
MIT Open Access Articles

Open Source Architecture: An Exploration of
Source Code and Access in Architectural Design

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Vardouli, Theodora, and Leah Buechley. “Open Source Architecture: An Exploration of
Source Code and Access in Architectural Design.” Leonardo 47, no. 1 (February 2014): 51–55. ©
2014 ISAST

As Published: http://dx.doi.org/10.1162/LEON_a_00470

Publisher: MIT Press

Persistent URL: http://hdl.handle.net/1721.1/85899

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/85899

©2014 ISAST   doi:10.1162/LEON_a_00470	 LEONARDO, Vol. 47, No. 1, pp. 51–55, 2014       51

Theodora Vardouli (researcher), Design and Computation, Department of Architecture,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-
4307, U.S.A. E-mail: <thvard@mit.edu>.

Leah Buechley (educator), Massachusetts Institute of Technology, Department of Media
Arts and Sciences (Media Lab), 77 Massachusetts Avenue, Cambridge, MA 02139-4307,
U.S.A. E-mail: <leah@media.mit.edu>.

See <www.mitpressjournals.org/toc/leon/47/1> for supplemental files associated with this
issue.

g e n e r a l a r t i c l e

Open Source Architecture:
An Exploration of Source Code
and Access in Architectural Design

Theodora Vardouli 	
and Leah Buechley

Open Source Everything
Increasing technological literacy, the popularization of hack-
ing and do-it-yourself (DIY) and the growth of creative online
communities have destabilized traditional models of design.
The notion of “access” (to information, tools, designs, etc.)
and models of production based on networks of collaborat-
ing individuals have become central discursive axes in diverse
fields of human activity. These discussions are pragmatic, yet
also vested with a utopian character, linking rhetoric of “de-
mocratization” and user empowerment to visions of decentral-
ization and personal creativity.

Free/Libre, Open Source Software (FLOSS) [1] exempli-
fies both a new model of production and a social vision [2],
building on the emancipatory potential of non-hierarchical
and egalitarian production where individuals and collectives
can access, modify and distribute the technologies they utilize.
Denoting both a pragmatic organizational model and an ideo-
logical position, the ideas and practices of FLOSS have now
transcended the world of software and are gaining ground in
the collective imaginary. The alleged Linus Torvalds quote
“The future is open source everything” [3] has become the
impetus for a common prospective endeavor.

The growing wave of translations and interpretations of
the tools, practices and concepts of FLOSS across different
domains illustrates the evocative power of the phrase open
source and its positive connotations as a brand. In most appro-
priations, the phrase drifts away from its initial meaning and
functions as a metaphor that is used either to label existing
practices or to motivate explorations of new ones. According
to social scientist Dale Bradley, the cross-disciplinary use of
open source operates primarily at a symbolic level. He argues
that the phrase is used as a synonym for “open,” to suggest
a more horizontal, inclusive and participatory approach to
design and production:

It is the anarcho-utopian element of FLOSS that is most fre-
quently cited as a model to be emulated and/or adapted to
broader social formations and practices. FLOSS is therefore as

much about anarcho-utopianism as it
is about programming, because what
marks FLOSS as different from tradi-
tional software development is not a
new technical practice—coding lan-
guages remain largely unchanged—
but a new social practice of software
production, distribution, and use [4].

Free Software pioneer Richard
Stallman strongly criticizes this
metaphoric use. He argues that the
FLOSS ideology and methodology
are software-specific:

The term “open source” has been further stretched by its ap-
plication to other activities, such as government, education, and
science, where there is no such thing as source code, and where
criteria for software licensing are simply not pertinent. The only
thing these activities have in common is that they somehow invite
people to participate. They stretch the term so far that it only
means “participatory” [5].

