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Efficiency Loss Mechanisms:
Theory and Characterization

Lecture 15— 2.626

Tonio Buonassisi



Topics of Today’s Lecture

e Efficiency loss mechanisms.

e Optical losses, recombination losses, surface
recombination velocity, series and parallel
resistance (shunts).

e Evaluation of loss mechanisms, common
characterization tools.



Short Circuit Current

e Optical Reflection
e Spectral Response
e Minority Carrier Diffusion Length



Optical Reflection

Spectrophotometer: Measures specular and diffuse reflectance, and transmission.

Image from Wikimedia Commons,
http://commons.wikimedia.org


http://commons.wikimedia.org/

Increasing Absorption

Light trapping increases
the “optical thickness” "
of a material

— Physical thickness
can remain low

— Allows carriers to be
absorbed close to the
junction

Courtesy of Christiana Honsberg. Used with permission.



Increasing Absorption

Effect of Textured Surfaces on SEM image of textured silicon
Light Absorption |

Incidant
light

Reflected

Courtesy of Christiana Honsberg. Used with permission.

Q: What other mechanisms exist to trap light?



Collection Probability

A light generated minority carrier can readily recombine.

« |f it the carrier reaches the edge of the depletion region, it is swept
across the junction and becomes a majority carrier. This process
Is collection of the light generated carriers.

« Once a carrier is collected, it is very unlikely to recombine.
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Courtesy of Christiana Honsberg. Used with permission.



Collection Probability

« Collection probability is the probability that a light generated carrier will
reach the depletion region and be collected.

- Depends on where it is generated compared to junction and other
recombination mechanisms, and the diffusion length.
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With high surface recombination,
the collection probability at the

surface is low. Courtesy of Christiana Honsberg. Used with permission.



Collection Probability
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Collection probability is low further than a diffusion length away
from junction

Courtesy of Christiana Honsberg. Used with permission.



Collection Probability

J.. determined by generation rate and collection
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Courtesy of Christiana Honsberg. Used with permission.



Spectral Response

Diagram of spectral response tool removed due to copyright restrictions.O

Newport Spectral Response tool



Spectral Response

A reduction of the overall QE is

4 caused by reflection and a low
diffusion length.
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Courtesy of Christiana Honsburg and Stuart Bowden. Used with permission.

Standards: IEC 60904-3 and 60904-8



External vs. Internal Quantum Efficiency

IOE = EQE _ Electrons Out
(1-R)  (Photons In)- (1-R)

... where R = Reflectivity

Reflectivity and IQE
(measured with different bias illumination)
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Spectrally-Resolved Laser Beam Induced Current (SR-LBIC)

Image removed due to copyright restrictions. Please see
http://www.isfh.de/institut_solarforschung/media/sr_lbic_messplatz_l.jpg

4 or more lasers measure IQE(A).

Digital processing of data extracts
relevant device parameters.

XY stage moves sample.
A 2D map of IQE obtained!

In advanced versions, all lasers
fire simultaneously (as they are
pulsed at different frequencies)
Into a fibre optic cable. FFT of the
current signal decouples different
wavelengths.


http://www.isfh.de/institut_solarforschung/media/sr_lbic_messplatz_1.jpg
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See: P. A. Basore, IEEE Trans. Electron. Dev. 37, 337 (1990).



Voc and Operating Conditions

IV Curve Measurements
Series Resistance

— Contact Resistance
— Sheet Resistance

Shunt Resistance
— Lock-in Thermography

Electroluminescence



Refresher: Open Circuit Voltage

- |f collected light-generated carriers are not extracted from the
solar cell but instead remain, then a charge separation exists.

« The charge separation reduces the electric field in the depletion
region, reduces the barrier to diffusion current, and causes a
diffusion current to flow.

p-type n-type
Incoming light O
(8] ') ©
diffusion O 99 ht- generated hole
B . will eventually
o ) recombine unless it maoves
drift [0 p-lype material
,‘ 7 r
Electric field sweeps hole !-MIE may diffuse to junc‘t! o
| i if generated close to the junction
ACross junction
O | O o o © ©

Courtesy of Christiana Honsberg. Used with permission.



Two Diode Model

Equivalent Circuit Diagram of Solar Cell
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A Prettier Version of the Same

Image removed due to copyright restrictions. Please see Fig. 2.7
in Schumacher, Juergen O., and Wolfram Wettling. “Device
Physics of Silicon Solar Cells.” Ch. 2 in Archer, Mary D., and
Robert Hill. Clean Electricity from Photovoltaics. London,
England: Imperial College Press, 2001. ISBN: 978-1860941610
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IV Curve Measurements
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IV Curve Measurements

Several IV curves for real solar cells, illustrating a variety of IV responses!
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Physical Causes of Series Resistance

Series resistance
composed of emitter and
metal grid resistance
terms.

