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Abstract: Laser communication and ranging experiments were successfully 
conducted from the satellite laser ranging (SLR) station at NASA Goddard 
Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in 
lunar orbit. The experiments used 4096-ary pulse position modulation 
(PPM) for the laser pulses during one-way LRO Laser Ranging (LR) 
operations. Reed-Solomon forward error correction codes were used to 
correct the PPM symbol errors due to atmosphere turbulence and pointing 
jitter. The signal fading was measured and the results were compared to the 
model. 
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1. Introduction 

Laser systems can be used to track and communicate with spacecraft in deep space to achieve 
better performance at lower power and with smaller size apertures than conventional 
microwave systems. A single laser system can be used for both communication and tracking, 
similar to the conventional microwave communication and tracking systems. Lasers have 
been used to track Earth orbiting satellites and lunar retro-reflective arrays on the lunar 
surface for over 40 years [1]. Free space laser communication technologies have been under 
development over the past 30 years and several experiments have been successfully 
conducted [2–4]. The Lunar Laser Communication Demonstration (LLCD) will be launched 
in 2013 on board the Lunar Atmosphere and Dust Environment Explorer (LADEE) and will 
be the first two-way high speed (622 Mbps) lunar laser communication demonstration [5]. 
The Laser Communication Relay Demonstration (LCRD) at 1.25 Gbits s−1 to geosynchronous 
satellites is currently under development at NASA GSFC with an anticipated launch date in 
2016 [6]. There are many common attributes between laser ranging and communications, 
such as pointing, timing, and atmosphere effect corrections. The two can be combined into 
one system with a single laser transmitter and receiver. The ranging signals are slow varying 
and one measurement every few seconds is sufficient to track a spacecraft in deep space. The 
communication signals are fast transitioning between discrete levels and at discrete time. The 
two signals can be unambiguously separated at the receiver because they occupy different 
frequency spectra. There have been several experiments to transfer times from SLR stations to 
spacecraft while ranging [7–9]. A laser ranging experiment at quantum (single photon) signal 
level between a near earth satellite and an SLR station has been demonstrated [10]. Laser 
ranging and communication using a PPM signal format has been proposed and some elements 
of the concept have been demonstrated [11]. A two-way laser ranging measurement will be 
carried out by LLCD on the LADEE mission as a byproduct of the timing recovery for the 
data communication [5]. 

We have recently demonstrated simultaneous laser ranging and communication 
experiments with existing infrastructure and minor modification to the ground station timing 
equipment. We successfully transmitted digital data from the Next Generation Satellite Laser 
Ranging (NGSLR) station in Greenbelt, Maryland, to LRO in lunar orbit over a 380,000 km 
distance at 200-300 bits s−1 error free with Reed Solomon forward error correction coding. 
The experiments also provided direct measurements of laser signal fading due to atmospheric 
turbulence and laser pointing jitter. Although the data rate was relatively low, the experiment 
demonstrated a useful technique for simultaneously laser tracking and data communication to 
a spacecraft in deep space from existing SLR stations as an alternative to the conventional 
microwave links. 

#177529 - $15.00 USD Received 5 Oct 2012; revised 26 Dec 2012; accepted 31 Dec 2012; published 17 Jan 2013
(C) 2013 OSA 28 January 2013 / Vol. 21,  No. 2 / OPTICS EXPRESS  1866



