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Fabricating BRDFs at High Spatial Resolution Using Wave Optics
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Figure 1: First column: a wafer fabricated using photolithography displaying spatially varying BRDFs at 220dpi. Second column: designed
pattern, color coded according to the 5 reflectance functions used. Dithering is exaggerated for better visualization. Rightmost columns:
fabricated pattern as imaged under two different illumination directions. The designed pattern includes anisotropic reflectance functions at
two opposite orientations. Hence, the image is inverted when light moves from the horizontal to the vertical directions.

Abstract

Recent attempts to fabricate surfaces with custom reflectance func-
tions boast impressive angular resolution, yet their spatial resolu-
tion is limited. In this paper we present a method to construct
spatially varying reflectance at a high resolution of up to 220dpi
, orders of magnitude greater than previous attempts, albeit with a
lower angular resolution. The resolution of previous approaches is
limited by the machining, but more fundamentally, by the geomet-
ric optics model on which they are built. Beyond a certain scale ge-
ometric optics models break down and wave effects must be taken
into account. We present an analysis of incoherent reflectance based
on wave optics and gain important insights into reflectance design.
We further suggest and demonstrate a practical method, which takes
into account the limitations of existing micro-fabrication techniques
such as photolithography to design and fabricate a range of reflec-
tion effects, based on wave interference.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing and display algorithms;
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1 Introduction

The physical construction of surfaces with controlled appearance
and reflectance properties is important for many industrial appli-

cations, including printing, product design, luminaire design, se-
curity markers visible under certain illumination conditions, and
many others. The topic has been gaining much research interest
in computer graphics [Weyrich et al. 2009; Finckh et al. 2010; Pa-
pas et al. 2011; Kiser et al. 2012; Dong et al. 2010; Hašan et al.
2010; Matusik et al. 2009; Patow and Pueyo 2005; Patow et al.
2007; Weyrich et al. 2007; Malzbender et al. 2012]. In computer vi-
sion, photometric stereo algorithms can be improved if the surface
reflectance properties can be precisely controlled [Johnson et al.
2011]. Custom designed BRDFs can also help in appearance ac-
quisition tasks such as a BRDF chart [Ren et al. 2011] and a planar
light probe [Alldrin and Kriegman. 2006].

Recent attempts to fabricate surfaces with custom reflectance func-
tions boast impressive angular resolution, yet their spatial resolu-
tion is limited. For example the authors of [Weyrich et al. 2009]
generate a single dot of controlled reflectance properties, with size
3 × 3cm. In this paper we present a method to construct spatially
varying reflectance at a high resolution of up to 220dpi (dots per
inch), albeit with a lower angular resolution. Figure 1 shows a pro-
totype wafer fabricated using photolithography with spatially vary-
ing BRDFs, designed according to our method.

Bidirectional Reflectance Distribution Functions (BRDFs) are usu-
ally explained using the micro facets theory [Torrance and Sparrow
1967] and similar geometric optics extensions [Westin et al. 1992;
Ashikhmin et al. 2000; Pont and Koenderink 2005; Oren and Na-
yar 1994; Koenderink et al. 1999; Wolff et al. 1998]. According to
this model the surface is a collection of small, randomly scattered
facets, each facet is assumed to have a simple reflectance function,
often an ideal mirror. The distribution of facet normals inside a sur-
face patch determines how light is reflected to different directions.

Recent approaches to appearance fabrication rely on geometric op-
tics appearance models. For example, Weyrich et al. [2009] use
the micro-facet model. Given a user specified BRDF, they com-
pute a corresponding spatial arrangement of facets. Subsequent
approaches seek continuous surfaces with desired redirection of
light [Finckh et al. 2010; Papas et al. 2011]. The resolution of these
designs is limited by the capabilities of the surface machining meth-
ods (e.g., CNC mills, engravers). However, it is important to note
that even with better manufacturing methods the ability to scale
down these designs is limited, since the reflectance will be domi-
nated by diffraction. To illustrate this, we show in Figure 2 a target

http://doi.acm.org/10.1145/2461912.2461981
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(b) Unit size: 128µm (c) Unit size: 16µm (d) Unit size: 8µm (e) Unit size: 2µm

Figure 2: Limits of the geometric optics model. (a) Target reflectance. (b-e) The reflectance (top row) produced when we scale the size of the
basic surface unit (second row). All surfaces have equal gradient histograms and should produce equal reflectance from a geometric optics
viewpoint. Yet, for small structures wave effects play a major role and the actual reflectance is very different than the geometric prediction.
When the basic unit size is as low as 2µm the reflectance is just a set of impulses. The simulation in this figure assumes the surface is viewed
and illuminated from above, with the light source area occupying a subtended angle of 2o, and the surface area imaged by a dot is larger
than 128µm.

reflectance function and a surface with a corresponding normals
histogram. From pure geometric optics considerations this surface
should produce the exact target BRDF. Figure 2 (b-e) illustrates the
same basic surface shape repeated at different scales. Since the gra-
dient histogram is fixed at all scales, these should produce the same
reflectance from a geometric optics viewpoint. However at micro-
scales wave effects play a major role and the reflectance function is
very different from the prediction of the geometric optics model.

This paper builds on previous work on deriving reflectance models
based on wave optics [He et al. 1991; Nayar et al. 1991; Stam 1999;
Cuypers et al. 2012] but focuses on practical fabrication procedures,
which take into account the limitations of existing micro-fabrication
techniques such as photolithography.

Using a photolithography process, it is significantly easier to fabri-
cate surfaces which are composed of a small number of piecewise-
flat layers (a 1D example is shown in Figure 4(a)), than continuous
depth surfaces. The implication is that it is not possible to generate
a variety of normal orientations – normals over the entire surface
point at the same direction. The geometric optics model predicts
that such piecewise-flat surfaces behave as mirrors, however as we
demonstrate in this paper we can achieve a range of reflection ef-
fects with such a construction based solely on light interference.

Our method offers a more restricted family of reflectance functions
compared, for example, with the method of Weyrich at al. [2009],
its major advantage is high spatial resolution. We fabricate spatially
varying BRDFs with a dot size of 0.112mm, 220 dpi. This is orders
of magnitude improvement compared to the few centimeters wide
dot units in previous approaches.

The complexity of the photolithography process increases with the
number of different depth values since multiple etching passes are
required. Thus, it is important to understand what reflectance func-
tions are achievable as a function of the number of depth values.
In particular our analysis and experiments show that a single etch-
ing pass (which produces only two different depth values), allows
control over the BRDF up to a narrow specular spike at the mir-
ror direction. Moreover, as few as three etching steps can provide
full control and eliminate this specular spike. The prototype wafer
which we experimented with in this paper was manufactured with
a single etching pass, allowing for limited control over the specular
spike.

While the price of lithography fabrication of the master prototype
is high, it can be used as a template for stamping many successive
copies quite inexpensively. This is similar to white light rainbow
holograms mass-manufactured on credit cards [Iwata and Tsujiuchi
1974].

In this paper, we focus on photolithography, but in a companion
technical report [Levin et al. 2013], we also explore an inexpensive
alternative to micro-fabrication, in the form of metallic powders.
Such powders are readily available at a variety of particle sizes and
morphologies. Our analysis provides guidelines for the relation be-
tween the particles’ shape and size and the reflectance functions
they can produce.

1.1 Related Work

In addition to the work on reflectance design from the computer
graphics community mentioned above this work is related to the
following research areas.

