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Abstract

Social scientists are often interested in testing multiple causal mechanisms through which a treat-

ment affects outcomes. A predominant approach has been to use linear structural equation models

and examine the statistical significance of corresponding path coefficients. However, this approach

implicitly assumes that the multiple mechanisms are causally independent of one another. In this

paper, we consider a set of alternative assumptions that are sufficient to identify the average causal

mediation effects when multiple, causally related mediators exist. We develop a new sensitivity

analysis for examining the robustness of empirical findings to the potential violation of a key iden-

tification assumption. We apply the proposed methods to three political psychology experiments

which examine alternative causal pathways between media framing and public opinion. Our analysis

reveals that the validity of original conclusions is highly reliant on the assumed independence of

alternative causal mechanisms, highlighting the importance of proposed sensitivity analysis. All of

the proposed methods can be implemented via an open source R package, mediation.

Key Words: causal mediation analysis, experimental designs, linear structural equation modeling,
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1 Introduction

The identification of causal mechanisms is an important goal of empirical social science research. Re-

searchers are often not only interested in the question of whether a particular causal variable of interest

affects outcomes, but they also wish to understand the mechanisms through which such causal effects

arise. Causal mediation analysis represents a formal statistical framework that can be used to study

causal mechanisms. For example, Imai et al. (2011) identify a set of commonly invoked assumptions

under which such an analysis can be justified, develop general estimation algorithms, and propose sen-

sitivity analysis and new research design strategies. Indeed, there exists a fast growing methodological

literature about how to study causal mechanisms through the use of statistical methods (see Robins

and Greenland (1992); Pearl (2001); Petersen et al. (2006); VanderWeele (2009); Imai et al. (2010c);

Glynn (2012) among many others). With such methodological advances, researchers can now base their

mediation analysis on a rigorous statistical foundation.

Nevertheless, an important deficiency of the existing methodologies is their limited ability to handle

multiple causal mechanisms of interest (see e.g., Bullock et al., 2010; Imai et al., 2011). Given this cur-

rent state of the literature, the prevailing practice among applied researchers is to assume, often without

explicitly stating it, that no causal relationship exists among these alternative mechanisms. In many

applications, however, such an assumption is not credible because competing theoretical explanations

are often closely tied to each other.

In this paper, we consider the identification and sensitivity analysis of multiple causal mechanisms

by extending causal mediation analysis to the cases involving several mediators that are causally related

to each other. Figure 1 presents two causal diagrams with multiple causal mechanisms. They represent

the specific scenarios studied in this paper where the treatment variable T could affect the outcome Y

in three ways: through the main mediator of interest M (red arrows), through the set of alternative

mediators W , and directly. The critical difference between Figures 1(a) and 1(b) is that in the former M

and W are assumed to have no causal relationship with one another while in the latter W may possibly

affect M (but not the other way around). We first show that the standard mediation analysis assumes

the causal independence between multiple mediators as in Figure 1(a), regardless of whether alternative

mediators W are measured. We then develop a set of statistical methods to relax this assumption and

address the situation in Figure 1(b).1

In Section 2, we introduce three experimental studies from the political psychology literature on

1The other important situation involving multiple mechanisms is cyclic causation, i.e., both W and M cause each
other. Identifying whether the causal relationship is cyclic or acyclic is difficult without some help of prior theoretical or
empirical information, and care must be taken so that the assumed causal ordering is plausible. Here, we focus on the
case of Figure 1(b), in part motivated by the primary concern in the framing literature (see the discussion in Section 4.1).
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(a) (b)

Figure 1: Causal Diagrams with Multiple Causal Mechanisms. In Panel (a), the treatment variable
T can affect the outcome variable Y either through the mediator of interest M (red arrows), through
alternative mediators W , or directly (solid bottom arrow). In addition, the causal relationship between
M and W is assumed to be non-existent. Panel (b) represents an alternative scenario where W can
affect Y either directly or through M , thereby allowing for the potential causal relationship between M
and W . The quantity of interest for the proposed methods is the average causal mediation effect with
respect to M , which is represented by the red arrows connecting T and Y through M in both panels.

framing effects, which we use as illustrative examples throughout this paper. All of these studies

investigate how issue frames affect opinions and behavior through multiple causal pathways, such as

changes in perceived issue importance or belief content. To identify these multiple mechanisms, they

rely on a traditional path-analytic method which, as we show, implicitly assumes the absence of causal

relationship between the corresponding mediators. This assumption is problematic from a theoretical

point of view because, for example, framing may also alter the perceived importance of the issue by

changing the factual content of beliefs (Miller, 2007).

In Section 3, we use a formal statistical framework of causal inference and show that the standard

causal mediation analysis, including the ones conducted in these framing studies, assumes the causal

independence between multiple causal mechanisms. Under this independence assumption, there is no

need to measure alternative mediators W to identify the main mediation effect of interest. After review-

ing the assumptions required for the identification of independent multiple mechanisms, we reanalyze

the data from the framing experiments under these assumptions. The results suggest that the empirical

conclusions in the original studies are largely valid so long as these mechanisms are independent of each

other, although statistical significance appears to be somewhat lessened for some of the studies.

In Section 5, we develop new statistical methods that allow for the existence of multiple causal

mechanisms that are causally related to each other. Our methods are formulated within a framework

of familiar linear regression models, and yet the models are much more flexible than standard regres-

sion models because every coefficient is allowed to vary across individual observations in an arbitrary

fashion: the model can be considered as semiparametric, making no distributional assumption about

varying coefficients. Thus, the proposed model encompasses a large class of realistic statistical models

that can be applied to various social science research projects while maintaining the simplicity and

interpretability of the linear model.

Under this framework of multiple mechanisms, we first consider the identification assumptions origi-
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nally introduced by Robins (2003) that allow for the presence of competing mechanisms. Robins assumes

that the treatment assignment is exogenous given a set of observed pre-treatment covariates and that

the mediator of interest is also exogenous conditional on observed pre-treatment and post-treatment

covariates. This setup allows for the existence of alternative mediators that confound the relationship

between the main mediator of interest and the outcome, provided that they are all observed. Under

this circumstance, Robins shows that the assumption of no interaction effect between the treatment and

the mediator (i.e., the causal effect of the mediator on the outcome does not depend on the treatment

status) is sufficient for identifying the causal mechanism of interest.

As previously noted by many researchers including Robins himself (e.g., Petersen et al., 2006; Imai

et al., 2013), however, the assumption of no treatment-mediator interaction is often too strong in em-

pirical applications. For example, in framing experiments, the effect of the perceived issue importance

on opinions may well depend on which frame was initially given. Therefore, we relax this key identi-

fication assumption by developing a new sensitivity analysis that assesses the robustness of empirical

results to the potential violation of this key identification assumption. Our sensitivity analysis also

directly addresses “the product and difference fallacies” pointed out by Glynn (2012) because his model

is a special case of our model. We illustrate the proposed methods by applying them to the framing

experiments from the political psychology literature. Our analysis reveals that the validity of original

findings is highly reliant on the assumed independence of alternative causal mechanisms, implying the

essential role of identification and sensitivity analyses in the study of multiple mediators.

Causal mediation analysis like many other tools of causal inference relies on untestable assumptions.

Thus, it is essential for applied researchers to examine the robustness of empirical findings to the

violation of key identification assumptions. While there exist sensitivity analysis tools in the literature,

many of them deal with pre-treatment confounders and essentially assume the absence of causally related

alternative mediators (e.g., Hafeman, 2008; Imai et al., 2010b,c; VanderWeele, 2010). In contrast to

these previous studies, the sensitivity analysis proposed in this paper addresses the possible existence

of post-treatment confounders. Sensitivity analyses that can handle post-treatment confounders are

just beginning to appear in the methodological literature on causal mediation (e.g., Albert and Nelson,

2011; Tchetgen Tchetgen and Shpitser, 2011).

Nevertheless, one limitation of the proposed approach is that, even though it addresses the poten-

tial violation of the no treatment-mediator interaction assumption, it still hinges on another untestable

assumption of no unmeasured confounder for the mediator. To address this issue, in Section 7, we

consider the extensions of the proposed method to the new experimental designs recently developed by

Imai et al. (2013). In particular, we consider the “parallel design” where the sample is randomly divided
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into two groups and separate randomized experiments are conducted in parallel for those groups.2 We

also consider the “parallel encouragement design”, a natural generalization of the parallel design for

the situation where the direct manipulation of the mediator is difficult. While the randomization of

the treatment and mediator is not sufficient for the identification of the ACME (Imai et al., 2013),

both experimental designs relax the unconfoundedness assumption with respect to the treatment and

mediator. This eliminates the need to measure alternative mediators and allows us to develop a sen-

sitivity analysis for the key identification assumption. While these experimental designs are new and

hence have not yet been used by many applied researchers, we hope that their future use can improve

the credibility of causal mediation analysis. In addition, these new experimental designs can serve as

templates for designing observational studies (see Imai et al., 2011, for some examples).

Finally, Section 8 offers concluding remarks and some suggestions for applied researchers who wish

to study multiple causal mechanisms. All of our proposed methods can be implemented through the

open-source software program mediation (Imai et al., 2010a; ?), which is freely available at the Com-

prehensive R Archive Network (CRAN http://cran.r-project.org/package=mediation).

2 Framing Experiments in Political Psychology

In this section, we introduce three empirical studies of framing effects, which serve as examples through-

out the paper. In political psychology, scholars are interested in whether and how the framing of political

issues in mass media and elite communications affects citizens’ political opinion and behavior. Psycho-

logical theory suggests that issue framing, or a presenter’s deliberate emphasis on certain aspects of an

issue, may affect how individuals perceive the issue and change their attitudes and behavior (Tversky

and Kahneman, 1981).

If citizens are prone to such cognitive biases when interpreting media contents, political elites may be

able to influence, or even manipulate, the public opinion by carefully choosing the languages they use in

their communication through mass media (Zaller, 1992). While early studies focused on identifying the

issue areas in which such framing effects manifest (e.g. Kinder and Sanders, 1990; Iyengar, 1991; Nelson

and Kinder, 1996), recent studies address the question of the mechanisms through which framing affects

public opinion and political behavior (e.g. Nelson et al., 1997; Callaghan and Schnell, 2005; Chong and

Druckman, 2007).

Below, we briefly describe three experimental studies that are aimed at the identification of such

mechanisms. Aside from their prominence in the literature, these studies all explicitly examine more

2In one experiment, researchers randomize the treatment and observe the values of the mediator and the outcome.
In the other experiment, both the treatment and mediating variables are randomized and subsequently the values of the
outcome variable are recorded.
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than one causal mechanism by measuring multiple mediators corresponding to those competing possible

pathways. In each of these studies, the authors implicitly assume that the multiple causal pathways

under study are independent of one another. As we discuss below, however, this assumption is theo-

retically implausible and statistically problematic, for its violation can lead to a substantial bias in the

estimated importance of causal mechanisms.

2.1 Druckman and Nelson (2003)

One of the most important debates in the framing effects literature concerns whether issue framing

affects citizens’ opinions by shifting the perceived importance of the issue (hereafter the “importance”

mechanism) or changing the content of their belief about the issue (hereafter the “content” mechanism).

As part of their experimental study on the interaction between issue framing and interpersonal conver-

sations, Druckman and Nelson (2003) examine this question using a path-analytic approach. First, they

randomly assign each of their 261 study participants to one of the two conditions. In one condition,

the subject is asked to read an article on a proposed campaign finance reform which emphasizes its

possible violation of free speech. In the other condition, the assigned article emphasizes the potential

of campaign finance reform to limit special interests. Then, after additionally randomizing whether

the participants will engage in discussion, the authors measured the two mediators; the participants’

perceived importance of free speech and special interests as well as their belief about the impact of

the proposed reform on these items. Finally, the authors measured the outcome variable, the overall

level of support for the proposed campaign finance reform. The substantive question of interest for the

original authors is whether the effect of the frames on the support levels are mediated by the importance

mechanism or the content mechanism.

