2.626 Fundamentals of Photovoltaics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Thin Films: Materials Choices & Manufacturing

Lecture 11 – 2.626 Tonio Buonassisi

General Matters

- Exam
- Homework #2
- Class Project next steps

Further Reading

- Visit <u>http://www.knovel.com</u> from an on-site computer (or with certificates).
- Search for "Handbook of Photovoltaic Science and Engineering".
- Suggested Chapters:
 - 12: Amorphous Silicon Thin Films
 - 13: CIGS Thin Films
 - 14: CdTe Thin Films
 - 15: Dye-Sensitized Solar Cells
- Harvard Folks: If you have difficulty accessing this content, please email Sarah or me.

Thin Films: General Issues

Diversity in the PV Market

Fig. 1 in Takamoto, Tatsuya, et al. "Over 30% efficient InGaP/GaAs tandem solar cells." *Applied Physics Letters* 70 (January 20, 1997): 381-383.

Spheral Solar

http://site.novatechgadgets.com/evtechfeat.jpg

Silicon Ribbon

http://www.stangl.de/typo3temp/pics/691aeb319e.jpg

Copper Indium Diselenide (CIS)

Courtesy EERE

http://www.atp.nist.gov/eao/sp950-1/astropw1.jpg

Heterojunction

Cells

http://www.iea-pvps.org/ar/ar00/images/aus03.jpg

http://www.ajeal.net/english/wp-content/uploads/solar-panel-cost.jpg

Cadmium Telluride

http://www.triplepundit.com/nanosolar.jpg

Dye-sensitized Cells

Silicon Sheet

Hybrid (nano)

Future technologies must consider:

- Cost (\$/kWh)
- Resource availability
- Environmental impact

http://electronicdesign.com/Files/29/11527/Figure 01.jpg

http://www.livescience.com/images/0412_solar_panels_03.jpg

SunPower Back-contacted

Organics

Record laboratory efficiencies of various materials

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

L.L. Kazmerski, Journal of Electron Spectroscopy and Related Phenomena 150 (2006) 105–135

NOTE: These are <u>record cell efficiencies</u> under <u>ideal conditions</u> (25°C, ~1000 W/m²)! Actual commercially-available silicon solar cells are typically 14-17% efficient. Modules are typically around 11-13%.

Thin Films

<u>Advantages</u>

- 1 μ m layers \rightarrow less material used \rightarrow potential cost decrease.
- Potential for lower thermal budget → potential cost decrease.
- Potential for roll-to-roll deposition on flexible substrate.
 - Technology transfer with TFT, flat panel display industry.
- Good for BIPV applications.
- Radiation hardness.

Disadvantages

- Lower efficiencies → potentially larger module costs.
- Potential for capital-intensive production equipment.
- Potentially scarce elements sometimes used.
- Spatial uniformity a challenge during deposition.

Thin Films

Advantages:

Roll-to-roll deposition of μ m-sized layers \rightarrow potentially high throughput, largearea deposition, and cheap.

Figure by MIT OpenCourseWare.

Building-integrated solutions

http://www.carbonfreegroup.com/images/photovoltaic_files/solar-shingle.jpg http://www.inhabitat.com/images/bipv1.jpg

Radiation hardness of different compounds

,Master data' by courtesy of S.Messenger, G. Summers

Space payloads cost ~\$1400–\$6000/pound (~\$2866–\$13228/kg) → Key parameter not \$/W. Instead, it's <u>W/kg</u> and <u>reliability</u>!

Grain Size and Efficiency

Images removed due to copyright restrictions. Please see Fig. 1 and 2 in Bergmann, R. B. "Crystalline Si thin-film solar cells: a review." *Applied Physics A* 69 (1999): 187-194.

R.B. Bergmann, *Appl. Phys. A* **69** (1999) 187

See also: T.F. Ciszek, *J. Cryst Growth* **237**-**239** (2002) 1685

Heterostructures and Lattice Matching

To prevent interface recombination and achieve high carrier mobilities, atoms in the different layers must line up (adjacent hetero-epitaxial layers must be lattice matched). Otherwise, defects form at these interfaces.

Image removed due to copyright restrictions. Please see http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/illustr/bandgap_misfit.gif http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/illustr/materials.gif

An good example of a heteroepitaxial system is Ge / GaAs / InGaP / AlAs, in order of increasing bandgap.

Material

Abundances Table 1. Materials requirements and indicators for the solar cells in four solar energy systems, each based on a specific thinfilm technology supplying 100,000 TWh/yr.