Digital microptics refers to the manipulation of light using sur-
faces equipped with piecewise flat microstructures at a discrete set
of heights. This includes diffraction gratings used in spectrome-
ters, and computer-generated holograms (CGHs) that are used, for
example, to create laser point-pattern projectors, three-dimensional
visualizations, and special-purpose diffusers [Kress and Meyrueis
2009]. Our work is related to these because we also seek patterns of
microstructures that are optimized to provide a desired transforma-
tion (via reflection in our case) of an incident electromagnetic field,
but while these designs are optimized to work under specific illu-
mination conditions such as plane waves, we seek patterns which
will work under general illumination conditions.

Holography [Yaroslavsky 2004; Benton and Bove 2008] is based
on recording an interference pattern in a holographic medium be-
tween the field emitted from a 3D scene illuminated by a coherent
wave and a coherent reference beam. When illuminating the holo-
gram with the conjugate plane wave, the interference pattern pre-
served in the hologram recreates the wavefront corresponding to the
original scene. The interference patterns can arise due to variation
in absorbance or transmissivity, variations in the refractive index,
and variations in the thickness of the medium. In rainbow hologra-
phy the field is passed through a 1D horizonal slit, sacrificing the
vertical parallax of the hologram but allowing the hologram to be
viewed under natural white illumination. Computational hologra-
phy works such as [Lucente and Galyean 1995; Matsushima 2005;
Ziegler et al. 2007] attempt to compute the desired holographic
plane pattern without illuminating a physical scene. When creating
digital holograms, one typically designs for particular illumination
conditions, whereas BRDF design aims for a specified behavior un-
der general viewing and lighting geometries.



Micro-fabrication and Photolithography: The prototypes in
this work were fabricated using photolithography. A good intro-
duction to the subject is provided in [Sinzinger and Jahns 2006].
Photolithography uses light to transfer a geometric pattern from a
photomask to a light-sensitive chemical photoresist on a substrate.
A series of chemical treatments then either engraves (mostly using
etching) the exposure pattern into, or enables deposition of a new
material in the desired pattern upon, the material underneath the
photo resist. Photolithography can create relatively small patterns
but it still limits our minimal feature size to 2 − 3µm. Its main
disadvantages are that it requires a flat substrate to start with, and
it is not very effective at creating shapes that are not flat. Mul-
tiple depth layers are usually obtained with successive etching it-
erations, but alignment between successive layers is challenging.
Proper planning of the etching process allows k different depth val-
ues to be achieved using log2 k etching passes [Walker and Jahns
1990]. Alternatively, gray scale lithography can partially expose
the photoresist layer to multiple etching depths, but the complex-
ity of calibrating the system increases with the number of different
depth values. In both cases the complexity of the process grows
drastically with the required number of depth layers.

Electron Beam Lithography uses an electron beam to write the fea-
tures and thus can achieve a significantly higher spatial resolution at
the price of a drastically slower throughput. It can also achieve bet-
ter alignment between successive layers since the beam resolution
is higher.

1.2 Outline

We first show how reflectance can be computed as a function of
surface structure using a Fourier transform, and how it depends on
the incoherence of the light source (Sec. 2). We then focus on the
design of piecewise-flat surfaces that can be achieved using a pho-
tolithographic process and we derive the class of reflectance func-
tions that can be obtained (Sec. 3). We demonstrate fabrication re-
sults with a variety of spatially varying reflectance effects (Sec. 4).
Derivation details and proofs can be found in the Appendices.

2 Reflectance Under Extended Sources

To understand the formation of reflectance at micro scale one needs
to take into account the wave nature of light rather than the geo-
metric optics approximation. In this section we explain how the
reflectance can be derived as a function of the surface shape. We
start by summarizing the coherent illumination setting. Next, we
analyze the effects which come into play in the more realistic set-
ting of incoherent illumination.

We restrict the discussion to single material surfaces; therefore, the
albedo is constant and the reflectance depends only on the surface
shape. We consider metallic or silicone surfaces which reflect most
of the incoming light, and the transmission, sub-scattering and Fres-
nel effects can be neglected. Our analysis ignores shadowing and
masking. In practice the height differences in the surfaces we con-
sider are very small, making occlusions negligible except for ex-
treme grazing angles.

To simplify notation we consider a 2D case, in which all vectors are
denoted on the x, z plane, omitting their y coordinate.

2.1 Point sources (coherent lighting)

The scattering of light from surfaces is derived in multiple text-
books [Beckmann and Spizzichino 1963; Goodman 1968] and was
introduced to the graphics community by [He et al. 1991; Stam
1999]. We review the derivation in Appendix A. The important
property, formally stated below, is that the reflectance is equal to
the intensity of the Fourier transform of a signal whose phase is
proportional to the depth of the surface.

We consider a roughly planar surface S = (x, z(x)). S is illumi-
nated by a coherent point light source at direction l = (lx, lz) and
viewed from direction v = (vx,vz). In our notation l and v are
unit vectors. We denote by h = (hx,hz) = (l+v)/2 the half vec-
tor (note that unlike the standard convention [Rusinkiewicz 1998]
h is not a unit vector).

Let a(x) denote the surface modulation function, that is, a signal
whose phase is proportional to the surface height:

a(x) = e−ik2hzz(x) (1)

where k = 2π/λ is the wave number and λ the wavelength of light.

The standard derivation states that under coherent illumination a
camera, or an eye, observes the intensity (squared amplitude) of
A(ωx), the Fourier transform (Fraunhofer diffraction) of the surface
modulation a(x):

Rc(v, l) =

∣

∣

∣

∣

γ(v, l) · A
(

2hx

λ

)
∣

∣

∣

∣

2

. (2)

The scalar function γ(v, l) encodes the foreshortening between v
and l – when light arrives at an oblique angle, the same energy is
spread over a wider surface area. The exact form of γ can be found
in Appendix A Eq. (23) .

The Fourier transform A is evaluated over a finite domain ∆d cor-
responding to the physical dot area imaged onto a single pixel, that
is:

A(ωx) ∝
∫

x∈∆d

e−i2πωxx
a(x)dx. (3)

As a sanity check, consider the case of a perfectly flat surface, the
reflectance is, as expected, a mirror. To see this, express the surface
as z(x) = s · x, and the normal n ∝ (−s, 1). Thus a(x) is a
complex sinusoid:

a(x) = e−ik2hzsx (4)

and its Fourier transform A is an impulse at frequency ωx =
−2hzs/λ. Using Eq. (2), the reflectance is an impulse at h such
that hx = −hzs, which is exactly the normal direction.

If we denote by |E|2 the intensity of the input wave, we can relate
reflectance to the conventional BRDF definition as in [Stam 1999]:

BRDF(v, l) =
Rc(v, l)

∆d|E|2 < n, l >< n,v >
. (5)

Keeping (5) in mind, we continue the analysis in the rest of this
paper in terms of R and not in terms of the BRDF.

Except for the γ scale, the reflectance R depends only on the half
vector. Our analysis omits γ and treats the reflectance as a function
of h alone. It can be shown that γ is approximately constant for
small incident angles.

2.2 Extended sources (incoherent lighting)

In a real-world setting, lighting is created by extended sources. The
electromagnetic fields these generate have limited spatial coher-
ence, meaning that the cross-correlation of any such field at two
well-separated surface points is small. For an incoherent incident
field, the phrase coherence area is used to describe the range of sep-
arations between pairs of surface points for which significant cross-
correlation (and therefore significant interference) exists [Goodman
1968]. We expect this coherence area to be inversely proportional
to the angular extent of the source. An infinitesimal point source
will produce a plane wave that is coherent everywhere (the previ-
ous section), and the coherence area will decrease as the source is



extended over a larger solid angle.1

To analyze reflectance under extended sources we must define two
parameters, shown in Figure 3(a), related to the size of the surface
and the viewing geometry. The dot pitch ∆d is the length of the
surface that projects to a single pixel in the observer at the highest
allowable viewing resolution. Put another way, it is the limit of
how much an observer will be able to “zoom in” without discerning
some of the microstructure that we design to aggregately induce our
reflectance. The second parameter is the source area ∆a, which
describes the extent of the (far-field) light source—the solid angle
that it subtends relative to any point on surface S.