Want large cross section
area of grid and emitter to
reduce resistances.

Courtesy of Christiana Honsberg. Used with permission.



Physical Causes of Shunt Resistance

Paths for electrons to flow from the emitter into the base. Can be

caused by physical defects (scratches), improper emitter formation,
metallization over-firing, or material defects (esp. those that traverse

the space-charge region).
p
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Fig. 6. Schematic 2-dimensional potential distribution on a positively charged surface (in front) crossing an
n " p-junction. E_: conduction band edge, E,: valence band edge, E,: surface potential barrier height.

Courtesy of Elsevier, Inc., |ttp://www.sciencedirect.com. Used with permission.


http://www.sciencedirect.com/

Effect of R, and R,

High series resistance and low shunt resistance degrade primarily
FF, but in severe cases Voc and possibly Jsc.
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Lock-in Thermography

Lock-in Thermography Images Shunts
(e.g., Local Increases in
Dark Forward Current)

Image removed due to copyright restrictions.
Please see any image of shunts detected via lock-in thermography, such as http://tinyurl.com/lg3273.


http://tinyurl.com/lg3273

Lock-in Thermography

Image removed due to copyright restrictions. Please see Fig. 1
in Kaes, M., et al. “Light-modulated Lock-in Thermography for
Photosensitive pn-Structures and Solar Cells.” Progress in
Photovoltaics: Research and Applications 12 (2004): 355-363.

M. Kaes et al., Prog. Photovolt. 12, 355 (2004)
J. Isenberg and W. Warta, Prog. Photovolt. 12, 339 (2004)
O Breitenstein et al., Solar Energy Mater. Solar Cells 65, 55 (2001)



Lock-in Thermography - Sensitivity

noise [effective value in mK]
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Sensitivity is a function of integration time.

Courtesy of Elsevier, Inc.,|http://www.sciencedirect.com. Used with permission.



http://www.sciencedirect.com/

Lock-in Thermography — Dark vs. llluminated

Dark llluminated

Image removed due to copyright restrictions. Please see Fig. 3
in Kaes, M., et al. “Light-modulated Lock-in Thermography for
Photosensitive pn-Structures and Solar Cells.” Progress in
Photovoltaics: Research and Applications 12 (2004): 355-363.

M. Kaes et al., Prog. Photovolt. 12, 355 (2004)
O Breitenstein et al., Solar Energy Mater. Solar Cells 65, 55 (2001)

Courtesy of Elsevier, Inc., http:/Aww.sciencedirect.com. Used with permission.

Fig. 6. Schematic 2-dimensional potential distribution on a positively charged surface (in front) crossing an
n*p-junction. E_: conduction band edge, E,: valence band edge, E,: surface potential barrier height.


http://www.sciencedirect.com/
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Lock-in Thermography — Imaging Losses

a) Lock in Thermography b) Lock in Thermography
Viias=560 mV

Vy,c=360 mV
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Correlation between Thermography and LBIC
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Ideal Diode Equation Revisited

J=J,(explqV /nkT)-1)—J_
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Note: J is current density A/cm?, | is current.



Cheaper Methods of Shunt Detection:

Liquid Crystal Thermochromic Sheets

Image removed due to copyright restrictions. Please see
http://www.tep.org.uk/FMimages/Smart%20modules/DSCN0739.jpg

See: “Shunt imaging in solar cells using low cost
commercial liquid crystal sheets” C. Ballif et al., Proc.
IEEE Photovoltaic Specialists Conference, 2002, pp. 446-
449,


http://www.tep.org.uk/FMimages/Smart modules/DSCN0739.jpg

Electroluminescence

Image remove due to copyright restrictions. Please see|http://ipw.naist.jp/intemational/siIiconvalley.fiIes/imageOOS.jpg.


http://ipw.naist.jp/international/siliconvalley.files/image003.jpg
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Courtesy of ISFH. Used with permission.



Evolution of IR Imaging Techniques

Image and text removed due to copyright restrictions. Please see Fig. 1
and Table 1 in Kasemann, M., et al. “Progress in Silicon Solar Cell
Characterization with Infrared Imaging Methods.” Proceedings of the
23 European Photovoltaic Solar Energy Conference (2008): 965-973.



Evolution of IR Imaging Techniques

...and the kitchen sink!




	Efficiency Loss Mechanisms:�Theory and Characterization
	Topics of Today’s Lecture
	Short Circuit Current
	Voc and Operating Conditions

