2.626 Fundamentals of Photovoltaics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

# Efficiency Loss Mechanisms: Theory and Characterization

Lecture 15 – 2.626 Tonio Buonassisi

# **Topics of Today's Lecture**

- Efficiency loss mechanisms.
- Optical losses, recombination losses, surface recombination velocity, series and parallel resistance (shunts).
- Evaluation of loss mechanisms, common characterization tools.

# **Short Circuit Current**

- Optical Reflection
- Spectral Response
- Minority Carrier Diffusion Length

# **Optical Reflection**

Spectrophotometer: Measures specular and diffuse reflectance, and transmission.



Image from Wikimedia Commons, http://commons.wikimedia.org

## **Increasing Absorption**

Light trapping increases the "optical thickness" of a material

- Physical thickness can remain low
- Allows carriers to be absorbed close to the junction



Courtesy of Christiana Honsberg. Used with permission.

# **Increasing Absorption**

#### Effect of Textured Surfaces on Light Absorption



#### SEM image of textured silicon



Courtesy of Christiana Honsberg. Used with permission.

## Q: What other mechanisms exist to trap light?

- A light generated minority carrier can readily recombine.
- If it the carrier reaches the edge of the depletion region, it is swept across the junction and becomes a majority carrier. This process is collection of the light generated carriers.
- Once a carrier is collected, it is very unlikely to recombine.



Courtesy of Christiana Honsberg. Used with permission.

- Collection probability is the probability that a light generated carrier will reach the depletion region and be collected.
- Depends on where it is generated compared to junction and other recombination mechanisms, and the diffusion length.





Collection probability is low further than a diffusion length away from junction

Courtesy of Christiana Honsberg. Used with permission.



Courtesy of Christiana Honsberg. Used with permission.

### **Spectral Response**

Diagram of spectral response tool removed due to copyright restrictions.

## **Spectral Response**



Courtesy of Christiana Honsburg and Stuart Bowden. Used with permission.

Standards: IEC 60904-3 and 60904-8

#### **External vs. Internal Quantum Efficiency**



Wavelentgh [nm]

## Spectrally-Resolved Laser Beam Induced Current (SR-LBIC)

- 4 or more lasers measure  $IQE(\lambda)$ .
- Digital processing of data extracts relevant device parameters.
- XY stage moves sample.
- A 2D map of IQE obtained!
- In advanced versions, all lasers fire simultaneously (as they are pulsed at different frequencies) into a fibre optic cable. FFT of the current signal decouples different wavelengths.

Image removed due to copyright restrictions. Please see http://www.isfh.de/institut\_solarforschung/media/sr\_lbic\_messplatz\_1.jpg

#### **Minority Carrier Diffusion Length**

At each point...



#### Mapped over an entire sample...



See: P. A. Basore, IEEE Trans. Electron. Dev. 37, 337 (1990).

# **Voc and Operating Conditions**

- IV Curve Measurements
- Series Resistance
  - Contact Resistance
  - Sheet Resistance
- Shunt Resistance
  - Lock-in Thermography
- Electroluminescence

# **Refresher: Open Circuit Voltage**

- If collected light-generated carriers are not extracted from the solar cell but instead remain, then a charge separation exists.
- The charge separation reduces the electric field in the depletion region, reduces the barrier to diffusion current, and causes a diffusion current to flow.



Courtesy of Christiana Honsberg. Used with permission.

# **Two Diode Model**



#### A Prettier Version of the Same

Image removed due to copyright restrictions. Please see Fig. 2.7 in Schumacher, Juergen O., and Wolfram Wettling. "Device Physics of Silicon Solar Cells." Ch. 2 in Archer, Mary D., and Robert Hill. *Clean Electricity from Photovoltaics*. London, England: Imperial College Press, 2001. ISBN: 978-1860941610



#### **IV Curve Measurements**

$$J = J_L - J_{01} \exp\left(\frac{q(V + JR_s)}{kT}\right) - J_{02} \exp\left(\frac{q(V + JR_s)}{2kT}\right) - \frac{V + JR_s}{R_{shunt}}$$



## **IV Curve Measurements**

Several IV curves for real solar cells, illustrating a variety of IV responses!



## **Physical Causes of Series Resistance**

Series resistance composed of emitter and metal grid resistance terms.

Want large cross section area of grid and emitter to reduce resistances.



$$R = \frac{\rho l}{A}$$

Courtesy of Christiana Honsberg. Used with permission.

## **Physical Causes of Shunt Resistance**

Paths for electrons to flow from the emitter into the base. Can be caused by physical defects (scratches), improper emitter formation, metallization over-firing, or material defects (esp. those that traverse the space-charge region).