The core result of this section is a relatively simple analytical ex-
pression for the reflectance, at wavelength λ, when the dot pitch
∆d is sufficiently large relative to the coherence area ∆c, which is
in turn equal to wavelength over source area: ∆c = λ/∆a. This
analysis provides two things. First, it gives an upper bound on the
spatial reflectance resolution that can be achieved for a given light-
ing environment (i.e., a given source area); and second, it provides
a means for designing and fabricating custom-reflectance at that
spatial resolution.

As mentioned above, light is spatially incoherent because the light
source is not limited to a point, but has an area and can be seen
as composed of multiple independent point sources. The illumina-
tion reaching the surface arises from a small subtended angle ∆a

of the source area2. The perceived incoherent reflectance is the
averaged coherent intensity over all illumination directions in the
source [Goodman 1968]:

Ric(h) =

∫

u∈∆a

∣

∣

∣

∣

A
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λ

)
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∣
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2
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∫

u∈∆a
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λ
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∣

∣

∣

2

du. (6)

Eq. (6) tells us that (up to a global scaling) the reflectance is the
norm of the signal A(ωx) multiplied by a rect function centered at
ωx = 2hx/λ, with width ∆a/λ. Formally,

Ric(h) = ‖A ·Π2h/λ,∆a/λ‖2 (7)

where,

Πµ,c(x) =

{

1 |(x− µ)/c| < 0.5

0 |(x− µ)/c| > 0.5

Alternatively, we can say that Ric is the rect-filtered power spec-
trum:

Ric(h) = I

(

2hx

λ

)

(8)

with
I(ωx) = |A(ωx)|2 ⊗Π0,∆a/λ. (9)

Note that similarly, the viewing direction has a finite size which is
defined by the aperture. As a result the power spectrum is further
blurred by the aperture area. While we omit this for simplicity,
adjusting the derivation is straightforward.

Eq. (7) states that the reflected intensity is the norm of the Fourier
transform A multiplied by a rect function. Using the convolution
theorem and Parseval theorem, the norm of this signal equals (up to
a global scaling) the norm of the spatial modulation signal a con-

1Note that we are interested only in spatial coherence, since temporal

coherence does not have a significant effect on the reflectance.
2We parameterize ∆a using the x axis projection of unit length vectors.

(a) Resolution parameters (b) Spatial windowing

Figure 3: Resolution parameters in incoherent illumination. (a)
Angular resolution: illumination from an area light source cov-
ering a subtended angle ∆a. Spatial resolution: The dot size
∆d. (b) Incoherent reflectance is formed by applying coherent re-
flectance rules (Fourier transform) over coherent windows of size
∆c = λ∆−1

a . The reflectance from all coherent areas inside a dot
area ∆d is averaged to form the incoherent reflectance.

volved with a phase shifted sinc:

Ric(h) = ‖a⊗W‖2 (10)

with

W (x) = e−ik(2hxx)W0(x), W0(x) = sinc (x/∆c) . (11)

W (x) is the Fourier transform of the frequency window
Π2h/λ,∆a/λ. To express the spatial window size we reparameterize

the angular resolution and define ∆c = λ∆−1
a . ∆c is the spatial

coherence area mentioned above. It represents the spatial area over
which the illumination wave interferes coherently with its shifted
copies, and hence the coherent reflection rules of Sec. 2.1 apply.

Eqs. (7) and (10) highlight the known inverse relation between spa-
tial resolution and angular resolution of the light source: when the
angular resolution ∆a increases the spatial resolution ∆c decreases
(the blur function W widens).

To better understand the formation of incoherent reflectance let us
rewrite Eq. (10) as:

Ric(h) ∝
∫

x0∈∆d

∣

∣

∣

∣

∫

a(x− x0)W0(x)e
−ik(2hxx)dx

∣

∣

∣

∣

2

dx0.

(12)

According to Eq. (12), the incoherent reflectance is formed as fol-
lows: isolate an area of width ∆c from a around x0, by multiplying
with the window function W0 (Figure 3(b)). Then apply the coher-
ent illumination formula in that window. That is, compute a Fourier
transform over the windowed area ∆c by multiplying with the com-
plex sinusoid exp(−ik(2hxx)) of the corresponding viewing and
illumination directions. The reflectance of different ∆c sized win-
dows inside ∆d is averaged incoherently – only the power is aver-
aged, without the phase.

Typical physical dimensions: To get some sense of typical
sizes, an incandescent bulb in a room, which is a few centimeters
wide and a few meters away from an observer usually occupies a
subtended angle ∆a of about 0.5o−2o. As an example a subtended
angle of 1.8o, for which ∆a = 1.8/180 ·π, corresponds to a coher-

ence area ∆c = λ∆−1
a = 16µm, with a wavelength λ = 0.5µm.

Lower coherence areas require larger area sources. At the extreme
case making the coherence area as short as the wavelength requires
a subtended angle of 180o. In our simulations we assumed that
∆c = 16µm and targeted a dot pitch of ∆d = 112µm, which
corresponds to a 220dpi resolution.



(a) 1D (b) 2D

Figure 4: Parameterization and layout of a “staircase” piece-wise
flat surface created by photolithography. Depths zj are drawn from
a discrete set of values.

3 Photolithographic Reflectance Fabrication

Having described the formation of reflectance our goal now is to
design surfaces that give rise to reflectance functions of interest.
Our analysis of the reflectance under incoherent illumination has
important implications to the design of such surfaces. To achieve
a desired reflectance one needs to design a surface z(x) such that
the rect-filtered power spectrum of its surface modulation function
a(x) produces the desired reflectance.

Moreover, when the desired dot pitch is sufficiently larger than the
coherence area ∆c our analysis shows that there is substantially
more design freedom to be gained. In this case, we can combine
within each dot ∆d many distinct ∆c-sized structures, thereby cre-
ating reflectance as their average. This is a useful result because
even when only simple piecewise-planar microstructures are avail-
able on our substrate, we can still create interesting reflectance
functions through averaging.

Our approach is as follows. We introduce a stochastic model for
the placement of basic surface elements. The parameters of the
model are designed such that when we sample repeatedly and in-
dependently, we obtain collections of ∆c-sized structures whose
reflectances averaged over ∆d approximate the desired reflectance.
Even if every particular sample is different, when ∆d ≫ ∆c we
average multiple independent samples and by the law of large num-
bers, their mean approaches the expected value. In addition, by em-
ploying such a stochastic design we can avoid structural artifacts in
the Fourier transform at scales comparable to or larger than ∆d.

Given a set of fabricate-able microstructures and a target reflectance
function RT (h), we will construct a surface in two steps. First, we
define a stochastic sampling process for selecting microstructures
that has the property that a sample will produce RT in expecta-
tion. Then, we tile a surface with random i.i.d. samples from this
process. In the remainder of this section we describe the set of mi-
crostructures that can be reliably created through photolithography,
and then we describe sampling-based designs for two distinct fam-
ilies of reflectance functions.

Constrained surface model: As discussed in Sec. 1.1, fabricat-
ing arbitrary continuous height fields at micrometer scale is quite
challenging. It is significantly easier to fabricate piecewise flat sur-
faces composed of a small number of layers. We take these consid-
erations into account in our design.

