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General Announcements

e Concept Quiz (piece of cakel).
e Schedule: Quiz #1 in two weeks.



Outline

e Review: Carrier motion
e Excitons
e Drift and diffusion currents

 Charge separation mechanisms: pn-junctions
and p-i-n junctions



Review: Carrier Motion

Under equilibrium conditions in a homogeneous material: Individual
carriers constantly experience Brownian motion, but the net charge flow is
zero.

To achieve net charge flow (current), carriers must move via diffusion or

drift.




Review:
Diffusion
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Review: Drift Current

From PVCDROM

Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.



Charge Separation: Microscopic Level

Exciton: Bound electron-hole pair

Band Diagram

Cartoon Diagram A
Image removed due to copyright restrictions. Please see 1'
http://webpages.charter.net/dmarin/coat/lmages/0650wall4.ci.gif |
> : Coulombic
= | attraction
= |
L
|
|
A
s
¢ 3
k

Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.
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Charge Separation: Microscopic Level

Exciton: Bound electron-hole pair
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Charge Separation: Microscopic Level

Exciton: Bound electron-hole pair
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Mott-Wannier exciton

- Dielectric screening potential is large.
- Exciton radius is large.

- Exciton binding energy is small, typically a few meV (detectable only at low T).
(27 meV for CdS, 15 meV for CdSe, 5.1 meV for InP, 4.9 meV for GaAs)
- Typical for bulk semiconductor materials.
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Frenkel exciton

- Dielectric screening potential is small.

- Exciton radius is small.
- Exciton binding energy is large, typically a few eV (detectable at RT).

(~400 meV for CNT)
- Typical for molecules.
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Courtesy Greg Scholes and Garry Rumbles. Used with permission.



Size effects

Singlet—triplet splitting (V)
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Size effects
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More considerations

The presence of a strong local electric field can help “split” excitons.
- either local (e.g., metal nanodots on a sc nanorod) or macroscopic (contacts).

Exciton-phonon interactions (“Davydov” excitons / polarons / solitons)
= can be a factor in ringed molecules.



Once excitons are split, then what happens?

It all depends on the device architecture...



Let’s consider a simple pn-junction device

Also called a “minority carrier device.”



Defining the “Fermi Level”

Fermi-Dirac Probability

Distribution Function at T > 0. Density of States
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Defining the “Fermi Level”

Fermi-Dirac Probability
Distribution Function at T > 0. Density of States
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Fermi Level in p-type Material

Fermi-Dirac Probability

Distribution Function at T > 0. Density of States
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Fermi Level in n-type Material

Fermi-Dirac Probability
Distribution Function at T > 0. Density of States
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@electrons @ holes ionise

@ electrons @ holes ionised
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Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.
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Let’s imagine the n- and p-type materials in contact,
but with an imaginary barrier in between them.



How a pn-junction comes into being

Irmadinarg houndary

With the P and M type materials
separated the carriers diffuse
around randarmly.

Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.



When that imaginary boundary is removed,
electrons and holes diffuse into the other side.



How a pn-junction comes into being

depletion region

electric field

Courtesy Christiana Honsberg and Stuart Bowden. Used with permission.

Eventually, the accumulation of like charges [(h* + P*) or (e + B")] balances
out the diffusion, and steady state condition is reached.



How a pn-junction comes into being

Net Charge
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The net charge can be approximated as shown above.



How a pn-junctlon comes into being

Electric Field
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Nicer figure at
Wikipedia!

Image removed due to copyright restrictions. Please see
http://en.wikipedia.org/wiki/File:Pn-junction-equilibrium-graphs.png

http://en.wikipedia.org/wiki/P-n_junction



Let’s hop to PVCDROM for some interactive demos...

1)Forward bias of a pn-junction

2)Reverse bias of a pn-junction
3)Open circuit conditions
4)Closed circuit conditions

PVCDROM Chapter 3



Now, for the p-i-n structure (a.k.a “majority carrier
device”)



Basics of Organic PVs

Absorption

Exciton diffusion

Charge transfer at heterojunction
Transport to electrodes

Courtesy of llan Gur. Used with permission.
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Organics exhibit extremely high
absorptivity (extinction lengths ~100
nm vs 1-100 um in inorganics!

but... absorption limited to
- narrow band
- generally high energy




Basics of Organic PVs

Absorption

Exciton diffusion

Charge transfer at heterojunction
Transport to electrodes
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Bound excitons undergo spontaneous
recombination:

-Lifetimes dictate diffusion lengths of
approximately 10 nm
- High binding energies: >0.2 eV




Basics of Organic PVs

Absorption

Exciton diffusion

Charge transfer at heterojunction
Transport to electrodes
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- Charge transfer at interface due to
energy minimization:
- Edon-Eacc > Ebinding

- Only excitons created within a
diffusion length make it to interface
for dissociation




Basics of Organic PVs

Absorption

Exciton diffusion

Charge transfer at heterojunction
Transport to electrodes

Courtesy of llan Gur. Used with permission.
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Built-in field results from the disparate
work functions of the device
electrodes

Field overcomes exciton binding
energy, and allows for transport and
collection of charges

Organics exhibit low mobilities



Distributed Heterojunctions

hole transport

electron
transport

Interpenetrating network PV cells
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Figure by MIT OpenCourseWare.
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A more accurate model

 diffusion current away from the interface

» balancing drift current

» additional electric field

 additional contribution to V.
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Key Concepts

e First excitons, then free charge.
e Currents: Both drift and diffusion.

e Charge separation mechanisms: pn-junctions
and p-i-n junctions.

e Schedule: Quiz #1 in two weeks.



Next Class

e Solve the continuity equations for a pn-
junction solar cell!



	Charge Separation: How Voltage and Current Are Formed
	General Announcements

