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[1] The lunar gravity field and topography provide a way to probe the interior structure of
the Moon. Prior to the Gravity Recovery and Interior Laboratory (GRAIL) mission,
knowledge of the lunar gravity was limited mostly to the nearside of the Moon, since the
farside was not directly observable from missions such as Lunar Prospector. The farside
gravity was directly observed for the first time with the SELENEmission, but was limited to
spherical harmonic degree n ≤ 70. The GRAIL Primary Mission, for which results are
presented here, dramatically improves the gravity spectrum by up to ~4 orders of magnitude
for the entire Moon and for more than 5 orders-of-magnitude over some spectral ranges by
using interspacecraft measurements with near 0.03 μm/s accuracy. The resulting GL0660B
(n= 660) solution has 98% global coherence with topography to n= 330, and has variable
regional surface resolution between n= 371 (14.6 km) and n = 583 (9.3 km) because the
gravity data were collected at different spacecraft altitudes. The GRAIL data also improve
low-degree harmonics, and the uncertainty in the lunar Love number has been reduced by
~5× to k2 = 0.02405 ± 0.00018. The reprocessing of the Lunar Prospector data indicates ~3×
improved orbit uncertainty for the lower altitudes to ~10 m, whereas the GRAIL orbits are
determined to an accuracy of 20 cm.

Citation: Konopliv, A. S., et al. (2013), The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL
Primary Mission, J. Geophys. Res. Planets, 118, 1415–1434, doi:10.1002/jgre.20097.

1. Introduction

[2] The measurement of the lunar gravity field has been a
goal from the beginning of the space program when the
Soviet Luna 10 mission in 1966 determined a fairly accurate
estimate of the gravitational oblateness or J2 spherical har-
monic coefficient [Akim, 1966] from long arc analysis of
the mission’s 460 orbits. Soon after in 1967, short arc line-
of-sight analysis of Lunar Orbiter V tracking data showed
large nearside gravity anomalies or “mascons” (mass concen-
trations) over the maria-filled impact basins [Muller and
Sjogren, 1968]. Noted were the five large nearside mascons
within Maria Imbrium, Serenitatis, Crisium, Nectaris, and
Humorum, and Mare Orientale near the limb. In total, five
Lunar Orbiter spacecraft from 1966 to 1968 provided Deep
Space Network (DSN) Doppler tracking data to map the
lunar gravity field with orbital inclinations from near

equatorial to near polar for the last two missions. Two
Apollo missions 15 and 16 followed in 1971 and 1972 with
two small spin-stabilized subsatellites that were released
from the Command Service Module. Both spacecraft had S-
band transponders and were tracked by the DSN, but did
not have any propulsion system to adjust the orbit. After both
were released in a 100 km nearly circular orbit, the Apollo 15
subsatellite lasted for several years whereas the Apollo 16
subsatellite surprisingly (at that time) impacted the lunar
surface after only 35 days. The difference in long-term orbit
behavior is attributable to the initial inclination of the orbit,
leading to short lifetimes of any low, circular 10° inclination
orbit (Apollo 16) and longer lifetimes for 30° inclination
orbits (Apollo 15). If the five large nearside mascons did
not exist, the Apollo 16 orbit lifetime would have been
much longer and similar to Apollo 15, and fuel usage for
any polar orbiter such as Lunar Prospector (LP) and
Gravity Recovery and Interior Laboratory (GRAIL) would
have been greatly reduced.
[3] Many gravity analyses were performed with the his-

toric data sets, but with limited spherical harmonic resolution
to at most degree 16 [Bills and Ferrari, 1980]. The develop-
ment of higher-resolution gravity fields began after recovery
of the historic Lunar Orbiter and Apollo data sets, and the
arrival of faster computers. The new higher resolution fields
to degree 60 [Konopliv et al., 1993] showed improved spher-
ical harmonic resolution and for the first time accurately
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predicted long-term orbit behavior such as that of the Apollo
subsatellites. The Clementine mission at a higher 400 km al-
titude in 1994 further improved the low-degree coefficients
of the gravity field [Zuber et al., 1994; Lemoine et al., 1997].
[4] The next major improvement in the lunar gravity field

occurred with the Lunar Prospector Discovery mission’s
arrival at the Moon in 1998 (a 75th degree and order
field LP75G [Konopliv et al., 1998]). In addition, the LP
degree-2 and -3 harmonics together with the Lunar Laser
Ranging data (LLR) [see Dickey et al., 1994] improved the
moments of inertia of the Moon by about fivefold. A simple
spin-stabilized spacecraft with limited propulsive maneuvers
ideal for gravity, LP provided 1 year of continuous S-band
tracking at an average 100 km polar altitude, and 1 and 6
months of a lower mean altitude of 40 and 30 km, respec-
tively. Subsequently, higher-resolution models based
upon LP data to degrees 100 (LP100J) [Konopliv et al.,
2001, Carranza et al., 1999] and ultimately degree 150
(LP150Q), especially improved the higher-latitude (beyond
30°) not yet sampled nearside regions of the Moon and
revealed many new mascons. LP150Q was often used as
the initial operational gravity field for later missions to the
Moon including GRAIL. Comparable lunar gravity fields
were also developed using the same historical and LP data
(degree 150 GLGM-3) [Mazarico et al., 2010], and by apply-
ing regional constraint techniques to extract more nearside
high-frequency gravity [Han et al., 2011].
[5] Although the LP spacecraft provides strong gravity

information as a low-altitude, spin-stabilized proof mass in
orbit with long periods of time (several weeks) between
maneuvers, it can only provide limited information on the
lunar farside gravity due to the lack of direct tracking data
from the Earth. Using LP data together with Lunar
Orbiter and Apollo subsatellites, the crisscrossing of orbit
groundtracks over the lunar farside and the corresponding
integrated effect on the orbit shows the existence of lunar
farside mascons, but only partially resolved as a central gravity
high with a negative ring [Konopliv et al., 2001]. As individual
coefficients, the gravity field is determined globally to about
degree 15. No direct measurement of the lunar farside gravity
occurred until the SELENE mission with a four-way Doppler
relay that measured the motion of the main 100 km altitude
polar orbiting Kaguya spacecraft through a higher-altitude
relay satellite redirected to Earth ground stations [Namiki
et al., 2009]. The corresponding resolution of the SELENE
gravity fields [100th-degree fields SGM100h, Matsumoto
et al., 2010, and a follow-on SGM100i, Goossens et al.,
2011], extracted farside information up to about harmonic
degree 70. SELENE showed farside gravity clearly including
mascons for the first time.
[6] For development of the lunar gravity field, all the pre-

vious missions including LP and SELENE are limited to
the S-band quality of the Doppler data, typically measuring
the line-of-sight spacecraft velocity to 0.3mm/s or 300 μm/s.
Based upon the Earth Gravity Recovery and Climate
Experiment (GRACE) mission [Tapley et al., 2004a], the
GRAIL mission [Zuber et al., 2013a] uses two spacecraft
flying in formation [Roncoli and Fujii, 2010] to provide the
first highly accurate measurement of both the lunar nearside
and farside gravity field. The prelaunch requirement for
interspacecraft Ka-band measurement accuracy had red-noise
characteristics varying between 0.4 μm/s (0.4×10�6m/s) for

long wavelengths to 1.0 μm/s for the shorter wavelengths cor-
responding to 5 s data sample times, or a mean of 0.50 μm/s
overall [Park et al., 2012; Asmar et al., 2013]. As we
will display below, the realized GRAILKa-bandmeasurement
accuracy is more than 10 times better than these requirements,
with noise of about 0.03 μm/s. Compared to the previous
S-band missions, this provides a stunning 4 orders-of-
magnitude improvement in measurement of the spacecraft
along-track velocity.
[7] Once the interspacecraft data are processed, the

resulting GRAIL gravity field [Zuber et al., 2013b] shows 4
to 5 orders-of-magnitude improvement at degrees and orders
that sample the major lunar basins and 98% coherence with
topography to harmonic degree 330, and provides a new
view of the lunar interior such as crustal fractures likely from
an early thermal expansion of the Moon [Andrews-Hanna
et al., 2013] and indicates lower crustal density and higher
porosity than expected [Wieczorek et al., 2013]. Two inde-
pendent but collaborative groups at the Jet Propulsion
Laboratory (JPL, this paper) and Goddard Space Flight
Center (GSFC) [Lemoine et al., 2013] have determined the
lunar gravity field from the GRAIL data. The results are
comparable, validate the gravity fields, and help characterize
their uncertainties. The initial GRAIL lunar gravity field
[Zuber et al., 2013b] was a global field to degree and order
420 (half-wavelength surface resolution = 13 km). This paper
presents the gravity development procedure and extends the
resolution to degree and order 660 (half-wavelength surface
resolution = 8.3 km). However, analysis is still limited to
the higher-altitude (55 km average) Primary Mission (PM).
The local resolution of the gravity field is dependent upon
the spacecraft altitude and the average global resolution
for the GRAIL primary mission is near degree 420. The
Bouguer anomaly resolution (gravity minus gravity from
topography) is closer to degree 330 (half-wavelength surface
resolution = 18.2 km) [Wieczorek et al., 2013].