We restrict our surface to be a combination of piecewise flat steps as
illustrated in Figure 4(a). Formally, let xj denote the center of the
j’th step, zj its height and aj its width. Taking photolithography
limits into account we restrict step widths aj to be larger than 2µm
and the values of zj to belong to a small discrete set (i.e. we allow
only a small number of layers).

Isotropic glossy reflectance Anisotropic
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Figure 5: Constructing custom reflectance lobes: A window from
an ensemble of piecewise flat depth surfaces (top row) and the re-
sulting reflectance (second row). The reflection functions involve
weak secondary lobe which become visible only at a contrast ad-
justed display (third row). (a-c) Isotropic Glossy reflectance at
different widths. Note that due to the Fourier transform relation,
wider features on the surface lead to narrower reflectance lobes. (d)
Anisotropic reflectance achieved with rectangular surface features.
We plot the reflected energy as a function of the x, y coordinates of
the half vector, at the range (hx,hy) ∈ [−0.2, 0.2]× [−0.2, 0.2].
This corresponds, e.g. to the case l = n = (0, 0, 1), and
(vx,vy) ∈ [−0.4, 0.4]× [−0.4, 0.4].

3.1 Custom Glossy Lobe

We start with a family of metallic reflectances. Given a user defined
amount of gloss we seek a surface that reflects light over a lobe of
directions around a mirror direction. Different lobe widths produce
different amounts of gloss.

According to Eq. (8) the reflectance is proportional to the rect-
filtered power spectrum of the flat surface. Thus, adjusting the step
widths aj allows us to inversely adjust the width of the Fourier
lobe. Wider steps lead to a narrower Fourier transform (high gloss,
mirror-like) and thinner steps lead to a wider Fourier lobe (low
gloss, matte). Figure 5(a-c) shows a visualization of some step sur-
faces and the reflectance lobes they produce.

We use the following random process for tiling a segment with
piecewise flat steps (see Figure 4(b)):

Sampling Process 1 Sample a sequence of lengths {aj} indepen-
dently from a distribution pa. The concatenation of these lengths
determines the step centers xj . To cover a two dimensional region
sample two such length sequences and define rectangular regions
as their outer product. Finally sample heights zj for each rectangle
segment independently from another distribution pz .

As discussed above, to analyze the reflectance produced by this pro-
cess it is enough to analyze the expected power spectrum.

Claim 1 Consider a surface modulation function a(x), whose
phase is a piecewise flat signal sampled according to Sampling Pro-
cess 1. Denoting ωx = 2hx/λ, the expected reflectance is given by:

RE(h) = Epa [Ra,E(h)] (13)

where Ra,E denotes the expected spectrum from steps of width a:

Ra,E(h) = (1− |τ |2)
[

a2 ·sinc2
( ωx

a−1

)]

+ |τ |2a∆cΠ

(

ωx

∆−1
c

)

(14)



with τ = Epz [e
−ik2hzzj ], and Epa , Epz represent expectations

with respect to the distributions pa, pz correspondingly.

The proof is in Appendix C. Intuitively, the first term in Eq. (14)
comes from the fact that each flat step is box-shaped and thus has

a squared-sinc power spectrum with width a−1, inversely propor-
tional to the step length. Since the step lengths a are random vari-
ables sampled from pa, the resulting spectrum is the expectation of
such squared-sinc functions with respect to pa.

Note that if the mean of the height random variables pz being av-
eraged is not zero (i.e. |τ | > 0) the expected reflectance includes
a second “specular spike” term that is a very narrow impulse (of

width ∆−1
c ) centered at the mirror-direction (hx = 0). We discuss

this further in Sec. 3.2.

Surface tiling algorithm: For now, assume for simplicity that we
can construct zero mean signals for which τ = 0. We show how
we use the above construction to generate a glossy lobe of interest.

We start with a target reflectanceRT . According to Claim 1, the ex-
pected reflectance RE produced is the average, according to pa, of
the squared-sinc functions Ra,E . Thus we need to find a step width
distribution pa that will best approximate the target reflectanceRT .
We do that by minimizing the squared norm:

‖Epa [Ra,E(h)]−RT (h)‖2 (15)

which can be easily solved as a constrained least squares problem
using a reasonable discretization on h and a.

An example is shown in Figure 5 for the case of a Gaussian-shaped
reflectance lobe,

RT (h) ∝ e
−hx

2

2σ2 . (16)

Our construction averages squared-sincs at different widths (corre-
sponding to steps at different widths). By doing this we better ap-
proximate the smooth Gaussian fall-off and reduce the secondary
lobes one would observe with a single squared-sinc (corresponding
to equal width steps). This construction significantly decreases the
secondary lobes which become visible only after a contrast adjust-
ment (third row of Figure 5).

The horizontal and vertical step width distributions in our construc-
tion need not be the same, that is, the steps can be rectangles rather
than squares. This allows us to design and fabricate anisotropic
reflectance functions (Fig. 5(d)).

Physical step dimensions: To understand the connection be-
tween the frequency parameter ωx and the lobe width, we recall that
ωx = 2hx/λ. Let us denote by α the ratio between a step width a0
and the wavelength α = a0/λ. The reflectance lobe in this case has
the form sinc(hx2a0/λ) = sinc(2αhx), whose first zero occurs at
hx = 1/(2α). Thus if l = n = (0, 0, 1), the first sinc zero occurs

at 2hx = vx = α−1. That is, a surface composed of step widths

a0 reflects most light up to a maximal viewing angle of α−1. As an
example, with a feature size of a0 = 2µm ≈ 4λ, (for visible wave-
lengths λ ≈ 0.5µm) the first sinc zero occurs at 2hx = vx = 0.25
and the maximum width of the lobe is 15o × 2 = 30o. A fully
diffuse lobe reflecting over a 180o angle requires feature sizes a0
smaller than the wavelength λ.

Resolution tradeoffs: Before proceeding to the next family of
reflectances we illustrate the behavior of the stochastic construc-
tion. As noted in Sec. 2 reflectance involves a tradeoff between spa-
tial and directional resolution. To understand the main factors let us
denote by RE(h) the theoretical expected reflectance predicted by
Claim 1, and by Ro(h) = I(2hx/λ) the power spectrum obtained
in practice from a finite surface patch of size ∆d × ∆d sampled

(a) (b) (c) (d)

Figure 6: Spatial and directional resolution tradeoffs. (a) The the-
oretical expected power spectrum. (b) Reflectance from a single
region of ∆d = ∆c = 16µm. (c) Reflectance from a dot area of
∆d = 0.16mm, assuming a coherence area of ∆c = 16µm pro-
duce a better approximation to the expected power spectrum. (d)
Increasing the angular resolution and the coherence area such that
∆c = 80µm while keeping the same dot area ∆d = 0.16mm
produces another a noisy reflectance.

mx,my 2× 2 8× 8 4× 4 4× 2 4× 1

a0x , a0y 2× 2µm 2× 2µm 4× 4µm 2× 2µm 2× 2µm

(a) (b) (c) (d) (e)

mx,my 2× 2 2× 1 2× 1 2× 2 2× 2

a0x , a0y 4× 2µm 4× 2µm 2× 16µm 2× 2µm 4× 2µm

Outer prod Outer prod

(f) (g) (h) (i) (g)

Figure 7: Anti-mirror reflectance functions with a Laplacian shape,
achieved by selecting sequences ofmx×my fixed width rectangles
of size a0x × a0y whose zero mean is enforced. As in Figure 5, we
plot the reflected energy as a function of the x, y coordinates of the
half vector, at the range (hx,hy) ∈ [−0.2, 0.2]× [−0.2, 0.2].

from the model. Let n = (∆d/∆c)
2 denote the number of coher-

ent areas inside the dot pitch. How well does Ro approximate RE?
Figure 6 provides a comparison. In Fig. 6(b-c) assume a coherent
area of ∆c = 16µm which corresponds to illumination angle reso-
lution of about 2o. If n = 1 and the dot area is as low as ∆d = ∆c

(Fig. 6(b)), the reflectance function Ro we obtain is noisy, since
it is generated by a single sample from the step signal model. In
Fig. 6(c) we reduce spatial resolution such that ∆d = 10∆c, and
a dot area covers n = 100 coherent areas. In this setting, Ro pro-
vides a reasonable approximation to the expected reflectance RE .
In Fig. 6(d) we decrease the extent of the light source to 0.4o creat-
ing a 5 times wider coherence area ∆c = 80µm. Keeping the same
dot area as in Fig. 6(c), now averages only n = 4 coherent areas.
The reflectance Ro is again noisy since it involves less independent
instantiations of the same model. In other words, to accommodate
such a directional resolution we need to further reduce spatial reso-
lution and average over a wider ∆d.

