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HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES AND
WATER/VOLATILE-DOMINATED SUPER-EARTHS

Björn Benneke and Sara Seager
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; USA

Abstract

One of the most profound questions about the newly discovered class of low-density super-Earths is
whether these exoplanets are predominately H2-dominated mini-Neptunes or volatile-rich worlds with
gas envelopes dominated by H2O, CO2, CO, CH4, or N2. Transit observations of the super-Earth
GJ 1214b rule out cloud-free H2-dominated scenarios, but are not able to determine whether the lack
of deep spectral features is due to high-altitude clouds or the presence of a high mean molecular mass
atmosphere.

Here, we demonstrate that one can unambiguously distinguish between cloudy mini-Neptunes and
volatile-dominated worlds based on the differences in the wing steepness and relative depths of water
absorption features in moderate-resolution NIR transmission spectra (R ∼ 100). In a numerical
retrieval study, we show for GJ 1214b that an unambiguous distinction between a cloudy H2-dominated
atmosphere and cloud-free H2O atmosphere will be possible if the uncertainties in the spectral transit
depth measurements can be reduced by a factor of ∼ 3 compared to the published HST WFC3 and
VLT transit observations by Berta et al. (2012) and Bean et al. (2010). We argue that the required
precision for the distinction may be achievable with currently available instrumentation by stacking
10− 15 repeated transit observations. We provide a scaling law that scales our quantitative results to
other transiting super-Earths and Neptunes such as HD 97658b, 55 Cnc e, and GJ 436b.

The analysis in this work is performed using an improved version of our Bayesian atmospheric
retrieval framework. The new framework not only constrains the gas composition and cloud/haze
parameters, but also determines our confidence in having detected molecules and cloud/haze species
through Bayesian model comparison. Using the Bayesian tool, we demonstrate quantitatively that the
subtle transit depth variation in the Berta et al. (2012) data is not sufficient to claim the detection of
water absorption.

1. INTRODUCTION

Super-Earth exoplanets, with masses between 1 and 10
Earth masses, lie in the intermediate mass range between
terrestrial planets and gas and ice giants in the solar sys-
tem. Compelling questions arise as to the composition
and nature of these objects and whether they are capa-
ble of harboring life. According to theoretical studies,
(e.g., Seager et al. 2007; Rogers & Seager 2010a; Nettel-
mann et al. 2011) many super-Earth exoplanets show a
bulk density that is high enough to require a larger ice
or rock fraction than the solar system ice giants, but far
too low to be explained by an entirely Earth-like rocky
composition. Rogers & Seager (2010b) showed that their
bulk density may, instead, be explained by either planets
that have accreted and maintained a thick H2/He en-
velope atop an ice and rock core or, alternatively, by a
new class of “water worlds” which contain a large frac-
tion of water or ices in their interior and are surrounded
by a dense water vapor atmosphere (Kuchner (2003) and
Léger et al. (2004)).

One way of answering questions about the nature and
habitability of super-Earths is to identify their atmo-
spheric thicknesses and molecular compositions by ob-
serving their transmission and/or thermal emission spec-
tra. Miller-Ricci et al. (2009) showed that cloud-free,
hydrogen-dominated atmospheres would display absorp-
tion features in the transmission spectrum that are sev-
eral times larger than those expected for atmospheres
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dominated by water vapor, CO2, CO, CH4, or N2 due to
the lower mean molecular mass and resulting larger scale
height.

Many observational attempts to detect an atmosphere
around the super-Earth GJ 1214b and characterize its
composition have been made, but the individual obser-
vational data sets were found to be insufficient to identify
the presence of atmospheric features to within observa-
tional uncertainty (Bean et al. 2010, 2011; Désert et al.
2011; Carter et al. 2011; Crossfield et al. 2011; Berta
et al. 2011, 2012; de Mooij et al. 2012; Teske et al. 2013).
An initial finding of a difference in the transit depths be-
tween the J and Ks band by Croll et al. (2011) could not
be confirmed by Bean et al. (2011).

The absence of deep features in the transmission spec-
trum of GJ 1214b rules out the presence of a cloud-free
hydrogen-dominated atmosphere, but the obtained ob-
servational data were shown to be compatible with high
mean molecular mass atmospheres, such as water vapor-
dominated atmospheres, as well as with a hydrogen-
dominated atmosphere in the presence of high altitude
clouds (Berta et al. 2012). The interpretation of the ob-
servational data for GJ 1214b revealed the limitations
of the absorption feature depths as a measure of the at-
mosphere’s hydrogen content in the presence of clouds.
Theoretical studies of the atmosphere loss were con-
ducted attempting to understand the stability of differ-
ent atmospheres on highly irradiated super-Earths (e.g.,
Heng & Kopparla 2012; Fortney et al. 2013; Kurokawa &
Kaltenegger 2013). It appears inevitable, however, that
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eventually we need observational proof to understand or
confirm the nature of low-density super-Earths.

For general atmospheres that may contain clouds, Ben-
neke & Seager (2012) showed that the unambiguous ef-
fect of the mean molecular mass µave on the transmission
spectrum is not the overall depths of the molecular fea-
tures, but the gradient dRP,λ/d(lnσλ) with which the ob-
served planetary radius RP,λ changes as the atmospheric
opacity σλ changes across the spectrum:

µave =
kBT

gp

(
dRP,λ

d(lnσλ)

)−1

×
(

1± δT

T

)
. (1)

The surface gravity gp can be determined directly
from the transit light curve and radial velocity measure-
ments (Winn 2011), kB is Boltzmann’s constant, and
the atmospheric temperature T can be approximated by
the equilibrium temperature or modeled by a radiative-
convective model. The term (1± δT/T ) accounts for the
inherent uncertainty on the mean molecular mass due to
the uncertainty, δT , in estimating the temperature T at
the planetary radius RP,λ.

In practice, an estimate of the mean molecular mass
can be determined at visible or NIR wavelengths by mea-
suring the steepness of molecular feature wings or com-
paring the relative transit depths in two or more absorp-
tion features of the same molecule. The decrease in opac-
ity σλ from the center of the absorption features to wing
can be modeled based on molecular line list of the ab-
sorber.

Measuring the slope of gaseous Rayleigh scattering
signature at UV/visible wavelengths also provide con-
straints on the mean molecular mass; however, cloud
and haze opacities can mask the signature of gaseous
Rayleigh scattering and the distinction between a shal-
low slope due to a high mean molecular mass or clouds
may be difficult.

Equation (1) demonstrates that, if sufficient observa-
tions of the transmission spectrum are available, the
mean molecular mass can determined to the same rel-
ative precision as that at which we are able to estimate
the atmospheric temperature T . Since the mean molec-
ular mass varies by a factor of ∼ 8 or more between
hydrogen-rich atmospheres and atmospheres dominated
by water vapor or other volatiles, we can distinguish be-
tween cloudy hydrogen-rich and water-rich atmospheres
even if the temperature T is known only with an uncer-
tainty of several tens of percent.

The ability to measure the mean molecular mass at
NIR wavelengths is of particular interest for the near-
term characterizations of super-Earths because planets
orbiting small M-dwarfs are the ones with the strongest
transit signatures and are most amenable to study at in-
frared wavelengths due to the low stellar flux of M-dwarfs
at short wavelengths. In this work, we demonstrate using
quantitative simulations that NIR transit observations
near the peak of the stellar spectrum of M-stars provide a
practical means to distinguish between cloudy hydrogen-
dominated atmospheres and atmospheres dominated by
water vapor or other volatiles. We determine what preci-
sion in the transit depth measurements is required (1) to
detect the absorption features in the transmission spec-
trum of a water-dominated super-Earth and (2) to un-
ambiguously distinguish between water-dominated atmo-

spheres and hydrogen-dominated atmospheres based on
the different wing steepnesses of the water absorption
bands.

The paper outline is as follows. In Section 2, we de-
scribe the Bayesian framework used to identify the pres-
ence of molecular species, quantify the statistical signif-
icances of molecular detections, and constrain the abun-
dance of the molecular species in the atmosphere. Sec-
tion 2 presents a quantitative picture of what observa-
tions and noise levels are required for the super-Earth
GJ 1214b to detect the presence of water vapor with
high confidence as well as to distinguish between cloudy,
hydrogen-dominated atmospheres and water-dominated
atmospheres. In Section 4, we present a retrieval analy-
sis of the spectral observations by HST WFC3 spectrum
of GJ 1214b by Berta et al. (2012). Section 5 provides
a scaling law to scale the quantitative results to super-
Earth and Neptunes such as HD 97658b, 55 Cnc e, and
GJ 436b. We also discuss the near-term feasibility of the
proposed study. Finally, we present our summary and
conclusions in Section 6.

2. METHODS

The main goal of this work is to determine the level of
precision in NIR super-Earth transmission spectra that
is required to unambiguously distinguish between atmo-
spheres dominated by hydrogen/helium and atmospheres
dominated by water vapor or other volatiles such as CO2,
CO, CH4, or N2. We address this question by computing
synthetic transit observations derived from super-Earth
model transmission spectra and analyzing them using a
Bayesian atmospheric retrieval framework.

The Bayesian retrieval method employed in this work
builds upon ideas introduced in Benneke & Seager
(2012), but was extended by a Bayesian model com-
parison framework that enables one to rationally de-
cide which molecular species and types of aerosols are
present in the atmosphere. We employ the nested sam-
pling technique (Skilling 2004; Feroz & Hobson 2008) to
efficiently compute and compare the Bayesian evidences
of retrieval models with different complexities. Once a
retrieval model is identified that is adequate in light of
the data, the constraints on atmospheric parameters are
inferred from the joint posterior probability distribution
obtained as a by-product of the nested sampling calcula-
tion.

2.1. Atmospheric “Forward” Model

We use the 1D exoplanetary atmosphere “forward”
model originally described in Benneke & Seager (2012)
to compute model transmission spectra and synthetic ob-
servations. Our model uses line-by-line radiative transfer
in local thermodynamic equilibrium, hydrostatic equilib-
rium, and a temperature-pressure profile consistent with
the atmospheric composition.

The input to the atmospheric “forward” model is an
adaptable set of free model parameters describing the gas
composition and aerosol properties in the model atmo-
sphere. A difference between this model and the model
used in Benneke & Seager (2012) is that the aerosols
considered in this work encompass small particle hazes
as well as larger cloud particles. Absorption and scat-
tering of the particles are modeled using Mie theory for
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spherical particles (Hansen & Travis 1974). The com-
plex refractive indices of the condensate species Potas-
sium Chloride (KCl) or Zinc Sulfide (ZnS) used in this
work for GJ 1214b are taken from Querry (1987).

Synthetic observations are generated by first specifying
the chemical composition and aerosol opacities of the in-
dividual atmospheric layers. Synthetic observations are
then derived from the model transmission spectra by in-
tegrating the model spectra over flat instrument response
functions with spectral coverage equivalent to the spec-
tral points from the VLT observations by Bean et al.
(2010) and the HST WFC3 observations by Berta et al.
(2012). Gaussian noise ranging from ∼ 180 ppm down to
35 ppm is added to the data to generate synthetic obser-
vations of different precisions.

