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BALANCED SPLITTING AND REBALANCED SPLITTING∗
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GILBERT STRANG‡

Abstract. Many systems of equations fit naturally in the form du/dt = A(u) + B(u). We
may separate convection from diffusion, x-derivatives from y-derivatives, and (especially) linear from
nonlinear. We alternate between integrating operators for dv/dt = A(v) and dw/dt = B(w). Non-
commutativity (in the simplest case, of eAh and eBh) introduces a splitting error which persists even
in the steady state. Second-order accuracy can be obtained by placing the step for B between two
half-steps of A. This splitting method is popular, and we suggest a possible improvement, especially
for problems that converge to a steady state. Our idea is to adjust the splitting at each timestep to
[A(u) + cn] + [B(u) − cn]. We introduce two methods, balanced splitting and rebalanced splitting,
for choosing the constant cn. The execution of these methods is straightforward, but the stability
analysis becomes more difficult than for cn = 0. Experiments with the proposed rebalanced splitting
method indicate that it is much more accurate than conventional splitting methods as systems ap-
proach steady state. This should be useful in large-scale simulations (e.g., reacting flows). Further
exploration may suggest other choices for cn which work well for different problems.
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1. Introduction. Suppose a system of differential equations contains terms with
disparate approximations. Our prime example is reacting flow with N species. The
evolution of the mass fractions Y1, . . . , YN is governed by convection, diffusion, and
reaction:

(1.1)
∂Yk

∂t
= −v · ∇Yk +Dk∇2Yk + rk(Y1, . . . , YN ).

The prescribed velocity field is v(r), Dk is the diffusion coefficient of species k, and rk
is the net rate at which species k is produced. Spatial discretization of the advection
and diffusion terms leads to difference matrices in which neighboring mesh points are
coupled, but each species is independent. On the other hand, the reaction term is
local in space, but couples all the species together. The reaction term is almost always
nonlinear and usually makes the PDE system (1.1) very stiff.

Because the approximations for these terms are so different, it is natural to con-
sider splitting methods [8, 23, 26, 29]. Each term can be integrated using methods
which take advantage of its special structure. To avoid stability problems, the trans-
port terms are sometimes treated implicitly, requiring an efficient linear solver. Split-
ting methods themselves may introduce stability issues as well [27]. Integration of the
reaction terms (which is usually the most computationally intensive, since N is often
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BALANCED SPLITTING 3085

large and the equations are very stiff) can be done in parallel, since each mesh point
is independent.

Begin with a system where both parts of the equation are linear:

(1.2)
dy

dt
= (Ay + a) + (By + b).

The exact solution to this equation with matrices A and B is

(1.3) y(t) = y∞ + e(A+B)t
(
y(0)− y∞

)
,

where the steady-state solution y∞ is given by

(1.4) (A+B)y∞ = −(a+ b).

If this is treated using splitting, the substeps will surely involve approximations
to the one-step exponentials eAh and eBh. If we take an exact eAh substep and then
an eBh substep, the error in the overall step involves the difference between eBheAh

and e(A+B)h. In general these differ by O(h2) over each step of size h:

eBheAh =

(
I +Bh+

1

2
B2h2 + · · ·

)(
I +Ah+

1

2
A2h2 + · · ·

)

= I + (A+B)h+
1

2
(A2 +B2 + 2BA)h2 + · · ·

= e(A+B)h +
1

2
(BA−AB)h2 + · · · .(1.5)

The commutator [B,A] = BA − AB is nonzero in most practical problems, so this
splitting is only first-order accurate. The O(h2) errors at every step combine into an
O(h) overall error after O(1/h) steps.

Another way to analyze the accuracy of splitting methods is to let eC = eAeB,
where C(A,B) ≡ A + B + 1

2 [A,B] + · · · is the Baker–Campbell–Hausdorff (BCH)
formula in which higher-order terms involve nested commutators. A type of BCH
formula for second-order splitting (introduced below) could come from applying the
known formula twice to get C(Ah/2, C(Bh,Ah/2)) [32, 11].

An improvement to achieve second-order accuracy was suggested in [29] by “sym-
metrizing” the overall step. We see the crucial matrix most clearly when a = b = 0:

(1.6) Second-order splitting y(h) = eAh/2eBheAh/2y(0).

This approach captures the correct 1
2 (A + B)2h2 term in the exponential, but it has

an error in the h3 term:

(1.7) eAh/2eBheAh/2 − e(A+B)h =
1

24
([[A,B], A] + 2[[A,B], B]) h3 +O(h4).

Other authors have undertaken the serious work of developing that idea into full-scale
codes (reacting flow problems in combustion [28] are important examples). The extra
cost of replacing one full step by three substeps has been found acceptable, since it
allows one to take advantage of the partial decoupling discussed above.

For simplicity we have described splitting as if the substeps use exact exponentials.
In practice eAh/2 and eBh are replaced by applying numerical integration schemes such
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3086 SPETH, GREEN, MACNAMARA, AND STRANG

as Runge–Kutta or backward differences sequentially to the split equations:

dz1
dt

= Az1 + a; z1(t) = y(t),(1.8)

dz2
dt

= Bz2 + b; z2(t) = z1(t+ h/2),(1.9)

dz3
dt

= Az3 + a; z3(t+ h/2) = z2(t+ h),(1.10)

y(t+ h) = z3(t+ h).(1.11)

Second-order splitting (sometimes called Strang splitting) is used in a wide range of
applications.