When n is large, the law of large numbers takes effect, and any
Ro sampled according to Sampling Process 1 will produce a good
approximation to RE . For modest n there is often a residual error
from the random samples. One practical way to reduce this is to
start from a random sample and optimize the design iteratively to
reduce an objective function. In Appendix B we describe one such
approach based on a genetic algorithm for minimizing ‖Ro−RE‖.
In future work one could possibly construct better surfaces by ex-
ploring error diffusion or other half toning algorithms [Ulichney
1987].



3.2 Anti Mirror Reflectance

In this section we study another family of reflection functions, the
anti-mirror reflectances. These are surfaces which reflect light in
all directions except the mirror direction. Figure 7(a-c) visualizes
some of these reflectance functions. This non-standard reflectance
may be useful for camouflage or for creating reflective band-pass
optical filters on the reflected scene, possibly enabling a form of a
gradient camera [Tumblin et al. 2005].

To construct anti-mirror reflectance we select step heights such that
the mean of the surface modulation function equals zero in every
local region. This ensures that the DC component of the Fourier
transform vanishes, and the reflectance has the shape of a wide ring
with a dark “hole” in its center.

We do this by introducing a change to the step construction in
Sec. 3.1.

Sampling Process 2 Consider a set of m possible depth val-
ues Z = {ζ1, . . . ζm}, with zero mean phase, τ =
1
m

∑m
j=1 e

−ik2hzζj = 0. Tile the segment using sequences of m
equal size steps of width a0, whose heights are sampled as a ran-
dom permutation of the sequence ζ1 . . . ζm.

Again, assuming ∆d ≫ ∆c, the reflectance will approach the ex-
pected one RE(h) = E[I(2hx/λ)]. Thus, it is enough to compute
the expected power spectrum.

Claim 2 The expected power spectrum of a surface modulation
function sampled according to Sampling Process 2 is:

E[I(ωx)] ≈
(

1− sinc

(

ω̃x

(ma0)−1

)2
)

sinc

(

ωx

a−1
0

)2

(17)

with ω̃x ≡ ωx (mod a−1
0 ).

The proof is provided in Appendix C. The intuitive explanation is
that the construction ensures that in every segment of length ma0
we get exactly a zero mean signal. Note that the requirement τ =
0 as used in the previous section implies that the DC component
of the signal is zero mean, yet the variance of the DC component
distribution could be large. In contrast, the current construction
ensures that the DC component of every sample is zero, not only in
expectation.

In practice the DC component is not a point but is supported over
a sinc of finite width. This width is inversely proportional to the
width of the primal support ma0. Therefore the power spectrum

exhibits an angular “hole” of size (ma0)
−1.

2D arrangements: Constructing anti-mirror reflectance in 2D
provides a number of anisotropic choices. Each step is a rectan-
gle of size a0x × a0y and the m constrained steps are arrangments
of mx ×my units, satisfying mx ·my = m.

The fully isotropic case a0x = a0y and mx = my =
√
m is

demonstrated in Fig. 7(a-c). By adjusting step size a0x , a0y we can
control the width of the outer ring (the 2nd sinc in Eq. (17)), and by
adjusting mx,my we can control the width of the central zero hole

(first sinc in Eq. (17)), whose width is (ma0)
−1.

In Fig. 7(d-e) we use a0x = a0y so the outer ring is isotropic.
Howevermx 6= my results in an anisotropic inner hole. In Fig. 7(f-
h) a0x 6= a0y and the outer reflectance shape is anisotropic as well.

Finally in Fig. 7(i-g) the surface is constructed as an outer product
of two one dimensional sequences. The horizontal dimension is a
sequence ofmx length a0x segments whose zero mean is enforced,
and similarly the vertical sequence. As a result the zero mean is
enforced at each axis independently, and the central black region
takes a cross shape.

(a) 2 Layers (b) 8 Layers

Figure 8: Reflectance under white illumination. The same step
structures are demonstrated with two allowable depth values and
with eight allowable depth values. For the 2 layers the zero mean
property holds only for a single wavelength (in this case 550nm),
and at other wavelengths a specular spike component is visible. The
8 layer design can achieve zero mean at all wavelengths.

To produce a larger family of reflectance functions, we can use any
linear combination of the above anti-mirror functions, as well as
the reflectance functions described in Sec. 3.1. This amounts to
tiling the surface with samples from multiple desired models. This
is essentially the strategy used in Sampling Process 1 and Eq. (15),
which tiles the surface with step widths sampled from a distribution
pa instead of using a fixed a0 width.

Zero mean and wavelength sensitivity: The reflectance func-
tions predicted by Claims 1 and 2 produce pure glossy lobes, or
pure anti-mirrors only if we can achieve a zero mean signal (τ = 0).
Otherwise, the Fourier transform includes an impulse around zero,
which implies that the reflectance involves a specular spike, a nar-
row impulse response at the mirror direction (when h ≈ 0). Here
we provide more detail about constructing zero mean surfaces. If
the step heights {zj} can take arbitrary values achieving zero mean
distributions is easy. However, to make photolithography fabrica-
tion practical the depth values zj should belong to a small set of
discrete values Z = {ζ1 . . . ζk}. If the illumination is monochro-
matic at wavelength λ, and if we restrict our attention to small in-
cident angles for which hz ≈ 1, it is enough if zj takes one of two
discrete values Z = {ζ1 = 0, ζ2 = λ/4}, and then

e−ik2ζ1 = 1, e−ik2ζ2 = e−
i2pi
λ

2λ
4 = −1.

This can be implemented with a single etching pass. For gen-
eral white illumination, we need to find k depth values such that
for every wavelength in the visible spectrum (i.e. every λ ∈
[400, 700]nm)

1

k

k
∑

j=1

e−
2πi
λ

hzζj ≤ ǫ (18)

where ǫ is a small constant. Our simulations show that one can
achieve good results with as low as 4–8 different depth values.
Since photolithography processes can be designed such that k depth
values can be created with only log2 k etching passes [Walker and
Jahns 1990], this implies that reasonable results under white light
can be achieved using 2–3 passes.

In Figure 8 we show a simulation of the reflectance under white
illumination. We compare an 8-layer construction with a 2-layer
one. The former achieves zero mean at all wavelengths and as a
result produces a relatively uniform white lobe. For the latter the
mean vanishes only at a single wavelength. Thus, under white il-
lumination the 2-layer construction shows a specular spike. In this
example the zero mean was achieved at a green wavelength and the
spike has a magenta color (since its green component vanishes).
The Fourier transform scales as we change wavelength. As a result,
the reflectance lobe of the red channel is a bit wider than that of the
blue one and the periphery of the lobe is slightly reddish.

