropy of the fracture

behavior:

Kc(X12) > Kc(X13) > Kc(X31) (10.5)
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10.4 Limitations and Future Perspectives

In this section we present the limitations of our work and identify potential axes of further

research. The following points are recognized to be limitations of our work:

" Throughout this thesis work, we have considered only brittle fracture processes.

Incorporating ductile fracture processes could enable one to address the case of

shallow scratching, ultimately leading to a miniaturization of the technique to the

nanometer scale.

" The contact area was calculated directly from the penetration depth. In particular

we neglected any pile-up of material ahead of the scratch probe. This could be

problematic in the case of ductile hard materials such as materials where a signifi-

cant pile-up of material ahead of the probe could lead to an underestimation of the

actual contact area.

" In the case of anisotropic materials such as gas shale, the anisotropic of the creep

and fracture behavior is not fully accounted in the current visco-elastic scratch

model

" The observed reduction in the fracture toughness values from the microscopic scale

to the macroscopic scale, that seems to characterize heterogeneous materials, re-

quires further investigation

Despite these limitations, the set of analytical models and experimental methods de-

veloped in this thesis is an important development in the field of nano-mechanics and

multi-scale fracture characterization.
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Appendix A

Fracture Scaling for Axisymmetric

Scratch Probe

The goal of this Chapter is to provide an analytical expression of the energy release rate in

the case of scratch tests with an axisymmetric and when the vertical force influences the

fracture process. For this purpose spherical coordinates are used to represent the probe-

material interface. Then an Airy stress function is used to calculate the stress, strain

and displacement fields. Finally the energy release rate is evaluated using a J-integral.

A.1 Geometric description

From the self-similarity analysis the shape of an axisymmetric probe can be described

by:

d(r) = BrE (A.1)
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Therefore we will use the following parametrization of the interface:

x = rcos b,

r= 0... - ,
B

d
z = + BrE

2

7r 7r

2 2

The differential element:

ds
ds = dr = 1 + (EBr-1)2 dr

dr

and the outward unit normal is:

EBrc-1 Cos q5 1

1 + (EBr-1)2  1 + (EBr-E1) 2

The differential surface element is da = r do ds.

A.2 Integrals of reference

The table below lists some useful integrals that will be used to provide a closed form

expression of the energy release rate. A demonstration of the results is provided later in

section A.6.

A.3 Airy stress function

The airy stress function is given by:

F(x, z) -bx z3 - zd2 + cz 2 (A.4)
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(A.3)



Integral

I, finterface nx da

12 f Interface nzda

13 fInterface nz z2da

14 fInter face ri Z2 da

15 = fItrface nzz da

'6 fInterface nixz da

17 fLnterface nzxz 3 da

18 = finterface rx 2 2

19 fInter face RX Z4 da

'10 fInter face rx 2 da

Expression

fi(c) ( )f d

32

d ).

f2(1E) B~)

f3 (E) d~ d2

d

f4 (E)Q) d 3

f7 (E)&d)E d3fs(E) (4)d 2
3

f+ E 3

g9c EdE 5

Value

2(E

f() !I: -E 2-E+2
8 (E+2)(e+1)

f ,)= 1 c(24E
2 +E+1)

2 (E+1)(2E+1)(3e+1)

f5(E) = -- } 3

A (E) -21 (-+2 )
f() 1 20

3 -5E
2 -9

f7(6) = 12 (e+3)(2e+3)(+1)

9 (c+3)2E+3)(E 1)

fA (C)
e 24e4 +18e

3 +23e 2 +6e+1
8 (e+1)(2e+1)(3e+1)(4e+1)(5e+1)

1o( E ) = - E--

Table A. 1: Integrals of reference for the derivation of the
energy release rate

analytical expression of the

The stress field is given by:

o= -6bxz + 2c

OcYZ b (3Z2 - d2)

ozz = 0

(A.5)

(A.6)

(A.7)

(A.8)

Where the constant b and c are related to the vertical and horizontal forces by applying

the traction boundary conditions at the probe-material interface. The Interface boundary

condition reads:

&r = I(uxxnx + (Txznz) da
F interf ace

- iFv =- c (orznx) da
JInter face

(A.9)

(A. 10)
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By replacing the stress components by tehir expressions provided above, it follows:

FT =/nterface
(-6bxz+2c)nx +b 3z2 - d2 nz da

-9 6bI6+ 2cI1 + b (31 3

= 2cI1 + b ( d2I 2 + 313 - 616

d-+b -3f2() (-- d2 +3f 3 (E)
4 B

2

d+3b ()

d
B

-6f6(c) ( d)

d d 1r
(d)+3bdB d2 [42

d
B

7r E2-_ 2 r +-2
8(,E+2)(E+1) 4 (E+2)(E+1)J

S 1 FT

C 4E d

212

- d2I 2)

d2

d2 - f2() +f3(E) - 2f6(E)