2.2 Slothuus (2008)

Following up on Druckman and Nelson (2003), Slothuus (2008) conducted a randomized experiment

to analyze the above two mechanisms of framing effects. Using a sample of 408 Danish students,

the author examined how two versions of a newspaper article on a social welfare reform bill – one

emphasizing the reform’s supposed positive effect on job creation and the other focusing on its negative

impact on low-income population – affect differently the participants’ opinion about the reform. After

randomly assigning participants to either the “job frame” or the “poor frame,” the author measured

the two mediators, i.e., the importance and content of issue-related considerations, by asking a series

of five-point scale questions. Finally, the outcome variable was measured by asking the participants

whether and to what extent they agree or disagree with the proposed welfare reform. Similar to the

previous study, the key substantive question of interest is whether the framing effects transmit through
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the importance mechanism or the content mechanism.

2.3 Brader, Valentino and Suhay (2008)

The third study we analyze also investigates the causal mechanisms underlying framing effects but

focuses on the role of emotions as opposed to more conscious beliefs about the issue. Brader et al.

(2008) report the results of their randomized experiment on the framing of immigration policy. As part

of a nationally representative survey of 354 white non-Latino adults, they randomly assigned different

versions of a mock New York Times article about immigration by varying the origin of the featured

immigrant as well as the tone of the story. The article featured either a European or Latino immigrant

and emphasized either the positive or negative consequences of increased immigration. After the treat-

ment, the authors measured the participants’ belief about the likely negative impact of immigration

(hereafter the “perceived harm” mechanism) as well as their emotions by asking how they feel about

increased immigration (hereafter the “anxiety” mechanism). Finally, the authors recorded the partic-

ipants’ opinions and behavioral reactions to increase in immigration. The main goal is to identify the

mechanism through which the framing effects of the news stories operated.

3 Identification of Independent Multiple Mechanisms

In this section, we use the formal statistical framework of causal inference and show that the standard

causal mediation analysis commonly used in empirical studies (including our running examples intro-

duced in the previous section) implicitly assumes the independence of competing causal mechanisms.

We then reanalyze the framing experiments described above under this independence assumption.

3.1 Causal Mediation Analysis with a Single Mediator: A Review

We begin by briefly reviewing the standard causal mediation analysis with a single mediator (see Imai

et al., 2011, for a more detailed explanation). Suppose that we have a simple random sample of size

n from a population of interest P. Let Ti be a binary treatment variable, which equals 1 if unit i

receives the treatment and is equal to 0 otherwise. We use Mi and Yi to denote the observed value

of the mediator and the outcome of interest for unit i, respectively. Under the formal statistical

framework of causal inference (Neyman, 1923; Rubin, 1974; Holland, 1986), we write Mi(t) to represent

the potential mediator value under the treatment status t = 0, 1 where the observed value Mi equals the

potential value of the mediator under the observed treatment status Mi(Ti). Similarly, we use Yi(t,m)

to denote the potential outcome under the treatment status t and the mediator value m where the

observed outcome Yi equals Yi(Ti,Mi(Ti)). We assume throughout the rest of the paper that there is
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no measurement error in the observed values of the variables.3

In the literature of causal mediation analysis initiated by Robins and Greenland (1992) and Pearl

(2001), the causal mediation effect (or indirect effect) for unit i given the treatment status t is defined

as,

δi(t) ≡ Yi(t,Mi(1))− Yi(t,Mi(0)), (1)

which represents the causal effect of the treatment on the outcome that can be attributed to the

treatment-induced change in the mediator. This quantity represents the change in outcome under the

scenario where the treatment variable is held constant at t and the mediator is changed from Mi(0) to

Mi(1). Similarly, the unit-level direct effect of the treatment is defined as,

ζi(t) ≡ Yi(1,Mi(t))− Yi(0,Mi(t)), (2)

which denotes the causal effect of the treatment on the outcome that can be attributed to the causal

mechanisms other than the one represented by the mediator. Here, the mediator is held constant at

Mi(t) and the treatment variable is changed from 0 to 1.

Finally, the sum of these direct and indirect effects equals the following total effect, which formally

decomposes the total effect into the direct and indirect effects,

τi ≡ Yi(1,Mi(1))− Yi(0,Mi(0)) = δi(t) + ζi(1− t). (3)

If we assume that the indirect and direct effects do not depend on the treatment status, i.e.,

δi(t) = δi and ζi(t) = ζi, (4)

for each t, then we have simpler decomposition τi = δi + ζi. Given these unit-level causal quantities of

interest, we can define the population average effect for each quantity,

δ̄(t) = E(δi(t)), ζ̄ = E(ζi(t)), and τ̄ = E(τi). (5)

The goal of causal mediation analysis is, therefore, to decompose the total treatment effect into the

3Little is known about the consequences of measurement error in causal mediation analysis. The simplest case is
classical measurement error in one (and only one) of the variables, which will lead to an attenuation bias in the estimate
of the regression coefficient corresponding to the mismeasured variable. It is likely, however, that more complex patterns
of measurement error often exist in practice. Analysis of such cases is beyond the scope of the current paper.
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direct and indirect effects where the former corresponds to the causal mechanism of interest and the

latter represents all other causal mechanisms.

The standard mediation analysis most commonly used across various social science disciplines entails

the process of fitting the following two linear regressions separately,

Mi = α2 + β2Ti + ξ>2 Xi + εi2, (6)

Yi = α3 + β3Ti + γMi + ξ>3 Xi + εi3, (7)

where Xi represents a vector of observed pre-treatment confounders. After fitting these two models,

researchers compute the product of two coefficients, i.e., β̂2γ̂, and interpret it as an estimate of the

average causal mediation effect (ACME) δ̄(t) whereas the estimated coefficient β̂3 is interpreted as an

estimate of the average direct effect (ADE) ζ̄(t). Alternatively, researchers can fit the regression model

given in equation (7) as well as the following regression model,

Yi = α1 + β1Ti + ξ>1 Xi + εi1 (8)

and compute the difference of the two coefficients, i.e., β̂1−β̂3, to obtain the estimated average mediation

effect. Here, β̂1 is taken as an estimate of the average total effect.

Imai et al. (2010c) prove that this standard mediation analysis can be justified under the following

sequential ignorability assumption,

{Yi(t,m),Mi(t
′)} ⊥⊥ Ti | Xi = x (9)

Yi(t
′,m) ⊥⊥ Mi | Ti = t,Xi = x (10)

for any value of x, t, t′,m and every unit i. In fact, it has been shown that under this assumption the

ACMEs are nonparametrically identified, i.e., without any functional form or distributional assump-

tions. Imai et al. (2010b) develop general algorithms to compute an estimate of the ACME and its

uncertainty given any statistical models specified by applied researchers (linear, nonlinear, parametric,

nonparametric models, etc.).

Is the sequential ignorability assumption plausible? While equation (9) is guaranteed to hold in a

standard randomized experiment where the treatment is randomly administered, equation (10) is often

difficult to justify in many practical situations. The reason is twofold. First, equation (10) implies

that there must not be any unobserved pre-treatment confounding between the observed mediator

and outcome once the treatment and observed pre-treatment covariates are conditioned on. Second,

8



equation (10) also requires that there be no post-treatment confounding between the mediator and

outcome whatsoever, observed or unobserved. If equation (10) does not hold for either (or both)

of these two reasons, the sequential ignorability assumption is violated and the ACME cannot be

nonparametrically identified.

To address the possibility that equation (10) may not hold, Imai et al. (2010c) develop a sensitivity

analysis under the framework of the structural linear equations model. Their method relies on the fact

that under equations (6) and (7), one can summarize the degree of the violation of equation (10) by the

correlation coefficient between the two error terms, i.e., ρ ≡ Corr(εi2, εi3). They show that the ACME

can be identified given a value of ρ and also that equation (10) implies ρ = 0. Thus, one can analyze

the robustness of the structural equations-based estimate of the ACME to the violation of sequential

ignorability by examining how the value of the ACME varies as a function of ρ.

Moreover, Imai et al. (2010c) propose an alternative formulation of the sensitivity analysis that may

be easier to interpret. This version is based on the idea that the error terms εi2 and εi3 can each be

decomposed into a common unobserved pre-treatment confounder plus an independent random distur-

bance, i.e., εij = λjUi + ε′ij for j = 2, 3. Then, the degree of the sequential ignorability violation can

be summarized by the importance of this common term (but with different coefficients) in explaining

variations in the mediator and outcome, which is represented as the (partial) coefficients of determi-

nation, i.e., R̃2
M ≡ {V(εi2) − V(ε′i2)}/V(Mi) and R̃2

Y ≡ {V(εi3) − V(ε′i3)}/V(Yi). They show that the

ACME can also be expressed as a function of R̃2
M and R̃2

Y , making it possible to conduct the equivalent

sensitivity analysis with respect to these alternative parameters.

3.2 Assumed Independence of Multiple Causal Mechanisms

While these identification results and sensitivity analysis provide a useful framework for analyzing a

single causal mechanism, it leaves an important situation unaddressed. Recall that equation (10) can

fail because of two reasons: unobserved pre-treatment confounding or any post-treatment confounding.

This means that even if the mediator can be assumed to be exogenous after conditioning on a vector

of observed post-treatment confounders (denoted by Wi) as well as Ti and Xi (i.e., no unobserved

confounding, but observed post-treatment confounding), sequential ignorability is violated and the

standard causal mediation analysis cannot identify the average mediation effects. In addition, while the

above sensitivity analysis addresses the problem of potential unobserved pre-treatment confounding, it

cannot cope with the possibility of post-treatment confounding such as Wi. Therefore, this framework

assumes the absence of any form of post-treatment confounding.

Now, consider the problem of multiple mechanisms. Since alternative mediators (Wi) are by defini-
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tion causally affected by the treatment and influence the outcome, the assumption of no post-treatment

confounding is equivalent to assuming that these alternative mediators do not causally influence the

mediator of interest. Going back to Figure 1, this means that the standard analysis based on the

sequential ignorability assumption implicitly presupposes a situation like Figure 1(a), where the causal

relationship between the mediator of interest Mi and alternative mediators Wi is absent. In contrast,

Figure 1(b) corresponds to a case where alternative mediators Wi causally affect the mediator of interest

Mi. It is easy to see that the latter scenario violates the sequential ignorability assumption because

Wi is a set of post-treatment variables that confound the relationship between Mi and Yi. Thus, the

standard causal mediation analysis assumes the independence between the causal mechanism of interest

and other alternative mechanisms. As shown below, another difficulty resulting from this limitation of

the standard causal mediation analysis is that this independence assumption is not directly testable

from the observed data.

We now formalize the above argument. To make the existence of alternative mediators explicit, we

introduce potential values of those other mediators Wi and denote them as Wi(t) for t = 0, 1, implying

that Wi is a post-treatment variable and hence possibly affected by the treatment. If there is no causal

relationship between Mi and Wi as in Figure 1(a), the potential value of Mi is not a function of Wi

and thus can be written as before, i.e., Mi(t). The potential outcomes, on the other hand, depend

on both Mi and Wi and are denoted by Yi(t,m,w) for any t,m,w. The observed outcome Yi equals

Yi(Ti,Mi(Ti),Wi(Ti)). We emphasize that Wi could be either a single alternative mediator or a vector

of multiple alternative mediators, and that those mediators may or may not be causally related to

each other. Our framework does not require that researchers specify causal relationships among these

alternative mechanisms.

Under this setup, we can define the two types of causal mediation effects, one with respect to Mi

and the other with respect to Wi,

δMi (t) ≡ Yi(t,Mi(1),Wi(t))− Yi(t,Mi(0),Wi(t)), (11)

δWi (t) ≡ Yi(t,Mi(t),Wi(1))− Yi(t,Mi(t),Wi(0)), (12)

for t = 0, 1 where δMi (t) (δWi (t)) represents the unit-level indirect effect of the treatment on the outcome

through the mediator Mi (Wi) while holding the treatment at t and the other mediator at its value

that would be realized under the same treatment status, i.e., Wi(t) (Mi(t)). For example, in framing

experiments such as those by Druckman and Nelson (2003) and Slothuus (2008), δMi (t) represents the

effect of issue frames on opinions that goes through changes in the perceived importance of the issue
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induced by the framing effect, while δWi (t) equals the portion of the framing effect that operates through

changes in belief content. As before, for each of these two causal mediation effects, we can define the

ACME as δ̄M (t) ≡ E(δMi (t)) or δ̄W (t) ≡ E(δWi (t)) by averaging it over the target population P.