2. Mission and Orbit Design Considerations

[8] The twin GRAIL spacecraft (Figure 1), Ebb (GRAIL-A)
and Flow (GRAIL-B), were launched on 10 September 2011
and, using a low-energy transfer orbit, individually arrived at
the Moon on 31 December 2011 and 1 January 2012. The
extra three months of transfer time, versus the direct transfer
time of 3 to 6 days, not only gave significant fuel savings
and thus lower mission cost [Roncoli and Fujii, 2010], but
allowed the spacecraft to stabilize nongravitational forces
due to outgassing of painted surfaces or volatiles remaining
on the spacecraft or within its structure subsequent to launch.
During a test of the GRAILmeasurement system during cruise
on 22 September 2011, strong outgassing (~10�10 km/s2) was
observed as parts of the spacecraft were exposed to the Sun for
the first time. LP, which used a direct transfer to the Moon,
experienced similar outgassing that affected the first several
weeks of lunar orbit [Konopliv et al., 1999].
[9] The GRAIL science mission began 2 months after

arrival at the Moon and 1 week earlier than initially planned.
The 3 month Primary Mission of gravity mapping began 1
March 2012 and ended 29 May 2012, and these dates were
defined by the geometry of the orbit and the power require-
ments of the spacecraft. The GRAIL spacecraft had body-
fixed solar arrays that remained in the plane of the orbit
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during science data collection. For this reason, the spacecraft
had insufficient power to collect science data for times
when the angle between the orbit plane and the Sun direction,
or solar beta angle, is <49° [Roncoli and Fujii, 2010].
After the PM, the next favorable geometry was the
extended mission from 30 August 2012 to the end of mission
on 14 December 2012. The gravity development results
presented in this paper are for the PM only (~55 km average
altitude), and future studies will address the higher-resolution
(~23 km average altitude) extended mission data.
[10] Once at the Moon, the spacecraft were placed in near-

polar circular orbits with an initial separation distance of
80 km in the along-track direction and 113min periods.
The inclination varied by 1.2° as shown by Figure 2, with
the mean inclination 89.2° chosen as a trade-off between

minimizing the data tracking gap at the poles (higher inclina-
tion), and providing better dynamical determination of the
low-degree gravity field (lower inclination). The inclinations
of the two spacecraft match to better than 0.0001°, and the
resulting polar gap at the conclusion of the PM is 1.5 km,
far below the half-wavelength resolution of a degree-660
gravity field (8.3 km).
[11] The separation distance between the spacecraft

(Figure 3) was chosen to optimize different aspects of the grav-
ity field. The long wavelength components of the gravity field,
including tides and possible time-varying inner core motion
[Williams, 2007], are best determined (~2–4 times better)
using the largest spacecraft separation distances, since there
is less cancellation of near common mode intersatellite range
changes. This assumes the range measurement accuracy is

Figure 1. The GRAIL-B (Flow) spacecraft. The Sun-facing direction shows the solar arrays (blue) and a
specially designed bus cover (pink) to limit exposure of the bus to the Sun and thus errors in the
nongravitational accelerations.
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not degraded by reduced signal strength (no degradation is ob-
served for GRAIL at larger separation distances). The high-
frequency content of the gravity field is not as sensitive to
the spacecraft separation, but still prefers longer separations

as well. The limiting factor for choosing the spacecraft separa-
tion is the possible reflection of the Ka-band range signals off
the lunar surface (i.e., multipath) that might degrade the
interspacecraft range and range-rate accuracy. The separation

Figure 2. The GRAIL spacecraft orbit eccentricity and near-polar inclination. The bimonthly oscillation
in the inclination is due to the C22 gravity coefficient.

Figure 3. The separation distance and relative velocity between the GRAIL spacecraft from begin of
Primary Mission (1 March 2012) to end of the Primary Mission (29 May 2012). The relative velocity is
dominated by large oscillations with period equal to the orbit period, which is much larger than the average
interspacecraft drift rate.
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distance was therefore chosen to be as large as possible with-
out the measurement degradation due to multipath.
[12] A constant separation distance results in degradation

of the gravity field for wavelengths equal to the separation
distance, since both spacecraft experience effects of that
wavelength at the same time and that wavelength has a
smaller signal in the biased-range measurement between the
spacecraft. This resonance occurs for harmonic degree
n = 360/(Δ/30.3) = 2πR/Δ where Δ is the spacecraft separa-
tion in kilometers and Δ/30.3 is the separation distance in de-
grees and R is the lunar radius. For this reason, the spacecraft
distance was designed to drift from a closer 80 km distance
at the lower altitudes at the beginning of the mission to a
220 km separation at higher altitudes, and back to 80 km.
Without this variable distance, the resonance at 220 km sep-
aration would occur at harmonic degrees 49, 98, and 147,
etc., and for the minimum 80 km separation, the resonance
occurs later, starting at degree 135. The largest separation
distance occurs during the central part of the mission at
higher altitude and is ideal for determination of the longer-
wavelength tide and possible time variable inner core peri-
odic signatures in the gravity field [Williams, 2007]. The
spacecraft nongravitational forces are also minimized during
this part of the mission due to full Sun on the spacecraft
uninterrupted by eclipses (see Figure 4).
[13] Spacecraft altitude is the most important consideration

for the expected resolution of the gravity field. The selection
of the Primary Mission mean altitude (55 km) allowed
GRAIL to far exceed the science requirement to determine
a 180th degree spherical harmonic field [Zuber et al.,
2013a]. At this altitude, spacecraft maneuvers to maintain
the orbit altitude during the PM were not needed, and only
one maneuver on 30 March 2012 was performed on
GRAIL-B to change the spacecraft separation from drifting

apart to coming together. Smaller propulsive maneuvers
using the Attitude Control System thrusters occurred about
every 2 days to reduce momentum in the Reaction Wheel
Assembly. The orbits at beginning and end of the PM
had higher eccentricity and thus lower periapse altitudes
(Figure 5) and provide the highest localized resolution of
the gravity field. The final distribution of minimum space-
craft altitude over the surface shows mostly a near equatorial
periapse band (Figure 6).

3. Gravity Measurement Data

[14] The detection of the lunar gravity field is achieved by
observing the effect of the gravity field on the motion of each
GRAIL spacecraft as it orbits the Moon. The entire space-
craft, in essence, is the instrument used to measure the gravity
field [Asmar et al., 2013] once accounting for all other
nongravitational forces acting on the spacecraft. The three
measurement types for the GRAIL mission are DSN two-
way S-band Doppler, DSN one-way X-band Doppler, and
instantaneous interspacecraft Ka-band range-rate (KBRR)
data, which is derived from time differentiation of the bi-
ased-range (phase) Ka-band data. Table 1 summarizes the
number of measurements used for GRAIL gravity develop-
ment. The DSN data determine the absolute position of the
spacecraft orbit and are analogous to the GPS measurements
for the GRACE mission. Each GRAIL spacecraft has
two pairs of low-gain antennas (LGA), two X-band and
two S-band antenna locations, that are used for DSN track-
ing. The selection of the LGA depends on the orbit geometry
relative to Earth.
[15] The primary science instrument on each GRAIL

spacecraft was the Lunar Gravity Ranging System (LGRS),
which maintained a carrier-only radio link between the two
spacecraft at Ka-band frequency [Klipstein et al., 2013].
The LGRS Ka-carrier frequency and the LGRS timing clock
were derived from an Ultra Stable Oscillator (USO). The
same USO was used by the Time Transfer System (TTS) to
generate ranging code modulated on an S-band carrier to
sync the relative timing between the two LGRS clocks,
which ensured that the Ka ranging accuracy requirement

Figure 4. Geometry for the GRAIL Primary Mission as
viewed from the Sun and Earth. A 90° β-angle indicates the
spacecraft orbit plane and solar arrays are normal to the Sun di-
rection. During the middle 30 days of the PM, the GRAIL
spacecraft are in full Sun at all times. This minimizes the
nongravitational forces on the spacecraft and provides the best
data for determination of the long wavelength gravity features.
The Earth β-angle shows when the orbit plane is edge-on (0°)
and face-on (90°, �90°) when viewed from Earth.

Figure 5. Spacecraft periapse and apoapse altitudes during
the Primary Mission.
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was achieved. The twin spacecraft also had a carrier-only
Radio Science Beacon (RSB) at X-band frequency, which
was derived from the USO as well. The RSB X-band one-
way Doppler measurement from the GRAIL spacecraft to a
DSN station is used in the orbit determination process and
it is also used to measure the USO frequency. The USO fre-
quency then scales the LGRS Ka-carrier range measurement.
[16] The relative timing alignment between the two LGRS

clocks plays an important role in forming the intersatellite
one-way phase measurement in both directions. Adding
the Ka-band phase measurements from both spacecraft
eliminates most LGRS clock errors, provided the LGRS
clocks are aligned to better than 10�7 s in a bias sense and
the variability about this bias is less than 90 × 10�12 s
[Kruizinga et al., 2013].
[17] Initially, the GRAIL absolute timing system relied on

time correlations between the LGRS clock and the spacecraft
clock, which in turn was correlated with UTC based on time
correlation packets. These time correlation packets were
transmitted once every 10min when a DSN station was
tracking the spacecraft at S-band. Time correlation packets
provide a biased measurement of the absolute LGRS clock
and suffer systematic errors including unknown electronic
delays and limited precision, which resulted in an overall
accuracy of 10�2 s.

