
MIT Open Access Articles

Unfolding Orthogonal Polyhedra with Quadratic
Refinement: The Delta-Unfolding Algorithm

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Damian, Mirela, Erik D. Demaine, and Robin Flatland. “Unfolding Orthogonal Polyhedra
with Quadratic Refinement: The Delta-Unfolding Algorithm.” Graphs and Combinatorics 30, no. 1
(January 2014): 125–140.

As Published: http://dx.doi.org/10.1007/s00373-012-1257-9

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/86067

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/86067
http://creativecommons.org/licenses/by-nc-sa/4.0/

Graphs and Combinatorics manuscript No.
(will be inserted by the editor)

Unfolding Orthogonal Polyhedra with Quadratic
Refinement: The Delta-Unfolding Algorithm

Mirela Damian · Erik D. Demaine ·
Robin Flatland

Received: date / Accepted: date

Abstract We show that every orthogonal polyhedron homeomorphic to a
sphere can be unfolded without overlap while using only polynomially many
(orthogonal) cuts. By contrast, the best previous such result used exponentially
many cuts. More precisely, given an orthogonal polyhedron with n vertices, the
algorithm cuts the polyhedron only where it is met by the grid of coordinate
planes passing through the vertices, together with Θ(n2) additional coordinate
planes between every two such grid planes.

Keywords general unfolding, grid unfolding, grid refinement, orthogonal
polyhedra, genus-zero

1 Introduction

One of the major unsolved problems in geometric folding is whether every
polyhedron (homeomorphic to a sphere) has an “unfolding” [3,10]. In general,
an unfolding consists of cutting along the polyhedron’s surface such that what
remains flattens into the plane without overlap. Convex polyhedra have been
known to unfold since at least the 1980s [10, Sec. 24.1.1].

A recent breakthrough for nonconvex polyhedra is the unfolding of any
“orthogonal” polyhedron (homeomorphic to a sphere) [6]. A polyhedron is

E. D. Demaine partially supported by NSF CAREER award CCF-0347776.

M. Damian
Dept. of Computing Sciences, Villanova University, 800 Lancaster Avenue, Villanova, PA
19085, USA. E-mail: mirela.damian@villanova.edu.

E. D. Demaine
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, 32 Vassar St., Cambridge, MA 02139, USA. E-mail: edemaine@mit.edu

R. Flatland
Dept. of Computer Science, Siena College, 515 Loudon Road, Loudonville, NY 12211, USA.
E-mail: flatland@siena.edu

2 Mirela Damian et al.

orthogonal if all of its edges are parallel to a coordinate axis, and thus all
edges and faces meet at right angles. While very general, a disadvantage of
this unfolding algorithm is that the cutting is inefficient, making exponentially
many cuts in the worst case, resulting in an unfolding that is long and thin
(“epsilon thin”).

In this paper, we show how to unfold any orthogonal polyhedron using only
a polynomial number of cuts.

Grid refinement. To more precisely quantify the cuts required by an unfolding,
several models of allowed cuts have been proposed. See [9,10,11] for surveys.

For convex polyhedra, the major unsolved goal is to just cut along the edges
(which implies a linear number of cuts) [10, ch. 22]. For nonconvex polyhedra,
however, this goal is unattainable, even when the polyhedron is “topologically
convex” [3] or is orthogonal [4]. A simple example of the latter is a small
box on top of a larger box. More generally, deciding whether an orthogonal
polyhedron has an edge unfolding is strongly NP-complete [1].

For orthogonal polyhedra, it seems most natural to consider orthogonal
cuts. The smallest extension from edge unfolding seems to be grid unfolding
(a concept implicit in [4]), where we slice the polyhedron with all axis-aligned
planes that pass through at least one polyhedron vertex, and allow cutting
along all slice lines. Even with these additional edges, few nontrivial subclasses
of orthogonal polyhedra are known to have grid unfoldings: “orthotubes” [4],
“orthostacks” composed of orthogonally convex slabs [8], and “well-separated
orthotrees” [5]. On the negative side, there are four orthogonal polyhedra with
no common grid unfolding [2].

The next extension beyond grid unfolding is grid refinement k, which ad-
ditionally slices with k planes in between every grid plane (as above), and
allows cuts along any edges of the refined grid. With constant grid refinement,
a few more classes of orthogonal polyhedra have been successfully unfolded:
orthostacks [4], and Manhattan towers [7].

The breakthrough was the discovery that arbitrary orthogonal polyhedra
(homeomorphic to a sphere) unfold with finite grid refinement [6]. Unfortu-
nately, the amount of grid refinement is exponential in the worst case (though
polynomial for “well-balanced” polyhedra). For this reason, the unfolding al-
gorithm was called epsilon-unfolding.

Our results. We show how to modify the epsilon-unfolding algorithm of [6]
to reduce the refinement from worst-case exponential (2Θ(n)) to worst-case
quadratic (Θ(n2)), while still unfolding any orthogonal polyhedron (with n
vertices) homeomorphic to a sphere. We call our algorithm the delta-unfolding
algorithm, to suggest that the resulting surface strips are still narrow but wider
than those produced by epsilon-unfolding.

Our central new technique in delta-unfolding is the concept of “heavy” and
“light” nodes from “heavy-path decomposition” [12]. Interestingly, heavy-path
decomposition is a common technique for balancing trees in the field of data
structures, but not so well known in computational geometry.

The Delta-Unfolding Algorithm 3

Even with this technique in hand, however, delta-unfolding requires a care-
ful modification and engineering of the techniques used by epsilon-unfolding.
Thus, Sections 2 and 3 start with reviewing the main techniques of epsilon-
unfolding; then Section 4 modifies those techniques; and finally Section 5 puts
these techniques together to obtain our main result.