We emphasize that both δMi (t) and δWi (t) are counterfactual quantities because, for example, Mi(t)

and Wi(t
′) are never jointly observed at the same time when t 6= t′. Similarly, Yi(t,Mi(t

′),Wi(t)) can

never be observed unless Mi(t
′) = Mi(t). This counterfactual nature leads some scholars to question

the value of causal mediation analysis (e.g., Rubin, 2004). Nevertheless, these indirect effects formalize

causal processes that are often of scientific importance to applied researchers, and hence our goal is to

offer a set of statistical methods that take seriously the required identification assumptions.

In addition, the unit-level direct effect can be defined as,

ζi(t, t
′) ≡ Yi(1,Mi(t),Wi(t

′))− Yi(0,Mi(t),Wi(t
′)), (13)

for each t, t′ = 0, 1, where ζi(1, 0), for example, represents the direct effect of the treatment while

holding the mediators at (Mi(1),Wi(0)). Again, in Druckman and Nelson’s experiment, this quantity

represents the effect of frames that does not operate either through the importance mechanism or the

content mechanism. As before, the ADEs are given by ζ̄(t, t′) ≡ E(ζi(t, t
′)). Given these definitions, we

can decompose the total effect as the sum of direct and mediation (indirect) effects,

τi ≡ Yi(1,Mi(1),Wi(1))− Yi(0,Mi(0),Wi(0))

= δMi (t) + δWi (1− t) + ζi(1− t, t),

for t = 0, 1.4 As in the case of a single mediator, we can simplify this expression under the no-interaction

assumptions,

δMi (t) = δMi , δWi (t) = δWi , and ζi(t, t
′) = ζi, (14)

for any t, t′. Under these conditions, we have a simpler decomposition relationship, i.e., τi = δMi +δWi +ζi.

4 To verify this relationship, note that

δMi (1) + δWi (0) + ζi(1, 0) = Yi(1,Mi(1),Wi(1))− Yi(1,Mi(0),Wi(1))

+ Yi(0,Mi(0),Wi(1))− Yi(0,Mi(0),Wi(0))

+ Yi(1,Mi(0),Wi(1))− Yi(0,Mi(0),Wi(1)) = τi,

and

δMi (0) + δWi (1) + ζi(0, 1) = Yi(0,Mi(1),Wi(0))− Yi(0,Mi(0),Wi(0))

+ Yi(1,Mi(1),Wi(1))− Yi(1,Mi(1),Wi(0))

+ Yi(1,Mi(1),Wi(0))− Yi(0,Mi(1),Wi(0)) = τi.
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We now generalize the sequential ignorability assumption to the case with multiple mediators where

the causal independence between the main mediator of interest Mi and alternative mediators Wi is

assumed.

Assumption 1 (Sequential Ignorability with Multiple Causally Independent Mediators) We

assume that the following three conditional independence statements hold,

{Yi(t,m,w),Mi(t
′),Wi(t

′′)} ⊥⊥ Ti | Xi = x, (15)

Yi(t
′,m,Wi(t

′)) ⊥⊥ Mi | Ti = t,Xi = x, (16)

Yi(t
′,Mi(t

′), w) ⊥⊥ Wi | Ti = t,Xi = x, (17)

where 0 < Pr(Ti = t | Xi = x) and 0 < p(Mi = m,Wi = w | Ti = t,Xi = x) for any x, t, t′,m,w.

Under this assumption, it can be shown that the ACMEs, δ̄M (t) and δ̄W (t), as well as the ADEs ζ̄(t, t′)

are nonparametrically identified and expressed by the same formula as Theorem 1 of Imai et al. (2010c).

Proof of this identification result is provided in Appendix A.1.

Can the assumption of no causal relationship between these mediators be tested using the observed

data? We note that Assumption 1 neither implies nor is implied by the conditional independence

between the observed values of Mi and Wi given the treatment Ti and observed pre-treatment con-

founders Xi. This means that there exists no direct test of the assumed independence between causal

mechanisms. However, we suggest that researchers at least check the degree of statistical dependence

between Mi and Wi given (Ti, Xi) as well as the association between Wi and Ti given Xi because these

strong dependent relationships are likely to indicate the violation of Assumption 1. Another important

limitation of Assumption 1 is that equations (16) and (17) assume what is sometimes called the “cross-

world” independence. For example, the independence in equation (16) conditions on Ti = t whereas the

potential outcome Yi(t
′,m,Wi(t

′)) conditions on a possibly different treatment condition, i.e., Ti = t′.

This issue is further discussed in Section 5, where we relax the restriction.

Next, we show that the standard analysis of multiple mediators in many social science applications,

such as those described in Section 2, implicitly relies on Assumption 1. While our fundamental point

applies more generally, we use the following linear structural equations model, which is by far the most

commonly used method, to illustrate the point clearly.

Mi = αM + βMTi + ξ>MXi + εiM , (18)

Wi = αW + βWTi + ξ>WXi + εiW , (19)

Yi = α3 + β3Ti + γMi + θ>Wi + ξ>3 Xi + εi3. (20)
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In the standard procedure, the product of the estimated regression coefficients that correspond to the

mechanism of interest (e.g. β̂M γ̂) is then computed and interpreted as an estimate of the ACME for

that mechanism. The three studies of framing effects described in Section 2 all use this path-analytic

approach and investigate the statistical significance of the estimated ACMEs for both mechanisms (or

their standardized values).

It can be shown that, under Assumption 1, the product of the unstandardized path coefficients

in equations (18) – (20) can be justified as an estimate of the corresponding ACME. The result is

proved in Appendix A.2. However, it is important to note that Assumption 1 is merely an alternative

representation of the same assumption, i.e., sequential ignorability given in equations (9) and (10).

Thus, under Assumption 1, the same ACME can also be estimated by applying the standard causal

mediation analysis to one of the mechanisms at a time. That is, under Assumption 1, the product of

coefficients based on equations (6) and (7) also consistently estimates the ACME with respect to Mi,

and the same analysis can be conducted for Wi using the linear structural equations model analogous

to equations (6) and (7).

Earlier, we recommended that applied researchers should check the conditional independence be-

tween M and W given T and X. If these two mediators are dependent, then it is likely that As-

sumption 1 is violated. Indeed, if the separate application of the standard causal mediation analysis

procedure to M and W gives the results that are different from those obtained by using the model

specified in equations (18) – (20), then Assumption 1 is unlikely to hold because W is likely to affect

M . A straightforward way to explore this possibility in the linear structural equations framework is

to regress M on (W,T,X) and conduct an F -test with respect to W to see whether M and W are

correlated even after conditioning on T and X. If one finds a statistically significant relationship, M is

likely to be causally related to W , thereby violating the key identification assumption of the standard

causal mediation analysis. A similar analysis should be conducted to examine the conditional associ-

ation between W and T given X. We also note that these analyses should be interpreted with care:

the failure to reject the null hypothesis of no conditional association does not necessarily imply the

complete absence of such relationships.

In sum, from a causal inference perspective, the standard path-analytic procedure for multiple

mediators does not fundamentally add anything to the simpler one-mechanism-at-a-time procedure.

In fact, they are based on the same exact assumption about the causal independence of multiple

mediators. This implies that if one’s sole goal is to identify the ACME with respect to M there is

no need to measure alternative mediators W if they are causally independent of M . Nevertheless, we

suggest that researchers measure W and examine the statistical relationship between M and W . Strong
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statistical dependence between those mediators implies that the sequential ignorability assumption is

likely to be violated and researchers need a different statistical methodology in order to conduct causal

mediation analysis in the presence of causally dependent multiple mediators. Before we turn to our

proposed methodology for such analysis in Section 5, we next analyze the framing experiments under

the assumption of independent causal mechanisms.

4 Empirical Analysis under the Independence Assumption

We reanalyze the data from the three experiments under the assumption of independence between

mechanisms using the framework of causal mediation analysis outlined by Imai et al. (2011). We also

conduct a sensitivity analysis, which addresses the potential violation of the sequential ignorability as-

sumption by explicitly calculating how much the estimate of the ACME could change if the assumption

is violated to a specified degree. Since the original analyses of these experiments also made the inde-

pendence assumption implicitly, our sensitivity analysis here serves as a check on whether the original

conclusions are robust to unobserved pre-treatment confounders. Unlike the one proposed later in this

paper, however, the limitation of this existing sensitivity analysis is that it only allows for the possi-

ble existence of unobserved pre-treatment confounders and assumes no post-treatment confounder. In

other words, the sensitivity analysis maintains the assumption of independent causal mechanisms and

relaxes the exogeneity of mediator by introducing a certain degree of pre-treatment confounding.

Below, we apply this procedure to the three framing experiments. We find that their original con-

clusions are largely (though less conclusively for some of the studies) valid and robust to unobserved

confounders, so long as we maintain the independence assumption. Unfortunately, we also find evidence

suggesting that alternative causal mechanisms are causally dependent on each other, possibly invali-

dating the original conclusions. Thus, the analyses in this section provide empirical examples where

the independence assumption is probably violated. We also speculate that such violation is likely to be

prevalent in many other similar studies of survey experiments.

4.1 Druckman and Nelson (2003)

In their analysis, Druckman and Nelson find that the framing effect is mediated by the importance

mechanism but not by the belief content mechanism. For the group of subjects who were not allowed

to discuss the issue with other subjects, “the frame shaped the belief importance ratings, which in

turn substantially affected overall opinions,” whereas “the frames had minimal impact on the content

measures and even when they did, [...] this effect did not carry through to overall opinions” (p.737).

However, even under the assumption of independent mechanisms, a potential problem is that the

estimated mediation effects may be biased due to unobserved pre-treatment confounding between the
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Figure 2: Estimation and Sensitivity Analysis Under the Assumption of Independent Causal Mech-
anisms. The top panels present the estimated ACMEs under the sequential ignorability assumption
(Assumption 1) along with their 90% confidence intervals for each of the three studies indicated at
the top. The panels in the middle row show the estimated true values of ACMEs as functions of the
sensitivity parameter ρ, which represents the correlation between the error terms in the mediator and
outcome models. The thick lines and gray bands represent the point estimates of the ACME and their
90% confidence intervals, respectively. The bottom panels show the same sensitivity analyses, except
that the ACME estimates are plotted against (R̃2

Y , R̃
2
M ), the proportions of the total variance in the

outcome and mediator variables, respectively, that would be explained by a hypothetical unobserved
pre-treatment confounder. Overall, the results suggest that under the assumption of independence be-
tween mechanisms, the causal mediation effects are positive and moderately statistically significant in
all of the three studies, and the estimates are fairly robust to the possible unobserved pre-treatment
mediator-outcome confounding to varying degrees.
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mediator and the outcome variable. For example, participants with libertarian ideology may think

freedom of speech more important than non-libertarian participants, and at the same time they may

also be more opposed to the campaign finance reform. If the available pre-treatment covariates fail to

adjust for libertarianism, the estimated causal mediation effect may be upward biased.

Estimation of Causal Mediation Effects. To address this concern about confounding, we apply

the framework of Imai et al. (2011) and estimate ACME and examine its robustness to the violation of

sequential ignorability due to an unobserved pre-treatment confounder of the mediator and outcome,

as explained in Section 3.1.5 Here, we focus on the no-discussion group and the causal mechanism

corresponding to the perceived importance of freedom of speech (hereafter the “free speech importance”

mechanism), which the original study found the most significant. As shown above, ignoring the other

mechanisms should not affect the result under Assumption 1. The results are presented in the first

column of Figure 2. The top figure presents the estimated ACME under sequential ignorability along

with its 90% confidence interval. In addition to the overall estimate shown at the top, we also estimate

the ACMEs for the treatment and control conditions separately in the plot in order to allow for the

possibility that the ACME may differ depending on the baseline treatment status.

We find that the frame difference affected the participants’ support for the campaign finance reform

by approximately 0.286 points on the 7-point scale via the free speech importance mechanism, with

the 90% confidence interval of [0.025, 0.625]. Because the average total causal effect of the frame

difference is estimated to be 0.969 points, it suggests that about 28.6 percent of the total effect was

transmitted through changes in the perceived importance of free speech. The ACME, however, appears

to slightly differ depending on the baseline value of the treatment, as the estimate for the treatment

condition (0.197) is closer to zero than the estimate under the control condition (0.375). In fact, the

90% confidence interval for the former overlaps with zero ([−0.019, 0.497]) while the interval for the

latter does not ([0.035, 0.819]). Overall, though, the result confirms the original finding that the free

speech importance mechanism significantly mediates the framing effect in the theoretically expected

direction, although the estimation uncertainty is relatively large.

