MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Physink: sketching physical behavior

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Jeremy Scott and Randall Davis. 2013. Physink: sketching physical behavior. In
Proceedings of the adjunct publication of the 26th annual ACM symposium on User interface
software and technology (UIST "13 Adjunct). ACM, New York, NY, USA, 9-10.

As Published: http://dx.doi.org/10.1145/2508468.2514930
Publisher: Association for Computing Machinery (ACM)
Persistent URL: http://hdl.handle.net/1721.1/86117

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/86117
http://creativecommons.org/licenses/by-nc-sa/4.0/

Physink: Sketching Physical Behavior

Jeremy Scott

MIT CSAIL

32 Vassar St.
jscott@csail.mit.edu

ABSTRACT

Describing device behavior is a common task that is currently
not well supported by general animation or CAD software.
We present Physlnk, a system that enables users to demon-
strate 2D behavior by sketching and directly manipulating ob-
jects on a physics-enabled stage. Unlike previous tools that
simply capture the user’s animation, PhysInk captures an un-
derstanding of the behavior in a timeline. This enables use-
ful capabilities such as causality-aware editing and finding
physically-correct equivalent behavior. We envision PhysInk
being used as a physics teacher’s sketchpad or a WYSIWYG
tool for game designers.

Author Keywords
Direct Manipulation; Sketch Understanding; Natural User
Interfaces

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces

INTRODUCTION

Describing physical behavior is a routine task for physics
teachers, game designers and many others, yet the available
tools are largely inadequate. A teacher does not use anima-
tion to describe kinematics, primarily because sketching on a
blackboard offers more freedom and efficiency, but also be-
cause most animation software cannot enforce physical con-
straints (e.g. collisions and joints). A game designer uses
a physics engine to drive gameplay, but has to incrementally
adjust and test physical parameters (e.g. an angry bird’s mass)
to produce some desired behavior. Instead, it would be con-
venient if the designer could demonstrate behavior and have
the system produce the required parameters in response.

We present PhysInk, a system that enables users to describe
2D physical behavior by demonstration, sketching and di-
rectly manipulating objects on a stage backed by a physics
engine [2]. The physics-enabled stage enforces rigid body
physics (i.e., collisions) and constraints imposed by sketched
joints, ropes and springs, making the user’s manipulations
feel physically realistic. The demonstration is captured as

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the au-
thor/owner(s).

UIST’13 Adjunct, October 6-9, 2013, St. Andrews, United Kingdom.

ACM 978-1-4503-2406-9/13/10.

http://dx.doi.org/10.1145/2508468.2514930

Randall Davis
MIT CSAIL
32 Vassar St.
davis@csail.mit.edu
physink physink
/:‘(\:‘. \‘b EEEEEERNE pinball
bumper O i bumper
pinball X \ X
flipperA flipperB flipperA
flipperB
wa wa

Figure 1. The user demonstrates the pinball’s behavior (left) by directly
manipulating the sketch: flipper B strikes the ball, which bounces off the
bumper and wall. In response, PhysInk finds physically-correct, equiva-
lent behavior (right).

a timeline of distinct events, which is used to find physical
parameters that lead to an equivalent behavior.

RELATED WORK

PhysInk’s Ul is inspired by systems like K-Sketch [4] and
Dragimation [8], which allow the user to record motion
by directly manipulating the sketch or drawing trajectories.
Physlnk takes these ideas a step further through its ability to
understand and enforce physical constraints, establishing the
physicality that is tedious to maintain in animation software.

Interactive simulation has been well explored by several ear-
lier systems. ASSIST [1], for example, enables users to
sketch a machine’s parts and constraints, then simulate it. Be-
cause ASSIST focuses on structure, producing desired behav-
ior may involve a repetitive loop of tweaking structure and
checking simulator output. Popovic’s work on simulation-
driven animation [7] allows users to manipulate objects by
specifying keyframes that guide the simulation, but again this
is indirect and time-consuming compared to demonstrating
the behavior directly.

PhysicsBook [3] and MathPad? [5] assist students in the un-
derstanding of physics concepts, linking sketched equations
to diagrams, and animating the diagram in response to the
student’s computations. PhysInk offers an alternative way
to explore a physics problem: the teacher or student could
quickly demonstrate a behavior, then examine an equation to
see how its physical parameters are changing.

USING PHYSINK

The user starts by sketching objects (rigid bodies) and con-
straints (joints, ropes, springs). Strokes are recognized by an
extension of PaleoSketch [6] as circles, polylines, helixes or
X-symbols; these primitives are then interpreted as objects or



constraints, based on their context in the sketch. For example,
a circle on its own is a round rigid body, where a small circle
inside an existing body is a pin joint. The user can also sketch
polygonal objects, anchors, ropes and springs.

The user can then easily demonstrate behavior by manipulat-
ing sketched objects, but only within the indicated physical
constraints. Concurrent movement of multiple objects can be
recorded by rewinding, then demonstrating new movement
while previously recorded trajectories are played back. The
enforced physical constraints result in an intuitive interface
for demonstrating movement and contact, where objects re-
spond to collisions and forces as the user expects. For game
designers and others, this opens the door to designing by
demonstration, rather than by tweaking structural parameters.

