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Theoretical prediction of self-diffusion in a metal oxide in a wide range of thermodynamic conditions has been
a long-standing challenge. Here, we establish that combining the formation free energies and migration barriers
of all charged oxygen defects as calculated by density functional theory, within the random-walk diffusion
theory framework, is a viable approach to predicting oxygen self-diffusion in metal oxides. We demonstrate
this approach on tetragonal ZrO2 by calculating oxygen self-diffusivity as a function of temperature and oxygen
partial pressure or, alternatively, temperature and off-stoichiometry. Arrhenius analysis on the isobaric (or constant
off-stoichiometry) self-diffusivities yields a spectrum of effective activation barriers and prefactors. This provides
reconciliation for the wide scatter in the experimentally determined activation barriers and prefactors for many
oxides.

DOI: 10.1103/PhysRevB.89.024105 PACS number(s): 66.30.Dn, 66.30.H−

I. INTRODUCTION

Optimizing the performance of metal oxides in their
applications requires a fundamental understanding of their
point defect equilibria and migration kinetics.1 Recently, we
introduced a framework to predict point defect equilibria in
a metal oxide in the limit of noninteracting defects.2 The
framework is informed by density functional theory (DFT) and
takes into account finite temperature effects. In this paper, we
extend this framework to account for defect diffusion kinetics
as epitomized in the self-diffusion coefficient.

Self-diffusivities in metal oxides are critical to model pro-
cesses such as corrosion, crystal growth, sintering, and diffu-
sional creep.3 Experimental determination of self-diffusivities
and identifying the mediating defect is a challenging task, and
for many oxides, there is no consensus either on the effective
activation barriers or the mediating defect.3,4 Theoretical work
focused on computing the formation or migration energies of
the defects or both.4–6 However, extending the formation ener-
gies to defect concentrations as a function of thermodynamic
conditions, which is nontrivial for a metal oxide,2 and com-
bining them with migration barriers to obtain self-diffusivities
has not been accomplished satisfactorily. For example, earlier
work had to assume the domination of a certain defect to
compute self-diffusivities as a function of the concentration
of that particular defect.7 Recently, self-diffusivity due to
neutral oxygen defects in SiO2 was obtained starting from DFT
calculations without prior assumptions about the predominant
defect.8 However, for most oxides, charged defects prevail,
and their varying and competing concentrations as a function
of temperature leads to phenomena such as the non-Arrhenius
behavior on diffusivity isobars, which we demonstrate also in
this paper. In Ref. 6, oxygen charged defects were included
in computing the isothermal self-diffusivity of oxygen in
ZnO. However, the resulting diffusivity was presented as a
function of both oxygen and electron chemical potentials.
Those results have some validity when the variation in electron
chemical potential is due to dopants in dilute solid solutions.
However, these two variables are in fact not independent for
a fixed composition and at a fixed temperature. Resolving the
dependence of electron chemical potential on temperature (T )

and oxygen partial pressure (PO2 ) (Ref. 2) enables evaluating
the diffusivity as a function of (T ) and (PO2 ), which are
independent variables.

In this paper, we adopt tetragonal zirconia (T-ZrO2) as a
model system, whose defect thermodynamics were assessed
in our recent work.2 We focus on the diffusion of oxygen,
although the approach is also applicable to cation diffusion.
Without prior assumptions about the dominant defect, we
employed random-walk diffusion theory to combine the
herein-computed migration barriers of oxygen defects with
their previously determined concentrations,2 obtaining oxygen
self-diffusivity as a function of T and PO2 . To compare our
results to experiments in which oxide off-stoichiometry was
fixed,9 we recast the calculated diffusivity in the form of a
function of temperature and off-stoichiometry. By performing
Arrhenius analysis on both the isobaric and the constant off-
stoichiometry diffusivities, two spectra of effective activation
barriers and prefactors emerge, providing an explanation for
the wide scatter in effective activation energies and prefactors
documented in the literature for many metal oxides.4,6

II. THEORETICAL AND COMPUTATIONAL APPROACH

From random-walk diffusion theory,3,6 the one-
dimensional self-diffusivity of a defect d, is given by

D = 1

2
[d]

∑
k

ζkλ
2
k�

d
k , (1)

where [d] is the defect concentration, and the summation is
taken over all the crystallographic directions k that have a
nonzero projection on the one dimension under investigation.
For each crystallographic direction k, ζk is its multiplicity,
λk is the length of its projection on the one dimension of
interest, and �d

k is the jump frequency of the defect d in the
direction k.