	Materials requirements (g/m ²)	Total material requirements ^h (Gg)	Total material requirements /reserves ^c	Total material requirements /max. resources ^d	Annual material requirements ^e /refined materials ^f	Potential losses ^g / weathered amounts ^h	Material cost share' (%)
a-SiGe ^a							
Sn	3.3	1700	0.20	0.004	0.079	2	0.04
Ge	0.22	110	51	0.0003	21	0.1	0.5
Si	0.54	270	Negligible	Negligible	0.0031	0.000002	0.002
Al	2.7	1400	0.00032	Negligible	0.00075	0.00005	0.008
CdTe				. .			
Sn	0.66	330	0.056	0.0009	0.016	0.4	0.008
Cd	4.9	2400	4.6	0.03-0.1	1.2	10-50	0.02
Te	4.7	2400	110	1-20	120	500-10 000	0.5
Mo	10	5100	0.93	0.01	0.47	6	0.1
CIGS							
Zn	9.1	4600	0.030	0.0003	0.0062	0.1	0.02
Cu	1.8	880	0.0017	0.00009	0.00098	0.04	0.008
In	2.9	1400	650	0.03-0.4	110	10-200	0.8
Ga	0.53	270	25	0.00007	48	0.03	0.4
Se	4.8	2400	30	0.3	12	100	0.1
Cd	0.19	95	0.18	0.001-0.005	0.048	0.4-2	0.0008
Mo	10	5100	0.93	0.01	0.47	6	0.1
Grätzel							
Ru	0.1	50	7.5	0.3-3	88	100-1000	0.09
Pt	0.05	25	0.83	0.01-0.1	2.4	6-60	1
Ti	1.2	600	0.0021	Negligible	0.0024	0.0002	0.03
Sn	5.5	2800	0.47	0.007	0.13	3	0.07

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

B.A. Andersson et al., *Energy* **23** (1998) 407

Deposition Technologies

Images removed due to copyright restrictions. Please see http://i236.photobucket.com/albums/ff105/sanjaykram/PDP_Large/PECVD_png.png

and any photo of chemical bath deposition, such as http://www.cranfield.ac.uk/cds/departments/dassr/images/22179_lg_solar%20cbd%20growth%20of%20cds_580x200.jpg

Vacuum Based: Large capex

Non-Vacuum Based: Small(?) capex

Thin Films: Technology Choices

Record laboratory efficiencies of various materials

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

L.L. Kazmerski, Journal of Electron Spectroscopy and Related Phenomena 150 (2006) 105–135 **NOTE:** These are <u>record cell efficiencies</u> under <u>ideal conditions</u> (25°C, ~1000 W/m²)! Actual commercially-available silicon solar cells are typically 14-17% efficient. Modules are typically around 11-13%.

Amorphous Silicon (a-Si)

Courtesy EERE.

Image removed due to copyright restrictions. Please see Fig. 1 in Rech, B., and H. Wagner. "Potential of amorphous silicon for solar cells." *Applied Physics A* 69 (1999): 155-167.

Advantages:

B. Rech and H. Wagner, *Appl. Phys. A* **69** (1999) 155

- Potentially very cheap, low-temperature.

Challenges:

- Overcoming the Staebler–Wronski effect (SWE)
- Uniform (thickness, quality, grain size) film deposition.
- TCO expensive.
- Challenges to scaling

Energy Band Diagram of a-Si

Image removed due to copyright restrictions. Please see Fig. 2 in Rech, B., and H. Wagner. "Potential of amorphous silicon for solar cells." *Applied Physics A* 69 (1999): 155-167.

B. Rech and H. Wagner, Appl. Phys. A 69 (1999) 155

a-Si heterostructures

Courtesy Sandia National Labs. Used with permission.

Image removed due to copyright restrictions. Please see Fig. 4 in Rech, B., and H. Wagner. "Potential of amorphous silicon for solar cells." *Applied Physics A* 69 (1999): 155-167.

B. Rech and H. Wagner, Appl. Phys. A 69 (1999) 155

Staebler–Wronski effect (SWE)

Image removed due to copyright restrictions. Please see Fig. 3 in Rech, B., and H. Wagner. "Potential of amorphous silicon for solar cells." *Applied Physics A* 69 (1999): 155-167.

B. Rech and H. Wagner, Appl. Phys. A 69 (1999) 155

The a-Si (μ -Si) \rightarrow nc-Si transition...

...is determined by deposition temperature...

(b) Photosensitivity: 1000

Courtesy of Toyonobu Yoshida. Used with permission.

Fig.5 SEM images of the film deposited at different substrate temperature; (a) 150 and (b) 133°C.

...ambient gas content, and other factors.