2 Overview of Epsilon-Unfolding

We begin with a review the epsilon-unfolding algorithm [6], starting in this
section with a high-level overview, and then in Section 3 detailing those aspects
of the algorithm that we modify to achieve quadratic refinement.

Throughout this paper, P denotes a genus-zero orthogonal polyhedron
whose edges are parallel to the coordinate axes and whose surface is a 2-
manifold. We take the z-axis to define the vertical direction, the x-axis to
determine left and right, and the y-axis to determine front and back. We con-
sistently take the viewpoint from y = −∞. The faces of P are distinguished
by their outward normal: forward is −y; rearward is +y; left is −x; right is
+x; bottom is −z; top is +z.1

The epsilon-unfolding algorithm partitions P into slabs by slicing it with
y-perpendicular planes through each vertex. Let Y0, Y1, Y2, . . . be the slicing
planes sorted by y coordinate. A slab s is a connected component of P located
between two consecutive planes Yi and Yi+1. Each slab is a simple orthogonal
polygon extruded in the y-direction. The cycle of {left, right, top, bottom}
faces surrounding s is called a band, and the band edges in Yi (and similarly
in Yi+1) form a cycle called a rim. A z-beam is a narrow vertical strip on a
forward or rearward face of P connecting the rims of two bands. The order in
which the bands unfold is determined by an unfolding tree TU whose nodes are
bands, and whose arcs correspond to z-beams, each of which connects a parent
band to a child band in TU . The unfolding tree TU will be further described
in Section 3.1 below.

The unfolding of a band b is determined by a thin surface spiral, denoted
ξ, that starts on one of b’s rims, cycles around b while displacing toward the
other rim, where it turns around and returns to the point it started. As the
spiral passes by a z-beam connecting b to one of its children, it enters through
the z-beam to the child’s rim, and then recursively visits the subtree rooted at
the child. Once the complete spiral is determined, it can be thickened in the
±y direction so that it entirely covers all band faces. The thickened spiral is
such that it can be laid flat in the plane to form a monotonic staircase strip.
The forward and rearward faces of P can then be laid flat without overlap by
attaching them in strips above and below the staircase.

1 The ±y faces are given the awkward names “forward” and “rearward” to avoid confusion
with other uses of “front” and “back” introduced later.

4 Mirela Damian et al.

3 Epsilon-Unfolding Extrusions

Almost all algorithmic issues in epsilon-unfolding are present in unfolding poly-
hedra that are z-extrusions of simple orthogonal polygons in the xy plane.
Therefore, we follow [6] in describing the algorithm for this simple shape
class, before extending the ideas to all orthogonal polyhedra. All modifications
needed for delta-unfolding are also present in unfolding orthogonal extrusions,
and so we describe them in terms of this simple shape class. We therefore
review in detail the epsilon-unfolding algorithm for orthogonal extrusions.

3.1 Unfolding Tree

Let P be a polyhedron that is the vertical extrusion of a simple orthogo-
nal polygon, such as that illustrated in Figure 1a. The algorithm begins by
slicing P into slabs, which in this special case are all blocks (cuboids), using
y-perpendicular planes through each vertex. The dual graph is a tree, TU , hav-
ing a node for each band and an edge between each pair of adjacent bands. In
this special case, all z-beams are degenerate, i.e., of zero z-height. The root is
selected arbitrarily from among all bands with a rim of minimum y coordinate.
For example, the polyhedron in Figure 1a is sliced into nine blocks, with b1 as
the root and its unfolding tree as shown in Figure 1b.

b1
b5

b7

b2b3

b4

b6

(a)

x
z

y

b8

b9
b1

b2

b3 b4

b6 b5 b8

b7 (b) b9

Fig. 1 (a) Extrusion of an orthogonal polygon, partitioned by y perpendicular planes. (b)
Unfolding tree. Back children are represented by shaded nodes.

The rim of the root band with the smaller y coordinate is its front rim,
and the other rim is its back rim. For any other band, the rim adjacent to its
parent in TU is its front rim, and its other rim is its back rim. Children attached
along the front rim of their parent are front children; children attached along
the back rim of their parent are back children. Note that “front” and “back”
modifiers for rims and children derive from the structure of TU , and are not
related to the “forward” and “rearward” ±y directions. For example, b9 is a
front-child of b8, although it is attached to the rearward face of b8, and the
front rim of b5 lies on the rearward face of b5.

The Delta-Unfolding Algorithm 5

3.2 Recursive Unfolding

The key to the epsilon-unfolding method is the existence of a thin, non-crossing
spiral ξ that cycles around each band at least once, and unfolds to a staircase
when flattened into the plane. A staircase is an orthogonal path in the plane
whose turns alternate between 90◦ left and 90◦ right, and so is a monotone
path. The path that ξ follows is determined recursively. We review this spiral
ξ, starting with the base case.

3.2.1 Single Band Base Case

Figure 2a shows the path followed by ξ for a single band corresponding to a
leaf of TU . It starts at an entering point s on the top edge of the front rim and
spirals in a clockwise direction around the top, right, bottom, and left band
faces toward the back rim. We call this spiral piece up to the point it reaches
the back rim the entering spiral. When it reaches the back rim, ξ crosses
the rearward face upward toward the top face. From there, it retraces the
entering spiral in the opposite (counterclockwise) direction toward an exiting
point t lying next to s on the front rim. When ξ is cut out, unfolded, and laid
horizontally in the plane, it forms a monotonic staircase strip, as shown in
Figure 3a, because the turns alternate between left and right, 90◦ each. Observe
that the x, z-parallel segments of ξ, corresponding to the cycling clockwise
and counterclockwise around the band, form the stair “treads”; the y-parallel
segments of ξ and the z-parallel strip from the rearward face form the stair
“risers.”

