
MIT Open Access Articles

Path ORAM: An Extremely Simple Oblivious RAM Protocol

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple oblivious RAM protocol. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security (CCS
'13). ACM, New York, NY, USA, 299-310.

As Published: http://dx.doi.org/10.1145/2508859.2516660

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/86163

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/86163
http://creativecommons.org/licenses/by-nc-sa/4.0/

Path ORAM:

An Extremely Simple Oblivious RAM Protocol

Emil Stefanov†, Marten van Dijk‡, Elaine Shi∗, T-H. Hubert Chan∗∗, Christopher Fletcher◦,
Ling Ren◦, Xiangyao Yu◦, Srinivas Devadas◦

†UC Berkeley ‡UConn ∗UMD ∗∗University of Hong Kong ◦MIT CSAIL

Our algorithm first appeared on February 23, 2012 on arXiv.org.
http://arxiv.org/abs/1202.5150v1

Abstract

We present Path ORAM, an extremely simple Oblivious RAM protocol with a small amount
of client storage. Partly due to its simplicity, Path ORAM is the most practical ORAM scheme
known to date with small client storage. We formally prove that Path ORAM has a O(logN)
bandwidth cost for blocks of size B = Ω(log2N) bits. For such block sizes, Path ORAM is
asymptotically better than the best known ORAM schemes with small client storage. Due to its
practicality, Path ORAM has been adopted in the design of secure processors since its proposal.

1 Introduction

It is well-known that data encryption alone is often not enough to protect users’ privacy in outsourced
storage applications. The sequence of storage locations accessed by the client (i.e., access pattern)
can leak a significant amount of sensitive information about the unencrypted data through statistical
inference. For example, Islam et. al. demonstrated that by observing accesses to an encrypted
email repository, an adversary can infer as much as 80% of the search queries [22].

Oblivious RAM (ORAM) algorithms, first proposed by Goldreich and Ostrovsky [14], allow a
client to conceal its access pattern to the remote storage by continuously shuffling and re-encrypting
data as they are accessed. An adversary can observe the physical storage locations accessed, but
the ORAM algorithm ensures that the adversary has negligible probability of learning anything
about the true (logical) access pattern. Since its proposal, the research community has strived to
find an ORAM scheme that is not only theoretically interesting, but also practical [4,7,13,15–18,23,
24,26–28,31,34–39].

In this paper, we propose a novel ORAM algorithm called Path ORAM 1. This is to date the
most practical ORAM construction under small client storage. We prove theoretical bounds on its
performance and also present matching experimental results.

Path ORAM makes the following contributions:

Simplicity and practical efficiency. In comparison to other ORAM algorithms, our construction
is arguably much simpler. Although we have no formal way of measuring its simplicity, the core of

1Our construction is called Path ORAM because data on the server is always accessed in the form of tree paths.

1

http://arxiv.org/abs/1202.5150v1

ORAM Scheme
Client Storage Read & Write Bandwidth

(# blocks of size B) (# blocks of size B)

Kushilevitz et al. [23] (B = Ω(logN)) O(1) O(log2N/ log logN)

Gentry et al. [12] (B = Ω(logN)) O(log2N) · ω(1) O(log3N/ log logN) · ω(1)

Chung et al. [5] (B = Ω(logN))
O(log2+ε(N)) O(log2N · log logN) · ω(1)

(concurrent work)

Recursive Path ORAM
O(logN) · ω(1) O(log2N)

for small blocks, B = Ω(logN)

Recursive Path ORAM
O(logN) · ω(1) O(logN)for moderately sized blocks, B = Ω(log2N)

(we use a block size of Θ(logN) during recursion)

Table 1: Comparison to other ORAM schemes. N is the total number of blocks and B is
the block size (in bits). The failure probability is set to N−ω(1) in this table, i.e., negligible in N .
This table assumes that the stashes are stored on the client side.

the Path ORAM algorithm can be described in just 16 lines of pseudocode (see Figure 1) and our
construction does not require performing sophisticated deamortized oblivious sorting and oblivious
cuckoo hash table construction like many existing ORAM algorithms [4, 7, 13–18,23,26–28,36–38].
Instead, each ORAM access can be expressed as simply fetching and storing a single path in a tree
stored remotely on the server. Path ORAM’s simplicity makes it more practical than any existing
ORAM construction with small (i.e., constant or poly-logarithmic) local storage.