[18] However, by observing the TTS S-band ranging sig-
nal with a DSN station, a more precise absolute timing mea-
surement of the LGRS clock was achieved. Since the TTS
and LGRS use the same clock to time tag measurements,
DSN observations of TTS directly correlate LGRS time to
UTC. One-way light time from the spacecraft to the DSN
station is calculated based on spacecraft orbit position, so
the inferred LGRS time tag accuracy depends on spacecraft
orbit accuracy. This TTS Direct To Earth (TTS-DTE) mea-
surement could only be made for favorable GRAIL lunar
orbit geometries with respect to Earth, which occurs only
twice during the Moon’s orbit around the Earth.
Furthermore, dedicated hardware was needed to track the
TTS-DTE signal, which limited TTS-DTE measurements to
station DSS-24. The accuracy of the TTS-DTE absolute
timing measurement was found to be ~10�8 s. In addition,
the TTS-DTE measurements were used to calibrate the abso-
lute timing measurements from spacecraft time correlation
packets [Kruizinga et al., 2013]. The overall GRAIL absolute
timing system accuracy was found to be 10�6 s.
[19] The USO frequency measurements are based on the

one-way RSB Doppler measurement biases estimated every
orbit during the orbit determination process. In this process,
Doppler corrections are applied for Earth’s atmosphere and
ionosphere and general relativity. After applying these

Figure 6. Minimum spacecraft altitude (in km) over the actual surface topography of the Moon [Smith et al.,
2010] at the conclusion of the Primary Mission. The black dots indicate the history of periapse locations.

Table 1. Summary of the Tracking DATA Used in the GRAIL Primary Missiona

From/To Arc Length

1 March 2012 16:28:00 3 April 2012 13:24:00 3 May 2012 01:09:00

Total3 April 2012 13:13:00 (32.71 days) 3 May 2012 00:58:00 (29.44 days) 29 May 2012 16:36:00 (26.55 days)

KBRR 562336 504456 457809 1524601
Two-way 182902 134050 117801 434753
S-band Doppler
One-way 237619 182084 226331 646034
X-band Doppler

aThe spacecraft measurements are separated into three intervals with about one month of data each. The first (~March) and third (~May) months contain all
the data arcs where part of the spacecraft orbit is in shadow. The spacecraft is in continuous full Sun from 12:20, 2 April 2012 to 18:41, 3 May 2012.
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corrections and making a least-squares adjustment of the
spacecraft orbit, the residual one-way Doppler bias is related
to the USO frequency, since the USO is used to generate RSB
X-band carrier, which relates in turn to Ka-band frequency.
[20] Each GRAIL satellite transmits continuous Ka-band

microwave carrier-only signals to the other satellite and also
receives that satellite’s continuous signals. Subtraction of the
received signal from the reference signal at each measure-
ment epoch generates a phase measurement. Since both satel-
lites’ phase measurements contain nearly identical oscillator
drift noises, adding the two phase measurements effectively
eliminates the effect of oscillator instability on the range
measurement, provided the LGRS clocks have been aligned.
After aligning the LGRS clocks and finding the precise
LGRS Ka carrier frequency, determined by the USO
frequency measurements, the dual one-way phase measure-
ments (integrated frequency) is formed at a given coordinate
time t as [Kruizinga et al., 2012; Kim 2000]

Θ tð Þ ¼ φ21 tð Þ þ φ12 tð Þ (1)

where φji tð Þ is the differential phase measurement at spacecraft
i (determined from the beat frequency of the incoming signal
from the other spacecraft and the onboard reference USO),
and t is the coordinate time. The differential phase measure-
ment is the difference of the outgoing Ka-carrier phase and
the incoming Ka-carrier phase and can be expressed as

φji tð Þ ¼ φi tð Þ � φj tð Þ þ Nj
i þ dji þ ϵji (2)

where
φi(t) = spacecraft i reference phase
φj(t) = received phase transmitted by spacecraft j
N j

i = phase ambiguity
dji = phase shift due to instrument, Ka frequency offset,
multipath, etc.
ϵji = random measurement noise
[21] The observed dual one-way range (DOWR) in coordi-

nate time t, or barycentric dynamical time (TDB), is

ρDOWR tð Þ ¼ c
Θ tð Þ

f 1 þ f 2
(3)

where f1, f2 are the Ka-band carrier frequencies determined
fromRSB tracking and c is the speed of light. The lunar gravity
determination process requires the transformation of DOWR
measurements into Euclidean instantaneous intersatellite
range measurements between each spacecraft center of mass
(COM). The Euclidean instantaneous intersatellite range is
computed according to

ρ tð Þ ¼ ρDOWR tð Þ þ ρTOF tð Þ þ ρGEOM tð Þ þ K (4)

[22] The time-of-flight correction, ρTOF(t), is the difference
between instantaneous Euclidean distance and the computed
DOWR (defined below), which accounts for light travel time
with relativistic effects. The geometric range correction,
ρGEOM(t), depends on the spacecraft attitude and accounts for
the fact that the Ka phase-center is not located at the spacecraft
COM. The constant K represents an ambiguity in the phase
measurements that formed the DOWR measurement.

[23] The time-of-flight (TOF) correction is computed
with the JPL orbit determination software MIRAGE
(Multiple Interferometric Ranging and GPS Ensemble). The
two Ka-band signal travel paths, also known as geodesic
paths, are then added the same way as the Ka-band phase
measurements to form a computed DOWR as

ρCDOWR tð Þ ¼ c
f 1τ

1
2 þ f 2τ

2
1

f 1 þ f 2
(5)

[24] The desired one-way light timeτ12 andτ
2
1 at reception time

t is calculated as well in MIRAGE. The TOF correction is then
computed according to

ρTOF tð Þ ¼ ρ tð Þ � ρCDOWR tð Þ (6)

[25] It should be noted that the TOF correction accuracy
depends strongly on the relative spacecraft orbit accuracy
and also depends on the absolute orbit accuracy in the solar
system barycentric system.
[26] The objective of the GRAIL science measurement is

to observe the relative motion of the COMs of the twin space-
craft. However, the actual measurement is made from the Ka
phase center to Ka phase center. The vector from the COM to
the Ka phase center is called the Ka boresight vector. Before
the geometric range correction can be calculated, the line-of-
sight (LOS) vector is calculated from the spacecraft positions
according to

LOS ¼ r1 � r2

where r1 and r2 are the GRAIL position vectors. The geomet-
ric range correction is then computed as the projection of the
Ka boresight vector on the LOS vector.
[27] The phase-derived biased range, ρDOWR, is converted

into instantaneous biased range during preprocessing, with
the time-of-flight and geometric corrections applied. Then
the instantaneous range-rate (KBRR) and range-acceleration
measurements are generated by numerical differentiation of
the Euclidean instantaneous range measurement.
[28] The mathematical model of instantaneous range,

range rate, and range acceleration observables is summarized
in Kim [2000] and implemented in the JPL MIRAGE soft-
ware as follows. The Euclidean distance, or instantaneous
range observable, between the two spacecraft can be com-
puted as

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 � r2ð Þ• r1 � r2ð Þ

p
(7)

where r1 and r2 are the position vectors of spacecraft 1 and 2,
respectively, at a time t. The intersatellite range vector r12 and
the LOS unit vector, ê12, are defined by

r12 ¼ r1 � r2 ¼ LOS

ê12 ¼ r12=ρ

[29] The range-rate observable is simply obtained by dif-
ferentiation of the range observable (7) as

ρ̇ ¼ ṙ12•ê12 (8)

which represents a projection of the relative velocity vector,
ṙ12 , along the LOS unit vector. The range-acceleration
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observable can be obtained by differentiation of the range-
rate observable (8) to give

ρ̈ ¼ r̈12•ê12 þ ṙ12• ˙̂e12 (9)

[30] The first term is the projection of the relative acceler-
ation vector, r̈12, along the LOS vector, and the second term
is the scalar product of the relative velocity vector and the
rate of the LOS vector change. The rate of the LOS vector
change can be represented by

ρ ˙̂e12 ¼ ṙ12 �ρ̇ê12

which denotes the relative velocity component that is perpen-
dicular to the LOS vector.
[31] The instantaneous range-rate (KBRR) and DSN

Doppler tracking are the primary data processed by
MIRAGE to estimate the satellite states and gravity coeffi-
cients. The KBRR data set, derived from LGRS one-way
phase measurements, is the main product from the GRAIL
Level-1 process [Harvey et al., 2012]. This preprocessing of
the gravity science data includes analysis of relative timing,
absolute timing, USO frequency determination, LGRS clock
conversion to TDB coordinate time, Ka boresight vector cali-
bration, and time-of-flight correction for DOWR, and requires
precision orbit determination for each GRAIL spacecraft
[Kruizinga et al., 2013]. In addition to the error contributions
in the formulation of the DOWR and KBRR measurement,
such as spacecraft orbit and LGRS clock errors, there are other
errors within the KBRR observable. These include the thermal
expansion of the spacecraft (affecting the boresight vector) and
temperature variations of the electronic radio frequency com-
ponents, including the Ka-band antenna horn that affect the
transmitted and measured phase.

