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Abstract

Transcriptional profiling is a key technique in the study of cell biology that is limited by the availability of reagents to
uniquely identify specific cell types and isolate high quality RNA from them. We report a Method for Analyzing RNA
following Intracellular Sorting (MARIS) that generates high quality RNA for transcriptome profiling following cellular fixation,
intracellular immunofluorescent staining and FACS. MARIS can therefore be used to isolate high quality RNA from many
otherwise inaccessible cell types simply based on immunofluorescent tagging of unique intracellular proteins. As proof of
principle, we isolate RNA from sorted human embryonic stem cell-derived insulin-expressing cells as well as adult human b
cells. MARIS is a basic molecular biology technique that could be used across several biological disciplines.
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Introduction

New technologies including microarrays and RNA-seq have

greatly advanced our understanding of cells and cell states. The

potential of these approaches, however, has been limited by the

ability to isolate and purify specific cell types of interest from

complex cellular mixtures and tissues, and then analyze their

transcriptional profile. Antibodies to cell surface markers and

genetic reporter lines allow access only to a few distinct cell types

in model organisms and are even more limiting in the study of

human cells. Most cell types can be identified and isolated based

on the expression of intracellular markers, but the process of

intracellular immunofluorescent labeling is generally thought to

degrade the RNA in the cells, compromising accurate downstream

gene expression analysis. The ability to isolate and accurately

transcriptionally profile cells based on intracellular antibody

staining could allow us to analyze gene expression in almost any

cell or tissue.

We sought to develop new tools to isolate high-quality RNA

from cells following intracellular antibody staining and fluores-

cence-activated cell sorting (FACS). Previously, RNA of sufficient

quality for FISH, nuclease protection assays, RT-PCR and

microarray analysis has been obtained following fixation, intra-

cellular immunofluorescent staining, and FACS or laser capture

microdissection (LCM) [1–8]. However, these publications do not

rigorously address whether these relatively harsh manipulations

produce biased results at the transcriptome level due to cross-

linking and partial degradation of RNA.

We developed a Method for Analyzing RNA following

Intracellular Sorting (MARIS) that generates RNA of high quality

for transcriptome profiling, including microarray analysis and

RNA-seq, following cellular fixation, intracellular immunofluores-

cent staining and FACS. Using MARIS, we isolated high quality

RNA from heterogeneous cultures of differentiated human

embryonic stem cells (hESCs) as wells as primary human

pancreatic tissue. Broadly speaking, MARIS may be used for the

transcriptional characterization of cells solely based on immuno-

fluorescent detection of intracellular proteins in the absence of

reporter lines or sortable cell surface markers.

Directed differentiation of hESCs has the potential to produce

virtually unlimited quantities of any cell type for cell transplan-

tation therapy. Stepwise directed differentiation protocols have

been used to produce hESC-derived insulin-expressing cells

(hESC-INS+) cells. However, the degree to which these hESC-

INS+ cells resemble adult human insulin-expressing b cells remains

unclear due to the lack of tools for the isolation of either pure cell

type. Here we present an application of MARIS for the isolation of

high quality RNA from hESC-INS+ cells and sorted adult human

b cells.

Results

RNA isolation from fixed, stained and sorted cells
We combined, modified, and optimized existing protocols and

kits to generate a protocol that extracts high quality RNA from

fixed cells that have been sorted based on intracellular immuno-
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fluorescence (Fig. 1a, Materials and Methods). hESC-lines H1 [9]

and HUES8 [10], differentiated to the final stage of our pancreatic

differentiation protocol (modified from [11]) were used as starting

material (Stage 6, Fig. S1A). Several assays were used to compare

the quality of the RNA isolated using this protocol and RNA

isolated from live (fresh, unfixed) cells. RNA was extracted from

cells following fixation, permeabilization, antibody staining, and

FACS whereby all the cells were collected (processed cells).

Control RNA was extracted from live unsorted cells using the

Qiagen RNAeasy kit. In parallel preparations, isolated RNA

demonstrated RNA Integrity Numbers (RINs) of 8.1 (live) and 8.0

(processed, Fig. 1b). The RNA quality was highly reproducible

across independent preparations and different cell types with

average RIN score of 8.360.7 (n = 14 samples, Fig. 1c). MARIS

yielded 8.3561.61 pg total RNA per cell (n = 13 samples; Fig. 1c),

which is within the normal limits for human cells [12].

