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Abstract. We propose an algorithm for standoff quantification of chemical vapor plumes from hyperspectral
imagery. The approach is based on the observation that the quantification problem can be easily solved in
each pixel with the use of just a single spectral band if the radiance of the pixel in the absence of the
plume is known. This plume-absent radiance may, in turn, be recovered from the radiance of the subset of spec-
tral bands in which the gas species is transparent. This “selected-band” algorithm is most effective when applied
to gases with narrow spectral features, and are therefore transparent over many bands. We also demonstrate an
iterative version that expands the range of applicability. Simulations show that the new algorithm attains the
accuracy of existing nonlinear algorithms, while its computational efficiency is comparable to that of linear algo-
rithms. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.53.2.021111]
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1 Introduction
The quantification of chemical vapor plumes by remote long-
wave infrared (LWIR) hyperspectral sensing is an estab-
lished capability, but existing signal processing algorithms
do not yet cover all scenarios of potential interest. Most cur-
rent algorithms employ either linear or nonlinear regression,
both of which are deficient in different ways. Linear algo-
rithms are limited in their applicability to optically thin
plumes, whereas nonlinear algorithms are typically computa-
tionally intensive. In this article, we present an algorithm that
exploits the spectral structure of the data in a new way to
obtain the performance of nonlinear regression while retain-
ing the speed of linear algorithms.

We will abide by the common requirement that plume
quantification must be performed without prior knowledge
of the scene in the absence of the plume. In particular,
the background radiance behind the plume is unobserved.
However, imaging sensors typically collect a large number
of pixels not containing a plume. These pixels can be
used to construct a subspace that spans the space of possible
background data. Such constructions are commonly used in
hyperspectral processing; the novelty of our algorithm is the
way in which this subspace is used.

If the plume is optically thin, linear regression is adequate
to solve the quantification problem, although even this case
is not straightforward. Two aspects that require consideration
are the treatment of thermal contrast between the plume and
the background, and the problem of the gas signature exhib-
iting similarity to the background basis vectors. An iterative
method1 has been reported to solve the first problem, while a
principal vector elimination process2 or an orthogonal filter
approach3 can be applied to overcome the second. However,
any linear approach will degrade as the plume thickness
departs the linear regime.

Nonlinear regression algorithms4–7 are capable of quanti-
fying optically thick plumes. However, such algorithms have
their own set of drawbacks. In particular, they typically incur
an extra computational burden as compared to linear algo-
rithms, and the most efficient among them converge only
to local minima.

The new algorithm that we propose exploits the structure
of the LWIR gas signatures to avoid the deficiencies of both
the linear and nonlinear regression approaches. A typical gas
signature exhibits strong varying behavior across the LWIR
region. The absorption coefficients at certain spectral bands
are much larger than the other bands, which leaves spectral
bands with relatively small absorptions suitable for back-
ground radiance estimation. By contrast, the radiance of
most condensed-phase background materials varies slowly
with wavelength. As a result, the subspace occupied by
the background pixels in a typical image has very low dimen-
sionality; typically 10 or fewer. In contrast, many times this
number of bands are transparent to most chemical plumes.
Therefore, the transparent spectral bands can be used to re-
cover the entire background radiance spectrum, including
those parts normally obscured by the gas signature. Once
the background radiance in a plume-present pixel is esti-
mated, the gas quantity may be recovered from a “single”
band, usually the one in which the absorption is strongest.
We refer to this two-step procedure as the “selected-band”
(SB) algorithm. We have preserved the simplicity of linear
regression during background estimation, while retaining the
exponential relationship of Beer’s law in the second step.

The remainder of this article is organized as follows. In
Sec. 2, we will describe the physical model of at-sensor radi-
ance and then, in Sec. 3, derive a variant of the on-plume
radiance representation which is used during the plume sim-
ulation process. In Sec. 4, the derivation of the SB algorithm
is illustrated by a gas with a spectrally narrow signature. It is
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then extended to an iterative version for gases with broader
signatures. The experimental results are given in Sec. 5 and
concluding remarks in Sec. 6.