The prototype wafers we created for this paper were manufactured
with a single etching pass, implying that at best, the specular spike
vanishes at a single wavelength. In Sec. 4 we show the reflectance
generated under white illumination as well as under monochromatic



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: Our acquisition setup (top), and the reflectance of a few
patterns fabricated according to our approach. (a-c) A Glossy lobe
of 3 different widths. (d,h) Anisotropic reflectance. (e,i,j) Anti mir-
ror reflectance, (f-g) Anisotropic anti-mirrors.

light and compare the results to the predictions of the simulation.

4 Results

Our prototype wafers were fabricated using photolithography as de-
scribed in Sec. 1.1. Fabrication cost for a 10 × 10cm wafer is on
the order of $4,000, produced by Photo-Science Inc. A wafer with
a scanning electron microscope view inset is shown on the right
of Fig. 1. Since we used a single etching process the generated
surface has only two distinct depths. Following the discussion in
Sec. 3.2 this implies that a specular spike is visible under white
light but can be canceled at a certain wavelength.

Different regions on our prototype wafers are designed to generate
a variety of different custom reflectance functions. In Figure 9 we
show measurements of the reflectance from different points on the
wafer corresponding to different reflections, including a glossy lobe
at a variety of widths, an anisotropic reflectance, anti-mirrors, and
anisotropic anti-mirrors. To capture these images we illuminate a
point on the surface using a tunable laser monochromatic source
with a narrow beam and image the reflectance on a diffuse surface.

For the examples shown in the first row the appropriate wavelength
is λ = 500nm. Under illumination from such a monochromatic
source the specular spike is not visible. The examples in the second
row come from a wafer with more significant fabrication errors and
thus some specular spike is visible at all wavelengths. The spec-
ular spike can be seen as the narrow impulse at the center of the
reflectance images in the second row. The illumination in these im-
ages comes from a λ = 550nm source.

In Figure 10 we show the reflected image of a planar dots pattern on
our prototype wafer. The imaging setup is shown along with close-
ups on parts of the wafer with different reflectance functions. The
reflected dots are blurred by the surface reflectance function and the
image resembles the shape of the designed reflectance function. We
first took images of the wafer under white illumination, at which a
specular spike is visible. As predicted by the simulation of Figure 8,

the specular spike has a magenta color since its green component is
weak. Next we took images using a narrow band filter centered at
a wavelength of λ = 550nm. As shown in the figure, the spike is
significantly reduced in the monochromatic image.

To demonstrate the high spatial resolution which can be achieved
with our approach, we fabricated surfaces with a dot (pitch) size
of 0.112mm (220dpi). The fabrication process allows us to im-
print a different design at each dot, giving rise to a different re-
flectance type at each dot. The physical dimensions of the entire
pattern are only 4 × 4cm which demonstrates a drastic resolution
improvement compared to the 3cm dot units of prior geometric op-
tics approaches [Weyrich et al. 2009]. An animation of the patterns
under varying illumination directions is included in the supplemen-
tary video. Figures 1 and 11 show a few examples. In Figure 1 and
in the first two columns of Figure 11 the patterns are composed of
anisotropic reflectances with opposite orientations, and as a result
the reflectance is inverted when the lighting direction changes from
horizontal to vertical. Our high resolution makes dithering possi-
ble without significant visual resolution loss, and for the pattern in
Figure 1 we dithered two anisotropic orientations to allow intersec-
tion of the horizontal and vertical reflectance regions. The pattern
in the third column of Figure 11 demonstrates isotropic reflectance
with different lobe widths. The different regions change their in-
tensity as a function of the illumination angle. The background is
a perfect mirror (a lobe of zero width) which appears bright when
illuminated from the mirror direction (second row), and dark from
any other direction (third row). The last column shows a pattern
fabricated with an anti-mirror reflectance over a background with a
narrow isotropic lobe. Thus, at small incident angles the kids are
darker and the background is bright, while the kids region becomes
brighter as the illumination angle increases.

The images in Figures 1 and 11 were captured under white illumi-
nation. Thus all reflectance functions involve a specular spike. The
supplementary video (and the first example on the third column of
Figure 11) show a bright spot which appears when the illumination
direction is exactly the mirror direction.

5 Limitations

Photolithography fabrication suffers from a number of limitations
summarized below.

1. The fabricated wafers produce a grayish reflectance and do
not allow for color albedo.

2. Photolithography is restricted to planar surfaces and cannot
be adapted to other object geometries.

3. The reflectance functions which can be designed using our
approach have very high spatial resolution but they are not
as general as the ones produced by previous geometric optics
approaches [Weyrich et al. 2009] .

4. Using optical lithography the smallest feature size is 2µm. As
we show in our analysis in Sec. 3.1, this implies that the max-
imum reflectance lobe width of our prototype is about 30o.
Note that this limitation can be alleviated by using more so-
phisticated technologies such as Electron Beam Lithography.

5. Our analysis ignored shadowing and masking. However the
etching depth in our prototype is on the order of a quarter
of the wavelength, which is very small relative to the feature
area (130nm etching depth compared to at least 2µm fea-
tures). Thus occlusion effects are negligible, and the Fourier
transform model is accurate except at extreme grazing angles.
Shadowing and masking can be potentially accounted for us-
ing the models of [Sancer 1969; He et al. 1991]

6. A single layer prototype is cable of canceling the specular
spike only at a single wavelength. A common fabrication er-
ror which leads to a non zero specular spike is ‘over-etching’,



Imaging setup Reflectance White light 550nm Reflectance White light 550nm

Figure 10: Images of the reflectance of a planar dots pattern on our prototype wafer. We show closeups (extracted from different images)
of parts of the wafer with different reflectance functions under white illumination and monochromatic 550nm light. The reflected dots are
blurred by the surface reflectance function and the observed image resembles the shape of designed reflectance function. Columns 2-4
show isotropic reflectances of decreasing widths, the bottom dot is a mirror reflection. Columns 5-7 show anisotropic and and anti-mirror
reflectances.
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Figure 11: Fabricated patterns viewed under white illumination at varying directions. First row: Design mask and the reflectance types
involved (synthetic). Second and third rows: images of pattern under two different lighting directions (real). See supplementary video.

meaning that the etched features are wider than planned, and
as a result a zero mean isn’t achieved at any wavelength.
In practice some of the wafers we fabricated were accurate
enough (Fig. 9, 1st row) while others suffered from such over
etching errors (Fig. 9, 2nd row).

6 Conclusions

Surface reflectance at micro scale is dominated by wave effects and
can not be explained using a geometric ray model. In this work
we exploited interference effects while accounting for the capabili-

ties of existing micro fabrication technology. We were able to pro-
duce custom designed reflectance functions with high spatial reso-
lution of 220dpi, which provides an order of magnitude improve-
ment compared to the few centimeter wide features of previous ge-
ometric optics approaches.
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A Reflectance and Scattering From Rough
Surfaces

We provide a review of the standard derivation of the scattering of
light from rough surfaces [Stam 1999; Beckmann and Spizzichino
1963]. The main useful property we explain below is that the re-
flectance equals to the Fourier transform of a signal whose phase is
proportional to the depth of the surface.