Table removed due to copyright restrictions. Please see p. 5 in Wagner, Sigurd, David E. Carlson, and Howard M. Branz. "Amorphous and Microcrystalline Solar Cells." NREL (April 1999): CP-520-29586. Image removed due to copyright restrictions. Please see Fig. 5 in Srinivasan, Easwar, and Gregory N. Parsons. "Hydrogen elimination and phase transitions in pulsed-phase plasma desposition of amorphous and microcrystalline silicon." *Journal of Applied Physics* 81 (1997): 2847-2855.

http://www.nrel.gov/docs/fy99osti/29586.pdf http://www.nrel.gov/docs/fy05osti/38355.pdf

> E. Srinivasan and G.N. Parsons, J. Appl. Phys. **81** (1997) 2847

Text removed due to copyright restrictions. Please see Table 1 in Rech, B., and H. Wagner. "Potential of amorphous silicon for solar cells." *Applied Physics A* 69 (1999): 155-167.

Commercialization of a-Si / μ -Si

Applied Materials SunFab: Turnkey production lines.

Images removed due to copyright restrictions. Please see http://www.pv-tech.org/images/uploads/sunfab.jpg http://www.appliedmaterials.com/products/solar_multimedia_3.html?menuID=9_5

Movie at:

http://www.appliedmaterials.com/pr oducts/solar_multimedia_3.html?me nuID=9_5

http://www.pv-tech.org/images/uploads/sunfab.jpg

Commercialization of a-Si / μ -Si

Images removed due to copyright restrictions. Please see http://www.solarserver.de/images/oerlikon_picture_4.jpg http://www.ovonic.com/images/me_uni-solar_thin-film_pv_300dpi_large.jpg

Oerlikon

Uni-Solar

Heterojunction with Thin Intrinsic layer (HIT) Cells

Image removed due to copyright restrictions. Please see http://www.power-technology.com/projects/Serpa/images/7-serpa-solar.gif

http://www.sanyo.co.jp/clean/solar/hit_e/hit.html

Advantages:

- Less surface recombination.
- Higher maximum voltages (V_{oc} > 710 mV).
- Efficiency less temperature sensitive.
- High efficiencies (21.5% on 100 cm² cell)

Challenges:

- Deposition: doping, nano-to-micro-crystalline phase transition
- Optimizing the c-Si and a-Si interface, low-damage plasma.

Energy Band Diagram of HIT Cell

Images removed due to copyright restrictions. Please see Fig. 1 and 5 in Taguchi, Mikio, et al. "Obtaining a Higher V_{oc} in HIT Cells." *Progress in Photovoltaics: Research and Applications* 13 (2005): 481-488.

M. Taguchi et al., Prog. Photovolt: Res. Appl. 13 (2005) 481.

Temperature Dependence of HIT Cells

Images removed due to copyright restrictions. Please see Fig. 3 and 4 in Taguchi, Mikio, et al. "Obtaining a Higher V_{oc} in HIT Cells." *Progress in Photovoltaics: Research and Applications* 13 (2005): 481-488.

M. Taguchi et al., Prog. Photovolt: Res. Appl. 13 (2005) 481.

CIS and its variants

Basic Facts:

- CIS = Copper Indium Diselenide = CuInSe₂ = Chalcopyrite
- Zincblende-like structure
- Record efficiencies: 19.2% lab; 13.4% large area

Figure by MIT OpenCourseWare.

Image removed due to copyright restrictions. Please see http://level2.phys.strath.ac.uk/SolarEnergy/img/intro.gif

http://level2.phys.strath.ac.uk

Image removed due to copyright restrictions. Please see Fig. 1 in Klein, A., et al. "Interfaces in Thin Film Solar Cells." *Record of the* 31st *IEEE Photovoltaic Specialists Conference* (2005): 205-210.

A. Klein, *Proc. 31st IEEE PVSC* (Lake Buena Vista, FL, 2005) p.205

CIS Band Structure Debated

Image removed due to copyright restrictions. Please see Fig. 1 in Klein, A., et al. "Interfaces in Thin Film Solar Cells." *Record of the* 31st IEEE Photovoltaic Specialists Conference (2005): 205-210.

A. Klein, *Proc. 31st IEEE PVSC* (Lake Buena Vista, FL, 2005) p.205 Image removed due to copyright restrictions. Please see Fig. 3 in Weinhardt, L., et al. "Band alignment at the *i*-ZnO/CdS interface in Cu(In,Ga)(S,Se)₂ thin-film solar cells." *Applied Physics Letters* 84 (2004): 3175-3177.