2 Radiance Model
The physical basis for gas detection with passive infrared
sensors can often be explained with a simplified radiative
transfer model,5,8 as illustrated in Fig. 1, that treats the atmos-
phere as homogeneous in temperature and transmittance and
assumes the chemical plume, if present, to be close to the
background. All scattering effects are out of scope of this
article and thus ignored. Other nonplume absorptive
gases, like water vapor, CO2, ozone, etc., are assumed spa-
tially constant and their absorption effects are included in the
atmospheric transmittance. In this model, the at-sensor radi-
ance in the absence of plume, as a function of wavelength, is
given by

LoffðλÞ ¼ τaðλÞLbðλÞ þ ½1 − τaðλÞ�Bðλ; TaÞ; (1)

where the two terms represent background radiance modu-
lated by the atmosphere and atmospheric radiance. In Eq. (1),
τaðλÞ is defined to be the atmospheric transmittance, Ta is the
temperature of the atmosphere, LbðλÞ is the background radi-
ance, and Bðλ; TÞ is the Planck function evaluated at wave-
length λ and temperature T.

The presence of a plume has two effects: it absorbs part of
the radiation emitted by the background, and it emits its own
radiation. The resulting radiance is subsequently attenuated
by transmission through the atmosphere, and is given by

LonðλÞ ¼ ½1 − τaðλÞ�Bðλ; TaÞ þ τaðλÞτpðλÞLbðλÞ
þ τaðλÞ½1 − τpðλÞ�Bðλ; TpÞ; (2)

where τpðλÞ is the plume transmittance and Tp its temper-
ature. In Eq. (2), the three terms represent the at-sensor radi-
ance due to the atmosphere, the background radiance as
modulated by the plume and atmosphere, and the plume radi-
ance as modulated by the atmosphere.

By adding and subtracting the term ½1 − τaðλÞ�
Bðλ; TaÞτpðλÞ to the right-hand side of Eq. (2), we can
rewrite the on-plume radiance as

LonðλÞ ¼ τpðλÞfτaðλÞLbðλÞ þ ½1− τaðλÞ�Bðλ; TaÞg
þ ½1− τpðλÞ�fτaðλÞBðλ; TpÞ þ ½1− τaðλÞ�Bðλ; TaÞg:

(3)

Comparison with Eq. (1) results in

LonðλÞ ¼ τpðλÞLoffðλÞ þ ½1 − τpðλÞ�
× fτaðλÞBðλ; TpÞ þ ½1 − τaðλÞ�Bðλ; TaÞg: (4)

Equation (4) is the basis for embedding a simulated gas-
eous plume into a measured image of plume-free background
data, as described in Sec. 3. Such simulated images will form
the basis of the experiments reported in Sec. 5. This expres-
sion will also provide insight into why background estima-
tion is achievable from on-plume radiance only.

The spectral transmission function, τpðλÞ, of a plume with
M gas species can be modeled using Beer’s law9

τpðλÞ ¼ exp

"
−
XM
m¼1

γmαmðλÞ
#
: (5)

The function, αmðλÞ, the “absorption coefficient spec-
trum,” is unique for each gaseous chemical and can be
used as a spectral signature. The quantity γm, the “concen-
tration path-length (CL),” is the integrated concentration of
gas along the sensor boresight. In this article, we will con-
sider only the case of a plume comprising a single gas. As a
result, we can drop the subscript m in Eq. (5) and rewrite
Beer’s law for a single gas as

τpðλÞ ¼ exp½−γαðλÞ�: (6)

3 Plume Simulation Process
The experiments of Sec. 5 will be performed using semi-syn-
thetic data, in which the signatures of gaseous plumes are
algorithmically embedded in measured hyperspectral
imagery. This approach is taken both because controlled
experiments with accurate ground truth on actual chemical
releases are notoriously difficult, and arranging a large num-
ber of such experiments with a variety of conditions is infea-
sible. In this section, we describe the plume embedding
algorithm.