Asymptotic efficiency. We prove that for a reasonably large block size B = Ω(log2N) bits where
N is the total number of blocks (e.g., 4KB blocks), recursive Path ORAM achieves an asymptotic
bandwidth cost of O(logN) blocks, and consumes O(logN)ω(1) blocks of client-side storage2. In
other words, to access a single logical block, the client needs to access O(logN) physical blocks to
hide its access patterns from the storage server. The above result achieves a failure probability of
N−ω(1), negligible in N .

As pointed out later in Section 1.1, our result outperforms the best known ORAM for small
client storage [23], both in terms of asymptotics and practicality, for reasonably large block sizes,
i.e., block sizes typically encountered in practical applications.

Practical and theoretic impact of Path ORAM. Since we first proposed Path ORAM [33] in
February 2012, it has made both a practical and a theoretic impact in the community.

On the practical side, Path ORAM is the most suitable known algorithm for hardware ORAM
implementations due to its conceptual simplicity, small client storage, and practical efficiency. Ren et
al. built a simulator for an ORAM-enabled secure processor based on the Path ORAM algorithm [30]
and the Ascend processor architecture [10, 11] uses Path ORAM as a primitive. Maas et al. [25]
implemented Path ORAM on a secure processor using FPGAs and the Convey platform.

2 Throughout this paper, when we write the notation g(n) = O(f(n)) · ω(1), we mean that for any function
h(n) = ω(1), it holds that g(n) = O(f(n)h(n)). Unless otherwise stated, all logarithms are assumed to be in base 2.

2

On the theoretic side, subsequent to the proposal of Path ORAM, several theoretic works
adopted the same idea of path eviction in their ORAM constructions — notably the works by
Gentry et al. [12] and Chung et al. [5,6]. These two works also try to improve ORAM bounds based
on the binary tree construction by Shi et al. [31]; however, as pointed out in Section 1.1 our bound
is asymptotically better than those by Gentry et al. [12] and Chung et al. [5, 6]. Gentry’s Path
ORAM variant construction has also been applied to secure multiparty computation [12].

Novel proof techniques. Although our construction is simple, the proof for upper bounding the
client storage is quite intricate and interesting. Our proof relies on an abstract infinite ORAM
construction used only for analyzing the stash usage of a non-recursive Path ORAM. For a non-
recursive Path ORAM, we show that during a particular operation, the probability that the stash
stores more than R blocks is at most ≤ 14 · 0.6002−R. For certain choices of parameters (including
R) and N data blocks, our recursive Path ORAM construction has at most logN levels, the
stash at the client storage has a capacity of R logN blocks, the server storage is 20N blocks,
and the bandwidth is 10(logN)2 blocks per load/store operation. For s load/store operations, a
simple union bound can show that this recursive Path ORAM fails during one of the s load/store
operations (due to exceeding stash capacity) with probability at most ≤ 14s logN ·0.625−R. Choosing
R = Θ(log s + log logN) · ω(1) can make the failure probability negligible. We shall refine the
parameters and do a more careful analysis to achieve Θ(logN) · ω(1) blocks of client storage in the
recursive construction. Our empirical results in Section 7 indicate that the constants in practice are
even lower than our theoretic bounds.

1.1 Related Work

Oblivious RAM was first investigated by Goldreich and Ostrovsky [13, 14, 26] in the context of
protecting software from piracy, and efficient simulation of programs on oblivious RAMs. Since
then, there has been much subsequent work [4, 6, 7, 12–16,18,23, 26–28,36,38] devoted to improving
ORAM constructions. Path ORAM is based upon the binary-tree ORAM framework proposed by
Shi et al. [31].

Near optimality of Path ORAM. Under small (i.e., constant or poly-logarithmic) client storage,
the best known ORAM was proposed by Kushilevitz et al., and has O(log2N/ log logN) blocks
bandwidth cost [23].

Path ORAM achieves an asymptotic improvement under reasonable assumptions about the block
size: when the block size is at least Ω(log2N) bits, and using a smaller block size of Θ(logN) for
the position map levels, Path ORAM has bandwidth cost of O(logN). Such a block size Ω(log2N)
bits is what one typically encounters in most practical applications (e.g., 4KB blocks in file systems).
Goldreich and Ostrovsky show that under O(1) client storage, any ORAM algorithm must have
bandwidth cost Ω(logN) (regardless of the block size). Since then, a long-standing open question
is whether it is possible to have an ORAM construction that has O(1) or poly log(N) client-side
storage and O(logN) blocks bandwidth cost [14,15,23]. Our bound partially addresses this open
question for reasonably large block sizes.