Figure 12 illustrates the basic setup. We consider a roughly pla-
nar surface S = (x, z(x)). Without loss of generality assume its
tangent is coincident with the z = 0 plane. S is illuminated by a co-
herent point light source at direction l = (lx, lz) and viewed from
direction v = (vx,vz). In our notation l and v are unit vectors,
while the actual position of the light and the viewer are pl = rll
and pv = rvv with rl, rv → ∞. The coherent source emits a
spherical wave, thus the complex field reaching a 3D point p is

U0(p) =
1

‖p− pl‖
eik‖p−pl‖ (19)

where k = 2π/λ is the wave number and λ the wavelength of
light. The surface reflects the incoming illumination (Figure 12(a)).
Based on Huygens’ principle, each surface point ps = (x, z(x))
emits a new spherical wave multiplied by the incoming field
U0(ps). The reflected field at a viewing point pv is the super-
position of all these spherical waves (Kirchhoff integral):

Ur(pv) = γ

∫

1

‖pv−ps‖
U0(ps)e

ik‖pv−ps‖ds (20)

= γ

∫

1

‖pl−ps‖‖pv−ps‖
eik(‖pl−ps‖+‖pv−ps‖)ds

where γ is a scale factor related to the foreshortening between v, l
–when light arrives at an oblique angle, the same energy is spread
over a wider surface area.

When the illumination and viewing points are sufficiently far, a Tay-
lor expansion shows that the distances can be approximated as

‖ps − pl‖ ≈ rl − l
T
ps, ‖ps − pv‖ ≈ rv − v

T
ps. (21)

The projection lTps is visualized in Figure 12(b).

If we substitute Eq. (21) in Eq. (20) and rely on the fact that
1

‖pl−ps‖
, 1
‖pv−ps‖

are constant to a first order approximation, we

can express the reflected field at pv up to a multiplicative constants
as:

Ur(pv) = γ

∫

e−ik((v+l)Tps)ds (22)

= γ

∫

e−ik((vx+lx)x+(vz+lz)z(x))dx.

Some derivation, omitted for brevity (see e.g. [Goodman 1968;
Stam 1999; Beckmann and Spizzichino 1963]) shows that the
proper foreshortening scaling is

γ =
(1+ < l,v >)

λ(vz + lz)
. (23)

In practice, due to the finite aperture of the lens or the finite size
of the eye, the integral in Eq. (22) should be evaluated only over a
finite spatial support ∆d, thus Eq. (22) reads:

Ur(pv) = γ

∫

x∈∆d

e−ik((vx+lx)x+(vz+lz)z(x))dx. (24)

(a) (b)

Figure 12: Illumination setup: A surface illuminated from direction
l and viewed from v. (a) A point light source at pl emits a spherical
wave. When that wave interacts with the surface, each surface point
emits a new spherical wave centered at the interaction point. (b)
When the source is sufficiently far the spherical wave approaches
a plane wave. The phase difference between the field at a surface
point ps and the field at the origin is the projection of ps on l, given
by lTps.

To understand Eq. (24) let h = (hx,hz) = (l + v)/2 denote the
half vector (note that unlike the standard convention h is not a unit
vector). We also denote by a(x) the surface modulation function,
that is, a signal whose phase is proportional to the surface height:

a(x) = e−ik2hzz(x). (25)

Thus, the reflected field is proportional to A(ωx), the Fourier trans-
form (Fraunhofer diffraction [Goodman 1968]) of the surface mod-
ulation a(x) restricted to the domain ∆d:

Ur(pv) = γ

∫

x∈∆d

e−ik(2hxx)
a(x)dx (26)

= γA

(

2hx

λ

)

. (27)

We observe the intensity of the field and thus the reflectance under
coherent illumination is

Rc(v, l) =

∣

∣

∣

∣

γA

(

2hx

λ

)
∣

∣

∣

∣

2

. (28)

B Surface construction algorithm

As mentioned in Sec. 3.1 we attempt to find surface tilingRo whose
power spectrum provides a good approximation to the theoretical
expectationRE . We preform the optimization using a genetic algo-
rithm search.

The algorithm maintains a population of {Rj
o}mj=1 candidates,

which is initialized using random samples from Sampling Pro-
cess 1. For each candidate we define a score:

ej = ‖Rj
o −RE‖. (29)

We iterate the following process

1. Mutate each sample Rj
o by resampling ǫ% of its parameters,

either resampling step heights zj or widths aj , to obtain a new

set of m candidates {Rj
o
new}mj=1.

2. Evaluate the quality of each new sample:

ej
new

= ‖Rj
o
new −RE‖ (30)

3. Select the best m candidates out of the 2m members in the
union of old and new populations.



The genetic optimization produces multiple Rj
o candidates which

provide reasonable approximations to RE . Each Rj
o covers an area

∆d×∆d. To reduce periodic artifacts we tile neighboring ∆d×∆d

regions with different Ro structures.

We assumed a coherence area ∆c = 16µm and attempted to tile
dots (pixels) of size ∆d = 112µm, that is a dot of size ∆d × ∆d

includes 7× 7 coherent areas.

C Expected Reflectance Derivation

Below we provide complete proofs for the expected reflectance
claims mentioned in the main paper body. To connect to the proof,
we reformulate some of them slightly differently.

Claim 1 Consider a surface modulation function a, whose phase
is a piecewise flat signal sampled according to Sampling Process 1.
The reflectance is given by

RE(h) = E [I(2hx/λ)] (31)

with

E [I(ωx)] ≈ (32)

(1− |τ |2)Epa

[

a2 ·sinc2
( ωx

a−1

)]

+ |τ |2̺Π
(

ωx

∆−1
c

)

(33)

where τ = Epz [e
−ik2hzzj ] and ̺ = ∆cEpa [a].

Proof of claim 1: To compute E[I(ωx)] we first compute the ex-

pectation of the unblurred power spectrum E[|A(ωx)|2], and then,
by the linearity of the expectation:

E[I(ωx)] = E[|A(ωx)|2]⊗Π0,∆a/λ. (34)

To simplify analysis assume we sample a fixed number of n steps
n = ∆d/Epa [a]. The exact dot area cover by a random sample of

n steps is a random variable ∆̃d whose expectation is ∆d:

∆̃d =

n
∑

j=1

aj , E[∆̃d] = ∆d = nEpa [a]. (35)

We compute the expectation in two steps, first we think of step cen-
ters and widths xj , aj as observed values and compute the expected
spectrum over all possible depth assignments zj sampled indepen-
dently from pz . In the second step we compute expectations with

respect to xj , aj and ∆̃d.

We define a set of random variables associated with the surface
modulation function at each of the steps:

ψj = e−ik2hzzjΠxj ,aj
. (36)

Their corresponding Fourier transforms are denoted Ψj . Thus,

a =

n
∑

j=1

ψj A =

n
∑

j=1

Ψj . (37)

We can express the expected power spectrum as a sum of two terms,
variance and squared mean. Using the fact that for a fixed sample
of xj , aj , Ψj are independent random variables we get:

Epz [|A|2] =
n
∑

j=1

Epz

[

|Ψj − Epz [Ψj ]|2
]

+

∣

∣

∣

∣

∣

n
∑

j=1

Epz [Ψj ]

∣

∣

∣

∣

∣

2

.

(38)

The variance term (first term in Eq. (38)) gives rise to the sinc2 lobe
part of the reflectance function, the first term of Eq. (33), while the
squared mean term (second term in Eq. (38)) leads to the impulse
part of the reflectance function, the second term of Eq. (33).