Transcriptional bias analysis
Having confirmed the integrity of RNA isolated using MARIS,

we next assessed whether the protocol changed the representation

of individual transcripts (in case the MARIS procedure selectively

depleted or enriched for some RNA species). We first performed

qRT-PCR analysis of RNA extracted from live and processed

Stage 6 cells for several housekeeping genes, as well as genes

specific to the pancreatic lineage (Fig. 2a). There was no systemic

statistically significant (paired two-tailed t-test) difference in cycle

threshold values between live and processed cells.

To evaluate the impact of MARIS at the whole-genome level,

RNA from live and processed cells was analyzed using Illumina

microarrays (Fig. 2b). Across all detected genes, expression

between live and processed samples was very similar

(r2 = 0.96360.008, n = 3). In each pair, the number of genes

differentially expressed between the live and processed sample

(fold change of 2) was 41618. No genes were consistently

differentially expressed between live and processed cells suggesting

that MARIS does not introduce systemic changes in gene

expression. Finally, analysis by RNA-seq showed very similar

gene expression between live and processed cells (r2 = 0.97, Fig. 2c).

Degradation of RNA results in increased detection of transcripts at

the 39 end relative to the 59 end (39-bias) [13]. Processing increased

to a small degree RNA-seq transcript 39-coverage bias (Fig. 2d).

Together, these analyses confirm that MARIS produces high-

quality RNA and has little effect on the representation of

transcripts as analyzed at the level of the individual gene, or

through two methods of genome-wide analysis.

RNA isolation from insulin expressing cells generated
from hESCs and adult human islets

hESCs were differentiated to Stage 6 cells, fixed, stained for

insulin and somatostatin, and sorted for RNA isolation. INS+ cells

comprised approximately 4% of all Stage 6 cells (Fig. 3a). A large

proportion of INS+ cells also co-expressed the pancreatic hormone

somatostatin, consistent with previous reports [11,14]. RIN values

for RNA isolated from sorted stage 6 cells were $8 (Fig. 3b, Fig.

S2a). qRT-PCR for insulin and somatostatin indicated signifi-

cantly enriched expression of these endocrine hormones in the

sorted populations, confirming successful purification of INS+

SST2 and INS+ SST+ cells (Fig. 3c).

Next, we isolated adult human b cells from an islet preparation

of a post-mortem donated human pancreas. About 10% of the

cells in the preparation were insulin-expressing human b cells

(Fig. 3d). RIN values for RNA isolated from sorted adult b cells

were $7.5 (Fig. 3e, Fig. S2a). qRT-PCR for insulin and glucagon

indicated significant enrichment of insulin in the INS+ population

and of glucagon in the INS2 population, indicating successful

purification of human insulin-expressing b cells from other islet

cells (Fig. 3f).

Discussion

Most cell types cannot be isolated due to the absence of specific

cell surface markers and dyes to uniquely identify them. Instead,

these cells can be identified and isolated based on the expression of

intracellular markers. Intracellular staining, however, requires

Figure 1. High quality RNA isolation from fixed and stained cells. (A) Outline of the developed protocol. In vivo or in vitro-derived cells are
dispersed, fixed in 4% PFA, permeabilized, stained using standard immunofluorescent antibodies and FACS sorted. Total RNA is isolated using a
modified RNA extraction protocol (see methods). (B) RNA was isolated and analyzed from hESC-derived Stage 6 cells before fixation (live) or following
fixation, staining and sorting (processed). Simulated electropherogram suggests minimal degradation of total RNA based on the clearly defined 18S
and 28S ribosomal RNA bands; RIN value 8.1 for live, 8.0 for processed sample. (C) RNA was isolated from multiple samples across three independent
experiments. The average RIN score was 8.360.7 (mean6SEM, n = 14) and the average yield 8.3561.61 pg total RNA per cell (mean6SEM, n = 13).
doi:10.1371/journal.pone.0089459.g001
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permeabilization, chemical fixation, and use of reagents that

degrade RNA, hindering downstream gene expression analysis.

This study reports a Method for Analyzing RNA following

Intracellular Sorting (MARIS) for obtaining high quality RNA

suitable for transcriptome profiling following cellular fixation,

intracellular immunofluorescent staining and FACS. The results

show that MARIS routinely produces RNA with RIN scores

above 8 that can be used for qRT-PCR, microarray and RNA-seq

analysis without detectable loss of fidelity.

MARIS permits analysis of genetically unmodified cells

produced by differentiating hESCs in vitro, and the direct

comparison of these cells to corresponding cell types isolated from

human tissues. Using MARIS we’ve isolated RNA from hESC-

INS+ cells, as well as sorted human b cells. We intend to

characterize and compare the gene expression of these two cell

populations to determine their degree of similarity and identify

candidate genes that would help us generate hESC-INS+ cells that

more closely resemble adult human b cells.

