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Abstract

We provide a Polynomial Time Approximation Scheme for the multi-dimensional unit-demand
pricing problem, when the buyer’s values are independent (but not necessarily identically dis-
tributed.) For all ε > 0, we obtain a (1 + ε)-factor approximation to the optimal revenue in
time polynomial, when the values are sampled from Monotone Hazard Rate (MHR) distributions,
quasi-polynomial, when sampled from regular distributions, and polynomial in npoly(log r), when
sampled from general distributions supported on a set [umin, rumin]. We also provide an additive
PTAS for all bounded distributions.

Our algorithms are based on novel extreme value theorems for MHR and regular distributions,
and apply probabilistic techniques to understand the statistical properties of revenue distributions,
as well as to reduce the size of the search space of the algorithm. As a byproduct of our techniques,
we establish structural properties of optimal solutions. We show that, for all ε > 0, g(1/ε) distinct
prices suffice to obtain a (1+ε)-factor approximation to the optimal revenue for MHR distributions,
where g(1/ε) is a quasi-linear function of 1/ε that does not depend on the number of items.
Similarly, for all ε > 0 and n > 0, g(1/ε · log n) distinct prices suffice for regular distributions,
where n is the number of items and g(·) is a polynomial function. Finally, in the i.i.d. MHR case,
we show that, as long as the number of items is a sufficiently large function of 1/ε, a single price
suffices to achieve a (1 + ε)-factor approximation.
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1 Introduction

Here is a natural pricing problem: A seller has n items to sell to a buyer who is interested in buying
a single item. The seller wants to maximize her profit from the sale, and wants to leverage stochastic
knowledge she has about the buyer to achieve this goal. In particular, we assume that the seller has
access to a distribution F from which the values (v1, . . . , vn) of the buyer for the items are drawn.
Given this information, she needs to compute prices p1, . . . , pn for the items to maximize her revenue,
assuming that the buyer is quasi-linear—i.e. will buy the item i maximizing vi − pi, as long as this
difference is positive. Hence, the seller’s expected payoff from a price vector P = (p1, . . . , pn) is

RP =
n∑
i=1

pi · Pr
[
(i = arg max{vj − pj}) ∧ (vi − pi ≥ 0)

]
, (1)

where we assume that the arg max breaks ties in a consistent way, if there are multiple maximizers.
A more sophisticated seller could try to improve her payoff by pricing lotteries over items, i.e. price
randomized allocations (see [3],) albeit this may be less natural than item pricing.

While the problem looks simple, it exhibits a rich behavior depending on the nature of F . For
example, if F assigns the same value to all the items with probability 1, i.e. when the buyer always
values all items equally, the problem degenerates to—what Economists call—a single-dimensional
setting. In this setting, it is obvious that lotteries do not improve the revenue and that an optimal
price vector should assign the same price to all items. This observation is a special case of a more
general, celebrated result of Myerson [14] on optimal mechanism design (i.e. the multi-buyer version
of the above problem, and generalizations thereof.) Myerson’s result provides a closed-form solution
to this generalized problem in a single sweep that covers many settings, but only works under the
same limiting assumption that every buyer is single-dimensional, i.e. receives the same value from all
the items (in general, the same value from all outcomes where she is provided service.)

Following Myerson’s work, a large body of research in both Economics and Engineering has been
devoted to extending this result to the multi-dimensional setting, i.e. when the buyers’ values come
from general distributions. And while there has been sporadic progress (see survey [13] and its
references,) it appears that we are far from an optimal multi-dimensional mechanism, generalizing
Myerson’s result. In particular, there is no optimal solution known to even the single-buyer problem
presented above. Even the ostensibly easier version of that problem, where the values of the buyer
for the n items are independent and supported on a set of cardinality 2 appears difficult. 1

Motivated by the importance of the problem to Economics, and intrigued by its simplicity and
apparent hardness, we devote this paper to the multi-dimensional pricing problem. Our main contri-
bution is to develop the first near-optimal algorithms for this problem, when the buyer’s values are
independent (but not necessarily identically distributed) random variables.

Previous work on this problem by Chawla et al. [5, 6] provides factor 2 approximation to the
revenue achieved by the optimal price vector. The elegant observation enabling this result is to
consider the following mental experiment: suppose that the unit-demand buyer is split into n “copies”
t1, . . . , tn. Copy ti is only interested in item i and her value for that item is drawn from the distribution
Fi (where Fi is the marginal of F on item i), independently from the values of the other copies. On
the other hand, the seller has the same feasibility constraints as before: only one item can be sold
in this auction. It is intuitively obvious and can be formally established that the seller in the latter
scenario is in better shape: there is more competition in the market and this can be exploited to
extract more revenue. So the revenue of the seller in the original scenario can be upper bounded by
the revenue in the hypothetical scenario. Moreover, the latter is a single-parameter setting; hence,

1Incidentally, the problem is trickier than it originally seems, and various intuitive properties that one would expect
from an optimal solution fail to hold. See Appendix A for an example.
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we understand exactly how its optimal revenue behaves by Myerson’s result. So we can go back to
our original setting and design a mechanism whose revenue comes close to Myerson’s revenue in the
hypothetical scenario. Using this approach [6] obtains a 2-approximation to the optimal revenue.
Moreover, if the distributions {Fi}i are regular (this is a commonly studied class of distributions in
Economics,) the corresponding price vector can be computed efficiently.

Nevertheless, there is an inherent loss in the approach outlined above, as the revenue obtained
by the sought-after mechanism will eventually be compared to a revenue that is not the optimal
achievable revenue in the real setting, but the optimal revenue in a hypothetical setting; and as far as
we know this could be up to a factor of 2 larger than the real one. So it could be that this approach
is inherently limited to constant factor approximations. We are interested instead in efficient pricing
mechanisms that achieve a (1− ε)-fraction of the optimal revenue, for arbitrarily small ε. We show

Theorem 1 (PTAS for MHR Distributions). For all ε > 0, there is a Polynomial Time Approx-
imation Scheme 2 for computing a price vector whose revenue is a (1 + ε)-factor approximation to
the optimal revenue, when the values of the buyer are independent and drawn from Monotone Hazard
Rate distributions. (This is a commonly studied class of distributions in Economics—see Section 2.)
For all ε > 0, the algorithm runs in time npoly(1/ε).

Theorem 2 (Quasi-PTAS for Regular Distributions). For all ε > 0, there is a Quasi-Polynomial
Time Approximation Scheme 3 for computing a price vector whose revenue is a (1 + ε)-factor approx-
imation to the optimal revenue, when the values of the buyer are independent and drawn from regular
distributions. (These contain MHR and are also commonly studied in Economics—see Section 2.)
For all ε > 0, the algorithm runs in time npoly(log n,1/ε).

Theorem 3 (General Algorithm). For all ε > 0, there is an algorithm for computing a price vec-
tor whose revenue is a (1 + ε)-factor approximation to the optimal revenue, whose running time is

npoly( 1
ε
,log r) when the values of the buyer are independent and distributed in an interval [umin, rumin]. 4

Theorem 4 (Additive PTAS–General Distributions). For all ε > 0, there is a PTAS for computing
a price vector whose revenue is within an additive ε of the optimal revenue, when the values of the
buyer are independent and distributed in [0, 1].

Structural Theorems. Our approach is different than that of [5, 6] in that we study directly the
optimal revenue (as a random variable,) rather than only relating its expectation to a benchmark
that may be off by a constant factor. Clearly, the optimal revenue is a function of the values (which
are random) and the optimal price vector (which is unknown). Hence it may be hard to pin down its
distribution exactly. Nevertheless, we manage to understand its statistical properties sufficiently to
deduce the following interesting structural theorems.

Theorem 5 (Structural 1: A Constant Number of Distinct Prices Suffice for MHR Distributions).
There exists a (quasi-linear) function g(·) such that, for all ε > 0 and all n > 0, g(1/ε) distinct prices
suffice for a (1 + ε)-approximation to the optimal revenue when the buyer’s values for the n items are
independent and MHR. These distinct prices can be computed efficiently from the value distributions.

Theorem 6 (Structural 2: A Polylog Number of Distinct Prices Suffice for Regular Distributions).
There exists a (polynomial) function g(·) such that, for all ε > 0 and n > 0, g(1/ε·log n) distinct prices
suffice for a (1 + ε)-approximation to the optimal revenue, when the buyer’s values for the n items are
independent and regular. These prices can be computed efficiently from the value distributions.

2Recall that a Polynomial Time Approximation Scheme (PTAS) is a family of algorithms {Aε}ε, indexed by a
parameter ε > 0, such that for every fixed ε > 0, Aε runs in time polynomial in the size of its input.

3Recall that a Quasi Polynomial Time Approximation Scheme (Quasi-PTAS) is a family of algorithms {Aε}ε, indexed
by a parameter ε > 0, such that for every fixed ε > 0, Aε runs in time quasi-polynomial in the size of its input.

4We point out that a straightforward application of the discretization proposed by Nisan (see [5]) or Hartline and

Koltun [11] would only give a
(
1
ε

log r
)O(n)

-time algorithm.
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Theorem 5 shows that, when the values are MHR independent, then only the desired approximation ε
dictates the number of distinct prices that are necessary to achieve a (1 + ε)-approximation to the
optimal revenue, and the number of items n as well as the range of the distributions are irrelevant (!)
Theorem 6 generalizes this to a mild dependence on n for regular distributions. Establishing these
theorems is quite challenging, as it relies on a deep understanding of the properties of the tails of MHR
and regular distributions. For this purpose, we develop novel extreme value theorems for these classes
of distributions (Theorems 12 and 14 in Sections 3 and 4 respectively.) Our theorems bound the
size of the tail of the maximum of n independent (but not necessarily identically distributed) random
variables, which are MHR or regular respectively, and are instrumental in establishing the following
truncation property: truncating all the values into a common interval of the form [α,poly(1/ε)α]
in the MHR case, and [α,poly(n, 1/ε)α] in the regular case, for some α that depends on the value
distributions, only loses a fraction of ε of the optimal revenue. This is quite remarkable, especially in
the case that the value distributions are non-identical. Why should most of the contribution to the
optimal revenue come from a restricted set as above, when each of the underlying value distributions
may concentrate on different supports? We expect that our extreme value theorems will be useful in
future work, and indeed they have already been used [8]. As a final remark, we would like to point out
that extreme value theorems have been obtained in Statistics for large classes of distributions [9], and
indeed those theorems have been applied earlier in optimal mechanism design [2]. Nevertheless, known
extreme value theorems are typically asymptotic, only hold for maxima of i.i.d. random variables,
and are not known to hold for all MHR or regular distributions.

Covers of Revenue Distributions. Our structural theorems enable us to significantly reduce the
search space for an (approximately) optimal price vector. Nevertheless, our value distributions are
not necessarily identically distributed, so the search space remains exponentially large even for the
MHR case, where a constant (function of ε only) number of distinct prices suffice by Theorem 5. Even
if there are only 2 possible prices, how can we efficiently decide what price to give to each item if the
items are not i.i.d? The natural approach would be to cluster the distributions into a small number
of buckets, containing distributions with similar statistical properties, and proceed to treat all items
in a bucket as essentially identical. However, the problem at hand is not sufficiently smooth for us
to perform such bucketing and several intuitive bucketing approaches fail. We can obtain a delicate
discretization of the support of the distributions into a small set (Lemma 48), but cannot discretize
the probabilities used by these distributions into coarse-enough accuracy, arriving at an impasse with
discretization ideas.

Our next conceptual idea is to shift the focus of attention from the space of input value distri-
butions, which is inherently exponential, to the space of all possible revenue distributions, which are
scalar random variables. (As we mentioned earlier, the revenue from a given price vector can be
viewed as a random variable that depends on the values.) There are still exponentially many possible
revenue distributions (one for each price vector,) but we find a way to construct a sparse δ-cover of
this space under the total variation distance between distributions. The cover is implicit, i.e. it has
no succinct closed-form description. We argue instead that it can be produced by a dynamic program,
which considers prefixes of the items and constructs sub-covers for the revenue distributions induced
by these prefixes, pruning down the size of the cover before growing it again to include the next
item. Once a cover of the revenue distributions is obtained in this way, we argue that there is only
a δ-fraction of revenue lost by replacing the optimal revenue distribution with its proxy in the cover.
The high-level structure of the argument is provided in Section 6, and the details are in Section 7.
Finally, the proofs of our algorithmic results (Theorems 1, 2, 3 and 4) are given in Section J.

Extensions and Related Work A natural conjecture is that, when the distributions are not
widely different, a single price should suffice for extracting a (1− ε)-fraction of the optimal revenue;
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that is, as long as there is a sufficient number of items for sale. We show such a result in the case
that the buyer’s values are i.i.d. according to a MHR distribution. See Appendix K.

Theorem 7 (Structural 3 (i.i.d.): A Single Price Suffices for MHR Distributions). There is a
function g(·) such that, for any ε > 0, if the number of items n > g(1/ε) then a single price suffices
for a (1 + ε)-factor approximation to the optimal revenue, if the buyer’s values are i.i.d. and MHR.

Another interesting byproduct of our techniques is that any constant-factor approximation to the
optimal pricing can be converted into a PTAS or a quasi-PTAS respectively in the case of MHR or
regular value distributions. This result (whose proof is given in Appendix J) is a direct product of
our extreme value theorems, which can be boot-strapped with a constant factor approximation to
OPT. Having such approximation would obviate the need to use our generic algorithm, outlined in
the proofs of Theorems 5 and 6.

Theorem 8 (Constant Factor to Near-Optimal Approximation). If we have a constant-factor ap-
proximation to the optimal revenue of an instance of the pricing problem where the values are either
MHR or regular, we can use this to speed-up our algorithms of Theorems 1 and 2.

Future and Related Work. In conclusion, this paper provides the first near-optimal efficient
algorithms for interesting instances of the multi-dimensional mechanism design problem, for a unit-
demand bidder whose values are independent (but not necessarily identically distributed.) Our results
provide algorithmic, structural and probabilistic insights into the properties of the optimal determin-
istic mechanism for the case of MHR, regular, and more general distributions. It would be interesting
to extend our results (algorithmic and/or structural) to more general distributions, to mechanisms
that price lotteries over items [17, 3], to bundle-pricing [12] and to budgets [1, 16]. We can certainly
obtain such extensions, albeit when sizes of lotteries, bundles, etc. are a constant. We believe that our
extreme value theorems, and our probabilistic view of the problem in terms of revenue distributions
will be helpful in obtaining more general results. We also leave the complexity of the exact problem
as an open question, and conjecture that it is NP -hard, referring the reader to [4] for hardness results
in the case of correlated distributions.

Finally, it is important to solve the multi-bidder problem, extending Myerson’s celebrated mecha-
nism to the multi-dimensional setting, and the results of [1, 6] beyond constant factor approximations.
In recent work, Daskalakis and Weinberg [8] have made progress in this front obtaining efficient mech-
anisms for multi-bidder multi-item auctions. These results are neither subsumed, nor subsume the
results in the present paper. Indeed, we are more general here in that we allow the buyer to have
values for the items that are not necessarily i.i.d., an assumption needed in [8] if the number of items
is large. On the other hand, we are less general in that (a) we solve the single-bidder problem and (b)
are near-optimal with respect to all deterministic (i.e. item-pricing), but not necessarily randomized
(lottery-pricing) mechanisms. Strikingly, the techniques of the present paper are essentially orthogo-
nal to those of [8]. The approach of [8] uses randomness to symmetrize the solution space, coupling
this symmetrization with Linear Programming formulations of the problem. Our paper takes instead
a probabilistic approach, developing extreme value theorems to characterize the optimal solution, and
designing covers of revenue distributions to obtain efficient algorithmic solutions. It is tempting to
conjecture that our approach here, combined with that of [8] would lead to more general results.
Indeed, our extreme value theorems found use in [8], but we expect that significant technical work is
required to go forward.

2 Preliminaries

For a random variable X we denote by FX(x) the cumulative distribution function of X, and by fX(x)
its probability density function. We also let uXmin = sup{x|FX(x) = 0} and uXmax = inf{x|FX(x) = 1}.
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uXmax may be +∞, but we assume that uXmin ≥ 0, since the distributions we consider in this paper
represent value distributions of items. Moreover, we often drop the subscript or superscript of X, if X
is clear from context. A natural question is how distributions are provided as input to an algorithm
(explicitly or with oracle access). We discuss this technical issue in Appendix C. We also define
precisely what it means for an algorithm to be “efficient” in each case. We continue with the precise
definition of Monotone Hazard Rate (MHR) and Regular distributions, which are both commonly
studied classes of distributions in Economics.

Definition 9 (Monotone Hazard Rate Distribution). We say that a one-dimensional differentiable

distribution F has Monotone Hazard Rate, shortly MHR, if f(x)
1−F (x) is non-decreasing in [umin, umax].

Definition 10 (Regular Distribution). A one-dimensional differentiable distribution F is called reg-

ular if x− 1−F (x)
f(x) is non-decreasing in [umin, umax].

It is worth noticing that all MHR distributions are also regular distributions, but there are regular
distributions that are not MHR. The family of MHR distributions includes such familiar distributions
as the Normal, Exponential, and Uniform distributions. The family of regular distributions contains a
broader range of distributions, such as fat-tail distributions fX(x) ∼ x−(1+α) for α ≥ 1 (which are not
MHR). In Appendix D and E we establish important properties of MHR and regular distributions.
These properties are instrumental in establishing our extreme value theorems (Theorems 12 and 14
in the following sections).

We conclude this section by defining two computational problems. For the value distributions
that we consider, we can show that they are well-defined (i.e. have finite optimal solutions.)