We start by computing the variance term. Sinceψj is a rect centered
at xj its Fourier transform is a phase shifted sinc

Ψj = e−2πi(xjωx+
2hzzj

λ
)ajsinc(ωxaj). (39)

Taking expectations with respect to pz we note

Epz [Ψj ] = τe−2πi(xjωx)ajsinc(ωxaj). (40)

Thus

Epz

[

|Ψj − Epz [Ψj ]|2
]

= Epz

[

∣

∣

∣
e−ik2hzzj − τ

∣

∣

∣

2
]

a2j sinc
2(ωxaj)

=

(

Epz

[

∣

∣

∣
e−ik2hzzj

∣

∣

∣

2
]

−2τ∗Epz

[

e−ik2hzzj
]

+ |τ |2
)

a2j sinc
2(ωxaj)

= (1− |τ |2)a2j sinc2(ωxaj). (41)

The expression in Eq. (41) no longer depends on the centers xj . Af-
ter taking the expectation with respect to aj we see that the variance
term is indeed equal to the first term in Equation Eq. (33):

n
∑

j=1

E
[

|Ψj − E[Ψj ]|2
]

=n(1− |τ |2)Epa

[

a2 ·sinc2
( ωx

a−1

)]

.

(42)
We now compute the second part of Eq. (38), the squared mean.
Due to the linearity of the Fourier transform

∑n
j=1 E[Ψj ] is the

Fourier transform of
∑n

j=1E[ψj ]. For each sample of xj , aj

Epz [ψj ] = Epz [e
−ik2hzzjΠxj ,aj

] = τΠxj ,aj
(43)

since the steps Πxj ,aj
are disjoint and their union covers the full

surface area,
∑

j Epz [ψj ] is a flat signal of amplitude τ and width

∆̃d. The mean is also constant with respect to the selection of
xj , aj . Thus, the Fourier transform of the mean over a spatial sup-
port ∆d is a narrow sinc around the zero frequency:

n
∑

j=1

E[Ψj ] = τ∆̃dsinc

(

ωx

∆̃−1
d

)

. (44)

Substituting Eqs. (44) and (42) in Eq. (38) yields

E
[

|A(ωx)|2
]

≈ (45)

n(1− |τ |2)Epa

[

a2 ·sinc2
( ωx

a−1

)]

+ |τ |2∆̃2
dsinc

2

(

ωx

∆̃−1
d

)

.

(46)

To conclude the proof, we need to compute E [I(ωx)] from

E
[

|A(ωx)|2
]

. We follow Eq. (34) and blur E
[

|A(ωx)|2
]

with a

rect of width ∆−1
c = ∆a/λ. The first term of Eq. (46) is relatively

smooth and we assume it does not change that much by blurring,
that is:

n(1− |τ |2)Epa

[

a2 ·sinc2
( ωx

a−1

)]

⊗Π
0,∆−1

c
≈

n(1− |τ |2)Epa

[

a2 ·sinc2
( ωx

a−1

)]

.

(47)



The second term of Eq. (46) is a very narrow squared sinc of width

∆̃d. Assuming that ∆̃d ≫ ∆c, then ∆−1
c ≫ ∆̃−1

d . Hence, con-

volving the narrow sinc with the wider rect of width ∆−1
c results

roughly in a rect of width ∆−1
c

|τ |2∆̃2
dsinc

2

(

ωx

∆̃−1
d

)

⊗Π
0,∆−1

c
≈ |τ |2∆̃2

d

∆̃−1
d

∆−1
c

Π
0,∆−1

c
. (48)

We further use E[∆̃d] = ∆d = nEpa [a] (Eq. (35))

E

[

|τ |2∆̃2
dsinc

2

(

ωx

∆̃−1
d

)

⊗Π
0,∆−1

c

]

≈n|τ |2∆cEpa [a]Π0,∆−1
c
.

(49)

Combining Eqs. (47) and (49) yields the desired result (Eq. (33))
up to a global scaling factor:

E [I(ωx)] ≈ (50)

n(1− |τ |2)Epa

[

a2 ·sinc2
( ωx

a−1

)]

+ n|τ |2̺Π
(

ωx

∆−1
c

)

.

(51)

Claim 2 Let Z = {ζ1, . . . ζm}, be a set of m depth values such that

τ = 1
m

∑m
j=1 e

−ik2hzζj = 0. The expected power spectrum of a

set of m steps of width a0, whose depths are a random permutation
of {ζ1, . . . ζm} is

E[I(ωx)] ≈
(

1− sinc

(

ω̃x

(ma0)−1

)2
)

sinc

(

ωx

a−1
0

)2

(52)

with ω̃x ≡ ωx mod a−1
0

Proof of claim 2: As in the proof of claim 1, E[I] can be computed

by blurring E[|A|2]. However in this case E[|A|2] does not have

much high frequency content. Thus it is enough to computeE[|A|2]
and approximate E[I] ≈ E[|A|2].

The Fourier transform is given by

A(ωx) =
∑

j

e−2πi(xjωx+
2hzzj

λ
)a0sinc(ωxa0). (53)

Where xj denotes the center of the j’th step. For ease of notation
we will assume hz ≈ 1 as in the case of small incident angles.

Let us denote

A0(ωx) =
∑

j

e−2πi(xjωx+
2zj
λ

)
(54)

then A(ωx) = A0(ωx)a0sinc(ωxa0). Since the sinc has a constant

width a−1
0 and is not a random variable, to prove the claim we need

to show that

E[|A0(ωx)|2] ∝
(

1− sinc

(

ω̃x

(ma0)−1

)2
)

. (55)

First, we define

sωx =
∑

j

e−2πiωxxj = m · sinc
(

ω̃x

(ma0)−1

)

. (56)

Next, we want to compute the expected phase at step j2 conditioned
on the fact that step j1 6= j2 was set to zj1 = ζj . This implies that
position j2 can have any of the other m − 1 values in a uniform

probability. Since
∑m

j=1 e
−ik2ζj = 0,

E[e−ik2zj2 |zj1 = ζj ] = − 1

m− 1
e−ik2zj1 . (57)

Using Eqs. (56) and (57), we are ready to compute Eq. (55)

E[|A0(ωx)|2]

=E









∑

j1
e
−2πi(xj1

ωx+
2zj1
λ

)









∑

j2
e
2πi(xj2

ωx+
2zj2
λ

)









= 1
m

∑

jE





∑

j1
e
−2πi(xj1

ωx+
2zj1
λ

)





∑

j2
e
2πi(xj2

ωx+
2zj2
λ

)



|zj1=ζj





= 1
m

∑

j

∑

j1
e
−2πi(xj1

ωx+
2ζj
λ

)

·

(

e
2πi(xj1

ωx+
2ζj
λ

)
+
∑

j2 6=j1
e
2πixj2

ωxE

[

e
ik(2zj2

)
|zj1=ζj

]

)

= 1
m

∑

j

∑

j1
e
−2πi(xj1

ωx+
2ζj
λ

)

·

(

e
2πi(xj1

ωx+
2ζj
λ

)
−
∑

j2 6=j1
e
2πizj2

ωx 1
m−1

e
ik2ζj

)

= 1
m

∑

j

∑

j1
e
−2πi(xj1

ωx+
2ζj
λ

)
e
ik2ζj

·
(

e
2πixj1

ωx− 1
m−1

∑

j2 6=j1
e
2πixj2

ωx
)

= 1
m

∑

j

∑

j1
e
−2πixj1

ωx

(

e
2πixj1

ωx−
sωx−e

2πixj1
ωx

m−1

)

= 1
m

∑

j

∑

j1
e
−2πixj1

ωx
(

e
2πixj1

ωx(1+ 1
m−1 )−

sωx
m−1

)

= 1
m

∑

j m(1+ 1
m−1 )−

∑

j1
e
−2πixj1

ωx(
sωx
m−1 )

= 1
m

∑

j
m2

m−1
−

(

|sωx |2

m−1

)

= m2

m−1
−









m2sinc2

(

ω̃x
(ma0)−1

)

m−1









= m2

m−1

(

1−sinc2
(

ω̃x

(ma0)−1

))

.

(58)

Eq. (58) provides Eq. (55), completing the proof