Comparison with Gentry et al. and Chung et al.. Gentry et al. [12] improve on the binary
tree ORAM scheme proposed by Shi et al. [31]. To achieve 2−λ failure probability, their scheme
achieves O(λ(logN)2/(log λ)) blocks bandwidth cost, for block size B = logN bits. Assuming that
N = poly(λ), their bandwidth cost is O(λ logN) blocks. In comparison, recursive Path ORAM
achieves O(log2N) blocks bandwidth cost when B = logN . Note that typically λ� logN since

3

N = poly(λ). Therefore, recursive Path ORAM is much more efficient than the scheme by Gentry
et al.. Table 1 presents this comparison, assuming a failure probability of N−ω(1), i.e., negligible in
N . Since N = poly(λ), the failure probability can also equivalently be written as λ−ω(1). We choose
to use N−ω(1) to simplify the notation in the asymptotic bounds.

Chung and Pass [6] proved a similar (in fact slightly worse) bound as Gentry et al. [12]. As
mentioned earlier, our bound is asymptotically better than Gentry et al. [12] or Chung and Pass [6].

In recent concurrent and independent work, Chung et al. proposed another statistically secure
binary-tree ORAM algorithm [5] based on Path ORAM. Their theoretical bandwidth bound is a
log logn factor worse than ours for blocks of size Ω(logN). Their simulation results suggest an
empirical bucket size of 4 [1] — which means that their practical bandwidth cost is a constant factor
worse than Path ORAM, since they require operating on 3 paths in expectation for each data access,
while Path ORAM requires reading and writing only 1 path.

Statistical security. We note that Path ORAM is also statistically secure (not counting the
encryption). Statistically secure ORAMs have been studied in several prior works [2, 8]. All known
binary-tree based ORAM schemes and variants are also statistically secure [6,12,31] (assuming each
bucket is a trivial ORAM).

2 Problem Definition

We consider a client that wishes to store data at a remote untrusted server while preserving its
privacy. While traditional encryption schemes can provide data confidentiality, they do not hide
the data access pattern which can reveal very sensitive information to the untrusted server. In
other words, the blocks accessed on the server and the order in which they were accessed is revealed.
We assume that the server is untrusted, and the client is trusted, including the client’s processor,
memory, and disk.

The goal of ORAM is to completely hide the data access pattern (which blocks were read/written)
from the server. From the server’s perspective, the data access patterns from two sequences of
read/write operations with the same length must be indistinguishable.

Notations. We assume that the client fetches/stores data on the server in atomic units, referred
to as blocks, of size B bits each. For example, a typical value for B for cloud storage is 64− 256 KB
while for secure processors smaller blocks (128 B to 4 KB) are preferable. Throughout the paper,
let N be the working set, i.e., the number of distinct data blocks that are stored in ORAM.

Simplicity. We aim to provide an extremely simple ORAM construction in contrast with previous
work. Our scheme consists of only 16 lines of pseudo-code as shown in Figure 1.

Security definitions. We adopt the standard security definition for ORAMs from [35]. Intuitively,
the security definition requires that the server learns nothing about the access pattern. In other
words, no information should be leaked about: 1) which data is being accessed; 2) how old it is
(when it was last accessed); 3) whether the same data is being accessed (linkability); 4) access
pattern (sequential, random, etc); or 5) whether the access is a read or a write.

Definition 1 (Security definition). Let

~y := ((opM , aM , dataM), . . . , (op1, a1, data1))

denote a data request sequence of length M , where each opi denotes a read(ai) or a write(ai, data)
operation. Specifically, ai denotes the identifier of the block being read or written, and datai denotes

4

the data being written. In our notation, index 1 corresponds to the most recent load/store and index
M corresponds to the oldest load/store operation.

Let A(~y) denote the (possibly randomized) sequence of accesses to the remote storage given the
sequence of data requests ~y. An ORAM construction is said to be secure if (1) for any two data
request sequences ~y and ~z of the same length, their access patterns A(~y) and A(~z) are computationally
indistinguishable by anyone but the client, and (2) the ORAM construction is correct in the sense
that it returns on input ~y data that is consistent with ~y with probability ≥ 1− negl(|~y|), i.e., the
ORAM may fail with probability negl(|~y|).

Like all other related work, our ORAM constructions do not consider information leakage through
the timing channel, such as when or how frequently the client makes data requests. Achieving
integrity against a potentially malicious server is discussed in Section 6.4. We do not focus on
integrity in our main presentation.