Stallman’s call for caution is inscribed within his broader
criticism of popular misunderstandings of the phrase open
source, which obscure its ideological orientation and specificity
of practices [6]. The first cause of this confusion is the obfusca-
tion of the philosophical differences between “free” and “open
source.” Although the words are often popularly assumed to
be synonymous or interchangeable, there is a distinct differ-
ence between the socialist orientation of Richard Stallman’s
Free Software and the libertarian approach of Eric Raymond’s
Open Source Initiative (OSI) [7]. Stallman argues that the
freedom to access, share and modify software’s source code
should be a fundamental human right. On the other hand,
Raymond and the OSI adopt a utilitarian, business-oriented
approach, arguing that open source practices enable faster
and better software development [8]. This distinction is often
overlooked as open source rhetoric migrates to different do-
mains. In these cross-disciplinary appropriations, the term is
used loosely to communicate a desire for openness, collabora-
tion and participation.

As open source rhetoric informs and inspires new cultures
of production and use [9], it is important to question when
and where its ideas and practices can be reasonably applied.
As Stallman laments, in many cases the phrase open source is
used opportunistically for its positive cultural connotations,
with little consideration of its actual meaning. In particular,
the absence of source code—or an analogous entity—in many

a b s t r a c t

The term open source is
increasingly applied to architec-
ture, yet there is little consensus
about what it means in this con-
text. This paper explores how
different literal and metaphoric
interpretations of the “access
to source code” principle, set
by the founders of the Free
and Open Source Software
movements, are being applied
to architecture. The authors
explore several challenges that
have arisen in the translation
of open source rhetoric from
cyberspace to architectural
space and discuss paths for
new conceptual and program-
matic agendas promoting user
empowerment and democratiza-
tion in architectural design.

52       Vardouli and Buechley, Open Source Architecture

of the disciplines that adopt open source
rhetoric can lead to hollow, even mean-
ingless, appropriations. Another point of
controversy is the common assumption
that “open source” is synonymous with
“empowering” or “democratizing.” It is
not clear that this is the case, even in the
realm of software.

In this article we focus on the trans-
latability of “open source” to the field
of architecture. Our inquiry revolves
around three main questions: What is
source code in architecture? What does
or should “access to the source code”
(and/or “accessibility”) in architecture
mean? How can an “open” architectural
process be conceptualized based both
on the ideas, practices and critiques of
FLOSS and on longstanding discourses
in architectural theory?

Open Source Architecture
Today
The recent apparition of the term open
source architecture in architectural dis-
course [10] suggests the possibility of
combining advances in design and fab-
rication technologies with the ideas and
practices of open source to reframe
architectural design as a collective en-
deavor. The sphere of architectural
practices that adopts the open source
metaphor is non-homogenous; it con-
tains discourses that range from a new
kind of technological vernacular (e.g.
“Architecture for Humanity” [11]) to
hacktivism (e.g. “Hackitectura” [12])
and from a revisiting of old visionaries
such as Christopher Alexander (“P2P Ur-
banism” [13]) to discussions of efficiency
and mass customization (House_n [14]).
While in some cases—such as the “1%
Program” by Public Architecture [15]
or the “Open Architecture Network”
[16] by Architecture for Humanity—the
model engages architects in collective
authorship of architectural projects, the
discourse on “open source architecture”

also brings longstanding questions about
the role of the user in the architectural
design process to the surface.

The vision of a user-centered architec-
ture, which has been revived by recent
cyber-cultural discussions of democrati-
zation, has rich historical precedence.
The employment of computation as a

means to empower non-experts to de-
sign their own environments without
the mediation of the architect was a
highly popular vision in the 1960s and
the 1970s. Designers and theorists, in-
cluding Hungarian-born architect Yona
Friedman, U.S. designer Christopher
Alexander, Nicholas Negroponte and
the Architecture Machine Group at the
Massachusetts Institute of Technology
(MIT), Dutch architect John Habraken,
and many others [17], presented a num-
ber of proposals for participatory design
systems that seem highly relevant today.