(a)

y

z

x

st

st

(b)

y

x

Fig. 2 (a) Rts block spiral, with mirror views of faces that cannot be seen directly. (b)
Abstract 2D representation.

Three-dimensional illustrations of ξ like that in Figure 2a are impractical
for more complex orthogonal shapes. To easily illustrate more complex un-
foldings, we use the 2D representation depicted in Figure 2b. Note that the
2D representation captures the direction of the entering spiral and the relative
position of s and t. The arc connecting the entrance to the exit symbolizes the
reversal of the unfolding direction using a rearward face strip.

6 Mirela Damian et al.

(a) (b)s

t

T R B L

T R B

K
T L B

s

t

Fig. 3 (a) Spiral from Figure 2a unfolded. (b) Thickened spiral with the back face hung
underneath. Dotted lines delineate surface pieces from different block faces and are labeled
T (top), R (right), B (bottom), L (left), and K (back).

Eight variations of the base case spiral are illustrated in Figure 4. They
differ in the manner in which ξ enters and exits the band b to be unfolded.
The four variations labeled Lts, Lst, Rts, Rst in the top row are used when the
y-coordinate of b’s front rim is smaller than the y-coordinate of its back rim.
Rst is similar to Rts, but with s and t, and the clockwise/counterclockwise
cycling direction reversed; Lts and Lst are (respectively) mirrors of Rst and
Rts in an x-perpendicular plane. Note that the R and L labels indicate the
spiral’s cycling direction when it enters the band: R is clockwise, L is coun-
terclockwise. The spiral exits the band cycling in the opposite direction. The
four variations in the bottom row are labeled L+

ts, L
+
st, R

+
ts, R

+
st, and they are

used when the y-coordinate of b’s front rim is greater than the y-coordinate of
its back rim. They are exact reflections of Lts, Lst, Rts, and Rst, respectively,
in a y-perpendicular plane. The mirror symmetries imply that the 3D spiral
corresponding to each 2D abstract representation can be easily derived from
Rts configuration, illustrated in Figure 2.

st tstsst

st tstsst

Lts Lst Rts Rst

Lts Lst Rts Rst
+ + + +

x

y

Fig. 4 Abstract 2D representations of the eight path types visiting one slab.

3.2.2 Recursive Path

For a node b in TU that is not a leaf, we describe the path that the spiral
ξ recursively follows when visiting b. We assume that b has one of the eight

The Delta-Unfolding Algorithm 7

configuration labels shown in Figure 4. As in the base cases, the label identifies
the relative order of points s and t on b’s front rim, the spiral’s direction when
entering b, and b’s rim of lower y coordinate. Without loss of generality, we
assume that b’s label is Rts; the other seven labels are equivalent by symmetry.
The inductive assumption is that, for any subtree shorter than the subtree of
TU rooted at b, and for any configuration label assigned to the root band of
the shorter subtree, there is a (non-crossing) path ξ consistent with that label
that cycles around each band in the smaller subtree at least once, and unfolds
in the plane as a staircase strip.

After ξ enters b at point s, it visits each of b’s front children, starting with
the front child, call it b1, first encountered as it cycles clockwise along the front
rim of b. (See Figure 5). For reasons soon to be explained, child b1 is assigned
the label R+

st with two points s1 and t1 identified on the top edge of its front
rim, with t1 right of s1. The spiral ξ enters b1 at point s1 and recursively visits
it (and the subtree it roots). By the inductive hypothesis, ξ exits b1 at point t1
cycling counterclockwise. The label R+

st is assigned to b1 because ξ is cycling
in the direction R (to the right, or clockwise) on b just before it enters b1,
and so it enters b1 with that same direction; the + superscript is necessary
because the y-coordinate of the front rim of b1 is higher than that of its back
rim; and the ∗st ordering is necessary to prevent ξ from being trapped beneath
the portion of ξ between s and s1 upon returning to b, thus cutting itself off
from reaching b’s other children (because it cannot cross itself).

s

b

b1 b3

(R)

(R)st (R)st

t1s1 t3s3t2 s2 t4 s4
t

st

+ + b4 (L)ts
+b2 (L)ts

+ x
y

Fig. 5 Nested inside-out alternating path visits the front children. Dotted lines show ξ
where it cycles underneath on the bottom face.

After recursively visiting b1, ξ cycles counterclockwise on b to the first un-
visited child it passes when on b’s top face. This child, call it b2, is assigned the
label L+

ts with identified points t2 and s2 on its front rim, consistent with its
label, and it is recursively visited. In this nested manner, ξ visits the children
clockwise and counterclockwise from s from the inside out, alternately assign-
ing the labels R+

st and L+
ts. Figure 5 illustrates the path ξ takes when b has

four front children. (To keep the example simple, only one level of recursion is
illustrated, with all children leaves of TU .)