3 The Path ORAM Protocol

We first describe the Path ORAM protocol with linear amount of client storage, and then later in
Section 4 we explain how the client storage can be reduced to (poly-)logarithmic via recursion.

3.1 Overview

We now give an informal overview of the Path ORAM protocol. The client stores a small amount of
local data in a stash. The server-side storage is treated as a binary tree where each node is a bucket
that can hold up to a fixed number of blocks.

Main invariant. We maintain the invariant that at any time, each block is mapped to a uniformly
random leaf bucket in the tree, and unstashed blocks are always placed in some bucket along the
path to the mapped leaf.

Whenever a block is read from the server, the entire path to the mapped leaf is read into the
stash, the requested block is remapped to another leaf, and then the path that was just read is
written back to the server. When the path is written back to the server, additional blocks in the
stash may be evicted into the path as long as the invariant is preserved and there is remaining space
in the buckets.

3.2 Server Storage

Data on the server is stored in a tree consisting of buckets as nodes. The tree does not have to
necessarily be a binary tree, but we use a binary tree in our description for simplicity.

Binary tree. The server stores a binary tree data structure of height L and 2L leaves. In our
theoretic bounds, we need L = dlog2(N)e, but in our experiments, we observe that L = dlog2(N)e−1
is sufficient. The tree can easily be laid out as a flat array when stored on disk. The levels of the
tree are numbered 0 to L where level 0 denotes the root of the tree and level L denotes the leaves.

Bucket. Each node in the tree is called a bucket. Each bucket can contain up to Z real blocks. If
a bucket has less than Z real blocks, it is padded with dummy blocks to always be of size Z. It
suffices to choose the bucket size Z to be a small constant such as Z = 4 (see Section 7.1).

5

N Total # blocks outsourced to server

L Height of binary tree

B Block size (in bits)

Z Capacity of each bucket (in blocks)

P(x) path from leaf node x to the root

P(x, `) the bucket at level ` along the path P(x)

S client’s local stash

position client’s local position map

x := position[a] block a is currently associated with leaf node x, i.e., block a
resides somewhere along P(x) or in the stash.

Table 2: Notations

Path. Let x ∈ {0, 1, . . . , 2L − 1} denote the x-th leaf node in the tree. Any leaf node x defines a
unique path from leaf x to the root of the tree. We use P(x) to denote set of buckets along the
path from leaf x to the root. Additionally, P(x, `) denotes the bucket in P(x) at level ` in the tree.

Server storage size. Since there are about N buckets in the tree, the total server storage used is
about Z ·N blocks.

3.3 Client Storage and Bandwidth

The storage on the client consists of 2 data structures, a stash and a position map:

Stash. During the course of the algorithm, a small number of blocks might overflow from the tree
buckets on the server. The client locally stores these overflowing blocks in a local data structure
S called the stash. In Section 5, we prove that the stash has a worst-case size of O(logN) · ω(1)
blocks with high probability. In fact, in Section 7.2, we show that the stash is usually empty after
each ORAM read/write operation completes.

Position map. The client stores a position map, such that x := position[a] means that block a is
currently mapped to the x-th leaf node — this means that block a resides in some bucket in path
P(x), or in the stash. The position map changes over time as blocks are accessed and remapped.

Bandwidth. For each load or store operation, the client reads a path of Z logN blocks from the
server and then writes them back, resulting in a total of 2Z logN blocks bandwidth used per access.
Since Z is a constant, the bandwidth usage is O(log(N)) blocks.

Client storage size. For now, we assume that the position map and the stash are both stored on
the client side. The position map is of size NL = N logN bits, which is of size O(N) blocks when
the block size B = Ω(logN). In Section 5, we prove that the stash for the basic non-recursive Path
ORAM is at most O(logN)ω(1) blocks to obtain negligible failure probability. Later in in Section 4,
we explain how the recursive construction can also achieve client storage of O(logN) · ω(1) blocks
as shown in Table 1.

