Solar Resource – Interactive Slides

Lecture 2 – 2.626

Tonio Buonassisi
Foreword

• These were presented in class as “interactive slides”. As such, reading them online might not give you the “full experience”. We expect to have full video of the class posted online by January.
A few intro items

1. Course material posted to MIT class Web site. If you do not have access, pls. email Sarah.

2. OCW: Privacy concerns w/ project postings.

3. PV listserv signup

4. UNSW book order – next week, be prepared!

5. Community resources: photovoltaics.mit.edu listserv.

6. Upcoming events:
 - Monday, Sept. 15: Swiss Solar Taxi makes Round-the-World Trip, stops at MIT
 - Tuesday, Sept. 16: PV Social @ Muddy Charles Pub, 5:30-7:30pm.

7. Who checked out the PVCDROM at www.pveducation.org?
Who’s sitting next to you? (bkgnnd survey results)

- I can basically describe how a solar cell operates
 - Counts
 - T: 25
 - F: 10

- I can explain a semiconductor bandgap to a layperson
 - Counts
 - T: 20
 - F: 15

- I can sketch out a pn-junction on a band diagram
 - Counts
 - T: 15
 - F: 5

- I can explain the difference between nano, TF, and c-Si PV
 - Counts
 - T: 25
 - F: 5
Who’s sitting next to you? (bkgrnd survey results)
Who’s sitting next to you? (bkgnrd survey results)

My graduation status is...

- UnderG: 3
- G1: 8
- G2: 5
- G3: 2
- G4: 4
- G5: 3
Who’s sitting next to you? (bkgned survey results)

Aside from Lecture, I am also Interested In...

- Hands-on lab-based solar cell projects.
- Field trips to solar installations, companies.
- Guest lectures from PV experts in industry and academia.
Who’s sitting next to you? (bkngd survey results)

For a class project, I am most excited about...

- Working closely with a PV company, to help address a problem or identify an opportunity.
- Preparing a technology prospectus on an emerging PV technology.
- A self-designed project.
Units 101

• Basic Units Check: Assign Appropriate Units

• Energy
 • Amps (A)
• Power
 • Kilowatt Hours (kWh)
• Current
 • Kilowatts (kW)
• Voltage
 • Volts (V)
Units 101

• Basic Units Check: Assign Appropriate Units

• Energy
 • Kilowatt Hours (kWh)
 • Kilowatts (kW)

• Power
 • Kilowatt Hours (kWh)
 • Kilowatts (kW)

• Current
 • Kilowatts (kW)
 • Volts (V)

• Voltage
 • Volts (V)
 • Kilowatts (kW)
Unit Check

• Current, voltage, power, and energy.

 – Example: Hairdrier vs. Fridge.
 • Which is more likely to blow a fuse?
 • Which is more likely to blow your budget?
Unit Check

• Current, voltage, power, and energy.

 – Example: Hairdrier vs. Fridge.
 • Which is more likely to blow a fuse?
 • Which is more likely to blow your budget?

0.044 kW_{ave} 1.88 kW_{peak}

Image from the Open Clip Art Library, http://openclipart.org/

Image from flickr user Niels van Eck.
Unit Check

• Current, voltage, power, and energy.

– Example: Hairdrier vs. Fridge.
 • Which is more likely to blow a fuse?
 • Which is more likely to blow your budget?

\[0.044 \text{ kW}_{\text{ave}} \approx 1 \text{ kWh/day}\]

\[1.88 \text{ kW}_{\text{peak}} \approx 0.5 \text{ kWh/day}\]
What is the peak power produced by each?

What is the average power produced by each?
Why “Peak Power”?

• Why is “peak power” \((kW_p)\) useful?
Why “Peak Power”?