Price: Input: A collection of mutually independent random variables {vi}ni=1, and some ε > 0.
Output: A vector of prices (p1, . . . , pn) such that the expected revenue RP under this price vector,
defined as in Eq. (1), is within a (1 + ε)-factor of the optimal revenue achieved by any price vector.

RestrictedPrice: Input: A collection of mutually independent random variables {vi}ni=1, a
discrete set P ⊂ R+, and some ε > 0.
Output: A vector of prices (p1, . . . , pn) ∈ Pn such that the expected revenue RP under this price
vector is within a (1 + ε)-factor of the optimal revenue achieved by any vector in Pn.

3 Extreme Values of MHR Distributions

We reduce the problem of finding a near-optimal price vector for MHR distributions to finding a
near-optimal price vector for value distributions supported on a common, balanced interval, where
the imbalance of the interval is only a function of the desired approximation ε > 0. More precisely,

Theorem 11 (From MHR to Balanced Distributions). Let V = {vi}i∈[n] be a collection of mutually
independent (but not necessarily identically distributed) MHR random variables. Then there exists
some β = β(V) > 0 such that for all ε ∈ (0, 1/4), there is a reduction from Price(V, cε log(1

ε )) to

Price(Ṽ, ε), where Ṽ := {ṽi}i is a collection of mutually independent random variables supported on
the set [ ε2β, 2 log 1

εβ], and c is some absolute constant.
Moreover, β is efficiently computable from the distributions of the Xi’s (whether we are given the

distributions explicitly, or we have oracle access to them,) and for every ε the running time of the
reduction is polynomial in the size of the input and 1

ε . In particular, if we have oracle access to the
distributions of the vi’s, then the forward reduction produces oracles for the distributions of the ṽi’s,
which run in time polynomial in n, 1/ε, the input to the oracle and the desired oracle precision.

We discuss the essential elements of this reduction below. Most crucially, the reduction is en-
abled by the following characterization of the extreme values of a collection of independent, but not
necessarily identically distributed, MHR distributions.
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Theorem 12 (Extreme Values of MHR distributions). Let X1, . . . , Xn be a collection of independent
(but not necessarily identically distributed) random variables whose distributions are MHR. Then there
exists some anchoring point β such that Pr[maxi{Xi} ≥ β/2] ≥ 1− 1√

e
and∫ +∞

2β log 1/ε
t · fmaxi{Xi}(t)dt ≤ 36βε log 1/ε, for all ε ∈ (0, 1/4). (2)

Moreover, β is efficiently computable from the distributions of the Xi’s (whether we are given the
distributions explicitly, or we have oracle access to them.)

Theorem 12 (whose proof is in Appendix F.1) shows that, for all ε, at least a (1−O(ε log 1
ε ))-fraction

of E[maxiXi] is contributed to by values that are no larger than E[maxiXi] · log 1
ε . Our result is quite

surprising, especially for the case of non-identically distributed MHR random variables. Why should
most of the contribution to E[maxiXi] come from values that are close (within a function of ε only)
to the expectation, when the underlying random variables Xi may concentrate on widely different
supports? To obtain the theorem one needs to understand how the tails of the distributions of a
collection of independent but not necessarily identically distributed MHR random variables contribute
to the expectation of their maximum. Our proof technique is rather intricate, defining a tournament
between the tails of the distributions. Each round of the tournament ranks the distributions according
to the size of their tails, and eliminates the lightest half. The threshold β is then obtained by some
side-information that the algorithm records in every round.

Given our understanding of the extreme values of MHR distributions, our reduction of Theorem 11
from MHR to Balanced distributions proceeds in the following steps:

• We start with the computation of the threshold β specified by Theorem 12. This computation
can be done efficiently, as stated in the statement of the theorem. Given that Pr[maxi{Xi} ≥
β/2] is bounded away from 0, β provides a lower bound to the optimal revenue. See Section F.2.1
for the precise lower bound we obtain. Such lower bound is useful as it implies that, if our
transformation loses revenue that is a small fraction of β, this corresponds to a small fraction
of optimal revenue lost.

• Next, using (2) we show that, for all ε > 0, if we restrict the prices to lie in the balanced interval
[ε ·β, 2 log(1

ε ) ·β], we only lose a O(ε log 1/ε) fraction of the optimal revenue; this step is detailed
in Section F.2.2.

• Finally, we show that we can efficiently transform the given MHR random variables {vi}i∈[n]

into a new collection of random variables {ṽi}i∈[n] that take values in [ ε2 · β, 2 log(1
ε ) · β] and

satisfy the following: a near-optimal price vector for the setting where the buyer’s values are
distributed as {ṽi}i∈[n] can be efficiently transformed into a near-optimal price vector for the
original setting, i.e. where the buyer’s values are distributed as {vi}i∈[n]. This step is detailed
in Section F.2.3.

4 Extreme Values of Regular Distributions

Our goal is to reduce the problem of finding a near-optimal pricing for a collection of independent
(but not necessarily identical) regular value distributions to the problem of finding a near-optimal
pricing for a collection of independent distributions, which are supported on a common finite interval
[umin, umax], where umax/umin ≤ 16n8/ε4, where n is the number of distributions and ε is the desired
approximtion. It is important to notice that our bound on the ratio umax/umin does not depend
on the distributions at hand, just their number and the required approximation. We also emphasize
that the input regular distributions may be supported on [0,+∞), so it is a priori not clear if we can
truncate these distributions to any finite set (even of exponential imbalance) without losing revenue.
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Theorem 13 (Reduction from Regular to Poly(n)-Balanced Distributions). Let V = {vi}i∈[n] be a
collection of mutually independent (but not necessarily identically distributed) regular random vari-
ables. Then there exists some α = α(V) > 0 such that, for any ε ∈ (0, 1), there is a reduction from
Price(V, ε) to Price(Ṽ, ε − Θ(ε/n)), where Ṽ = {ṽi}i∈[n] is a collection of mutually independent

random variables that are supported on [ εα
4n4 ,

4n4α
ε3

].
Moreover, we can compute α in time polynomial in n and the size of the input (whether we have

the distributions of the vi’s explicitly, or have oracle access to them.) For all ε, the reduction runs
in time polynomial in n, 1/ε and the size of the input. In particular, if we have oracle access to the
distributions of the vi’s, then the forward reduction produces oracles for the distributions of the ṽi’s,
which run in time polynomial in n, 1/ε, the input to the oracle and the desired oracle precision.

Our reduction is based on the following extreme value theorem for regular distributions, proved
in Appendix G.1. See Appendix G.2 for a discussion of what this theorem means.

Theorem 14 (Homogenization of the Extreme Values of Regular Distributions). Let {Xi}i∈[n] be a
collection of mutually independent (but not necessarily identically distributed) regular random vari-
ables, where n ≥ 2. Then there exists some α = α({Xi}i) such that:

1. α has the following “anchoring” properties:

• for all ` ≥ 1, Pr[Xi ≥ `α] ≤ 2/(`n3), for all i ∈ [n];
• α/n3 ≤ c ·maxz(z · Pr[maxi{Xi} ≥ z]), where c is an absolute constant.

2. for all ε ∈ (0, 1), the tails beyond 2n2α
ε2

can be “homogenized”, i.e.

• for any integer m ≤ n, thresholds t1, . . . , tm ≥ t ≥ 2n2α
ε2

, and index set {a1, . . . , am} ⊆ [n]:

m∑
i=1

ti Pr[Xai ≥ ti] ≤
(
t− 2α

ε

)
· Pr

[
max
i
{Xai} ≥ t

]
+

7ε

n
·
(

2α

ε
· Pr

[
max
i
{Xai} ≥

2α

ε

])
.

Finally, α is efficiently computable from the distributions of the Xi’s (whether we are given the dis-
tributions explicitly, or have oracle access to them.)

Given our homogenization theorem, our reduction of Theorem 13 is obtained as follows.

• First, we compute the threshold α specified in Theorem 14. This can be done efficiently as
stated in Theorem 14. Now given the second anchoring property of α, we obtain an Ω(α/n3)
lower bound to the optimal revenue. Such a lower bound is useful as it implies that we can
ignore prices below some O(εα/n3).

• Next, using our homogenization Theorem 14, we show that if we restrict a price vector to lie in
[εα/n4, 2n2α/ε2]n, we only lose a O( εn) fraction of the optimal revenue. This step is detailed in
Appendix G.3.1.

• Finally, we show that we can efficiently transform the input regular random variables {vi}i∈[n]

into a new collection of random variables {ṽi}i∈[n] that are supported on [ εα
4n4 ,

4n4α
ε3

] and satisfy
the following: a near-optimal price vector for when the buyer’s values are distributed as {ṽi}i∈[n]

can be efficiently transformed into a near-optimal price vector for when the buyer’s values are
distributed as {vi}i∈[n]. This step is detailed in Appendix G.3.2, while Appendix G.3.3 concludes
the proof of Theorem 13.

5 From Continuous to Discrete Distributions

We argued that the expected revenue can be sensitive even to small perturbations of the prices and
the probability distributions. So it is a priori not clear whether there is a coarse discretization of the
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input and the search space that does not cost a lot of revenue. We show that, if done delicately, there
is in fact such coarse discretization. Our discretization result is summarized in Theorem 15. Notice
that the obtained discretization does not eliminate the exponentiality of the search or the input space.

Theorem 15 (Price/Value Distribution Discretization). Let V = {vi}i∈[n] be a collection of mutually
independent random variables supported on a finite set [umin, umax] ⊂ R+, and let r = umax

umin
≥ 1. For

any ε ∈
(

0, 1
(4dlog re)1/6

)
, there is a reduction from Price(V, ε) to RestrictedPrice(V̂,P,Θ(ε8)),

where

• V̂ = {v̂i}i∈[n] is a collection of mutually independent random variables that are supported on a

common set of cardinality O
(

log r
ε16

)
;

• |P| = O
(

log r
ε16

)
.

Moreover, assuming that the set [umin, umax] is specified in the input, 5 we can compute the (com-
mon) support of the distributions of the variables {v̂i}i as well as the set of prices P in time polynomial
in log umin, log umax and 1/ε. We can also compute the distributions of the variables {v̂i}i∈[n] in time
polynomial in the size of the input and 1/ε, if we have the distributions of the variables {vi}i∈[n]

explicitly. If we have oracle access to the distributions of the variables {vi}i∈[n], we can construct an
oracle for the distributions of the variables {v̂i}i∈[n], running in time polynomial in log umin, log umax,
1/ε, the input to the oracle and the desired precision.

That prices can be discretized follows immediately from a discretization lemma attributed to Nisan [5]
(see also a related discretization in [11],) and our result is summarized in Lemma 44 of Appendix H.1.
The discretization of the value distributions is inspired by Nisan’s lemma, but requires an intricate
twist in order to reduce the size of the support to be linear in log r rather than linear in r2 log r which
is what a straightforward modification of the lemma gives. (Indeed, quite some effort is needed to get
the former bound.) The achieved discretization in the value distributions is summarized in Lemma 48
of Appendix H.2.

6 Probabilistic Covers of Revenue Distributions

Let V := {vi}i be an instance of Price, where the vi’s are mutually independent random variables
distributed on a finite set [umin, umax] according to distributions {Fi}i, and let ROPT be the optimal
expected revenue for V. Our goal is to compute a price vector with expected revenue (1 − ε)ROPT .
Theorem 15 of Section 5 provides an efficient reduction of this problem to the (1 − δ) approxima-
tion of a discretized problem, where both the values and the prices come from discrete sets whose
cardinality is O(log r/δ2), where r = umax

umin
and δ = O(ε8). For convenience, we denote by {F̂i}i the

resulting discretized distributions, by {v̂i}i a collection of mutually independent random variables
distributed according to the F̂i’s, by {v(1), v(2), . . . , v(k1)} the (common) support of all the F̂i’s, and
by {p(1), p(2), . . . , p(k2)} the set of available price levels, where both k1 and k2 are O(log r/δ2). It is
worth noting that the set of prices satisfies min{p(i)} ≥ umin/(1 + δ) and max{p(i)} ≤ umax, and that
these prices are points of a geometric sequence of ratio 1/(1 − δ2). (See Lemmas 41 and 44 in the
Appendix.)

Having discretized the support sets of values and prices, a natural idea that one would like to
use to go forward is to further discretize the distributions {F̂i}i by rounding the probabilities they
assign to every point in their support to integer multiples of some fraction σ = σ(ε, r) > 0, i.e. a
fraction that does not depend on n. If such discretization were feasible, the problem would be greatly

5The requirement that the set [umin, umax] is specified as part of the input is only relevant if we have oracle access
to the distributions of the vi’s, as if we have them explicitly we can easily find [umin, umax].
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simplified. For example, if additionally r were an absolute constant or a function of ε only (as it
happens for MHR distributions by virtue of Theorem 31), there would only be a constant number
of possible value distributions (as both the cardinality of the support of the distributions and the
number of available probability levels would be a function of ε only.) In such case, we could try to
develop an algorithm tailored to a constant number of available value distributions. This is still not
easy to do (as we don’t even know how to solve the i.i.d. case of our problem), but is definitely easier
to dream of. Nevertheless, the approach breaks down as preserving the revenue while doing a coarse
rounding of the probabilities appears difficult, and the best discretization we can obtain is given in
Lemma 49 of Appendix H.4, where the accuracy is inverse polynomial in n.

Given the apparent impasse towards eliminating the exponentiality from the input space of our
problem, our solution evolves in a radically different direction. To explain our approach, let us view
our problem in the graphical representation of Figure 1 of Appendix B. Circuit C takes as input a
price vector p1, . . . , pn and outputs the distribution FR̂P of the revenue of the seller under this price

vector. Indeed, the revenue of the seller is a random variable R̂P whose value depends on the variables
{v̂i}i∈[n]. So in order to compute the distribution of the revenue the circuit also uses the distributions

{F̂i}i∈[n], which are hard-wired into the circuit. Let us denote the expectation of R̂P as R̂P .

Given our restriction of the prices to the finite set {p(1), p(2), . . . , p(k2)}, there are kn2 possible inputs
to the circuit, and a corresponding kn2 number of possible revenue distributions that the circuit can
produce. Our main conceptual idea is this: instead of worrying about the set of inputs to circuit C,
we focus on the revenue distribution directly, constructing a probabilistic cover (under an appropriate
metric) of all the possible revenue distributions that can be output by the circuit. The two crucial

properties of our cover are the following: (a) it has cardinality O(npoly( 1
ε
,log r)), and (b) for any

possible revenue distribution that the circuit may output, there exists a revenue distribution in our
cover with approximately the same expectation.

Details of the Cover. At a high level, the way we construct our cover is via dynamic programming,
whose steps are interleaved with coupling arguments pruning the size of the DP table before proceeding
to the next step. Intuitively, our dynamic program sweeps the items from 1 through n, maintaining
a cover of the revenue distributions produced by all possible pricings on a prefix of the items. More
precisely, for each prefix of the items, our DP table keeps track of all possible feasible collections of
k1×k2 probability values, where Pri1,i2 , i1 ∈ [k1], i2 ∈ [k2], denotes the probability that the item with
the largest value-minus-price gap (i.e. the item of the prefix that would have been sold in a sale that
only sales the prefix of items) has value v(i1) for the buyer and is assigned price p(i2) by the seller. I.e.
we memoize all possible (winning-value, winning-price) distributions that can arise from each prefix
of items. The reasons we decide to memoize these distributions are the following:

• First, if we have these distributions, we can compute the expected revenue that the seller would
obtain, if we restricted our sale to the prefix of items.

• Second, when our dynamic program considers assigning a particular price to the next item, then
having the (winning-value, winning-price) distribution on the prefix suffices to obtain the new
(winning-value,winning-price) distribution that also includes the next item. I.e., if we know
these distributions, we do not need to keep track of anything else in the history to keep going.
Observe that it is crucial here to maintain the joint distribution of both the winning-value and
the winning-price, rather than just the distribution of the winning-price.

• In the end of the program, we can look at all feasible (winning-value,winning-price) distributions
for the full set of items to find the one achieving the best revenue; we can then follow back-
pointers stored in our DP table to uncover a price vector consistent with the optimal distribution.

All this is both reasonable, and fun, but thus far we have achieved nothing in terms of reducing
the number of distributions FR̂p in our cover. Indeed, there could be exponentially many (winning-
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value,winning-price) distributions consistent with each prefix, so that the total number of distributions
that we have to memoize in the course of the algorithm is exponentially large. To obtain a polynomially
small cover we show that we can be coarse in our bookkeeping of the (winning-value, winning-price)
distributions, without sacrificing much revenue. Indeed, it is exactly here where viewing our problem
in the “upside-down” way illustrated in Figure 1 (i.e. targeting a cover of the output of circuit C
rather than figuring out a sparse cover of the input) is important: we show that, as far as the expected
revenue is concerned, we can discretize probabilities into multiples of 1

(nr)3
after each round of the DP

without losing much revenue, and while keeping the size of the DP table from exploding. That the
loss due to pruning the search space is not significant follows from a joint application of the coupling
lemma and the optimal coupling theorem (see, e.g., [10]), after each step of the Dynamic Program.

7 The Algorithm for the Discrete Problem

In this section, we formalize our ideas from the previous section, providing our main algorithmic
result. We assume that the pricing problem at hand is discrete: the value distributions are supported
on a discrete set S = {v(1), v(2), . . . , v(k1)}, and the sought after price vector also lies in a discrete set{
p(1), . . . , p(k2)

}n
, where both S and P :=

{
p(1), . . . , p(k2)

}
are given explicitly as part of the input,

while our access to the value distributions may still be either explicit or via an oracle. We denote by
OPT the optimal expected revenue for this problem, when the prices are restricted to set P.