3.4 Path ORAM Initialization

The client stash S is initially empty. The server buckets are intialized to contain random encryptions
of the dummy block (i.e., initially no block is stored on the server). The client’s position map is

6

Access(op, a, data∗):

1: x← position[a]
2: position[a]← UniformRandom(0 . . . 2L − 1)

3: for ` ∈ {0, 1, . . . , L} do
4: S ← S ∪ ReadBucket(P(x, `))
5: end for

6: data← Read block a from S
7: if op = write then
8: S ← (S − {(a, data)}) ∪ {(a, data∗)}
9: end if

10: for ` ∈ {L,L− 1, . . . , 0} do
11: S′ ← {(a′, data′) ∈ S : P(x, `) = P(position[a′], `)}
12: S′ ← Select min(|S′|, Z) blocks from S′.
13: S ← S − S′
14: WriteBucket(P(x, `), S′)
15: end for

16: return data

Figure 1: Protocol for data access. Read or write a data block identified by a. If op = read,
the input parameter data∗ = None, and the Access operation reads block a from the ORAM. If
op = write, the Access operation writes the specified data∗ to the block identified by a and returns
the block’s old data.

filled with independent random numbers between 0 and 2L − 1.

3.5 Path ORAM Reads and Writes

In our construction, reading and writing a block to ORAM is done via a single protocol called Access
described in Figure 1. Specifically, to read block a, the client performs data← Access(read, a,None)
and to write data∗ to block a, the client performs Access(write, a, data∗). The Access protocol can
be summarized in 4 simple steps:

1. Remap block (Lines 1 to 2): Randomly remap the position of block a to a new random
position. Let x denote the block’s old position.

2. Read path (Lines 3 to 5): Read the path P(x) containing block a.
3. Update block (Lines 6 to 9): If the access is a write, update the data stored for block a.
4. Write path (Lines 10 to 15): Write the path back and possibly include some additional

blocks from the stash if they can be placed into the path. Buckets are greedily filled with
blocks in the stash in the order of leaf to root, ensuring that blocks get pushed as deep down
into the tree as possible. A block a′ can be placed in the bucket at level ` only if the path
P(position[a′]) to the leaf of block a′ intersects the path accessed P(x) at level `. In other
words, if P(x, `) = P(position[a′], `).

7

Note that when the client performs Access on a block for the first time, it will not find it in the
tree or stash, and should assume that the block has a default value of zero.

Subroutines. We now explain the ReadBucket and the WriteBucket subroutine. For ReadBucket(bucket),
the client reads all Z blocks (including any dummy blocks) from the bucket stored on the server.
Blocks are decrypted as they are read.

For WriteBucket(bucket, blocks), the client writes the blocks blocks into the specified bucket on
the server. When writing, the client pads blocks with dummy blocks to make it of size Z — note
that this is important for security. All blocks (including dummy blocks) are re-encrypted, using a
randomized encryption scheme, as they are written.

Computation. Client’s computation is O(logN) · ω(1) per data access. In practice, the majority
of this time is spent decrypting and encrypting O(logN) blocks per data access. We treat the server
as a network storage device, so it only needs to do the computation necessary to retrieve and store
O(logN) blocks per data access.

3.6 Security Analysis

To prove the security of Path-ORAM, let ~y be a data request sequence of size M . By the definition
of Path-ORAM, the server sees A(~y) which is a sequence

p = (positionM [aM], positionM−1[aM−1], . . . , position1[a1]),

where positionj [aj] is the position of address aj indicated by the position map for the j-th load/store
operation, together with a sequence of encrypted paths P(positionj(aj)), 1 ≤ j ≤M , each encrypted
using randomized encryption. The sequence of encrypted paths is computationally indistinguishable
from a random sequence of bit strings by the definition of randomized encryption (note that
ciphertexts that correspond to the same plaintext use different randomness and are therefore
indistinguishable from one another). The order of accesses from M to 1 follows the notation from
Definition 1.

Notice that once positioni(ai) is revealed to the server, it is remapped to a completely new
random label, hence, positioni(ai) is statistically independent of positionj(aj) for j < i with aj = ai.
Since the positions of different addresses do not affect one another in Path ORAM, positioni(ai)
is statistically independent of positionj(aj) for j < i with aj 6= ai. This shows that positioni(ai)
is statistically independent of positionj(aj) for j < i, therefore, (by using Bayes rule) Pr(p) =∏M
j=1 Pr(positionj(aj)) = (1

2L
)M . This proves that A(~y) is computationally indistinguishable from a

random sequence of bit strings.
Now the security follows from Theorem 1 in Section 5: For a stash size O(logN) · ω(1) Path

ORAM fails (in that it exceeds the stash size) with at most negligible probability.