Sensitivity Analysis. The remaining two plots show the results of the sensitivity analysis with

respect to two alternative sensitivity parameters. First, we calculate the estimated ACME as a function

of the ρ parameter, the correlation between the error terms in the mediator and outcome models. A

large value of ρ indicates existence of strong confounding between the mediator and outcome and thus a

5We also include a set of observed pre-treatment covariates in the model in order to make the sequential ignorability
assumption as plausible as the data permit. These covariates are year in college, age, gender, ethnicity, level of political
knowledge, tendency for on-line processing, partisanship, and left-right ideology.
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serious violation of the sequential ignorability assumption. The result suggests that the ACME equals

zero when ρ is below −0.43, indicating a moderate degree of robustness compared to other similar

studies (see Imai et al., 2011). The lower bound of the 90% confidence band, however, immediately

crosses the zero line once we allow a slight negative correlation between the errors. Thus, a larger

sample size may be needed in order to establish the robustness of the original findings to the possible

existence of an unobserved pre-treatment confounder that affects the mediator and outcome in different

directions (e.g., libertarianism).

Finally, the bottom plot shows the estimated true ACME as contour lines with respect to the R̃2
M

and R̃2
Y parameters, the proportions of the total variance in the mediator and outcome variables, respec-

tively, that would be explained by an unobserved pre-treatment confounder. The contours correspond

to the scenario that the unobserved confounder affects the mediator and outcome in opposite directions

(i.e., ρ is negative), as it is the only case where the estimated ACME can become negative. The result

shows that the ACME can be estimated negative if the product of the two parameters are greater than

0.078. For example, the estimated ACME will be exactly zero if the unmeasured libertarianism explains

37% of the variation in the perceived importance of freedom of speech and 21% of the variation in the

campaign finance reform opinions.

Discussion. The above results indicate that Druckman and Nelson’s original conclusion about the free

speech importance mechanism is largely valid under the assumption of independent causal mechanisms.

The perceived importance of freedom of speech seems to mediate the framing effect, and the estimate

is reasonably robust to the violation of the sequential ignorability assumption once we adjust for a set

of pre-treatment covariates including partisanship and standard left-right ideology.

However, we emphasize that these results were obtained under the assumption that the free speech

importance mechanism operates independently of other mechanisms, including the one represented by

the participants’ belief about the impact of the campaign finance reform on freedom of speech (hereafter

the “free speech belief” mechanism). The assumption would be violated if, for example, the change in

the content of participants’ belief about the reform due to framing differences then caused any changes

in their perceived importance of free speech. Indeed, this is of major concern because, as Miller (2007)

points out on the basis of her experimental study, “individuals use information obtained from the media

to evaluate how important issues are” (p.711) and “when media exposure to an issue causes negative

emotional reactions about the issue, increased importance judgments will follow” (p.712).

The data in fact underline the concern. By regressing the free speech importance mediator on the

belief content mediator, the treatment, and the other covariates, we find that the coefficient of the

belief mediator is negative and significantly different from zero at 0.1 level (−0.23, with the p-value
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of 0.093). Moreover, regressing the belief content mediator on the treatment and the same set of

pre-treatment covariates yields a statistically significant coefficient (0.61, with the p-value of 0.086),

as found in the original study. As discussed earlier, these analyses suggest that there may exist an

additional causal pathway linking the treatment to the free speech belief mechanism and then to the

importance mechanism. Such a dependent mediator lying between the treatment and the primary

mediator of interest can be seen as a post-treatment confounder, whose existence, whether observed or

unobserved, can cause a substantial bias in the estimate of ACME and invalidate the above results (see

also Appendix of Imai et al., 2011).

4.2 Slothuus (2008)

Contrary to Druckman and Nelson (2003), Slothuus (2008) finds both importance and content mech-

anisms to be at work and concludes “both the importance change process and the content change

process mediate the framing effects” (p.18). Like Druckman and Nelson, Slothuus relies on a path-

analytic method to estimate the mediation effects. We therefore estimate ACME for the importance

mechanism and evaluate its robustness to unobserved pre-treatment confounding between the mediator

and outcome variable under the assumption of independent causal mechanisms.6 For simplicity, we

focus on one of the mediators used in the original analysis (the “incentive to work” importance) which

was found to be the most statistically significant.

Estimation of Causal Mediation Effects. The results are shown in the middle column of Figure 2.

The top panel shows that the ACME for the incentive-to-work importance mechanism is estimated to

be about 0.230 on the 7-point scale, with the 90% confidence interval of [0.082, 0.402]. This represents

approximately 21.3% of the total framing effect, which is estimated to be 1.064 points ([0.640, 1.49]).

Unlike the Druckman and Nelson study, this proportion does not appear to vary depending on the

baseline treatment frame: the estimated ACME is largely similar for the treatment (0.205, [0.052, 0.400])

and control (0.255, [0.092, 0.445]) conditions. Overall, the result confirms the original finding that the

importance mechanism significantly mediates the framing effect for the social welfare reform.

Sensitivity Analysis. How robust is this conclusion to the possible existence of unobserved pre-

treatment confounding? The middle panel shows that the ACME for the importance mechanism equals

zero when the error correlation between the mediator and outcome models becomes greater than 0.37.

This indicates a degree of robustness slightly less than that of the Druckman and Nelson study. However,

the estimated ACME has smaller estimation uncertainty and hence the lower confidence bound does

6Again, we add a set of observed pre-treatment covariates to the model to make the sequential ignorability assumption
as plausible as possible. The covariates are gender, education, level of political interest, self-placement on a left-right
ideology scale, school, year of birth, political knowledge, and extremity of political values.
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not cross zero until the ρ parameter becomes greater than 0.20. The analysis with respect to the R̃2

parameters leads to similar conclusions, as shown in the bottom panel. The estimated ACME becomes

negative when the product of R̃2
M and R̃2

Y is greater than 0.05, which again indicates a slightly greater

sensitivity than the result of the Druckman and Nelson study. For example, the estimate equals zero if

an unobserved pre-treatment confounder explains 25% of the variation in the perceived importance of

work incentives and 20% of the variation in the welfare reform opinion.

Discussion. The Slothuus study is subject to the same potential problem as the Druckman and Nelson

study because both are based on the assumption that alternative causal mechanisms are independent of

one another. For example, the change in the content of participants’ considerations about the welfare

reform may not only directly affect their opinions but also influence the perceived importance of work

incentives, thereby also affecting the outcome indirectly through further changes in the importance

mediator. If this were to be the case, there exists a causal arrow linking the content mediator to

the importance mediator, violating the independence assumption. Indeed, regressing the importance

mediator on the content mediator and the treatment (as well as the set of pre-treatment covariates),

we find a large positive and statistically significant coefficient on the content mediator (0.350, with

the p-value of 0.000). Moreover, a regression of the content mediator on the treatment and the pre-

treatment covariates reveals that the effect of the treatment on the content mediator is positive and

close to statistical significance (0.052, with the p-value of 0.120), which raises a legitimate concern about

the existence of a confounding causal pathway. Thus, similar to the Druckman and Nelson study, the

possibility of bias due to post-treatment confounding is an important issue.

4.3 Brader, Valentino and Suhay (2008)

The original analysis of Brader et al. (2008) reveals that the combination of Latino cues and negative

framing changed the participants’ opinions and behavior in the anti-immigration direction. That is,

the participants who read the Latino article emphasizing the negative consequences of immigration

became more opposed to increased immigration than the rest of the participants. More importantly,

the authors find that the frame affected the outcome variables through the anxiety mechanism rather

than the perceived harm mechanism.7 Like the other two studies, Brader et al. rely on the structural

equation modeling approach of Baron and Kenny (1986). However, the validity of this causal mediation

analysis crucially hinges on the sequential ignorability assumption. The estimated effects will be biased

if, for example, unmeasured job skills of participants affect both their levels of anxiety and opinions

7In their own words, “The conjunction of Latino cues and negative news about immigration influenced levels of anxiety.
Anxiety then caused shifts in policy attitudes, information seeking, and political action” (p.969). In contrast, “belief about
the severity of the immigration problem does not mediate the interactive effect of ethnic cues and news emphasis” (p.969).
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about increased immigration. This is likely if low-skill workers feel more anxious about immigrants and

are also more anti-immigration than high-skill participants.

Estimation of Causal Mediation Effects. We estimate the ACME for the anxiety mechanism by

focusing on one of the outcome variables in the original study (whether immigration to the United

States should be increased or decreased) and examine how much of the total effect of the negative

Latino frame on the variable operated through the anxiety mediator. The point estimates are shown

in the top panel of the left column in Figure 2 along with their 90% confidence intervals. The result

supports the original conclusion, indicating that the negative Latino frame made the participants 0.216

points more opposed to immigration on the 5-point scale via the anxiety mechanism, with the 90%

confidence interval of ([0.120, 0.329]). This represents roughly half of the estimated total framing effect,

which is 0.423 points. The estimate varies slightly across the treatment values (0.184 with [0.083, 0.311]

for the treated; 0.247 with [0.136, 0.360] for the control).

Sensitivity Analysis. The middle and bottom plots show the result of sensitivity analysis. According

to this analysis, the ACME is estimated to be negative when the correlation between the error terms in

the mediator and outcome models is larger than 0.47, and the ACME is statistically indistinguishable

from zero at the 90% level when the ρ parameter is greater than 0.33. Thus, the result of this study is

slightly more robust to the sequential ignorability violation than those of the two above studies. Finally,

in terms of the coefficient of determination parameters, the product of R̃2
M and R̃2

Y must be at least as

large as 0.08, implying that an unobserved pre-treatment confounder must explain 20% of the variation

in the participants’ anxiety and 40% of the variation in their immigration opinions, for example. These

results confirm the original finding that the anxiety mechanism plays a major role in the framing effect

on opinions toward increased immigration.

Discussion. As in the previous two studies, the above analysis rests on the key assumption that the

anxiety mechanism is independent of other mechanisms underlying the framing effect. In particular,

the participants’ conscious belief about the negative impact of increased immigration — the other

mechanism explicitly studied in the original article — is assumed to have no impact on their levels of

anxiety. This assumption may not be entirely plausible because the increased level of perceived harm of

immigration due to the negative Latino framing can cause the participants to feel more anxious about

increase in immigration (Isbell and Ottati, 2002). Indeed, there is a strong statistical dependence

between the two mediators. Regressing the anxiety mediator on the perceived harm mediator as well as

the treatment and the pre-treatment covariates, we find that the estimated coefficient of the perceived

harm mediator is positive and large (1.016, with the p-value of 0.000). Furthermore, regressing the
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perceived harm mediator on the treatment and covariates yields a positive and significant estimate of

the treatment effect on the perceived harm mediator (0.436, with the p-value of 0.070). Thus, like

in the above two examples, we must address the issue of the post-treatment confounding between the

mediator and outcome variable in order to evaluate the empirical findings of this study.

5 Statistical Analysis of Causally Related Multiple Mechanisms

In this section, we consider statistical analysis of causally related multiple mechanisms. In particular,

we focus on the situation depicted in Figure 1(b) where other mediators W confound the relationship

between the mediator of interest M and the outcome Y . We assume the exogeneity of the mediator M

conditional on the pre-treatment covariates X, the treatment T , and the post-treatment confounders W .

Unlike in Section 3, we must measure alternative mediators W when allowing for the causal relationship

between M and W (see Section 7 for the designs that do not require causally related multiple mediators

to be measured). In this setting, we first review the identification result of Robins (2003) that the average

causal mediation effects (represented by red arrows in the figure) can be nonparametrically identified

under an additional assumption of no interaction between the treatment T and the mediator M .

However, as noted by many researchers including Robins (2003) himself (e.g. Petersen et al., 2006;

Imai et al., 2013), this assumption is unrealistic in many applications. In particular, the assumption

must hold not just on average but rather for every observation. To overcome this limitation, we propose

a new sensitivity analysis, which can be used to examine how empirical results change as we gradually

relax the no-interaction assumption. Such an analysis reveals how robust one’s empirical results are to

the potential violation of the key identification assumption. We develop this methodology in the context

of a fairly general varying-coefficient linear regression model where each coefficient can vary arbitrarily

across observations. We then apply the proposed method to the framing experiments introduced earlier.