The Algorithm. As a first step, we invoke Lemma 49 of Appendix H.4, obtaining a polynomial-
time reduction of our problem into a new one, where additionally the probabilities that the value

distributions assign to each point in S is an integer multiple of 1/(rn)3, where r = max
{
p(j)

p(i)

}
. The

loss in revenue from this reduction is at most an additive 4k1
rn2 min{p(i)}. Moreover, the construction of

Lemma 49 is explicit, so from now on we can assume that we know the value distributions explicitly.
Let us denote by {F̂i}i the rounded distributions and set m := rn throughout this section.

The second phase of our algorithm is the Dynamic Program outlined in Section 6. We provide some
further details on this next. Our program computes a Boolean function g(i, P̂r), whose arguments

lie in the following range: i ∈ [n] and P̂r = (P̂r1,1, P̂r1,2, . . . , P̂rk1,k2), where each P̂ri1,i2 ∈ [0, 1] is
an integer multiple of 1

m3 . The function g is stored in a table that has one cell for every setting of

i and P̂r, and the cell contains a 0 or a 1 depending on the value of g at the corresponding input.
In the terminology of the previous section, argument i indexes the last item in a prefix of the items
and P̂r is a (winning-value, winning-price) distribution in multiples of 1

m3 . If P̂r can arise from some
pricing of the items 1 . . . i (up to discretization of probabilities into multiples of 1

m3 ), we intend to

store g(i, P̂r) = 1; otherwise we store g(i, P̂r) = 0.
Due to lack of space we postpone the straightforward details of the Dynamic Program to Ap-

pendix I.1. Very briefly, the table is filled in a bottom-up fashion from i = 1 through n. At the
end of the i-th iteration, we have computed all feasible “discretized” (winning-value,winning-price)
distributions for the prefix 1 . . . i, where “discretized” means that all probabilities have been rounded
into multiples of 1/m3. For the next iteration, we try all possible prices p(j) for item i+1 and compute
how each of the feasible discretized (winning-value,winning-price) distributions for the prefix 1 . . . i
evolves into a discretized distribution for the prefix 1 . . . i+ 1, setting the corresponding cell of layer
g(i + 1, ·) of the DP table to 1. Notice, in particular, that we lose accuracy in every step of the
Dynamic Program, as each step involves computing how a discretized distribution for items 1 . . . i
evolves into a distribution for items 1 . . . i+ 1 and then rounding the latter back again into multiples
of 1/m3. We show in the analysis of our algorithm that the error accumulating from these roundings
can be controlled via coupling arguments.

After computing g’s table, we look at all cells such that g(n, P̂r) = 1 and evaluate the expected
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revenue resulting from the distribution P̂r, i.e.

R
P̂r

=
∑

i1∈[k1],i2∈[k2]

p(i2) · P̂ri1,i2 · 1v(i1)≥p(i2) .

Having located the cell whose R
P̂r

is the largest, we follow back-pointers to obtain a price vector

consistent with P̂r. At some steps of the back-tracing, there may be multiple choices; we pick an
arbitrary one to proceed.

Running Time and Correctness. Next we bound the algorithm’s running time and revenue.

Lemma 16. Given an instance of RestrictedPrice, where the value distributions are supported
on a discrete set S of cardinality k1 and the prices are restricted to a discrete set P of cardinality k2,
the algorithm described in this section produces a price vector with expected revenue at least

OPT −
(

2k1k2

(nr)2
+

16

n

)
·min{P},

where OPT is the optimal expected revenue, min{P} is the lowest element of P, and r is the ratio of
the largest to the smallest element of P.

Lemma 17. The running time of the algorithm is polynomial in the size of the input and (nr)O(k1k2).

Due to space limitations, we postpone the proofs of these lemmas to Appendix I. Intuitively, if we
did not perform any rounding of distributions, our algorithm would have been exact, outputting an
optimal price vector in {p(1), . . . , p(k2)}n. What we show is that the roundings performed at the steps
of the dynamic program are fine enough that do not become detrimental to the revenue. To show
this, we use the probabilistic concepts of total variation distance and coupling of random variables,
invoking the coupling lemma and the optimal coupling theorem after each step of the algorithm. (See
Lemma 50 in Appendix I.2.) This way, we show that the rounded (winning-value,winning-price)
distributions maintained by the algorithm for each price vector are close in total variation distance
to the corresponding exact distributions arising from these price vectors, culminating in Lemma 16.

Using Lemmas 16 and 17 and our work in previous sections, we obtain our main algorithmic
results in this paper (Theorems 1, 2, 3, and 4). See Appendix J for the proof of these theorems.
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Appendix

A An interesting example

A natural property than one may expect to hold is that, when the value distributions are discrete,
there always exists an optimal solution that uses prices from the support of the value distributions.
It turns out that this is not true. Here is an example:

Suppose that the seller has two items to sell, and the buyer’s values for the items are v1, which
is uniform on {1, 5}, and v2, which is uniform on {3, 3.5}. Moreover, assume that, if there is a tie
between the value-minus-price gap for the two items, the buyer tie-breaks in favor of item 1. We claim
that in this case the price vector P = (4.5, 3) achieves higher revenue than any price vector that uses
prices from the set {1, 3, 3.5, 5} (where the values are drawn from.) Let us do the calculation. All our
calculations are written in the form

RP = p1 × Pr[item 1 is the winner] + p2 × Pr[item 2 is the winner].

1. When P = (4.5, 3)

RP = 4.5× (1/2× 1) + 3× (1/2× 1) = 30/8

2. When P ∈ {1, 3, 3.5, 5}2:

• If P = (5, 3.5) then

RP = 5× (1/2× 1) + 3.5× (1/2× 1/2) = 27/8 < 30/8
• If P = (5, 3) then

RP = 5× (1/2× 1/2) + 3× (1× 1/2 + 1/2× 1/2) = 28/8 < 30/8
• For any other price vector, the maximum revenue is bounded by 3.5 = 28/8 < 30/8.

B Figures

F̂2F̂1

C 

… F̂3 F̂n
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p1

p2

pn

FR̂P

Figure 1: The Revenue Distribution.

C Access to Value Distributions

In this paper, we consider two ways that a distribution may be input to an algorithm.

• Explicitly: In this case the distribution has to be discrete, and we are given its support as a
list of numbers, and the probability that the distribution places on every point in the support.
If a distribution is provided explicitly to an algorithm, the algorithm is said to be efficient, if
it runs in time polynomial the description complexity of the numbers required to specify the
distribution.
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• As an Oracle: In this case, we are given an oracle that answers queries about the value of the
cumulative distribution function on a queried point. In particular, a query to the oracle consists
of a point x and a precision ε, and the oracle outputs a value of bit complexity polynomial in the
description of x and ε, which is within ε from the value of the cumulative distribution function
at point x. Moreover, we assume that we are given an anchoring point x∗ such that the value
of the cumulative distribution at that point is between two a priori known absolute constants
c1 and c2, such that 0 < c1 < c2 < 1. Having such a point is necessary, as otherwise it would be
impossible to find any interesting point in the support of the distribution (i.e. any point where
the cumulative is different than 0 or 1).

If a distribution is provided to an algorithm as an oracle, the algorithm is said to be efficient,
if it runs in time polynomial in its other inputs and the bit complexity of x∗, ignoring the time
spent by the oracle to answer queries (since this is not under the algorithm’s control).

If we have a closed form formula for our input distribution, e.g. if our distribution is N (µ, σ2),
we think of it as given to us as an oracle, answering queries of the form (x, ε) as specified above.
In most common cases, such an oracle can be implemented so that it also runs efficiently in the
description of the query.

D Properties of MHR Distributions

Definition 18. For a random variable X, we define α1 = umin, and for every real number p ∈
(1,+∞), we define αp = inf

{
x|F (x) ≥ 1− 1

p

}
.

The following lemma establishes an interesting property of MHR distributions. Intuitively, the
lemma provides a lower bound on the speed of the decay of the tail of a MHR distribution. We prove
the lemma by showing that the function log

(
1 − F (x)

)
is concave if F is MHR, and exploiting this

concavity (see Appendix D.1).

Lemma 19. If the distribution of a random variable X satisfies MHR, m ≥ 1 and d ≥ 1, d·αm ≥ αmd.

Next we study the expectation of a random variable that satisfies MHR. We show that the con-
tribution to the expectation from values ≥ m, is O(m · Pr[X ≥ m]). We start with a definition.

Definition 20. For a random variable X, let Con[X ≥ x] = E[X|X ≥ x] · Pr{X ≥ x} be the
contribution to expectation of X from values which are no smaller than x, i.e.

Con[X ≥ x] =

∫ +∞

x
x · f(x)dx.

It is an obvious fact that for any random variable X and any two points x1 ≤ x2, Con[X ≥ x1] ≥
Con[X ≥ x2]. Using the bound on the tail of a MHR distribution obtained in Lemma 19, we bound
the contribution to the expectation of X by the values at the tail of the distribution. The proof is
given in Appendix D.

Lemma 21. Let X be a random variable whose distribution satisfies MHR. For all m ≥ 2, Con[X ≥
αm] ≤ 6αm/m.

D.1 Prooofs

Proof of Lemma 19: It is not hard to see that f(x) > 0, for all x ∈ (umin, umax). For a contradiction,
assume this is not true, that is, for some x′ ∈ (umin, umax), f(x′) = 0. We know 1 − F (x′) > 0.
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Thus f(x′)
1−F (x′) = 0. Since the distribution satisfies MHR and 1−F (x) is positive for all x ∈ (umin, x

′),

f(x) = 0 in this interval. Hence, it must also be that F (x) = 0 in [umin, x
′). Since x′ > umin, it

follows that umin 6= sup{x|F (x) = 0}, a contradiction.
Since f(x) > 0 in (umin, umax), F (x) is monotone in (umin, umax). So we can define the inverse

F−1(x) in (umin, umax). It is not hard to see that for any p ∈ [1,+∞), F (αp) = 1 − 1/p and
αp = F−1(1− 1/p).

Now let G(x) = log(1− F (x)). We will show that G(x) is a concave function.

Let us consider the derivative of G(x). By the definition of MHR, G′(x) = −f(x)
1−F (x) is monotonically

non-increasing. Therefore, G(x) is concave. It follows that, for every m, by the concavity of G(x),
the following inequality holds:

G

(
d− 1

d
· α1 +

1

d
· αmd

)
≥ d− 1

d
G(α1) +

1

d
G(αmd).

Let us rewrite the RHS as follows

d− 1

d
G(α1) +

1

d
G(αmd)

=
d− 1

d
log 1 +

1

d
log(1− F (αmd))

=
1

d
log

(
1

md

)
= log

(
1

m

)

Hence, we have the following:

G

(
d− 1

d
· α1 +

1

d
· αmd

)
≥ log

(
1

m

)
=⇒ log

(
1− F

(
d− 1

d
· α1 +

1

d
· αmd

))
≥ log

(
1

m

)
=⇒1− F

(
d− 1

d
· α1 +

1

d
· αmd

)
≥ 1

m

=⇒1− F
(
d− 1

d
· α1 +

1

d
· αmd

)
≥ 1− F (αm)

=⇒F (αm) ≥ F
(
d− 1

d
· α1 +

1

d
· αmd

)
=⇒αm ≥

d− 1

d
· α1 +

1

d
· αmd (F is monotone increasing)

=⇒αm ≥
1

d
· αmd (umin ≥ 0)

=⇒d · αm ≥ αmd .

2

Proof of Lemma 21: Let S = Con[X ≥ αm], and consider the sequence {βi := α
m(2i)}, defined for all

non-negative integers i. It can easily be seen that limi→+∞ αm(2i) = umax; hence, limi→+∞ βi = umax
and by continuity limi→+∞ F (βi) = F (umax) = 1.
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Also, ∫ βi+1

βi

x · f(x)dx ≤ βi+1(1− F (βi)) = βi+1/m
(2i).

Moreover, Lemma 19 implies that βi ≤ 2βi−1; thus, βi ≤ 2iβ0 ≤ 2iαm. Hence, we have the following:

S =

∫ umax

αm

x · f(x)dx ≤
+∞∑
i=0

βi+1

m(2i)
≤

+∞∑
i=0

2i+1αm

m(2i)

≤2αm
m

+
+∞∑
i=1

2(i+1)αm

m(2i)
=

2αm
m

+
4αm
m2

+∞∑
i=0

(
2

m2

)i
=

2αm
m

+
4αm
m2
· 1

1− 2/m2

≤2αm
m

+
4αm
m

≤6αm
m

.

2

E Properties of Regular Distributions

If F is a differentiable continuous regular distribution, it is not hard to see the following: if f(x) =
0 for some x, then f(x′) = 0 for all x′ ≥ x (as otherwise the definition of regularity would be
violated.) Hence, if X is a random variable distributed according to F , it must be that f(x) > 0
for x ∈ [uXmin, u

X
max]. So we can define F−1 on [uXmin, u

X
max], and it will be differentiable, since F is

differentiable and f is non-zero. Now we can make the following definition, capturing the revenue
of a seller who prices an item with value distribution F , so that the item is bought with probability
exactly q.

Definition 22 (Revenue Curve). For a differentiable continuous regular distribution F , define RF :
[0, 1]→ R as follows

RF (q) = q · F−1(1− q).

The following is well-known. We include its short proof for completeness.

Lemma 23. If F is regular, RF (q) is a concave function on (0, 1].

Proof. The derivative of RF (q) is

R′F (q) = F−1(1− q)− q

f
(
F−1(1− q)

) .
Notice that F−1(1 − q) is monotonically non-increasing in q. This observation and the regularity of
F imply that R′F (q) is monotonically non-increasing in q. (To see this try the change of variable
x(q) = F−1(1− q).) This implies that RF (q) is concave.

Lemma 24. For any regular distribution F , if 0 < q̃ ≤ q ≤ p < 1, then

RF (q̃) ≤ 1

1− p
RF (q).
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Proof. Since q ∈ [q̃, 1), there exists a λ ∈ (0, 1], such that

λ · q̃ + (1− λ) · 1 = q.

Hence: λ = 1−q
1−q̃ ≥

1−p
1 = 1− p. Now, from Lemma 23, we have that RF (x) is concave. Thus

RF (q) = RF
(
λ · q̃ + (1− λ) · 1

)
≥ λ ·RF (q̃) + (1− λ) ·RF (1).

Since RF (1) ≥ 0, RF (q) ≥ λ ·RF (q̃) ≥ (1− p)RF (q̃). Thus, RF (q̃) ≤ 1
1−pRF (q).

Corollary 25. For any regular distribution F , if q̃ ≤ q ≤ 1
n3 , then

RF (q̃) ≤ n3

n3 − 1
RF (q).

F Details of Section 3: MHR to Balanced Distributions

F.1 Proof of Theorem 12 (the Extreme Value Theorem for MHR Distributions)

We start with some useful notation. For all i = 1, . . . , n, we denote by Fi the distribution of variable

Xi. We also let α
(i)
m := inf

{
x|Fi(x) ≥ 1− 1

m

}
, for all m ≥ 1. Moreover, we assume that n is a power

of 2. If not, we can always include at most n additional random variables that are detreministically
0, making the total number of variables a power of 2.

We proceed with the proof of Theorem 12. The threshold β is computed by an algorithm. At a
high level, the algorithm proceeds in O(log n) rounds, indexed by t ∈ {0, . . . , log n}, eliminating half
of the variables at each round. The way the elimination works is as follows. In round t, we compute
for each of the variables that have survived so far the threshold αn/2t beyond which the size of the
tail of their distribution becomes smaller than 1/(n/2t). We then sort these thresholds and eliminate
the bottom half of the variables, recording the threshold of the last variable that survived this round.
The maximum of these records among the log n rounds of the algorithm is our β. The pseudocode
of the algorithm is given below. Given that we may only be given oracle access to the distributions
{Fi}i∈[n], we allow some slack η ≤ 1

2 in the computation of our thresholds so that the computation
is efficient. If we know the distributions explicitly, the description of the algorithm simplifies to the
case η = 0.

Algorithm 1 Algorithm for finding β

1: Define the permutation of the variables π0(i) = i, ∀ i ∈ [n], and the set of remaining variables
Q0 = [n].

2: for t := 0 to log n− 1 do

3: For all j ∈ [n/2t], compute some x
(πt(j))
n/2t ∈ [1−η, 1+η] ·α(πt(j))

n/2t , for a small constant η ∈ [0, 1/2)

4: Sort these n/2t numbers in decreasing order πt+1 such that

x
(πt+1(1))
n/2t ≥ x(πt+1(2))

n/2t ≥ . . . ≥ x(πt+1(n/2t))
n/2t

5: Qt+1 := { πt+1(i) | i ≤ n/2t+1 }
6: βt := x

(πt+1(n/2t+1))
n/2t

7: end for
8: Compute x

(πlogn(1))
2 ∈ [1− η, 1 + η] · α(πlogn(1))

2

9: Set βlogn := x
(πlogn(1))
2

10: Output β := maxt βt

Crucial in the proof of the theorem is the following lemma.
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Lemma 26. For all i ∈ [n] and ε ∈ (0, 1), let Si = Con[Xi ≥ 2 log(1
ε ) · β], where Con[·] is defined as

in Definition 20. Then
n∑
i=1

Si ≤ 36 log(1/ε)ε · β, for all ε ∈ (0, 1/4).

Proof. Let d = log(1
ε ) and notice that d ≥ 2. It is not hard to see that we can divide [n] into (log n)+1

different groups {Gt}t∈{0,...,logn} based on the sets Qt maintained by the algorithm, as follows. For
t ∈ {0, . . . , log n}, set

Gt =

{
Qt \Qt+1 t < log n

Qlogn t = log n

Now, it is not hard to see that, for all t < log n and all i ∈ Gt, Si ≤ Con[Xi ≥ 2d · βt], since
βt ≤ β. Also for any i ∈ Gt, there must exist some k ∈ (n/2t+1, n/2t], such that i = πt+1(k). Then
by the definition of the algorithm, we know that

(1− η)α
(i)
n/2t ≤ x

(i)
n/2t ≤ x

(πt+1(n/2t+1))
n/2t = βt.