After visiting the front children, ξ makes a complete cycle around b and
then begins visiting the back children. Assume for concreteness that after
visiting the front children, ξ is cycling clockwise on b, as shown in Figure 6.
It then travels clockwise to the back child farthest to the right along the top

8 Mirela Damian et al.

t

s t

b (L)st b5 (R)tsb8 (L)ts b7 (R)ts

s
b (_)ts

6 6 st7 7t s8 8 t s5 5

6

x
y

Fig. 6 Nested outside-in alternating path visits the back children.

face. (See child b5 in Figure 6). When it returns from recursively visiting this
back child, it will be cycling counterclockwise (by the inductive hypothesis). It
is thus important that the child’s exit point be to the left of its entering point
so that ξ is not blocked from visiting other back children. (See points s5 and
t5 in Figure 6.) Thus this first back child is assigned the configuration Rts and
is recursively visited. The spiral then moves to the unvisited child farthest to
the left (see child b6) and visits it in a similar way, assigning it the label Lst.
Thus the nesting of ξ’s alternating path is outside-in for back children, with
the labels Rts and Lst being alternately assigned.

The last back child visited, bk, however, is an exception when it comes to
its label assignment, for the following reason. When the spiral exits bk (see
b8 in Figure 6), it will retrace its path (in reverse direction) back to the front
rim of b and then exit at point t. For band b, define its entering spiral, ξe(b),
to be the portion of ξ that begins at s and ends at the exiting point tk of bk
(t8 in Figure 6). Its exiting spiral, ξx(b), is the portion of ξ that begins at tk
and ends at t on the front rim of b. The exiting spiral ξx(b) simply parallels
alongside the entering spiral ξe(b), retracing the portion of ξe(b) from s to sk
but in the opposite direction. Since b has a ∗ts label, the exiting spiral must
leave b with the entering spiral on its left, from the point of view of one walking
on b along the path taken by ξx(b). Thus bk must also be assigned the label
∗ts (consistent with b’s label), so that from the beginning of the retrace and
throughout, ξx(b) has the entering spiral to its left. We call this a left retrace;
when ξx(b) keeps the entering spiral on its right during a retrace, we call it a
right retrace. We note that if b has no back children, then the spiral reverses
direction using a strip from b’s rearward face, as in the base cases.

3.3 Completing the Unfolding

We have focused on ξ’s recursive path because that is where the modifications
for delta-unfolding occur. But for completeness, we briefly summarize the re-
mainder of the epsilon-unfolding algorithm for extrusions, and refer the reader
to [6] for additional details. To complete the unfolding of P , ξ is thicken in the
+y and −y direction (as viewed in the 3D coordinate system of Figure 2a) so
that it completely covers each band. This results in a thicker unfolded staircase
strip. Then the forward and rearward faces of P are partitioned by imagin-
ing the band’s top rim edges illuminating downward light rays in these faces.

The Delta-Unfolding Algorithm 9

The illuminated pieces are then “hung” above and below the thickened stair-
case, along the corresponding illuminating rim segments which lie along the
horizontal edges of the staircase. See Figure 3b.

3.4 Level of Refinement

In [6] it was shown that the unfolding technique discussed so far can make an
exponential number of cuts on the family of polyhedra depicted in Figure 7.
Each polyhedron consists of n = 2k + 1, k ≥ 1, blocks arranged as shown
for k = 1 in Figure 7a, and for k = 2 in Figure 7b. For analysis purposes,
we formally define a visit to a band to begin when the spiral crosses its front
rim to enter the band (either the first time, or in a retrace) and end when it
crosses the front rim to exit the band. In Figure 7a, b3’s visit begins when ξ
enters it at point s3 cycling counterclockwise. The spiral visits back child b1
and then b2. The visit of b2 triggers a retrace which involves a second visit of
b1, and then back through b3 to exiting point t3, which completes b3’s visit. We

s

ts

5

33

ts 11 ts 22

ts 44
ts 33

ts 11 ts 22

t5

b3

b1 b2
b1 b2

b3

b4

b5

(b)(a)

x

y

Fig. 7 Family of polyhedra requiring exponential refinement. Block b1 is visited two times
in (a), four times in (b), and in general 2bn/2c times for an n-block object.

can write this visit order using the string Q3 = (s3 (s1 t1) (s2 t2) (s1 t1) t3),
where an open parenthesis followed by a starting point marks the start of a
visit and an exiting point followed by a closing parenthesis marks the end. The
subscript on Q is the number of blocks in the polyhedron. Observe that block
b1 is visited twice. For the five block polyhedron in Figure 7b, ξ starts at point
s5 on b5, recursively visits block b3 in the manner just described, then visits
b4 which triggers a retrace through b3. After revisiting b3, ξ returns to b5 and
exits at point t5. The corresponding visit string is Q5 = (s5 Q3 (s4 t4) Q3 t5).
The number of visits to b1 doubles to 4. In general, an n block polyhedron in
this family gives rise to 2bn/2c visits to b1, resulting in an exponential number
of cuts on b1.

10 Mirela Damian et al.

4 Delta-Unfolding Extrusions

To achieve quadratic refinement, we modify the order in which children are
visited based on the heavy/light classification of nodes used in heavy-path
decomposition [12]. In heavy-path decomposition, each tree node v is assigned
a weight n(v), which is the number of descendants in its subtree, including
itself. An edge from parent p to child c is heavy if n(c) > 1

2n(p), and light
otherwise. We say a child c is heavy (light) if the edge between c and its
parent is heavy (light). Observe that a node can have at most one heavy child.

If a node b in TU has a heavy child, then we modify the path of the
entering spiral ξe(b) so that it visits the heavy child last, to prevent the need
for revisiting the heavy child; we will show that this strategy quadratically
bounds the number of visits ξ makes to each child. For example, consider the
polyhedron in Figure 7b, and observe that b3 is a heavy child. With epsilon-
unfolding, ξe(b) visited child b3 before b4. The visit to b4 triggered a complete
retrace of the subtree rooted at b3, thus leading to the visit string Q5 =
(s5 Q3 (s4 t4) Q3 t5), and a total of four visits to b1. But if we reverse the
visit order so that ξe(b) visits b3 after b4, then the visit string becomes Q′5 =
(s5 (s4 t4) Q3 (s4 t4) t5), and no block is visited more than twice.