3.1 Plume-Free Hyperspectral Imagery

The spectral mean image of a measured LWIR hyperspectral
data is exhibited in Fig. 2.10 The data set was acquired in a
down-looking geometry from an airborne platform, and the
scene is composed mainly of natural materials. The spatial
dimension of the testing data is 128 × 700 and there are 128
spectral bands from 7.3386 to 13.5703 μm. In this particular
collection, sensor artifacts and noise rendered 43 of the spec-
tral bands unsuitable for analysis. The remaining 85 bands
are sufficient for the demonstrations of our algorithm that
we discuss in Sec. 5. The whole field of view is free of
any gaseous plume of interest and the radiance vector of
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Fig. 1 Three-layer radiance model.

 

 

100 200 300 400 500 600 700

20
40
60
80

100
120 8

8.5

9

Fig. 2 Mean background radiance.
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each pixel in Fig. 2 can be perceived as the off-plume radi-
ance expressed in Eq. (1).

3.2 Gas Signature

In this article, two representative gases with very different
characteristics are selected for subsequent algorithm deriva-
tion. Figure 3 illustrates the absorption coefficient spectrum
of sulphur hexafluoride (SF6), the absorption spectrum of
which is mainly confined to a narrow spectral band. The
high resolution library characterization11 of the gas has
been reduced to the sensor spectral resolution for easy com-
parison with other radiance figures in the article. As shown in
the figure, the absorption coefficients of SF6 in most of the
spectral bands are almost zero. The other gas employed,
triethyl phosphate (TEP), is absorbing in about half of the
spectral bands, while the most absorptive band is only
about a third as strong as that of SF6, as seen in Fig. 4.
We expect quantification of the TEP-like gases to be
more challenging than those with sharper features, since
the TEP signature has some similarity to those of back-
ground materials.

3.3 Plume Simulation

The procedure of simulating a plume in measured back-
ground data is encapsulated by Eq. (4), which we rewrite as

LonðλÞ ¼ τpðλÞLoffðλÞ þ ½1 − τpðλÞ�LplumeðλÞ; (7)

where the at-sensor plume radiance

LplumeðλÞ ¼ τaðλÞBðλ; TpÞ þ ½1 − τaðλÞ�Bðλ; TaÞ (8)

is composed of two terms, the plume emission attenuated by
atmosphere and the atmospheric path radiance. Since the gas
quantity γ and gas absorption coefficient spectrum αðλÞ are
both non-negative, the range of transmittance defined by
Beer’s Law in Eq. (6) is confined between 0 and 1. As
the plume thickens, its transmittance approaches zero.
More background radiance is absorbed by the plume and
the at-sensor radiance is then dominated by plume radiation.
As a consequence, the on-plume radiance defined in Eq. (7)
can be interpreted as a convex combination of off-plume
radiance LoffðλÞ and at-sensor plume radiance LplumeðλÞ.

During the embedding process, the temperature of the
atmosphere, Ta, can be estimated from the data set and
the atmospheric transmittance, τaðλÞ, can be obtained by
auxiliary algorithms.10 These two atmospheric parameters
are assumed constant over all pixels for each data cube.
We may specify the location and temperature of a plume,
as well as the amount of gas in each pixel. Figure 5
shows the radiance comparison between a randomly selected
background pixel from Fig. 2 and its synthetic on-plume
radiances with a sequence of different amounts of embedded
SF6. For each sensor spectral band λ, the resulting on-plume
radiance LonðλÞ resides between LoffðλÞ and LplumeðλÞ.

4 Selected-Band Algorithm
In this section, we will derive the SB algorithm by illustrating
how to form accurate background radiance estimates. An
iterative version of the algorithm is also proposed, which
can achieve quantification of broadband gases. First, we
emphasize why knowledge of the background radiance is
sufficient for estimating the CL product.