Recall that η is chosen to satisfy 2 ≥ 1/(1 − η). Then d · α(i)
n/2t ≤ 2d · βt. But Lemma 19 gives

d · α(i)
n/2t ≥ α

(i)

(n/2t)d
. Hence,

2d · βt ≥ d · α(i)
n/2t ≥ α

(i)

(n/2t)d
,

which implies that

Con[vi ≥ 2d · βt] ≤ Con[vi ≥ α(i)

(n/2t)d
].

Using Lemma 21, we know that

Con[vi ≥ α(i)

(n/2t)d
] ≤ 6α

(i)

(n/2t)d
(2t/n)d ≤ 12dβt(2

t/n)d.

Now, since |Gt| = n/2t+1,∑
i∈Gt

Si ≤ 12dβt(2
t/n)d × n/2t+1 = 6d · βt(2t/n)d−1 =

6d · βt
nd−1

(2d−1)t.

Thus,

∑
i∈[n]\Glogn

Si ≤
(logn)−1∑
t=0

6d · βt
nd−1

(2d−1)t

≤6d · β
nd−1

· (2d−1)logn − 1

2d−1 − 1

=
6d · β
nd−1

· n
d−1 − 1

2d−1 − 1

≤12d · β
2d − 2

≤24d · β
2d

=24 log(1/ε)ε · β
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Let i be the unique element in Glogn. Then βlogn = x
(i)
2 . Using Lemma 19 and the definition of

x
(i)
2 , we obtain

2d · β ≥ 2d · βlogn ≥ 2d · x(i)
2 ≥ 2(1− η)d · α(i)

2 ≥ d · α
(i)
2 ≥ α

(i)

2d
= α

(i)
1/ε.

Using the above and Lemma 21 we get

Si ≤ Con[vi ≥ α(i)
1/ε] ≤ 6ε · α(i)

1/ε ≤ 12εd · β.

Putting everything together,
n∑
i=1

Si ≤ 36 log(1/ε)ε · β.

Using Lemma 26, we obtain∫ +∞

2β log 1/ε
t · fmaxi{Xi}(t)dt ≤

n∑
i=1

Si ≤ 36 log(1/ε)ε · β.

It remains to show that

Pr[max
i
{Xi} ≥ β/2] ≥ 1− 1

e1/2
. (3)

We show that, for all t, Pr
[
maxi{Xi} ≥ βt

1+η

]
≥ 1− 1

e1/2
, where η is the parameter used in Algo-

rithm 1. This is sufficient to imply (3), as η ≤ 1/2. Observe that for all i ∈ [n/2t+1],

(1 + η) · α(πt+1(i))
n/2t ≥ x(πt+1(i))

n/2t ≥ βt,

where πt+1 is the permutation constructed in the t-th round of the algorithm. This implies

α
(πt+1(i))
n/2t ≥ βt

1 + η
.

Hence, for all i ∈ [n/2t+1], Pr[Xπt+1(i) ≤ βt
1+η ] ≤ 1− 2t/n. Thus,

Pr

[
max
i
{Xi} ≥

βt
1 + η

]
≥ Pr

[
∃i ∈ [n/2t+1], Xπt+1(i) ≥

βt
1 + η

]
≥ 1− (1− 2t/n)n/2

t+1

≥ 1− 1

e1/2
.

Eq. (3) now follows.

F.2 Proof of Theorem 11 (the Reduction from MHR to Balanced Distributions)

Recall that we represent by {vi}i∈[n] the values of the buyer for the items. We will denote their
distributions by {Fi}i∈[n] throughout this section.
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F.2.1 Relating OPT to β

We demonstrate that the anchoring point β of Theorem 12 provides a lower bound to the optimal
revenue. In particular, we show that the optimal revenue satisfies OPT = Ω(β). This lemma justifies
the relevance of β.

Lemma 27. If β is the anchoring point of Theorem 12, then OPT ≥
(

1− 1√
e

)
β
2 .

Proof of Lemma 27: Suppose we priced all items at β
2 . The revenue we would get from such price

vector would be at least
β

2
Pr

[
max{vi} ≥

β

2

]
≥ β

2

(
1− 1√

e

)
,

where we used Theorem 12. Hence, OPT ≥
(

1− 1√
e

)
β
2 . 2

For simplicity, we set c1 := 1
2

(
1− 1√

e

)
for the next sections, keeping in mind that c1 is an absolute

constant.

F.2.2 Restricting the Prices

This section culminates in Lemma 30 (given below), which states that we can constrain our prices

to the set [ε · β, 2 log(1
ε ) · β] without hurting the revenue by more than a fraction of ε+c2(ε)

c1
, where

c2(ε) := 36 log(1
ε )ε and c1 is the constant defined in Section F.2.1. We prove this in two steps. First,

exploiting our extreme value theorem for MHR distributions (Theorem 12), we show that for a given
price vector, if we lower the prices that are above 2 log(1

ε ) · β to 2 log(1
ε ) · β, the loss in revenue is

bounded by c2(ε) · β, namely

Lemma 28. Given any price vector P we define P ′ as follows: we set p′i = pi, if pi ≤ 2 log(1
ε ) · β,

and p′i = 2 log(1
ε ) · β otherwise, where ε ∈ (0, 1/4). Then the expected revenues RP and RP ′ achieved

by price vectors P and P ′ respectively satisfy: RP ′ ≥ RP − c2(ε) · β.

We complement Lemma 28 with the following lemma, establishing that, for any given price vector P ,
if we increase all prices below ε · β to ε · β, the loss in revenue is at most ε · β.

Lemma 29. Let P be any price vector and define P ′ as follows: set p′i = pi, if pi ≥ α, and p′i = α
otherwise. The expected revenues RP and RP ′ from these price vectors satisfy RP ′ ≥ RP − α.

Combining these lemmas, we obtain Lemma 30. Observe that we can make the loss in revenue
arbitrarily small be taking ε sufficiently small.

Lemma 30. For all ε ∈ (0, 1/4), there exists a price vector P ∗ ∈ [ε · β, 2 log(1
ε ) · β]n, such that the

revenue from this price vector satisfies RP ∗ ≥
(

1− ε+c2(ε)
c1

)
OPT, where OPT is the optimal revenue

under any price vector.

All proofs of this section are in Appendix F.3.1.

F.2.3 Truncating the Value Distributions

Exploiting Lemma 30, i.e. that we can constrain the prices to [ε · β, 2 log(1
ε ) · β] without hurting the

revenue, we show Theorem 11, i.e. that we can also constrain the support of the value distributions
into a balanced range. In particular, we show that we can “truncate” the value distributions to the
range [ ε2 · β, 2 log(1

ε ) · β], where for our purposes “truncating” means this: for every distribution Fi,
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we shift all probability mass from (2 log(1
ε ) · β,+∞) to the point 2 log(1

ε ) · β, and all probability mass
from (−∞, ε ·β) to ε

2 ·β. Clearly, this modification can be computed in polynomial time if Fi is known
explicitly; if we have oracle access to Fi, we can produce in polynomial time another oracle whose
output behaves according to the modified distribution. We show that our modification does not hurt
the revenue. That is, we establish a polynomial-time reduction from the problem of computing a
near-optimal price vector when the buyer’s value distributions are arbitrary MHR distributions to the
case where the buyer’s value distributions are supported on a balanced interval [umin, c ·umin], where
c = c(ε) = 41

ε log(1
ε ) is a constant that only depends on the desired approximation ε. The proof of

Theorem 31 is given in Appendix F.3.2.

Theorem 31 (Reduction from MHR to Balanced Distributions). Given ε ∈ (0, 1/4) and a collection
of mutually independent random variables {vi}i that are MHR, let us define a new collection of
random variables {ṽi}i via the following coupling: for all i ∈ [n], set ṽi = ε

2 · β if vi < ε · β, set
ṽi = 2 log(1

ε ) · β if vi ≥ 2 log(1
ε ) · β, and set ṽi = vi otherwise, where β = β({vi}i) is the anchoring

point of Theorem 12 computed from the distributions of the variables {vi}i. Let also ÕPT be the
optimal revenue of the seller when the buyer’s values are distributed as {ṽi}i∈[n] and OPT the optimal
revenue when the buyer’s values are distributed as {vi}i∈[n]. Then given a price vector that achieves

revenue (1− δ) · ÕPT when the buyer’s values are distributed as {ṽi}i∈[n], we can efficientlly compute
a price vector with revenue (

1− δ − 2ε+ 3c2(ε)

c1

)
OPT

when the buyer’s values are distributed as {vi}i∈[n].

Theorem 11 follows from Theorem 31.

F.3 Proofs Omitted from Section F.2

F.3.1 Restricting the Price Range for MHR Distributions: the Proofs

Proof of Lemma 28: We first show that, given a price vector, if we make all prices that are above α
equal to +∞, then the loss in revenue can bounded by the sum, overall items whose price was turned
into +∞, of the contribution to this item’s expected value by points above α. Formally,

Lemma 32. Let α > 0 and S(α) = Con[maxi vi ≥ α], where Con[·] is defined as in Definition 20.
Moreover, for a given price vector P , define P ′ as follows: set p′i = pi, if pi < α, and p′i = +∞,
otherwise. Then the expected revenues RP and RP ′ from P and P ′ respectively satisfy

RP ′ ≥ RP − S(α).

Proof. Let πi = Pr[ ∀j : vi − pi ≥ vj − pj ∧ vi − pi ≥ 0], π′i = Pr[∀j : vi − p′i ≥ vj − p′j ∧ vi − p′i ≥ 0]
denote respectively the probability that item i is bought under price vectors P and P ′.

We partition the items into two sets, expensive and cheap, based on P : Sexp = { i | pi > α } and
Schp = { i | pi ≤ α }. If i ∈ Sexp, p′i = +∞, while if i ∈ Schp, p′i = pi.

For any i ∈ Schp, πi ≤ π′i. Indeed, for any valuation vector (v1, v2, . . . , vn): if vi− pi ≥ vj − pj , for
all j, and vi − pi ≥ 0, it should also be true that vi − p′i ≥ vj − p′j , for all j, and vi − p′i ≥ 0 (since we
only increased the prices of items different from i). Therefore, the following inequality holds:∑

i∈Schp

pi · πi ≤
∑
i∈Schp

p′i · π′i. (1)

Notice that, for any i ∈ Sexp, whenever the event Ci = (∀j : vi − pi ≥ vj − pj) ∧ (vi − pi ≥ 0)
happens, vi has to be larger than pi, which itself is larger than α. Hence, whenever the event ∪i∈SexpCi
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happens, it must be that maxi{vi} ≥ α. Given that maxi{vi} is the best revenue we could hope to
extract (pointwise for all vectors (v1, . . . , vn)), it follows that∑

i∈Sexp

pi · πi ≤ Con
[
max
i
{vi} ≥ α

]
= S(α).

Combining this with (1), we obtain

RP ′ ≥ RP − S(α).

We showed that setting the price of expensive items to +∞ is not detrimental to the revenue. We
show that the same is true of a less aggressive strategy.

Lemma 33. Let P be a price vector, define S∞ = {i : pi = +∞}, and let pmax ≥ maxi∈[n]\S∞ pi.
Let P ′ be the following price vector: set p′i = pmax, for all i ∈ S∞, and p′i = pi otherwise. Then the
expected revenues RP and RP ′ from P and P ′ respectively satisfy

RP ′ ≥ RP .

Proof. Take any valuation vector (v1, v2, . . . , vn) and suppose that i is the winner under price vector
P , i.e. vi − pi ≥ vj − pj , for all j, and vi − pi ≥ 0. Under P ′, there are two possibilities: (1) i is still
the winner; then the contribution to the revenue is the same under P and P ′. (2) i is not the winner;
in this case, the winner should be among those items whose price was lowered from P to P ′. So the
new winner must some j ∈ S∞. But notice that p′j = pmax ≥ pi. Hence, the contribution of item j
to revenue under price vector P ′ is not smaller than the contribution of item i to the revenue under
price vector P . Hence, RP ′ ≥ RP .

Combining Theorem 12 with Lemmas 32 and 33, it is easy to argue that if we truncate a price
vector P at value 2 log(1

ε ) · β to obtain a new price vector P ′ the change in revenue can be bounded
as follows:

RP ′ ≥ RP − c2(ε) · β.

2

Proof of Lemma 29: Let πi = Pr[(∀j : vi − pi ≥ vj − pj) ∧ (vi − pi ≥ 0)] and π′i = Pr[(∀j : vi − p′i ≥
vj − p′j) ∧ (vi − p′i ≥ 0)], and define Slow = {i : pi ≤ α}. For all i ∈ [n] \ Slow, we claim that
π′i ≥ πi. Indeed, since we only increased the price of items other than i, for any valuation vector
v = (v1, v2, . . . , vn), if vi − pi ≥ vj − pj , for all j, and vi − pi ≥ 0, it should also be true that
vi − p′i ≥ vj − p′j , for all j, and vi − p′i ≥ 0.

Moreover, it is easy to see that ∑
i∈Slow

pi · πi ≤ α.

Hence, we have the following inequality:

Rp′ ≥
∑

i:[n]\Slow

p′i · π′i ≥
∑

i:[n]\Slow

pi · πi ≥ Rp − α.

2

Proof of Lemma 30: Lemma 28 implies that, if we start from any price vector P , we can modify it into
another price vector P ′ that does not use any price above 2 log(1

ε )·β, and satisfies RP ′ ≥ RP−c2(ε)·β.
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Then Lemma 29 implies that we can change P ′ into another vector P ′′ ∈ [ε ·β, 2 log(1
ε ) ·β]n, such that

RP ′′ ≥ RP ′ − ε · β.
By Lemma 27, we know that OPT ≥ c1 · β. Hence, if we start with the optimal price vector P

and apply the above transformations, we will obtain a price vector P ∗ ∈ [ε · β, 2 log(1
ε ) · β]n such that

RP ∗ ≥ OPT −
(
ε+ c2(ε)

)
· β ≥

(
1− ε+ c2(ε)

c1

)
OPT.

2

F.3.2 Bounding the Support of the Distributions: the Proofs

To establish Theorem 31 we show that we can transform {vi}i∈[n] into {ṽi}i∈[n] such that, for all i, ṽi
only takes values in [ ε2 · β, 2 log(1

ε ) · β], and for any price vector P ∈ [ε · β, 2 log(1
ε ) · β]n, |R̃P −RP | ≤

c2(ε) · β, where RP and R̃P are respectively the revenues of the seller when the buyer’s values are
distributed as {vi}i∈[n] and {ṽi}i∈[n]. We first show that one side of our truncation works.

Lemma 34. Given ε ∈ (0, 1/4) and a collection of random variables {vi}i that are MHR, let us
define a new collection of random variables {v̂i}i via the following coupling: for all i ∈ [n], if vi ≤
2 log(1

ε ) · β, set v̂i = vi, otherwise set v̂i = 2 log(1
ε ) · β, where β = β({vi}i) is the anchoring point

of Theorem 12 computed from the distributions of the variables {vi}i. Then, for any price vector
P ∈ [ε · β, 2 log(1

ε ) · β]n, |RP − R̂P | ≤ c2(ε) · β, where RP and R̂P are respectively the revenues of
seller when the buyer’s values are distributed as {vi}i∈[n] and as {v̂i}i∈[n].

Proof. For convenience let d = log(1
ε ). Recall that {vi}i and {v̂i}i are defined via a coupling. We

distinguish two events: (1) v := (v1, v2, . . . , vn) ≡ (v̂1, v̂2, . . . , v̂n) =: v̂; (2) vi 6= v̂i, for some i.
Under Event (1), the item sold is the same under v and v̂. Hence, the revenue is the same under

Event (1). So we only need to worry about Event (2). We show that the total contribution to the
revenue from this event is very small. Indeed, the probability of this event is Pr[∃i, vi > 2d · β], and
the maximum price is 2d · β. So using our extreme value theorem (Theorem 12), we can bound the
contribution to the revenue from this event as follows.

2d · β · Pr[∃i, vi > 2d · β] = 2d · β · Pr[max
i
vi ≥ 2d · β] ≤ Con[max

i
vi ≥ 2d · β] ≤ c2(ε) · β.

We obtain |RP − R̂P | ≤ c2(ε) · β.

Next we show that the other side of the truncation works.

Lemma 35. Given ε, β > 0 and a collection of random variables {v̂i}i, let us define a new collection of
random variables {ṽi}i via the following coupling: for all i ∈ [n], if v̂i ≥ ε ·β, set ṽi = v̂i, otherwise set
ṽi = ε

2 ·β. Then, for any price vector P ∈ [ε ·β,+∞)n, R̃P = R̂P , where R̂P and R̃P are respectively
the revenues of the seller when the buyer’s values are distributed as {v̂i}i∈[n] and as {ṽi}i∈[n].

Proof. Recall that {v̂i}i and {ṽi}i are defined via a coupling. For any value of v̂ = (v̂1, v̂2, . . . , v̂n), we
distinguish the following cases: (1) ṽ = (ṽ1, ṽ2, . . . , ṽn) is exactly the same as v̂; (2) there exists some
i such that v̂i 6= ṽi.

In the first case, it is clear that the revenue of the seller is the same under values v̂ and ṽ. In the
second case, we distinguish two further subcases:

• if there is some item i∗ sold under values v̂, we show that i∗ is also sold under values ṽ. Indeed,
since i∗ is the winner under v̂, we have that, for all i,

v̂i∗ − pi∗ ≥ v̂i − pi;
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and
v̂i∗ − pi∗ ≥ 0.