4. Gravity Estimation Technique

[32] The lunar gravity field is determined using the same ba-
sic technique as previous gravity investigations, for example,
used for the Moon [Konopliv et al., 2001], Mars [Konopliv
et al., 2011], and Venus [Konopliv et al., 1999] from DSN
tracking, and the procedure is similar to the GRACE gravity
studies for the Earth [Tapley et al., 2004a], except the current
study solves for a significantly higher harmonic gravity field.
For this study, the computational requirements of the spherical
harmonic degree n=660 solution with nearly 437,000 gravity
parameters (~n2) is about 400 times (∝n4) more than the pre-
vious degree 150 solutions. As a result, supercomputer re-
sources were required, which included the NASA Ames
Pleiades, University of Texas Lonestar, and a local JPL gravity
cluster with about 800 cores.
[33] The GRAIL spacecraft observations were processed

using the JPL software MIRAGE; which is a specialized high
precision version of the JPL Orbit Determination Program
[Moyer, 1971, 2003] developed for the TOPEX mission.
MIRAGE was used to process tracking data for all previous
JPL planetary gravity studies and the Earth GRACE mission
results with its similar interspacecraft measurement system.
The complementary GRAIL gravity investigation at GSFC
[Lemoine et al., 2013] uses the completely independent
GEODYN software set.
[34] The three major parts to the gravity estimation process

are numerical integration of the spacecraft orbit and partial

derivatives of estimated parameters, the determination of
the observation equations for the spacecraft DSN tracking
data and Ka-band interspacecraft data, and filter processing
of the observation equations, where the latter requires the
majority of the computational time. MIRAGE numerically
integrates the equations of motion in the Moon centered
nonrotating coordinate system defined by the inertial
International Celestial Reference Frame (ICRF), which is
nearly equivalent to the Earth’s mean equator at the epoch
of J2000. The integrator is a variable order Adams method
described in Krogh [1973] that adjusts the integration step
size to satisfy specified integration tolerances for each param-
eter being estimated. The number of second-order differential
equations to integrate is 3 for spacecraft position, 18 for the
position and velocity state transition matrix, and 3N where
N is the number of nonstate parameter partials to estimate
(mostly gravity harmonic coefficients). The integration time
is mostly but not completely linear with the number of
nonstate (mostly gravity) parameters N (where N ≈ n2 and n
is the harmonic degree), since reduced integration step size
is required as the resolution of the gravity field increases.
[35] For the GRAIL processing, the equations of motion

for the spacecraft position r are given by

r̈ ¼ ∇U þ apm þ aindirect þ arel þ asrp þ aalb þ air þ athermal

þ aempirical (10)

where ∇U is the gradient of the lunar gravitational potential,
and the remaining terms are the acceleration due to point
masses of the planets and Sun, the indirect acceleration in
the solar system barycentric frame due to the point masses
and oblateness of the Earth, general relativity corrections, the
solar radiation pressure force, the acceleration due to lunar al-
bedo and infrared emission, spacecraft thermal reradiation,
and empirical constant and once per orbit periodic accelera-
tions to account for any nongravitational mismodeling. The in-
tegration of the linearized variational equations [Tapley et al.,
2004b; Asmar et al., 2013] involves partial derivatives of
equation (10) with respect to each parameter being estimated,
and represents the variation of the orbit from the nominal po-
sition and velocity caused by a change in the respective param-
eter (e.g., a gravity coefficient).
[36] The DSN Doppler and interspacecraft Ka-band range-

rate observations are then processed as discussed above and
the linearized observation equations are formed. Following
the nomenclature of Tapley et al. [2004b], the observation re-
sidual y is given by the difference of the actual observable Y
and computed observable using the nominal orbit Y*(t) as
given by

y ¼ Y � Y � tð Þ (11)

[37] Using the integrated state transition matrix Φ(t,t0) to
map to the epoch time, the linearized observation equation
is then written as

y ¼ ∂G
∂X

� ��
Φ t; t0ð Þx0 þ ϵ ¼ Hx0 þ ϵ (12)

where X are the parameters being estimated and Y*=G(X*) is
the equation for the observations. The observation error ϵ in
equation (12) is then minimized using the vector of residuals
y and partials matrix H to determine the corrections x0 to the
nominal epoch values of the estimated parameters.

KONOPLIV ET AL.: GRAIL LUNAR GRAVITY

1422



[38] The estimate of the gravity field from the observation
equations (12) is obtained using a square-root information
weighted least squares filter or SRIF [Lawson and Hanson,
1995; Bierman, 1977]. In normal form, the least-squares so-
lution x̂ is given by

x̂ ¼ HTWH þ P�1
ap

� ��1
HTWy

where W is the weight matrix for the observations and Pap is
the a priori covariance matrix of the parameters being esti-
mated. In the MIRAGE SRIF filter, the solution equation is
kept in the form

Rx̂ ¼ z (13)

when processing observations by using Householder trans-
formations. In this equation, R is the upper triangular
square-root of the information array or SRIF matrix, and is
of fairly large size (760MB) for a n = 660 gravity field. The
filter performs the Householder transformations in parallel
on the supercomputer using ~1000 CPU cores. This part of
the solution process dominates the computer resources
(∝n4), whereas the inversion of R of equation (13) to obtain
the gravity solution requires negligible time in comparison
(~5 h). The covariance P of the solution (inverse of the infor-
mation array) is given by

P ¼ R�1 R�1
� �T

: (14)

[39] The tracking data of both spacecraft together are di-
vided into separate time intervals or data arcs of about 2–

3 days in length and each arc is processed individually with
MIRAGE. The time boundaries of each arc are mostly given
by the times of the angular momentum dumps (AMDs) of the
reaction wheels (Table 2). As a result, there are no propulsive
maneuvers during the data arcs. Otherwise, unmodeled accel-
erations from the AMDs would corrupt the gravity solution.
For each data arc, there are local parameters (e.g., spacecraft
position and velocity) that are estimated only for that data arc
and global parameters (e.g., gravity coefficients) that are
common to all data arcs. First, the solutions for the local pa-
rameters of all arcs are iterated to convergence in the Moon
centered ICRF system using the nominal gravity field.
Second, the SRIF matrices for the local and global parame-
ters are generated for each data arc (a total of 39 matrices
for the PM). Third, only the global parameter portions of
the SRIF matrices are combined using a similar technique de-
scribed by Kaula [1966] using partitioned normal matrices,
and is equivalent to solving for the global parameters plus lo-
cal parameters of all arcs. The entire solution process is
outlined as a flowchart in Figure 2 of Asmar et al. [2013].
[40] The local parameters that are estimated include the

spacecraft position and velocity, an overall solar pressure
scale factor, small corrections to the solar pressure model in
the directions orthogonal to the Sun direction, orbit normal
and spacecraft along-track constant and periodic empirical
accelerations for each orbit with period equal to the orbit pe-
riod, Ka-band range-rate bias and drift constants, and a time
tag offset in the measurement time assigned to the Ka-band
data. The global parameters include the Moon’sGM, gravita-
tion harmonics to degree 660, and degree-2 and -3 tidal Love
number parameters.

Table 2. Times of the Maneuvers (AMDs) to Despin the Reaction Wheels Used for Attitude Controla