5.1 The Setup and Assumptions

We use the framework of causal mediation analysis and its associated notation introduced in Sec-

tions 3.1 and 3.2. Recall that the key difference between Figures 1(a) and 1(b) is that we allow the

mediator of interest M to be causally affected by a set of alternative mediators W . This means that the

potential values of M are now a function of W . That is, we use Mi(t, w) to denote the potential value of

the mediator of interest for unit i when the treatment status is t and the alternative mediators W take

the value of w. Then, the observed value of the mediator for this unit is given by Mi = Mi(Ti,Wi(Ti)).

Under this setting, for each unit, we define the causal mediation (with respect to M) and direct
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effects as,

δi(t) ≡ Yi(t,Mi(1,Wi(1)),Wi(t))− Yi(t,Mi(0,Wi(0)),Wi(t)) (21)

ζi(t) ≡ Yi(1,Mi(t,Wi(t)),Wi(1))− Yi(0,Mi(t,Wi(t)),Wi(0)) (22)

for t = 0, 1 where δi(t) corresponds to the causal effect of the treatment on the outcome that transmits

through the mediator of interest M (i.e., the red arrows in Figure 1(b)). In the framing experiment of

Druckman and Nelson, for example, this represents the portion of the framing effect due to the change

in issue importance induced by the framing manipulation, while the belief content is held constant

at the value that would be naturally observed when one of the issue frame is given. On the other

hand, ζi(t) represents the rest of the treatment effect (denoted by the black arrow at the bottom of

the figure and the combination of the red and black arrows that go from T to Y through W but not

through M). In Druckman and Nelson’s experiment, this represents the fraction of the framing effect

that does not go through the issue importance mechanism, regardless of whether it gets transmitted

through the belief content mechanism or through other unspecified mechanisms. Notice that these two

effects represent the quantities identical to those in equations (1) and (2); the only difference is that

the expressions in equations (21) and (22) make the existence of the alternative mediators W explicit

while equations (1) and (2) do not. Thus, as expected, the sum of these two effects equals the total

treatment effect,

τi ≡ Yi(1,Mi(1,Wi(1)),Wi(1))− Yi(0,Mi(0,Wi(0)),Wi(0)) = δi(t) + ζi(1− t) (23)

for t = 0, 1. Again, we are interested in estimating the ACME, i.e., δ̄(t) ≡ E(δi(t)), and the average

direct and total effects can also be defined in an analogous manner, i.e., ζ̄(t) ≡ E(ζi(t)) and τ̄ ≡ E(τi).

What assumptions do we need to make in order to identify the ACME in this scenario? We modify

Assumption 1 and consider the following weaker version of the sequential ignorability assumption,

Assumption 2 (Sequential Ignorability with Multiple Causally Dependent Mediators) We

assume that the following three conditional independence statements hold,

{Yi(t,m,w),Mi(t, w),Wi(t)} ⊥⊥ Ti | Xi = x (24)

{Yi(t,m,w),Mi(t, w)} ⊥⊥ Wi | Ti = t, Xi = x (25)

{Yi(t,m,w)} ⊥⊥ Mi | Wi(t) = w, Ti = t, Xi = x (26)

for any t,m,w, x.
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This assumption corresponds to what Robins (1986, 2003) called the FRCISTG (fully randomized

causally interpretable structural tree graph) model. Assumption 2 is similar to Assumption 1 in that

exogeneity is assumed for the treatment T , the alternative mediators W , and the mediator of interest

M .

However, Assumption 2 relaxes Assumption 1 in two important ways. First, the mediator of interest

M is assumed to be exogenous after conditioning on alternative mediators W as well as the treatment T

and the pre-treatment confounders X whereas Assumption 1 does not permit conditioning on the post-

treatment confounders. In the context of Druckman and Nelson’s framing experiment, this implies that

Assumption 2 allows for the possibility that the perceived issue importance is affected by the content

of the belief about the issue whereas Assumption 1 rules out the existence of such causal dependence.

Second, Assumption 2 avoids specifying the conditional independence relationship between the po-

tential outcome under the treatment status t and the potential value of mediator under the opposite

treatment status t′. For example, contrast equation (16) with equation (26). The former assumes the

conditional independence between Yi(t
′,m,Wi(t

′)) and Mi(t) even when t 6= t′ whereas the latter only

applies the conditional independence assumption to the relationship between Yi(t,m,w) and Mi(t).

Some scholars (e.g. Robins and Richardson, 2010) consider this distinction to be important because one

can conceive of a randomized experiment on a separate exchangeable population with which Assump-

tion 2 can be tested, while such an experiment does not exist for Assumption 1 (see Section 7) even

as a purely theoretical possibility (Robins, 2003). This implies that Assumption 2 can be empirically

verified from observed data at least in theory, while Assumption 1 cannot.

Unfortunately, in the presence of causally dependent multiple mediators, Assumption 2 is not suffi-

cient for the identification of the ACME. Robins (2003) shows that under this setting the ACMEs are

nonparametrically identifiable if the following assumption of no treatment-mediator interaction effect

holds:

Assumption 3 (No Interaction Between Treatment and Mediator) For every unit i, we as-
sume the following equality,

Yi(1,m,Wi(1))− Yi(0,m,Wi(0)) = Yi(1,m
′,Wi(1))− Yi(0,m′,Wi(0)), (27)

for any m,m′.

The problem of this assumption is that it is unlikely to be credible in most applications because it

must hold for every unit. In Druckman and Nelson’s experiment, for example, Assumption 3 implies

that for every subject, the causal effect of the perceived issue importance on opinions must be constant

regardless of whether the subject read the positive or negative article. To overcome this limitation, we

now introduce our proposed methodology that allows one to relax this no interaction assumption.
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5.2 The Proposed Methodology

Given the above setup, we show how to relax the no-interaction assumption (Assumption 3) while

maintaining the exogeneity of treatment and mediator (Assumption 2). We consider the following

linear structural equation model with varying coefficients,

Mi(t, w) = α2 + β2it+ ξ>2iw + µ>2itw + λ>2ix+ ε2i, (28)

Yi(t,m,w) = α3 + β3it+ γim+ κitm+ ξ>3iw + µ>3itw + λ>3ix+ ε3i, (29)

where E(ε2i) = E(ε3i) = 0 is assumed without the loss of generality.8 The model generalizes the

linear structural equation model commonly used by applied researchers (see equations (18) and (20)) in

several important ways. First, the model reflects the particular situation depicted in Figure 1(b) and

discussed above which permits the presence of causally dependent multiple mediators. Specifically, the

mediator of interest M is allowed to depend on a set of alternative mediators W , which themselves are

possibly affected by the treatment, as well as the treatment variable T . Similarly, the outcome variable

Y depends on W as well as M and T . Second, each coefficient is allowed to vary across individual

observations in an arbitrary manner, allowing for a wide range of patterns of heterogeneous treatment

effects. This is a crucial advantage over the traditional structural equation modeling framework, which

typically assumes the unit homogeneity of treatment effects. Finally, we include the interaction between

the treatment and each of the mediators (both M and W ) so that mediation effects can vary depending

on the baseline treatment status.

While the model is semiparametric and hence quite flexible, it imposes a structure by assuming

additivity. In particular, the model assumes no interaction between the two mediators. While it is

possible to allow for the existence of the interaction between M and W , the resulting sensitivity analysis

would include additional sensitivity parameters and thus become more complex. We thus focus on the

simpler model in equation (29).

How is this model related to the standard linear structural equation model? We decompose each of

the varying coefficients into the mean and the deviation from it,

Mi(t, w) = α2 + β2t+ ξ>2 w + µ>2 tw + λ>2 x+ η2i(t, w), (30)

Yi(t,m,w) = α3 + β3t+ γm+ κtm+ ξ>3 w + µ>3 tw + λ>3 x+ η3i(t,m,w), (31)

where β2 ≡ E(β2i), β3 ≡ E(β3i), γ ≡ E(γi), κ ≡ E(κi), ξ2 ≡ E(ξ2i), ξ3 ≡ E(ξ3i), µ2 ≡ E(µ2i), µ3 ≡
8This model encompasses the model considered by Glynn (2012) as a special case.
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E(µ3i), λ2 ≡ E(λ2i) and λ3 ≡ E(λ3i) are the mean parameters of corresponding varying coefficients.

The new error terms are given by,

η2i(t, w) = β̃2it+ ξ̃>2iw + µ̃>2itw + λ̃>2ix+ ε2i (32)

η3i(t,m,w) = β̃3it+ γ̃im+ κ̃itm+ ξ̃>3iw + µ̃>3itw + λ̃>3ix+ ε3i (33)

where by construction we have E(β̃2i) = E(β̃3i) = E(ξ̃2i) = E(ξ̃3i) = E(µ̃2i) = E(µ̃3i) = E(λ̃2i) =

E(λ̃3i) = E(γ̃i) = E(κ̃i) = 0 and hence E(η2i(t, w)) = E(η3i(t,m,w)) = 0. Since Assumption 2

implies the following exogeneity conditions, E(ε2i | Xi, Ti,Wi) = E(ε3i | Ti,Wi,Mi) = 0, it follows

that the exogeneity condition also holds for the new error terms, i.e., E(η2i(Ti,Wi) | Xi, Ti,Wi) =

E(η3i(Ti,Mi,Wi) | Xi, Ti,Wi,Mi) = 0. Thus, the coefficients in equation (30) and (31) can be estimated

without bias under Assumption 2.

We show that the ACMEs are identified if we fix two unobserved quantities, which we use as sensitiv-

ity parameters.9 The first parameter is the correlation between the mediator of interest Mi(t) and the

individual-level treatment-mediator interaction effect κi, i.e., ρt = Corr(Mi(t,Wi(t)), κi). This param-

eter represents the direction of the interaction effect. The second parameter is the standard deviation

of the individual-level coefficient for the treatment-mediator interaction, i.e., σ =
√
V(κi), representing

the degree of heterogeneity in the treatment-mediator interaction effect. In Appendix A.3, we prove

that the ACMEs and direct effects can be written as a function of the identifiable model parameters

(under Assumption 2 but without requiring Assumption 3) and the two sensitivity parameters, for

t = 0, 1,

δ̄(t) = τ̄ − ζ̄(1− t) (34)

ζ̄(t) = β3 + κE(Mi | Ti = t) + ρtσ
√
V(Mi | Ti = t) + (ξ3 + µ3)

>E(Wi | Ti = 1)− ξ>3 E(Wi | Ti = 0).

(35)

Thus, under the situation depicted in Figure 1(b) with Assumption 2, we can conduct a sensitivity

analysis even in the presence of post-treatment confounders to examine how the estimated ACME

changes as a function of the two parameters, ρt and σ. Several remarks are in order. First, the

no-interaction assumption given in equation (27) implies that κi = 0 and hence κ = σ = ρt = 0.

9Albert and Nelson (2011) assume a stronger version of exogeneity which is by itself sufficient to identify the average
causal mediation effects (e.g., the sequential ignorability of Imai et al., 2010c) in order to consider the estimation of other
path-specific effects. Tchetgen Tchetgen and Shpitser (2011) proposes a semiparametric sensitivity analysis for the possible
existence of unmeasured pre-treatment and post-treatment confounders under Assumption 1 rather than the sensitivity
analysis for the possible interaction under Assumption 2.
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Thus, under the model considered here, the ACME and the average direct effect are identified as

δ̄(t) = τ̄ − β3 − (ξ3 + µ3)
>E(Wi | Ti = 1) + ξ>3 E(Wi | Ti = 0) and ζ̄(t) = β3 + (ξ3 + µ3)

>E(Wi |

Ti = 1) − ξ>3 E(Wi | Ti = 0). These expressions correspond exactly to the procedure used by applied

researchers who rely on a linear regression to model the conditional expectation of Wi given Ti (e.g.,

Taylor et al., 2008). While these researchers appear to be unaware of the essential role of the no-

interaction assumption, the sensitivity analysis developed here can formally assess the robustness of

empirical results to the potential violation of this key identifying assumption.

Second, we can relax the no-interaction assumption of equation (27) to some extent under our

linear structural equation framework by considering instead the following homogeneous interaction

effect assumption,

Yi(1,m,Wi(1))− Yi(0,m,Wi(0)) = Bi + Cm (36)

for any m. Unlike the no-interaction assumption, this assumption allows for the treatment-mediator

interaction in a way that is common to all observations. This homogenous interaction effect assumption

implies σ = 0 and thus we can identify the ACME and average direct effect whose expressions are given

by δ̄(t) = τ̄ − ζ̄(1− t) and ζ̄(t) = β3 + κE(Mi | Ti = t) + (ξ3 + µ3)
>E(Wi | Ti = 1)− ξ>3 E(Wi | Ti = 0),

respectively.