We would like to add two comments from the existing literature before we in-
troduce balanced splitting. First, it is natural to ask about third-order accuracy (or
higher). This is only possible by allowing substeps that go backward in time or for-
ward in “complex time” [2, 32, 11, 17]. For diffusion equations, backward timesteps
introduce unacceptable numerical instabilities. A complex Δt1 = a + ib followed by
Δt2 = a − ib is, in theory, possible, but not often chosen. For reaction–diffusion
equations second-order accuracy may be best possible in practice.

Second, in nonlinear problems we want approximations that are symplectic. Then
area in phase space is conserved, and approximate solutions to nearby problems remain
close. The beautiful book of Hairer, Lubich, and Wanner [11, pp. 47, 230] confirms
that second-order splitting (modeled by eAh/2eBheAh/2 in linear problems) is truly
symplectic for nonlinear equations.

2. Steady-state solutions. Splitting in time-dependent problems has led to al-
gorithms for the solution of a related problem: capture the steady state. Each timestep
becomes an iteration toward a solution y∞ that is independent of time. Then dy/dt
is removed from the equation, leaving a balance between the time-independent terms.
For the reacting flow problem in section 9, the transport and reaction terms balance
to produce a steady flame. For reaction-diffusion systems, steady state may be a
visually interesting pattern [19].

In this approach to y∞, splitting methods may produce different steady-state
solutions from the original ODE system. Consider as an example the nonlinear, in-
homogeneous equation

(2.1) y′ = (y + 2)− 1

4
y4

with the initial condition y(0) = 0.5 and the steady solution y∞ = 2. In Figure 2.1(a),
we demonstrate the first-order sequential splitting process as applied to (2.1) using a
timestep of h = 0.5. The split terms follow trajectories that are quite different from
the solution to the original equation. Even when the splitting method has reached its
steady state, y∞ ≈ 1.36 for h = 0.5, the individual steps take the solution away from
y∞ before returning. Decreasing the timestep to h = 0.1 decreases the steady-state
error (y∞ ≈ 1.82 in Figure 2.1(b)). However, arbitrarily small timesteps are required
to effectively eliminate the steady-state error even when the solution is slowly varying.

Figures 2.1(c) and 2.1(d) show the second-order (Strang) splitting process applied
to the same problem. While the substep deviations within each combined step remain
large, the error in y∞ is significantly smaller (y∞ ≈ 2.31 for h = 0.5 and y∞ ≈ 2.01
for h = 0.1). The goal of balanced splitting is to reduce or remove this steady-state
error.
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(a) First-order splitting, h = 0.5.
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(b) First-order splitting, h = 0.1.
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(c) Second-order splitting, h = 0.5.
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(d) Second-order splitting, h = 0.1.

Fig. 2.1. First-order splitting (a, b) and second-order splitting (c, d) applied to (2.1). See
Figure 5.1(b) for further improvement from balancing.

For a more general analysis, consider again the inhomogeneous linear model prob-
lem (1.2). The steady-state equation is

(2.2) (Ay∞ + a) + (By∞ + b) = 0.

If A + B is a stable matrix (its eigenvalues have negative real parts), then the time-
dependent solution of the differential equations converges to y∞:

(2.3) y∞ = −(A+B)−1(a+ b).

We will discuss below the stability of splitting methods. Certainly if A and B are
symmetric negative definite, and the step size h is small, reasonable methods converge
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3088 SPETH, GREEN, MACNAMARA, AND STRANG

safely to y∞ = 0 in the simplest case a = b = 0. Do we get the correct steady state y∞
in the general case, linear or nonlinear? The answer is no. It is very possible that
y∞ is not a steady state for the separate substeps.

It is worth noting the special cases under which splitting does preserve the steady
state. If A−1a = B−1b, then each half of (1.2) independently satisfies the steady
state, i.e., Ay∞ + a = 0 and By∞ + b = 0. Such special cases are uncommon, outside
the homogeneous case where a = b = 0. Additionally, if the commutator [A,B] = 0
(which holds if and only if eh(A+B) = ehAehB for all h), splitting is exact. These
conditions are further discussed in section 8.

In general, our previous comparison of Taylor series expansions shows that, at
steady state, first-order splitting introduces a nonzero error (eh(A+B)− eBheAh)y∞ ≈
1
2h

2[B,A]y∞. Naively, this suggests that the error at the steady state is approximately
O(h2). However, this assumes that we start at the exact steady state y∞ and take
only one split timestep. It is more realistic to start with an arbitrary initial condition
and integrate until we reach the split solver’s steady state z∞. In general the error
z∞−y∞ is approximately O(h) for first-order splitting. For Strang splitting, the error
z∞ − y∞ is approximately O(h2) (see Appendix A).

3. Strong stability. Strong stability is present when the norm of the solution
to u′ = Au is monotone decreasing for all initial values u(0):

(3.1) ||u(t)|| = ||eAtu(0)|| ≤ ||u(0)||.

Equivalently ||eAt|| ≤ 1 for t ≥ 0. This is more restrictive than stability of the
eigenvalues of A: Re{λ(A)} ≤ 0. For simple eigenvalues, negative real parts only
ensure that eAt is bounded. Multiple eigenvalues allow polynomial growth ||eAt|| <
C(1 + tk). These eigenvalue conditions might hold separately for A and B, but not
for their sum A+B (this is Turing instability and the opposite can also hold). In the
absence of symmetry, eigenvalues give only limited control.

We note here a familiar fact, that the symmetric part of A governs strong stability.
Lemma 3.1. Strong stability (3.1) holds if and only if A+A∗ is negative definite

or semidefinite (where A∗ is the conjugate transpose of A).
Proof. The simplest approach computes the derivative of ||u(t)||2:

d

dt
(u(t), u(t)) = (u′(t), u(t)) + (u(t), u′(t))

= (Au(t), u(t)) + (u(t), Au(t))

= ((A+A∗)u(t), u(t)).(3.2)

This is never positive (and ||u(t)||2 is never increasing) exactly when A+A∗ is negative
semidefinite.