2. Test setup 

2.1 Space terminal 

The LR subsystem [12] on LRO is a one-way laser ranging system which consists of a 2.2-cm 
diameter optical receiver on the high gain antenna (HGA) and an optical fiber bundle that 
sends the optical signal through the HGA gimbals and boom to the Lunar Orbiter Laser 
Altimeter (LOLA) [13] on the instrument deck for time-tagging. The LR receiver is bore-
sighted with the HGA, which is pointed to the ground station for data transmission whenever 
LRO is in view from Earth. The LR receiver can detect and time-tag laser pulses from Earth 
at 532-nm wavelength from any SLR station around the globe. The clock oscillators on LRO 
and at the ground stations are stable to <<10−12 (a few ns over an hour). The LR receiver has 
an 8-ms range window that opens at 28 Hz and synchronized with the LOLA laser pulse 
emission times and the spacecraft mission elapsed time (MET). The timing precision of the 
LR receiver is about 0.3 ns. The detection threshold is adjusted automatically to achieve the 
highest receiver sensitivity while keeping the false detection rate below 1%. The LR receiver 
also measures the received pulse energy by integrating the received pulse waveforms. LRO 
LR has been in operation since June 2009 and the prediction of the spacecraft MET and light 
travel time from NGSLR to LRO has been improving steadily, and has become more than 
sufficient for communication experiments like those described herein. The regular LR 
operation and range measurements were not affected by these laser communication 
experiments since the ground stations and LRO time-tagged the laser pulses in pairs and 
determine the range from the difference of the two time-tags in the pair. 

2.2 Ground station 

The laser from NGSLR telescope had a 30-cm beam diameter and 50-μrad (~10-arcsecond) 
divergence angle. The laser transmitter was a diode pumped Q-switched Nd:YAG laser and 
frequency doubled to produce 6-ns laser pulses at 532-nm wavelength. The laser pulse could 
be externally triggered at up to 50 Hz (20-ms recovery time after each laser pulse emission) 
and could accommodate the 28-Hz PPM trigger signal. 

The pointing of the telescope was controlled by the azimuth and elevation gimbals with a 
50-Hz velocity drive servo control loop and the tracking jitter was at 1-arcsecond level for a 
slew rate ranging from sidereal rates to several degree s−1. The telescope pointing was 
calibrated by co-bore sighting a camera with the laser beam and pointing the telescope to a 
nearly uniform grid of about 50 bright stars in the FK5 star catalog. A least square fit of the 
pointing biases was performed to a 22-term trigonometric model, which was then used to 
correct the pointing offsets of the telescope. The calibration was periodically performed to 
maintain a pointing accuracy of about 1 arcsecond. 

The laser beam pointing was programmed to follow the LRO orbit position predictions 
provided by the Goddard Flight Dynamics Facility in the form of Consolidated Prediction 
Format vectors. The accuracy of the LRO orbit prediction was <3 arcseconds based on our LR 
experiences. There was also a near-real time low-data-rate telemetry feedback from LRO to 
the ground station to indicate LR signal detection at LRO, which was used to fine-tune the 
pointing. The laser beam refraction by the atmosphere was calculated and corrected using a 
long established model [14] with the temperature, barometric pressure, and humidity data 
from a small weather station next to NGSLR. The system epoch time was provided by a GPS 
receiver, which was accurate to ± 100 ns with respect to UTC. The light travel time for each 
laser shot was calculated from the ground station coordinates to that of LRO at the time. 

For eye safety, a radar co-bore sighted with the laser beam was used to detect airplanes 
and automatically block the laser beam via a relay switch when an airplane came within 3° of 
the laser beam. The airplane avoidance action causes data outages for a few to tens of 
seconds. 
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2.3 Data encoding and decoding 

A 4096-ary PPM signal format was used with 1-μs slot time in our experiments. Each laser 
pulse from NGSLR was transmitted in one of the 4096 (12 bits) possible time slots at 28 
pulses per second, which gave a raw data rate of 336 bits s−1. Figure 1 shows a timing diagram 
of the PPM signal, the range window, and the duty cycle. The size of PPM time slots was 
limited by the ground station laser pulse emission time jitter and trigger control (150 ns peak 
to peak) and the digital data timing recovery at the receiver. The number of PPM slots on each 
laser pulse was limited by the LR range window width and uncertainties in the prediction of 
LRO position and MET. 