• Why is “peak power” (kW$_p$) useful?
 – *Because it is a location (resource) neutral rating of output power. A PV module will have the same kW$_p$ in Arizona or Alaska, although the kW$_{ave}$ will be very different! Useful spec when designing systems.*
Solar Resource Questions

• For a fixed (non-tracking) PV system somewhere in the U.S., what tilt angle should the modules be facing, to maximize yearly electricity output?
• Does your answer hold true, if above the Arctic Circle?
Influence of Weather on Irradiance

• Question: Why do many solar panels in the San Francisco Bay Area point south or south-west, instead of south-east?

Estimation of Land Area

• Let’s spec out a solar system...
Buonassisi Residence

Boston latitude: 42° 19’ North
Electricity Consumption of Buonassisi Residence

Pre-PV

Post-PV
Questions...

• What is the average monthly electricity (pre-PV) use of the Buonassisi household?
• Assuming a certain insolation for the Boston area, calculate the suggested PV system size to match all electricity use.
• Does this fit on the roof?
Natural Gas Consumption of Buonassisi Residence

What uses more energy – electricity or natural gas?
What are the implications for energy neutrality?

1 therm of natural gas = 29.3 kWh
Predicted vs. Actual System Outputs

Predicted: PVWatts:
http://rredc.nrel.gov/solar/codes_algs/PVWATTS/version1/

1 therm of natural gas = 29.3 kWh
Actual System Outputs

Actual system outputs may be significantly lower, due to suboptimal system performance, design, installation, shading losses, etc.:

See, e.g., http://soltrex.masstech.org/systems.cfm

Image removed due to copyright restrictions. Please see any site listed at http://soltrex.masstech.org/systems.cfm
Difference between tracking concentrator and non-tracking flat panel?
Map removed due to copyright restrictions. Please see [PV Solar Radiation (Flat Plate, Facing South, Latitude Tilt), Annual], NREL.
Map removed due to copyright restrictions. Please see [Direct Normal Solar Radiation (Two-Axis Tracking Concentrator), Annual]. NREL.
Map removed due to copyright restrictions. Please see [Direct Normal Solar Radiation (Two-Axis Tracking Concentrator), Annual]. NREL.
What other types of PV systems are there?
SOLAR SPECTRUM
Solar Spectra

- What are the standards?
- How is the solar spectrum simulated in the lab?
Where to find it?

http://rredc.nrel.gov/solar/spectra/

NREL's Electric Systems Center provides the following solar spectra in HTML, text and/or MS Excel® spreadsheet format:

- **Air Mass Zero: Extraterrestrial Solar Irradiance Spectra**
 - Standard Spectra
 - 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00
 - 1985 Wehrli Standard Solar Irradiance Spectrum
 - Nonstandard Spectra

- **Air Mass 1.5: ASTM E-891 and ASTM E-892, both combined into ASTM G-159**

 (Note: Previous versions of reference spectra, ASTM E-891, E-892, and G-159 have been superceded by ASTM G-173.)

SMARTS: Simple Model of the Radiative Transfer of Sunshine

SMARTS2 version 2.9.2 is the model used to generate the American Society for Testing and Materials (ASTM) terrestrial reference spectra for ASTM Standard G-173-03 "Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Tilted Surface".
NREL's Electric Systems Center provides the following solar spectra in HTML, text and/or MS Excel® spreadsheet format:

- **Air Mass Zero: Extraterrestrial Solar Irradiance Spectra**
 - Standard Spectra
 - 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00
 - 1985 Wehrli Standard Solar Irradiance Spectrum
 - Nonstandard Spectra

- **Air Mass 1.5: ASTM E-891 and ASTM E-892, both combined into ASTM G-159**
 (Note: Previous versions of reference spectra, ASTM E-891, E-892, and G-159 have been superceded by ASTM G-173.)

SMARTS: Simple Model of the Radiative Transfer of Sunshine

SMARTS2 version 2.9.2 is the model used to generate the American Society for Testing and Materials (ASTM) terrestrial reference spectra for ASTM Standard G-173-03 "Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Tilted Surface".
NREL's Electric Systems Center provides the following solar spectra in HTML, text and/or MS Excel® spreadsheet format:

- Air Mass Zero: Extraterrestrial Solar Irradiance Spectra
 - Standard Spectra
 - 2002 GT: Standard Extraterrestrial Spectrum Reference E-490-00

- Air Mass 1.5: ASTM E-891 and ASTM E-892, both combined into ASTM G-159
 (Note: Previous versions of reference spectra, ASTM E-891, E-892, and G-159 have been superceded by ASTM G-173.)