Since any front or back child could be heavy, we focus first on the challenge
of finding a route for the entering spiral so that it visits any specified child last.
If we can achieve this, then we can organize the visits to minimize retracing.
We then formally present the algorithm and analyze the resulting level of
refinement.

4.1 Front Child Visited Last

We start with the case when we desire to visit a front child, call it b`, last. The
idea is to visit all the front children excluding b`, and all the back children
in exactly the manner described in Section 3.2.2, as if b` were not present.
Figure 8 shows the entering spiral ξe(b) visiting all but b`. (Note that the
complete cycle that ξe(b) makes between visiting the front and back children
is not fully depicted in the 2D representation.) After visiting the last back child
(b9 in the figure), ξ retraces its path in reverse. It is during this retrace step
that child b` is visited. We explain the modifications necessary to accomplish
this for a parent block b with a label of type R∗ or L∗; labels of type R+

∗ and
L+
∗ are handled symmetrically.

Observe first that since ξe(b) alternately visits all the front children except
for b` and then makes a complete cycle around b, some contiguous section of
it, call it f , runs alongside the top edge of b`’s front rim. Specifically, f is the
section of ξe(b) hit by y-parallel rays shot from b`’s top front rim edge toward
the back rim of b. See Figure 8 where f is marked. Note that since ξe(b) is
cycling toward the back rim of b, f represents the first time ξe(b) passes by
b`’s top edge. All subsequent passes are behind f .

The Delta-Unfolding Algorithm 11

s

b1b2 b4b3(L)ts (R)st (R)st (L)ts

t1s1t2 s2 t4 s4t3s3

b8 (L)st

s t8 8

b5 (R)ts

t s5 5

b (R)ts

b6 (L)st

s t6 6 t s7 7

b7 (R)tsb9 (R)st

s t9 9

t

lb

f

x

y + + + +

Fig. 8 Entering spiral visits front and back children, with the exception of front child b`,
which gets visited last (see Figure 9).

s

b2 (L)ts b1 (R)st b3 (R)st b4 (L)ts

t1s1t2 s2 t4 s4t3s3

l

b8 (L)st

s t8 8

b5 (R)ts

t s5 5

b (R)ts

b6 (L)st

s t6 6 t s7 7

b7 (R)tsb9 (R)st

s t9 9

t l l

b

ts

(R)st

x

y + ++++

Fig. 9 Entering and return spirals. The return spiral passes by b` so that b` can be visited.

During the retrace step, ξ needs to run in front of f , so that it has unob-
structed access to b`. If the entering spiral is cycling clockwise in section f ,
then the retracing spiral (which runs alongside f in the opposite direction)
needs to right-retrace, because that will keep the entering spiral to its right
and position it in front of f . (Recall that clockwise is to the right and coun-
terclockwise is to the left.) To trigger a right-retrace, we assign the last visited
back child the label ∗st. If the entering spiral is cycling counterclockwise in
section f , then the retracing spiral needs to left-retrace, thus keeping the en-
tering spiral on its left. To trigger a left-retrace, we assign the last back child

12 Mirela Damian et al.

the label ∗ts. So instead of matching the ∗st or ∗ts label of the last visited back
child to that of b (as in epsilon-unfolding), we instead assign it so that the re-
tracing spiral passes alongside b`. When the retracing spiral reaches section f ,
it suspends the retrace, enters b` at point s`, and visits it. We call the portion
of ξ from the exiting point of the last visited back child to s` the return spiral
and label it ξr(b). See Figure 9 which shows ξr(b) in gray extending from t9
to s`.

Upon exiting b` at point t`, the spiral retraces its path in the reverse
direction, bringing it to the exit point t on b. Specifically, it follows the entire
path from s to s` in reverse. This second retrace is b’s exiting spiral, ξx(b).
(In Figure 9, ξx(b) is not illustrated, but it begins at t` and follows the gray
and then the black path to t, keeping them to its left.) The label ∗st or ∗ts
assigned to b` must be consistent with b’s label in the following way. If b has
the label ∗ts, a left retrace starting from t` is needed so that the spiral exits
at t on the correct side of s consistent with b’s ∗ts label. Thus, b` is assigned
the label ∗st, the opposite of b’s label. If, however, b has the label ∗st, a right
retrace is needed, and so b` is assigned the label ∗ts.

Because the label assigned to the last back child visited depends on the
direction of ξe(b) in the f -section of the path, we show here that determining
that direction is straightforward. We discuss the case in which ξe(b) enters b
cycling clockwise; the case when it is cycling counterclockwise is symmetric.
We also assume that there are at least two front children (not including b`)
and they are labeled b1, b2, b3, . . ., in the order in which they are visited along
the alternating path (as in Figure 8). Observe that, if b` is located between s
and b1 (as viewed from above), then ξe(b) first passes by b`’s top edge cycling
clockwise, and the same is true if it is located between bi and bi+2, for i
odd (i ∈ {1, 3, 5, . . .}). Thus in these cases, f is traversed clockwise. Figure 8
illustrates the case when b` is between b1 and b3. If b` is located between s
and b2 or between bi and bi+2, for i ∈ {2, 4, 6, . . .}, then ξe(b) first passes by
the top edge of b` cycling counterclockwise. Thus in these cases f is traversed
counterclockwise. If the top edge of b` is to the right of the last odd numbered
child or to the left of the last even numbered child, then ξe(b) first passes
over b` during its complete cycle around b. During this cycle, ξe(b) is heading
clockwise if the last visited child was even and counterclockwise if the last
visited child was odd. Cases when there are fewer than two front children are
easily handled: if b` is the only front child, or if it is located between s and b1,
then f is traversed clockwise; otherwise, f is traversed counterclockwise.