When strong stability holds separately for A and B, it follows immediately that
first-order and second-order splitting are also strongly stable:

(3.3) ||eBheAh|| ≤ 1 and ||eAh/2eBheAh/2|| ≤ 1.

We will not have complete control over balanced splitting, but in our experience we
can achieve stability there, too.

Example. Before reaction terms are introduced, consider a one-dimensional, scalar
advection–diffusion equation:

(3.4) ut = −aux + buxx,
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BALANCED SPLITTING 3089

which we wish to approximate as a system of ODEs:

(3.5) u′ = Cu +Du.

Suppose that splitting separates advection −aux from diffusion buxx. Diffusion is
represented by a negative definite second difference matrix D such as

D =
b

h2

⎡
⎢⎣

−2 1
1 −2 1

. . .
. . .

. . .

⎤
⎥⎦ , with D +DT < 0.

The first and last rows depend on the boundary conditions. Advection is represented
by a first difference matrix, possibly centered and antisymmetric:

C ≈ −aΔ0 =
a

2h

⎡
⎢⎣

0 −1
1 0 −1

. . .
. . .

. . .

⎤
⎥⎦ , with Δ0 +ΔT

0 = 0.

The combination is strongly stable. It may be more instructive to consider one-sided
differences, where advection is represented by

(3.6) C = C+ = −aΔ+ =
a

h

⎡
⎢⎣

1 −1
1 −1

. . .
. . .

⎤
⎥⎦

or

(3.7) C = C− = −aΔ− =
a

h

⎡
⎢⎢⎢⎣

−1
1 −1

1 −1
. . .

. . .

⎤
⎥⎥⎥⎦ .

One of these is upwind and the other is downwind, depending on the sign of a (which
gives the direction of the flow). Pure advection, ut = −aux, would be solved by a
function of x− at. If a > 0, Δ− is the appropriate choice because the derivative at a
point x depends on points upwind of x. We see this in the negative definiteness of the
symmetric part, which differs from the second difference matrix D only by a constant
factor:

(3.8) C− + CT
− =

ha

b
D.

The centered difference Δ0 has greater accuracy and is the natural choice. But
when |a| is large (and advection dominates diffusion), Δ0 can be numerically danger-
ous. This matrix can be nearly singular and Δ− might be better. Advection–diffusion–
reaction problems are discussed by many authors (see [13] or [28]) and perhaps no
comprehensive solution has been found.

Given a strongly stable differential equation u′ = Au, finite difference stability
can become harder to maintain in two limiting cases:

1. The real parts of λ(A) become large and negative.
2. The imaginary parts of λ(A) become large.
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3090 SPETH, GREEN, MACNAMARA, AND STRANG

And for systems, two more difficulties can enter when the coefficients are matrices:
3. (stiff systems) Two negative eigenvalues can produce decay at very different

time scales: |λ2| � |λ1|.
4. A and B can fail to commute. For ordinary splitting and strong stability we

can appeal to (3.3).
We will see that balanced splitting reconnects A and B, making stability harder to
analyze but usually improving the computed steady state.

4. Balanced splitting. The goal of this paper is the development of a stable
second-order method that correctly balances the substeps. By moving a constant
vector between the two parts, we can assure the same steady state for each part. This
becomes a suitable steady state for the whole timestep.

Consider a system of nonlinear differential equations, with two parts that might
be transport and reaction terms T (y) and R(y):

time-dependent y′ = T (y) +R(y),(4.1)

steady state 0 = T (y∞) +R(y∞).(4.2)

The idea of balanced splitting is to move a constant vector from one part to the other
(before each timestep). If we were at steady state, y = y∞, the vector to move would
be c∞ = 1

2 (R(y∞) − T (y∞) ). This offset means that the parts T ∗ = T + c and
R∗ = R− c have the correct steady-state solution from (4.2):

T ∗(y) = T (y) +
1

2
(R(y∞)− T (y∞) ) = 0 at y = y∞,

R∗(y) = R(y)− 1

2
(R(y∞)− T (y∞) ) = 0 at y = y∞.

Balanced splitting comprises a family of methods with different procedures for
determining the balancing constant cn for each timestep such that the steady state
for the whole system is an approximate steady state for each of the two parts.

We now describe and analyze two such methods: “Simple balanced splitting” is
the first approach. Its stability will be seen to depend on the ratio A/B, which is not
acceptable even in the scalar case. “Rebalanced splitting” uses earlier values (and
substep values) for greatly improved stability.

Exploring other choices for the balancing constant may be worthwhile as well.
We describe these splitting methods in the nonlinear case, and then discuss stability
for the linear model problem y′ = (Ay + a) + (By + b).

In the linear case, balanced splitting becomes identical with the usual Strang
splitting for an augmented system with one additional unknown:

(4.3)
d

dt

[
y
z

]
=

[
A a+ c
0 0

] [
y
z

]
+

[
B b− c
0 0

] [
y
z

]
.

Setting z = 1 and c = 0 gives ordinary splitting (with no balancing) for the model
problem with nonzero a and b. The splitting is exact when ÂB̂ = B̂Â (Â includes the
extra column vector a+c and the row of zeros, and similarly for B̂). This is equivalent
to [A,B] = 0 and A−1a = B−1b = 0.