Third, when neither of the above assumptions holds, the standard estimation procedure results in

bias. For the ACME, this bias equals −ρ1−tσ
√

V(Mi | Ti = 1− t), which depends on the variance of

mediator within the treatment or control group as well as the sensitivity parameters. For example,

the bias is negative and large if the treatment-mediator interaction effect tends to be higher when the

mediator takes a larger value, i.e., ρt > 0 and the variance of mediator and the degree of heterogeneity

in these interaction effects are large.

Fourth, we note that when ρt = 0, we can identify the ACME regardless of the value of σ. However,

when ρt is not equal to zero, we must specify both ρt and σ in order to estimate the ACME under

Assumption 2. If the interpretation of ρt is difficult, we can derive the bounds on the ACME as a

function of σ while allowing ρt to take any value between −1 and 1.10

Fifth, for the ease of the interpretation of σ, we follow Imai et al. (2010b,c) and use coefficients

of determination as an alternative parameterization. Specifically, we use the proportion of the unex-

plained or original variance of the outcome that is explained by incorporating the heterogeneity in the

10The expression for such bounds is given by the following, τ̄ −β3−κE(Mi | Ti = 1− t)−σ
√

V(Mi | Ti = 1− t)− (ξ3 +

µ3)>E(Wi | Ti = 1)+ξ>3 E(Wi | Ti = 0) ≤ δ̄(t) ≤ τ̄−β3−κE(Mi | Ti = 1− t)+σ
√

V(Mi | Ti = 1− t)−(ξ3 +µ3)>E(Wi |
Ti = 1) + ξ>3 E(Wi | Ti = 0).
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treatment-mediator interaction. Thus, the sensitivity parameter represents how important it would be

to incorporate the interaction heterogeneity in the regression model in order to explain the variation in

the outcome variable. Formally, these parameters are defined as

R2∗ =
V(κ̃iTiMi)

V(η3i(Ti,Mi,Wi))
and R̃2 =

V(κ̃iTiMi)

V(Yi)
(37)

for the proportion of unexplained variance and that of the original variance explained by the heterogene-

ity of the treatment-mediator interaction effects, respectively. We can directly relate these quantities

to the ACME via the following one-to-one relationship between σ and each of these coefficients of

determination,11

σ =

√
V(η3i(Ti,Mi,Wi))R2∗

E(TiM2
i )

=

√
V(Yi)R̃2

E(TiM2
i )
. (38)

This implies that σ is bounded from above by
√
V(η3i(Ti,Mi,Wi))/E(TiM2

i ) because 0 ≤ R2∗ ≤ 1.

Furthermore, the sensitivity to the interaction heterogeneity can be assessed by studying how the

ACME varies depending on the values of R2∗ and R̃2. This can also be done by calculating the ratio of

σ to its upper bound.

Finally, under Assumption 2 and the model in equations (28) and (29), we can also identify another

possible quantity of interest, the population average of the causal mediation effect specific to the path

T →W → Y . This quantity is defined as

χi(t) = Yi(t,Mi(t,Wi(t)),Wi(1))− Yi(t,Mi(t,Wi(t)),Wi(0)), (39)

for t = 0, 1 and corresponds to the effect of the treatment on the outcome that goes through the post-

treatment confounders W but not through the primary mediator M . In Appendix A.4, we prove that

χ̄(t) ≡ E(χi(t)) is given by

χ̄(t) = (ξ3 + tµ3) {E(Wi | Ti = 1)− E(Wi | Ti = 0)} (40)

for t = 0, 1. It is noteworthy that under our model this identification result only requires Assumption 2

and does not need any assumption about the treatment-mediator interaction or sensitivity parameters.

This contrasts with the result by Albert and Nelson (2011) that the path-specific effect χ̄(t) cannot

11We used the following equality, V(κ̃iTiMi) = E(V(κ̃iTiMi | Ti,Mi,Wi))+V(E(κ̃iTiMi | Ti,Mi,Wi)) = E(TiM
2
i V(κ̃i |

Ti,Mi,Wi)) = σ2E(TiM
2
i ) where the second equality is due to the law of total variance, and the next two equalities hold

because of Assumption 2.
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be identified under the set of assumptions they consider, as well as the more general nonparametric

identification result about path-specific effects by Avin et al. (2005). Indeed, it can be shown that χ̄(t)

becomes unidentified if we include the interaction between M and W to the model. In that case, a

sensitivity analysis analogous to the one about δ̄(t) described above can be conducted for χ̄(t) using

sensitivity parameters similar to ρt and σ.

6 Empirical Analysis without the Independence Assumption

We now revisit the media framing experiments introduced in Section 2. The authors of these studies

implicitly assumed that the mechanisms of their primary interest were causally independent from the

alternative mechanisms incorporated in the original analyses. However, as discussed in Section 4, this

assumption is implausible on both theoretical and empirical grounds. We therefore use the method

developed in the previous section to estimate ACMEs without assuming the independence between

these mechanisms. We also apply our proposed sensitivity analysis to assess how robust these estimates

are to the violation of the key assumption that the effect of the primary mediator does not depend on

the value of the treatment (Assumption 3).

6.1 Druckman and Nelson (2003)

In Section 4.1, we noted that in Druckman and Nelson’s framing experiment, the participants’ belief

about the effect of the campaign finance reform may have influenced their perceived importance of free

speech. We thus reanalyze their data to allow for the causal dependence of the importance mechanism

on the belief content mechanism. That is, we first estimate the linear structural equations models

in equations (30) and (31) with the same set of pre-treatment covariates as in Section 4.1, and then

compute the ACME as a function of the sensitivity parameters using equations (34) and (35). The

results are shown in the three plots in the left column of Figure 3.

As in Section 4, the top panel presents the estimated ACMEs (overall, treatment and control)

with the 90% confidence intervals, but this time under different assumptions (Assumptions 2 and

equation 36). The average total effect and its 90% confidence intervals, which are essentially identical

to those in Figure 2, are also shown at the bottom. Unlike what we found under Assumption 1, the

estimated overall ACME is statistically indistinguishable from zero, although it is similar in magnitude

(0.313 with the confidence interval of [−0.021, 0.648]) and represents about 32.2 percent of the total

framing effect. The ACME does not vary as much according to the baseline treatment status, with

the estimate being statistically insignificant in either case (0.265, [−0.077, 0.606] for the treatment

condition; 0.332, [−0.092, 0.755] for the control). Thus, the results give only modest support to the

original conclusion once the assumed causal independence between the mechanisms is relaxed.
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Figure 3: Estimation and Sensitivity Analysis Without the Independence Assumption. The top panels
present the estimated ACMEs under the sequential ignorability and homogenous interaction assump-
tions (Assumption 2 and equation 36) with their 90% confidence intervals for the three framing studies.
The panels in the middle row show the sharp bounds on the true values of ACMEs as functions of the
sensitivity parameter σ, which equals the standard deviation of the varying coefficient on the treatment-
mediator interaction term and thus represents the degree of unit heterogeneity in the interaction. The
bottom panels plot the same estimated ACMEs with respect to R̃2, the proportion of the total variance
of the outcome variable that would be explained by the treatment-mediator interaction term. The
results suggest that the positive mediation effects found in the original studies (see Figure 2) become
smaller in magnitude and statistically either insignificant or barely significant once we allow for the
causal pathway from the alternative mediator (W ) to the mediator of interest (M) as in Figure 1(b).
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This analysis relaxes the independence assumption but still assumes that the interaction between

framing effects and the effects of issue importance is homogeneous across participants (equation 36).

Because this assumption is rather strong, we examine the robustness of our conclusions to its violation

via the proposed sensitivity analysis. The remaining two panels on the left column of Figure 3 show

the results. In the first panel, the sharp bounds on the true values of the overall ACME are plotted as

functions of the sensitivity parameter σ (thick solid lines), which represents the degree of heterogeneity in

the interaction between the issue frames and perceived importance. As discussed in Section 5, observed

data imply an upper bound on the possible values of this parameter, which equals the rightmost value

of σ in the figure (0.382) and represents the maximal possible violation of equation (36) given the data.

The 90% confidence intervals are computed based on the approach of Imbens and Manski (2004) with the

bootstrap standard errors and represented by the gray region around the bounds. The point-identified

value of ACME under equation (36) is represented by the dashed horizontal line.

The result shows that the lower bound of ACME does not become negative until σ becomes greater

than 0.195, or 51% of its largest possible value. This implies that, disregarding the statistical un-

certainty in these estimates, the data from Druckman and Nelson’s experiment provide some support

for the importance mechanism even if we allow for a certain degree of violation of the no interaction

assumption. When we completely relax the no interaction assumption and only make the sequential

ignorability assumption (Assumption 2), however, the bounds become wide ([−0.303, 0.922]) with the

90% confidence interval of [−0.618, 1.159].

The bottom figure presents the result of the same sensitivity analysis using an alternative param-

eterization. As discussed in Section 5, the R̃2 parameter here represents the proportion of the total

variance of the outcome variable that would be explained if we could take into account the heterogeneity

of the treatment-mediator interaction in the regression model. The upper bound of R̃2, 0.610, corre-

sponds to the scenario where the residual variation in the outcome variable is completely attributed

to the interaction heterogeneity and thus represents the severest possible violation of the no interac-

tion assumption given the observed data. In this alternative formulation, the bounds on the overall

ACME include zero only when R̃2 is greater than 0.159. This implies that we can maintain the conclu-

sion of the original analysis unless the interaction heterogeneity explains more than 15.9% of the total

variance of the participants’ opinion. In summary, if one ignores estimation uncertainty, the conclu-

sions of Druckman and Nelson (2003) are reasonably robust to the violations of the two assumptions

made in their original analysis: the causal independence between alternative mechanisms and the no

treatment-mediator interaction effect. However, the generally wide confidence intervals suggest that

drawing definite conclusions would require a study with a larger sample size.
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6.2 Slothuus (2008)

The framing experiment of Slothuus is also subject to the possibility that the participants’ perceived

importance of work incentives may be influenced by the content of their considerations about the

welfare reform. If this were the case, the importance mechanism is causally dependent on the belief

content mechanism. We therefore apply our proposed method to re-estimate the ACME for the impor-

tance mechanism relaxing the independence assumption. Again, we use the same set of pre-treatment

covariates as in Section 4.2. The results are presented in the middle column of Figure 3.

The top panel shows that under the assumptions of sequential ignorability (Assumption 2) and

homogeneous interaction (equation 36), the estimated overall ACME for the importance mechanism is

about 0.159, representing 14.1 percent of the total effect (1.128). The 90% confidence interval for this

estimate does not contain zero ([0.004, 0.315]). The estimates for the treatment and control conditions

are slightly different (0.102 with [−0.054, 0.257] and 0.208 with [0.004, 0.411], respectively). These

estimates are both smaller in magnitude and weaker in statistical significance than those assuming the

causal independence between the importance and content mechanisms (see Section 4.2).

The other two panels show the results of the sensitivity analysis. As we gradually relax the homo-

geneous interaction assumption, the 90% confidence interval for the overall ACME covers zero almost

immediately. The lower bound also becomes less than zero when σ is greater than 0.607, or about

24.5 percent of its largest possible value implied by the data (0.987). This indicates that the result

of Slothuus’s experiment is more sensitive to the heterogeneity in the treatment-mediator interaction

than Druckman and Nelson’s result, despite the statistical significance of the original point estimate.

The result translates to the value of 0.029 in terms of the alternative R̃2 parameter, suggesting that

the interaction heterogeneity must only explain 2.9 percent of the total variation in the participants’

opinion (out of the maximum value of 48.9 percent), so that the bounds on the overall ACME for the

importance mechanism contain zero. In summary, once we allow for the dependence among mecha-

nisms, the original conclusions from Slothuus’s framing experiment are quite sensitive to the violation

of no interaction even under the exogeneity assumptions.

6.3 Brader, Valentino and Suhay (2008)

Finally, we apply our proposed framework to the experiment of Brader et al.. Like the above two

experiments, the assumption of independence between the anxiety and perceived harm mechanisms

(Assumption 1) is problematic in Brader et al.’s study both from theoretical and empirical perspectives.