In a constant-volume ensemble, �d
k is given by10

�d
k = υd

k exp

(−Ed
k

kBT

)
, (2)
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TABLE I. The calculated migration energy barriers (in eV) of oxygen defects in T-ZrO2. The crystallographic directions and the jump
distances are based on the perfect conventional unit cell. DFT results from Ref. 18 and classical pair potential calculations from Ref. 19 are
shown for comparison. For V x

O, barriers based on both the triplet (net spin 2μB ) and the singlet (0μB ) saddle points are shown.

Jump distance along the given crystallographic direction

Defect 〈100〉 2.64 Å 〈001〉 2.65 Å 〈110〉 3.64 Å 〈1̄10〉 3.64 Å 〈101〉 3.30 Å 〈1̄01〉 4.13 Å 〈111〉 4.51 Å

V ••
O 0.38 0.58 2.64 3.82 4.32 1.79 3.70

V ••
O Ref. 18 0.22a 0.61

V ••
O Ref. 19 0.27 0.26

V x
O (2μB ) 1.59 1.24 2.83 2.90 2.16 3.76 3.88

V x
O (0μB ) 1.48 1.65 3.11 3.39 2.34 3.96 2.91

V x
O (0μB ) Ref. 18 1.35a 1.43

Interstitialcy (2.44 Å) Interstitialcy (2.10 Å)
O ′′

i 1.41 0.28
O ′′

i Ref. 19 1.50 0.40

aIn Ref. 18, these barriers were reported for the 〈110〉 direction of the primitive cell, which is equivalent to the 〈100〉 direction for the
conventional one.

where kB is the Boltzmann constant. For the defect d that jumps
in direction k, υd

k and Ed
k are the attempt frequency and the

migration energy barrier, respectively. The migration entropy
is carried by the term υd

k , which is taken as 5 THz in this
paper. By adopting the vectors [100], [010], [001] as a basis
for the conventional unit cell of T-ZrO2 and calculating D for
each defect in the directions of the basis vectors, we obtained a
diagonal diffusivity tensor (see the Supplemental Materials11).
The trace of this tensor is the quasi-isotropic self-diffusion
coefficient of the defect. By summing the self-diffusivities of
all oxygen defects, we obtain the total oxygen self-diffusivity
Dtot. Including correlation effects to obtain tracer diffusivity
introduces a negligible correction3,6 and is beyond the scope
of this paper. In what follows, all diffusivities are understood
as self.

In a metal oxide, the defect concentration depends on PO2 ,
as does the defect self-diffusivity. In Ref. 2, we determined
the PO2 dependence of defect concentrations utilizing the
charge neutrality condition. Here, we evaluated the migration
barriers for oxygen defects and combined their concentrations
and migration barriers as indicated in Eqs. (1) and (2). The
oxygen defects considered are the doubly charged oxygen
vacancy V ••

O , the neutral oxygen vacancy V x
O, and the doubly

charged oxygen interstitial O ′′
i . The singly charged vacancy

and interstitial were deemed disallowed by the negative U

behavior, and the neutral oxygen interstitial Ox
i was found

to have very low concentration; hence, these defects are not
considered here.2

The migration barriers were calculated by the climbing
image nudged elastic band method12 using three to five
intermediate images. DFT total energies were calculated using
the projector-augmented plane wave method13 as implemented
in the Vienna Ab initio Simulation Package.14 The standard
Perdew-Burke-Ernzerhof15 functional was used to treat the
exchange-correlation interaction. Other details of the compu-
tational method are the same as in Ref. 2. The experimental16

band gap of 4.2 eV was adopted in our calculation of defect
concentrations because of better consistency with conductivity
measurements in T-ZrO2.2,17

III. RESULTS AND DISCUSSION

Table I summarizes the calculated migration barriers and
the corresponding jump distances for all the oxygen vacancies
and interstitials considered. In Fig. 1, we schematically depict
representative migration pathways for the oxygen vacancy and
the oxygen interstitial in the conventional unit cell of tetragonal
ZrO2. For V ••

O and V x
O, we considered all the possible and

distinct diffusive jumps within the conventional unit cell.
Seven distinct jumps were identified, as shown in Table I.
The DFT results of Eichler,18 who considered the migration
of V ••

O and V x
O in 〈100〉 and 〈001〉 directions, are in agreement

with our calculations, as shown in Table I. The classical pair
potential predictions of Ref. 19 for the migration of V ••

O is also
consistent with our computed barrier for this defect in 〈100〉.
However, this classical potential underestimates the barrier in
〈001〉 to the extent that it predicts an isotropic diffusion in
〈100〉 and 〈001〉.