The neologism open source architecture
is emerging as a broad and somewhat in-
coherent bricolage of these unfulfilled
visions of technology-mediated partici-
patory design with the pragmatic and
ideological perspectives of FLOSS. The
following definition by Carlo Ratti et al.,
recently published in Domus magazine, is
an illustrative example:

Open Source Architecture (OSArc) is
an emerging paradigm describing new
procedures for the design, construction
and operation of buildings, infrastruc-
ture and spaces. Drawing from refer-
ences as diverse as open-source culture,
avant-garde architectural theory, science
fiction, language theory, and others, it
describes an inclusive approach to spa-
tial design, a collaborative use of design
software and the transparent operation
throughout the course of a building and
city’s life cycle [18].

This quote positions open source ar-
chitecture at the intersection of the his-
torically rich discourse on user-driven
design and the growing open source cul-
ture. The ambiguity and breadth of this
definition are reminiscent of Stallman’s

criticism about the equation of “open
source” with “participatory” [19]. This
invites contemplation of whether open
source architecture is merely an empty
label or whether it characterizes a coher-
ent and distinct effort to bring about and
make sense of paradigmatic changes to
the discipline of architecture.

Source Code and
Access in Software
In software, source code can be de-
scribed as a “fully executable descrip-
tion of a software system” [20]. It is a
set of instructions that can be executed
into a software application. The FLOSS
definitions revolve around the idea that
the source code is open to the public do-
main so that users can freely “run, copy,
distribute, study, change and improve
the software” [21]. The principle of ac-
cessibility, which ensures the meaningful
character of these essential freedoms, is
contingent on specific design require-
ments with which a program must com-
ply in order to be characterized as “free”
or “open source”:

The principle of transferring control
to the user, however, does not only rely
on the act of giving them access to the
source code, but implies that the code
itself is actually accessible (i.e. legible
and not obfuscated) [22].

In the FLOSS community, the notion
of accessibility refers to the direct link
between the source code, in a legible
and editable format, and the outcome
of its execution. This ensures that access
to the source code offers full control of
the product (software) and allows for its
study and modification. These principles
are legally enforced through licenses
(e.g. the GNU General Public License
[23]), which are embedded in FLOSS
source code and require individuals who
use and modify code to share their new
contributions.

In FLOSS, although the transmitter
(programmer) and the source code are
meticulously discussed in relation to the
notion of accessibility, there is little refer-
ence to the user. The implicit expectation
is that the user is an expert programmer,
capable of studying, understanding and
modifying source code. This points to a
tension between the notion of accessibil-
ity as it is currently used by the FLOSS
community and a more popular notion
of accessibility as user empowerment—
accessibility as the enabling of users with
multiple levels of expertise to re-author
products according to their needs and
desires.

There is a distinct difference
between the socialist orientation of
Richard Stallman’s Free Software
and the libertarian approach of Eric
Raymond’s Open Source Initiative.

Vardouli and Buechley, Open Source Architecture     53

Source Code in
Architecture
If providing “access to the source code”
[24] in “the preferred form of the work
for making modifications to it” [25] is
one of the fundamental principles of
FLOSS ideas and practices, then it is
important to explore what source code
means in the context of architectural de-
sign and what access to source code in a
form suitable for making modifications
entails.

A literal application of FLOSS prac-
tices to architecture would define open
source architecture as an open sharing of
the digital files that encode information
on built artifacts. It can be argued that
the source code → compiler → software
product workflow finds its architectural
analog in the procession from building
information (drawings, models) to the
mediator (contractor, builder) and to
the final outcome (building).

In one vision of architecture’s future,
this analogy acquires accelerating force
and relevance as digitization enables
building processes that are increasingly
specified by software. Building Informa-
tion Modeling (BIM), which is currently
gaining ground in architectural practice,
is designed to concentrate and manage
all information required to construct
a building in one parametric and hier-
archical digital model. The transition
from traditional architectural drawings
to a virtual representation of the build-
ing is assumed to remove a large part
of the ambiguity of the transition from
source code (building representation) to
end product (building). In this scenario,
contractors and builders are assumed to
be mere executors of the instructions
encoded in the BIM. The abundance of
information in a BIM, from assembly in-
structions to lifecycle management data,
makes the vision of shareable building
information and the streamlining be-
tween design and construction appear
more realizable.