This approach confirms that balanced splitting has second-order accuracy for any
choice of the balancing constant vector c.
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5. Simple balanced splitting. Since y∞ is not known, we create a new bal-
ancing vector cn at each step from the current values of the approximate solution yn.
The most straightforward choice is

(5.1) Simple balanced splitting cn =
1

2

(
R(yn)− T (yn)

)
.

At each step we compute cn and solve (approximately, from tn to tn+1) the equation
with balanced parts:

(5.2) y′ = T ∗
n (y) +R∗

n(y) =
(
T (y) + cn

)
+
(
R(y)− cn

)
.

That step starts from yn and produces yn+1. The integration proceeds accordingly:

dz1
dt

= T (z1) + cn; z1(tn) = yn,(5.3)

dz2
dt

= R(z2)− cn; z2(tn) = z1(tn + h/2),(5.4)

dz3
dt

= T (z3) + cn; z3(tn + h/2) = z2(tn + h),(5.5)

yn+1 = z3(tn + h).(5.6)

Then (5.1) yields the offset cn+1 to apply in the following timestep.
To illustrate, we apply simple balanced splitting to the previously introduced

scalar nonlinear problem (2.1). In Figures 5.1(a) and 5.1(b) the step sizes are again
h = 0.5 and h = 0.1. Even with the large step size, the solution quickly converges
to the true steady state, with an error at t = 2.0 of Δy = 2.2 × 10−2 for the larger
timestep and Δy = 6.5 × 10−6 for the smaller step. Furthermore, the trajectories
followed by the individual integration steps remain close to the exact solution.
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(a) Simple balanced splitting, h = 0.5.
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(b) Simple balanced splitting, h = 0.1.

Fig. 5.1. Simple balanced splitting applied to (2.1). Note the error reduction when compared
with the solutions obtained using conventional splitting methods shown in Figure 2.1.
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6. Linear analysis of simple balanced splitting. In the linear model with
constant coefficient matrices A and B, this simple balanced splitting becomes

y′ = (Ay + a+ cn) + (By + b− cn) with

cn =
1

2

[
(Byn + b)− (Ayn + a)

]
.(6.1)

Suppose we apply the second-order “Strang splitting” and assume exact integration
over each substep. For convenience, let us adopt the following notation:

(6.2) α = eAh/2, β = eBh, A∗ = (α− I)A−1, B∗ = (β − I)B−1.

The first half-step starts at yn and reaches y+n by integrating y′ = Ay + a+ cn:

(6.3) y+n = αyn +A∗(a+ cn).

Starting from y+n the next substep integrates y′ = By + b− cn to reach y++
n :

(6.4) y++
n = βαyn + βA∗(a+ cn) +B∗ (b− cn) .

The third substep integrates y′ = Ay + a+ cn starting from y++
n :

(6.5) yn+1 = αβαyn + αB∗(b− cn) + (αβ + I)A∗(a+ cn).

To study the stability (or instability) of this iteration, substitute cn from (6.1) into
(6.5). The result is a recurrence relation that yields yn+1 from yn:

(6.6) yn+1 = Ryn +Q(a+ b).

The growth factor R controls this recursion:

(6.7) R = αβα +
1

2

[
αB∗ − (αβ + I)A∗](A−B).

The matrix factor Q for the inhomogeneous term is

(6.8) Q =
1

2

[
αB∗ + (αβ + I)A∗].

The factors R and Q may be compared to the corresponding terms appearing in the
exact solution:

(6.9) (yn+1)exact = e(A+B)hyn +
(
e(A+B)h − I

)
(A+B)−1(a+ b).

The first term in R comes from normal “Strang splitting” and the second term comes
from balancing. The balancing term is O(h3) and the first term is e(A+B)h +O(h3).
Q may be rewritten as

(αβα − I)(A+B)−1(6.10)

+
1

2

[
α(β − I)

(
B−1 +A−1

)
− (αβα − I)A−1

]
(A−B)(A +B)−1.

The first term is (e(A+B)h−I)(A+B)−1+O(h3) and the second term is O(h3). Thus
second-order accuracy is confirmed.
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Fig. 6.1. In the scalar case, Strang splitting is exact. Left: |B| = 3|A| and simple balanced split-
ting is stable. Right: |B| > 3|A|, and R < −1 for large h. The vertical line marks the approximation
(6.14) to the maximum step size allowable before instability.

The balanced splitting method is especially accurate as the system approaches
steady state. The correct steady state of the original problem, y∞ = −(A+B)−1(a+b),
satisfies the balanced splitting recursion relation (6.6) for all values of h. In contrast,
unbalanced (cn = 0) Strang splitting has the h-dependent steady state:

(6.11) z∞ = (I − αβα)−1
[
αB∗b+ (αβ + I)A∗a

]
.

This method of simple balancing is stable if all eigenvalues of the growth factor R
have |λ| < 1. It is instructive to consider the limiting value of R as h → ∞. We
assume that the eigenvalues of both A and B have negative real parts (stability for
each part in the splitting). Then both α and β approach zero, so that

(6.12) lim
h→∞

R =
1

2
A−1(A−B) =

1

2
(I −A−1B).