4.2 Back Child Visited Last

In this section we discuss the situation in which we desire to visit a particular
back child b` last. In this case, ξe(b) visits the front children as described in
Section 3.2.2. It then visits the back children as described in Section 3.2.2 but
with an altered visiting order. We consider the case when b has a L∗ or R∗ type

The Delta-Unfolding Algorithm 13

configuration label and the entering spiral ξe(b) is cycling counterclockwise
after visiting the front children; the other cases are symmetric.

Let m ≥ 0 be the number of back children of b not including b`, and let
b1, b2, . . . bj be the front children, for j ≥ 0. Consider the back children of b
in the cyclic clockwise order in which their top edges occur around b’s back
rim. When m is odd, we label the m back children (bj+1, bj+3, . . . , bm−2, bm, b`,
bm−1, . . . , bj+4, bj+2), according to their positions relative to b` in this cyclic or-
dering. Whenm is even, the labeling is (bj+1, bj+3, . . . , bm−1, b`, bm, . . . , bj+4, bj+2),
as depicted in Figure 10. The spiral ξe(b) visits the back children from the
outside-in, following the visit order bj+1, bj+2, . . . , bm−1, bm, b`. It is always
possible to visit bj+1 first, with a full cycle of the spiral around b (if necessary)
to get the spiral to the top edge of bj+1. This is illustrated in Figure 10 for
five back children (and no front children).

ts

lb2 (R) ts

t s2 2

b1 (L) st

s t1 1

b3 (L) st

s t3 3

b4 (R) ts

t s4 4

(L) st

s t

b st(L)

b

l l
x

y

Fig. 10 Labels and path followed by spiral when visiting back children, when the last child
to be visited is back child b`; dashed lines depict spiral pieces on the bottom of the parent
block.

The assignment of L∗ and R∗ labels to the back children of b is the same
as described in Section 3.2.2. Specifically, the labels for the children alternate
between Lst and Rts with respect to the visiting order. The spiral ξe(b) is
cycling counterclockwise (to the left) when it reaches bj+1, which matches
bj+1’s L∗ label. The recursive unfolding of bj+1 reverses the direction of the
spiral, so that it enters bj+2 cycling clockwise (to the right), thus matching
bj+2’s R∗ label, and similarly for the other back children. The alternating ∗st,
∗ts labels of the children ensures an outside-in nesting of ξ, which enables it to
reach each back child. As in Section 3.2.2, the one exception to the alternating
labels is the last visited child b`, whose ∗st or ∗ts label needs to match that of
its parent b. After visiting b`, the exiting spiral follows the entering spiral in
reverse to t as in Section 3.2.2, thus completing the visit of b.

14 Mirela Damian et al.

4.3 The Delta-Unfolding Algorithm for Extrusions

What we call the delta-unfolding algorithm is a modified version of the epsilon-
unfolding algorithm, which requires that at each node b in TU with a heavy
child, the spiral ξ visits the heavy child last. Specifically, if the heavy child
is a front child, then ξ follows the path described in Section 4.1; if the heavy
child is a back child, then ξ follows the path described in Section 4.2. If b
has no heavy child, then its children are visited in the epsilon-unfolding or-
der (Section 3.2.2). All remaining steps of the delta-unfolding algorithm for
extrusions—the thickening of ξ, the unfolding of ξ as a staircase in the plane,
and the partitioning and hanging of the frontward and rearward faces from
the flattened staircase—are the same as for epsilon-unfolding.

4.4 Refinement Analysis

We now turn to analyzing the refinement for extrusions. The path taken by
ξ on a band is composed of a series of axis-parallel segments. We determine
an asymptotic upper bound on the number of such segments on any band
face, because this is an asymptotic upper bound on the total number of cuts
on a grid face in the unfolding. We compute this by bounding the number of
segments on any top face, as the number of segments on all four faces of a
band is asymptotically bounded by the number of segments on its top face.

Define the first visit of ξ to a band b to begin when ξ first enters b at point
s, includes the recursive visiting of b’s children, and ends when it exits b at
point t. Band b and the bands in its subtree may be revisited by ξ many times
during subsequent retracings, but each of these retracings merely follows the
path traced during the first visit to b. Let R(n(b)) be an asymptotic upper
bound on the number of segments that ξ’s first visit to b induces on a top
face of any band in the unfolding subtree rooted at b. Then a bound on the
number of segments on any top face in b’s subtree induced by ξ (in its entirety)
is R(n(b)) multiplied by the total number of times ξ visits b. We now establish
three properties of ξ’s first visit to b:

(i) ξ induces at most O(n(b)) segments on b’s top face;
(ii) the light children of b are each visited at most four times; and
(iii) if b has a heavy child, the heavy child is visited only once.

For (i), the worst case occurs when b has O(n(b)) children and a heavy front
child b`. In this case, the alternating paths of b’s entering spiral ξe(b) that have
it visit each front child (excluding b`) may induce O(n(b)) segments on b’s top
face, and similarly for the alternating paths to each back child. Then b’s return
spiral ξr(b) retraces these alternating paths up to the point that it reaches b`,
which at most doubles the number of segments. After visiting b`, the exiting
spiral ξx(b) retraces the path ξr(b) and then the path ξe(b) in reverse back to
point t on b, which again at most doubles the number of segments on b. Thus
the total number of segments is O(n(b)).