FIG. 1. (Color online) Schematic shows representative migration
pathways for oxygen defects in tetragonal ZrO2. Zirconium cations
and oxygen anions are represented by green (small) and red (large)
balls, respectively. (a) Three representative migration hops for an
oxygen vacancy in 〈001〉, 〈100〉, and 〈111〉. (b) A representative
interstitialcy migration hop for an oxygen interstitial originally
located in an octahedral site in the conventional unit cell. Due to
the tetragonal distortion of the oxygen columns, four lattice oxygen
sites are at a distance of 2.44 Å from any octahedral site, whereas the
other four are at a distance of 2.10 Å from the same site.
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The V x
O is an F-center with two electrons localized on

the vacant site.2,18 Its ground state is singlet. The diffusive
jump of an F-center involves two simultaneous events, namely,
the jump of a neighboring oxide ion to the vacant site and
the transport of the two electrons of the F-center to the
new vacant site. For some diffusive jumps, we discovered
that the migration barrier is lowered when the two electrons
of the F-center form a triplet state (net spin = 2μB ) at the saddle
point (see the Supplemental Material11 for a snapshot of the
simulation cell). In evaluating the overall oxygen diffusivity,
we used the lowest migration barriers found for V x

O along each
direction.

Fully ionizing the F-center leads to the formation of V ••
O .

For the shortest diffusive jumps (along 〈100〉 and 〈001〉),
the migration barrier of V ••

O is significantly less than that
of V x

O. This is consistent with a common trend identified
for the diffusion of F-center in oxides20 and was explained
by the columbic repulsion between the localized electrons and
the oxide ion during the hop of V x

O.

The interstitial O ′′
i occupies the octahedral site in the con-

ventional unit cell, eightfold coordinated by lattice oxygens.2

We found the migration barrier for the direct diffusive jumps
of O ′′

i to be very high (>5 eV). Instead, this defect migrates by
the interstitialcy mechanism as shown in Fig. 1(b), where the
migrating interstitial replaces one lattice oxygen, which is then
pushed to the next interstitial site. Because of the tetragonal
distortion of the oxygen columns in T-ZrO2, four of the lattice
oxygens that coordinate O ′′

i are at a distance of 2.44 Å, and
the other four are at 2.10 Å; hence, two distinct interstitialcy
migration barriers exist, as shown in Table I. The classical pair
potential predictions of Ref. 19 for these two barriers are also
shown in Table I and seem to be consistent with our findings.

By combining the migration barriers and the concentra-
tions, we obtained the self-diffusivity of each defect and the
total oxygen self-diffusivity Dtot as a function of T and PO2 . We
consider the range 1500 K � T � 2300 K, in which T-ZrO2 is
thermodynamically stable without doping. Figure 2(a) and 2(b)
is a reproduction of the previously2 calculated concentrations
of all electronic and ionic defects in T-ZrO2 at 1500 K and
2000 K. Figure 2(c) and 2(d) shows the calculated diffusivities
at the same temperatures. Figure 2(c) is at 1500 K and
represents the low-T behavior (T � 1700 K), while Fig. 2(d) is
at 2000 K and represents the high-T behavior. The criterion for
this temperature classification is the number of different slopes
that log Dtot exhibits as a function of log PO2 . For T-ZrO2 these
slopes of log Dtot conform mainly to those of log D of V ••

O

since this defect predominates within a wide range of T and
PO2 [as shown in our recent work2 and also in Fig. 2(a) and
2(b)] and also has a low migration barrier along 〈100〉. The
exception is at very low PO2 where the contribution of V x

O to
total diffusivity becomes significant.