In the scalar case, the test |R| < 1 says that stability for large h depends on the
ratio B/A of negative numbers. If that ratio exceeds 3, then the limiting value of R is
below 1

2 (1− 3) = −1. Simple balancing is unstable for large h, when |B| > 3|A|.
The plot of R shows stability (scalar case only!) for B = 3A (Figure 6.1). There

is instability for h > 7 when B/A = 3.1 (and for h > 0.7 when B/A = 10).
Lemma 6.1. A sufficient condition for scalar stability is A < B < 0.
Proof. Write (6.7) as the sum R = (R1 +R2 +R3)/2, where

R1 = I −A−1B + αβα(I +A−1B),

R2 = α(β − I)B−1A,

R3 = −α(β − I)A−1B.(6.13)

Given A < B < 0 < h, then 0 < αβα < 1 and 0 < A−1B < 1. This yields 0 < R1 < 2.
Clearly R2 is negative and R3 is positive. Their sum R2 +R3 is negative because

B−1A > A−1B. We want a lower bound on R2:

R2 = [hAα]
[
(β − I)/hB

]
=

[
hAehA/2

] [(
ehB − I

)
/hB

]
.
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The first factor is most negative at hA = −2, where it equals −2/e. The second factor
never exceeds 1 for hB < 0. So R2 is not smaller than −2/e and

R =
1

2
(R1 +R2 +R3) ≤

1

2
R1 < 1,

R =
1

2
(R1 +R2 +R3) >

1

2
R2 ≥ −1

e
.

Thus simple balanced splitting (scalar case) has |R| < 1 for all h > 0 if A < B <
0.

Numerical examples in Figure 6.1 suggest that the stability condition may be
relaxed to 3A < B < 0. Further, heuristic analysis suggests an explicit approximation
to the maximum step size allowable:

(6.14) h ≈ 2

A
ln

(
1− 3

A

B

)
.

Figure 6.1 shows an example where this approximation is very accurate. For the case
where A = −1, B = −3.1, shown in the figure, the heuristic predicts the maximum
allowable step size to be h ≈ 6.87, which is close to the exact stability limit of h ≈ 6.65
found by solving (6.7) with R = −1.

7. Rebalanced splitting. We now construct a more stable scheme, in which
the balancing vector c involves the intermediate values y+ and y++ from the previous
split step (as well as the old and new values of y). Remember from (5.1) that c has
the form 1

2 (R∗∗ − T ∗∗), where R∗∗ and T ∗∗ are approximations for R(y) and T (y),
respectively. Then the transport–reaction splitting in (5.2) is balanced:

(7.1) y′ = T ∗
n (y) +R∗

n(y) =
(
T (y) + cn

)
+
(
R(y)− cn

)
.

The split integration steps give the intermediate values y+n and y++
n :

y+n = yn +

∫ tn+h/2

tn

(
T (y) + cn

)
dt,(7.2)

y++
n = y+n +

∫ tn+h

tn

(
R(y) − cn

)
dt,(7.3)

yn+1 = y++
n +

∫ tn+h

tn+h/2

(
T (y) + cn

)
dt.(7.4)

In rebalanced splitting, we use average values of T (y) and R(y) over the previous
timestep to compute R∗∗ and T ∗∗:

T ∗∗
n+1 =

1

h

∫ tn+h

tn

T (y) dt =
(yn+1 − y++

n ) + (y+n − yn)

h
− cn,(7.5)

R∗∗
n+1 =

1

h

∫ tn+h

tn

R(y) dt =
y++
n − y+n

h
+ cn.(7.6)

Then cn+1 comes from this new “rebalanced” formula:

(7.7) cn+1 =
1

2h

(
−yn+1 + 2y++

n − 2y+n + yn
)
+ cn.
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8. Linear analysis of rebalanced splitting. We continue with the linear in-
homogeneous system

(8.1) y′ = (Ay + a+ c) + (By + b− c).

With c = cn the intermediate and final values y+n , y
++
n , yn+1 come from a step of the

usual Strang splitting. Equations (6.3)–(6.5) still apply but now (7.7) produces a new
expression for cn+1:

(8.2) cn+1 = Uyn + V cn + S

with matrix coefficients U , V and the vector S:

U =
1

2h
(−αβα + 2βα− 2α+ I),

V =
1

2h

[
(−αβ + 2β − 3I)A∗ + (α− 2I)B∗ + 2hI

]
,

S =
1

2h

[
(−αβ + 2β − 3I)A∗a− (α− 2I)B∗b

]
.

Equation (6.5) for yn+1 combines with (8.2) to produce a vector recurrence:

(8.3)

[
yn+1

cn+1

]
=

[
P Q
U V

] [
yn
cn

]
+

[
R
S

]
,

where

P = αβα,

Q = (αβ + I)A∗ − αB∗,
R = (αβ + I)A∗a+ αB∗b.

The eigenvalues of the block matrix M = [P,Q; U, V ] determine the stability of
rebalanced splitting.

Note 1. P = αβα is the usual matrix from one step of splitting for the homoge-
neous system without balancing.

Note 2. In the special case that AB = BA and a = b = 0, ordinary splitting
is exact (when the substep integrations with eAh/2 and eBh are exact as above).
Rebalanced splitting does not share this property.

Note 3. Rebalanced splitting preserves the correct steady state y∞ for all values
of h. If the step starts from yn = y∞ and cn = c∞, then it ends with those values
(and also y+n = y++

n = y∞).
Note 4. Rebalanced splitting retains the second-order accuracy of Strang splitting,

following the augmented representation of (4.3).
Note 5. If iteration with M is stable, we expect the solution to converge to y∞

like |λ|n after n steps where λ is the eigenvalue of largest modulus.
For the block matrix M that governs the recurrence (8.3), we can compute the

limits as h → ∞ and h → 0. Assume as before that all eigenvalues of A and B have
negative real parts. Then α = eAh/2 and β = eBh approach zero as h → ∞. The
limits of A∗ and B∗ are −A−1 and −B−1 at h = ∞, and zero at h = 0. For the block
matrix, both limits have half the eigenvalues equal to 1. The other half are zero:

(8.4) lim
h→∞

[
P Q
U V

]
=

[
0 −A−1

0 I

]
,
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Fig. 8.1. Maximum of the absolute value of the eigenvalues ρ(M) of the 2 × 2 matrix M =
[P Q; U V ] defined in (8.3). All numerical examples show a maximum less than 1, which points to
stability in the real, scalar case. These plots suggest that ρ(M) depends only on two parameters:
B/A and Bh.