THE TIMELINE

PhysInk records the user’s interactions in a timeline - a
causally-linked graph of physical events - which can be re-
wound, played back and edited. There are four types of
events: (1) start: used to represent exogenous forces that ini-
tiate the behavior, (2) movement: the trajectory of a single
object, (3) contact: marking the collision of two or more ob-
jects, and (4) end-contact: marking the ceasing of contact
between two or more objects.

In our system events capture both literal and qualitative ge-
ometry. For example, a movement event records an object’s
demonstrated trajectory as well as its relative motion (left,
right, above or below nearby objects). A contact event records
the collision location, as well which sides are in contact (e.g.
ball against top of box). This representation of events, focus-
ing on causality and qualitative geometry, is intended to cap-
ture a higher-level, qualitative understanding of the behavior
similar to how a user might think of it.

CAUSALITY-AWARE EDITING

The timeline allows the system to reason about the demon-
stration at a more abstract level than frame-based animation.
Consider a pinball game designer who rewinds a description,
editing a ball’s trajectory so that it no longer collides with a
bumper. In a traditional animation tool, the bumper would
still move, while PhysInk uses its understanding of causality
to propagate the change through the timeline, deleting events
that should no longer occur (the bumper collision) and pre-
serving those that are unaffected. In this way, PhysInk makes
it easy to rewind and explore alternative behaviors.

FINDING EQUIVALENT REALISTIC BEHAVIOR

The timeline is also used to ’clean-up’ the user’s demonstra-
tion, producing an equivalent behavior that is physically cor-
rect. This is achieved by searching for physical parameters
that lead to a simulated timeline that most closely matches
the demonstrated timeline. This behavior will be physically
correct, because it is produced purely by the physics engine.

PhysInk does this with an exhaustive search, varying all phys-
ical parameters (e.g. initial velocities, friction coefficients),
except for sizes, positions and orientations to ensure that the
sketch’s static appearance does not change. A simulated time-
line is produced for each set of parameters and compared to

the demonstrated timeline, using a qualitative and quantita-
tive distance. The qualitative distance measures the topolog-
ical similarity of the two timelines, where pairs of events are
considered equivalent if they share the same type (e.g. move-
ment or contact), objects and qualitative geometry. The quan-
titative distance measures visual similarity, and is computed
by summing Euclidean distances between trajectories of the
same object in the two timelines. The simulated timeline with
the lowest distance scores provides a physically-correct be-
havior that most closely matches the user’s demonstration.

USE CASES AND FUTURE WORK

PhysInk’s natural UI for describing physical behavior and the
features enabled by its timeline make it a potentially useful
tool for design-by-demonstration and education. A mobile
game developer could design a character’s movement through
the world by demonstrating it, rather than fiddling with phys-
ical parameters. A physics teacher could quickly sketch
scenarios and demonstrate concepts on the physics-enabled
stage, then query physical parameters to answer questions
like: what initial velocity will allow the ball to clear the wall?

We would like to extend PhysInk to better support these appli-
cations. For example, as a game design tool, there should be
an entry point for player interactions in the behavior demon-
stration process. Also, the user should have control over
which parameters are fixed while others are searched. Impor-
tantly, we plan to conduct user studies to evaluate PhyslInk’s
usefulness in these applications.

CONCLUSION

We have presented PhyslInk, a system for describing physical
behavior by demonstration, where users sketch and directly
manipulate objects on a physics-enabled stage. Demonstra-
tions are captured as timelines of events, leading the way
to causality-aware editing and finding physical parameters
that drive the demonstration, which may be useful in physics
classrooms and game design.

REFERENCES

1. Alvarado, C., and Davis, R. Resolving ambiguities to create a natural
computer-based sketching environment. In Proceedings of IJCAI (2001).

2. Catto, E. Box2d: A 2d physics engine for games. http://box2d.org/, 2012.

3. Cheema, S., and LaViola, J. Physicsbook: A sketch-based interface for
animating physics diagrams. In Proceedings of IUI'12 (2012).

4. Davis, R. C., Colwell, B., and Landay, J. A. K-sketch: a ’kinetic’ sketch
pad for novice animators. In Proceedings of CHI 08 (2008), 413-422.

5. LaViola, J. J., and Zeleznik, R. C. Mathpad?2: a system for the creation
and exploration of mathematical sketches. In Proceedings of SSIGGRAPH
04 (2004).

6. Paulson, B., and Hammond, T. Paleosketch: accurate primitive sketch
recognition and beautification. In Proceedings of IUI 08, ACM (New
York, NY, USA, 2008), 1-10.

7. Popovi¢, J., Seitz, S. M., Erdmann, M., Popovi¢, Z., and Witkin, A.
Interactive manipulation of rigid body simulations. In Proceedings of
SIGGRAPH 00 (2000), 209-217.

8. Walther-Franks, B., Herrlich, M., Karrer, T., Wittenhagen, M.,
Schroder-Kroll, R., Malaka, R., and Borchers, J. Dragimation: direct
manipulation keyframe timing for performance-based animation. In
Proceedings of the 2012 Graphics Interface Conference (2012),
101-108.



	Introduction
	Related Work
	Using PhysInk
	The Timeline
	Causality-aware Editing
	Finding equivalent realistic behavior
	Use Cases and Future Work
	Conclusion
	REFERENCES 