4 Recursion and Parameterization

4.1 Recursion Technique

In our non-recursive scheme described in the previous section, the client must store a relatively large
position map. We can leverage the same recursion idea as described in the ORAM constructions of
Stefanov et al. [35] and Shi et al. [31]. to reduce the client-side storage. The idea is simple: instead

8

of storing the position map on the client side, we store the position map on the server side in a
smaller ORAM, and recurse.

More concretely, consider a recursive Path ORAM made up of a series of ORAMs called
ORam0,ORam1,ORam2, . . . ,ORamX where ORam0 contains the data blocks, the position map of
ORami is stored in ORami+1, and the client stores the position map for ORamX . To access a block
in ORam0, the client looks up its position in ORam1, which triggers a recursive call to look up the
position of the position in ORam2, and so on until finally a position of ORamX is looked up in
the client storage. For a more detailed description of the recursion technique, we refer the readers
to [31,35].

4.2 Parameterization

We can choose the block size for the recursive ORAMs to parametrize the recursion.

Uniform Block Size. Suppose each block has size χ logN bits, where χ ≥ 2. This is a reasonable
assumption that has been made by Stefanov et al. [34, 35] and Shi et al. [31]. For example, a
standard 4KB block consists of 32768 bits and this assumption holds for all N ≤ 216382. In this case,

the number of level of recursions is O(logNlogχ). Hence, the bandwidth overhead is O(log
2N

logχ) blocks.
(i) Separate Local Storage for Stashes from Different Levels of Recursion. From

Theorem 1 in Section 5, in order to make the failure probability for each stash to be 1
Nω(1) ,

the capacity of each stash can be set to Θ(logN) · ω(1) blocks. Hence, storing stashes from all

levels needs O(log
2N

logχ) · ω(1) blocks of storage.
(ii) Common Local Storage for Stashes from All Levels of Recursion. A common local

storage can be used to store stash blocks from all levels of recursion. From Theorem 1, it
follows that the number of blocks in each stash is dominated by some geometric random
variable. Hence, it suffices to analyze the sum of O(logNlogχ) independent geometric random
variables. From the analysis in Section 4.3 (with the detailed proof given in Section 5.7), it
follows that the capacity of the common storage can be set to Θ(logN) ·ω(1) to achieve failure
probability 1

Nω(1) .

Non-uniform Block Size. Suppose that the regular block size is B = Ω(log2N) bits. This is the
block size for the original ORAM (ORam0). Suppose for the position map ORAMs (ORami for
i ≥ 1), we use a small block size of χ log2N bits for some constant χ ≥ 2.

The client storage is O(log2N) · ω(1) small blocks and O(logN) · ω(1) regular blocks. Hence,
the total client storage is O(logN) · ω(1) regular blocks. Each operation involves communication of
O(log2N) small blocks and O(logN) regular blocks. Hence, the bandwidth cost (with respect to a
regular block) is O(logN).

As can be seen, using non-uniform block sizes leads to a much more efficient parametrization
of recursive Path ORAM in terms of bandwidth. However, using uniform block sizes reduces the
number of recursion levels, leading to a smaller round-trip response time.

4.3 Shared Stash

In Section 5.7, we show that the client storage for our Recursive Path ORAM construction (with
non-uniform block sizes) can be reduced from O(log2N) · ω(1) to O(logN) · ω(1) by having a single

9

stash shared among all levels of the recursion. This is possible while still maintaining a negligible
probability of stash overflow.

5 Bounds on Stash Usage

In this section we will analyze the stash usage for a non-recursive Path-ORAM, where each bucket
in the Path-ORAM binary tree stores a constant number of blocks. In particular, we analyze the
probability that, after a sequence of load/store operations, the number of blocks in the the stash
exceeds R, and show that this probability decreases exponentially in R.

By ORAMZ
L we denote a non-recursive Path-ORAM with L+ 1 levels in which each bucket stores

Z real/dummy blocks; the root is at level 0 and the leaves are at level L.
We define a sequence of load/store operations s as a triple (a,x,y) that contains (1) the sequence

a = (ai)
s
i=1 of block addresses of blocks that are loaded/stored, (2) the sequence of labels x = (xi)

s
i=1

as seen by the server (line 1 in Figure 1), and (3) the sequence y = (yi)
s
i=1 of remapped leaf labels

(line 2 in Figure 1). The tuple (a1, x1, y1) corresponds to the most recent load/store operation,
(a2, x2, y2) corresponds to the next most recent load/store operation, and so on. A path from the
root to some xi is known as an eviction path, and a path from the root to some yi is known as
an assigned path. The number of load/store operations is denoted by s = |s|. The working set
corresponding to a is defined as the number of distinct block addresses ai in a. We write a(s) = a.