All quantification algorithms discussed in this article,
including our SB algorithms, assume that the plume temper-
ature Tp, along with the atmospheric parameters Ta and
τaðλÞ, are known, and we are interested in estimating the
plume CL parameter γ. Therefore, in Eq. (7), LonðλÞ and
LplumeðλÞ are already available and CL estimation reduces
to reversing Beer’s law, Eq. (6), by

γ ¼ 1

αðλÞ ln
�
LoffðλÞ − LplumeðλÞ
LonðλÞ − LplumeðλÞ

�
; (9)
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Fig. 3 Absorptive coefficient spectrum of SF6, smoothed and
sampled at the sensor spectral resolution.
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Fig. 4 Absorptive coefficient spectrum of triethyl phosphate (TEP),
smoothed and sampled at the sensor spectral resolution.
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Fig. 5 Plume-free background radiance and corresponding on-plume
radiances for SF6 at five different thicknesses. The plume tempera-
ture is fixed at Tp ¼ Ta − 10 K.
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which holds for each λ. The remaining issues to address are
estimating the only unknown quantity in Eq. (9), LoffðλÞ, and
the choice of band(s) to use in Eq. (9).

4.1 Background Radiance Representation

We follow many other authors1,12,2 in applying principal
components analysis (PCA) to the plume-absent pixels in
order to arrive at a representation of the background radiance
of plume-present pixels. The plume-absent radiance, LoffðλÞ,
of plume-present pixels are assumed to lie in the subspace
spanned by these principal vectors.

If we arrange theMoff off-plume measured radiance spec-
tra into an Moff × K matrix Loff , where K is the number of
spectral bands, then the PCA model is given by

Loff ¼ UPT þ E; (10)

where U is anMoff × Np matrix of coefficients for off-plume
pixels, P is a K × Np matrix of principal components, E is an
Moff × K matrix of residuals, and Np is the number of prin-
cipal components. For the data used in Sec. 5, we found
Np ¼ 5 to be an appropriate choice. (The sum of variance
from the first five principal vectors exceeds 99% of the
total variance of the covariance matrix. With the particular
data set shown in Fig. 2,

P
5
i¼1 σ

2
i ∕

P
85
i¼1 σ

2
i ¼ 0.9956,

where σ2i indicates the correspondent variance of the i‘th
principal vector.) Data-adaptive algorithms can also be
employed to find a suitable value for this parameter. In
order to reduce ambiguity, we represent the plume-absent
radiance loff of plume-present pixels by lbkg from now on.
Assuming u is a 1 × Np vector of unknown coefficients
for the background radiance of an on-plume pixel

lbkg ¼ uPT þ e; (11)

the least-square estimate for u is given by

û ¼ lbkgP†T (12)

where the Moore–Penrose pseudo-inverse is given by
P† ¼ ðPTPÞ−1PT , and circumflex indicates an estimate.
The background estimation task can now be rephrased as
finding an accurate estimate û when lbkg is not available.

4.2 Algorithm Derivation

All existing algorithms assume that lbkg is unobservable.
However, if we inspect the radiance difference with and
without the influence of a plume, shown in Fig. 5, we
find the opposite. Suppose CL ¼ 30 ppm-m, as shown
in Fig. 6. The blue solid line represents the off-plume radi-
ance of a randomly chosen background pixel whereas the
red solid line corresponds to the simulated on-plume radi-
ance of the same pixel. These two lines overlap each other
over most of the spectrum and only differ in the few bands
where the gas absorption coefficient is large. An implica-
tion is that the on-plume radiance is essentially equal to its
background radiance over the most transparent spec-
tral bands.