The low-T behavior, as in Fig. 2(c), is characterized by two
main regimes of PO2 . In the high-PO2 regime, V ••

O is mainly
charge-balanced by the zirconium vacancies V ′′′′

Zr (Ref. 2).
Hence, log[V ••

O ] and consequently log Dtot are roughly in-
dependent of PO2 , as expected based on the law of mass
action combined with the charge neutrality condition ([V ••

O ] ≈
2[V ′′′′

Zr ]). In the low-PO2 regime, free electrons charge-balance
V ••

O (Ref. 2). Thus, both log[V ••
O ] and log Dtot exhibit a (−1/6)
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FIG. 2. (Color online) Reproductions of the previously calcu-
lated concentrations of electronic and ionic defects at (a) 1500 K
and (b) 2000 K from Ref. 2. Zirconium interstitials are not shown for
clarity. Ionic defects are denoted by Kröger–Vink notation, whereas
nc an pv denote conduction band electrons and valence band holes,
respectively. Calculated self-diffusivities for oxygen defects and total
oxygen self-diffusivity as a function of PO2 at (c) 1500 K and (d)
2000 K.

slope in accordance with the new charge neutrality condition
(2[V ••

O ] ≈ nc) and the law of mass action. At very low PO2 , the
(−1/6) slope of log Dtot is modified by the contribution of V x

O.

The latter defect is neutral and, except for a small electronic
entropy contribution,2 its concentration is not affected by the
charge neutrality condition. It follows that log[V x

O] always
has a (−1/2) slope. In Fig. 2(c), the V x

O contribution is not
shown, as we limited the PO2 axis to 10−15 atm to facilitate
the comparison with Fig. 2(d). At high temperatures, as in
Fig. 2(d), the zero-slope region at high PO2 disappears and
the (−1/6) slope for both log[V ••

O ] and log Dtot dominates for
most of PO2 values. At very lowPO2 , the contribution of V x

O

to diffusion changes the slope of log Dtot to be a weighted
average between (−1/6) and (−1/2).

The gradual transition from the low-T to the high-T
behavior is illustrated in Fig. 3(a), which depicts the isothermal
Dtot as a function of PO2 . In order to perform Arrhenius
analysis and extract an effective activation barrier, we plot in
Fig. 3(b) the isobaric Dtot as a function of 1/T . The hallmark
of Fig. 3(b) is the non-Arrhenius behavior on high-PO2

isobars, which do not lend themselves to identifying one
effective diffusion barrier over the entire temperature range.
The explanation of such non-Arrhenius behavior resides in the
different mechanisms of charge neutralization as a function of
temperature in T-ZrO2 introduced above. To rationalize this,
imagine an isobaric (e.g., PO2 = 1 atm) cooling experiment.
At high temperatures (T > 1700 K), V ••

O is charge-balanced
by free electrons. Upon cooling, the concentration of V ••

O

decreases in an Arrhenius fashion until about 1700 K, below
which the charge neutralization mechanism changes to involve
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FIG. 3. (Color online) (a) Isothermal oxygen self-diffusivities as
a function of PO2 . (b) Isobaric oxygen self-diffusivities as a function
of 1/T. (c) Isothermal oxygen self-diffusivities as a function of the off-
stoichiometry x in T-ZrO2-x . (d) Constant off-stoichiometry oxygen
self-diffusivities as a function of 1/T . The experimental data shown
in panel (d), adapted from Ref. 9, are self-diffusivities obtained by
scaling the measured tracer diffusivities by the appropriate correlation
factor (of about 0.65) determined in Ref. 9.

cation vacancies such that [V ••
O ] ≈ 2[V ′′′′

Zr ]. Further cooling
continues to decrease [V ••

O ] in an Arrhenius fashion but
with (−∂ log[V ••

O ]/∂(1/T )) having a value less than the
corresponding one at the higher temperatures. This leads to
the overall non-Arrhenius behavior over the entire range of
temperatures considered here. The low-PO2 isobars, on the
other hand, have one charge neutrality mechanism (2[V ••

O ] ≈
nc) for all temperatures shown, and hence they conform to the
Arrhenius behavior.

To the best of our knowledge, the only experiments in the
literature to determine oxygen diffusivity in single-crystal un-
doped T-ZrO2 were performed at constant off-stoichiometry x

by Park and Olander.9 Maintaining constant off-stoichiometry
in the experiments allows probing the migration barrier of
the dominant defect that causes the given off-stoichiometry,
decoupled from the temperature dependence of the concentra-
tion of that defect. To compare with these experiments and to
understand the variation of diffusivity with an experimentally
accessible quantity x, we plot in Fig. 3(c) the isothermal
oxygen diffusivities as a function of x, and in Fig. 3(d) the
oxygen diffusivities at constant off-stoichiometry as a function
of 1/T . The experimental data from Ref. 9 are also shown in
Fig. 3(d).