In the ultimate realization of the lit-
eral application of the software work-
flow to architecture, machines replace
contractors and builders. Large-scale
digital fabrication technologies (e.g.
building-scale 3D printers) enable an
unambiguous translation of the digital
description of a building to the artifact
itself. The fabrication machines take on
the role of compiler, exactly translating
digital architectural designs into build-
ings. This brings to mind Clay Shirky’s
characterization of the physical aspects
of construction as “simple executional

steps at the end of a design manipulation
process” [26].

However, these literal interpretations
are vulnerable on several fronts. In prac-
tice, every step of the construction pro-
cess—the translation of drawings and
models into buildings—is vested with
ambiguity and involves human interpre-
tation, which is sensitive to physical con-
text, personal skill and countless other
variables. In his essay “Mapping the Un-
mappable” [27], Stan Allen likens build-
ers to musicians: The score (drawing)
offers instructions on how a piece will
be performed but cannot determine the
outcome, which is always dependent on
the players.

Moreover, as long as humans are real-
izing designs, it is questionable whether
additional information, such as informa-
tion provided by BIMs, increases the pre-
dictable constructability of designs. Field
studies in professional practice [28]
demonstrate that the perceived complex-
ity of a design stems from the translation
of design information to construction
information, which in turn is contingent
not on the quantity of information but
on its interpretation.

Finally, the impulse to objectify and dis-
ambiguate architecture by re-defining it
as pure information processing is highly
controversial. Although ambiguity is a
challenge for the sharing and repurpos-
ing of an architectural design by differ-
ent actors, it is commonly acknowledged

as a valuable source of novelty, intuition
and creativity [29]. Alternative compu-
tational design theories, such as shape
grammars, challenge the equation of
computation with rationalization and ex-
plicitness and assert design as a dynamic
and improvisational process [30]. These
approaches reject the idea that there is
an isolatable, “objective” component in
an architectural design that can be sepa-
rated from the process of making. Inter-
pretation and ambiguity are celebrated
as the elements that allow different users
to see different things in the same design

representations, therefore leading to an
explosion of creative repurposing. This
attitude actively subverts the FLOSS prin-
ciple of a one-to-one translation between
code and product and welcomes the cre-
ative potential of the infinite number of
these translations, according to the per-
sonal assumptions and ways of seeing of
the different users/designers.

The inherent ambiguity in the pro-
cessing of design information challenges
the assumption that the sharing of design
files (source) is enough to provide users
with access to the architectural designs
themselves (product). In contrast to
software design, where there is a direct
transition of code to product, architec-
tural processes involve numerous levels
of interpretation between a representa-
tion of a design and its realization. While
the open sharing of architectural design
files is possible [31] and may support
new modes of collaborative design in
architecture, it is unclear whether it
supports democratization. Arguably,
more meaningful accessibility is better
supported through paradigms of open-
ness that have historical precedents in
architecture and could be fruitfully inte-
grated with more literal interpretations
of “open source.”

Access in Architecture
This leads to our second question: What
does and should accessibility mean in

(open source) architectural design and
how does this relate to the level of exper-
tise of the user-designers involved? There
is a distinctive difference between the
notion of empowerment in the worlds
of design and open source software. In
FLOSS rhetoric, the empowered user is
an elite programmer, while in discourses
of design democratization the empow-
ered user is a non-expert. Arguably, in
order to fully democratize and “open”
architecture, it is important to devise
ways to engage the larger public in the
processes of design.

The absence of source code in
disciplines that adopt open source
rhetoric can lead to hollow, even
meaningless, appropriations.

54       Vardouli and Buechley, Open Source Architecture

In software, the language of the design
medium and the language of the end
product are the same—programmers use
software to generate software. In the case
of architecture, complexity increases. To
create a building, one must both be fa-
miliar with the medium in which archi-
tectural designs are encoded (e.g. digital
3D models, BIMs) and have the expertise
and resources that are required in order
to interpret this information. Further-
more, this entire process has to comply
with the constraints imposed by building
codes.