The right column of Figure 3 shows the results of our analysis using the same pre-treatment covariates

as in the original study but accommodating the dependence of anxiety on perceived harm.
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Unlike the other two examples, the overall ACME for the anxiety mechanism remains statistically

significant at the .1 level under Assumption 2 and equation (36) ([0.030, 0.182]). However, compared to

the estimate under the independence assumption, the estimated overall ACME is substantially smaller

(0.106) and represents only 25.3 percent of the total framing effect (0.420). Moreover, the estimated

ACME for the treatment condition is even smaller (0.057) and statistically insignificant ([−0.073, 0.187]),

while the estimate for the control condition is significant (0.123, [0.042, 0.204]). The evidence for the

anxiety mechanism thus appears much weaker when we allow the participants’ perceived harm to

influence their anxiety levels.

This conclusion is reinforced when we examine the sensitivity of these estimates to the violation

of the homogeneous interaction effect assumption (equation 36). The middle panel shows that the

lower bound of the ACME becomes less than zero when the standard deviation of the coefficient of

the interaction term is greater than 0.042, or about 24.5 percent of its largest possible value given the

data (0.173). This is roughly the same degree of sensitivity as the Slothuus study. The 90% confidence

interval overlaps with zero when σ is 0.013 or greater. The bottom panel indicates that these values

of σ translate to the R̃2 values of 0.036 and 0.006, respectively, implying that the heterogeneity in the

interaction between the frame and anxiety must only explain 3.6 percent of the total variance in the

outcome variable out of its 59.3 percent residual variance. Thus, the evidence for the anxiety mechanism

in Brader et al.’s study becomes quite fragile when we allow for its dependence on the participants’

perceived harm of immigration.

7 Statistical Analysis when the Mediator Can be Manipulated

So far we have analyzed standard randomized experiments where the treatment is randomized but the

mediator is not. In this setup, the exogeneity of the mediator must be assumed instead of guaranteed by

the experimental design. This remains an important limitation even though our framework described in

Section 5 allows for the existence of post-treatment observed confounders. For example, in Druckman

and Nelson’s framing experiment, we cannot rule out the possibility that there exists an unobserved post-

treatment confounder affecting both the perceived issue importance and opinions about the campaign

finance reform, even after taking into account the belief content mechanism.

In this section, we extend our method to the two new experimental designs recently proposed

by Imai et al. (2013) where the mediator is manipulated to avoid the exogeneity assumption. In

particular, we first consider the parallel design where two randomized experiments are run in parallel;

one experiment employs the standard design where only the treatment is randomized whereas the other

experiment randomizes both the treatment and the mediator of interest. We also consider the parallel

32



encouragement design where the manipulation of the mediator is imperfect in the second experiment.

These designs allow for the existence of causally dependent multiple mediators W and yet can make the

main mediator M unconfounded by directly or indirectly randomizing it. Thus, under these designs, we

no longer need to measure W . While the randomization of the treatment and mediator is not sufficient

for the identification of the ACME (Imai et al., 2013), we develop a sensitivity analysis that can be

used to examine the robustness of empirical findings to the potential violation of the key identification

assumption under each of these two designs. While these designs are new and hence have not yet been

used by many applied researchers, we hope that their future use can improve the credibility of causal

mediation analysis.

7.1 The Parallel Design

Under the parallel design, we randomly split the sample into two groups and conduct a separate

randomized experiment for each group in parallel. One experiment is conducted under the standard

design where, after the treatment is randomized and administered, the values of the mediator and

the outcome are measured. In the other experiment, both the treatment and mediating variables are

randomized and subsequently the values of the outcome variable are recorded. We assume that the

values of the potential outcomes remain identical regardless of the experiment to which each unit is

assigned. In other words, the potential outcomes are assumed to depend on the values of the treatment

and mediator but not how they are realized. Imai et al. (2013) emphasize the importance of this

assumption and suggest that the manipulation of the mediator needs to be subtle in order to make sure

that it affects the outcome only through the mediator value and has no direct effect.

Under this design, the first experiment allows for the existence of multiple mechanisms that may be

causally related. However, in the second experiment, the randomization of the mediator removes all of

its confounders including alternative mediators. Formally, let Di be an indicator variable representing

whether unit i is randomly assigned to the first (Di = 0) or second (Di = 1) experiment. The study

design implies the following conditional independence,

{Yi(t,m),Mi(t
′)} ⊥⊥ Ti | Di = 0, (41)

{Yi(t,m)} ⊥⊥ {Ti,Mi} | Di = 1, (42)

for any t, t′,m. Note that we do not assume independence between the mediator and potential outcomes

in the first experiment. This means that while the manipulated values of the mediator must be random in

the second experiment, the parallel design makes no exogeneity assumption on the mediator values that

would naturally realize when only the treatment is manipulated as in the first experiment. This contrasts
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with the scenarios depicted in Figure 1 where observed mediators are assumed to be conditionally

exogenous. The parallel design also differs from Figure 1 in that there is no need to determine whether

there exist alternative mechanisms that are causally related to the mechanism of interest.

Under the parallel design, the first experiment identifies the average effects of the treatment on the

mediator and outcome. That is, both E{Mi(t)} and E{Yi(t,Mi(t))} are identifiable for t = 0, 1. The

second experiment, on the other hand, identifies E{Yi(t,m)} for any t and m. Unfortunately, this is

not sufficient to identify the ACME. Following Robins (2003), Imai et al. (2013) show that under the

parallel design, the ACME is nonparametrically identified if the assumption of no interaction effect

holds. This assumption, which is essentially the same as Assumption 3, can be formally written as,

Yi(1,m)− Yi(1,m′) = Yi(0,m)− Yi(0,m′), (43)

for any m 6= m′. As is the case for Assumption 3, the equality must hold at the unit level rather than

in expectation, which makes this assumption unverifiable and unrealistic in most cases. However, Imai

et al. (2013) show that without the no interaction assumption, the ACME cannot even be bounded

under the parallel design unless the outcome variable has finite bounds. They also show that even

when the outcome and mediator are binary, the sharp bounds on the ACME may often contain zero,

failing to identify its sign (see also Sjölander, 2009; Kaufman et al., 2009). Thus, below, we develop a

sensitivity analysis for the no interaction effect assumption to assess the consequence of the violation

of this key identification assumption.

7.2 The Proposed Methodology for the Parallel Design

Given the setup described above, we develop a sensitivity analysis for inference based upon the following

system of linear equations with varying coefficients,

Mi(t) = α2 + β2it+ ε2i (44)

Yi(t,m) = α3 + β3it+ γim+ κitm+ ε3i, (45)

for any t and m where E(ε2i) = E(ε3i) = 0 without loss of generality. Like the one considered in Sec-

tion 5, this model allows for arbitrary degrees of heterogeneity across units and does not make any distri-

butional assumption about these effects. Thus, despite the linearity assumption, equations (44) and (45)

represent a general class of models that are sufficiently flexible to be useful in a variety of applied re-

search settings.

Under the parallel design, equations (44) and (45) can be fitted separately to the data from the
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first and second experiments, respectively. The randomization of the treatment in the first experiment

(Di = 0) and that of the treatment and mediator in the second experiment (Di = 1) guarantees that

the following exogeneity assumptions are satisfied,

E(ε2i | Ti, Di = 0) = E(ε3i | Ti,Mi, Di = 1) = 0. (46)

In addition, due to the linearity and the binary nature of the treatment, the model implies the following

linear relationship between the treatment and the outcome,

Yi(t,Mi(t)) = α1 + β1it+ ε1i (47)

where α1 + ε1i = α3 + (α2 + ε2i)γi + ε3i, β1i = β3i + β2iγi + (α2 + β2i + ε2i)κ2i and E(ε1i) = 0.

Now, we can rewrite the model given in equations (44) and (45) as,

Mi(t) = α2 + β2t+ η2i(t) (48)

Yi(t,m) = α3 + β3t+ γm+ κtm+ η3i(t,m) (49)

where β2 = E(β2i), β3 = E(β3i), γ = E(γi), κ = E(κi), and η2i(t) = β̃2it+ε2i and η3i(t,m) = β̃3it+γ̃im+

κ̃itm + ε3i with E(β̃2i) = E(β̃3i) = E(γ̃i) = E(κ̃i) = 0. Thus, under the parallel design, the exogeneity

assumption given in equation (46) implies that among the parameters of equations (48) and (49),

(α2, α3, β2, β3, γ, κ) are identified.

To develop a sensitivity analysis, we follow the analytical strategy employed in Section 5 and write

the average direct effect using the model parameters as follows,

δ̄(t) = β1 − ζ̄(1− t) (50)

ζ̄(t) = β3 + (α2 + β2t)κ+ ρtσ
√

V(Mi | Ti = t,Di = 0) (51)

for t = 0, 1 where the two sensitivity parameters are ρt = Corr(Mi(t), κi) and σ =
√
V(κi) and

other parameters can be consistently estimated from the observed data because other parameters are

identifiable under this design. These sensitivity parameters, ρt and σ, represent the degree to which

the individual-level treatment-mediator interaction effect is correlated with the mediator of interest and

the amount of heterogeneous interaction effect, respectively. Researchers can vary these two sensitivity

parameters within their plausible range to assess the sensitivity of their empirical results to the violation

of the no-interaction effect assumption under the parallel design.
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This sensitivity analysis under the parallel design is essentially identical to that of Section 5 except

that there is no need to consider alternative mediators W since M is randomized. Thus, most of

the remarks made in Section 5 also apply here. First, the no-interaction effect assumption given in

equation (43) implies κi = 0 for all i and thus κ = ρt = σ = 0. In this case, both the ACME and the

average direct effect are identified as δ̄(t) = β1 − β3 = β2γ and ζ̄(t) = β3, respectively, which equal the

usual mediation procedure under sequential ignorability without the treatment-mediator interaction.

Second, one can consider the following homogeneous interaction effect assumption, Yi(1,m) −

Yi(0,m) = Bi +Cm, where C does not vary across units. Under the linear models considered here this

assumption implies κ̃i = 0 for all i and thus σ = 0. Therefore, both the ACME and the average direct

effect are identified as δ̄(t) = β1 − β3 − (α2 + β2(1 − t))κ = β2(γ + tκ) and ζ̄(t) = β3 + (α2 + β2t)κ,

respectively. These formulae agree with the standard mediation procedure under the linear structural

modeling with the treatment-mediator interaction term (e.g., Kraemer et al., 2008). Our analysis there-

fore highlights the implicit assumption made when researchers apply the standard mediation analysis

procedure.

Third, if neither of these assumptions holds, then the standard estimates of the ACME and the aver-

age direct effect will be biased even under the parallel design where assumptions (41) and (42) are both

satisfied. For example, the bias for the average direct effect ζ̄(t) is equal to ρtσ
√
V(Mi | Ti = t,Di = 0).

This implies that ζ̄(t) will be overestimated if the mediator positively interacts with the treatment for

those units who tend to have high mediator values when the treatment status is t (i.e. ρt > 0).

The magnitude of such bias will be large when the degree of heterogeneity for the treatment-mediator

interaction effect is high (i.e. σ is large).

Finally, as in Section 5, this sensitivity analysis can be conducted with respect to an alternative

sensitivity parameter instead of σ for easier interpretation. Specifically, we can use the proportion of

the unexplained or original variance of the outcome that is additionally explained by including the

heterogeneity in the treatment-mediator interaction. This quantity is represented by the following

coefficients of determination, R2∗ = V(κiTiMi | Di = 1)/V(η3i(Ti,Mi) | Di = 1) for the unexplained

variance and R̃2 = V(κiTiMi | Di = 1)/V(Yi | Di = 1) for the original variance. For example, R2∗

represents how much of the observed variance in Yi can be explained by the inclusion of the term κiTiMi

in the regression model. Then, it can be shown that σ can be alternatively expressed as a function of

each of these coefficients of determination,

σ =

√
V(η3i(Ti,Mi) | Di = 1)R2∗

E(TiM2
i | Di = 1)

=

√
V(Yi | Di = 1)R̃2

E(TiM2
i | Di = 1)

. (52)
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Thus, we can conduct the sensitivity analysis with the sensitivity parameters R2∗ and R̃2. From this

expression, it is immediate that the upper bound of σ results when the heterogeneity in the treatment-

mediator interaction explains all the unexplained variance, i.e., σ ≤
√
V(η3i(Ti,Mi) | Di = 1)/E(TiM2

i | Di = 1).