The two main scenarios we aim to unambiguously dis-
tinguish in this work are water- or volatile-dominated
atmospheres and hydrogen-rich atmospheres with high-
altitude clouds. In addition, we would like to con-
trast these two scenarios from a flat transmission spectra
which would be observed if the planet lacks a gaseous
atmosphere or clouds are present at extremely high al-
titude such that all molecular features are muted. As
representative example for these three scenarios, we se-
lect a cloud-free water-dominated atmosphere composed
(95% H2O + 5% CO2), a methane-depleted solar metal-
licity atmosphere with a cloud deck at 10 mbar, and
a featureless spectrum. The level of the high altitude
clouds in the solar composition scenario is chosen such
that the overall depths of the absorption features resem-
ble that of a cloud-free water-rich atmosphere. Methane
is removed from the atmospheric scenario to demonstrate
that the distinction between water/volatile-dominated
scenarios and hydrogen-dominated scenarios is possible
based solely on the wing steepnesses and relative sizes of
the water features.

The atmospheric scenarios for the synthetic observa-
tions are chosen to be plausible scenarios, but are not
calculated from a fully self-consistent model. The goal
of this work is to demonstrate the retrieval method for
exoplanetary atmospheres for which we do not have a
full understanding of the physical and chemical behavior
prior to the observations.

2.2. Bayesian Atmospheric Retrieval

Atmospheric retrieval aims at solving the inverse prob-
lem of atmospheric “forward” modeling: “Given an ob-
served planetary spectrum, what are the properties of
the planetary atmosphere?” The atmospheric retrieval
problem can be solved using Bayesian parameter esti-
mation by first choosing a retrieval model that defines
the hypothesis space in the form of a set of atmospheric
parameters and then deriving constraints on those pa-
rameters (Benneke & Seager 2012).

In choosing the atmospheric retrieval model, however,
questions arise as to how much complexity and how many
free parameters should be included in the retrieval model.
In this work, we introduce Bayesian model comparison to
determine which molecular gases and types of aerosols
can be inferred from the data and need to be included
in the analysis. The approach enables us to rationally
adapt the complexity of the retrieval model to the avail-
able data. Exquisite observational data with high signal-
to-noise ratio (S/N) and high spectral resolution, as are

currently only available for solar system planets, allow
the inference of the detailed abundance profiles of the
molecular species, the temperature structure, and the
presence of particles in the atmospheres. At lower S/N
and sparse spectral coverage, however, complex models
with large numbers of free parameters would overfit the
available data and introduce strong degeneracies. It is
therefore necessary to adjust the number of free param-
eters in the retrieval model according to the amount and
precision of observational data available.

2.2.1. Bayesian Estimation of Atmospheric Parameters

An atmospheric retrieval model Mi in our Bayesian
framework is defined as a set of atmospheric parameters
θ = [θ1, . . . , θN ] and their joint prior probability distri-
bution π(θ|Mi). The atmospheric parameters considered
in the retrieval models for transmission spectra are the
mole fractions (or volume mixing ratios) of the atmo-
spheric gases, the haze or cloud top pressure, and the
radius at a reference pressure level. Since we generally
have little prior knowledge of the state of the exoplan-
etary atmosphere, we assign non-informative (uniform)
priors to the atmospheric parameters (Table 1). We in-
clude the Planetary Bond albedo as a free parameters to
account for the uncertainty in the temperature structure
introduced by our ignorance about how much of solar
radiation is reflected by the planet.

Once a retrieval model is identified that is adequate
in light of the data, we can infer the constraints on
the model parameters by computing their joint posterior
probability distribution p(θ|Mi,D) (Benneke & Seager
2012). Using Bayes’ Law, we write the posterior distri-
bution of the atmospheric parameters as

p(θ|Mi,D) =
π(θ|Mi)L (D|Mi,θ)

Z (D|Mi)
, (2)

where L (D|Mi,θ) is the likelihood function and
Z (D|Mi) is the Bayesian evidence of the model Mi. The
likelihood function L (D|Mi,θ) is the probability of ob-
serving the data D, given that the atmospheric param-
eters are θ. The likelihood function is modeled using
the atmospheric ”forward” model (Section 2.1). For in-
dependent Gaussian errors in the spectral observations,
the likelihood function is

L (D|Mi,θ) =

N∏
k=1

1

σk
√

2π
exp

{
− [Dk,obs −Dk,model (θ)]

2

2σ2
k

}
,

(3)
where Dk,obs is the k-th observational data point in

the spectrum, Dk,model (θ) is the model prediction for
the k-th data point given a set of atmospheric parame-
ters θ, and N is the total number of data points in the
observed spectrum. The denominator Z (D|Mi) is the
Bayesian evidence and merely a normalization constant
in Equation (2). It is, however, central to Bayesian model
comparison as described next.

2.2.2. Identification of Gases and Aerosols using Bayesian
Model Comparison

One of the questions that arises when interpreting spec-
tra of planetary atmospheres is which molecular species
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Parameter Prior Lower Bound Upper Bound

Planet-to-star radius ratio RP/R∗ Uniform on log-scale RMars/R∗ 1
Centered-log-ratio transform
of mole fractions

ξ Uniform in ξ-space bound by condition that the mole
fractions of all present molecular species

are greater than 1 ppb 1

Cloud-top pressure Psurf Uniform on log-scale 1µbar 100 bar
Planetary Bond albedo AB Uniform 0 1

TABLE 1
Prior probability of atmospheric retrieval parameters. 1The effect of molecular species with mole fractions below 1 ppb

is negligible given currently available observations.

and aerosol types can be inferred from a given data set.
Spectral signatures of molecular gases or aerosols are of-
ten hidden in the noisy observations of exoplanets. In
addition, strong overlap between absorption features of
different molecules and the lack of a flat continuum for
thick atmospheres may further complicate the identifica-
tion of individual gases.

Bayesian model comparison offers a rational way of de-
termining which atmospheric species can be inferred from
the data. It has been widely used in cosmology where
noisy data and little prior knowledge require sophisti-
cated statistical tools (see Trotta 2008; Hobson & Jaffe
2009, for excellent reviews). In the exoplanet context,
Bayesian model comparison was employed by Gregory
(2007) to detect planets in radial velocity data.

In our atmospheric retrieval application, we quantify
our confidence in having detected the presence of a par-
ticular atmospheric constituent m by computing the pos-
terior odds ratio (or Bayes factor) between a simpler re-
trieval model that neglect the presence of the species m
and a more complex retrieval model that includes an ad-
ditional parameter to describe the abundances of the con-
stituent m. If the posterior odds ratio is strongly in favor
of the more complex model, we can safely conclude that
the atmospheric constituent is present.

In practice, the required comparisons for all relevant
atmospheric constituents are achieved by computing the
Bayesian evidence for one retrieval model that covers the
full prior hypothesis space and comparing it to a list of re-
trieval models for which individual molecular species and
types of aerosols were removed from the prior hypothe-
sis space. The approach ensures that a high confidence
in the presence of a particular atmospheric constituent
is reported only if no other constituent in the prior hy-
pothesis space can have resulted in the observed data.

Bayesian evidence— The quantity central to all Bayesian
model comparisons is the Bayesian evidence defined as

Z (D|Mi) =

∫
all θ

π(θ|Mi)L (D|Mi,θ) dNθ. (4)

The Bayesian evidence quantifies the adequacy of a re-
trieval model Mi, specified by a set of N atmospheric
parameters θ = [θ1, . . . , θN ] and their prior probabil-
ity distribution π(θ|Mi), in the light of the observational
data D. Comparing the Bayesian evidences of alterna-
tive retrieval models with parameterizations of lower and
higher complexities enables one to assess which atmo-
spheric constituents and effects are important and which
model complexities ought to be removed.

The underlying idea of the Bayesian model comparison
is thereby that additional complexity of the parameter
space ought to be avoided whenever a simpler model pro-

vides an adequate representation of the data. While it is
obvious that a best fit of a retrieval model with more free
parameters will always be better than (or at least as good
as) the best fit of a model with fewer parameters, the
Bayesian evidence only favors the more complex model
if the improvement in the best fit due to additional pa-
rameters is large enough to overcome the so-called Occam
penalty for the more complex model parameter space.

Posterior odds ratio / Bayes factor— Using Bayes’ law we
can express the posterior odds ratio between two alter-
native models M“m present” and as M“m not present”

p (M“m is present”|D)

p (M“m not present”|D)
= Bm

p (M“m is present”)

p (M“m not present”)
(5)

where the Bayes factor Bm is the ratio of the model’s
Bayesian evidences

Bm =
Z (D|M“m present”)

Z (D|M“m not present”)
, (6)

and p (M“m present”) /p (M“m not present”) is the prior
odds ratio, which we assume to be 1 in the absence of
prior information.

The posterior probability for the present species m is

p (“m is present”|D) =
Bm

1 +Bm
. (7)

The Bayes factor Bm plays a pivotal role in a Bayesian
model comparison. A value of Bm > 1 means that the
data provide support in favor of the presence of the at-
mospheric constituent m. Bayes factors are generally
interpreted against the Jeffrey scale (ref). Values of the
odds of 3:1, 12:1, and 150:1 represent weak, moderate,
and strong support in favor of the presence of additional
molecules (Table 2).

Calibration between Bayesian and Frequentist Detections—
The increase in availability of computational resources
over the last decades has led to a widespread of Bayesian
techniques in the analysis of astrophysical observations.
Parameter estimation problems are frequently solved in
a Bayesian framework using Markov Chain Monte Carlo
(MCMC) techniques. Yet, the significance of detections
of atmospheric absorption features is generally still re-
ported in terms of the frequentist measures of confidence
such as the p-value or the “sigma”-significance. As a re-
sult, many scientists are accustomed to the interpretation
of sigma significance, but not Bayes factors.

A useful calibration between the Bayes factor and the
frequentist measures of confidence is provided by the ex-
pression
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p-value Bm lnBm “sigma” interpretation
0.05 2.5 0.9 2.0σ
0.04 2.9 1.0 2.1σ “weak” detection
0.01 8.0 2.1 2.6σ
0.006 12 2.5 2.7σ “moderate” detection
0.003 21 3.0 3.0σ
0.001 53 4.0 3.3σ
0.0003 150 5.0 3.6σ “strong” detection
6 · 10−7 43000 11 5.0σ

TABLE 2
Translation table between frequentist significance values
(p-values) and the Bayes factor (Bm) in favor of the more

complex model. Adopted from Trotta (2008). A Bayes
factor of 150 can be considered a “strong” detection,
corresponding to approximately 3.6σ significance in the

frequentist’s framework.