The vision of empowering users/in-
habitants to operate within these com-
plexities has played a central role in
computational design research. In the
early computational era (1965–1975),
computer aids to design were primarily
introduced for their ability to encode all
necessary design constraints and ensure
the production of adequate solutions.
In his 1970 book The Architecture Machine
[32], Negroponte framed this condition
as initiating a “new humanism” enabled
by machines, reconciling local desires
with global constraints. The discourse of
enabling the user/inhabitant to become
a user/architect producing customized
and responsive designs was soon extrapo-
lated to the vision of complete removal
of the professional architect from the
process of design. This transition pro-
duced the “Design Amplifier” prototypes
discussed in Negroponte’s 1975 Soft Ar-
chitecture Machines [33]. These personal
“design partners” present remarkable
affinities with the current research of
MIT House_n’s Open Source Building
Alliance (OSBA), which proposes “intel-
ligent” design engines enabling users to
produce their own design configurations
within a framework of design constraints
encoded in their computational struc-
tures [34].

The concept of a platform, physical or
computational, that allows for intuitive
local solutions within a global framework
of constraints constitutes a persistent
paradigm of computationally mediated
user empowerment in architecture. It
can be traced from the pre-computa-
tional visions of the “megastructure”—a
resilient structural framework in which
users would have the ability to plug in
ephemeral dwellings reflecting their
ever-changing needs and desires [35]—
to the early visions of computer-aided
participatory design.

The ability to manifest constraints in
interactive machines produced a series
of design process models that, their cre-
ators postulated, would not only enable

users to build buildings but would also
help them become capable designers. In
Negroponte’s or Yona Friedman’s pro-
posals, the machine provides users with
feedback allowing them to understand
the implications of different design de-
cisions for themselves and their commu-
nity; thus users would gradually develop a
level of design intelligence [36].

These examples do not exhaust the
space of computer-aided participatory
design but rather direct attention to a
series of computational prototypes de-
signed with the objective of empowering
users to participate in design processes
and collectively author the spaces they
inhabit. Those involved in current ini-
tiatives such as House_n and other
commercially available software for user-
driven design are revisiting this approach
to user-generated design [37].

However, in all these prototypes,
implementations and visions, the user
acquires access to design via a black
box—a design software environment—
that embodies its author’s assumptions,
knowledge and expertise. Users do not
have the ability to access or modify this
black box. Although pragmatically these
platforms for participatory design can be

argued to “open” design to non-expert
users, they are themselves closed and in-
accessible.

This tension suggests that we combine
the ideas and practices of FLOSS with es-
tablished frameworks of computer-aided
participatory design to produce a hybrid
structure that contains multiple sources
and multiple layers of openness and ac-
cessibility. A fruitful approach might ex-
plore FLOSS’s dictate that source code
be provided in “the preferred form of the
work for making modifications” [38], ac-
knowledging that the preferred format
for experts will be different from that for
novices. Different formats—different lev-
els of abstraction—provide accessibility
to different kinds of users.

We therefore suggest to view the proj-
ect of open sourcing architecture as in-
herently interdisciplinary, necessitating

the collaboration of people with differ-
ent skills and expertise. Taking the idea
of open source architecture to its con-
ceptual limits, one can imagine a system
wherein groups and individuals have ac-
cess to user-friendly design environments
that give them control of the spaces they
inhabit while also having access to the
constraints and assumptions that un-
derlie these environments. The ques-
tions of what the design characteristics
of this platform/model should be and
what technologies it would require can
mobilize a rethinking of architecture’s
relation to the technology and social dis-
courses of our time.

Conclusions
The phrase open source is being employed
to rethink (and rebrand) the way that
knowledge and artifacts are produced,
distributed and used in architecture.
Without dismissing the creative poten-
tial of misunderstandings, we feel it is
valuable to look critically at the transla-
tional looseness that is often exhibited
in the appropriation of open source in
fields beyond software. In focusing on
the recent emergence of the term open

source architecture, we seek to frame the
phrase as a set of practices that integrate
established visions of user empowerment
and democratization with the ideas and
practices of the open source software
movement.