Given that pi∗ ≥ ε · β, it must be that v̂i∗ ≥ ε · β. Therefore, ṽi∗ = v̂i∗ . Hence, for any i such
that ṽi = v̂i, ṽi∗ − pi∗ ≥ ṽi − pi; and, for any i such that ṽi 6= v̂i, ṽi = ε

2 · β < pi. Thus,
ṽi∗ − pi∗ ≥ 0 > ṽi − pi. So i∗ is also the winner under ṽ.

• if there is no winner under v̂, that is v̂i − pi ≤ 0, for all i, then: for any i such that ṽi = v̂i,
ṽi− pi ≤ 0, and for any i such that ṽi 6= v̂i, ṽi = ε

2 · β < pi, as we argued above. So, ṽi− pi ≤ 0,
for all i.

Hence, we have argued the revenues under v̂ and ṽ are the same in the second case too. Therefore,

R̃P = R̂P .

Putting these lemmas together we obtain our reduction.

Proof of Theorem 31: Let P be a near-optimal price vector when the values of the buyer are distributed
as {ṽi}i∈[n], i.e. one that satisfies

R̃P ≥ (1− δ) · ÕPT ,

where R̃P denotes the expected revenue of the seller under price vector P when the buyer’s values
are {ṽi}i∈[n]. Given that each ṽi lies in [ ε2 · β, 2 log(1

ε ) · β], it follows from Lemma 41 that we can

(efficiently) transform P into another vector P ′ ∈ [ ε2 · β, 2 log(1
ε ) · β]n, such that R̃P ≤ R̃P ′ .

We can then apply the following efficient transformation to P ′, to get P ′′: For any i, if p′i < ε · β,
set p′′i = ε · β, and set p′′i = p′i otherwise. By Lemma 29, we know that,

R̃P ′′ ≥ R̃P ′ − ε · β.

Now, since P ′′ is a price vector in [ε · β, 2 log(1
ε ) · β]n, by Lemmas 34 and 35, we get

RP ′′ ≥ R̃P ′′ − c2(ε) · β,

where RP ′′ is the expected revenue of the seller under price vector P ′′ when the values of the buyers
are {vi}i.

On the other hand, suppose that P ∗ is the optimal price vector in [ε · β, 2 log(1
ε ) · β]n for values

{vi}i∈[n]. By Lemma 30, we know that RP ∗ ≥
(

1− ε+c2(ε)
c1

)
OPT . Now Lemmas 34 and 35 give

R̃P ∗ ≥ RP ∗ − c2(ε) · β ≥
(

1− ε+ c2(ε)

c1

)
OPT − c2(ε) · β ≥

(
1− ε+ 2c2(ε)

c1

)
OPT,

where we used that OPT ≥ c1 · β, by Lemma 27.
Since ÕPT ≥ R̃P ∗ ,

R̃P ′ ≥ R̃P ≥ (1− δ)ÕPT ≥ (1− δ)
(

1− ε+ 2c2(ε)

c1

)
OPT ≥

(
1− δ − ε+ 2c2(ε)

c1

)
OPT.

Recall that RP ′′ ≥ R̃P ′′ − c2(ε) · β ≥ R̃P ′ − ε · β − c2(ε) · β. Therefore,

RP ′′ ≥
(

1− δ − ε+ 2c2(ε)

c1

)
OPT − ε · β − c2(ε) · β ≥

(
1− δ − 2ε+ 3c2(ε)

c1

)
OPT.

So given a near-optimal price vector P for {ṽi}i∈[n], we can construct a near-optimal price vector
P ′′ for {vi}i∈[n] in polynomial time. 2
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G Details of Section 4

G.1 Proof of Theorem 14 (the Extreme Value Theorem for Regular Distributions)

We define α explicitly from the distributions {Fi}i of the variables {Xi}i. We first need a definition.

Definition 36. A point x is a (c1, c2)-anchoring point of a distribution F , if F (x) ∈ [c1, c2].

Now fix two arbitrary constants 0 < c1 < c2 ≤ 7
8 , and let, for all i, αi be a (c1, c2)-anchoring point

of the distribution Fi. Then define

α =
n3

c1
·max

i

[
αi ·

(
1− Fi(αi)

)]
.

Clearly, a collection α1, . . . , αn of (c1, c2)-anchoring points can be computed efficiently from the Fi’s
(whether we have these distributions explicitly or have oracle access to them.) Hence, an α as above
can be computed efficiently. We proceed to establish anchoring properties satisfied by α.

Proposition 37. α ≥ maxi α
(i)
n3 , where α

(i)
p = inf

{
x|Fi(x) ≥ 1− 1

p

}
as in Definition 18.

Proof. Because 1/n3 ≤ 1− c2 ≤ 1− F (αi) ≤ 1− c1, it follows from Lemma 24 that

1

c1
· αi ·

(
1− Fi(αi)

)
≥ α(i)

n3/n
3.

Hence: α ≥ n3

c1
·
[
αi ·

(
1− Fi(αi)

)]
≥ α(i)

n3 . This is true for all i, hence the theorem.

Proof of Theorem 14: We first show that Pr[Xi ≥ `α] ≤ 2/(`n3), for any ` ≥ 1. By Proposition 37

and Corollary 25, we have that (`α) Pr[Xi ≥ `α] ≤ n3

n3−1
αPr[Xi ≥ α]. Thus

Pr[Xi ≥ `α] ≤ n3

n3 − 1
· 1

`
· Pr[Xi ≥ α] ≤ 2/(`n3), (4)

which establishes the first anchoring property satisfied by α.
Moreover, we have that

α/n3 =
1

c1
·max

i

[
ai ·
(
1− Fi(ai)

)]
≤ 1

c1
max
z

(z · Pr[max
i
{Xi} ≥ z]),

which establishes the second anchoring property of α.
Finally, we demonstrate the homogenization property of α. We want to show that, for any integer

m ≤ n, thresholds t1, . . . , tm ≥ t ≥ 2n2α
ε2

, index set S = {a1, . . . , am} ⊆ [n], and ε ∈ (0, 1):

m∑
i=1

ti Pr[Xai ≥ ti] ≤
(
t− 2α

ε

)
· Pr

[
max
i
{Xai} ≥ t

]
+

7ε · (2α/ε · Pr[maxi{Xai} ≥ 2α/ε])

n
.

For notational simplicity, we define fi(zi) = zi · Pr[Xai ≥ zi] and f
(S)
max(z) = z · Pr[maxi{Xai} ≥ z].

Notice that for any ti ≥ t ≥ 2α/ε, a double application of Proposition 37, Lemma 24 and Equation (4)
gives

fi(ti) ≤
(n3/ε)

(n3/ε)− 1
fi(t) ≤

2(n3/ε)

(n3/ε)− 1
fi

(
2α

ε

)
. (5)
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Thus,

LHS ≤
m∑
i=1

fi(t) +
1

(n3/ε)− 1

m∑
i=1

fi(t)

≤
m∑
i=1

fi(t) +
2

(n3/ε)− 1

m∑
i=1

fi

(
2α

ε

)

≤
m∑
i=1

fi(t) +
2n

(n3/ε)− 1
f (S)
max

(
2α

ε

)

≤
m∑
i=1

fi(t) +
2ε

n
f (S)
max

(
2α

ε

)
.

On the other hand, for any t ≥ 2α/ε: Pr[Xai ≥ t] ≤ Pr[Xai ≥ 2α/ε] ≤ ε/n3 (using (4)). Thus:∑
i

Pr[Xai ≥ t] ≥ Pr[max
i
{Xai} ≥ t] ≥ (1− ε/n2)

∑
i

Pr[Xai ≥ t], (6)

where the last inequality follows from the fact that, for all i, the probability that Xai ≥ t, while
Xaj < t for all j ∈ S \ {i} is at least Pr[Xai ≥ t](1 − ε/n3)m−1 ≥ Pr[Xai ≥ t](1 − ε/n2). Therefore,
continuing our upper-bounding from above:

LHS ≤
m∑
i=1

fi(t) +
2ε

n
f (S)
max

(
2α

ε

)

≤ (t− 2α/ε) Pr[max
i
{Xai} ≥ t] + (2α/ε) Pr[max

i
{Xai} ≥ t] + (ε/n2)

m∑
i=1

fi(t) +
2ε

n
f (S)
max

(
2α

ε

)

≤ (t− 2α/ε) Pr[max
i
{Xai} ≥ t] + (2α/εt)

m∑
i=1

fi(t) + (2ε/n2)

m∑
i=1

fi

(
2α

ε

)
+

2ε

n
f (S)
max

(
2α

ε

)

≤ (t− 2α/ε) Pr[max
i
{Xai} ≥ t] + (ε/n2)

m∑
i=1

fi(t) +
4ε

n
f (S)
max

(
2α

ε

)
≤ (t− 2α/ε) Pr[max

i
{Xai} ≥ t] +

6ε

n
f (S)
max

(
2α

ε

)
,

where we got the third inequality by invoking (5) and (6), the fourth inequality by invoking (6) with
t = 2α/ε, and the fifth inequality by invoking (5) and then (6) with t = 2α/ε. This concludes the
proof of Theorem 14. 2

G.2 Discussion of Theorem 14

In this section we play around with Theorem 14 to gain some intuition about its meaning:

• Suppose that we set all the ti’s equal to t ≥ 2n2α/ε2. In this case, the homogenization property
of Theorem 14 essentially states that the union bound is tight for t large enough. Indeed:

Pr

[
max
i
{Xai} ≥ t

]
≤

(
m∑
i=1

Pr[Xai ≥ t]

)

≤

(
t− 2α

ε

t

)
· Pr

[
max
i
{Xai} ≥ t

]
+

7ε

tn
·
(

2α

ε
· Pr

[
max
i
{Xai} ≥

2α

ε

])
≤ Pr

[
max
i
{Xai} ≥ t

]
+

7ε

tn
·
(

2α

ε
· Pr

[
max
i
{Xai} ≥

2α

ε

])
.
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This is not surprising, since for all i, the event Xai ≥ t only happens with tiny probability, by
the anchoring property of α.

• Now let’s try to set all the ti’s to the same value t′ > t ≥ 2n2α/ε2. The homogenization property
can be used to obtain that the probability of the event maxi{Xai} ≥ t′ scales linearly in t′.

Pr

[
max
i
{Xai} ≥ t′

]
≤

m∑
i=1

Pr[Xai ≥ t′]

≤

(
t− 2α

ε

t′

)
· Pr

[
max
i
{Xai} ≥ t

]
+

7ε

t′n
·
(

2α

ε
· Pr

[
max
i
{Xai} ≥

2α

ε

])
≤ 1

t′
·
[
t · Pr

[
max
i
{Xai} ≥ t

]
+

7ε

n
·
(

2α

ε
· Pr

[
max
i
{Xai} ≥

2α

ε

])]
.

This follows easily from Markov’s inequality, if the expression in the brackets is within a constant
factor of E[maxi{Xai}]. The result is surprising as it is totally possible for that expression to
be much smaller than E[maxi{Xai}].

In the same spirit as the second point above, the theorem has many interesting implications by
setting our ti’s to different values. We make heavy use of the theorem in the following sections.

G.3 Proof of Theorem 13 (the Reduction from Regular to poly(n)-Balanced Dis-
tributions)

G.3.1 Restricting the Prices for the Input Regular Distributions

Lemma 38. Let V = {vi}i∈[n] be a collection of independent regular value distributions, ε ∈ (0, 1),
and c the absolute constant in the statement of Theorem 14. For any price vector P , we can construct
a new price vector P̂ ∈ [εα/n4, 2n2α/ε2]n, such that RP̂ ≥ RP −

(c+10)εROPT
n , where RP and RP̂ are

respectively the expected revenues under price vectors P and P̂ , and ROPT is the optimal expected
revenue for V.

Proof. First step: We first construct a price vector P ′ ∈ [0, 2n2α/ε2]n based on P , such that the
revenue under P ′ is at most an additive O( ε·ROPTn ) smaller than the revenue under P .

We define P ′ as follows. Let S = {i pi > 2n2α/ε2}. For any i ∈ S set p′i = 2(n2/ε−1)α
ε , while if

i /∈ S set p′i = pi. Now assume |S| = m. For notational convenience we assume that S = {ai i ∈ [m]},
and set Xai = vai . Moreover, let t = 2n2α

ε2
and ti = pai .

Clearly, the contribution to RP from items in S is upper bounded by
∑m

i=1 ti Pr[Xai ≥ ti]. We
proceed to analyze the contribution to revenue R′P from items in S. Notice that, when maxi∈S{vi} =
maxi{Xai} ≥ t, the largest value-minus-price gap for items in S is at least 2α/ε (given our subtle
choice of prices for items in S above). Hence, for the item of S achieving this gap not to be the
winner, it must be that some item in [n] \ S has a larger value-minus-price gap. For this to happen,
the value for this item has to be higher than 2α/ε. However, the probability that there exists an
item in [n] \ S with value greater than 2α/ε is smaller than n · ε/n3 = ε/n2 (by Theorem 14). Thus,
when maxi{Xai} ≥ t, then with probability at least 1 − ε/n2, the item in S achieving the largest
value-minus-price gap is the item bought by the buyer. So when the price vector is P ′, the revenue
from the items in S is lower bounded by (t − 2α/ε) Pr[maxi{Xai} ≥ t](1 − ε/n2) (where we used
independence and the fact that p′i = t− 2α/ε for all i ∈ S.)

Clealry, (t− 2α/ε) Pr[max{Xai} ≥ t] ≤ tPr[maxi{Xai} ≥ t] ≤ ROPT . To see this, notice that the
first inequality is obvious and the second follows from the observation that we could set the prices of
all items in S to t and of all other items to +∞ to achieve revenue tPr[maxi{Xai} ≥ t]. So ROPT
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should be larger than this revenue. Similarly, we see that 2α/ε ·Pr[maxiXai ≥ 2α/ε] ≤ ROPT . Using
these observations and Theorem 14 we get

(t− 2α/ε) Pr[max
i
{Xai} ≥ t](1− ε/n2) +

9ε · ROPT
n

≥(t− 2α/ε) Pr[max
i
{Xai} ≥ t] +

7ε · (2α/ε · Pr[maxi{Xai} ≥ 2α/ε])

n

≥
m∑
i=1

ti Pr[Xai ≥ ti].

The above imply that the contribution to RP ′ from the items in S is at most an additive 9ε·ROPT
n

smaller than the contribution to RP from the items in S.
We proceed to compare the contributions from the items in [n] \S to RP and RP ′ . We start with

RP . The contribution from the items in [n] \ S is no greater than the total revenue when we ignore
the existence of the items in S (e.g. by setting the prices of these items to +∞), since this only boosts
the winning probabilities of each item in [n] \ S.

Under price vector P ′, ∀i ∈ S, Pr[vi ≥ p′i] ≤ ε
n3 (Theorem 14). So with probability at least 1− ε

n2 ,
no item in S has a positive value-minus-price gap and the item that has the largest positive gap among
the items in [n]−S is the item that is bought by the buyer. Hence, by independence the contribution
to RP ′ from the items in [n]− S is at least a 1− ε

n2 fraction of the revenue when the items of S are
ignored.

By the above discussion, the contribution to RP ′ from the items in [n]− S is at most an additive
εROPT
n2 smaller than the contribution to RP from the items in [n]− S.

Putting everything together, we get that RP ′ ≥ RP − 10εROPT
n .

Second step: To truncate the lower prices, we invoke Lemma 29. This implies that we can set
all the prices below εα/n4 to εα/n4, only hurting our revenue by an additive εα/n4 ≤ cε

n · maxz(z ·
Pr[maxi{Xi} ≥ z]) ≤ cεROPT /n (where we used Theorem 14 for the first inequality).

Hence, we can define P̂ as follows: if p′i ≤ εα/n4, set p̂i = εα/n4, otherwise set p̂i = p′i. It follows

from the above that RP̂ ≥ RP −
(c+10)εROPT

n .

Thus, we have reduced the problem of finding a near-optimal price vector in [0,+∞]n to the
problem of finding a near-optimal price vector in the set [εα/n4, 2n2α/ε2]n.

G.3.2 Truncating the Support of the Input Regular Distributions

We show that we can truncate the support of the distributions if the price vectors are restricted.
Namely

Lemma 39. Given a collection of independent regular random variables V = {vi}i∈[n] and any ε ∈
(0, 1), let us define a new collection of random variables Ṽ = {ṽi}i∈[n] via the following coupling: for
all i ∈ [n], set ṽi = εα

4n4 if vi <
εα
2n4 , set ṽi = 4n4α/ε3, if vi ≥ 4n4α/ε3, and ṽi = vi otherwise. Also,

let c be the absolute constant defined in Theorem 14. For any price vector P ∈ [εα/n4, 2n2α/ε2]n,

|RP (V) − RP (Ṽ)| ≤ cεROPT (V)
n , where RP (V) and RP (Ṽ) are respectively the revenues of the seller

under price vector P when the values of the buyer are V and Ṽ.

Proof. First, let us define another collection of mutually independent random variables V̂ = {v̂i}i∈[n]

via the following coupling: for all i ∈ [n] set v̂i = 4n4α/ε3 if vi ≥ 4n4α/ε3, and set v̂i = vi otherwise.

By Theorem 14, we know that for every i, Pr[vi ≥ 4n4α/ε3] ≤ ε3

2n7 . Hence, the probability of the
event that there exists an i such that vi ≥ 4n4α/ε3 is no greater than n × ε3/2n7 = ε3/2n6. Thus
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the difference between the contributions of this event to the revenues RP (V) and RP (V̂) is no greater
than 2n2α/ε2 · (ε3/2n6) = εα

n4 ≤ cε
n ·maxz(z ·Pr[maxi{vi} ≥ z]) ≤ cεROPT

n , given that the largest price
is at most 2n2α/ε2.