1 March 2012 16:28:00 3 April 2012 13:24:00 3 May 2012 01:09:00

3 April 2012 13:13:00 (32.71 days) 3 May 2012 00:58:00 (29.44 days) 29 May 2012 16:36:00 (26.55 days)

01-MAR-2012 16:16:08 03-APR-2012 13:23:08 03-MAY-2012 01:08:58
01-MAR-2012 16:15:48 03-APR-2012 13:13:07 03-MAY-2012 00:58:53
02-MAR-2012 15:16:38 06-APR-2012 13:18:15 05-MAY-2012 19:23:40
02-MAR-2012 15:06:32 06-APR-2012 13:08:15 05-MAY-2012 19:13:36
06-MAR-2012 22:10:18 12-APR-2012 07:27:47 08-MAY-2012 21:12:11
06-MAR-2012 23:40:06 12-APR-2012 07:17:43 08-MAY-2012 21:02:03
07-MAR-2012 21:45:38 22-APR-2012 02:07:36 11-MAY-2012 17:19:23
07-MAR-2012 21:35:39 22-APR-2012 01:57:33 11-MAY-2012 17:09:16
10-MAR-2012 14:05:48 24-APR-2012 07:06:16 14-MAY-2012 13:26:42
10-MAR-2012 13:55:41 24-APR-2012 06:56:14 14-MAY-2012 13:16:36
13-MAR-2012 15:54:24 26-APR-2012 13:58:55 17-MAY-2012 07:40:53
13-MAR-2012 15:44:19 26-APR-2012 13:48:50 17-MAY-2012 07:30:46
16-MAR-2012 23:23:18 28-APR-2012 22:44:55 19-MAY-2012 22:08:18
16-MAR-2012 23:13:12 28-APR-2012 22:34:54 19-MAY-2012 21:58:12
20-MAR-2012 10:39:03 30-APR-2012 23:56:39 22-MAY-2012 14:29:12
20-MAR-2012 10:28:58 30-APR-2012 23:46:35 22-MAY-2012 14:19:05
23-MAR-2012 21:55:20 25-MAY-2012 04:55:35
23-MAR-2012 21:45:14 25-MAY-2012 04:45:27
27-MAR-2012 19:51:24 27-MAY-2012 19:22:06
27-MAR-2012 19:50:32 27-MAY-2012 19:11:59
28-MAR-2012 02:13:10 29-MAY-2012 16:46:53
28-MAR-2012 02:03:09 29-MAY-2012 16:36:48
30-MAR-2012 07:12:28
30-MAR-2012 07:02:26
30-MAR-2012 18:43:30B
01-APR-2012 12:11:33
01-APR-2012 12:01:31

aEach time pair represents the midpoint of AMD maneuver time span of GRAIL-A (Ebb) and GRAIL-B (Flow), respectively. Typical maneuver duration
is 1–2min.
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5. Spacecraft Force Modeling

[41] The two GRAIL spacecraft are basically proof masses
in free fall as they orbit the Moon. All external forces acting
on each spacecraft must be precisely modeled such as gravi-
tational forces and nonconservative accelerations as listed in
equation (10). The lunar gravitational potential U is modeled
by a spherical harmonic expansion in the body-fixed refer-
ence frame with normalized coefficients (Cnm , Snm ) and is
given by [e.g., Heiskanen and Moritz, 1967; Kaula, 1966]

U ¼ GM

r
þ GM

r
∑
∞

n¼2
∑
n

m¼0

Re

r

� �n

Pnm sinϕð Þ

Cnmcos mλð Þ þ Snmsin mλð Þ	 

(15)

where GM is the gravitational constant times the mass of the
central body, n is the degree, m is the order, Pnm are the fully
normalized associated Legendre polynominals, Re is the

reference radius of the body, φlat is the latitude, and λ is the
east longitude. The gravity coefficients are normalized such
that the integral of the harmonic squared equals the area of
a unit sphere, and are related to the unnormalized coefficients
as [Kaula, 1966; Lambeck, 1988]

Cnm

Snm

� �
¼ n� mð Þ! 2nþ 1ð Þ 2� δ0mð Þ

nþ mð Þ!
� �1=2 Cnm

Snm

 !
¼ f nm

Cnm

Snm

 !
(16)

[42] The corresponding normalized Legendre polynomials
Pnm are thus related to the unnormalized polynomials Pnm by
Pnm ¼ Pnm=f nm . The degree-1 coefficients are zero since the
coordinate system’s origin is the center-of-mass, and the longi-
tude independent zonal coefficientsJn are given byJn ¼ �Cn0.
[43] The acceleration due to the lunar tide on the GRAIL

spacecraft is also modeled as time-varying changes to all de-
gree-2 and -3 gravity coefficients as [McCarthy and Petit,
2003, pg. 59]

ΔCnm � iΔSnm ¼ knm
2nþ 1

∑
3

j¼2

GMj

GMMoon

Re

rj

� �nþ1

Pnm sinϕj

� �
e�imλj (17)

where knm are the frequency-independent lunar Love num-
bers, j represent the tidal disturbing bodies (Earth and Sun),
rj is the distance from the Moon to the disturbing body, and
φj is the latitude and λj is the longitude of the disturbing body
in the lunar body-fixed frame. Only the real or elastic part of
knm is considered in equation (17), and for each degree the
Love numbers for different orders are expected to be nearly
equal. These coefficient expressions consist of a constant
plus periodic part (~monthly). The constant or permanent

Table 3. Nominal Normalized Coefficients (×10�10) for
Dissipation Part of the Lunar Response for Earth and Sun Generated
Degree-2 Tides Plus Spin for k2/Q =7×10�4 [Williams, 2012]a

Argument αi Period (days) ΔC20i ΔC21i ΔS21i ΔC22i ΔS22i

l 27.555 �1.89 3.28 �4.41
F 27.212 4.72 �0.02
2D-l 31.812 �0.36 0.58 �0.88
2D 14.765 �0.32 0.75 �0.48
2l 13.777 �0.16 0.51 �0.51
F+ l 13.691 0.64 0.26

aThe arguments l, F,D are the Moon’s smoothly changing mean anomaly,
lunar argument of latitude, and mean elongation of the Moon from the Sun;
polynomial expressions are given by McCarthy and Petit [2003, p. 48].

Figure 7. The Motion of the Moon’s inner core due to a tilt of the core equator with respect to the body-
fixed or mantle frame. Note that a point (red dot) on the x-axis of the core shifts from above the mantle x-
axis to below and back with each month.
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parts of the tide are not included in the corresponding pub-
lished values of the gravity coefficients for the JPL lunar
gravity fields.
[44] The time-varying terms of the degree-2 dissipative

part of the tide are modeled as periodic variations in the grav-
ity coefficients [Williams, 2012] that are in addition to the
elastic tide in (17). However, since specific dissipation
Q ≈ 37 [Williams et al., 2013] the largest dissipative terms
are about 3% of the size of the elastic tide of (17). The six
largest periodic dissipative terms for the degree-two coeffi-
cients are given by

ΔC20 ¼ ∑
6

i¼1
ΔC20isin αið Þ

ΔC21 ¼ ∑
6

i¼1
ΔC21icos αið Þ

ΔS21 ¼ ∑
6

i¼1
ΔS21isin αið Þ

ΔC22 ¼ ∑
6

i¼1
ΔC22isin αið Þ

ΔS22 ¼ ∑
6

i¼1
ΔS22icos αið Þ

(18)

where the amplitudes and arguments are given in Table 3.
[45] There is another possible periodic time-varying signa-

ture due to the Moon’s inner solid core that might be as large
as the dissipative tide, although a search for this signature
will be addressed in future studies with the combined
GRAIL primary and extended mission data. The Moon pos-
sibly has a solid inner core and a fluid outer core [Weber
et al., 2011]. Given a triaxial inner core and a tilt of the inner
core equator relative to the mantle equator, a time-varying
monthly signature [Williams, 2007] can result from the rela-
tive motion of the inner core axes relative to the lunar body-
fixed or mantle-fixed frame as shown by Figure 7. Since
GRAIL observes the combined gravity of the mantle and
core, the relative motion of between the two solid structures
gives rise to a monthly periodic C21 and S21 signature. Both
mantle and inner core equators are inclined with respect to
the ecliptic plane. The mantle inclination Im = 1.543° is

directly measured by LLR while the inner core inclination
Iic is unknown. Assuming a small inclination difference Im
� Iic between the inner core and mantle equators gives the
periodic signature [Williams, 2007]

ΔC21 ¼ �sin Im � I icð Þ J 2icsinF þ 2C22icsin F þ 2τicð Þf g
ΔS21 ¼ �sin Im � I icð Þ J 2iccosF� 2C22icsin F þ 2τicð Þf g (19)

where J2ic and C22ic are the inner core unnormalized J2 and
C22 gravity coefficients for the inner core principal axes
scaled to the whole Moon mass and radius. The angle of
the inner core equatorial principal axes relative to the mantle
equatorial axes is given by τic, and F is the same lunar argu-
ment of latitude as in the dissipative tidal terms.
[46] The gravity harmonics and tidal expressions are given

in the lunar body-fixed coordinate system defined by the prin-
cipal axes of the integrated lunar physical librations from JPL
planetary ephemeris DE421 [Williams et al., 2008]. The three
Euler angles (about z, x, and z) on DE421 describe the rota-
tions from the ICRF x-axis to the intersection of the lunar
equator with the ICRF equator, the obliquity of the lunar equa-
tor with respect to ICRF equator, and the rotation to the prin-
cipal body-fixed prime meridian or x-axis. In this principal
axis frame, we expect solutions for the degree-2 coefficients
C21, S21, and S22 to be nearly zero as a result. The principal
axes from the integrated librations differ from the axes of the
mean-pole system of the IAU [Archinal et al., 2011] by
~100´´ and the IAU periodic representation of the librations
is an approximation that differs from the integrated librations
by ~100m on the surface of the Moon [Konopliv et al., 2001].
[47] Unlike the GRACE mission, which has an accelerome-

ter to measure the effects of the Earth’s atmosphere (along
with solar and Earth-reflected radiation pressure, and any
spacecraft thermal emission), the GRAIL mission must accu-
rately model or estimate from the data all nongravitational ac-
celerations to determine the lunar gravity field. The spacecraft
accelerations to consider in decreasing order of importance are
the solar radiation pressure, the spacecraft thermal emission,
the lunar albedo refection from the Moon’s surface, and the
thermal infrared emission from the Moon’s surface.
[48] The solar radiation pressure acceleration is the largest

nongravitational acceleration near at most 1×10�10 km/s2

[Park et al., 2012]. The spacecraft bus (1.58, 0.76, 0.62m2

area for each face normal to the x, y, and z-axis, respectively)
and solar arrays (3.86m2 total area) are modeled as three and
one flat plates, respectively, with expected specular and dif-
fuse reflectivity coefficients [Fahnestock et al., 2012]. The
estimation of an overall scale factor times the solar pressure
acceleration removes the majority of any mismodeling due
to incorrect reflectivity coefficients, with relatively little deg-
radation of the gravity solution through correlation with these
parameters. In addition, two small solar pressure coefficients
normal to the Sun direction account for mismodeling in those
directions of less than 1% of the overall force.
[49] The potentially largest error of the solar pressure

model is the timed entrance and exit of the GRAIL spacecraft
into solar eclipse (i.e., lunar shadow as given by the partially
lit penumbra and dark umbra). The shadow crossing times
and the fraction of solar output on the solar arrays during par-
tial shadowing (penumbra) are given by the solar array cur-
rent output from the spacecraft telemetry for one solar cell
(see Figure 8). Due to the heating of the solar array as it enters