The metaphoric and literal meanings
of “access to the source code” in archi-
tecture expose a tension between the
informational model of software devel-
opment—wherein the transition from
code to product is linear and predict-
able—and the inherent ambiguity in the
interpretation of building information.
Within this tension lie different defini-
tions of accessibility, based either on ef-
forts to eliminate ambiguity through the
“objectification” of parts of the design
process or on an alternative model that
asserts this ambiguity as an inextricable
part of the design process.

The impulse to objectify and
disambiguate architecture by
re-defining it as pure information
processing is highly controversial.

Vardouli and Buechley, Open Source Architecture     55

User empowerment is a necessary
condition for meaningful accessibility.
Looking at past and present computa-
tional platforms for user empowerment
in architecture, we argue that their opac-
ity and the constraints they encode run
counter to open-source principles. As
such, we recommend a model of layered
openness in architectural code. This type
of model for architectural code has the
potential to help simplify and unify cur-
rently broad and amorphous definitions
of open source architecture.

To conclude, the ideal “open archi-
tecture” requires more than openly pub-
lishing architectural designs; it demands
a rethinking of the discipline’s theory
and practice—a re-diagramming of its
processes and the roles of the subjects
involved in them. A double inquiry into
open source architecture, both from the
perspective of a FLOSS scholar and an
architectural historian, can expose the
intricacies of the integration of ideas and
philosophies from these disciplines and
engender new frameworks for architec-
tural design.

References and Notes

Unedited references as provided by the authors.

1. The European Commission adopted this acronym
in 2002 as a replacement of the initial FOSS (F/
OSS), which did not include the Spanish term libre.

2. D. Bradley, “The Divergent Anarcho-utopian Dis-
courses of the Open Source Software Movement,”
Canadian Journal of Communication, Vol. 30, No. 4
(2005): 585–611.

3. The quote “The future is open source everything”
can be found in multiple online sources as attributed
to Linus Torvalds, the inventor of Linux; however its
provenance remains unconfirmed.

4. Bradley [2] p. 588.

5. R. Stallman, “Why Open Source Misses the Point
of Free Software,” <www.gnu.org/philosophy/open-
source-misses-the-point.html>.

6. Stallman [5].

7. Bradley [2] p. 587.

8. M. Tiemann, “Future of Cygnus Solutions: An
Entrepreneur’s Account,” in C. DiBona, S. Ockman
and M. Stone, eds., Open Sources: Voices from the Open
Source Revolution (Sebastopol, CA: O’Reilly & Associ-
ates, 1999).

9. See, for example, C. Thompson, “Build it. Share
it. Profit. Can Open Source Hardware Work?” (2008)
<www.wired.com/print/techbiz/startups/maga-
zine/16-11/ff_openmanufacturing>.

10. One of the first discussions of the concept of
“open source architecture” was in D. Kaspori, “A
Communism of Ideas: Towards an Architectural
Open Source Practice,” Archis 3 (2003): 13–17.

11. “Architecture for Humanity,” <http://architec
tureforhumanity.org/>.

12. “Hackitectura.net | Arquitectos, Programadores y
Artistas Proyectando en la Convergencia de Espacio
Fisico y Digital,” <http://hackitectura.net/blog/>.

13. N.A. Salingaros, P2P Urbanism (2010) <http://
zeta.math.utsa.edu/~yxk833/P2PURBANISM.pdf>;
“Peer to Peer Urbanism,” <http://p2purbanism.
blogspot.com> and <http://p2pfoundation.net/
Peer-to-Peer_Urbanism>.

14. “MIT House_n,” <http://architecture.mit.edu/
house_n/>.

15. “The One Percent Pro Bono Design Program of
Public Architecture,” <www.theonepercent.org/>.