The spectral dimension of a typical hyperspectral sensor
is at least on the order of 100 while a sufficient number of
principal components Np is typically <10. Hence, we can
revise Eq. (12) by only selecting those bands where the

gas absorption coefficient is almost zero. Thus, the least-
square estimate for u can be given by

û ¼ lsbonPsb†T; (13)

where the superscript “sb” indicates only dimensions corre-
sponding to SB are used. The background radiance at these
bands can be substituted by the on-plume radiance lsbon.

The selection of which spectral bands are transparent
enough to use in Eq. (13) is empirical, and we have adopted
a very conservative strategy in our experiments. In Fig. 5, we
observe that γ ¼ 100 ppm-m is quite thick for SF6; the most
absorptive band is almost optically opaque. With such a thick
plume present, the plume transmittance τpðλÞ can be calcu-
lated and those bands with τpðλÞ ≥ 0.999 are marked by red
crosses in Fig. 6. In this case, 50 out of 85 spectral bands are
selected, whereas, we have only Np ¼ 5 parameters to esti-
mate. By solving Eq. (13) for the background radiance coef-
ficient vector û and substituting û into Eq. (11), the
background radiance is recovered and plotted as a dashed
magenta line in Fig. 6. This estimate almost coincides
over the entire spectrum with the true unobserved back-
ground radiance represented by the blue solid line.

With an accurate background radiance estimation in hand,
we have K equations, one from each spectral band, to solve
for only one variable in Eq. (9), the gas strength γ. However,
most of these equations are inappropriate for this task. There
are many sources of uncertainty on the right-hand side of
Eq. (9): The on-plume radiance LonðλÞ contains a noise con-
tribution, the plume radiance LplumeðλÞ is affected by errors
in the estimates of the atmospheric transmittance τaðλÞ as
well as those of the plume and atmosphere temperatures
Tp and Ta, and the PCA expansion leaves some residual
radiance in LoffðλÞ. In the experiments we report in
Sec. 5, it is the last of these sources that dominate the
error in our CL estimates. Figure 7 illustrates the PCA rep-
resentation mean error at each spectral band if Np ¼ 5.
Since, the absorption coefficient is close to zero in many
bands, even a small residual can result in highly inaccurate
gas strength estimation at those bands. From Eq. (9), we may
hypothesize that the most absorptive band will yield the
smallest error in our CL estimates, which has been borne
out in our simulations.

The block diagram of the proposed SB algorithm can be
found in Fig. 8. In Fig. 9(a), the on-plume radiance and the
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Fig. 6 Background radiance estimation process for a pixel with SF6
embedded, with strength γ ¼ 30 ppm-m. The plume temperature is
fixed at Tp ¼ Ta − 10 K.
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estimated background radiance are highlighted with a circle
at the most absorptive band of SF6. The gas strength is cal-
culated from this spectral band with the results given in the
title of Fig. 9(b). Also, shown in the figure, the recovered
on-plume radiance (black dash line) coincides with the
true on-plume radiance (red dash line) almost everywhere.
The radiance difference between these two radiances is cal-
culated and the result is given in the title as “Rad Err.” This
result verifies that our estimates of background radiance and
plume strength are both accurate.

One might ask if a least square solution of γ using multi-
ple spectral bands can give improvements over the single-
band result. In fact, such a procedure does not substantially
reduce the error in the CL estimates, since the background
radiance residuals over nearby bands are highly correlated
due to the spectral smoothness of most natural background
materials. We choose to use a single SB for the CL estimates
throughout this article.

Although the SB algorithm works perfectly well when
applyed to narrow-band gases as SF6, a problem arises
when not enough near-to-zero spectral bands are available
for background estimation when quantifying broad-band
gases such as TEP. As shown in Fig. 10, there is noticeable
disagreement between the off-plume and on-plume radiance.
If we continue to use the same strict condition for transpar-
ency of absorption bands as we did for SF6, <10 bands
qualify, which are insufficient to compute an acceptable