Bm ≤ −
1

e · ρ · ln ρ
, (8)

where e is the exponential of one and ρ is the p-
value(Sellke et al. 2001). The p-value, in turn, can be
related to the sigma significance nσ using the expression

ρ = 1− erf

(
nσ√

2

)
, (9)

where erf is the error function. Representative values
for a range of confidence values are listed in Table 2.
Equation (8) presents an upper bound on the Bayes fac-
tor, e.g., a Bayes factor Bm = 21 corresponds, at least,
to a 3.0σ detection. Equation (8) is valid for ρ < e−1

and under the assumption of a mild principle of indiffer-
ence as to the value of the added parameter in the more
complex model (Sellke et al. 2001).

2.3. Nested Sampling for Atmospheric Retrieval

We employ the multimodal nested sampling algorithm
(MultiNest) to efficiently compute the Bayesian evi-
dences of alternative retrieval models (Skilling 2004;
Feroz & Hobson 2008; Feroz et al. 2009). The joint
posterior probability distribution of the atmospheric pa-
rameters for a given retrieval model is obtained as a
by-product. The MultiNest algorithm was developed
as a Bayesian inference tool for cosmology and particle
physics, and we find that it provides substantial advan-
tages for atmospheric retrieval over techniques based on
Markov Chain Monte Carlo (MCMC).

2.3.1. Nested Sampling versus MCMC

Parameter estimations in many astrophysical contexts
are typically performed using the MCMC technique with
the Metropolis-Hastings algorithm or its variants such
as the Gibbs sampler. The two main disadvantages
of the MCMC techniques are, however, that MCMC
does not directly provide the Bayesian evidence for com-
paring retrieval models of different complexities, and
that MCMC becomes inefficient when sampling from a
posterior distribution with multiple separate modes or
elongated curving degeneracies. In Benneke & Seager
(2012), we were able to search for separated modes in
the posterior distribution using the parallel tempering
MCMC technique. Calculating the Bayesian evidences
for Bayesian model comparisons would, however, require
a second step, such as a Restricted Monte Carlo (RMC)

integration. Restricted Monte Carlo (RMC) becomes
extremely inefficient, however, when the joint posterior
distribution shows strongly curved correlations, such as
those encountered in atmospheric retrieval problems.

2.3.2. The Nested Sampling Algorithm

Nested sampling is an alternative Monte Carlo tech-
nique for Bayesian inference. It enables one to efficiently
compute the Bayesian evidence and provides the pos-
terior distribution for parameter estimations as a by-
product. A full discussion is provided in (Skilling 2004;
Feroz & Hobson 2008). Here, we provide a brief descrip-
tion of the main ideas. For clarity, we do not explicitly
state the model Mi and the data D because the calcula-
tion of the Bayesian evidence is conducted for each model
and data set individually.

The basic idea behind nested sampling is to trans-
form the multi-dimensional integral for the computation
of the Bayesian evidence (Equation (4)) into the one-
dimensional integral

Z =

∫ 1

0

L∗ (V ) dV. (10)

The integration variable V in Equation (10) is the
“prior volume” defined as

V (L∗) =

∫
L(θ)>L∗

π(θ)dNθ. (11)

The prior volume V (L∗) is the prior probability den-
sity integrated over all regions in the parameter space
for which the likelihood function L (D|θ) exceeds the
value L∗. It is a monotonically decreasing function of
the likelihood limit L∗ because the volume in the param-
eter space that meets the criteria L (θ) > L∗ decreases
as the likelihood limit L∗ is increases. The extreme val-
ues are V = 1 for L∗ = 0, in which case the integration
is performed over the entire prior parameter space, and
V = 0 for L∗ > max (L (D|θ)). The function L∗ (V ) in
Equation 10 is the inverse function of the prior volume
V (L∗) and is thus also monotonically decreasing.

Figure 1 provides a graphical interpretation of the prior
volume V and equation (10) for a two-dimensional pa-
rameter space. For two dimensional parameter spaces
with the uniform prior probability π(θ1, θ2) = πuni, the
Bayesian evidence can be regarded as the geometric vol-
ume between the θ1,θ2-plane and the surface of the likeli-
hood function L (D|θ1, θ2), multiplied by πuni (see equa-
tion (4)). The prior volume V (L∗) can be interpreted as
the area within iso-likelihood contour L (D|θ1, θ2) = L∗
projected onto the θ1, θ2 -plane, again multiplied by uni-
form prior πuni.

The Bayesian evidence in Equation 10 can be approxi-
mated using standard quadrature methods if the inverse
function L∗ (V ) of Equation (11) can be evaluated at a
sequence of values 0 6 VM < · · · < Vi < · · · < V1 6 1.
Using the trapezium rule, we obtain

Z =

M∑
i=1

wiLi. (12)

where Li is the likelihood limit L∗ (Vi) corresponding
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Fig. 1.— Graphical interpretation of the prior volume and
Bayesian evidence for a two dimensional parameter space. The
prior volume Vi = V (Li) is the prior probability density integrated
over all regions in the parameter space for which the likelihood
function L (θ1, θ2) exceeds the value Li . For a two-dimensional
parameter space with a uniform prior, the prior volume is the pro-
jected area of the region in the parameter space for which L (θ1, θ2)
exceeds the value Li (panel (a)). The Bayesian evidence Z can
be regarded as the geometric volume between the θ1,θ2-plane and
the likelihood surface L (θ1, θ2). Once a sequence of Li, Vi pairs is
known, the Bayesian evidence can be approximated using standard
quadrature methods (panel (b)).

to Vi, the weights wi are given by wi = 1
2 (Vi−1 − Vi+1),

and M is the number of values in the sequence.
In nested sampling, a sequence of L∗ (Vi) values is gen-

erated as follows. The algorithm is initialized by ran-
domly drawing a user-specified number of “active sam-
ples” (N ≈ 50 . . . 10000) from the full prior probability
distribution π(θ) and computing their likelihood L (θ)
according to Section 3. These samples are distributed
randomly across the full prior parameter space and the
prior volume V0 = V (L∗ = 0) is 1. The first iteration
is started by sorting the samples in order of their likeli-
hood. The sample with the lowest likelihood L1, i.e. the
sample with the worst fit to the data, is then removed
and replaced by a new sample. The new sample is again
drawn from the prior distribution, but subject to the con-
straint that the likelihood of the new sample is higher
than L1. If necessary, the drawing of the new sample is
repeated until a sample is found with L (θ) > L1. After
the replacement, all active samples meet the condition
L (θ) > L1 and they are uniformly distributed within the
iso-likelihood contour L∗ = L1. The new prior volume V1

contained within the iso-likelihood contour L∗ = L1 can
be written as V1 = t1V0, where the shrinkage ratio t1 is a
random number smaller than 1. The probability distri-
bution of the shrinkage, p (t1), is the distribution for the
largest of n samples drawn from a uniform distribution
between 0 and 1. The distribution p (t1) describes the de-
crease in prior volume between subsequent iso-likelihood
contours L∗ = V0 and L∗ = V1 in a probabilistic way be-
cause the active samples are uniformly distributed within
the iso-likelihood contours.

In subsequent iterations, the process of replacing the
sample with the lowest likelihood Li is repeated, and the
corresponding prior volume V (Li) is repeatedly tight-
ened. The nested sampling algorithm thus progresses
through nested shells of iso-likelihood contours with con-
tinually decreasing prior volumes, until the regions of the
highest likelihoods are localized. The prior volume Vi af-
ter iteration i can be approximated as

Vi = exp (−i/N) . (13)

Equation (13) approximate the prior volume at iter-
ation i because each value of ti is independent and the
mean and standard deviations of log (t) are E [log (t)] =
−1/N and σ [log (t)] = 1/N , resulting in log (Vi) ≈(
i±
√
i
)
/N .

2.3.3. Simultaneous Ellipsoidal Nested Sampling

The main challenge in efficiently computing the
Bayesian evidence is to efficiently generate random sam-
ples within the iso-likelihood contour L∗ = Li. If one
continued to draw random samples from the full prior
probability distribution π(θ) as in the first iteration, the
chance of randomly finding one that is within the iso-
likelihood contour L∗ = Li would decrease exponentially
as the likelihood limit Li is raised.

The algorithm employed in this work uses the simul-
taneous ellipsoidal nested sampling method developed in
Feroz et al. (2009). At each iteration, the full set of active
samples is partitioned according to local clustering and
an optimum number of ellipsoids are constructed such
that the union of the ellipsoidal volumes tightly encom-
passes all samples. At early iterations, a small number of
large ellipsoids cover almost the entire prior parameter
space. As the active sample become confined to the re-
gions within tighter iso-likelihood contours, the ellipsoids
encompass only the region(s) of high likelihood L (θ).
New random samples are drawn from within the ellip-
soids, thus the random samples have a high likelihood
L (θ) with higher probability, resulting in a higher sample
acceptance rate and higher efficiency of the nested sam-
pling algorithms. The algorithm is robust to multimodal
posterior distributions and elongated curving degenera-
cies, while remaining efficient for simpler distributions.
Refer to Feroz et al. (2009) for a detailed description of
the algorithm employed for partitioning and construction
of the ellipsoids.

2.3.4. Convergence and Numerical Uncertainty

The iterations are continued until the Bayesian evi-
dence is determined to a specified precision ∆Z. In
this work, we terminated the iterations once the log-
arithm of the evidence did not change by more than
∆ (log (Z)) = 0.001. The final uncertainty can be es-
timated following Sivia & Skilling (2006) as

log (Z) ≈ log

(
M∑
i=1

wiLi

)
±
√
H
N
, (14)

where H is the information, or negative entropy,

H ≈
M∑
i=1

wiLi
Z

log

(
Li
Z

)
. (15)

2.3.5. Parameter Estimation

Once the Bayesian evidence Z is determined, the joint
posterior distribution of the atmospheric parameters can
be constructed using all active and discarded samples
that were generated during the nested sampling itera-
tions. Each sample is assigned a weight according to

Wi =
wiLi
Z

. (16)
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The weighted samples can be used to plot the posterior
distributions and calculate the statistical measures such
as the mean and covariances matrix.

3. RESULTS: DISTINGUISHING BETWEEN
H2-DOMINATED AND H2O-DOMINATED

ATMOSPHERES

In this Section, we demonstrate that a promising strat-
egy to distinguish between cloudy hydrogen-dominated
atmospheres and clear water- or volatile-dominated at-
mospheres is to observe individual water absorption fea-
tures in the planet’s transmission spectrum at moderate
spectral resolution (R ≈ 100). The unambiguous distinc-
tion is possible based on the effect of the mean molecular
mass on the wing slopes of the water features and the rel-
ative depths of different water absorption features. As a
case study, we investigate, for the super-Earth GJ 1214b,
how much the observational uncertainty needs to be im-
proved compared to published transmission spectra to re-
liably detect NIR water absorption features and to unam-
biguously distinguish between the hydrogen-dominated
and water-dominated scenarios. All results derived in
this Section can be generalized to other super-Earths and
Neptunes such as HD 97658b, 55 Cnc e, and GJ 436b us-
ing the scalings provided in Section 5.1 and 5.2.