16. “Worldchanging | Evaluation + Tools + Best Prac-
tices,” <http://openarchitecturenetwork.org/>.

17. A major event that brought together seminal
figures who were at the time active in participatory
design was the 1971 Conference on “Design Partici-
pation,” organized by the Design Research Society
in Manchester.

18. C. Ratti et al., “Open Source Architecture,” Do-
mus, Vol. 948 (June 2011) <www.domusweb.it/en/
op-ed/open-source-architecture-osarc-/>. This ar-
ticle is also the basis for the current Wikipedia defi-
nition of “Opensource Architecture.”

19. “What is free software?” <www.gnu.org/philoso
phy/free-sw.html>.

20. M. Harman, “Why Source Code Analysis and
Manipulation Will Always Be Important.” 10th IEEE
International Working Conference on Source Code Analysis
and Manipulation (Timişoara, Romania, 12–13 Sep-
tember 2010).

21. See Ref. [19].

22. See Ref. [19].

23. “GNU General Public License,” <www.gnu.org/
copyleft/gpl.html>.

24. See Ref. [19].

25. See Ref. [23].

26. C. Shirky, “Generalizing peer production into
the physical world” (2007) <http://finance.groups.
yahoo.com/group/decentralization/message/
6967>.

27. S. Allen, “Mapping the Unmappable: On Nota-
tion,” in S. Allen and D. Agrest, Practice: Architecture,
Technique and Representation (London: Routledge,
2006).

28. J.M. Lobel, Building Information: Means and
Methods of Communication in Design and Construction,

Smarchs Thesis (Cambridge, MA: MIT Department
Of Architecture, 2008).

29. An extensive discussion on the importance of am-
biguity in design can be found in G. Stiny, “New Ways
to Look at Things,” Environment and Planning B: Plan-
ning and Design (1998): 68–75 (Anniversary Issue).

30. See, for example, G. Stiny, Shape: Talking about
Seeing and Doing (Cambridge, MA: MIT Press, 2006).

31. For example, the practices of architectural design
file sharing have been extensively implemented by
the Open Architecture Network. See “Find current
projects | Worldchanging,” <http://openarchitec-
turenetwork.org/projects/results>.

32. N. Negroponte, The Architecture Machine (Cam-
bridge, MA: MIT Press, 1970).

33. N. Negroponte, Soft Architecture Machines (Cam-
bridge, MA: MIT Press, 1970).

34. K. Larson et al., “Open Source Building: Rein-
venting Places of Living,” BT Technology Journal 22,
No. 4 (2004).

35. An indicative example of the megastructure as a
locus of design participation can be found in Yona
Friedman’s influential “Mobile Architecture” mani-
festo. See Y. Friedman, L’Architecture Mobile (Brussels:
Centre d’études architecturales, 1968).

36. These “machines” are Negroponte’s “Design Am-
plifier” and Friedman’s “FLATWRITER,” described
in Soft Architecture Machines and in Friedman’s Toward
a Scientific Architecture. See Negroponte [33] and Y.
Friedman (transl. Lang C.) Toward a Scientific Archi-
tecture (Cambridge, MA: MIT Press, 1975).

37. The two most common types of such tools are
“configurators,” which guide users through different
options in order to configure a design (for example
see Blu Homes, <www.bluhomes.com/>) and “design
recommendation engines,” whereby design solutions
are matched to user profiles (for example, see the
Home Genome Project at MIT, <http://cp.media.
mit.edu/research/77-home-genome-project>).

38. See Ref. [23].

Manuscript received 5 March 2012.

Theodora Vardouli is an architect and re-
searcher currently pursuing a PhD in Design
and Computation at the MIT Department of
Architecture. Through writings, projects and
teaching, she traces relationships between de-
sign democratization and computation from
the 1960s to the present.

Leah Buechley is an associate professor at the
MIT Media Lab, where she directs the High-
Low Tech research group. The High-Low Tech
group explores the integration of high and low
technology from cultural, material and prac-
tical perspectives, with the goal of engaging
diverse groups of people in developing their
own technologies.