background estimate. A more forgiving threshold is neces-
sary to obtain a sufficient number of spectral bands. In
Fig. 10, if we choose the threshold to be 0.95, 44 spectral
bands will be selected and the estimated background
(magenta dashed line) is very close to the true one (blue
solid line), though the radiance difference is noticeable in
this case. Similar to the earlier SF6 case, the most absorptive
band is most robust to background representation error and
thus returns the most reliable plume strength estimate. The
estimation results are summarized in the title of Fig. 11, from
which we observe that the plume strength estimate is
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acceptable while the recovered on-plume radiance error is
somewhat large. Due to the broadband nature of gases
like TEP, we are forced to incur some bias by choosing suf-
ficiently many spectral bands. In the next section, we discuss
a way to iteratively improve these estimates.

4.3 Performance Evaluation Metric

A necessary element of our iterative algorithm is a perfor-
mance metric to optimize. Since the only data available in
a real application is the on-plume radiance, we will use
the radiance error to accomplish this task.

The on-plume radiance defined in Eq. (7) can be rewritten
in vector form as

lon ¼ τp⊙loff þ ð1 − τpÞ⊙lplume (14)

where ⊙ indicates the Hadamard product and all vectors are
1 × K row vectors. For a given gas, the plume transmittance
τp is determined by plume strength γ. According to Eq. (11),
the off-plume radiance can be linearly approximated by a
coefficient vector u. We define θ to represent all independent
variables in Eq. (14), i.e., θ ¼ fu; γg. Thus, a recovered on-
plume radiance can be written explicitly as

lonðθ̂Þ ¼ τp⊙loff þ ð1 − τpÞ⊙lplume: (15)

Hence, we can compute the square root of squared radi-
ance error as

Rad Err ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½lonðθ̂Þ − lonðθÞ�½lonðθ̂Þ − lonðθÞ�T

q
: (16)

Strictly speaking, minimization of this performance
evaluation metric on radiance error does not necessarily
imply that the error in plume strength estimation is mini-
mized. However, as far as our physical model is valid, a
smaller radiance error generally results in better estimates
of γ.

4.4 Iterative Version of the Algorithm

The performance evaluation metric from the previous section
may be optimized in an iterative fashion; the block diagram
of such an algorithm is given in Fig. 12. The initialization
step is the same as the noniterative version of Sec. 4.2,

where the off-plume radiance is directly replaced by the
observable on-plume radiance at the most transparent bands.

With the parameter estimation γ̂i at iteration i at hand, it is
trivial to compute the plume transmittance and solve for the
background radiance. Figure 13 highlights the updated back-
ground estimate in 70 spectral bands at iteration two. The
new recovered background radiance from the linear least
square solution from these 70 equations is plotted as a
magenta dashed line which overlaps the true background
radiance (blue solid line) almost exactly. The new plume
strength can then be calculated from the most absorptive
band and its result (listed in the title of Fig. 14) is nearly
identical to the true value. The updated recovered on-
plume radiance is plotted by a black dashed line in
Fig. 14, which is almost identical to the true radiance indi-
cated by the red dash line. The radiance error listed in the title
line is only about one fourth of previous iteration. The iter-
ative method terminates if the improvement in radiance error
is less than a preset threshold. In our experiments, we select
this threshold to be 10% and the termination condition usu-
ally is satisfied within three iterations.

Figure 15 provides a graphical illustration of the improve-
ment in estimates as the algorithm iterates. The blue line,
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denoted by α ¼ 0.0012, represents the 20th most absorptive
band of the TEP, which means 65 out of 85 spectral bands are
less absorptive and used for background estimation. The
green line, denoted by α ¼ 0.0124, is the most absorptive
band and is used for quantification. The true gas strength
and corresponding transmittance are highlighted with red
dashed grid lines. The initialization step is denoted by a
blue circle referred to as “#1.” In iteration 1, the background
estimation stage leads to a biased estimate denoted by a
green square referred to as “#1.” A gas strength estimate
can be easily calculated from this biased estimate. In the
next iteration, the plume strength estimate from the previous
iteration can be used to recover the off-plume radiance, and
the result is denoted by a blue circle referred to as “#2.” At
this time, a more accurate background estimate can be
achieved and thus a better estimate of gas strength is guar-
anteed. Empirically, the iterative method converges quite fast
and fewer than three iterations is generally enough.