3.1. Distinction Based on NIR Transmission
Spectroscopy

Our main finding is that an unambiguous distinction
will be possible for a GJ 1214b-like planet if the obser-
vational uncertainty in the transit depth measurements
can be reduced by a factor of ∼ 3 compared with the
published VLT observations by Bean et al. (2010) and
HST WFC3 observations by Berta et al. (2012). Alter-
natively, the distinction can be achieved using only HST
WFC3 observations if the uncertainty can be reduced by
a factor of ∼ 5 compared to the previous result by Berta
et al. (2012) (Section 3.2).

For the following discussions, we consider synthetic ob-
servations of three alternative scenarios for the atmo-
sphere of GJ 1214b. The scenarios are a cloud-free,
water-dominated atmosphere composed of 95% H2O and
CO2 (Figure 2), a hydrogen-dominated atmosphere with
solar metallicity (∼ 400 ppm H2O) and high-altitude
clouds (Figure 3), and flat transmission spectra due to
the lack of atmospheres or the presence of an extremely
high cloud deck (Figure 4). The hydrogen-dominated
scenario is depleted in methane and clouds are present
at 10 mbar such that depths of the water absorption re-
semble the ones of the cloud-free water-dominated sce-
nario. These choices ensure that the distinction between
the water-dominated and hydrogen-dominated scenarios
is based the effect of the mean molecular mass on rela-
tive sizes and shapes of the water absorption features and
independent of the abundance or the presence of other
molecular species.

We find that spectral observations covering the spec-
tral ranges 0.78−1µm (Bean et al. 2010) and 1.1−1.8µm
(Berta et al. 2012), can unambiguously distinguish
between water-dominated atmospheres and hydrogen-
dominated atmospheres with water absorption if the ob-
servational uncertainty can be reduced to 60 ppm at a
spectral resolving power of R = 70 ((Figure 2-4). This
corresponds to an improvement of ∼ 3 compared with

the published uncertainties of 180 − 200 ppm by Bean
et al. (2010) and Berta et al. (2012).

(a) Water-dominated scenario.— If GJ 1214b is sur-
rounded by a cloud-free water-dominated atmosphere
(Figure 2), transit depth measurements with 60 ppm
uncertainty will constrain the mean molecular mass to
µatm > 13 at 99.7% probability (3σ). Such observa-
tions would conclusively rule out a hydrogen-rich nature
of GJ 1214b. Taking a simple two-component model at-
mosphere composed of water vapor and hydrogen gas, we
could infer at 3σ that > 70% of the atmosphere would
need to be water vapor, leaving only a maximum of 30%
for hydrogen-helium gas (Figure 2(b)). From 60 ppm
observations, we would also infer at 3σ that the atmo-
sphere is cloud-free down to at least the 20 mbar level.
The posterior probability density would be maximum for
water fractions above 90% and cloud top pressures above
100 mbar. Changes of the water fractions above 90%
have little effect on the water absorption features because
the mean molecular mass remains largely unchanged.
An increase in cloud top pressure above 100 mbar, sim-
ilarly, has negligible effects on the observable spectrum
because the high opacity of water vapor across the full
NIR spectrum prevents probing deeper atmospheric lay-
ers through transmission spectroscopy.

(b) Hydrogen-rich scenario with high-altitude clouds.— If,
alternatively, GJ 1214b is surrounded by a hydrogen gas
envelope (Figure 3), transit depth measurements with
60 ppm uncertainty will be able to confirm the hydrogen-
dominated nature of the atmosphere, even if the depth of
water absorption features resembles the one of a water-
dominated scenario. 60 ppm transit observations would
provide sufficient information on the relative strengths of
the absorption features and the steepnesses of the feature
wings to infer a mean molecular mass below 10 at 3σ
(Figure 3(b)). A mean molecular mass below 10 would
mean that hydrogen/helium gas makes up at least 50% of
the atmosphere. The observations would also confirm the
presence of an upper cloud deck with a cloud-top pressure
between 0.2 mbar and 200 mbar at 99.7% confidence.

Stronger independent constraints on the water mole
fraction in the hydrogen-dominated atmosphere would
not be available despite a 7σ detection of water absorp-
tion because a strong correlation exists between the water
mole fraction and the cloud-top pressure for the trans-
mission spectra of a hydrogen-dominated atmosphere.
The strong correlation is present because atmospheric
scenarios with different combinations of mean molecu-
lar masses and cloud-top pressures can lead to identical
feature depths.

It is interesting to note that even though hydro-
gen/helium gas shows no direct absorption features,
the presence of hydrogen/helium gas in the atmosphere
can be inferred from the NIR observations if hydro-
gen/helium gas is present in sufficient amounts to af-
fect the mean molecular mass (Figure 3(c)). The reason
is that no other plausible atmospheric component can
explain the mean molecular mass below that of water
(µ = 18) and methane (µ = 16) in the temperature range
expected for GJ1214b. Clouds and hazes can be inferred
from transmission spectra if present at high altitude be-
cause they lower the transit depth variations below that
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expected for a clear atmosphere of a given atmospheric
composition.

(c) Featureless spectrum.— A planet’s transmission spec-
trum may be featureless if the planet lacks a gaseous
atmosphere or clouds are present at high altitude. If a
featureless spectrum with an observational uncertainty
of 60 ppm was observed for GJ 1214b (Figure 4), the
observations would be sufficient to rule out the presence
of cloud-free, water-rich atmospheres at high significance
(Figure 2(e-f)). For the full range of water mole frac-
tions between solar composition (XH2O ∼ 0.04%) and
water-dominated (XH2O → 100%), we could conclude
that cloud top pressures must be below 1 mbar. The
observations would additionally rule out scenarios with
cloud-top pressures down to 0.01 mbar for water mole
fractions between 1% and 10%.

As a consistency check, Figure 4(c) shows that no
molecular species can be inferred from the flat spectrum.
It is interesting to note that the Bayes factor for the
presence of clouds is not conclusive despite the flat spec-
trum. The reason for this is that high altitude clouds are
only one explanation for measuring a flat spectrum. For
example, the absence of strong absorber such as water
and methane in combination with a high mean molec-
ular mass would similarly explain the lack of any fea-
tures at the 60 ppm level. A comparison between Figures
4(c) and 3(c), in fact, shows that the presence of weak
molecular features may lead to a higher confidence in the
presence of clouds than a flat spectrum. Absorption fea-
tures enable us to infer the composition and the depths
and shapes of the features then enable us to determine
whether clouds must be present or not. This information
is not available if a flat spectrum is observed.

3.2. Distinction Based Solely on HST WFC3
Observations

The distinction between hydrogen-dominated and
water-dominated scenarios is possible from HST WFC3
observations if the observational uncertainty can be re-
duced to below ∼ 35 ppm (Figure 5). The main ad-
vantage of augmenting the HST WFC3 observation with
observations at 0.8 − 1µm (such as the ones provided
by V LT ) is that 0.8 − 1µm contains weaker absorption
features that, together with the strong absorption fea-
ture at 1.38 µm, enable a good comparison between the
relative depths of the strong and weak water absorption
features. These relative depths, in turn, constrain the
mean molecular mass and thus enable the distinction be-
tween hydrogen-dominated atmospheres and those dom-
inated by water or other volatiles. If only HST WFC3
observations are available, the observational uncertainty
needs to be sufficient to capture the feature wings be-
tween 1.1− 1.7µm at higher precision because the infor-
mation from the relative depths of the features will not
be available (Figure 5(a)).
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Fig. 2.— Synthetic 60 ppm observations and retrieval results
for a cloud-free, water-dominated atmosphere on GJ 1214b. Panel
(a) shows synthetic observations of a 95% H2O + 5% CO2 atmo-
sphere covering the spectral range of the VLT and HST WFC3
observations by Bean et al. (2010) and Berta et al. (2012). Panel
(b) illustrates the posterior probability distribution derived from
the synthetic observations as a function of cloud top pressure and
mean molecular weight for a simple two-component atmosphere
composed of hydrogen and water vapor. The black contour lines
indicate the 68%, 95%, and 99.7% Bayesian credible regions. The
colored shading illustrates the regions of high posterior probabil-
ity density. The horizontal axis is scaled as the centered-log-ratio
parameter ξ1 = log

(
XH2O/

√
XH2O ·XH2

)
. 60 ppm observations

would constrain the mean molecular mass to µatm > 13 at 99.7%
probability (3σ). Such observations would conclusively rule out
a hydrogen-rich nature of the atmosphere. Panel (c) illustrates
the Bayes factors describing the detection confidences of molecular
gases and clouds based on the synthetic observations. 60 ppm ob-
servations would enable a robust BH2O = 2 · 1012 (7.8σ) detection
of water absorption. The 5% CO2 remain undetectable because
strong water absorption blocks the CO2 signature.
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Fig. 3.— Synthetic 60 ppm observations and retrieval results for a
H2-dominated atmosphere with high-altitude clouds on GJ 1214b.
Panel (a) shows synthetic observations of a methane-depleted, so-
lar metallicity atmosphere with thick gray clouds extending up to
the 10 mbar level. The spectral range is equivalent to the VLT
and HST WFC3 observations by Bean et al. (2010) and Berta
et al. (2012). The methane depletion and vertical extent of the
clouds were chosen to ensure that the distinction between the H2O-
dominated and H2-dominated scenarios is independent of other
molecular absorbers. Panels (b) and (c) display the retrieval re-
sults as explained in Figure 2. 60 ppm observations would be able
to confirm the hydrogen-dominated nature by setting an 3σ up-
per limit on mean molecular mass at µave = 10. The observations
would be sufficient to robustly infer the presence of water and hy-
drogen, and clouds at high confidence.
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Fig. 4.— Synthetic 60 ppm observations and retrieval results
for a featureless spectrum of GJ 1214b. Panel (a) displays syn-
thetic observations GJ 1214b as it will appear if a thick cloud
deck surrounds the planet at above the 0.1 mbar pressure level
or no atmosphere is present. Panels (b) and (c) display the re-
trieval results derived from synthetic observations as explained in
the caption of Figure 2. At 60 ppm, a flat spectrum would rule out
thick, cloud-free scenarios for all water mole fractions between the
one expected for solar composition (XH2O ∼ 0.04%) and water-
dominated (XH2O → 100%). At 3σ, water-dominated scenarios
are possible only if a cloud deck is present above the 0.1 mbar pres-
sure level. Hydrogen-dominated scenarios are compatible with the
flat spectrum at 60 ppm only if the partial pressure of H2O is be-
low 2µbar at the uppermost cloud deck surface. Panel (c) shows
that no molecular detections can be inferred from the featureless
spectrum. Clouds are likely but cannot conclusively be inferred
because atmospheric scenarios without NIR absorbers could theo-
retically match the featureless spectrum.
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3.3. Detectability of NIR Water Absorption

It is important to recognize that detections of water ab-
sorption are a necessary, but not sufficient condition to
determine the water fraction and nature of low-density
super-Earths. Section 3.1 showed that transit obser-
vations with . 50 ppm observational uncertainty are
required to distinguish hydrogen-dominated and water-
dominated scenarios. The presence of water absorption
in a water-dominated atmosphere can already be de-
tected at high confidence for transit observations with up
to 80 ppm uncertainty. 80 ppm observations at R = 70
would provide a BH2O = 40000 (5σ) detection of water
absorption and would only require an improvement by a
factor of 2.5 compared to Bean et al. (2010) and Berta
et al. (2012).