Now let us consider the event: vi ≤ 4n4α/ε3, for all i. In this case v̂i = vi for all i. So the
contribution of this event to the revenues RP (V) and RP (V̂) is the same.

Thus, |RP (V)−RP (V̂)| ≤ cεROPT
n .

Now it follows from Lemma 35 that the seller’s revenue under any price vector in [εα/n4, 2n2α/ε2]n

is the same when the buyer’s value distributions are V̂ and Ṽ.

The above lemma shows that we can reduce the problem of finding a near-optimal price vector
in [εα/n4, 2n2α/ε2]n for the original value distributions V to the problem of finding a near-optimal
price vector in the set [εα/n4, 2n2α/ε2]n for a collection of value distributions Ṽ supported on the set
[ εα
4n4 , 4n

4α/ε3]. Next, we establish that the latter problem can be reduced to finding any (i.e. not

necessarily restricted) near-optimal price vector for the distributions Ṽ.

Lemma 40. Given a collection of independent regular random variables V = {vi}i∈[n] and any ε ∈
(0, 1), let us define a new collection of random variables Ṽ = {ṽi}i∈[n] via the following coupling: for
all i ∈ [n], set ṽi = εα

4n4 if vi <
εα
2n4 , set ṽi = 4n4α/ε3 if vi ≥ 4n4α/ε3, and set ṽi = vi otherwise.

Let also c be the absolute constant defined in Theorem 14. For any price vector P , we can efficiently

construct a new price vector P̂ ∈ [εα/n4, 2n2α/ε2]n, such that RP̂ (Ṽ) ≥ RP (Ṽ)− (c+10)ε·ROPT (Ṽ)
n .

The proof is essentially the same as the proof of Lemma 38 and we skip it. Combining Lem-
mas 38, 39 and 40 we obtain Theorem 13. The proof is given in the next section.

G.3.3 Finishing the Reduction

Proof of Theorem 13: We start with computing α. This can be done efficiently as specified in the
statement of Theorem 14. Now let us define Ṽ via the following coupling: for all i ∈ [n], set ṽi = εα

4n4

if vi <
εα
2n4 , set ṽi = 4n4α/ε3 if vi ≥ 4n4α/ε3, and set ṽi = vi otherwise. It is not hard to see that the

distributions of the ṽi’s can be computed in time polynomial in n, 1/ε and the description complexity
of the distributions of the vi’s, if these are given to us explicitly. If we have oracle access to these
distributions, we can construct oracles for the distributions of the ṽi’s that run in time polynomial in
n, 1/ε and the desired oracle accuracy.

Now let P be a price vector such that RP (Ṽ) ≥ (1 − ε + (4c+21)ε
n ) · ROPT (Ṽ). It follows from

Lemma 40 that we can efficiently construct a price vector P ′ ∈ [εα/n4, 2n2α/ε2]n, such that

RP ′(Ṽ) ≥
(

1− ε+
(4c+ 21)ε

n

)
· ROPT (Ṽ)− (c+ 10)ε

n
ROPT (Ṽ) ≥

(
1− ε+

(3c+ 11)ε

n

)
· ROPT (Ṽ).

Lemma 38 implies that there exists a price vector P̂ ∈ [εα/n4, 2n2α/ε2]n, such that RP̂ (V) ≥(
1− (c+10)ε

n

)
· ROPT (V). By Lemma 39, we know that

ROPT (Ṽ) ≥ RP̂ (Ṽ) ≥ RP̂ (V)− cε

n
ROPT (V) ≥

(
1− (2c+ 10)ε

n

)
· ROPT (V).

So RP ′(Ṽ) ≥ (1− ε+ cε
n ) · ROPT (V). We can now apply Lemma 39 again, and get

RP ′(V) ≥ RP ′(Ṽ)− cε

n
ROPT (V) ≥ (1− ε) · ROPT (V).

2
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H From Continuous to Discrete Distributions: the Details

We give the details of our discretization results, culminating in the proof of Theorem 15. Throughout
this section we assume that the values {vi}i∈[n] of the buyer lie in a known finite (but not necessarily
discrete) interval [umin, umax], where umax = r · umin for some r ≥ 1. Our goal is to establish that
the prices, as well as the values can be restricted to discrete sets.

H.1 Discretization in the Price Domain

For starters, it is an easy observation that, when the value distributions are supported in the set
[umin, umax], it is sufficient to consider prices that lie in the same range, without any sacrifice in the
revenue. This is the point of the next lemma.

Lemma 41 (Price Restriction). Suppose that the value distributions of the items are supported in
[umin, umax] and let P be any price vector. Suppose we modify the price vector P to a new price vector
P ′ as follows: p′i = umax, if pi > umax; p′i = umin, if p′i < umin; and p′i = pi otherwise. The expected
revenue RP and RP ′ achieved by the price vectors P and P ′ respectively satisfies RP ′ ≥ RP .

Proof of Lemma 41: The proof follows easily by combining Lemmas 42 and 43 below.

Lemma 42. Let P be a price vector and let Sover = {i : pi > umax}. We define P ′ to be the following
price vector: p′i = umax, for all i ∈ Sover, and p′i = pi otherwise. We have RP ′ ≥ RP .

Proof. Observe that, for any valuation vector (v1, v2, . . . , vn) where no item has value larger than or
equal to its price in P , the revenue is 0. If that’s the case, the revenue under P ′ can be no worse
than 0. So we only consider valuation vectors where some item i is sold under P . Then it must be
that vi − pi ≥ 0 and, for all j, vi − pi ≥ vj − pj . Under price vector P ′, there are two possibilities:
(1) i is still the item sold; in this case the revenue is the same under P and P ′; and (2) i is not the
winner anymore; the new winner must be among those items whose price was decreased going from
P to P ′, i.e. some item in j ∈ Sover. Observe that p′j = umax ≥ pi (since for i to be a winner under
P , pi must be no greater than umax, as otherwise vi − pi < 0). Hence, under P ′ an item j that is at
least as expensive as i is sold. Given that the above is true point-wise, RP ′ ≥ RP .

Lemma 43. Let P be a price vector and let Sbelow = {i : pi < umin}. We define P ′ to be the following
price vector: p′i = umin, for all i ∈ Sbelow, and p′i = pi otherwise. We have RP ′ ≥ RP .

Proof. For any valuation vector (v1, v2, . . . , vn) where no item has value larger than or equal to its
price in P , the revenue is 0. If that’s the case, the revenue under P ′ can be no worse than 0. So we
only consider valuation vectors where some item i is sold under P . Suppose first that i /∈ Sbelow. Then
i is still the winner under price vector P ′, since we only increased the prices of items different than i
going from P to P ′. If the winner i ∈ Sbelow, there are two possibilities: (1) i is still the winner; then
the price paid is higher under P ′, since p′i = umin ≥ pi. (2) i is not the winner anymore; nevertheless,
there still needs to be a winner since vi ≥ umin = p′i, and the price paid is at least umin ≥ pi. Given
that the above hold point-wise, RP ′ ≥ RP .

2

Combining Lemma 41 with a price discretization lemma attributed to Nisan [5], allows us to
discretize the set of prices to a set of cardinality O( log r

ε2
), as follows.

Lemma 44 (Price Discretization). Suppose that the value distributions of the items are supported in
[umin, umax]. For any ε ∈ (0, 1/2), consider the following finite set of prices:

Pε =

{
p p =

1 + ε2 − ε
(1− ε2)i

· umin, i ∈
[⌊

log 1
(1−ε2)

(umax/umin)

⌋]}
.
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For any price vector P ∈ [umin, umax]n, we can construct a price vector P ′ such that p′i ∈ Pε and
p′i ∈ [1 − ε, 1 + ε2 − ε] · pi, for all i. The expected revenue achieved by the two price vectors satisfies
RP ′ ≥ (1− 2ε)RP .

Proof of Lemma 44: Our proof exploits the following Lemma, due to Nisan.

Lemma 45 (Nisan). For any ε ∈ (0, 1), let P and P ′ be price vectors that satisfy p′i ∈ [1−ε, 1+ε2−ε]·pi,
for all i. Then the expected revenue achieved by the two price vectors satisfies RP ′ ≥ (1− 2ε)RP .

Coming to the proof of Lemma 44, for every pi define

p′i =
1 + ε2 − ε

(1− ε2)

⌊
log1/(1−ε2)(pi/umin)

⌋ · umin.
Observe that

1

(1− ε2)
blog1/(1−ε2)(pi/umin)c · umin ∈ [1− ε2, 1] · pi.

On the other hand, (1− ε2)(1 + ε2 − ε) = 1− ε+ ε3 − ε4 ≥ 1− ε. Thus, p′i ∈ [1− ε, 1 + ε2 − ε] · pi, for
all i. Now Lemma 45 implies that RP ′ ≥ (1− 2ε)RP . 2

H.2 “Horizontal” Discretizations in the Value Domain

To enable discretizations in the value domain, we prove an analogue of Nisan’s lemma for the value
distributions. A straightforward modification of Nisan’s approach would result in a discrete support
of the value distributions of size linear in r2 log r, where r = umax/umin. With a more intricate
argument, we obtain a reduction to a support of size linear in log r. Our discretization result is
summarized in Lemma 48 and is obtained via an application of Lemma 46.

Lemma 46. Let {vi}i∈[n] and {v̂i}i∈[n] be two collections of mutually independent random variables,
where all vi’s are supported on a common set [umin, umax] ⊂ R+, and let r = umax/umin. Let also

δ ∈
(

0, 1
(4dlog re)1/(2a−1)

]
, where a ∈ (1/2, 1), and suppose that we can couple the two collections of

random variables so that, for all i ∈ [n], v̂i ∈ [1 + δ − δ2, 1 + δ] · vi with probability 1. Finally, let
ROPT be the optimal expected revenue from any pricing when the buyer’s values are {vi}i∈[n]. Then,
for any price vector P ∈ [umin, umax]n, such that RP ({vi}i) ≥ ROPT /2, it holds that

RP ({v̂i}i) ≥ (1− 3δ1−a)RP ({vi}i),

where RP ({vi}i) is the expected revenue of a seller using the price vector P when the values of the
buyer are {vi}i∈[n], while RP ({v̂i}i) is the revenue under P when the buyer’s values are {v̂i}i∈[n].

Proof of Lemma 46: For notational convenience, throughout this proof we use RP := RP ({vi}i) and
R̂P := RP ({v̂i}i).

Consider now the joint distribution of {vi}i∈[n] and {v̂i}i∈[n] satisfying v̂i ∈ [1 + δ − δ2, 1 + δ] · vi,
for all i, with probability 1. For every point in the support of the joint distribution, we show that the
revenue of the seller under price vector P is approximately equal in “Scenario A”, where the values
of the buyer are {vi}i∈[n], and in “Scenario B”, where the values are {v̂i}i∈[n]. In particular, we argue
first that the winning prices in the two scenarios are within δ · umax from each other with probability
1. Indeed, for every point in the support of the joint distribution, we distinguish two cases:

1. The items sold are the same in the two scenarios. In this case, the winning prices are also the
same.
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2. The items sold are different in the two scenarios. In this case, we show that the winning prices
are close. Since v̂i is greater than vi for all i, if there is a winner in Scenario A, there is a winner
in Scenario B. Let i be the winner in Scenario A, and j be the winner in Scenario B. We have
the following two inequalities:

vi − pi ≥ vj − pj
v̂j − pj ≥ v̂i − pi

The two inequalities imply that
v̂j − vj ≥ v̂i − vi.

Since v̂j ∈ [1+ δ− δ2, 1+ δ] ·vj , it follows that v̂j−vj ≤ δ ·vj . Using the same starting condition
for i, we can show that v̂i − vi ≥ (δ − δ2) · vi.
Hence,

δ · vj ≥ (δ − δ2) · vi.

Also we know that
pj ≥ pi + vj − vi.

Therefore,
pj ≥ pi + vj − vi ≥ pi + (1− δ) · vi − vi = pi − δ · vi.

The above establishes that with probability 1 the winning prices in the two scenarios are within
an additive δumax from each other. We proceed to convert this additive approximation guarantee into
a multiplicative approximation guarantee. Observe that whenever pi ≥ δavi, pi− δ · vi ≥ (1− δ1−a)pi.
Hence, if we can show that most of the revenueRP is contributed by value-price pairs (vi, pi) satisfying
pi ≥ δavi, we can convert our additive approximation to a (1 − δ1−a) multiplicative approximation.
Indeed, we argue next that when a price vector P satisfies RP ≥ ROPT /2, the contribution to the
revenue from the event

S = {the sold item k satisfies pk < δavk}
is small. More precisely,

Proposition 47. If RP ≥ ROPT /2, then the contribution to RP from the event S is no greater than
2δ1−aRP .

Proof. The proof is by contradiction. For all i ∈ [dlog re], define the event

Si = {(the sold item k has price pk < δavk) ∧ (pk ∈ [2i−1umin, 2
iumin))}.

Note that Si and Sj are disjoint for all i 6= j. Let np = dlog re and note that S = ∪npi=1Si.
6 Assuming

that the contribution to RP from the event S is larger than 2δ1−aRP , there must exist some i such
that the contribution to RP from Si is at least 2δ1−aRP /np ≥ δ1−aROPT /np. For this i, let us modify
the price vector P to P ′ in the following fashion:

p′k =

{
+∞ pk /∈ [2i−1umin, 2

iumin)
2i−1umin

δa otherwise

We claim that for all outcomes (v1, v2, . . . , vn) ∈ Si, there always exists an item sold under P ′.
Indeed, let k be the winner under P . Then pk < δavk. By the definition of p′k, we know that

p′k =
2i−1umin

δa
≤ pk/δa < vk.

6To be more accurate, replace the set [2i−1umin, 2
iumin) by [2i−1umin, 2

iumin] for the definition of the event Snp .
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Thus, an item has to be sold. Moreover, the sold item has price 2i−1umin
δa , as all the other prices are

set to +∞. Hence, we can lower bound RP ′ as follows

RP ′ ≥ Pr[Si] ·
2i−1umin

δa
≥ Contribution of Si to RP

2δa
≥ δ1−aROPT

2npδa
.

Given that δ ≤ ( 1
4np

)1/(2a−1), the above implies RP ′ ≥ 2ROPT , which is impossible, i.e. we get a
contradiction. This concludes the proof of the proposition.

Given the proposition, at least (1−2δ1−a) fraction of RP is contributed by value-price pairs (vi, pi)
satisfying pi ≥ δavi. Recalling our earlier discussion, this implies that R̂P ≥ (1−2δ1−a)(1−δ1−a)RP ≥
(1− 3δ1−a)RP . 2

Lemma 46 allows us to discretize the support of the value distributions into a discrete set of
bounded cardinality without harming the revenue, as specified by the following lemma.

Lemma 48 (Horizontal Discretization of Values). Let {vi}i∈[n] be a collection of mutually independent

random variables supported on a set [umin, umax] ⊂ R+, and let r = umax
umin

. For any δ ∈
(

0, 1
(4dlog re)4/3

)
,

there exists another collection of mutually independent random variables {v̂i}i∈[n], which are supported

on a discrete set of cardinality O
(

log r
δ2

)
and satisfy the following properties.

1. The optimal revenue when the buyer’s values are {v̂i}i∈[n] is at least a (1 − 3δ1/8)-fraction

of the optimal revenue when the values are {vi}i∈[n]. I.e. R̂OPT ≥ (1 − 3δ1/8)ROPT , where

ROPT = maxP RP ({vi}i) and R̂OPT = maxP RP ({v̂i}i).
2. Moreover, for any constant ρ ∈ (0, 1/2) and any price vector P such that RP ({v̂i}i) ≥ (1 −

ρ)R̂OPT , we can construct in time polynomial in the description of P , 1/δ and log umin another
price vector P̃ such that RP̃ ({vi}i) ≥ (1− 7δ1/8 − ρ)ROPT .

Moreover, assuming that the set [umin, umax] is specified in the input,7 we can compute the support
of the distributions of the variables {v̂i}i in time polynomial in log umin, log umax and 1/δ. We can
also compute the distributions of the variables {v̂i}i∈[n] in time polynomial in the size of the input and
1/ε, if we have the distributions of the variables {vi}i∈[n] explicitly. If we have oracle access to the
distributions of the variables {vi}i∈[n], we can construct an oracle for the distributions of the variables
{v̂i}i∈[n], running in time polynomial in log umin, log umax, 1/δ, the input to the oracle and the desired
precision.

Proof of Lemma 48: We begin with the description of the random variables {v̂i}i∈[n]. We will use

{Fi}i∈[n] and {F̂i}i∈[n] to denote respectively the cumulative distribution functions of the variables

{vi}i∈[n] and {v̂i}i∈[n]. Taking ξ = δ2

1+δ−δ2 , our new variables {v̂i}i∈[n] will only be supported on the
set {

aj = (1 + δ)(1 + ξ)jumin j ∈
{

0, . . . ,
⌊

log1+ξ

umax
umin

⌋}}
.

Moreover, for all i, the probability mass that F̂i assigns to every point in its support is:

F̂i(aj) = Fi(aj/(1 + δ − δ2))− Fi(aj/(1 + δ)).

Now, for all i, we couple vi with v̂i as follows: If vi ∈ [aj/(1+δ), aj/(1+δ−δ2)), we set v̂i = aj . Given
our definition of the F̂i’s, this defines a valid coupling of the collections V = {vi}i and V̂ = {v̂i}i.

7The requirement that the set [umin, umax] is specified as part of the input is only relevant if we have oracle access
to the distributions of the vi’s, as if we have them explicitly we can easily find [umin, umax].
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Moreover, by definition, our coupling satisfies v̂i ∈ [1 + δ − δ2, 1 + δ] · vi, for all i, with probability 1,
and all the v̂i’s are supported on [(1 + δ)umin, (1 + δ)umax].