4 c

=- c
C+ 1

Therefore

(A.11)

= 2cfi (E) -d
B

= 2cfi (E) d



In the same way:

- v fInter face

= Interface

= b 314 - 3d2 J

= b 3f4(c) (-d) d
I B

3 -- d2f,(c) -4 B

d1
= 3b - d3  [f4() _

S3b( d3 E(2 + E

3b )d3 2 (E + 1)( 1) + 1)

= 3b - d 3 2
B (2E + 1) (3c + 1)

1 1
4 +1

b (2c + 1)(3c + 1) Fvb 662 1 (. 2

A.4 J-Integral

Having derived the expression of the stress components, we will evaluate the j-Integral.

The integrand in the J-Integral is:

The first term of the integrand j is ji = 'nx = I + (1 + v) The second term

a 1 1
j2 = -T = -(axxnx+o-22n2)-(-(1 + V)OXx + KV,)-o-x 2nx- (-(1 + v) p,x + iV,2x)F9 E' E

213

(o-22n2) da

[b(3z 2 nx da

d]

Therefore:

is :

_ d 2

i = Vpnx - T a



Knowing that: = o-zz = 0, p,xz = -u-z and Vxz(p = 0,xx + ',zz = o-xx, we

can make the following simplification:

J2 = - (orxxnx + axznz) - nx ((1

S= Ji + j2 = -- -nx + o-xxorxznz

+ v)Oaz + KVxx)

+ o-xzVxxnx]

If we replace o-x,o-2 and V , by their respective values, it comes:

J = - 2nc2+ bc - d2 nz + 6 nzZ2 - 12 nxxz + b2 ( d2 nz- d2 2 )]

- b2 + 9d2 nrxz - 9 nriz 4 - 18 nzxz 3 + 27nxX2Z2

Therefore the J-Integral J = flnterface jda is related to the integrals defined in section

A.2 by:

J = -i 2I1c2 +

- b2 ( d2 15

bc - d2 12+613 -12 16

-919- 1817+2718)

)+ b2 ( d2 14 - 9d2 J1)

that can be rewritten:

J = Jc2+Jc + Jb2

There is three terms: one in c2 , one in bc and one in b2
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A.4.1 Term in c2

Jc2 -- 21C2
=

d c2

K 2c (d)'
E c-+1 \B/
= 22

K 6 +1 FT
E 4E d

F 12

d K +l FT[ 4E ()dJ

A.4.2 Term in bc

Jbc=- - bc
E -2

12+613-12

/29

b 2

- bc ()d 2

-12f6(e) ( d)

3f2(e) + 6f3(E) - 12f6(E)2 1

-jbc )
E B

E bc

K d
E bc

-0

d 2 37r

d2 22

d237r 1
4 1 -

4237
d4

7r e2 _E+2
+6-

8 (E +2)(E + 1)
- 12(-1)4(' 2)( 1)

+ 2_+2 + E
(e + 2)(c + 1) (c + 2)(E + 1)1

E2 + 3E + 2

(1+( + 2)(E + 1)]

215

11
2

d2]+6f3(c) (



A.4.3 Term in b2

JK 2 d2 I 4 - d2 IJo + d2 5 9 Ig

+ (-19 - 217 +

1817 + 2718

318)]

On the one hand,

I4 - I -+ 2I5 = f4 (6) d3 - fio(a) ( d

d (14-110+2I5) f4(E) (-
4B

f1o(a) ()

3

+ fA(C) ( d)

On the other hand

(-19 - 217 + 31) = -fg(c) ( )d 5

By summing the two quantities, it comes:

- 2f7(f) ( d d3 + 3fs(c) d3

Ifs(e) - 2f7(E) + 3fs(E)] 32 J BI

Knowing that:

1 1
-f4(E) - fA(E) = - -

4 2 (2c +

2 (4 2 + E +1)

1) (3E + 1) (4E + 1) (5E + 1)

and

- fio(&) + Ifs() - 2f7(E) + 3fs(e) = 0

216

- I1o + 215)=- 9 K b 2 - (2 4

= 9kb21Fb

So

d

3

d 5 d 3

4I

d+2f5(E) (

1 ] (d),f4 (C) - f9 ('E) - ld 5 + flo (Cf) +



it comes

K b2
Jb2 = -bE

9 E2(4E2 + 6 + 1)
2 (2c + 1)(3E + 1)(4E + 1)(56 +

and the expression of b2 is:

2

2 _ (2E + 1)(3E + 1) Fv

6AB)2 d3

Thus

Jb2 = --
E 8

(4C2 + + 1)(26 + 1)(36 + 1)

E2(46 + 1)(56 + 1)
F 2

~B

Therefore the values of the J-Integral is:

J = J2 + JbC + Jb2

KE+1 FT +
E 46 i d_

_ 6-+1 F 1
E 4E Ai6 d(B)

K 1

E 8

1
2

(4C2 + E +1)(26 + 1)(3, +

E2(4E + 1)(56 + 1)

(4 2 + E +1)(2E +1)(36+

E(E +61)(46+ 1)(5,E +1)

_ s e + T1 F ~+
E Ji d4c£46). /d\

1(462 + 6 + 1)(26 +
2 E(E +1)(4E + 1)

1)(3E + 1) F 1
(56 +1) FT2

A.5 Energy release rate

The energy release rate is related to the J-Integral by:

G = i
P

217

Finally

1) FV

id
21) F 2
FT

(A. 14)

(A. 15)

1

d d5

1) B



where p is the perimeter that is given by:

p(d) = d

Therefore the energy release rate is given by:

2G = r E + I F
E 4#, (6 d 1

+ 1(4E2 + c + 1)(2, + 1)(3e + 1) Fv2
2 c(E + 1) (4c + 1) (5E + 1) FT_

K +1 1 FT
E 4# EB 2+1

Finally

G = .E+l (eB)-
E 4#

(B) 1[I +
d T

1(462 + E + 1)(2E + 1)(3E + 1) FV2

2 E(E+1)(4E+1)(5E+1) FT

1 (4E2 + E + 1)(2E + 1)(3E + 1) FV2

2 E(E+1)(4c+1)(5E+1) F,

A.6 Integrals of reference-demonstration

In this section we demonstrate the analytical expressions for the integrals of reference

that were presented in Table A.2.

A.6.1 Integral 1

nxda (A.18)I1= .fnterface

(d/B)'/E 0=7r/2

r=0 =-r/2

-Ber'- 1 cos q rdodr =

218

= 2f 1 +±2d2 () 2 E-2 d.x (A.16)

(A.17)

We have

nxrdods =
(d/B)1/E

r=_0
-2BEr' dr

11 +

r=l )1 #=-7r/2



I1 = -2 d d)

A.6.2 Integral 12

12 = Interf ace

(d/B)'I/ 0=7r/2

r=_ =-7r/2

(d/B)ll

nzrdods = f= I 0=7r/2 1 rd$dr

I2 = r
2 B

A.6.3 Integral 13

nzz2 da

219

Finally:

(A.19)

nzda

We have

(A.20)

Finally

(A.21)

13 - Interf ace
(A.22)



We have

13 (dB)1 =7r/2 z 2rdds
r=_ #-7r /2

7[d- dBr' + B 2 2
[4 1

'g22
,r - -7dB +B) 45

)i 

6+2d

E +2 B

1

rdr

7r 2'+
+ _B2( _

2c+2 B

1 11
- 1+ IE +2 2E +2J

13 = 2 - E + 2
8 (E + 2)(E + 1)

d 2
B

A.6.4 Integral 14

14 Interface

220

2

+ Brj rdodr

/ (d/B)1/1r=_0

ird 2  d
2 4 (B

= d)
B

Finally

(A.23)

nxz 2 da (A.24)

/(d/B)l/f 0=7r/2
r=_ #-7r/2

1 xd-

2d



I 0=7r/2 nxz 2rdods
#=-lr/2

I=7r/2
#=-7r/2

-Ber -1 cos (

-2cBrE - dBr" + B2r2E]
4

d2 1 f

= - 1 4 c+ 1 B

= -2cBd (d)

+B2
3 +1 ( d)

1[1

46±1

1 11
26+1 36+1]

223(d 1 2 + 1

B 4 (6 + 1)(2E + 1)(3E + 1)

Finally

1 E(2C2 + E + 1)

A.6.5 Integral 15

I5 = /
Jnterface

nzxz da

221

We have

I4 = Ld~l

_=0

/(Ld/B)l/*
_=0

= flll

_=0

d
+ Br)

2

rdodr

dr

3+1]

14 = - (A.25)

(A.26)

- dB d
2c+1 BE+1

1) B



= j(d/B)1/E i::::
r=_ =---r/2

/(d/B)1/E 0=7r/2

r=_ =-7r/2

= (d/B)l/f
=0

=2 2Q
2 d I

=2d B )