3.3.1. Characteristic Degeneracy between the Mean
Molecular Mass and Cloud Top Pressure

Transit observations with larger transit depth uncer-
tainties, e.g. 80 ppm, can leave the water mole frac-
tion unconstrained in the entire range between 100% and
fractions of 1% despite a robust BH2O = 2040 (4.3σ) de-
tection of water absorption (Figure 6). High posterior
probabilities would exist along a line of constant fea-
ture depth, resulting in a degeneracy between the mean
molecular mass and the cloud top pressure. This de-
generacy is characteristic for transmission spectra that
enable the detection of the absorber, but do not pro-
vide sufficient constraints on the steepness of the feature
wings or depths of other features to constrain the mean
molecular mass independently.

In the hydrogen-rich regime, the feature size remains
constant along lines of constant water column density.
The cloud top pressure compatible with the synthetic
observations decreases as the water mole fraction in the
atmosphere is increased (negative correlation). In the
transition region between 10% and 90% water mole frac-
tion, the change in the mean molecular mass dominates
the change in the feature size. Maintaining the same fea-
ture sizes requires higher cloud top pressures as the wa-
ter fraction is increased (positive correlation). Changes
in the feature sizes are small if the water mole fraction
is increased because the mean molecular mass remains
largely unchanged and deeper layers in the atmosphere
are optically thick regardless of the exact water mole frac-
tion.

3.3.2. Overlapping Molecular Bands in WFC3 Bandpass:
H2O or CH4 Absorption?

A challenge in the spectral range of the HST WFC3
bandpass is that methane and water have two strongly
overlapping absorption bands at 1.15µm and 1.4µm. An
unambiguous detection of water vapor requires not only
the detection of the absorption bands, but also requires
one to determine whether the absorption was caused by
water, methane, or both. Distinction between the water
and methane cases is possible based on subtle differences
in the absorption feature shapes, the slope red of 1.6µm,
and the different opacities in the bandpass of the VLT
observations. It is obvious, however, that better observa-
tions are required to distinguish between water features
and similarly shaped methane features than is necessary
to distinguish between water features and a flat spec-
trum.

It is worth noting that the results from the Bayesian
analysis in this work inherently accounts for the overlap
between water and methane absorption features. The
framework assigns a high probability for the presence of
water vapor only if the observed feature resembles the
expected shape for a water feature considerably closer
than it resembles the expected shape of a methane fea-
ture. Taking again the example of our 80 ppm synthetic
observations (Figure 6), we find that our confidence in
having detected water absorption is lowered by the possi-
bility that methane is responsible for the absorption fea-
tures. The Bayes factor as a measure of our confidence
in the presence of water is BH2O = 2060 (4.3σ) while
our confidence that either water or methane is present
is BH2O or CH4

= 41756 (5.0σ). In other words, it is eas-
ier to detect absorption features at 1.15µm and 1.4µm
than it is to conclusively state that the features were
caused by water absorption, and this needs to be ac-
counted for when claiming the detection of water absorp-
tion. Another way to look at it is that we could detect at
B = 43000 (5σ) that either water or methane is present
with 80 ppm observations, but we need ∼70 ppm preci-
sion to conclude at the same confidence that the feature
was caused by water absorption.

3.4. Effects of Non-Gray Aerosols

In Sections 3.1-3.3, we assumed gray clouds when
demonstrating the distinction between cloud-free water-
rich atmospheres and cloudy hydrogen-rich atmospheres.
Here, we demonstrate that the fundamental approach
of determining the mean molecular mass based on wing
slopes of molecular absorption bands or by comparing
features of the same absorber remains viable in the gen-
eral case of non-gray aerosols. We model cloud scatter-
ing using Mie theory and find that the cores of molecular
absorption bands in transmission spectra are largely un-
affected by the type and spectrum of the particles. The
molecular absorption bands therefore provide unambigu-
ous constraints on the mean molecular mass as long as
there are significant detectable molecular absorption fea-
tures penetrating the “continuum” spectrum of the haze
or cloud particles.

We demonstrate that the wing slopes and relative
sizes of water absorption features are good measures
of the mean molecular mass by presenting two spectra
of hydrogen-dominated atmospheres with high altitude
hazes and comparing them to cloud-free water atmo-
spheres (Figure 7). We consider high-altitude haze par-
ticles composed of either condensed Potassium Chloride
(KCl) or Zinc Sulfide (ZnS) as two possible scenarios
that would sufficiently mute the spectral features of a
hydrogen-dominated atmosphere to match the published
observations of GJ 1214b. KCl and ZnS are considered
for GJ 1214b because the he temperature pressure pro-
file in the atmosphere of GJ 1214b is likely to cross their
condensation curves, suggesting that KCl and ZnS may
be able condense in the atmosphere of GJ 1214b (Morley
et al. 2012, 2013).

The particle size distributions and vertical extent of
KCl and ZnS condensates in the upper atmosphere of a
super-Earths depend sensitively on the atmospheric dy-
namics. Atmospheric dynamics on exoplanets are, how-
ever, widely uncharacterized. The goal of this section is,
therefore, not to self-consistently model the size distri-
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Retrieval model Retrieval model parameters Evidence Best-fit Bayes factor
ln (Zi) χ2

best−fit Bi = Z0/Zi

Full hypothesis space Rp
R∗ , Pclouds, ξ = clr(XH2O, XCO2

, XCH4
, XCO, XH2/He, XN2

) -284.57 55.17 Ref.

H2O removed
Rp
R∗ , Pclouds, ξ = clr(XCO2

, XCH4
, XCO, XH2+He, XN2

) -292.21 69.90 BH2O = 2060 (4.3σ)

CO2 removed
Rp
R∗ , Pclouds, ξ = clr(XH2O, XCH4

, XCO, XH2/He, XN2
) -284.63 58.23 BCO2

=1.06

CH4 removed
Rp
R∗ , Pclouds, ξ = clr(XH2O, XCO2

, XCO, XH2/He, XN2
) -284.31 55.04 BCH4

=0.77

CO removed
Rp
R∗ , Pclouds, ξ = clr(XH2O, XCO2

, XCH4
, XH2/He, XN2

) -284.43 55.31 BCO =0.86

N2 removed
Rp
R∗ , Pclouds, ξ = clr(XH2O, XCO2

, XCH4
, XCO, XN2

) -284.31 56.61 BN2
=0.77

H2/He mix removed
Rp
R∗ , Pclouds, ξ = clr(XH2O, XCO2

, XCH4
, XCO, XH2/He) -284.50 55.12 BH2/He =0.93

H2O & CH4 removed
Rp
R∗ , Pclouds, ξ = clr(XCO2

XCH4
, XCO, XH2/He, XN2

) -295.21 83.49 BH2O or CH4
=41756 (5.0σ)

Clouds removed
Rp
R∗ , ξ = clr(XH2O, XCO2

, XCH4
, XCO, XH2/He, XN2

) -283.63 55.34 BClouds =0.39

TABLE 3
Results of Bayesian model comparison for synthetic 80 ppm observations of the water-dominated scenario on GJ 1214b.
The synthetic observations are depicted in Figure 6(a). Values that are directly referred to in Section 3 are marked in

bold. The vector ξ is the center-log-ratio (clr) transformation of the mole fractions of the atmospheric gases.
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Fig. 5.— Synthetic 35 ppm observations and retrieval results for
a cloud-free, H2O-dominated atmosphere on GJ 1214b. The atmo-
spheric scenario ( 95% H2O + 5% CO2) is identical to the one in
Figure 2, however, the synthetic observations cover only the spec-
tral range of HST WFC3. Panel (b) illustrates the posterior prob-
ability distribution as a function of cloud top pressure and mean
molecular weight as explained in Figure 2. 35 ppm observations in
the spectral range of HST WFC3 (1.1−1.7µm) would constrain the
mean molecular mass to µatm > 11 at 99.7% probability (3σ). Such
observations would conclusively rule out a hydrogen-rich nature of
the atmosphere. Smaller observational uncertainties are required
compared to Figure 2 because the weaker water absorption bands
at 0.8− 1µm are not captured by HST WFC3 observations alone.
.

butions and vertical extent, but to demonstrate that the
proposed approach to estimate the mean molecular mass
remains viable for non-gray clouds.

For demonstrative purposes, we model thin, high-
altitude KCl and ZnS hazes using a standard analytical
size distribution, a variation of the gamma distribution
introduced by (Hansen 1971),

n (r) = constant × r(1−3veff )/veff e−r/reffveff . (17)

The mean particle size reff is set to 0.3µm and 1µm
for the KCl and ZnS haze scenarios, respectively. The
variance of the size distributions, veff , is 0.1. The hazes
extend up to 5 mbar pressure level. The ratio of the con-
densed mass and the gas mass in the upper atmosphere is
1 ppm. The vertical extent of the hazes was chosen to ob-
tain hydrogen-rich scenarios that show water absorption
features with transit depth variations similar to those of
water worlds, and, therefore, are most difficult to distin-
guish from water-dominated scenarios. The particle sizes
and condensed mass fraction were selected to obtain haze
spectra that considerably deviate from the assumption of
gray clouds while simultaneously providing a reasonable
fit to previously obtained transit depth measurements of
GJ 1214b. Particles smaller than 0.3µm would increas-
ingly lead to steep slopes at near-infrared wavelengths.
Larger particles would lead to an increasingly gray ap-
pearance of the clouds in transmission, and thus brings
us back to the assumption made in Section 7.

Figure 7 shows that the cores of the strong molecular
absorption features are largely unaffected by the wave-
length dependence of the cloud/haze opacities. Esti-
mates of the mean molecular mass made based on the fea-
ture cores in transmission spectra are, therefore, largely
independent of the spectral properties of the cloud prop-
erties. The cores of molecular absorption features in ex-
oplanet transmission spectra are largely independent of
the cloud properties for two reasons. First, for transmis-
sion spectra, the observed transit depth at a given wave-
length is almost exclusively determined by the strongest
opacity source at that wavelength. This is as a result
of the grazing geometry in which the transmission spec-
trum is formed (Brown 2001), combined with the expo-
nential decrease in gas density with altitude. Second,
aerosol opacities generally change more gradually with
wavelength than molecular opacities. Molecular opaci-
ties at low pressures are dominated by sharp absorption
lines and bands that result from quantum mechanical
transitions between discrete vibrational and rotational
states in the molecules. Light extinction by aerosols, on
the other hand, is a result of interference of light that
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Fig. 6.— Synthetic 80 ppm observations and retrieval results
for a cloud-free, water-dominated atmosphere on GJ 1214b. The
atmospheric scenario and panels (a)-(c) are identical to the ones
described Figure 2. 80 ppm observations of a water-dominated at-
mosphere would lead to a robust detection of water vapor (BH2O =
2060), but would be insufficient to robustly determine whether the
atmosphere is water-dominated or hydrogen-dominated. Atmo-
spheric scenarios are in agreement with the data along a contour
of constant feature depth, resulting in a degeneracy between the
mean molecular mass and cloud top pressure. The water mole frac-
tion remains unconstrained between 0.02% and 100% at 3σ. The
degeneracy is characteristic for transmission spectra that enable
the detection of a single absorption, but do not provide sufficient
constraints on the steepness of the feature wings or depth of other
features to constrain the mean molecular mass.

was scattered, refracted, or diffracted by a generally con-

tinuous distribution of different particles sizes. Spectral
features arise as result of the interference or the wave-
length dependence of the complex refractive index, and
the effects of the on the transmission spectrum are more
gradual than molecular state transitions.