SMARTS: Simple Model of the Radiant Sunlight

SMARTS2 version 2.9.2 is the model used to generate the American Society for Testing and Materials (ASTM) terrestrial reference spectra for ASTM Standard G-173-03 "Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Tilted Surface".
Where to find it?

http://rredc.nrel.gov/solar/spectra/

NREL’s Electric Systems Center provides the following solar spectra in HTML, text and/or MS Excel® spreadsheet format:

- **Air Mass Zero: Extraterrestrial Solar Irradiance Spectra**
 - Standard Spectra
 - 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00
 - 1985 Wehrli Standard Solar Irradiance Spectrum
 - Nonstandard Spectra

- **Air Mass 1.5: ASTM E-891 and ASTM E-892, both combined into ASTM G-159**
 (Note: Previous versions of reference spectra, ASTM E-891, E-892, and G-159 have been superceded by ASTM G-173.)

SMARTS: Simple Model of the Radiative Transfer of Sunshine

SMARTS2 version 2.9.2 is the model used to generate the American Society for Testing and Materials (ASTM) terrestrial reference spectra for ASTM Standard G-173-03 "Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Tilted Surface".
The receiving surface is defined in the standards as an inclined plane at 37° tilt toward the equator, facing the sun (i.e., the surface normal points to the sun, at an elevation of 41.81° above the horizon)

The specified atmospheric conditions are:

a) the 1976 U.S. Standard Atmosphere with temperature, pressure, aerosol density (rural aerosol loading), air density, molecular species density specified in 33 layers
b) an absolute air mass of 1.5 (solar zenith angle 48.19°)
c) Angstrom turbidity (base e) at 500 nm of 0.084
d) total column water vapor equivalent of 1.42 cm
e) total column ozone equivalent of 0.34 cm
f) surface spectral albedo (reflectivity) of Light Soil as documented in the Jet Propulsion Laboratory ASTER Spectral Reflectance Database (http://speclib.jpl.nasa.gov)

Experts: Keith Emery, Daryl Myers.

Source: http://rredc.nrel.gov/solar/spectra/am1.5/
Attempts to Simulate Solar Spectra

Non-ideal matches: QTH, Hg, M-Halide...
Attempts to Simulate Solar Spectra

Better matches: Xe lamps with air mass filters
Warning: Different PV materials are sensitive to different parts of the solar spectrum. You may be over/under estimating your performance, if the solar simulator calibration cell is made of a different material to the cells you are testing.
Solar Simulator Qualities

Uniformity

Spectral Fidelity

Temporal Stability

Solar Simulator Standards

Standard IEC 904-9: Requirements for solar simulators for crystalline Si single-junction devices

<table>
<thead>
<tr>
<th></th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral match (ratio of the actual percentage of total irradiance to the required percentage specified for each wavelength range)</td>
<td>0.75-1.25</td>
<td>0.6-1.4</td>
<td>0.4-2.0</td>
</tr>
<tr>
<td>Non-uniformity of irradiance</td>
<td>< ±2%</td>
<td>< ±5%</td>
<td>< ±10%</td>
</tr>
<tr>
<td>Temporal Instability</td>
<td>< ±2%</td>
<td>< ±5%</td>
<td>< ±10%</td>
</tr>
</tbody>
</table>

For more info on PV testing standards, see: http://photovoltaics.sandia.gov/docs/pvstndrds.htm
Change is the Only Constant...

Evolution of the Solar Constant

From data included in C.A. Gueymard / Advances in Space Research 37 (2006) 323–340
Change is the Only Constant...

Text removed due to copyright restrictions. Please see http://www.livescience.com/environment/060119_dark_china.html