L. Weinhardt, C. Heske et al., Appl. Phys. Lett. **84** (2004) 3175

CIGS Characteristics

Advantages:

- High efficiencies (~20%)

Challenges:

- Uniform deposition (stoichiometry & thickness) over large areas, quickly
- Defects, Interface States are complex, poorly understood.
- Replacing n-type emitter with Cd-free material.

CIGS Commercialization

Images removed due to copyright restrictions. Please see http://www.nanosolar.com/media/firstpanelsshipped_web.jpg http://imgs.sfgate.com/c/pictures/2005/07/11/bu_solarcell8865.jpg

Start-ups: Nanosolar (above), Heliovolt, Miasolé...

Cadmium Telluride (CdTe)

Image removed due to copyright restrictions. Please see Fig. 1 in Klein, A., et al. "Interfaces in Thin Film Solar Cells." *Record of the* 31st *IEEE Photovoltaic Specialists Conference* (2005): 205-210.

A. Klein, *Proc. 31st IEEE PVSC* (Lake Buena Vista, FL, 2005) p.205

Cadmium Telluride (CdTe)

CdTe

Image removed due to copyright restrictions. Please see Fig. 6 in Klein, A., et al. "Interfaces in Thin Film Solar Cells." *Record of the* 31st *IEEE Photovoltaic Specialists Conference* (2005): 205-210.

A. Klein, *Proc. 31st IEEE PVSC* (Lake Buena Vista, FL, 2005) p.205

CdTe Characteristics

Advantages:

- Technology developed for application on glass \rightarrow BIPV.
- Radiation hardness.

Challenges:

- Cadmium
- Marketability (Greenpeace opposed, banned in Japan)

Environmental Concerns: Cadmium

Arguments Against:

- Suspected carcinogen.
- Industrial emissions tightly regulated, esp. in E.U.
 - Cradle-to-grave requirement.

Arguments in Favor:

- By-product of Zn, Cu mining [1].
 - "Better to tie it up in CdTe than dump it in the ground."
- "Negligible" Cd released during fires [2].
- "Public fear a perception issue" [3].
- CdTe is a stable compound.
 - Much less Cd released per kWh than a battery [4].
- Safe production.
- Full recycling guaranteed (by <u>law</u> in Europe).

[1] http://www.firstsolar.com

- [2] V.M. Fthenakis et al., Proc. 19th EU-PVSEC (Paris, France, 2004); Paper 5BV.1.32
- [3] http://www.nrel.gov/cdte
- [4] V.M. Fthenakis, Renewable and Sustainable Energy Reviews 8 (2004) 303.

CdTe Commercialization

Images removed due to copyright restrictions. Please see http://www.firstsolar.com/images/large_pp5.jpg http://www.firstsolar.com/images/large_pp6.jpg

First Solar: Proven Technology!

Announced Capacity Increases: Regional Differentiation by Technologies

Average Thin Film Cost Structure

Technology dependent Drivers

Deposition Process: Deposition Materials: Package/Assembly:

12

Dominates Energy Dominates Depreciation Dominates Materials

Common Drivers

Material Cost: Volume, Efficiency Depreciation: Throughput, Efficiency Labour: Throughput, Automation, Efficiency Energy: Throughput, Efficiency

Materials Availability

Most experts agree: not enough In, Te to produce TW of PV.

Source: Feltrin, A., A. Freundlich. "Material Considerations for Terawatt. Level Deployment of Photovoltaics." *Renewable Energy* 33 (2008): 180-185. Courtesy of Alex Freundlich. Used with permission.

Alex Freundlich: http://www.rio6.com/proceedings/RIO6_181106_MA_1730_Freundlich.pdf

Tandem (Heterostructure) Cells

Images removed due to copyright restrictions. Please see http://www.spectrolab.com/DataSheets/TNJCell/utj3.pdf

- Stack of lattice-matched materials with decreasing bandgaps.
- Spectrolab Cells: GaInP₂/GaAs/Ge. Eff_{max}=32%, Eff_{ave}=28%. 375 kW in orbit!
- Theoretical efficiency limit for infinite tandem cell: 86.8%
- Heteroepitaxial growth slow and expensive!

Materials Availability

Most experts agree: not enough Ge to produce TW of PV.

Development of new low-bandgap materials.

Source: Feltrin, A., A. Freundlich. "Material Considerations for Terawatt. Level Deployment of Photovoltaics." *Renewable Energy* 33 (2008): 180-185. Courtesy of Alex Freundlich. Used with permission.

Alex Freundlich: http://www.rio6.com/proceedings/RIO6_181106_MA_1730_Freundlich.pdf