Second, while spectral features due to condensed phase
absorption can be prominent in reflective an thermal
emission spectra, modeling of exoplanet transmission
spectra reveals that the features due to condensed phase
absorption are generally far less pronounced. The rea-
son for the difference is that multi-scattering of light can
play a dominant role in the approximately nadir-viewing
geometry associated with reflective and thermal emission
spectra. The long pathways associated with light that is
scattered multiple times within in a cloud can result in
strong absorption features in reflective spectra of clouds.
Water clouds, for example, will appear highly reflective
at visible wavelengths for which the imaginary part of
the refractive index is low (low absorption), while it will
appear almost black at some near-infrared wavelength
for which the imaginary part of the refractive index is
high (high absorption). In the exoplanet transit geom-
etry, however, any single scattering events will prevent
the grazing light beams from the host star to arrive at
the observer due to large distance between the target
exoplanet and Earth.

3.5. Probing the Composition of Volatile-Rich
Atmospheres

The distinction between H2-dominated sub-Neptunes
and water or ice-rich worlds described in Section 3 is
solely based on the sharp contrast in molecular masses
between hydrogen gas (H2) and the ices (H2O, CO2, CO,
CH4, N2, etc). The basic argumentation is that primor-
dial H2-dominated scenarios can be excluded if the mean
molecular mass deviates significantly from µave = 2.3.
Measuring a high mean molecular mass, however, does
not unambiguously determine the abundances of the in-
dividual volatile species in the atmosphere.

Figure 8 illustrates the difficulty of determining the
mole fraction of the individual ice species for two vastly
different atmospheres with identical molecular masses
(µave = 23.2). Following the argumentation in Ben-
neke & Seager (2012), the relative abundances of the
ices that have IR absorption features, e.g., H2O, CO2,
CO, CH4, and NH3 can be determined by comparing
the transit depths in the strongest absorption bands of
the different ices. An atmosphere with 80% H2O +
20% CO2 (H2O/CO2 = 4), for example, can be distin-
guished from an atmosphere with 90% H2O and 10%
CO2 (H2O/CO2 = 9) because the transit depth within
the CO2 band at 4.3µm would be higher relative to the
transit depths in the H2O bands.

Scenarios with similar relative abundances of absorbing
gases, however, are practically indistinguishable through
moderate-resolution (R ∼ 100) infrared observations.
Figure 8 shows that the NIR spectrum of a volatile-
dominated atmosphere can remain virtually unchanged
when the mole fraction of water is reduced from 80%
to 8%. Spectrally inactive gases may be present in the
correct ratios for the mean molecular mass to remain un-
changed. A distinction between 80% water and 8% water
therefore requires observations at short wavelengths.
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Fig. 7.— Comparison of model transmission spectra of water worlds and cloudy sub-Neptunes with non-gray high-altitude clouds. The red
model spectra in panels (a) and (b) are model spectra for two alternative scenarios for hydrogen-rich atmospheres with thin, high-altitude
hazes on GJ 1214b. Panel (a) assumes ZnS particles with a mean radius of 1µm, while panel (b) assumes KCl particles with a mean radius
of 0.3µm. The particles sizes and cloud top pressure (5 mbar) are chosen such that the main water features in the HST WFC3 are of
similar size as the ones predicted for water vapor atmospheres (blue spectra). The non-gray effects of the hazes only are shown by the
black dashed spectra for which the gaseous absorption was set to zero. The cores of the strong molecular absorption features remain largely
unaffected by the non-gray effects of the hazes. The steepness of the feature wings and the relative depths between different absorption
features remain measures of mean molecular mass, even in the presence high-altitude non-gray hazes, as long as significant absorption
features can be observed. The spectra are offset for clarity by slightly modifying the planet’s radius at the reference pressure level.
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Fig. 8.— Challenge in distinguishing water-dominated atmospheres (80% H2O) and water-rich atmospheres (80% H2O) with similar
mean molecular masses. Despite the vastly different compositions, the H2O/CO2-dominated atmosphere (80% H2O and 20% CO2) and
H2O/CO2-rich, but N2-dominated atmosphere (8% H2O and 2% CO2) show virtually identical infrared transmission spectra. Atmospheric
sceanrios with the same mean molecular masses and the same relative abundances of the absorbers cannot be distinguished using moderate-
resolution NIR transmission spectra alone (Benneke & Seager 2012). Distinction is possible only at short wavelengths (λ < 1µm) based
on the increased Rayleigh scattering due to the presence of N2 and H2 + He. This is an example that even a strong detection of a water
feature is not sufficient to determine whether the atmosphere is dominated by water vapor or only a small fraction of the gas is water vapor.

4. RESULTS: ANALYSIS OF PUBLISHED HST WFC3
SPECTRA OF GJ 1214B

A careful look at the observed HST WFC3 spectrum
by Berta et al. (2012) reveals that the transit depth vari-
ation resembles the trends expected for a clear, water-
dominated atmosphere (Figure 9). The resemblance was
also pointed out by Howe & Burrows (2012), but no as-
sessment of the significance of the water absorption was
provided. In this Section, we assess the significance of

the trend in the transit depth variation in a statistically
robust Bayesian way. We also assess which constraints on
cloud-top pressure and water/hydrogen abundances can
be derived from the HST observation by Berta et al.
(2012). We demonstrate that the standard frequentist
hypothesis testing based on attempting to reject the
“flat spectrum” null-hypothesis or comparing data points
“within” and “outside” the suggested features generally
leads to ambiguous or misleading results.
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Fig. 9.— Observed HST WFC3 observation of GJ 1214b by
Berta et al. (2012) compared to model spectra. A featureless spec-
trum (green) and a model spectrum of a 100% water vapor atmo-
sphere (red) are shown. Binned data points (blue) are illustrated
to indicate the proposed transit depth variation near the 1.38µm
water feature. The binned data points would suggest a 2.44σ. The
Bayesian analysis, however, indicates that there is there is little
statistical evidence of water absorption in the HST WFC3 ob-
servations. We emphasize that model-independent approaches to
detect molecular absorption features by binning data points “in-
side” the suspected feature and comparing the transit depth to the
surrounding “continuum” generally lead to ambiguous results be-
cause spectra of thick atmospheres lack clear separations between
features and surrounding “continuum” (Table 5).

4.1. Testing for the Presence of Water Absorption

Our Bayesian analysis shows that, despite the sug-
gested trend in the spectral data points, there is lit-
tle statistical evidence of water absorption in the HST
WFC3 observations by Berta et al. (2012) (Table 4).
The Bayesian factor BH2O describing our confidence in
the presence of water is only 3.34, which is at best a
weak suggestion that water absorption may be present.
The Bayes factor for all other molecule and clouds are
below ∼ 2, indicating that no molecular absorption can
be inferred from the data set.

It is important to note that standard model-
independent approaches based on binning data points
“within” and “outside” can lead to ambiguous or even
misleading results for a spectral data set such as that pro-
vided by Berta et al. (2012). The reason is that molecu-
lar absorption features of thick atmospheres are generally
not box-shaped. The gradual shape of the absorption fea-
ture wings make it impossible to unambiguously assign
which data points are “inside” and “outside” of the water
absorption features. Figure 9 and Table 5 show that the
contrast between binned data points “inside” and “out-
side” can vary between ∼ 1.4σ and ∼ 2.65σ, depending
on which data points are considered within the feature.
A finding of an absorption feature at 2.65σ could then be
misinterpreted as strong suggestion of water absorption.

The Bayesian framework presented in this work does
not lead to ambiguity because the data are taken as
given. High confidence in the detection of water absorp-
tion is only assigned if the original data points follow the
spectral shapes expected for atmospheres with water ab-
sorption, and no other molecular absorber can explain
the data.

4.2. Atmospheric Constraints

The observed transit spectrum by Berta et al. (2012)
leads to correlated constraints on the mean molecular
mass (or water mole fraction) and the cloud top pres-
sure that are characteristic for transit observations that
show a weak trend of an absorption feature (Figure 10).
The highest posterior probabilities exist along a curve of
constant feature size corresponding to the apparent vari-
ation in the Berta et al. (2012) data. The 99.7% (3σ)
extends, however, all the way to virtually featureless sce-
narios with low cloud top pressures below 0.0001 mbar.

Cloud-free hydrogen-rich scenarios (bottom left region
of Figure 10) are disfavored by the observational data be-
cause the observed transmission spectra do not show the
deep absorption features expected for clear hydrogen-rich
atmospheres. At 99.7% probability (3σ), we conclude
that cloud free atmospheres are only in agreement with
the data if the mean molecular mass is above 7, corre-
sponding to more than 30% H2O in an H2O-H2 atmo-
sphere.

Hydrogen-dominated scenarios with less than 2% wa-
ter are possible only if clouds are present at low pressure
such that the partial pressure of water vapor at the cloud
surface does not exceed pH2O ∼ 0.025 mbar. Above 2%
water vapor, the water vapor significantly increases the
mean molecular mass, thereby reducing the size of the
molecular absorption features. As a result, the 3σ con-
tour of the Bayesian credible region peaks at XH2O ≈ 2%
and psurf = 10 mbar and then continues to fall to higher
cloud top pressures as the water mole fraction is increased
further.

Our findings are in qualitative agreement with the list
of implications for the atmospheric composition provided
by Berta et al. (2012). One major difference is that we
provide Bayesian credible regions describing our knowl-
edge about the atmospheric composition in a statistically
robust probabilistic way. Berta et al. (2012) derived im-
plications on the atmospheric composition using χ2 hy-
pothesis testing and sequentially rejecting (or failing to
reject) predefined atmospheric scenarios.

In additional difference is that we used the new mass,
radius, and surface gravity estimates by Carter et al.
(2013, in preparation). The new estimate for the planet’s
surface gravity is 53% higher than the one published by
Charbonneau et al. (2009). As a result, the scale height
and modeled feature depth for a given atmospheric sce-
nario decreases by 34.5%.