The Delta-Unfolding Algorithm 15

For (ii), the maximum visits to light children occur when b has a heavy
front child. In this case, ξe(b) visits each light child once. Then ξr(b) visits each
light child at most once on its way to the heavy front child. After visiting the
heavy front child, ξx(b) retraces ξr(b) and then retraces ξe(b) to the entering
point of b, thus visiting each light child at most twice more. Therefore, each
light child is visited at most four times.

For (iii), if b has a heavy front child, then the path traversed by ξ (detailed
in Section 4.1) immediately establishes that the heavy front child is visited only
once. Similarly, if b has a heavy back child, the path detailed in Section 4.2
establishes that the heavy back child is visited exactly once.

Properties (i), (ii) and (iii) established above imply that R(n(b)) is deter-
mined by the larger of three quantities:

(a) the number of segments on b’s top face induced during ξ’s first visit to b;
(b) 4 maxi=1...k R(n(bi)), where b1, b2, . . . bk are b’s light children;
(c) R(n(b`)), where b` is b’s heavy child, if it has one.

A multiplier of four is necessary in case (b) because light children may be
visited up to four times during b’s first visit; no multiplier is necessary for the
heavy child (c) because it is visited only once. For the base case, R(1) = c,
for some constant c > 1, because the first visit of ξ to a leaf node band (as
described in Section 3.2.1) induces a constant number of segments. And in
general,

R(n(b)) = max

{
O(n(b)), 4 max

i=1...k
R(n(bi)), R(n(b`))

}
≤ max

{
O(n(b)), 4 max

i=1...k
R
(
1
2n(b)

)
, R(n(b)− 1)

}
= max

{
O(n(b)), 4R

(
1
2n(b)

)
, R(n(b)− 1)

}
noting that the light children’s subtrees contain at most 1

2n(b) nodes, and the
heavy child’s subtree contains at most n(b)− 1 nodes. It is straightforward to
verify by induction that R(n(b)) = O(n(b)2). Applying this to the root r of TU
with n = n(r) nodes and noting that ξ visits r only once in the delta-unfolding
algorithm, yields a maximum of O(n2) parallel segments on any top face.

This also bounds the number of cuts on any grid face in the unfolding.
Specifically, in the thickening step ξ expands in the +y and −y direction so as
to cover the entire band, but this does not asymptotically increase its number
of edges. After the thickening, disjoint sections of ξ run along the entirety of
both band rims. In the partitioning step, the disjoint sections along the top
rim edges induce the division of the frontward and rearward faces into strips;
i.e., each disjoint section delimits the vertical strip beneath it. Because O(n2)
bounds the number of disjoint sections along the top edge, it also bounds the
number of strips a frontward/rearward face is partitioned into.

16 Mirela Damian et al.

4.4.1 A worst case refinement example.

A simple example establishes that the bound O(n2) is tight: a polyhedron
with n = 2h+1 − 1 blocks, whose unfolding tree TU is a perfect binary tree of
height h (i.e., each internal node has two children, and all leaves are at the
same level). There are no heavy nodes in TU , and the number of cuts in a visit
of the root is given by the recurrence relation

R(n) = 4R((n− 1)/2) = 4hR(1) = (n+ 1)2R(1)/4 ,

because

4h = 4log2(n+1)−1 = 2log2(n+1)2/4 = (n+ 1)2/4 .

And since R(1) = c, for some constant c, it follows that R(n) = O(n2), estab-
lishing our claim.

5 Delta-Unfolding of Genus-Zero Orthogonal Polyhedra

The delta-unfolding algorithm and its refinement analysis generalizes to all
genus-zero orthogonal polyhedra in the same way the epsilon-unfolding algo-
rithm does, so we summarize the idea here and refer the reader to [6] for
details. Instead of partitioning P into blocks, the general algorithm partitions
P into slabs as defined in Section 2. It then creates an unfolding tree, TU ,
where each node corresponds to a band surrounding a slab. Each parent-child
arc in TU corresponds to a z-beam, which is a vertical strip from a frontward
or rearward face connecting the parent’s rim to the child’s rim. For a parent
band b, its front (back) children are those whose z-beams connect to b’s front
(back) rim.

The spiral ξ enters and exits b at points s and t located at the intersection
between b’s front rim and the z-beam connecting b to its parent. Observe that
there is a natural cyclic ordering of b’s front (back) children that is determined
by their z-beam connections around b’s front (back) rim. Using this cyclic
ordering, it is straightforward to generalize the paths that ξ follows to reach
the front and back children, described in Sections 4.1 and 4.2. See for example
Figure 11 that shows a band with its faces flattened in the plane (the lighter
color marks top/bottom faces, and the darker color marks right/left faces).
Also depicted are the z-beam connections (flattened into the plane) and the
path ξe(b) follows to visit the children, assuming b` is a heavy child. Observe
that the path is the same as in Figure 8, except that it extends across multiple
band faces. When ξ visits a child, it moves from b to the connecting z-beam
and travels vertically (in 3D) along the z-beam to reach the child; when it exits
the child it travels along the z-beam back to b. In the unfolded staircase, the
portion of ξ on the z-beam corresponds to a vertical riser. Thickening ξ is done
as in the case of extrusions. The partitioning of the forwards and rearwards
faces is also done as in the case of extrusions, but in addition to shooting
illuminating rays down from top rim edges, bottom rim edges that are not

The Delta-Unfolding Algorithm 17

hit by these rays must themselves shoot rays upward to illuminate portions
of faces not illuminated by the top edges. The face pieces resulting from this
partitioning method are hung from the staircase as described in Section 3.3.

s

b

lb b4b2

b6 b8 b9 b7 b5

b3b1

(R)ts

Fig. 11 Band b of a slab, cut and laid flat with top/bottom faces light gray and right/left
faces dark gray. z-beam connections to b’s parent, children b1 . . . b9, and child b` are marked
along the front and back rim. The path that ξe(b) follows when b` is heavy is depicted.