Fig. 6. Schematic 2-dimensional potential distribution on a positively charged surface (in front) crossing an  $n^+p$ -junction.  $E_e$ : conduction band edge,  $E_y$ : valence band edge,  $E_b$ : surface potential barrier height.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

# Effect of R<sub>s</sub> and R<sub>sh</sub>

High series resistance and low shunt resistance degrade primarily FF, but in severe cases Voc and possibly Jsc.



Lock-in Thermography

#### Lock-in Thermography Images Shunts

(e.g., Local Increases in Dark Forward Current)

Image removed due to copyright restrictions.

Please see any image of shunts detected via lock-in thermography, such as http://tinyurl.com/lg3273.

## Lock-in Thermography

Image removed due to copyright restrictions. Please see Fig. 1 in Kaes, M., et al. "Light-modulated Lock-in Thermography for Photosensitive pn-Structures and Solar Cells." *Progress in Photovoltaics: Research and Applications* 12 (2004): 355-363.

M. Kaes et al., *Prog. Photovolt.* 12, 355 (2004)
J. Isenberg and W. Warta, *Prog. Photovolt.* 12, 339 (2004)
O Breitenstein et al., *Solar Energy Mater. Solar Cells* 65, 55 (2001)

# Lock-in Thermography - Sensitivity



#### Sensitivity is a function of integration time.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

#### Lock-in Thermography – Dark vs. Illuminated

Dark

Illuminated

Image removed due to copyright restrictions. Please see Fig. 3 in Kaes, M., et al. "Light-modulated Lock-in Thermography for Photosensitive pn-Structures and Solar Cells." *Progress in Photovoltaics: Research and Applications* 12 (2004): 355-363.



M. Kaes et al., *Prog. Photovolt.* **12**, 355 (2004) O Breitenstein et al., *Solar Energy Mater. Solar Cells* **65**, 55 (2001)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Fig. 6. Schematic 2-dimensional potential distribution on a positively charged surface (in front) crossing an  $n^+p$ -junction.  $E_c$ : conduction band edge,  $E_v$ : valence band edge,  $E_b$ : surface potential barrier height.

#### Lock-in Thermography – Imaging Losses

$$J = J_L - J_{01} \exp\left(\frac{q(V + JR_s)}{kT}\right) - J_{02} \exp\left(\frac{q(V + JR_s)}{2kT}\right) - \frac{V + JR_s}{R_{shunt}}$$



#### **Correlation between Thermography and LBIC**



525mV Forward Biased ( $V_{oc} = 571mV$ ) 8Hz, 2hour scan, (30000 Frames)



White-light LBIC (essentially probes the bulk, below the emitter)

#### **Ideal Diode Equation Revisited**

$$J = J_0 \left( \exp\left(\frac{qV}{nkT}\right) - 1 \right) - J_{sc}$$
$$V_{oc} = \frac{nkT}{q} \ln\left(\frac{I_L}{I_0} + 1\right)$$

$$I_{0} = A \left( \frac{qD_{e}n_{i}^{2}}{L_{e}N_{A}} \cdot \frac{S_{h}\cosh(W_{N}/L_{h}) + D_{h}/L_{h}\sinh(W_{N}/L_{h})}{D_{h}/L_{h}\cosh(W_{N}/L_{h}) + S_{h}\sinh(W_{N}/L_{h})} + \frac{qD_{h}n_{i}^{2}}{L_{h}N_{D}} \cdot \frac{S_{e}\cosh(W_{P}/L_{e}) + D_{e}/L_{e}\sinh(W_{P}/L_{e})}{D_{e}/L_{e}\cosh(W_{P}/L_{e}) + S_{e}\sinh(W_{P}/L_{e})} \right)$$

Note: J is current density A/cm<sup>2</sup>, I is current.

#### **Cheaper Methods of Shunt Detection:**

Liquid Crystal Thermochromic Sheets

Image removed due to copyright restrictions. Please see <a href="http://www.tep.org.uk/FMimages/Smart%20modules/DSCN0739.jpg">http://www.tep.org.uk/FMimages/Smart%20modules/DSCN0739.jpg</a>

See: "Shunt imaging in solar cells using low cost commercial liquid crystal sheets" C. Ballif *et al.*, *Proc. IEEE Photovoltaic Specialists Conference*, 2002, pp. 446-449.

#### Electroluminescence

Image remove due to copyright restrictions. Please see http://ipw.naist.jp/international/siliconvalley.files/image003.jpg.

## Electroluminescence

Cell



Courtesy of ISFH. Used with permission.

#### Module



#### **Evolution of IR Imaging Techniques**

Image and text removed due to copyright restrictions. Please see Fig. 1 and Table 1 in Kasemann, M., et al. "Progress in Silicon Solar Cell Characterization with Infrared Imaging Methods." *Proceedings of the 23<sup>rd</sup> European Photovoltaic Solar Energy Conference* (2008): 965-973.

## **Evolution of IR Imaging Techniques**



# ...and the kitchen sink!