The success of iterative method relies on the high contrast
of absorptive behavior between different bands. For the
TEP, which has broader features than most gases, the
most absorptive band is about 10 times as absorptive as
the 20th most absorptive band. Since such sharp features
are observed in almost all chemical gases, the applicability

of the iterative-version method is quite wide. Another benefit
to the iterative algorithm is that the overall performance is
less sensitive to band selection. In our experiments, similar
performance was observed by choosing 60 to 80 spectral
bands for background estimation.

5 Experimental Performance Comparison
In this section, we compare the quantification performance
of our new SB algorithm with the other four state-of-the-
art algorithms across a wide range of plume thicknesses.
Three linear regression algorithms are implemented from
Refs. 1–3, and their results will be denoted by final gener-
alized least squares (GLSF), ordinary least squares (OLS),
orthogonal background suppression (OBS), respectively.
These algorithms all employ the linear approximation to
Beer’s law and thus their performance deteriorates quickly
as the gaseous plume thickens. The fourth algorithm,
denoted by nonlinear least squares (NLS), uses an optimiza-
tion method with its initial estimate from the result of a linear
algorithm, so it can solve for the CL in the nonlinear least
square sense.4,6,7 Detailed descriptions of our implementa-
tions of these algorithms can be found in our previous
article.13 The performance of our new SB algorithm dis-
cussed in Sec. 4 will be denoted by SB.

5.1 Experiment Setup

All of the aforementioned algorithms are applied to simulated
data. For each gas, there are two plume embedding schemes,
one with a constant mask [red area in Fig. 16(a)] and the other
with a Gaussian mask [colored area in Fig. 16(b)], as shown in
Figs. 16(a) and 16(b), respectively. The constant mask is
designed to investigate the quantification performance at a par-
ticular gas strength while the Gaussian mask is supposed to
mimic a more realistic situation. The size of each mask is 21×
41. Pixels under the constant mask share the same CL value
while CL is distributed normally under the Gaussian mask.
For each mask profile, four experiments for each gas are per-
formed: CL ¼ 5; 10; 20; 30 ppm-m for SF6 and CL ¼ 10;
20; 30; 50 ppm-m for TEP. These CLs are selected so that both
the linear and nonlinear regions are included. The temperature
of plume is chosen to be Tp ¼ Ta − 10 for all experiments.

5.2 Gas Strength Estimation Evaluation

In order to evaluate the CL estimation performance, we cal-
culate the root mean square error of prediction (RMSEP) for
each estimator, which is defined by
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RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mon

XMon

j¼1

ðγ̂j − γjÞ2
vuut ; (17)

where Mon is the total number of on-plume pixels and γ̂j
indicates the estimated gas strength at pixel j.

5.3 Experimental Results

Figure 17 shows the background estimation performance for
SF6 when CL ¼ 30 ppm-m with the constant embedding
mask. In the figure, the blue symbols represent the mean
and standard deviation of radiance error at each spectral
band if the PCA coefficients are computed by the true back-
ground radiance. The red symbols denote the representation
error by applying our SB background estimation approach to
the on-plume radiance. We can see from the figure that our
background estimation approach is very accurate and quite
close to the optimal solution. The mean error of our estimates
is <10% away from that of optimal solution. Figure 18 shows
the background estimation performance for TEP when CL ¼
30 ppm-m with the constant mask. The estimation error is
almost double that of SF6. The results of the other experi-
ments are similar.