The O(n2) upper bound on the level of grid refinement for extrusions also
applies to general orthogonal polyhedra by the following argument. In the
case of extrusions, for any block b with children, ξ makes turns only on b’s
top face, because all access to the children is from the top face; it makes
no turns on the other three faces of b. Therefore, we analyze the number of
segments (each corresponding to a turn) on the top face. For a band b of an
arbitrary orthogonal polyhedra, ξ visits b’s children in the same manner as for
an extrusion, except that the turns made to access the children are made on
whatever top or bottom face has the connecting z-beam, as in Figure 11. In
particular, for a band b with a given number of front and back children, the
same number of turns are made, whether b surrounds a block of an extrusion or
a slab of a arbitrary orthogonal polyhedron. In terms of maximum refinement,
the worst case occurs when all the turns are concentrated on a single face,
which is exactly the situation handled by our upper bound analysis in the
case of extrusions.

6 Conclusion

We present modifications to the epsilon-unfolding algorithm from [6] that re-
duce the level of grid refinement necessary to grid-unfold any genus-zero or-
thogonal polyhedron from exponential to quadratic. The next natural step is to
seek a refined grid edge-unfolding of all genus-zero orthogonal polyhedra that
requires subquadratic refinement of the grid faces, to date only achieved for
highly restricted classes of orthogonal polyhedra [4,7,8]. It is unlikely that the
technique used in this paper could be extended to produce such an unfolding,
due to the backtracking nature of our recursive unfolding algorithm. How-
ever, our preliminary investigations embolden us to conjecture that a constant
refinement of the vertex grid suffices to grid-unfold all orthogonal polyhedra.

18 Mirela Damian et al.

Acknowledgement. The authors would like to thank Joseph O’Rourke for his
careful reading and helpful suggestions. The second author thanks Greg Price
for helpful early discussions on this problem.

References

1. Zachary Abel and Erik D. Demaine. Edge-unfolding orthogonal polyhedra is strongly
np-complete. In Proceedings of the 23rd Canadian Conference on Computational Ge-
ometry, August 2011.

2. Greg Aloupis, Prosenjit K. Bose, Sebastien Collette, Erik D. Demaine, Martin L. De-
maine, Karim Douieb, Vida Dujmović, John Iacono, Stefan Langerman, and Pat Morin.
Common unfoldings of polyominoes and polycube. In Revised Papers from the China-
Japan Joint Conference on Computational Geometry, Graphs and Applications, volume
7033 of Lecture Notes in Computer Science, pages 44–54, November 2010.

3. Marshall Bern, Erik D. Demaine, David Eppstein, Eric Kuo, Andrea Mantler, and Jack
Snoeyink. Ununfoldable polyhedra with convex faces. Comput. Geom.: Theory and
Appl., 24(2):51–62, February 2003.

4. Therese Biedl, Erik Demaine, Martin Demaine, Anna Lubiw, Mark Overmars, Joseph
O’Rourke, Steve Robbins, and Sue Whitesides. Unfolding some classes of orthogonal
polyhedra. In Proceedings of the 10th Canadian Conference on Computational Geom-
etry, August 1998.

5. Mirela Damian, Robin Flatland, Henk Meijer, and Joseph O’Rourke. Unfolding well-
separated orthotrees. In Abstracts from the 15th Annual Fall Workshop on Computa-
tional Geometry, November 2005.

6. Mirela Damian, Robin Flatland, and Joseph O’Rourke. Epsilon-unfolding orthogonal
polyhedra. Graphs and Comb., 23(1):179–194, 2007.

7. Mirela Damian, Robin Flatland, and Joseph O’Rourke. Unfolding Manhattan towers.
Comput. Geom.: Theory and Appl., 40:102–114, 2008.

8. Mirela Damian and Henk Meijer. Edge-unfolding orthostacks with orthogonally convex
slabs. In Abstracts from the 14th Annual Fall Workshop on Computational Geometry,
pages 20–21, November 2004. http://cgw2004.csail.mit.edu/talks/34.ps.

9. Erik D. Demaine and Joseph O’Rourke. A survey of folding and unfolding in computa-
tional geometry. In Jacob E. Goodman, János Pach, and Emo Welzl, editors, Discrete
and Computational Geometry, Mathematical Sciences Research Institute Publications,
pages 167–211. Cambridge University Press, 2005.

10. Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press, July 2007.

11. Joseph O’Rourke. Unfolding orthogonal polyhedra. In J. E. Goodman, J. Pach, and
R. Pollack, editors, Surveys on Discrete and Computational Geometry: Twenty Years
Later, pages 231–255. American Mathematical Society, 2008.

12. Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. of
Comput. and Syst. Sci., 24(3):362–391, June 1983.

http://cgw2004.csail.mit.edu/talks/34.ps

	Introduction
	Overview of Epsilon-Unfolding
	Epsilon-Unfolding Extrusions
	Delta-Unfolding Extrusions
	Delta-Unfolding of Genus-Zero Orthogonal Polyhedra
	Conclusion