Reed-Solomon codes were chosen because they could match the 4096-ary PPM symbol 
size and were much more effective than binary codes. The time between laser pulses, ~36 ms 
(1/28Hz), was considerable longer than the time scale of atmosphere fading effects [15], so 
that the channel could be considered as “memoryless” and the transmission errors as 
independent. The dominant errors were missed detections, or erasures, as in a typical free-
space communication system. Reed-Solomon codes were better at correcting erasures than 
falsely detections and suitable for correcting burst errors resulted from brief gaps in the signal 
without the need to interleave the source data. The data was transmitted in code blocks of 
4095 PPM symbols, of which the first k symbols were data and the rest were parity checks. 
The code was capable of correcting up to (4095-k)/2 falsely detected PPM symbols or twice 
as many erasures in a code block. The rate of the code was defined as the ratio of the number 
of the data symbols to the block size. Each code block was 146.25 seconds, which was 
sufficiently long to correct occasional signal outages due to airplane avoidance actions. Each 
laser communication test session was about one hour long as LRO emerged from behind the 
moon and traveled from pole to pole. A total of 15-22 code blocks (740 to 980 kbits) could be 
transmitted in each test session. 

 

Fig. 1. LRO LR laser pulse position modulation. The approach allows simultaneous laser 
ranging and data transmission. Each laser pulse is delayed to one of the 4096 time slots (12 
bits) within the 8-ms LR range window. At the 28-Hz LOLA laser pulse rate, the raw data 
transmission rate is 336 bits s−1, mainly limited by the LRO LR operating duty cycle. 

The PPM symbol sequences were generated with the use of a digital pattern generator 
driven by the PPM slot clock and triggered by the PPM symbol clock. A 31-symbol time 
synchronization patterns were inserted in between code blocks. Reed Solomon encoding and 
decoding were carried out using the built-in functions from MATLAB Communication 
Toolbox. 

2.4 Time prediction and synchronization 

The LRO clock oscillator frequency and the drift rate of MET were estimated from the long-
term trend of the one-way LRO LR range measurements. The LR range window time, which 
is synchronized with LRO MET, could be predicted to well within 1 ms with respect to UTC. 
The light travel time from NGSLR to LRO varied by up to 6 ms during a one-hour LR session 
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as the spacecraft traveled from pole to pole of the moon. The light time for each shot had to 
be pre-compensated by adjusting the delay of the pattern generator output so the PPM laser 
pulse could arrive in the LR range window. Both the PPM slot time and symbol clocks were 
generated from a GPS based clock source. The time drift between the GPS clock and the LRO 
MET was 10’s μs over a one-hour LR session. The residual errors of the spacecraft orbit 
prediction also caused a baseline time drift for the PPM signal. These time drifts were 
estimated from the times of the synchronization patterns and removed during PPM signal 
processing. 

The time tags of the received laser pulses at LRO were sent back to Earth for the routine 
one-way LR measurements. For the laser communication experiments, the received laser 
pulse time tags were first divided into 28-Hz PPM symbols by modulo division of the 
nominal laser pulse time interval (28 Hz)−1. The time synchronization patterns were located 
and the residual time bias was estimated. The resultant timing jitter was found to be 300 ns 
peak to peak, which was much smaller than the 1-μs PPM slot time. The PPM symbols were 
reconstructed by subtracting the time bias from the pulse arrival times and rounding these 
times to the nearest integer number of PPM slot times. Missed detections, or erasures, were 
filled in with a zero and a file of erasure flags was generated. The data was then divided into 
code blocks for the Reed Solomon decoder. 

3. Results 

We first transmitted random PPM symbols with Reed-Solomon code at Rate 7 8, 3 4  and 

1 2 , respectively. The tests were repeated a number of times over a four-month period. The 

transmitted laser pulse energy was constant during these tests while the weather conditions at 
NGSLR naturally attenuated the signals to allow us to assess the PPM symbol error rate 
(SER) vs. the average received signal pulse energies. The results are shown in Fig. 2. As 
expected, the Reed-Solomon codes completely restored the data when the error rate was less 
than the number of parity check symbols. It was difficult to quantify the coding gain, which is 
defined as the reduction in average signal pulse energy to achieve a given low error rate (e.g. 
SER <10−6), because the raw data SER were at best 10% due to the atmosphere effects. 