In addition to the use of hormones such as insulin and

somatostatin for intracellular FACS, MARIS has been successfully

used with antibodies against transcription factors such as PDX1

and NKX6-1 (data not shown). Each antibody will require

optimization of antibody concentration, and the length of

incubation time during the primary antibody stain.

Improvements to RNA-Seq technology allow for the sequencing

of single cells [15]. To expand the use of MARIS, it would be

interesting to test whether it is compatible with single cell RNA-

Seq protocols.

In summary, MARIS is tool of broad utility across biological

disciplines to analyze gene expression of previously inaccessible

cell types based on intracellular markers. We anticipate that it will

be of particular use in the study of human biology.

Experimental Procedures

MARIS Staining and FACS
hPSC-derived cells and human islets were dispersed to a single

cell suspension using TrypLE Express (Invitrogen). Cells were

passed through a 40 mm filter (BD Falcon 352340) and washed

with PBS at least twice. Cells were fixed and permeabilized with

4% PFA (Electron Microscopy Sciences), 0.1% saponin (Sigma-

Aldrich 47036) in molecular grade PBS (Ambion) supplemented

with 1:100 RNasin Plus RNase Inhibitor (Promega, N2615) for

309 at 46C. All the subsequent steps were carried out at 46C. Cells

were pelleted by centrifugation at 3000g for 39 at 46C and washed

Figure 2. Quantitative comparison of live and processed cells. (A) qRT-PCR on live and processed Stage 6 cells (n = 3) for pancreatic and
housekeeping genes. (B) Logarithmic scatter plots of Illumina microarray data between live and processed stage 6 samples show r2 = 0.96360.005
(mean6SEM, n = 3, r2 determined by Pearson’s correlation) correlation for all detected probes (detection p,0.05). Red lines represent 2-fold change.
(C) Samples were prepared and paired-end sequenced using TruSeq chemistry on a HiSeq 2000 (Illumina). GENCODE per-gene FPKM values on a
logarithmic plot. r2 = 0.97 (Pearson’s correlation). Red lines represent 2-fold change. (D) Relative RNA-seq coverage of all annotated transcripts shows
39 bias in longer length genes. Live and processed RNA-seq read coverage over length-normalized GENCODE transcripts (Live area under the curve
0.133, Processed area under the curve 0.123). Coverage counts were normalized by per-experiment sequencing depth.
doi:10.1371/journal.pone.0089459.g002
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in Wash Buffer: PBS containing 0.2% BSA (Gemini Bio-Products),

0.1% saponin (Sigma-Aldrich), 1:100 RNasin Plus RNase In-

ihibitor. Primary antibody staining was carried out while 3D

rocking for 309 at 46C in Staining buffer containing PBS with 1%

BSA, 0.1% saponin and 1:25 RNasin Plus RNase Inhibitor (note

that certain antibodies may require longer incubation times). Cells

were washed twice in Wash Buffer followed by secondary antibody

staining in Staining buffer. Following secondary antibody staining

cells were washed twice in Wash buffer and resuspended in Sort

buffer containing PBS, 0.5% BSA, and 1:25 RNasin Plus RNase

Inhibitor. Fixation, washing, staining and sorting were performed

at a concentration of 5–10 M cells/ml. The list of primary and

secondary antibodies used is provided in Table S1.

Cells were sorted on the FACSAria (BD Biosciences) using

FACSDiva software. Gates were set with reference to negative

controls. The sorting speed was adjusted to ensure sorting

efficiency above 90%. Cells were collected in tubes that were

coated with a small amount of Sort buffer.

RNA isolation
After sorting, cells were pelleted by centrifugation at 3000 g for

59 at 4uC. The supernatant was discarded. Total RNA was isolated

from the pellet using the RecoverAll Total Nucleic Acid Isolation

kit (Ambion), starting at the protease digestion stage of manufac-

turer-recommended protocol. The following modification to the

isolation procedure was made: instead of incubating cells in

digestion buffer for 15 minutes at 50uC and 15 minutes at 80uC,

we carried out the incubation for 3 hours at 50uC. Cell lysates

were frozen at 280uC overnight before continuing the RNA

isolation by the manufacturer’s instructions.