(8.5) lim
h→0

[
P Q
U V

]
=

[
I 0

1
2 (B −A) 0

]
.

Thus the stability condition B/A < 3 for simple balanced splitting (scalar case) is no
longer required.

The expressions for P,Q,U, V make the eigenvalues of M difficult to analyze
for finite h > 0. Numerical experiments, with negative numbers A and B, indicate
stability. Figure 8.1 shows a typical graph of the spectral radius ρ(M), which is the
maximum magnitude of the eigenvalues λ(M). This example and others suggest that
rebalanced splitting is stable for all real scalars A < 0 and B < 0 and all h > 0.
A complete proof of this conjecture has been elusive.

The next step allows 2×2 matrices A and B. We could go directly to a nonlinear
problem in combustion, for which the rebalanced splitting method was created. The
method is successful (section 9) for the time-dependent problem, and balancing greatly
improves the computed steady state. First, however, we stay with linear analysis to
see whether stability can finally break.

The matrices will have negative definite symmetric parts 1
2 (A + AT ) and 1

2 (B +
BT ). The conventional Strang splitting remains strongly stable, as in section 3. Notice
there is no control of the antisymmetric parts. In one set of experiments we steadily
increased b in the following matrix A:

(8.6) A =

[
−ε b
−b −ε

]
, B =

[
−1 0
0 −1

]
.

The commutator is zero and ordinary splitting is exact. However, rebalanced splitting
eventually became unstable. For example, results for these matrices with the values
ε = 0.01 and b = 100 are shown in Figure 8.2.

It is natural to wonder about matrices for which the symmetric part is not negative
definite. Consider this example with A and B nonsymmetric and with symmetric parts
that have a positive eigenvalue:

(8.7) A =

[
0.7 −3
2 0.5

]
, B =

[
−1 −0.2
1.1 0.1

]
.
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Fig. 8.2. The symmetric parts of A and B in (8.6) are negative definite. Strang splitting is
strongly stable (ρ = e−(1+ε)h) but rebalanced splitting is unstable (ρ(M) > 1) for some step sizes.
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Fig. 8.3. The symmetric part is not negative definite in example (8.7). For some step sizes,
Strang splitting is unstable, and rebalanced splitting is stable.
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Fig. 8.4. Here A is a complex scalar with a negative real part, and B < 0 is real. Left:
Maximum of the absolute value of the eigenvalues of the 2 × 2 matrix M = [P Q; U V ] defined
in (8.3). The maximum is ≈ 1.04 so some parameter values are unstable. Right: An example of
instability. The real part of the solution shows growing oscillations.
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With this choice of A and B, for some values of h Strang splitting is unstable
while rebalanced splitting is stable, as shown in Figure 8.3.

These experiments suggested a return to the scalar case, allowing complex scalars.
Again the stability of the rebalanced splitting scheme can be broken, for example when
Im(A) ≈ 1000Re(A) (Figure 8.4).

9. Application: Nonlinear advection–diffusion–reaction equation. Now
we test the new balanced splitting methods on a significant model problem from
combustion. A laminar premixed flame is stabilized in the stagnation flow produced
by a pair of opposed jets. A mixture of fuel and oxidizer introduced through one
jet is consumed in a chemical reaction, releasing heat which causes the reaction front
to propagate into the unburned mixture. This reaction front is counteracted by the
velocity of the jet, producing a quasi-steady planar flame at a particular point in the
flow field. This is the steady state.

The strained flame is modeled by a system of coupled PDEs which describe the
conservation of mass, momentum, energy, and chemical species [15]. With a suitable
set of simplifying approximations—specifically, when the thermodynamic and trans-
port properties of the gas are independent of composition and temperature, and all
the thermal and molecular diffusivities are equal—the original equations become lin-
early dependent. We can then solve a scalar PDE in the surrogate variable y which
varies between 0 and 1 as the mixture varies from unburned reactants at the inlet
temperature to burned products at the adiabatic flame temperature. The chemical
reaction can be modeled by a single-step Arrhenius rate rule for a molecular reaction,
which can be written in terms of y as

(9.1) R(y) = A (1− y) e−E/(y−p),

whereA, E, and p are constants associated with the reaction. The resulting advection–
diffusion–reaction equation is then

(9.2)
∂y

∂t
= −v(x)

∂y

∂x
+D

∂2y

∂x2
+A (1− y) e−

E
y−p ,

where v(x) is the convective velocity andD is the diffusion coefficient. In this example,
we solve (9.2) for 0 ≤ x ≤ 1 on the interval t = [0, 1] with the coefficients v(x) =
−10x, D = 0.1, A = 2 × 106, E = 8, and p = −0.1. The initial condition is
y0(x) = 0.5 · (1− erf(8 · (x− 0.7))). The boundary conditions at x = 0 and x = 1 are
y = 1 and y = 0, respectively.

The equations are discretized on a uniform grid with spacing Δx = 0.02. We use
a first-order upwind scheme for advection and a second-order centered difference for
diffusion. The system of nonlinear ODEs is integrated using the fourth-order Runge–
Kutta method with a timestep size of h = 2 × 10−4, which is 1/10 of the stability-
limited step size Δx2/2D = 2 × 10−3. This method is also used for integrating the
split terms.