The quantification results are shown in Figs. 19 and 20 for
SF6 and TEP, respectively. In Fig. 19, the three linear algo-
rithms perform almost identically and as predicted the per-
formance degrades rapidly as plume strength increases into
the nonlinear regime. The nonlinear optimization algorithm

(purple dashed line with asterisk marker) is robust for all
plume thicknesses but does not converge to a global mini-
mum. Our SB algorithm (black dot line with square marker)
outperforms all the other existing algorithms. Its estimation
error only increases slightly as the plume gets thicker, which
results from the curvature change in Beer’s law.

The performance comparison for TEP in Fig. 20 is sim-
ilar. There are two issues worth mentioning. One is that the
linear OLS outperforms the other two linear algorithms,
which is because the OLS implementation employs a prepro-
cessing procedure to exclude principal vectors, which are
similar to the gas signature. This process is triggered for
TEP and the fourth and fifth principal vectors are excluded.
The other observation is that the performance of SB algo-
rithm is visually identical to that of the optimization method.
Both of these two algorithms are capable of consistently
accurate estimation throughout all of TEP plume strengths.

If the result of SB algorithm is used to initialize the non-
linear optimization algorithm, the improvement in CL esti-
mation is almost negligible, which confirms that our
algorithm is capable of providing a near-to-optimal solution.

To verify that our results for TEP are typical, we also
present results for tributyl phosphate (TBP), with the absorp-
tion spectrum plotted in Fig. 21. We specify the mean gas
strength to be CL ¼ 20; 30; 40; 50 ppm-m for the constant
mask and maintain the plume temperature as Tp ¼
Ta − 10. The performance comparison results are plotted
in Fig. 22. The plot is similar to that of TEP as shown in
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Fig. 20(a) with the NLS performance slightly better than SB
performance when the plume is extremely thin.

The computational complexity of each quantification
algorithm is compared in Fig. 23. Each horizontal bar rep-
resents the overall execution time required to quantify 21 ×
41 ¼ 861 pixels by the corresponding quantification algo-
rithm. The execution time is based on an Apple®,
Cupertino, California MacBook Pro laptop with a 2.53 GHz
Intel® Core 2 Duo processor. As shown in Fig. 23, the OBS
is the most efficient, while OLS requires a little more time
due to an extra principal vector elimination process.2 The

GLSF is the most time consuming linear algorithm due to
its iterative nature.1 There is a large increase in execution
time with the nonlinear least squares method, because at
each iteration, a plume simulation process is called. In
our implementation, this process requires calculation at a
high frequency resolution (that of the gas library signature
instead of sensor frequency resolution). A typical pixel usu-
ally takes 10 to 20 iterations before achieving its conver-
gence. Our SB algorithm also requires this plume
simulation process. However, since our algorithm converges
within three iterations for most pixels, it achieves a signifi-
cant saving in computational complexity, leaving its effi-
ciency comparable to that of linear algorithms.

6 Conclusion
In this article, we proposed a new “SB” gas-phase chemical
quantification algorithm, which is based on the realization
that the background behind a chemical plume can be accu-
rately estimated using only the spectral bands at which the
plume is less absorptive. Once the background radiance is
recovered, the spectral bands in which the gas absorbs sig-
nificantly are used for gas strength estimation. The success of
the algorithm relies on the large dynamic range of vapor-
phase chemical absorptive coefficients. By separating the
quantification process into two steps, the algorithm is able
to achieve the efficiency of linear regression, as well as
the wide applicability and accuracy of nonlinear approaches.
Experimental results with semi-synthetic data verify that the
quantification results of our new algorithm are as accurate as
existing nonlinear algorithms but with an affordable increase
in execution time compared to linear algorithms.

10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

True CL (ppm−m)

σ 
(p

pm
−

m
)

GLSF
OLS
OBS
NLS
SB

10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

True CL (ppm−m)

σ 
(p

pm
−

m
)

GLSF
OLS
OBS
NLS
SB

(a) Constant Mask

(b) Gaussian Mask

Fig. 20 Quantification performance comparison of the TEP with T p ¼
Ta − 10 K with (a) constant profile and (b) Gaussian profile.
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