We are now ready to establish the first part of the lemma. Using Lemma 46 and the property of
our coupling it follows immediately that

RP (V̂) ≥ (1− 3δ1/8)RP (V),

for any price vector P ∈ [umin, umax]n s.t. RP (V) ≥ 1
2ROPT . Lemma 41 implies that the optimal

revenue for V is achieved by some price vector in [umin, umax]n. Hence, we get from the above that
R̂OPT ≥ (1− 3δ1/8)ROPT .

We proceed to show the second part of the lemma. We do this by defining another collection
of random variables Ṽ = {ṽi}i∈[n]. These are defined implicitly via the following coupling between
{ṽi}i∈[n] and {v̂i}i∈[n]: for all i, we set

ṽi =
v̂i

(1 + δ − δ2)(1 + δ)
.

It follows that the ṽi’s are supported on [umin/(1 + δ − δ2), umax/(1 + δ − δ2)].
Moreover, for any price vector P , let us construct another price vector P̃ as follows:

p̃i =
pi

(1 + δ − δ2)(1 + δ)
. (7)

Under our coupling between {ṽi}i∈[n] and {v̂i}i∈[n], it is not hard to see that if we use price vector

P when the buyer’s values are {v̂i}i∈[n] and price vector P̃ when the buyer’s values are {ṽi}i∈[n], then
the index of the item that the buyer buys is the same in the two cases, with probability 1. Hence:

RP̃ (Ṽ) =
RP (V̂)

(1 + δ − δ2)(1 + δ)
. (8)

This follows from the fact that both P̃ and {ṽi}i∈[n] are the same linear transformations of P and
{v̂i}i∈[n] respectively.

Composing the coupling between vi and v̂i and the coupling between v̂i with ṽi, we obtain a
coupling between vi and ṽi. We show that this coupling satisfies vi ∈ [1 + δ − δ2, 1 + δ] · ṽi, with
probability 1. Since (1 + δ − δ2)vi ≤ v̂i ≤ (1 + δ)vi,

vi/(1 + δ) ≤ v̂i/(1 + δ − δ2)(1 + δ) = ṽi ≤ vi/(1 + δ − δ2).

vi ∈ [1 + δ − δ2, 1 + δ] · ṽi.

Given that vi ∈ [1 + δ− δ2, 1 + δ] · ṽi with probability 1, an application of Lemma 46 implies that,
for any price vector P̃ ∈ [umin/(1 + δ − δ2), umax/(1 + δ − δ2)]n satisfying RP̃ (Ṽ ) ≥ 1

2ROPT (Ṽ ):

RP̃ (V) ≥ (1− 3δ1/8)RP̃ (Ṽ). (9)

Now let P be a price vector satisfying RP (V̂) ≥ (1 − ρ)R̂OPT . Lemma 41 implies that WLOG
we can assume that P ∈ [(1 + δ)umin, (1 + δ)umax]n (as if the given price vector is not in this set,
we can efficiently convert it into one that is in this set without losing any revenue.) Then the vector
P̃ obtained from P via Eq. (7) is in [umin/(1 + δ − δ2), umax/(1 + δ − δ2)]n, and clearly satisfies

34



RP̃ (Ṽ) ≥ (1− ρ)ROPT (Ṽ), as P̃ and Ṽ are the same linear transformations of P and V̂ respectively.
Hence, Equations (8) and (9) give

RP̃ (V) ≥
(

(1− 3δ1/8)
/

(1 + δ)(1 + δ − δ2)
)
RP (V̂)

≥ (1− 3δ1/8)(1− 2δ)RP (V̂)

≥ (1− 4δ1/8)RP (V̂)

≥ (1− 4δ1/8)(1− ρ)R̂OPT
≥ (1− 4δ1/8)(1− ρ)(1− 3δ1/8)ROPT (using the first part of the theorem)

≥ (1− 7δ1/8 − ρ)ROPT .

2

H.3 Proof of Theorem 15

Proof of Theorem 15: Lemma 48 implies that we can reduce the problem Price(V, ε) to the problem
Price(V̂, (ε/8)8), where V̂ = {v̂i}i is a collection of mutually independent random variables supported
on a common discrete set S = {s(1), . . . , s(k1)} ⊂ [(1 + (ε/8)8)umin, (1 + (ε/8)8)umax] of cardinality
k1 = O( log r

ε16
). Now, Lemmas 41 and 44 imply that we can reduce the problem Price(V̂, (ε/8)8) to the

problem ResrtictedPrice(V̂,P, 0.5(ε/8)8), where P is a discrete set of prices of cardinality O( log r
ε16

).
We omit the analysis of the running time of the reduction, as it is straightforward. 2

H.4 “Vertical” Discretizations in the Value Domain

Lemma 48 allows us to reduce our problem into one where the support of the value distributions is
a bounded set of cardinality O( log r

δ2
), where r = umax/umin without worsening the revenue by more

than a fraction of δ1/8. The following lemma allows us to also round the probabilities assigned by
the value distributions to every point in their support. But, this result is weaker as we require the
probabilities to scale polynomially in both the number of distributions n and r. Still, the lemma is
handy in the design of our algorithms as it helps keep our calculations in finite precision.

Lemma 49 (Vertical Discretization of Values). Let {v′i}i∈[n] be a set of mutually independent random
variables supported on a discrete set S = {s1, . . . , sm} and let [umin, umax] ⊂ R and r = umax

umin
. It is

assumed that S as well as umin, umax are specified as part of the input. Then we can construct another
collection of mutually independent random variables {v′′i }i∈[n], which are supported on the same set S

and are such that the probability that v′′i equals any value in S is an integer multiple of 1
(rn)3

for all i.

Moreover, for any price vector P ∈ [umin, umax]n, if R′P is the seller’s expected revenue under price
vector P when the buyer’s values are {v′i}i∈[n], and R′′P is the revenue under price vector P when the
buyer’s values are {v′′i }i∈[n], then

|R′P −R′′P | ≤
4m

rn2
· umin.

Moreover, the distributions of the variables v′′i are constructed explicitly, and the running time of
the construction is polynomial in n, m, log r, the description complexity of S, and the description
complexity of the distributions of the v′i’s, if these are given explicitly in the input.

Proof of Lemma 49: If we know the distributions explicitly, then, for all i, we construct the distribution
of v′′i based on the distribution of v′i as follows. Let π′sj = Pr[v′i = sj ], and

δ′sj = π′sj −
1

(rn)3
· bπ′sj · (rn)3c.
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Denoting Pr[v′′i = sj ] by π′′sj (for convenience), we set π′′sj := π′sj − δ′sj , for j ≥ 2, and π′′s1 :=
1−

∑
j≥2 π

′′
sj .

It is not hard to see now that we can couple the two sets of random variables in the following way.

For every i: if v′i = s1, we let v′′i = s1; if v′i = sj for j ≥ 2, we let v′′i = sj with probability 1 −
δ′sj
π′sj

,

and let v′′i = s1 with probability
δ′sj
π′sj

. Notice that this coupling satisfies:

Pr[v′i 6= v′′i ] =
m∑
j=2

π′sj ·
δ′sj
π′sj

=
m∑
j=2

δ′sj ≤
m

(rn)3
.

Now taking a union bound over all i, the probability that the vector v′ = (v′1, v
′
2, . . . , v

′
n) is different

from v′′ = (v′′1 , v
′′
2 , . . . , v

′′
n) is at most m

(rn)2
. In other words, with probability at least 1− m

(rn)2
, v′ = v′′.

Clearly, for all draws from the distribution such that v′ = v′′, the revenues are the same. When
v′ 6= v′′, the difference between the revenues is at most umax, since P ∈ [umin, umax]n. And this only
happens with probability at most m

(rn)2
. Therefore, the difference between the expected revenues under

the two distributions should be no greater than m
(rn)2

· umax ≤ m
rn2 · umin, i.e. |R′P −R′′P | ≤

m
rn2 · umin.

Clearly, we can compute the distributions of the v′′i ’s in time polynomial in n, m, log r and the
description complexity of the distributions of the variables v′i’s, if these distributions are given to us
explicitly. If we have oracle access to the distributions of the v′i’s we can query our oracle with high
enough precision, say 1/(rn)3, to obtain a function gi : S → [0, 1] that satisfies

∑
x∈S gi(x) = 1± m

(rn)3
.

Using gi as a proxy for the distribution of v′i we can follow the algorithm outlined above to define the
distribution of v′′i . It is not hard to argue that the total variation distance between v′i and v′′i can be
bounded by 4m

(rn)3
. Hence, we can couple v′i and v′′i so that

Pr[v′i 6= v′′i ] ≤ 4m

(rn)3

and proceed as above. 2

I The Algorithm for Discrete Distributions

I.1 The DP Step: Add an Item and Prune the Table

In Section 7, we described what our intended meaning of the Boolean function g(i, P̂r). Here we
discuss how to compute g via Dynamic Programming. Our dynamic program works bottom-up (i.e.
from smaller to larger i’s), filling in g’s table so that the following recursive conditions are met.

• If i > 1, we set g(i, P̂r) = 1 iff there is a price p(j) and a distribution P̂r
′

so that the following hold:

1. g
(
i− 1, P̂r

′)
= 1.

2. Suppose that under some pricing the (winning-value, winning-price) distribution for the prefix

1 . . . i − 1 of the items is P̂r
′
, and we assign price p(j) to the i-th item. We can compute the

resulting (winning-value, winning-price) distribution {P̂r
′′
i1,i2}i1∈[k1], i2∈[k2] for the prefix 1 . . . i
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from just P̂r
′
i1,i2 and the distribution F̂i. Indeed:

P̂r
′′
i1,i2 = P̂r

′
i1,i2 · Pr

vi∼F̂i
[vi − p(j) < v(i1) − p(i2)]

+


∑
j1,j2

s.t. v(j1)−p(j2)
≤v(i1)−p(i2)

P̂r
′
j1,j2

 · Pr
vi∼F̂i

[vi = v(i1)] · 1p(j)=p(i2) .

We require that P̂r is a rounded version of P̂r
′′
, where all the probabilities are integer multiples

of 1
m3 . The rounding should be of the following canonical form. Setting δi1,i2 = P̂r

′′
i1,i2 −⌊

P̂r
′′
i1,i2

1/m3

⌋
· 1
m3 , and l =

(∑
i1∈[k1], i2∈[k2] δi1,i2

)/
( 1
m3 ), we require that the first l probabilities in

{P̂r
′′
i1,i2}i1∈[k1],[i2]∈k2 in some fixed lexicographic order are rounded up to the closest multiple of

1
m3 , and the rest are rounded down to the closest multiple of 1

m3 .

(If Conditions 1 and 2 are met, we also keep a pointer from cell g(i, P̂r) to cell g(i − 1, P̂r
′
) of the

dynamic program recording the price p(j2) on that pointer. We use these pointers later to recover
price vectors consistent with a certain distribution.)

• To fill in the first slice of the table corresponding to i = 1, we use the same recursive definition
given above, imagining that there is a slice i = 0, whose cells are all 0 except for those corresponding
to the distributions P̂r that satisfy: P̂ri1,i2 = 0, for all i1, i2, except for the lexicographically smallest

(i∗1, i
∗
2) ∈ arg min(k1,k2) v

(k1) − p(k2), where P̂ri∗1,i∗2 = 1.

While decribed the function g recursively above, we compute it iteratively from i = 1 through n.

I.2 Lower Bounding the Revenue

In this section, we justify the correctness of the algorithm presented in Section 7, providing a proof
of Lemma 16. Intuitively, if we did not perform any rounding of distributions, our algorithm would
have been exact, outputting the optimal price vector in {p(1), . . . , p(k2)}n. We show next that the
rounding is fine enough that it does not become detrimental to our revenue. To show this, we use the
probabilistic concepts of total variation distance and coupling of random variables. Recall that the
total variation distance between two distributions P and Q over a finite set A is defined as follows

||P−Q||TV =
1

2

∑
α∈A
|P(α)−Q(α)|.

Similarly, if X and Y are two random variables ranging over a finite set, their total variation distance,
denoted ||X − Y ||TV is defined as the total variation distance between their distributions.

Proceeding to the correctness of our algorithm, let P = (p1, p2, · · · , pn) ∈ {p(1), . . . , p(k2)}n be an
arbitrary price vector. We can use this price vector to select n cells of our dynamic programming
table, picking one cell per layer. The cells are those that the algorithm would have traversed if it
made the decision of assigning price pi to item i. Let us call the resulting cells cell1, cell2, . . . , celln.

For all i, we intend to compare the distributions
{

Pr
(i)
i1,i2

}
i1∈[k1], i2∈[k2]

and

{
P̂r

(i)

i1,i2

}
i1∈[k1], i2∈[k2]

,

which are respectively the (winning-value,winning-price) distribution:

• arising when the prefix 1 . . . i of items with distributions {F̂j}j=1,...,i is priced according to price
vector (p1, . . . , pi);

37



• stored in celli by the algorithm.

The following lemma shows that these distributions have small total variation distance.

Lemma 50. Let {Xi}i∈[n] and {X̂i}i∈[n] be two collections of (k1k2)-dimensional random unit vectors

defined in terms of
{

Pr(i)
}
i

and

{
P̂r

(i)
}
i

as follows: for all i ∈ [n], i1 ∈ [k1], i2 ∈ [k2], and

` = (i1 − 1) · k2 + i2 ∈ [k1k2], we set Pr[Xi = e`] = Pr
(i)
i1,i2

and Pr[X̂i = e`] = P̂r
(i)

i1,i2, where e` is the
unit vector along dimension `.

Then, for all i,
||Xi − X̂i||TV ≤ nk1k2/m

3.

Proof. We prove this by induction. For the base case (i = 1), observe that ||X1− X̂1||TV ≤ k1k2/m
3,

because P̂r
(1)

is just a rounding of Pr(1) into probabilities that are multiples of 1
m3 , whereby the

probability of every point in the support is not modified by more than an additive 1
m3 .

For the inductive step, it suffices to argue that for all i ∈ [n− 1],

||Xi+1 − X̂i+1||TV − ||Xi − X̂i||TV ≤ k1k2/m
3.

To show this, we are going to consider two auxiliary random variables Yi+1 and Zi+1:

• Yi+1 is a (k1k2)-dimensional random unit vector defined as follows: for i∗2 ∈ [k2] such that
p(i∗2) = pi+1, if ` = (i1−1)·k2+i∗2, then Pr[Yi+1 = e`] = F̂i+1(v(i1)), otherwise Pr[Yi+1 = e`] = 0. 8

• Zi+1 is a (k1k2)-dimensional random unit vector defined as follows

Pr[Zi+1 = e(i1−1)·k2+i2 ] =
∑
j1,j2

s.t. v(j1)−p(j2)
≤v(i1)−p(i2)

Pr[X̂i + Yi+1 = e(i1−1)·k2+i2 + e(j1−1)·k2+j2 ], (10)

where for the purposes of the above definition X̂i and Yi+1 are taken to be independent. 9

We claim that

||Xi+1 − Zi+1||TV ≤ ||(Xi + Yi+1)− (X̂i + Yi+1)||TV . (11)

Indeed, we can define Xi+1 as follows: for all i1, i2,

Pr[Xi+1 = e(i1−1)·k2+i2 ] =
∑
j1,j2

s.t. v(j1)−p(j2)
≤v(i1)−p(i2)

Pr[Xi + Yi+1 = e(i1−1)·k2+i2 + e(j1−1)·k2+j2 ], (12)

where for the purposes of the above definition Xi and Yi+1 are taken to be independent. Now (10),
(12) and the definition of the total variation distance imply (11).

To finish our proof, suppose further that we couple Xi and X̂i optimally. By the optimal coupling
theorem our joint distribution satisfies Pr[Xi 6= X̂i] = ||Xi − X̂i||TV . Defining Yi+1 in the same space
as Xi and X̂i so that Yi+1 is independent from both Xi and X̂i, the coupling lemma implies:

||(Xi + Yi+1)− (X̂i + Yi+1)||TV ≤ Pr[(Xi + Yi+1) 6= (X̂i + Yi+1)]

≤ Pr[Xi 6= X̂i]

= ||Xi − X̂i||TV (since Xi and X̂i are optimally coupled)

On the other hand, it is easy to see that ||Zi+1 − X̂i+1||TV ≤ k1k2/m
3. Indeed:

8In other words, Yi+1 is the random unit vector analog of F̂i+1.
9Zi+1 is the random unit vector analog of the (winning-value,winning-price) distribution for the prefix 1 . . . i+ 1, if

item i+ 1 is assigned price pi+1 and the (winning-value,winning-price) distribution for the prefix 1 . . . i is P̂ri.
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• Zi+1 is the random unit vector analog of the (winning-value,winning-price) distribution for the
prefix 1 . . . i+1 of items, if item i+1 is assigned price pi+1 and the (winning-value,winning-price)

distribution for the prefix 1 . . . i is P̂ri;

• X̂i+1 is the random unit vector analog of the same (winning-value,winning-price) distribution
as above, except after rounding that distribution according to the rounding rule used in our
dynamic program;

• the rounding changes every probability in the support by at most an additive 1/m3.

Combining the above and using the triangle inequality, we obtain

||Xi+1 − X̂i+1||TV ≤ ||Zi+1 − X̂i+1||TV + ||Xi+1 − Zi+1||TV ≤ k1k2/m
3 + ||Xi − X̂i||TV .