5. DISCUSSION

5.1. Scaling Laws for Required Observation Precision

Planet and Star Scenario— The quantitative results ob-
tained for the super-Earth GJ 1214b in Section 3 can
be generalized for transiting super-Earth exoplanets with
different bulk properties and different host stars using the
scaling law

σreq

σref
≈

RP
RP,ref

Teq
Teq,ref

gp,ref

gp

R2
∗,ref

R2
∗
. (18)

The required precision σreq is the maximum allowed
observational uncertainty in the spectral transit depth
measurements, Rp is the planetary radius, Teq is the
equilibrium temperature, gp is the surface gravity of the
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Retrieval model Retrieval model parameters Evidence Best-fit Bayes factor
ln (Zi) χ2

best−fit Bi = Z0/Zi

Full hypothesis space Rp
R∗ , Pclouds, ξ = clr(XH2O, XCO2

, XCH4
, XCO, XH2/He, XN2

) -162.96 12.24 Ref.

H2O removed
Rp
R∗ , Pclouds, ξ = clr(XCO2

, XCH4
, XCO, XH2+He, XN2

) -163.16 14.31 BH2O = 3.34

CO2 removed
Rp
R∗ , Pclouds, ξ = clr(XH2O, XCH4

, XCO, XH2/He, XN2
) -164.16 12.20 BCO2

=1.26

CH4 removed
Rp
R∗ , Pclouds, ξ = clr(XH2O, XCO2

, XCO, XH2/He, XN2
) -163.19 12.18 BCH4

=1.63

CO removed
Rp
R∗ , Pclouds, ξ = clr(XH2O, XCO2

, XCH4
, XH2/He, XN2

) -163.44 12.28 BCO =1.70

N2 removed
Rp
R∗ , Pclouds, ξ = clr(XH2O, XCO2

, XCH4
, XCO, XN2

) -163.49 12.72 BN2
=1.82

H2/He mix removed
Rp
R∗ , Pclouds, ξ = clr(XH2O, XCO2

, XCH4
, XCO, XH2/He) -163.56 12.45 BH2/He =2.01

H2O & CH4 removed
Rp
R∗ , Pclouds, ξ = clr(XCO2

XCH4
, XCO, XH2/He, XN2

) -163.65 17.56 BH2O or CH4
= 3.65

Clouds removed
Rp
R∗ , ξ = clr(XH2O, XCO2

, XCH4
, XCO, XH2/He, XN2

) -164.25 12.51 BClouds =1.23

TABLE 4
Results of Bayesian model comparison for observed HST WFC3 transmission spectrum of GJ 1214b by Berta et al. (2012).

The observations are depicted in Figure 9(a).

Binning scheme Indices of data points
”inside” the feature

Indices of data points
in surrounding ”continuum”

1 - p-Value Detection
significance

#1 (Figure 9) 11-16 5-10 (left) 17-24 (right) 96.9% 98.5% 2.16σ (left) 2.44σ (right)

#2 10-17 5-9 (left) 18-24 (right) 82.9% 85.6% 1.37σ (left) 1.46σ (right)

#3 11-16 5-10 and 17-24 99.2% 2.65σ

#4 10-17 5-9 and 18-24 90.5% 1.67σ

TABLE 5
Ambiguity in the model-independent detection significances for non-box-shaped spectral features. The table presents the
detection significances of an increased transit depth in the 1.38µm water band derived from the published transmission
spectrum of GJ 1214b by Berta et al. (2012). The indices of the data points are counted from the shortest wavelength
data point #1 at 1.123µm to the longest data point #24 at 1.656µm (Figure 9). For thick atmospheres, there is no clear

cutoff to determine which data points belong to the feature and which do not. The model-independent detection
significance ranges between 1.46σ and 2.65σ depending on which data points are considered to be inside the water band and

which data points are considered to be in the surrounding continuum.

planet, and R∗ is the radius of the host star. Equation
(18) is derived by relating the area 2RpH of an annu-
lus around the planet and a width of one scale height
H ∝ Teq/g to the cross sectional area of the stellar disk
πR2
∗.

Equation (18) is valid for clear, hazy, and cloudy
atmospheres to within a few percent error as long as
identical scenarios for the atmospheric compositions and
clouds/hazes properties are compared. This simple scal-
ing law is valid for all types of atmospheres because dif-
ferences between the transit depths observed at two dif-
ferent wavelengths are directly related to the difference
in the altitudes ∆z at which the atmosphere becomes
opaque to a grazing light beam at the two wavelengths.
The difference in the altitudes ∆z, in turn, is related to
the pressure scale on which the atmospheric scenarios,
e.g., cloud top pressure and compositional profiles, are
defined by ∆z = −H · ∆P/P . Equation (18) does not
account for the increase in atmospheric path length of
grazing light beams due to an increase in the planet ra-
dius. The longer path length, however, generally leads
to an approximately uniform increase in transit depths
across the entire spectrum and has little effect on the
transit depth variations.

Equation (18) shows that the required observational
precision depends most strongly on the radius of the host
star due to large differences in the stellar radii and the
square dependence on that parameter. The stellar ra-
dius of the M-dwarf GJ 1214 is only 18.8% of the radius
of a Sun-like star. As a result, the required photomet-
ric precision to characterize a planet orbiting a Sun-like
star is ∼28 times larger than the required precision for
the characterization of the same planet orbiting GJ 1214.

Atmospheric characterizations of a planet orbiting a Sun-
like star with the same apparent brightness would there-
fore require more than 500 times more observational time
than a similar atmospheric characterization requires for
a planet orbiting GJ 1214. The effect of the atmospheric
temperature and planetary radius on the required pre-
cision scales only linearly. The required precision for
the atmospheric characterization of an temperate super-
Earth orbiting a nearby M-dwarf, for example, is only
higher by a factor of 2− 3 higher compared to GJ 1214b
(see Section 5.4 for a discussion). Similarly, the required
precision would only increase by a factor of 2.4 if an
Earth-sized planet was studied rather than GJ 1214b.

Spectral Resolution of Observations— The quantitative re-
sults of the photometric precision in Section 3 are pre-
sented for a resolving power R = λ/∆λ = 70. Higher
resolution spectra, whose uncertainties are dominated by
white noise, can provide the same information, even if
the uncertainties of the individual data points are higher.
Assuming that the observational uncertainties are dom-
inated by white noise, the requirements on the precision
of each single data point scale as

σHR, req ≈ σref

√
∆λref

∆λHR
= σref

√
RHR

Rref
, (19)

for RHR > Rref . Equation 19 describes in a formal
way that the required precision, σHR, req, of spectra with
a higher resolving power, RHR, can be binned to reduce
the observational uncertainty of individual data points
to σref at a reference resolving power of Rref . The higher
resolution spectra, therefore, contain at least as much in-
formation about the atmosphere as the spectra with ob-
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Fig. 10.— Atmospheric constraints derived from the observed transmission spectrum by Berta et al. (2012). The shading illustrates the
marginalized posterior probability as a function of mean molecular mass and cloud top pressure for a two-component H2O+H2 atmosphere.
The black contour lines indicate the 68%, 95%, and 99.7% Bayesian credible regions. The 95% Bayesian credible region extends over large
parts of the parameter space, preventing an unambiguous characterization of the atmosphere of GJ 1214b with the currently available data.
Starting from the most robust statement, we can rule out clear hydrogen-dominated atmospheres with hydrogen mole fractions above 40%
at > 3σ. Water-dominated and cloudy, hydrogen-dominated atmospheres are, however, in agreement with the data at 1σ due to degeneracy
between the water mole fraction and the cloud top pressure (compare Figure 6). The prior probability is uniform in the parameter space
spanned by log

(
psurf

)
, ξ1 = log

(
XH2O/

√
XH2O ·XH2

)
.

servational uncertainty σref and reference resolving power
Rref .

Equation (19) can be regarded as a conservative scal-
ing law because observations with significantly higher re-
solving power than R = λ/∆λ = 70 may capture indi-
vidual peaks within the water absorption features that
are not captured at low resolution. High resolution ob-
servations may therefore provide additional information
to better constrain the gradient dRP,λ/d(lnσλ) and thus
the mean molecular mass (equation1). We confirm in nu-
merical studies that equation (19) is valid for resolving
power between ∼ 50 and several hundreds. A detailed
numerical exploration of the effect of the resolving power
is beyond the scope of this study.

5.2. HD 97658b, 55 Cnc e, and GJ 436b

Besides GJ 1214b, the transiting exoplanets in the
mass regime of super-Earths and Neptunes that are
most amenable to study are HD 97658b, 55 Cnc e, and
GJ 436b. Their bulk densities are high enough to re-
quire a larger ice or rock fraction than the solar system
ice giants, but far too low to be explained by an entirely
Earth-like rocky composition. Similar to GJ 1214b, the
question arises whether these planets are surrounded by
a thick hydrogen-dominated envelope or a ice-dominated
gas envelope.

We find from Equation (18) that the precision required
to distinguish between water and hydrogen-rich scenar-
ios for HD 97658b, 55 Cnc e, and GJ 436b is signifi-
cantly higher (Table ). The main driver in increasing the
required precision is the larger host star diameters. It
should be noted, however, the photon flux received from
HD 97658 and 55 Cnc is orders of magnitude higher due
to the brightness of the stars (Table 6). Significantly

higher transit depth precision may therefore be achiev-
able per transit if photon limited observations and a high
integration efficiency can be achieved. The implications
of the host star brightness on the instrumental effects
and integration are specific to each instrument and be-
yond the discussion in this work.

Transmission spectra of the exoplanet HD 97658b are
displayed in Figure 11 to further guide future observa-
tions. The planet was recently found to transit are dis-
played (Henry et al. 2011; Dragomir et al. 2013). Cloud-
free hydrogen-dominated atmospheres would results in
transit variation of 100− 200 ppm that would readily be
detectable with currently available instrumentation. A
confident detection of water vapor or other volatile-rich
atmospheric scenarios would require a precision below
10 ppm at moderate spectral resolution (Table 6).