Close to stoichiometric composition and at low T where
V ••

O is charge-balanced by V ′′′′
Zr , log Dtot is roughly independent

of x [Fig. 3(c)]. This zero slope region is absent at high T .
As the degree of off-stoichiometry increases, the slope of
log Dtot increases toward a value of 1 at all temperatures.
The value of 1 is what is expected from Eq. (1) when
the off-stoichiometry is attributed solely to V ••

O (x ∝ [V ••
O ]),

which is approximately the case when V ••
O is the predominant

ionic defect and simultaneously neutralized by free electrons.
By continuous deviation from stoichiometry on an isotherm,
the slope of log Dtot decreases toward a value of 1/3. In this
range of x, V x

O predominates concentration-wise, but diffusion
is still mainly due to V ••

O because of its much lower migration
barrier (see Table I ). Thus, the predomination of V x

O leads
to the proportionality relation x ∝ [V x

O] ∝ P
−1/2
O2

, and the
fact that V ••

O controls the total oxygen diffusivity leads to
Dtot ∝ [V ••

O ] ∝ P
−1/6
O2

. Combining these two proportionalities
produces Dtot ∝ x1/3, explaining the 1/3 slope. Beyond the
1/3 region, further departure from stoichiometry results in a
monotonic increase of the slope of log Dtot toward a value
of 1, indicating that [V x

O] reaches to values high enough to
surpass the impact of the low migration barrier of V ••

O ; hence,
self-diffusion is dominated by V x

O.

In the experiments of Ref. 9 shown in Fig. 3(d), PO2

was adjusted at each temperature to achieve a stoichiometric
composition of T-ZrO2. However, the inevitable presence
of aliovalent cationic impurities in the samples leads to
off-stoichiometric composition by x = 10−4, as determined
in Ref. 9 using atomic absorption spectroscopy. The level
of quantitative agreement in our calculated diffusivity in
pure T-ZrO2-x at x = 10−4 and the measured values in the
impurity-containing samples is reasonable.

On the other hand, the experimental data in Fig. 3(d)
exhibit a much lower effective barrier of 0.58 eV compared
with the effective barrier of 1.27 eV from our simulation
results at x = 10−4. Much of this discrepancy can be
understood by observing that the oxygen vacancy defects in
experiments and our simulations are not entirely the same.
In the experiments, the 10−4 off-stoichiometry is solely due
to V ••

O , which is needed to charge-balance the aliovalent
impurity cations, whereas in the simulation of pure, undoped
T-ZrO2-x , the off-stoichiometry is due to both V ••

O and V x
O.

Based on our calculated migration barriers in Table I and
assuming that all the 10−4 off-stoichiometry is by virtue of
V ••

O , we obtain and effective barrier of 0.40 eV, closer to the
experimentally observed barrier of 0.58 eV. The remaining
0.18 eV discrepancy can be, in part, attributed to the binding
of the positively charged V ••

O to the negatively charged
acceptor cations present in the experiments. This binding
can increase the migration barrier of V ••

O . However, it is not
possible to preclude the uncertainties in the experiments and
the approximations in the calculations, which definitely can
contribute to the discrepancy. At the end of this paper, we
provide a summary of possible improvements in the theoretical
prediction of self-diffusivity.

Using the filled circles in Fig. 3(b) and 3(d) (or similar
ones for the isobars and constant x lines not shown), we
fit the isobaric and constant off-stoichiometry diffusivities to
the Arrhenius relation Dtot = D0 exp(−Eeff/kBT ). Thus, we
obtained an effective activation barrier Eeff and a prefactor
D0 as a function of PO2 in Fig. 4(a) and as a function of x

in Fig. 4(b). For the non-Arrhenius isobars, we fit a single
activation barrier and prefactor to facilitate comparison with
the Arrhenius isobars.

A diffusion barrier evaluated at constant PO2 [Fig. 4(a)]
represents both the formation and the migration of the defects.
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FIG. 4. (Color online) The effective activation barrier Eeff (blue
circles) and effective prefactor D0 (red squares) for oxygen diffusion
in T-ZrO2-x as a function of (a) PO2 and (b) x.