Proof of Lemma 16: Let P ∗ be the optimal price vector for the instance of the pricing problem obtained
after the application of Lemma 49, and let cell∗ be the cell at layer n of the DP corresponding to the
price vector P ∗. Lemma 50 implies that∑

i1∈[k1], i2∈[k2]

|Pr
(n)
i1,i2
− P̂r

(n)

i1,i2 | ≤ nk1k2/m
3,

where Pr(n) is the true (winning-value,winning-price) distribution corresponding to price vector P ∗

and P̂r
(n)

is the distribution stored in cell cell∗. Clearly, the expected revenues RP ∗ and Rcell∗ of
these two distributions are related, as follows

|RP ∗ −Rcell∗ | ≤
∑

i1∈[k1], i2∈[k2]

|Pr
(n)
i1,i2
− P̂r

(n)

i1,i2 | · p
(i2) ≤ nk1k2

m3
·max{P} ≤ k1k2

m2
·min{P}.

Now let cell′ be the cell at layer n of the dynamic programming table that has the highest revenue,
and let P ′ be the price vector reconstructed from cell′ by tracing back-pointers. Using the same
notation as above, call Rcell′ the revenue from the distribution stored at cell′ and RP ′ the revenue
from price vector P ′. Then we have the following:

Rcell′ ≥ Rcell∗ ; (by the optimality of cell′) (13)

|RP ′ −Rcell′ | ≤
k1k2

m2
·min{P}. (using Lemma 50, as we did above) (14)

Putting all the above together, we obtain that

RP ′ ≥ RP ∗ −
2k1k2

m2
·min{P}. (15)

Hence, the price vector P ′ output by the dynamic program achieves revenue RP ′ that is close to
the optimal in the instance of the pricing problem obtained after the first step of our algorithm, i.e.
the instance obtained after invoking the reduction of Lemma 49. We still have to relate the revenue
that P ′ achieves in the original instance (i.e. before the reduction of Lemma 49) to the optimal
revenue OPT of that instance. For this, let us define the quantities:

• R(P ∗): the revenue achieved by price vector P ∗ in the original instance;

• R(P ′): the revenue achieved by price vector P ′ in the original instance.
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Using Lemma 49 we can easily see that

R(P ∗) ≥ OPT − 8m

rn2
·min{P}.

Moreover,

R(P ′) ≥ RP ′ −
4m

rn2
·min{P}; and

RP ∗ ≥ R(P ∗)− 4m

rn2
·min{P}.

Combining these with (15), we get

R(P ′) ≥ RP ∗ −
2k1k2

m2
·min{P} − 4m

rn2
·min{P} (16)

≥ R(P ∗)− 2k1k2

m2
·min{P} − 8m

rn2
·min{P} (17)

≥ OPT − 2k1k2 + 16mr

m2
·min{P}. (18)

2

I.3 Analyzing the Running Time

Proof of Lemma 17: Recall that both the support S = {v(1), v(2), . . . , v(k1)} of the value distributions
and the set P :=

{
p(1), . . . , p(k2)

}
of prices are explicitly part of the input to our algorithm.

Given this, the reduction of Lemma 49 (used as the first step of our algorithm) takes time poly-
nomial in the size of the input. After this reduction is carried out, the value distributions {F̂i}i that
are provided as input to the dynamic program are known explicitly and the probabilities they assign
to every point in S are integer multiples of 1

m3 , where m = nr, r = max p(j)/p(i).
We proceed to bound the run-time of the Dynamic Program. First, it is easy to see that its table

has at most n× (m3 + 1)k1k2 cells, since there are n possible choices for i and m3 + 1 possible values
for each Pri1,i2 . Our DP computation proceeds iteratively from layer i = 1 to layer i = n of the table.
For every cell of layer i, there are at most k2 different prices we can assign to the next item i+ 1, and
for every such price we need to compute a distribution and round that distribution. Hence, the total
work we need to do per cell of layer i is polynomial in the input size, since our computation involves
probabilities that are integer multiples of 1

m3 . Indeed the probability distributions maintained by our

dynamic program use probabilities that are integer multiples of 1
m3 , and recall the distributions F̂i

also use probabilities in multiples of 1
m3 . Hence, the total time we need to spend to fill up the whole

table is mO(k1k2). In the last phase of the algorithm, we exhaustively search for the cell of layer n
with the highest expected revenue. This costs time polynomial in the size of the input and mO(k1k2),
since there are mO(k1k2) cells at layer n, and the expected revenue computation for each cell can be
done in time polynomial in the input size. Once we find the cell with the highest expected revenue,
we can obtain a corresponding price vector in time O(n), since we just need to follow back-pointers
from layer n to layer 1.

Overall, the running time of the algorithm is polynomial in the size of the input and mO(k1k2). 2

J Summary of Algorithmic Results

In this section, we prove our main algorithmic results (Theorems 1, 2, 3, 4, and 8). We only mildly
try to optimize the constants in our running times. We should be able to improve them with a more
careful analysis. We start with the proof of Theorem 3, which we repeat here.
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Theorem 51 (Finite Support). Let {Fi}i∈[n] be a collection of distributions that are supported on
a common set [umin, umax] ⊂ R+ which is specified as part of the input, 10 and let r := umax/umin.
Then, for any constant ε > 0, there is an algorithm that runs in time polynomial in the size of the
input and nlog9 r/ε8 and computes a price vector P such that

RP ≥ (1− ε)OPT,

where RP is the expected revenue under price vector P when the buyer’s values for the items are
independent draws from the distributions {Fi}i and OPT is the optimal revenue.

Proof of Theorem 51: First set ε̂ = min
{
ε, 1

(4dlog re)1/6

}
. Clearly, it suffices to find a price vector with

expected revenue (1− ε̂)OPT . Now, let us invoke the reduction of Theorem 15, reducing this task to
solving the discrete restricted-price problem RestrictedPrice({F̂i}i,P, 0.5(ε̂/8)8), where the value
distributions {F̂i}i are supported on a discrete set S = {s(1), . . . , s(k1)} of cardinality k1 = O(log r/ε̂16)
and the prices are also restricted to a discrete set P = {p(1), . . . , p(k2)} of cardinality k2 = O(log r/ε̂16).
It is important to note that S ⊂ [(1 + (ε̂/8)8)umin, (1 + (ε̂/8)8)umax] and mini{p(i)} ≤ mini{s(i)} (this

can be checked by a careful study of the proof of Theorem 15). Hence, if ÔPT is the optimal revenue

of the discrete instance resulting from the reduction, we have ÔPT ≥ mini{p(i)}. It is our goal to

achieve revenue at least (1− 0.5(ε̂/8)8)ÔPT in this instance.
To do that, we invoke the algorithm of Section 7 or a modified version of it, depending on the value

of n . In particular, if n ≥ c
ε̂20

, for a large enough constant c, we use the algorithm as is, obtaining a
price vector with revenue at least

ÔPT −
(

2k1k2

(n(2r))2
+

16

n

)
·min

i
{p(i)} ≥ ÔPT

(
1−

(
O

(
log2 r

ε̂32n2r2

)
+

16

n

))
(19)

≥ ÔPT
(
1−O(ε̂8)

)
, (20)

as we wanted. The running time of the algorithm in this case is polynomial in the input and (nr)
log2 r

ε̂32 ,

that is polynomial in the input and n
log3 r

ε̂32 (assuming n ≥ 2). If n ≤ c
ε̂20

, we modify the input,
introducing dummy items so that the total number of items for sale is n′ = c

ε̂20
. The dummy items

have distributions that place a point mass of 1 at value min{s(i)}/2 (so we extend the set of values
{s(1), . . . , s(k1)} by one point s(0) := min{s(i)}/2), and hence they do not contribute anything to the
revenue, since the minimum price satisfies min{p(i)} > min{s(i)}/2 (this is easy to check from the
proof of Lemma 44.) Invoking the algorithm of Section 7 on the augmented instance, we obtain a
price vector with revenue

ÔPT −
(

2(k1 + 1)k2

(n′(4r))2
+

16

n′

)
·min

i
{p(i)} ≥ ÔPT

(
1−

(
O

(
log2 r

ε̂32(n′r)2

)
+

16

n′

))
(21)

≥ ÔPT
(
1−O(ε̂8)

)
, (22)

as we wanted. The running time of the algorithm in this case is polynomial in the input and (n′r)
log2 r

ε̂32 ,

that is polynomial in the input and n
log3 r log(1/ε̂)

ε̂32 (assuming n ≥ 2). Being a bit more careful in the

application of our discretization lemmas we can obtain a running time of nlog9 r/ε8 . 2

Theorems 1 and 2 now follow immediately from Theorem 3 (Theorem 51 in this section) and our
structural theorems for Monotone-Hazard-Rate and Regular distributions (Theorems 11 and 13 of
Sections 3 and 4 respectively). Here are their statements with some constant optimizations.

10The requirement that the set [umin, umax] is specified as part of the input is only relevant if we have oracle access
to the distributions of the vi’s, as if we have them explicitly we can easily find [umin, umax].
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Corollary 52 (PTAS for MHR Distributions). Suppose we are given a collection of distributions
{Fi}i∈[n] that are MHR. Then, for any constant ε > 0, there exists an algorithm that runs in time

nO( 1
ε7

) and computes a price vector P such that

RP ≥ (1− ε)ROPT ,

where RP is the expected revenue under price vector P when the buyer’s values for the items are
independent draws from the distributions {F}i and ROPT is the revenue achieved by the optimal price
vector.

Corollary 53 (Quasi-PTAS for Regular Distributions). Suppose we are given a collection of distri-
butions {Fi}i∈[n] that are regular. Then, for any constant ε > 0, there exists an algorithm that runs

in time nO(
(log(n)9

ε9
) and computes a price vector P such that

RP ≥ (1− ε)ROPT ,

where RP is the expected revenue under price vector P when the buyer’s values for the items are
independent draws from the distributions {F}i and ROPT is the revenue achieved by the optimal price
vector.

We proceed to give the proof of Theorem 4.

Proof of Theorem 4: Denote by V = {vi}i∈[n] the buyer’s values for the items, and let OPT be the
optimal revenue. Also, let ε′ = ε/3.

By Lemma 41, we only need to consider price vectors in [0, 1]n. On the other hand, Lemma 29
tells us that if we restrict the prices to be higher than ε′, we lose at most an additive ε′ in revenue.
So there exists a price vector P̄ ∈ [ε′, 1]n, such that RP̄ (V) ≥ OPT − ε′

Now, we define a new collection of random variables Ṽ = {ṽi}i∈[n] via the following coupling: for

all i ∈ [n], set ṽi = ε′

2 if vi < ε′, and ṽi = vi otherwise. According to Lemma 35, for any price vector

P in [ε′, 1]n, RP (Ṽ) = RP (V).
If we are given a price vector P̃ , such that RP̃ (Ṽ) ≥ (1− ε′)ROPT (Ṽ ). By Lemma 41 and 29, we

can efficiently convert P̃ to P ′ ∈ [ε′, 1]n, such that RP ′(Ṽ) ≥ RP̃ (Ṽ)− ε′.
Combining the inequalities above, we have

ROPT (Ṽ) ≥ RP̄ (Ṽ) = RP̄ (V) ≥ OPT − ε′,

and
RP ′(V) = RP ′(Ṽ) ≥ RP̃ (Ṽ)− ε′ ≥ (1− ε′)ROPT (Ṽ)− ε′.

Thus,
RP ′(V) ≥ (1− ε′)OPT − 2ε′ ≥ OPT − 3ε′.

So the algorithm is as follows. We first construct Ṽ = {ṽi}i∈[n], which can be done in time

polynomial in n and 1/ε. Next, we run the PTAS of Theorem 51 on [ ε
′

2 , 1], which runs in time nO( 1
ε9

)

to get P̃ . Finally, we convert P̃ to P ′ in time polynomial in n and 1/ε. 2

We conclude this section with the proof of Theorem 8.

Proof of Theorem 8: We sketch the argument for MHR distributions. The argument for regular
distributions is similar. Suppose we have an a-approximation to the optimal revenue for an instance
of the pricing problem in which the values are independent and come from MHR distributions. That
is, suppose we have β′ such that aβ′ ≥ OPT . We argue that β′ can play essentially the same role
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as β in Theorem 11. More precisely, we show that we can reduce the problem of finding a near-
optimal price vector for the original instance to finding a near-optimal price vector for a collection of
distributions that are supported on a common interval centered around β′. Hence, we can leverage
our knowledge of β′ to proceed with our algorithm, obviating the need to compute β.

From Lemma 27, we know that OPT ≥ (1− 1√
e
)β2 . Hence, 2a

1− 1√
e

β′ ≥ β. Now set c = 2a
1− 1√

e

. From

Theorem 12, it follows that for any ε ∈ (0, 1/4)

Con

[
max
i
{vi} ≥ 2 log

(
1

ε

)
(cβ′)

]
≤ 36ε log

(
1

ε

)
(cβ′).

Given this property and that β′ ≤ OPT , we can reproduce the proof of Theorem 11 to argue that the
resulting distributions can be truncated to the interval [εβ′, 2c log(1

ε )β
′], without losing more than a

O(ε)-fraction of the optimal revenue. 2

K A Single Price Suffices for I.I.D. MHR Distributions

We provide a faster algorithm for the case where the buyer’s values are independent and identically
distributed according to some MHR distribution. The main technical idea that goes into the algorithm
is this: if the number of items is a sufficiently large function of ε, then using a single price suffices to
get an ε fraction of the optimal revenue. We proceed to the details of our algorithm. To simplify our
notation, let us assume that all the vi’s are independent copies of the random variable v, and denote
the distribution of v by F . Moreover, let αn = inf

{
x|F (x) ≥ 1− 1

n

}
(as in Definition 18). We start

by showing an analogue of Lemma 26.

Lemma 54. If S = Con[v ≥ (1 + ε)αn], then S ≤ 6(1+ε)αn
n1+ε .

Using Lemma 54 and Lemma 32, we deduce that if we constrain our prices to be ≤ (1 + ε)αn,

we lose no more most 6(1+ε)αn
nε revenue. Given that the optimal revenue with the restriction that all

prices be ≤ (1 + ε)αn is at most (1 + ε)αn, it follows that the optimal revenue without the restriction

is at most (1 + ε)αn + 6(1+ε)αn
nε = (1 + ε)(1 + 6

nε )αn. This is very close to αn if n is a sufficiently large
function of ε. If that’s the case, it suffices to find a price vector achieving revenue close to αn.

Lemma 55. If we use the price vector P = ((1− ε)αn, (1− ε)αn, . . . , (1− ε)αn), we receive revenue
at least

(
1− e(−nε) − ε

)
αn.

Notice that, when n ≥ (1/ε)1/ε, nε ≥ 1/ε. In this case, we have shown that OPT ≤ (1 + ε)(1 +
6ε)αn ≤ (1 + 8ε)αn. On the other hand, Lemma 55, says that we can achieve revenue at least
(1− 1

e1/ε
− ε)αn using a single price. Since e1/ε ≥ 1/ε, this revenue is at least (1− 2ε)αn. Given that

(1 + 8ε)(1− 10ε) ≤ (1− 2ε), we have (1− 2ε)αn ≥ (1− 10ε)OPT . So if we set the price for every item
to be (1− ε)αn, we achieve a revenue that is at least (1− 10ε)OPT .

Theorem 56. If the values of the buyer are i.i.d. according to a MHR distribution, there is a PTAS
for finding a price vector that achieves a (1 − ε)-fraction of the optimal revenue. The algorithm

runs in time linear in log( logn
ε ) and polynomial in 2

log(1/ε)

ε8 and the size of the input. Moreover, if

n ≥ (12/ε)12/ε, there exists an efficiently computable price such that, if all items are priced at this
price, the resulting revenue is at least (1− ε)OPT .
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L Proofs Omitted from Section K

Proof of Lemma 54: By Lemma 19, we know that (1 + ε)αn ≥ αn1+ε . Thus, S ≤ Con[v ≥ αn1+ε ]. But
Lemma 21 gives Con[v ≥ αn1+ε ] ≤ 6αn1+ε/n1+ε. Hence,

S ≤ 6αn1+ε

n1+ε
≤ 6(1 + ε)αn

n1+ε
.

2

Proof of Lemma 55: Let p = (1− ε)αn. By Lemma 19, we know that
αn1−ε
(1−ε) ≥ αn. Hence, for all i,

Pr[vi < p] ≤ Pr[vi < αn1−ε ] ≤ 1− 1

n1−ε .

It follows that

Pr[∃i, vi ≥ p] ≥ 1−
(

1− 1

n1−ε

)n
≥ 1− e(−nε).

Hence, with probability at least 1− e(−nε), the buyer will purchase an item and will pay p. Hence,
the revenue is at least (1− e(−nε))(1− ε)αn ≥ (1− e(−nε) − ε)αn. 2

Proof of Theorem 56: Let ε′ = ε/12. Depending on the value of n our algorithm proceeds in one of
the following ways:

• If n ≥ (1/ε′)1/ε′ , we do binary search starting at an anchoring point of the distribution (see
Section C) to find some p ∈ [1−ε′, 1+ε′]αn. This takes time O(log( logn

ε′ ) and the size of the input,
since αn ≤ α2 · log2 n. We then set every item’s price to (1− 2ε′)p. Since (1− 2ε′)p ≤ (1− ε′)αn,

Pr[∃ i, vi ≥ (1− 2ε′)p] ≥ Pr[∃ i, vi ≥ (1− ε′)αn].

On the other hand, (1− 2ε′)p ≥ (1− 2ε′)(1− ε′)αn. Thus, the revenue we obtain if we price all
items at (1−2ε′)p is at least (1−2ε′) times the revenue under price vector P = ((1− ε′)αn, (1−
ε′)αn, . . . , (1− ε′)αn). Hence, the revenue is at least (1− 12ε′)OPT = (1− ε)OPT .

• If n < (1/ε′)1/ε′ , we simply use the algorithm for non-i.i.d. case (Corollary 52).

2
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