Quantitative RT-PCR
Complementary DNA (cDNA) was generated from 4 ng of total

RNA with random hexamer priming using the High Capacity

cDNA Reverse Transcription with RNase Inhibitor kit (Applied

Biosystems). One-fourth of the cDNA was used for each TaqMan

qRT-PCR reaction using the Fast Universal PCR Master Mix

with no AmpErase UNG (Applied Biosystems). The list of used

Figure 3. Sorting of insulin-expressing cells from human pluripotent stem cells and adult human islets. (A) FACS plot of Stage 6 H1-
derived cells sorted for insulin and somatostatin. (B) RNA samples were isolated from sort in panel A. RIN scores indicate RNA quality. (C) qRT-PCR of
unsorted cells compared to and INS+ SST2 cells and INS+ SST+ cells (Paired two-tailed t-test; * p,0.05, **p,0.01). (D) FACS plot of human adult islets
sorted for insulin (INS). (B) RNA samples were isolated from sort in panel D. RIN scores indicate RNA quality. (C) qRT-PCR of unsorted islets compared
to and INS+ and INS2 cells (Paired two-tailed t-test; * p,0.05).
doi:10.1371/journal.pone.0089459.g003
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probes is provided in Table S2. Reactions were run on an Applied

Biosystems 7900HT Fast Real-Time PCR System with default

settings. Detection thresholds were automatically computed by

SDS 2.3 software (Applied Biosystems). Threshold data were

analyzed in DataAssist 3.0 (Applied Biosystems) using the

Comparative Ct (DDCt) relative quantitation method, using b-

actin as the endogenous control.

Global gene expression analysis - microarray
Using the Illumina TotalPrep RNA Amplification kit (Ambion),

double-stranded cDNA was generated following reverse transcrip-

tion from 100 ng of total RNA. In vitro transcription overnight with

biotin-labeled nucleotides created amplified mRNA (cRNA),

which was concentrated by vacuum centrifugation at 30uC.

750 ng cRNA per sample was then hybridized to Human HT-12

Expression BeadChips (Illumina) using the Whole- Genome

Expression Direct Hybridization kit (Illumina). Finally, chips were

scanned on the Illumina Beadstation 500. The chip annotation

manifest was version 4, revision 1. For differential expression

analysis and the generation of gene lists for functional annotation

and pathway analysis, microarray data were processed in

GenomeStudio (Illumina, V2011.1). Raw data were adjusted by

background subtraction and rank-invariant normalization. Before

calculating fold change, an offset of 20 was added to all probe set

means to eliminate negative signals. The p- values for differences

between mean signals were calculated in GenomeStudio by t-test

and corrected for multiple hypotheses testing by the Benjamini-

Hochberg method in combination with the Illumina custom false

discovery rate (FDR) model. Microarray data have been uploaded

to GEO (accession number GSE54179).

Global gene expression analysis – RNA-seq
Isolated RNA was obtained from 2 biological replicates of

HUES8-derived INS+ cells and human adult b cell, as well as one

replicate of live and processed stage 6 cells. Samples were poly-A

purified and converted to cDNA libraries using the Illumina

TruSeq protocol, and prepared into Illumina libraries using the

Beckman Coulter Genomics SPRI-works system using custom

adapters. 6 nt 39 barcodes were added during PCR enrichment

and the resulting fragments were evaluated using Agilent

BioAnalyzer 2100. Samples were multiplexed 2-per-lane for

sequencing using the Illumina HiSeq 2000 platform with paired-

end read lengths of 80 nt, resulting in 68 M to 112 M paired reads

per sample, and an average biological fragment length of 168–

179 nt. Reads were aligned to the human genome (GRCh37/

hg19) using STAR (version 2.2.0c) guided by GENCODE gene

annotations (version 14) [16]. RNA-seq FPKM (fragments per

kilobase of exon per million fragments) gene enrichment was

determined using maximum likelihood by Cuffdiff [17,18] (version

2.0.2), and visualized using CummeRbund [17]. Transcript

differential expression was calculated by Cuffdiff using the default

negative binomial model, with significant hits also confirmed using

the count-based technique DESeq [19]. RNA-seq data have been

uploaded to GEO (accession number GSE54179).
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Figure S1 Directed differentiation protocol. Stepwise

differentiation from hESCs to pancreatic endocrine cells. DE,

definitive endoderm; PP, pancreatic progenitor; EP, endocrine

progenitor; EN, endocrine cells. Table contains reagents used

during each stage of directed differentiation.

(TIFF)

Figure S2 RNA quality from sorted cells. (A) Electrophe-

rograms of RNA from samples in Figure 3B, hESC-derived Stage

6 cells sorted for insulin and somatostatin. (B) Electropherograms

of RNA from samples in Figure 3D, adult human islets sorted for

insulin.
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Table S1 Antibodies. List of all antibodies used in the study.
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Table S2 Taqman probes. List of Taqman probes for qRT-

PCR used in the study.
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