By ORAMZ
L [s] we denote the distribution of real blocks in ORAMZ

L after a sequence s of load/store
operations starting with an empty ORAM; the sequence s completely defines all the randomness
needed to determine, for each block address a, its leaf label and which bucket/stash stores the block
that corresponds to a. In particular the number of real blocks stored in the buckets/stash can be
reconstructed.

We assume an infinite stash and in our analysis we investigate the usage st(ORAMZ
L [s]) of the

stash defined as the number of real blocks that are stored in the stash after a sequence s of load/store
operations. In practice the stash is limited to some size R and Path-ORAM fails after a sequence s
of load/store operations if the stash needs more space: this happens if and only if the usage of the
infinite stash is at least st(ORAMZ

L [s]) > R.

Theorem 1 (Main). Let a be any sequence of block addresses with a working set of size at most N .
For a bucket size Z = 5, tree height L = dlogNe and stash size R, the probability of a Path ORAM
failure after a sequence of load/store operations corresponding to a, is at most

Pr(st(ORAM5
L[s]) > R | a(s) = a) ≤ 14 · (0.6002)R,

where the probability is over the randomness that determines x and y in s = (a,x,y).

As a corollary, for s load/store operations on N data blocks, Path ORAM with client storage
≤ R blocks, server storage 20N blocks and bandwidth 10 logN blocks per load/store operation, fails
during one of the s load/store operations with probability ≤ s · 14 · 0.6002R. So, if we assume the
number of load/stores is equal to s = poly(N), then, for a stash of size O(logN)ω(1), the probability
of Path ORAM failure during one of the load/store operations is negligible in N .

Proof outline. The proof of the main theorem consists of several steps: First, we introduce a
second ORAM, called ∞-ORAM, together with an algorithm that post-processes the stash and
buckets of ∞-ORAM in such a way that if ∞-ORAM gets accessed by a sequence s of load/store

10

operations, then the process leads to a distribution of real blocks over buckets that is exactly the
same as the distribution as in Path ORAM after being accessed by s.

Second, we characterize the distributions of real blocks over buckets in a ∞-ORAM for which
post-processing leads to a stash usage > R. We show that the stash usage after post-processing is > R
if and only if there exists a subtree T for which its “usage” in ∞-ORAM is more than its “capacity”.
This means that we can use the union bound to upper bound Pr[st(ORAMZ

L [s]) > R | a[s] = a) as a
sum of probabilities over subtrees.

Third, we analyze the usage of subtrees T . We show how a mixture of a binomial and a geometric
probability distribution expresses the probability of the number of real blocks that do not get evicted
from T after a sequence s of load/store operations. By using measure concentration techniques we
prove the main theorem.

5.1 ∞-ORAM

We define ∞-ORAM, denoted by ORAM∞L , as an ORAM that exhibits the same tree structure as
Path-ORAM with L+ 1 levels but where each bucket has an infinite size. The ∞-ORAM is used
only as a tool for usage analysis, and does not need to respect any security notions.

In order to use ORAM∞L to analyze the stash usage of ORAMZ
L , we define a post-processing greedy

algorithm GZ that takes as input the state of ORAM∞L after a sequence s of load/store operations
and attempts to reassign blocks such that each bucket stores at most Z blocks, putting excess blocks
in the (initially empty) stash if necessary. We use stZ(ORAM∞L [s]) to denote the stash usage after
the greedy algorithm is applied. The algorithm repeats the following steps until there is no bucket
that stores more than Z blocks, where the stash is initially empty.

1. Select a block in a bucket that stores more than Z blocks. Suppose the bucket is at level h,
and P is the path from the bucket to the root.

2. Find the highest level i ≤ h such that the bucket at level i on the path P stores less than Z
blocks. If such a bucket exists, then use it to store the block. If it does not exist, then put the
block in the stash.

Lemma 1. The stash usage in a post-processed ∞-ORAM is exactly the same as the stash usage in
Path-ORAM:

stZ(ORAM∞L [s]) = st(ORAMZ
L [s]).

Proof. We first notice that the order in which the greedy strategy GZ processes blocks from the
stash does not affect the number of real blocks in each bucket that are stored in server storage after
post-processing.