7.3 The Parallel Encouragement Design

The sensitivity analysis developed above can be extended to the “parallel encouragement design” of Imai

et al. (2013) where the manipulation of the mediator in the second experiment of the parallel design

is imperfect. This situation is more realistic for psychological studies such as framing experiments,

because manipulating psychological mechanisms is likely to be imperfect at best even with clever use

of intervention techniques.

Under this design, it is assumed that the randomized manipulation of the mediator monotonically

affects the mediator and this manipulation affects the outcome only through the realized value of the

mediator. Then, the manipulation Zi can be used as an instrumental variable and we can fit the

two-stage least squares regression model. That is, equation (44) can be replaced with the following

equation,

Mi(t, z) = α2 + β2it+ λiz + θitz + ε2i (53)

whereas equation (45) remains identical. Implicit in this model is the assumption that all units in the

study population can be thought of as following this structural equation as the true data generating

process. This contrasts with the nonparametric approach to encouragement designs recently developed

in the methodological literature (Angrist et al., 1996) and applied to the causal mediation analysis

(Imai et al., 2013).

Under this two-stage least squares model, it is straightforward to show that the average direct effect

and ACME, ζ̄(t, z) = E{Yi(1,Mi(t, z))−Yi(0,Mi(t, z))} and δ̄(t, z) = E{Yi(t,Mi(1, z))−Yi(t,Mi(0, z))},

equal the following expressions,

ζ̄(t, z) = β3 + (α2 + β2t+ λz + θtz)κ+ ρt,zσ
√
V(Mi | Ti = t, Zi = z), (54)

δ̄(t, z) = τ̄ − β3 − (α2 + β2(1− t) + λz + θtz)κ− ρ1−t,zσ
√
V(Mi | Ti = 1− t, Zi = z), (55)

where λ = E(λi), θ = E(θi) (which are both identified due to the exogeneity of Ti and Zi) and

ρt,z = Corr(Mi(t, z), κi) for t ∈ {0, 1} and z ∈ Z (the support of Zi). The proof is provided in

Appendix A.5. The average total effect, τ̄ in equation (55), can be consistently estimated by regressing

Yi on Ti for the subsample who received the manipulation of the treatment alone, i.e., Zi = 0. Then,
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the sensitivity and bounds analyses can be conducted by estimating the identifiable parameters via the

two-stage least squares method and varying ρt,z and σ within the ranges of plausible values.

8 Concluding Remarks and Suggestions for Applied Researchers

In this paper, we have shown how to conduct causal mediation analysis in the presence of multiple

mediators. The proposed methodology can be applied even when alternative mechanisms are causally

related to each other so long as both the treatment and mediating variables can be assumed to be

exogenous conditional on a set of observed confounders. However, this methodology is not applicable

when there exist unobserved post-treatment confounders. Thus, we also show that our methodology

can be applied to new experimental designs where these exogeneity conditions can be ensured by

experimenters. Finally, we conclude this paper by offering a list of practical suggestions for applied

researchers who wish to study multiple causal mechanisms.

• Identify a list of alternative causal mechanisms that are causally prior to the mechanism of your

interest and measure mediators that represent them.

• Consider theoretically whether the identified alternative mechanisms are causally related to the

causal mechanisms of interest and test empirically whether they are statistically dependent on

each other even after adjusting for the treatment and pre-treatment covariates.

• If alternative mechanisms are causally independent of one another, apply the standard causal

mediation analysis and conduct sensitivity analysis for the possible existence of unobserved pre-

treatment confounders.

• If alternative mechanisms are causally related to each other, apply the mediation analysis that

directly accounts for multiple mediators and conduct sensitivity analysis with respect to the

existence of treatment-mediator interaction effects.

• Whenever possible, utilize research designs, experimental or observational, where the exogeneity

of mediator is credible and apply sensitivity analysis for the no treatment-mediator interaction

assumption.
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A Mathematical Appendix

A.1 Proof of Nonparametric Identification of Average Causal Mediation Effects

under Assumption 1

The proof is a straightforward extension of that of Theorem 1 in Imai et al. (2010c). We first consider the

identification of δ̄Mi (t), the average causal mediation effect with respect to Mi. Note that equation (16)

implies the following conditional independence:

Yi(t,m,Wi(t)) ⊥⊥ Ti | Mi(t
′) = m′, Xi = x. (56)

for all t, t′ = 0, 1, m,m′, and x. Now, for any t, t′, we have,

E(Yi(t,Mi(t
′),Wi(t)) | Xi = x)

=

∫
E(Yi(t,m,Wi(t)) |Mi(t

′) = m,Xi = x) dFMi(t′)|Xi=x(m) (57)

=

∫
E(Yi(t,m,Wi(t)) |Mi(t

′) = m,Ti = t′, Xi = x) dFMi(t′)|Xi=x(m) (58)

=

∫
E(Yi(t,m,Wi(t)) | Ti = t′, Xi = x) dFMi(t′)|Xi=x(m) (59)

=

∫
E(Yi(t,m,Wi(t)) | Ti = t,Xi = x) dFMi(t′)|Ti=t′,Xi=x(m) (60)

=

∫
E(Yi(t,m,Wi(t)) |Mi(t) = m,Ti = t,Xi = x) dFMi(t′)|Ti=t′,Xi=x(m) (61)

=

∫
E(Yi |Mi = m,Ti = t,Xi = x) dFMi(t′)|Ti=t′,Xi=x(m) (62)

=

∫
E(Yi |Mi = m,Ti = t,Xi = x) dFMi|Ti=t′,Xi=x(m), (63)

where the second equality follows from equation (56), equation (16) is used to establish the third and

fifth equalities, equation (15) is used to establish the fourth and last equalities, and the sixth equality

follows from the fact that Mi = Mi(Ti) and Yi = Yi(Ti,Mi(Ti),Wi(Ti)). This implies that δ̄M (t) can be

identified as,

δ̄M (t) =

∫ ∫
E(Yi |Mi = m,Ti = t,Xi = x)

{
dFMi|Ti=1,Xi=x(m)− dFMi|Ti=0,Xi=x(m)

}
dFXi(x),

which is identical to the expression in Theorem 1 of Imai et al. (2010c). Furthermore, the same proof

applies to δ̄W (t) by considering the identification of E(Yi(t,Mi(t),Wi(t
′)) | Xi = x) using equation (17)

instead of (16). Finally, ζ̄(t, t′) is also identified because ζ̄(t, t′) = τ̄ − δ̄M (t′)− δ̄W (t) and τ̄ is identified
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under equation (15). 2

A.2 Proof of the Parametric Identification of Average Causal Mediation Effects

with the Path Analysis under Assumption 1

The proof follows the similar argument as Theorem 2 of Imai et al. (2010c). First, note that the

coefficients in equations (18), (19) and (20) are all identified under Assumption 1. Next, note that

given this linear structural equations model, equation (63) can be written as,

E(Yi(t,Mi(t
′),Wi(t)) | Xi = x)

=

∫
E(Yi |Mi = m,Ti = t,Xi = x) dFMi|Ti=t′,Xi=x(m) (64)

=

∫ ∫ (
α3 + β3t+ γm+ θ>w + ξ>3 x

)
dFWi|Mi=m,Ti=t,Xi=x(w) dFMi|Ti=t′,Xi=x(m) (65)

=

∫ ∫ (
α3 + β3t+ γm+ θ>w + ξ>3 x

)
dFWi|Ti=t,Xi=x(w) dFMi|Ti=t′,Xi=x(m) (66)

= α3 + β3t+ γ(αM + βM t
′ + ξ>Mx) + θ>(αW + βW t+ ξ>Wx) + ξ>3 x (67)

where the third equality holds because equation (16) implies Mi⊥⊥Wi | Ti = t,Xi = x under the linear

structural equations model in equations (18), (19) and (20). Finally, we also have

E(Yi(t,Mi(t),Wi(t)) | Xi = x) = α3 +β3t+ γ(αM +βM t+ ξ>Mx) + θ>(αW +βW t+ ξ>Wx) + ξ>3 x. (68)

Therefore, δ̄M (t) = βMγ. The same argument applies to δ̄W (t) and it is identified as βW θ. 2

A.3 Proof of the Identification of the Average Direct Effect Given ρt and σ

We begin by expressing the average direct effect defined in equation (22) using the parameters of the

model given in equations (28) and (29),

ζ̄(t) = E{β3i + κi(α2 + β2it+ ξ>2iWi(t) + µ>2itWi(t) + λ>2ix+ ε2i) + ξ>3i(Wi(1)−Wi(0)) + µ>3iWi(1)}

= β3 + κE(Mi | Ti = t) + ρtσ
√

V(Mi | Ti = t) + E{(ξ3i + µ3i)
>Wi(1)− ξ>3iWi(0)}, (69)

where the two conditional moments of Mi, E(Mi | Ti = t) and V(Mi | Ti = t), can be consistently

estimated using their sample counterparts. Now, note that the last term of equation (69) can be
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written as,

E{(ξ3i + µ3i)
>Wi(1)− ξ>3iWi(0)} = E{(ξ3i + µ3i)

>Wi(1) | Ti = 1} − E(ξ>3iWi(0)) (70)

= E{(ξ3i + µ3i)
> | Ti = 1}E(Wi(1) | Ti = 1)− E(ξ>3iWi(0)) (71)

= (ξ3 + µ3)
>E(Wi | Ti = 1)− E(ξ>3iWi(0)), (72)

where the equalities follow from equation (24) and the fact that each element of the coefficient vector

ξ3i + µ3i is conditionally independent of Wi(1) given Ti = 1 under Assumption 2. The latter holds

because for any j and m, ξ3ij + µ3ij = Yi(1,m,w) − Yi(1,m,w
′), where ξ3ij and µ3ij denote the

jth elements of ξ3i and µ3i, respectively, w = (w1, ..., wj , ..., wJ)>, and w′ = (w1, ..., wj − 1, ..., wJ)>.

Likewise, we have,

E{(ξ3i + µ3i)
>Wi(1)− ξ>3iWi(0)} = E((ξ3i + µ3i)

>Wi(1))− ξ>3 E(Wi | Ti = 0), (73)

since ξ3ij = Yi(0,m,w) − Yi(0,m,w′) for any m ∈ M and j ∈ {1, ..., J}. Together with equation (72),

we obtain,

E{(ξ3i + µ3i)
>Wi(1)− ξ>3iWi(0)} = (ξ3 + µ3)

>E(Wi | Ti = 1)− ξ>3 E(Wi | Ti = 0), (74)

which implies that the final term of equation (69), E{(ξ3i + µ3i)
>Wi(1) − ξ3iWi(0)}, is identified.

Therefore, the average direct effect is identified given the two sensitivity parameters, ρt and σ, and so

is the average causal mediation effect, which can be obtained by subtracting the average direct effect

from the average total effect. 2

A.4 Proof of the Identification of the Causal Mediation Effect Specific to the Path

T → W → Y

First, note that the population average of the path-specific effect in equation (39) can be written using

the model parameters given in equations (28) and (29) as,

χ̄(t) = E{(ξ3i + tµ3i)
>(Wi(1)−Wi(0))} (75)

Now, following the same argument as in Appendix A.3, we can show that under Assumption 2 this

expectation can be written as a function of identified model parameters,

E{(ξ3i + tµ3i)
>(Wi(1)−Wi(0))} = (ξ3 + tµ3) {E(Wi | Ti = 1)− E(Wi | Ti = 0)} . (76)
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2

A.5 Proof of the Identification of the Average Direct Effect given ρt,z and σ under

the Parallel Encouragement Design

The expression for the average direct effect in equation (54) can be derived as follows,

ζ̄(t, z) = E {β3i + κiMi(t, z)}

= β3 + E(κi)E(Mi(t, z)) + Cov(κi,Mi(t, z))

= β3 + (α2 + β2t+ λz + θtz)κ+ ρt,zσ
√
V(Mi | Ti = t, Zi = z),

where the first equality follows from equation (45) and the last equality from equation (53) and the

fact that both Ti and Zi are randomized. Then, the expression for the average causal mediation

effect in equation (55) can be derived by substituting the above expression to the following equality:

δ̄(t, z) = τ̄ − ζ̄(1− t, z). 2
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