5.3. Uncertainty Reduction through Stacking Transit
Observations

In Section 3, we made the assumption that the uncer-
tainty in the spectral data points scales inversely with
the number of transits observed and photons collected.
Based on this assumption, we calculated how many tran-
sit observations need to be stacked with current obser-
vational techniques to detect water absorption in the at-
mospheres of super-Earths and to distinguish between
hydrogen-rich sub-Neptunes and water worlds. The as-
sumption that the uncertainty scales inversely with the
square root of the number of observed transits is true for
observational uncertainties that are dominated by white
noise, such as photon-noise or stellar granulation noise.
Instrumental effects or long-period stellar variability may
ultimately set a lower limit on achievable precision for
transit observations. To date, however, it is not clear
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Required precision σreq at R = 70 Host star
brightness

Planet Scaling factor
Detection of H2O atmosphere

at B ≈ 2000 (> 4σ)
Unambiguous distinction between
clear H2O and H2 atmospheres

K V

GJ 1214b Reference ∼ 80 ppm ∼ 60 ppm 8.78 14.67

HD 97658b 0.092 7.4 ppm 5.5 ppm 5.73 7.71

55 Cnc e 0.101 8.1 ppm 6.1 ppm 4.02 5.95

GJ 436b 0.367 29.4 ppm 22.0 ppm 6.07 10.59

TABLE 6
Scaling factors and estimates of required precision in transit depth measurements to study the atmospheres of

HD 97658b, 55 Cnc e, and GJ 436b. Stellar and planet parameters are taken from Carter et al., 2013 for GJ 1214b,
Dragomir et al. (2013) for HD 97658b, Demory et al. (2011) and Gillon et al. (2012) for 55 Cnc e, and Torres et al. (2008)

and Knutson et al. (2011) for GJ 436b.
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Fig. 11.— Model transmission spectra for the super-Earth HD 97658b. Panel (a) shows spectra for atmospheres dominated by volatiles
with high mean molecular masses. Panel (b) shows spectra for hydrogen-dominated scenarios. All spectra are modeled to match the transit
depth measurement in the MOST bandpass by Dragomir et al. (2013) (black).

whether and after how many transits the transit depth
uncertainty will reach a lower limit.

On the contrary, there is impressive empirical evidence
from space-based observatories such as Kepler and HST
that the transit depth uncertainty continues to decrease
as the number of stacked transits increases to a few, tens,
and even several hundred transits. A prominent example
is the continuous Kepler observations of the hot-Jupiter
TrES-2b from which the visible broadband transit depth
was determined to a precision of 1.7 ppm by combin-
ing hundreds of transits (Barclay et al. 2012). Spectro-
scopic observations of three transits of GJ 1214b using
HST WFC3 by Berta et al. (2012), reaching a preci-
sion within 10% of the photon limit, suggest that a sim-
ilar trend is possible for spectroscopic transit observa-
tions. More observations are required to fully under-
stand whether the uncertainty of exoplanet transmission
spectra is ultimately limited by instrumental and/or as-

trophysical noise.

5.4. Atmospheric Characterizations of Potentially
Habitable Worlds around M-dwarfs

One compelling feature of the scaling law, Equation
(18), is that the photometric precision required to per-
form atmospheric characterizations scales only linearly
with the atmospheric temperature and planet size. The
weak scaling illustrates the great potential of transmis-
sion spectroscopy to characterize temperate and small
exoplanets (Deming et al. 2009; Seager & Deming 2010).
In principle, transit observations with currently available
instrumentation have the potential to characterize the at-
mospheres of potentially habitable super-Earths orbiting
nearby M-dwarfs if observational errors continue to de-
crease as the number of transits is increased to tens of
transits (see Section 5.3).

For example, for a super-Earth planet that orbits
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a GJ 1214-like star in the habitable zone at a mod-
erate temperature of Teq = 300K, the requirements
on observational time will rise by only a factor of
(Teq,P /Teq,GJ1214b)

2 ≈ 3.3 compared to the ones pre-
sented in Section 3. Given a sufficiently large observa-
tional program that covers 30− 50 transits, we would, in
principle, have the capability to find water or methane
features with currently available instrumentation, assum-
ing that observational uncertainty remains to be domi-
nated by the photon noise. Considering that the orbital
period of a temperate planet orbiting a GJ 1214-like star
is only ∼9 days, up to 40 transit observations could the-
oretically be performed over the course of a year.

5.5. Distinction Based on Rayleigh Scattering Slope

Observations of the slope of the Rayleigh scattering
at short wavelengths provide an alternative way of con-
straining the mean molecular mass. In practice, however,
the Rayleigh slope provides only an upper limit on the
mean molecular mass, thus only a lower limit on the hy-
drogen fraction in the atmosphere. The reason is the
presence of clouds or large particle hazes can reduce the
observed slope at visible and UV wavelengths.

A hydrogen-dominated atmosphere could be identified
if a steep negative slope is observed in the UV-visible part
of the transmission spectrum. If there is no steep slope,
however, the distinction between hydrogen-dominated
and volatile-dominated is not possible because the lack
of a steep slope at short wavelength may be due to a
high mean molecular mass or the presence of large parti-
cle clouds. The upper limit on the mean molecular mass
can therefore be determined as

µmix .
4kBT

gR∗

ln
(
λ1

λ2

)
(
Rp

R∗

)
λ2

−
(
Rp

R∗

)
λ1

, (20)

where we derived equation (20) from Equation (1) us-
ing that the Rayleigh cross section σ is proportional to
λ−4 . We assumed that, at least, two measurements
of the transit depth Rp/R∗ are available at wavelengths
λ1 and λ2 at which Rayleigh scattering dominates, and
we incorporated the uncertainty factor (1± δT/T ) from
Equation (20) into the approximately smaller sign.

As an example, we consider a haze-free water-rich sce-
nario on GJ 1214b in comparison to a range of hydrogen-
dominated scenarios with high-altitude ZnS hazes with
different size distributions (Figure 7(a)). In the absence
of hazes, the slope of the Rayleigh scattering signature at
short wavelengths can determined from equation (20) us-
ing an“approximately equal” sign instead of the“approx-
imately smaller” sign. In the presence of the ZnS hazes,
however, the slope at short wavelengths depends not only
on the mean molecular mass, but also on the size distri-
bution of the haze particles, the vertical extent of the
particles, and the amount of condensed mass. The slope
is therefore not an unambiguous measure of the mean
molecular mass. For haze particles that are small com-
pared to the wavelength, the slope of the Rayleigh signa-
ture remains unchanged. As the haze particles become
bigger, the slope decreases if the particles are present at
high altitude in sufficient abundance. In the limit of gray,
large particle clouds, more and more of the spectrum be-

comes flat.
An upper limit on the mean molecular mass can be

determined based on the detection of a straight Rayleigh
signature in the UV-visible spectrum because, at least
in the limits of Mie scattering theory of spherical parti-
cles, the opacities of particles do not change with a slope
greater than than σ ∝ λ−4 for any realistic particle size
distributions. Besides, we are not aware of any conden-
sate substances for which changes in the real or imaginary
refractive index at UV-visible wavelengths would steepen
the slope across a significant portion of the UV-visible
spectrum. As a result, haze particles would flatten not
steepen the Rayleigh slope at UV-visible transmission
spectrum and we can provide a lower limit, but not an
upper limit on the mean molecular mass.

6. SUMMARY AND CONCLUSIONS

We demonstrated that one can unambiguously
distinguish between cloudy Neptunes with hydro-
gen atmospheres and low-density super-Earths with
water/volatile-dominated atmospheres by observing the
relative sizes and wing steepnesses of the absorption fea-
tures in the planet’s NIR transmission spectrum. The
proposed observational distinction offers a promising ap-
proach to break the compositional degeneracy in the inte-
rior modeling of low-density super-Earths and Neptunes.
We argue that the distinction can be achieved efficiently
for super-Earths orbiting M-dwarfs by observing water
features at moderate spectral resolution (R ∼ 100) near
the brightness peak of the M-dwarf’s spectrum.

In this work, we use the super-Earth GJ 1214b as a case
study and provide a scaling law that scales our quanti-
tative results to other transiting super-Earths or Nep-
tunes such as HD 97658b, 55 Cnc e, and GJ 436b. For
GJ 1214b, we show quantitatively that an unambiguous
distinction between cloud-free water-dominated atmo-
spheres and cloudy hydrogen-dominated atmospheres is
possible if the observational uncertainties can be reduced
by a factor of ∼ 3 compared to the published HST WFC3
and VLT transit observations by Berta et al. (2012) and
Bean et al. (2010). Similar results can be achieved using
HST WFC3 alone if the observational uncertainty can
be reduced to 35 ppm at R = 70.

All results and spectra presented for GJ 1214b are de-
rived using the new mass, radius, and surface gravity
estimates for GJ 1214b by Carter et al. (2013, in prepa-
ration). The 53% increase in surface gravity leads to
a 35% decrease in scale height, thereby significantly al-
tering the strengths of spectral signatures compared to
previously published models.

The required decrease in observational uncertainty
may be achievable for GJ 1214b by observing 10 − 20
transits in large programs with Hubble and/or ground-
based telescopes. For example, observing 15 transits
with HST WFC3 and increasing the integration effi-
ciency from 10% to ∼50% using the new spatial scan
mode on WFC3 (Deming et al. 2013) would increase
the total number of detected photons by a factor of 25
compared to Berta et al. (2012). Assuming that the
observations remain dominated by white-noise (see Sec-
tion 5.3 for a discussion), such an observational pro-
gram would be able to unambiguously distinguish be-
tween a cloud-free water-dominated atmosphere and a
cloudy hydrogen-dominated atmosphere.
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The results in this work were obtained using an ad-
vanced Bayesian retrieval framework. The framework
not only constrains the atmospheric parameters, but also
determines in a statistically robust way which molecu-
lar species and types of clouds can be inferred from the
observational data. One main advantage over model-
independent approaches to infer molecular absorbers is
that the Bayesian approach inherently accounts for over-
lapping spectral features. It assigns a high probability
for the presence of a particular gas or cloud type only if
that gas or cloud type represents the only explanation for
the observed data. The Bayesian approach also enables
us to quantify our confidence in the presence of molec-
ular species if the spectral features are not box-shaped
and are not surrounded by a flat continuum. Spectra
of thick atmospheres generally lack a flat continuum and
the signatures of water vapor and methane resemble char-
acteristic changes in the transit depth across the whole
spectrum rather than distinct features. Finally, the ob-
servational data in the Bayesian framework are analyzed
at full resolution, thereby avoiding any information loss
and ambiguity introduced by binning the data.

The super-Earth GJ 1214b is currently the super-Earth
most amenable to spectroscopic characterizations. The
diminutive stellar radius (0.189 R�) and the high plan-

etary temperature (>500 K) result in relatively large
transit depth variations if an atmospheric envelope is
present. The atmospheric characterization of other cur-
rently known transiting super-Earths, such as 55 Cnc e
and HD 97658b, is significantly more challenging because
the larger host star radius decreases the transit signal by
a factor of ten or more.

Large efforts for the discovery of GJ 1214b analogues
are, however, ongoing. Ground-based transit surveys
such as MEarth (Nutzman & Charbonneau 2008) cur-
rently present the most promising pathway to detect
super-Earths around nearby M-dwarfs that are most
amenable to study. The TESS mission expected to
launch in 2017 will survey the full sky for planets tran-
siting nearby M-dwarfs. If an exoplanet like GJ 1214b is
found in the habitable zone of a close-by M-dwarf, this
work indicates that we may have the capability to spec-
troscopically probe the atmosphere of a potentially hab-
itable planet - not only in the next decades with JWST
or TPF -like missions, but today with HST and ground-
based telescopes.

We thank Jacob Bean, Zachory Berta, Jean-Michel
Désert, and Andras Zsom for valuable discussions. We
thank the anonymous referee for thorough reading and
thoughtful comments that improved the manuscript.
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