Figure 8. Sample current data from the spacecraft engineer-
ing telemetry showing entrance and exit from solar eclipse.
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the sunlight, the current output does not reach an instanta-
neous maximum. For this reason, we designate any current
within 20% of the maximum as full Sun. The entrance and
exit into solar eclipse as given by telemetry appears to be
accurate to ~2–3 s.

[50] The next largest nongravitational acceleration is that
due to the infrared radiation of heat from the spacecraft (about
5× smaller than the solar pressure acceleration). Currently, the
accelerations from this model are not included in the force
model for the GRAIL processing, but will be in future

Figure 9. Model derived acceleration on GRAIL-A (Ebb) due to the spacecraft thermal emission over the
duration of the PM. The spacecraft X, Y, and Z axes represent the spacecraft orbit normal (or solar array
normal), radial, and along-track (or near the spacecraft velocity) directions.

Figure 10. Global maps of the Moon for (a) the surface radial acceleration of the GRAIL lunar gravity
field GL0660B truncated at degree 360 (max = 1268 mGals, min =�645 mGals, positive downward), (b)
the older Lunar Prospector LP150Q gravity field through degree 140, (c) the LRO surface topography
[Smith et al., 2010], and for (d) Bouguer acceleration or gravity minus gravity from topography truncated
at degree 330 (max = 1152 mGals, min =�644 mGals). Accelerations are shown on the lunar reference
sphere of 1738 km.
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efforts to detect the core periodic signature and improve the
low-degree harmonics of the gravity field. However, the
expected sizes of the periodic variations of the modeled ther-
mal reradiation acceleration are used to set the a priori ampli-
tudes of the estimated empirical accelerations. These periodic
amplitudes together with the solar pressure scale factor remove
most of the error expected from the thermal reradiation accel-
eration model. The thermal reradiation acceleration model is
derived from 28 flat-plate surfaces of GRAIL assuming
black-body radiation for each plate surface [Fahnestock
et al., 2012] that uses the spatially averaged temperature, vary-
ing as a function of time, for each surface. The spacecraft aver-
age surface temperature profiles for different solar beta angles
were computed using detailed thermal finite element modeling
at Lockheed Martin, which built the GRAIL spacecraft.
[51] Figure 9 shows the predicted acceleration of the space-

craft thermal model for the PrimaryMission. The thermal emis-
sion acceleration is nearly constant during the full Sun or
middle month of the PM and has large periodic variations
within each orbit for the smaller solar beta angles. The constant
part of the acceleration will be absorbed in the solar pressure
scale factor estimate, so we need only to absorb any
mismodeling of the periodic part of the thermal model with
the periodic empirical acceleration model. The periodic part is
largest when the solar eclipse is the longest (greatest tempera-
ture variation) and is mostly given by a once per orbit signature.
The periodic component in the orbit plane normal direction is
the largest because the emission from the spacecraft solar ar-
rays dominates the force, and peaks at about 1.5×10�11 km/s2

at the beginning and end of the PM. The smallest amplitude as-
sumed for the full Sun period is 3×10�13 km/s2. Such periodic
empirical accelerations are estimated only in the orbit normal
and spacecraft along-track directions. The radial component
is not estimated to avoid absorbing gravity signature.
[52] After the spacecraft thermal emission model, the next

largest source of error for the spacecraft accelerations is due
to the lunar albedo reflection and lunar thermal radiation

incident on the spacecraft. These are fairly small accelera-
tions (~1×10�12 km/s2) that are 10 times smaller than the
spacecraft thermal emission acceleration and 50 times
smaller than the solar radiation pressure acceleration. The ac-
celeration due to lunar-reflected sunlight is computed using
the Delft Lunar Albedo Model 1 derived from Clementine
imagery [Floberhagen et al., 1999], a 10th degree and order
spherical harmonic representation of the lunar albedo. The
simple lunar thermal emission model [Park et al., 2012] is as-
sumed proportional to T 4 cos ψs where T is the maximum lu-
nar surface temperature (T= 382.86K) and ψs is the lunar
centered angle between the surface location and Sun direc-
tion. Comparisons with the Lunar Reconnaissance Orbiter’s
(LRO) Diviner Lunar Radiometer Experiment indicate at
most a 10% error in the accelerations (i.e., ~10�13 km/s2).

6. Gravity Solution

[53] The spherical harmonic gravity solution to degree and
order 660 (named GL0660B for GRAIL Lunar) is an update
of the preliminary field (GL0420A in Zuber et al. [2013b]).
Both solutions are based upon the 3 months of DSN and Ka-
band range rate data during the GRAIL Primary Mission.
The addition of higher-degree harmonics allows for extended
resolution in regions supported by the data and removes
aliasing effects in the higher degrees (~360 to 420) of the
previous solution GL0420A. Mapped to the lunar reference
sphere (Figure 10), GL0660B shows unprecedented detail of
the gravity field both on the lunar nearside and farside.
[54] The lunar gravity RMS spectrum in Figure 11 as given by

Mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

2
nm þ S

2
nm

2nþ 1

s
(20)

displays the overall average global resolution to be near degree
420 (13 km half-wavelength surface resolution), the degree
where the uncertainty in the spectrum is equal to the expected
power. The improvement in the gravity field from LP without
direct farside observation to direct observation with SELENE

Figure 11. The RMS magnitude gravity spectrum for the
GRAIL gravity fields GL0420A [Zuber et al., 2013b],
GL0660B (this paper), the Lunar Prospector gravity field
LP150Q [Konopliv et al., 2001], and the SELENE
SGM100i model [Goossens et al., 2011]. GRAIL far
exceeded the global and regional science requirements for
the mission [Zuber et al., 2013a].

Figure 12. The surface acceleration error for three loca-
tions on the lunar surface corresponding to higher altitude
(100°E, 80°N) and lower altitude (0°E, 0°N and 240°E, 10°
N; see Figure 6). The expected signal of the acceleration
per harmonic degree is also displayed.
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is evident. The 4 orders-of-magnitude improvement in the
GRAIL velocity measurement (KBRR) versus previous mis-
sions (DSN S-band Doppler) translates directly into 4 or more
than 5 orders-of-magnitude improvement for the vast majority
of the gravity spectrum as shown in Figure 11. The GRAIL
gravity solutions from the primary mission also far exceeded
the science global and regional requirements for the mission
[Zuber et al., 2013a] as noted by the blue and red dashed lines,
respectively. The tightened KBRR weighting of this solution
from 0.1 μm/s to the more appropriate 0.03 μm/s is the cause
of the improvement in the gravity uncertainty spectrums from
the GL0420A to GL0660B solutions. The spectrum of the
gravity coefficients approximately follows the 0.00025/n2

power law [Kaula, 1966], which was used for the LP150Q
model. A fit of the harmonics from degree 150 to degree 440
gives the slightly different power law 0.0010973/n2.2659.
[55] Since the solution is determined for a degree 660 that

is beyond the global resolution of the data, a power law con-
straint is applied to the higher degrees to smooth the solution
and limit noise. The constraint begins at harmonic degree 331
and biases the coefficients toward zero with an uncertainty
equal to the more relaxed power law 0.00036/n2. The result
of the relaxed constraint is evident in Figure 11 where the
GL0660B uncertainty curve is greater than the power law
for the higher degrees.
[56] The variable resolution of the gravity field over the

surface can be characterized using the covariance matrix
from the GL0660B solution using the same technique of
Konopliv et al. [1999]. The RMS acceleration at the lunar
surface for all coefficients of degree n is given by

anð ÞRMS ¼ GM

R2
e

K
ffiffiffiffiffiffiffiffi
2=n

p
(21)

where K is the Kaula constant of 0.00025 from the power
law. For the Moon, the global average surface acceleration
reduces to

anð ÞRMS ¼ 57=
ffiffiffi
n

p
mGals: (22)

[57] This is the expected signal profile of the acceleration
for all points on the lunar surface assuming the gravity

coefficients follow the 1/n2 power law. The uncertainty in
the surface acceleration for harmonic degrees from 2 to n,
σ(a2,n), can also be determined from the covariance matrix
as a function of latitude and longitude, and is given by

σ a2;n
� �2 ¼ ∂a2;n

∂→g2;n

 !T

P2;n
∂a2;n

∂→g2;n

 !
(23)

where→g2;n is the vector of all normalized gravity coefficients
from degree 2 to n and P2,n is the corresponding covariance.
The covariance of the coefficients from degree 2 to n is the
covariance as if the higher-degree coefficients (>n) are not
estimated. Hence, it is a truncation, or submatrix, of the full
GL660B covariance without any constraint applied to the
gravity field. The uncertainty from the coefficients only at
degree n is

σ anð Þ ¼ σ a2;n
� �� σ a2;n�1

� �
: (24)

[58] In order to facilitate the computation of the spatial
resolution, the covariance matrix from GL0660B is truncated

Figure 13. The resolution of the GL0660B gravity field in harmonic degree as a function of latitude
and longitude.