BJ

nz xz rdds

1 x r cos #

+ Br) dr

1

+ 3

- 1 1

16 E+ 3

d
2

Br') rddr

f

B)+3

'5 = - _

A.6.6 Integral I6

16 Interface

222

We have

Finally

d (A.27)

nxxz da (A.28)

2r 2 (



We have

nx xz rdodsI6 = j(d/B)
1/E j =7r/2

_ 0 0 = -g /

/(d/B)'/E 
# =-7r/2

= 0 . =-,,/2

(d/B)l/c -Br

7 - d 1
2B 2 c+ 2

2Bd(B) B

7r d)
2 B

-BEr'- 1 cos 4 r cos 

f+1 _ +4

(d
\B

2e+2

Br) dr

1
+B 2 + 2

+ 1
2c+2]

1

2(c + 2)(E + 1)

I6 r d ) E 2
4 ( + 2)(e +1) B)

A.6.7 Integral 17

(A.30)I7 = I nzxz 3 da
, Iterface

223

+ Br ) rdodr

BJ

Finally

(A.29)



We have

2r2

I
3

= 2d3(Bd)

1 2E3 _5E2 - 9 d

12 (E + 3)(2E + 3)(c + 1) d

P=-7r/2 riz xz 3 rdqods
#=7r/2

1 xrcos# d + Br' rddr
=-7r/22

+ -d2BrE - -dB2r2E + BrE
8 4 2

+i 3 d 2 d) dB 2
4 c4B+3 B) 2B22E

1 3 1 3 1 1
24 4E+3 22E+3 3E+31

I -E 1 23 _ W6 - 9

12 (E + 3)(2E + 3)(c + 1)

A.6.8 Integral 18

d

( d )

+3 B

2E+3

B 3 1 (d)3+3
+B3e+3 B)

d )3,

(B
(A-31)

18 : Interface
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I=/(d/B)'/E

r=0

/ (d/B)1/I
Jr=0

/(d/B)l/l
r=o

Finally

n x 2 z 2 da (A.32)

da 3 1
=2 1-8 3 B-



We have

18 j(d/B)/E 
=7r/2

r= #=-7r/2

/(d/B)l/f #=7r/2

r=_ =-7/2

/ 1d/B)1/E
_=0

4 BEd

3B 1

nx . 2 z 2 rdods

-Bcr'-1 cos $ r 2 cos2
o

2 d (B)

I E+3 B)

11

4±+3

+B 2
3 c+3 ()

1 11
2 + I6+

4 d 1 2E2 + 3+ -9
3Bed\B 12 (c + 3)(2E + 3)(E + 1)

1 E(2E2+ 3E + 9)
9 (e + 3)(2E + 3)(c + 1)

19 = fInterf ace

(d
B

nrz 4 da

225

2

+ Br' ) rdodr

-Ber+2 - dBr + B2r2E, dr
3 14

2c+3

Finally

3

d 3 (A.33)

A.6.9 Integral Ig

(A.34)

-d 2c+3

4 B d d) +5
3Be B



We have

I_ - j(d/B)1/E :=7r/2
r=o j#=-r/2

/(d/B) /E 0=7r/2

r=_ #-7r/2

nx z 4 rdods

-Bcr'-1 cos #
-Br2

-2Bcr 
d - 2 Br'+ 3d2B2r2E _ 2d Br + B 4r4 dr

d2 4 1 d
= IB 16c+1 B

[ ~ 1 
4d ±

S2BE 2dB 3  ( )

I- 4E+1 B

-2BEd 4 ( 16e± 1

d3B 1 d (
2 B2E+1 B)

1 d
51+1

22c+ 1

-Bd4(d)'+ 1 24 41e+23 2+6c+1

B 16 (c + 1)(2E + 1)(3E + 1)(4E + 1)(5E + 1)

Finally

E 24 4 + 183 + 23E + + 1c I

110 = finterface nrx 2 da
226trfc

4

+ Br" ) rdodr

2E
+3 d2 1 d)6+

2B 3E+1 B)

2

4c+ 1 5E+11

19 =-
(d )

\B
d
5

A.6.10 Integral I10

(A.35)

(A.36)

j(dB)ll

f

3 1

23E+ I

8 (c + 1)(2c + 1)(3E + 1)(4E + 1)(5c + 1)
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/f (/B ")'/ =7r/
2  

-I10 = n=

r=_=-7r/2/ (d/B)ll/ 4=B r 2-

r=_ 3

4 E d
--BI
3 c+3\BJ

x2 rdds

3Er'--1 cos 4 r 2 cos 2 r dodr

'10 4 d d
3E+3 B
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We have

Finally

(A.37)