 

Fig. 2. Data transmission error. Plotted in terms of PPM symbol error rate vs. average received 
laser pulse energy with and without Reed-Solomon coding for data collected from November 
2011 to March 2012. The transmitted data consisted of pseudo random numbers uniformly 
distributed over the 4096 PPM slots. The symbol error rate for the raw data leveled at ~10% 
even at strong input signal level due to signal fading by the atmosphere turbulence and laser 
beam pointing jitter. Reed-Solomon coding was effective in bring the error rate to zero when 
the raw error rate fell below the maximum correctable of the code. 

A normalized histogram of the received pulse energy is shown in Fig. 3 with the data 
collected during the LR session on 4 November 2011, 17:57 local time, under clear sky 
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conditions. A log-normal probability distribution function was fitted to these data using a least 
mean square method. A sample autocovariance function was also calculated for the same set 
of data and the results are plotted in Fig. 4. There was no apparent correlation in the 
atmosphere effects from one laser shot to the next at ~36-ms interval. The weak correlation up 
to 20 sec was possibly due to telescope pointing errors and gaps in the data from airplane 
avoidances. This confirmed that communication channel could be considered as memoryless. 

 

Fig. 3. Histogram of received pulse energy. Data from LRO LR session on 4 November 2011, 
17:57 local time with a 73% sun-illuminated Moon at 70° above the horizon. The local weather 
conditions were temperature 11-13°C, wind speed 1-3 m/s SE, relative humidity 45%, pressure 
1012 mbar, and the visibility 50 km, as indicated by the precipitation sensor next to the ground 
station. 

 

Fig. 4. Sample autocovariance of received pulse energy. Data from LRO LR session on 4 
November 2011, 17:57 local time, same as in Fig. 3. The weak correlation up to 20 sec was 
possibly due to telescope pointing errors and gaps in the data from airplane avoidances. 

Finally, we transmitted a gray-scale image of the Mona Lisa to LRO. The image was first 
cropped to 152x200 pixels and then normalized to 4095 (12 bits) gray-scale. Each pixel was 
coded into a PPM symbol and transmitted to LRO with a single laser pulse. Each image took 
about 30 minutes to transmit. Figure 5 shows the raw and corrected image transmitted on 26 
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March 2012, 15:38 UTC with a Rate 2/3 Reed Solomon code. The transmission errors 
appeared randomly distributed with 15% erasures (white pixels) and 0.2% false detections 
(black pixels). The long strip of white pixels was from a signal outage for an airplane 
avoidance action. The Reed-Solomon code was able to completely restore the original image. 

 

Fig. 5. Mona Lisa images received by LRO without and with Reed Solomon coding. Data 
obtained on 26 March 2012, during the LR session starting at 11:38 local time. The image 
consisted of a 200×152-pixel 12-bit (4096) gray scale intensity map and each pixel was 
transmitted with one laser pulse in 4096-ary PPM signal format. The image on the left was 
constructed from the raw data without coding. The black dots represented false triggers and the 
white spaces represent misses (erasures). The white streak across Mona’s left ear was caused 
by the blockage of the laser beam for airplane avoidance. The PPM symbol error rate of the 
raw data was about 15%, mostly in the form of erasures. The image on the right was 
constructed from data with Rate 2/3 Reed-Solomon linear block error correction coding. 

4. Conclusions 

We have successfully demonstrated simultaneous laser ranging and communication from an 
Earth station to LRO in lunar orbit with 4096-ary PPM modulation and Reed Solomon coding 
at about 300 bits/s. Signal fading due to atmosphere effects and laser pointing jitter was 
directly measured and appeared to follow the commonly assumed log-normal distribution. 
Reed Solomon error correction coding was shown to be very effective in correcting erasure 
dominated transmission errors. 
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