Figure 14. Correlation of the GRAIL and previous
gravity solutions with LOLA topography converted to grav-
itational potential.
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at degree 360 and the remaining uncertainty in the surface ac-
celeration is extrapolated to higher degrees. Figure 12 shows
the surface error profiles for three different points on the sur-
face that represent one higher and two lower altitudes. The har-
monic degree at which the acceleration error of equation (24)
equals the signal of equation (22) determines the harmonic res-
olution of the gravity field for that location on the surface.
Figure 13 shows this crossing point of each acceleration pro-
file with the power law, or the gravity resolution in harmonic
degree for all locations on the surface. The resolution varies
over the surface from n=371 to n=583, with the poorest

resolutions apparent for the higher altitude regions near 90°E
and the higher latitudes. There is an unexplained artifact in
the covariance at 30°W-60°S and at a 180° longitude shift
(150°E) that may be a result of two low altitude arcs from 4
March and 25 May crossing at the pole. The total uncertainty
of all harmonics (i.e., the integrated profile in Figure 12) to
the crossing point of the Kaula power curve is fairly uniform
over the entire lunar surface and is bounded between 10 and
12 mGals.
[59] The majority of the gravity signal at higher degrees is

derived from the surface topography [Zuber et al., 2013b].
The global correlation between the LRO topographic potential,
or gravitational potential computed from topography [Smith
et al., 2010], to 9th power [e.g., Wieczorek and Phillips,
1998] and the GRAIL gravity models exhibit global correla-
tion to better than 98% between harmonic degrees 120 and
330, as shown in Figure 14. The difference of the gravity coef-
ficients from the topographic coefficients or Bouguer anomaly
spectrum is shown in Figure 15, and it reveals the Bouguer
spectrum is good to degree 330 [Wieczorek et al., 2013]. As
a global average, there is only slight improvement in the
Bouguer anomaly by extending the solution to harmonic de-
gree 660 from 420. However, there are some regional areas
that are significantly extended in Bouguer resolution. From
Figure 12, a power law for the Bouguer RMS spectrum that
is 10× smaller (5.7/n1/2 mGals) than the gravity power law, in-
dicates a crossing of the noise and signal that is biased by
about 70–80 degrees for all locations. The resulting Bouguer
resolution then takes similar form to Figure 13 with a covari-
ance derived range from n=304 to a best resolution of
n=480 for the low-altitude areas near the equatorial region.
[60] The significant improvement of the degree-2 and -3

gravity coefficients from the GRAIL mission in turn improve

Figure 15. The Bouguer RMS magnitude spectrum show-
ing the difference between the gravity coefficients of
GL0420A and GL0660B and the gravitational potential coef-
ficients derived from the LOLA topography.

Table 4. The Solutions for the Moon’sGM, Tidal Love Numbers and Degree-2 and -3 Unnormalized Gravity Coefficients Based Upon the
Entire GRAIL Primary Mission (PM) Unless Otherwise Noteda

Parameter Solution Comment

GM 4902.80031 ± 0.00044 Lunar solar system barycentric GM
J 2 9.0880835e-5 ± 1.4e-9 GRAIL PM, normalized without permanent tide
C21 1.2e-10 ± 1.3e-10 "
S21 1.01e-9 ± 1.6e-10 "
C22 3.4673798e-5 ± 1.7e-9 "
S22 �2.5e-10 ± 2.8e-10 "
J 3 3.1974673e-6 ± 1.4e-11 "
C31 2.6368046e-5 ± 1.6e-11 "
S31 5.4545196e-6 ± 1.4e-11 "
C32 1.4171529e-5 ± 2.4e-11 "
S32 4.8779630e-6 ± 2.8e-11 "
C33 1.2274951e-5 ± 7.2e-11 "
S33 �1.7743956e-6 ± 6.3e-11 "
J2 2.0330530e-4 GRAIL PM, unnormalized with permanent tide
C22 2.242615e-5 "
k2 0.02405 ± 0.00018 GRAIL PM
k2 0.0248 ± 0.003 LP150Q, Konopliv et al. [2001]
k2 0.0240 ± 0.0015 SGM100h, Matsumoto et al. [2010]
k2 0.0255 ± 0.0015 SGM100i, Goossens et al. [2010]
k2 0.02405 ± 0.00018 GRAIL PM, k20, k21, k22 constrained to be equal
k20 0.02408 ± 0.00045 GRAIL PM
k21 0.02414 ± 0.00025 GRAIL PM
k22 0.02394 ± 0.00028 GRAIL PM
k2 0.02425 ± 0.00024 GRAIL middle month of PM (~April), full Sun
k3 0.0089 ± 0.0021 GRAIL PM

aMultiple degree-2 Love number solutions are presented; k20, k21, and k22 contribute to the J2, order one (C21, S21), and order 2 (C22, S22) gravity coeffi-
cients respectively as given by equation (17). All combined k2 solutions constrain k20 = k21 = k22. Note formal uncertainties are increased by a factor of 40 to
obtain realistic errors.
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the processing of the LLR data and the determination of the
Moon’s moments of inertia (J. G. Williams et al., Lunar
interior properties from the GRAIL mission, submitted to
Journal of Geophysical Research, 2013). The new low-
degree gravity coefficients also significantly improve the
lunar physical librations, which define the body-fixed
principal axes of the Moon used for the gravity estimation.
Future GRAIL results will include data analysis with a new
JPL ephemeris with updated librations, instead of DE421.
The solutions for the low-degree coefficients are very sensi-
tive to the libration model used and to the models of the
nongravitational acceleration on the GRAIL spacecraft in-
cluding the empirical periodic acceleration model.
[61] The solutions for the degree-2 and -3 coefficients,

Moon’s GM and degree-2 and -3 Love numbers are given
in Table 4. Due to current mismodeling in the spacecraft
nongravitational accelerations and lunar physical librations,
the formal uncertainties of each parameter from the covari-
ance are scaled by 40 to give a more realistic error. This
scaling was obtained by computing RMS differences
between gravity solutions with different empirical periodic
assumptions (10�11 km/s2 and much tighter), and diminishes

as the harmonic degree increases (~1 for n> 100), compari-
sons between JPL and GSFC solutions (Williams et al.,
submitted manuscript, 2013), and in variations of arc-dependent
parameters as noted later. One curious result is a significant
nonzero S21 gravity coefficient in both the JPL and GSFC
solutions that implies a nonprincipal axis frame for the whole
Moon (mantle plus core) gravity field despite contrary indica-
tions from the LLR physical libration solutions [Williams
et al., 2013]. The cause is not currently understood. The GM
solution variations indicate that the GM derived from
joint planetary ranging and LLR has lower uncertainty
than the current GRAIL-derived solutions based upon the
Primary Mission.
[62] GRAIL has now determined the Love number to

better than 1%, k2 = 0.02405 ± 0.00018, which is an improve-
ment over previous individual spacecraft uncertainties by
~10× [Goossens et al., 2011; Matsumoto et al., 2010;
Konopliv et al., 2001] or ~5× for previously combined results
with LLR (Williams et al., submitted manuscript, 2013). The
uncertainty in the solution for the k2 Love number is inferred
by comparing solutions for each harmonic order k2m (a
variation of 0.5%) and with solutions for the middle month
of the PM (a difference of 0.8%), which has minimal
nongravitational spacecraft errors. The degree-3 Love number
is determined to about 25%with the formal errors scaled up by
40. Future improvements in the long-wavelength modeling
have the potential to reduce the k3 solution errors by 10×.

7. Spacecraft Orbit Solutions and
Other Parameters

[63] During the GRAIL PM, multiple tests were performed
to monitor the progress of the gravity solutions. These tests
were repeated as more GRAIL KBRR data were collected
and as the degree and order of the gravity solutions increased.

Figure 16. GRAIL KBRR residual RMS for each arc of the
Primary Mission. The residuals are shown for the GL0420A
solution of Zuber et al. [2013a] and GL0660B of this paper.