Several snapshots of the transient solution are shown in Figure 9.1. The system
asymptotically approaches its steady-state solution. The solution is visually indis-
tinguishable from the steady state for t ≥ 0.5. If we evaluate the Jacobian matrices
associated with the full system, the transport term, and the reaction term using
y∞(x), we find that all eigenvalues of the full system and the transport term have
negative real parts. But the reaction term has both positive and negative eigenval-
ues; that substep is not strongly stable. Our earlier stability analysis does not apply.
Nevertheless, splitting methods are able to produce stable solutions to this problem.
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Fig. 9.1. Transient solution to the one-dimensional reacting flow problem (see (9.2)).
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Fig. 9.2. Steady-state solutions to the reacting flow problem obtained by Strang splitting as a
function of h = Δt.

For this example, standard second-order splitting is stable for all timestep sizes
in our experiments, but it produces significant errors in both the steady-state and
transient solutions. The steady-state solution obtained using Strang splitting is shown
for different timesteps in Figure 9.2. The error (calculated as the 2-norm of y− yfull)
in the Strang splitting solution as a function of time is shown in Figure 9.3.

The transient errors associated with simple balanced splitting are shown in Fig-
ure 9.4(a). This method is stable only for relatively small timesteps. With h = 5× 10−3,
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Fig. 9.3. Error in the solution to the reacting flow problem obtained by Strang splitting as a
function of timestep size.
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(a) Simple balanced splitting.
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(b) Rebalanced splitting.

Fig. 9.4. Error in the solution to the reacting flow problem obtained by simple balanced splitting
(a) and rebalanced splitting (b) as a function of h = Δt.
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the solution oscillates between two states which effectively bracket the true steady-
state solution. The region where the instability manifests itself corresponds to the
most negative Jacobian elements of the reaction term. A larger step size makes the
method unstable.

The transient errors associated with rebalanced splitting are shown in Fig-
ure 9.4(b). Rebalanced splitting is stable for substantially larger timesteps than simple
splitting, but it too becomes unstable for sufficiently large Δt. In those cases where
both of the balanced methods are stable, the error associated with the simple bal-
ancing method is slightly smaller. When either balanced or rebalanced splitting is
stable, the error in the transient solution is smaller than the error produced by the
conventional Strang splitting method for all times. After the initial transient, the
error decreases in a straight line on the log-linear scale, indicating that the method
converges geometrically. The success of rebalanced splitting for this problem leads us
to recommend the method, particularly in the approach to steady state.

The steady-state solution can, in principle, be obtained by solving the nonlinear
algebraic system directly using Newton’s method. However, in practice the strong
nonlinearities prevent Newton solvers from converging in the absence of a good initial
guess. Some solvers for steady-state reacting flow problems address this restriction
by combining time-marching and Newton iteration [10]. In such solvers, rebalanced
splitting could be used in the time-marching step to produce reasonable starting points
for the Newton solver. Other implementations avoid the complexity of coupling with
iterative solvers by using time-marching to obtain the steady state directly [1].

10. Application: Chemical master equation. When all species are present
in high concentrations, continuum models for chemical reactions are appropriate.
When some species are present in small numbers of molecules and fluctuations may be
significant, a discrete, stochastic modeling framework is required. The chemical mas-
ter equation (CME) provides such a framework [30]. It is based on microphysics [7], it
agrees with continuum models in the limit of large numbers [16], and the CME model
has become popular for single-molecule experiments and for biochemical reactions
inside a cell [24, 18].

The master equation describes the evolution of the probability distribution as-
sociated with a continuous-time, discrete state Markov process [30]. Each possible
state of the system xi is a vector of nonnegative integers, where the nth component
records the population of the nth species. When the jth chemical reaction occurs,
the state changes from xi to xi + νj , where νj is a stoichiometric vector of integers
recording the change in the number of molecules of each species. Each reaction has
a nonnegative propensity function, αj(xi), such that αj(xi)dt is approximately the
probability of the reaction in the next time interval dt. The probability of state xi

evolves according to the master equation:

(10.1)
dP (xi, t)

dt
=

∑
j

αj(xi − νj)P (xi − νj , t) − P (xi, t)
∑
j

αj(xi).

If we let p be a vector with P (xi, t) as the ith component, then the master equation
can be expressed as

(10.2) p′ = Mp.

The off-diagonals of M are mkl ≥ 0, the propensity for a reaction that takes state
l to state k. The diagonal terms produce zero column sums. If p(0) is the initial
probability distribution, then p(t) is a probability vector for all time.
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When M is finite and bounded, the solution may be computed as a matrix expo-
nential [25]. Solving the CME directly is usually challenging because the matrix M
may be very large. The CME is often approached by a Monte Carlo stochastic sim-
ulation algorithm [7]. And direct solution methods for the CME have recently made
progress [22].

In many applications it is natural to splitM into different parts arising from differ-
ent types of reactions, so that the CME is p′ = Ap+Bp (where M = A+B). Jahnke
and Altintan describe splitting and an error estimate for the stochastic simulation
algorithm [14]. Strang splitting has also been adopted for the direct solution of the
master equation [21], and for reaction-diffusion master equations [6, 4]. Applications
of splitting can involve reactions with very different time scales, so that A and B
may represent fast and slow reactions, though usually a type of quasi-steady-state
approximation is also applied [3, 5, 20].

The stationary probability distribution of the CME will often be computed nu-
merically by large-scale linear eigenvector solvers, or by Monte Carlo, but in some
cases it may be computed by long time integration of the master equation. We now
demonstrate that errors in the steady state can be corrected by balanced splitting.