As PO2 decreases, the oxygen chemical potential decreases, the
chemical potential of electrons (Fermi level) increases,2 and
[V x

O] gradually dominates over [V ••
O ]. The first factor decreases

the formation energy of both vacancies, the second increases
the formation energy of V ••

O , and the last factor increases the
average migration barrier for oxygen. The second and third
factors win, and we observe in Fig. 4(a) an increase in the
effective activation barrier as PO2 decreases. Moreover, the
non-Arrhenius behavior on the high-PO2 isobars is reflected in
the figure by lowering the effective barrier at high PO2 more
than would be expected by extrapolating from low PO2 .

On the other hand, a diffusion barrier evaluated at constant
x [Fig. 4(b)] represents primarily the migration barriers of
the defects. Since oxygen in T-ZrO2 diffuses mainly through
V ••

O and V x
O, the effective diffusion barrier at constant x is a

weighted average of the migration barriers of these two defects.
Close to stoichiometric compositions, V ••

O is predominant, and
the effective diffusion barrier is relatively low, as in Fig. 4(b).
By continuous departure from stoichiometry, V x

O gradually
predominates, and the effective diffusion barrier consequently
increases until it reaches about 1.4 eV, conforming to the lowest
migration barriers for V x

O. Ironically in Fig. 4(a) and 4(b),
the highest values for oxygen diffusivity are coincident with
the highest activation barriers, emphasizing the importance
of the prefactor (affected by the defect concentration) in
deciding the magnitude of the overall diffusivity.

Before concluding, we envisage some refinements and
extensions for the approach presented here to predict self-
diffusion in metal oxides. First, we used the harmonic
approximation to sample the phonons’ contribution to the
free energy of formation of the defects.2 However, at elevated
temperatures, phonon-phonon interaction and thermal expan-
sion can impact both the defect formation and migration.5,21

These effects are currently expensive computationally to
consider for a material with a band gap, such as ZrO2

here. But with the increase of computational capabilities, it
is essential to examine their contribution to self-diffusion.
Second, the model system used here, tetragonal ZrO2, does
not exhibit significant departure from stoichiometry until very

low PO2 , indicating the adequacy of the approximation of
noninteracting defects for most of the PO2 range examined.
However, many other metal oxides easily reduce or oxidize
with slight variations of PO2 around atmospheric pressure,
and for these oxides, defect-defect interactions are sizable.
This situation is amenable to theoretical treatment using a
cluster expansion Hamiltonian combined with Monte Carlo
simulations.22 Third, in this paper the jump frequency �d

k was
computed using the harmonic transition state theory with the
migration entropy implicitly accounted for through the attempt
frequency term υd

k . It is possible to explicitly account for the
migration entropy by evaluating the vibrational frequencies
at the saddle point and the initial state. This computation is
expensive and typically does not lead to significant quantitative
corrections for diffusive jumps in the bulk of a crystalline solid.
More important is the formalism of transition state theory
that assumes no return jumps across the saddle point and
for which the system does not retain a memory of the failed
jump attempts. These assumptions might break down at the
highest temperatures considered here, and in particular for the
lowest migration barriers such as that of O ′′

i . More advanced
treatments23 of this situation can be applied to remedy this
deficiency of transition state theory. Finally, it is also possible
to improve the accuracy of the electronic structure calculations
by adopting hybrid functionals or higher rungs on the Jacob
ladder.24

IV. CONCLUSION

We presented a framework based on random-walk diffusion
theory to predict self-diffusion in metal oxides, informed by
first principles–based calculations of defect formation and
migration energies. We demonstrated the approach on oxygen
diffusion in tetragonal zirconia and validated our results with
prior experimental results. Defect concentrations evaluated
through charge neutrality condition are combined with defect
mobilities within the random-walk diffusion theory. The
resultant self-diffusivity is, as expected, a function of two
independent thermodynamic variables, either (T , PO2 ) or
(T , x). Performing Arrhenius analysis on isobaric or constant
x diffusivities yields a spectrum of activation barriers and
prefactors. We believe that the systematic analysis pre-
sented here can reconcile the scatter in the measured self-
diffusion activation barriers in many metal oxides, such as the
1.9–3.3 eV scatter for zinc diffusion in ZnO (Refs. 4,25) or the
0.9–1.3 eV for oxygen diffusion in UO2.26
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