Figure 17. Sample KBRR residual plot for four orbits of
one data arc. The KBRR residuals for this data arc have an
RMS of 0.03 μm/s (units on the y-axis are km/s).

Figure 18. The FFT of the GRAILKBRR residuals from the
entire Primary Mission for the GL0420A and GL0660B grav-
ity fields. The figure represents the high frequency content of
the residuals. A 420 degree field has wavelength 26 km, which
the spacecraft traverses in 16 s. Thus, a gravity field to n=420
cannot absorb signature with period less than ~16 s.
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In addition to the evaluation of the gravity spectrum and
correlation to topography as discussed above, other tests in-
cluded the total RMS fit of each data arc for the DSN and
KBRR residuals, fast Fourier transform (FFT) analysis of
the KBRR residuals, GRAIL spacecraft orbit overlap errors,
GRAIL KBRR time-tag solutions, LP orbit solutions, and

fit of Ka-band instantaneous range (KBR) data during cali-
bration attitude maneuvers.
[64] At the beginning of the PM, the initial fits of the

KBRR residuals were very large using the nominal
LP150Q field, with residuals between 1–10mm/s (or almost
106 times the data noise). Significantly larger residuals with
respect to LP150Q were observed for the lunar farside high-
lands versus the previously observed nearside. As shown in
Figure 16, the fit of the KBRR residuals is very near the data
noise when using the current GL0660B field, especially for
the central part of the Primary Mission of April 2012 with
continuous full Sun on the spacecraft (see Figure 17). The re-
siduals for the lower-altitude data at the beginning of March
and end of May depend on the resolution of the field and are
~10× larger for the lower resolution GL0420A field. We also
expect the residuals for the months with the spacecraft in
solar eclipse to improve as spacecraft shadow crossing and
other nongravitational models improve. The FFT of the
GL0420A and GL0660B residuals in Figure 18 shows the
improvement in the high frequency part of the gravity field.
[65] As the gravity fields using only GRAIL data

progressed, the corresponding orbit fits of the LP tracking
data, especially of the lower-altitude LP extended mission
(30–40-km mean altitude), gave an independent assessment
of the gravity field fidelity. Figure 19 shows the RMS fit of
the entire LP nominal (~100-km mean altitude) and extended
mission using the LP gravity model LP150Q and the
GL0660B model truncated at degree n = 360. The fits of the

Figure 19. Residual fit RMS of the LP Doppler tracking
data for the entire LP nominal mission (1 year at an average
100 km altitude) and extended mission (7months at 25–35
mean altitude). The orbits were fit using an arc length of
2 days.

Figure 20. Spacecraft radial (R), along-track (T), and orbit normal (N) overlap errors in meters for
GRAIL-A (Ebb) and GRAIL-B (Flow) for the Primary Mission using two similar gravity fields: (1) the
GL0660B gravity field where the periodic acceleration model varies versus solar beta angle, and (2) where
the gravity field is developed using a uniform a priori 10�11 km/s2 acceleration.

KONOPLIV ET AL.: GRAIL LUNAR GRAVITY

1431



LP nominal mission are similar for both models, and it may
be possible to improve the fits by combining LP data with
GRAIL data in the gravity solution. However, this may not
be necessary as the processing of the GRAIL primary and
extended missions improves. The LP orbit solutions for the
extended mission at lower altitude will definitely benefit
from the processing of the GRAIL extended mission data,
since LP RMS fits occasionally increase when using
GL0660B to degree higher than n = 360. The improvement
in the gravity field can be also assessed by the LP orbit over-
lap differences. For the entire LP nominal mission of 148 or-
bit overlaps, the LP150Q average overlap errors in the radial,
along-track, and orbit normal directions (or RTN) are 0.3,
3.5, and 2.6 m (slightly better than the ~5 m of Carranza
et al. [1999] using an older LP100J model) and GL0660B
has a similar 0.3, 3.4, and 3.1 m. Since GL0660B does not
contain LP data, it may be possible to fine-tune low-degree
terms for the LP orbit. For the lower altitude LP extended
mission of 100 orbit overlaps, the overlaps are noticeably im-
proved by ~3× from LP150Q errors of 1.7, 23.8, and 18.1m
(smaller than ~100m of Carranza et al., 1999) to GL0660B
errors of 0.9, 8.3, and 4.8m. GRAIL extended mission data at
lower altitude will further improve orbit determination espe-
cially at lower altitudes.

[66] The GRAIL Level-1 process requires accurately deter-
mined GRAIL orbits to avoid orbit geometry errors in the
generation of the KBRR data. The initial orbit determination
error based upon the LP150Q gravity model was ~100m,
consistent with LP errors for low altitude orbits [Carranza
et al., 1999]. The orbit overlap errors for both GRAIL space-
craft during the PM are now less than one meter in all three
directions (radial, along-track, and orbit normal) using the
GL0660B gravity field (see Figure 20). The overlap errors
are shown for two fields with different assumptions on the
empirical acceleration model, a uniform 10�11 km/s2 a priori
amplitude and the variable amplitude based upon the space-
craft thermal acceleration magnitude as used by GL0660B.
The looser a priori seems to slightly help orbit solutions for
a few dates, but the variable method gives slightly more con-
sistent Love number solutions. We chose the variable peri-
odic model because it follows what is expected from the
thermal model.
[67] An offset for the measurement time (barcycentric dy-

namical time or TDB) of the KBRR observable is estimated
as a bias for every GRAIL data arc. In the initial processing
of the PM KBRR data, the time tag offset could vary by up
to 50 ms between arcs due to errors in the a priori values of
the GRAIL timing system. However, once the times between
the two GRAIL spacecraft clocks and DSN were calibrated
in the Level-1 process (the version 2 KBRR data), the overall
absolute time tag accuracy of the KBRR observable is ~1 μs,
and this bias should remain constant for the duration of
the PM to ~10�8 s [Kruizinga et al., 2013]. The solutions
for the time tag using GL0660B show a RMS scatter of
110 μs, about 40× the formal uncertainties of 2–6 μs (similar
to scaling of errors for low-degree gravity and Love number).
Future gravity determination efforts will estimate only one
time tag bias for the duration of the PM to avoid introducing
errors into the long wavelength gravity parameters.
[68] During the PM the GRAIL spacecraft performed atti-

tude maneuvers to calibrate the vector from the center-of-mass
to the Ka-band antenna phase center (or boresight) for each
spacecraft. The calibrations occurred on 8 and 9 March, 3
April, and 2 and 29 May, where each calibration involved a
series of nonpropulsive maneuvers to tilt the boresight vector
by 3° using the attitude reaction wheels. The calibration starts
with three boresight slews up and down relative to the
interspacecraft range vector to change the spacecraft range
distance by ~1.5mm, followed by a quiet period of 5min,
and then the three slews repeated. The range residuals from
processing of the Ka-band range data during the calibration
proved to be an excellent test of both the long and short wave-
length errors of the gravity field. As an example, Figure 21a
shows the 2 March calibration for GRAIL-A at a 29-km alti-
tude. Both the expected range residual behavior (assuming
all orbit and hence gravity error has been removed) and the
corresponding range residuals from the GL0420A gravity field
are displayed showing a good match. The progression of the
gravity field improvement (as indicated by higher numbers
or higher harmonic degree) during the PM is evident in
Figure 21b.

8. Summary

[69] The GRAIL mission Ka-band interspacecraft range-
rate data from the Primary Mission have unprecedented

Figure 21. The Ka-band range residuals from the GRAIL
antenna calibration on 2 March 2012. Displayed are (a) the
computed (expected) signature in the range residual and the
observed signature after fitting the range residuals using
the GL0420A gravity field, and (b) the observed signature
for preliminary gravity fields developed during the Primary
Mission with progression toward higher degree (210, 270,
360, and 420) showing the improvement in matching the
expected signature.
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accuracy near 0.03 μm/s, about 4 orders-of-magnitude im-
provement versus previous DSN based S-band tracking mis-
sions to the Moon. As a result, the gravity field of the Moon
shows similar improvement for nearly all harmonic wave-
lengths and more than 5 orders-of-magnitude for some fre-
quencies, resulting in new discoveries about the lunar
interior from crust to core. The lunar gravity derived from
GRAIL reveals strong 98% coherence with topography
[Zuber et al., 2013b], crustal fractures likely from an early
thermal expansion of the Moon [Andrews-Hanna et al.,
2013], and lower crustal density and higher porosity than pre-
viously thought [Wieczorek et al., 2013]. The interior of the
Moon is also constrained by new moments of inertia from
improved long-wavelength gravity harmonics, a ~5×
improved lunar k2 Love number (Williams et al., submitted
manuscript, 2013), and also the first detection of the k3
Love number. The gravity field based upon only the
GRAIL PM also demonstrates improved spacecraft orbit
accuracy for past and future missions. However, the full
benefit from the GRAIL mission is yet to come. With process-
ing of the lower-altitude extendedmission, the expected gravity
resolution should double that of the PM, leading to additional
science discoveries and lunar navigation improvement.
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