Two examples of master equations arising in biochemical kinetics are now de-
scribed. We consider a natural splitting based on reaction types. In all examples
[A,B] 
= 0, so there is some splitting error. Symmetric Strang splitting is a very good
choice for Michaelis–Menten enzyme kinetics. Balanced splitting offers advantages
when the goal is to capture the stationary distribution of the Goldbeter–Koshland
switch.

Example. Michaelis–Menten enzyme kinetics [31] involves the conversion of a
substrate S into a product P , catalyzed by an enzyme E and proceeding via a complex
intermediate C:

S + E ↔ C ↔ P + E.

It is natural to split this into S + E ↔ C as a master equation with matrix A, and
C ↔ P + E with matrix B. In general, there is a splitting error because [A,B] 
= 0.
If we begin precisely at the stationary distribution, p∞, there is zero splitting error
because it happens that Ap∞ = Bp∞ = 0. Balanced splitting has no advantage over
ordinary splitting.

Example. The Goldbeter–Koshland switch [9] involves two enzymes E and F that
catalyze opposing reactions:

S + E ↔ C → P + E,

P + F ↔ D → S + F.(10.3)

When E is a kinase and F is a phosphatase, this models the first of three stages of
the mitogen activated protein kinase cascade [12]. In this example, Ap∞ 
= 0 and
Bp∞ 
= 0. We expect that symmetric Strang splitting will not exactly preserve the
stationary distribution but that balanced splitting will. To test this, we choose an ex-
ample that is small enough to compute exponentials in full. Figure 10.1 confirms that
for the Goldbeter–Koshland switch, balanced splitting is more accurate than Strang
splitting for computing the stationary distribution. During the initial transient, how-
ever, Strang splitting is more accurate than balanced splitting. The behavior of the
error in this example suggests that a good approach is to combine Strang splitting
with balanced splitting: begin integrating with Strang splitting, and then for large t,
as steady state is approached, change to balanced splitting.
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Fig. 10.1. Comparison of symmetric Strang splitting with simple balanced splitting for the CME
associated with the Goldbeter–Koshland switch (10.3). For large t, as the stationary distribution is
approached, balanced splitting is more accurate than Strang splitting. Parameters: Initial state is
[S E C P F D] = [10, 10, 0, 0, 10, 0], and the rate constants are 1 for the reversible reactions, and
0.1 for the irreversible reactions.

Stability. As a Markov process, p(0) and p(t) are probability vectors: pi(t) ≥ 0
(componentwise) and 1 = 1T p(t) =

∑
pi(t), where 1T is a row vector of ones. Evalu-

ating p(t) = etMp(0) with exact exponentials is unconditionally stable. It is natural
to split based on reaction types, and in this case the split operators A and B sepa-
rately describe Markov processes. Thus Strang splitting preserves key properties of
the exact equation for each split operator, separately, and it is unconditionally stable.
In contrast, balanced splitting does not ensure positivity, nor that ||p(t)||1 = 1, and
the method may be unstable for some step sizes.

However, the following conservation property is respected by balanced splitting.
The master equation matrix M satisfies 1TM = 0. Hence 1T p(t) = 1T p(0) = 1 is
constant. When splitting maintains 1TB = 0 and 1TA = 0, the balancing vector,
c = (1/2)(B − A)p satisfies 1T c = 0. Then 1T p(t) = 1T p(0) = 1 also for balanced
splitting. In summary, balanced splitting applied to the CME is often more accurate
than conventional splitting for long time integration, and for capturing the stationary
distribution.

11. Conclusions. The new rebalanced splitting method proposed here con-
verges to the true steady state. We expect it will usually be more accurate than
conventional second-order splitting because its approximate split steps involve smaller
excursions away from the true trajectory than those of conventional splitting. We be-
lieve it will be beneficial in many practical applications, since often the fast modes
are close to steady state during most of a computed trajectory. If numerical instabil-
ities arise, which sometimes happens, one would be well advised to fall back on the
conventional second-order “Strang” splitting method.

Appendix A. Steady-state error of Strang splitting. Consider a variant of
(1.2) where r = a = −b. Then (1.2) is homogeneous but the split equations are not:

(A.1) y′ = (Ay + r) + (By − r) .

The steady-state solution to this equation is y∞ = 0. For simplicity, we introduce the
following notation:

(A.2) α = eAh/2, β = eBh, A∗ = (α− I)A−1, B∗ = (β − I)B−1.
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Integrating this equation using Strang splitting starting at yn and using a timestep
of h, we obtain the following:

y+n = αyn +A∗a,(A.3)

y++
n = βαyn + βA∗r −B∗r,(A.4)

yn+1 = αβαyn − αB∗r + (αβ + I)A∗r.(A.5)

The steady-state solution of the Strang splitting method can be found by solving the
linear system obtained by substituting yn = yn+1 = y∞ into (A.5):

(A.6) (I − αβα) y∞ = [(αβ + I)A∗ − αB∗] r.

We can now show that y∞ = O(h2) by writing the Taylor series for each term in the
preceding equation:

I − αβα = (A+B)h+ (A2 +B2 +BA+AB)
h2

2
+O(h3) = O(h),(A.7)

(αβ + I)A∗ − αB∗ =

(
A2

24
+

B2

12
+

BA

8

)
h3 +O(h4) = O(h3).(A.8)

With r = O(1), the leading orders of the terms in (A.6), show that

(A.9) O(h) · y∞ = O(h3) · O(1).

Thus the splitting error in y∞ is O(h2).
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