Suppose the greedy strategy first processes a block b1 with label x1 stored in a bucket at level h1
and suppose it finds empty space in server storage at level i1; the greedy strategy up to block b1 has
used up all the empty space in server storage allocated to the buckets along the path to the leaf with
label x1 at levels i1 < i ≤ h1. Suppose next a stash block b2 with label x2 stored in a bucket at level
h2 finds empty space in server storage at level i2; the greedy strategy up to block b2, which includes
the post-processing of b1, has used up all the empty space in server storage allocated to the buckets
along the path to the leaf with label x2 at levels i2 < i ≤ h2. If we swap the post-processing of b1

11

and b2, then b2 is able to find empty space in the bucket at level i2, but may find empty space at a
higher level since b1 has not yet been processed. In this case, i2 < i1 and paths x1 and x2 intersect
at least up to and including level i1. This means that b2 is stored at level i1 and b1 will use the
empty space in server storage at level i2. This means that the number of blocks that are stored in
the different buckets after post-processing b1 and b2 is the same if b1 is processed before or after b2.

Now, we are able to show, by using induction in |s|, that for each bucket b in a post-processed
∞-ORAM after a sequence s of load/store operations, the number of real blocks stored in b that are
in server storage is equal to the number of blocks stored in the equivalent bucket in Path-ORAM
after applying the same sequence s of load/store operations: The statement clearly holds for |s| = 0
when both ORAMs are empty. Suppose it holds for |s| ≥ 0. Consider the next load/store operation
to some leaf f . After reading the path to leaf f into the cache, Path-ORAM moves blocks from its
cache/stash into the path from root to leaf f according to algorithm GZ . Therefore, post-processing
after the first |s| operations followed by the greedy approach of Path ORAM that processes the
(|s|+ 1)-th operation is equivalent to post-processing after |s|+ 1 operations where some blocks may
be post-processed twice. Since the order in which blocks are post-processed does not matter, we
may group together the multiple times a block b is being post-processed and this is equivalent to
post-processing b exactly once as in GZ . The number of real blocks in the stash is the same and
this proves the lemma.

5.2 Usage/Capacity Bounds

To investigate when a not processed ORAM∞L can lead to a stash usage of > R after post-processing,
we start by analyzing bucket usage over subtrees. When we talk about a subtree T of the binary
tree, we always implicitly assume that it contains the root of the ORAM tree; in particular, if a
node is contained in T , then so are all its ancestors. We define n(T) to be the total number of
nodes in T . For ∞-ORAM we define the usage uT (ORAM∞L [s]) of T after a sequence s of load/store
operations as the actual number of real blocks that are stored in the buckets of T .

The following lemma characterizes the stash usage:

Lemma 2. The stash usage stZ(ORAM∞L [s]) in post-processed ∞-ORAM is > R if and only if there
exists a subtree T in ORAM∞L such that uT (ORAM∞L [s]) > n(T) · Z +R.

Proof. If part: Suppose T is a subtree such that uT (ORAM∞L [s]) > n(T) · Z +R. Observe that the
greedy algorithm can assign the blocks in a bucket only to an ancestor bucket. Since T can store at
most n(T) · Z blocks, more than R blocks must be assigned to the stash by the greedy algorithm
GZ .
Only if part: Suppose that stZ(ORAM∞L [s]) > R. Define T to be the maximal subtree that contains
all buckets with exactly Z blocks after post-processing by the greedy algorithm GZ . Suppose b is a
bucket not in T . By the maximality of T , there is an ancestor (not necessarily proper ancestor)
bucket b′ of b that contains less than Z blocks after post-processing, which implies that no block
from b can go to the stash. Hence, all blocks that are in the stash must have originated from a
bucket in T . Therefore, it follows that uT (ORAM∞L [s]) > n(T) · Z +R

Lemma 3 (Worst-case Address Pattern). Out of all address sequences a on a working set of size
N , the probability Pr[stZ(ORAM∞L [s]) > R|a(s) = a] is maximized by a sequence a in which each
block address appears exactly once, i.e., s = N and there are no duplicate block addresses. As

12

a consequence, for such an address pattern, the labels in (xi)
N
i=1 and (yi)

N
i=1 are all statistically

independent of one another.

Proof. Suppose that there exists an address in a that has been loaded/stored twice in ∞-ORAM.
Then, there exist indices i and j, i < j, with ai = aj . Without the j-th load/store, the working set
remains the same and it is more likely for older blocks corresponding to ak, k > j to not have been
evicted from T (since there is one less load/store that could have evicted an older block to a higher
level outside T ; also notice that buckets in ∞-ORAM are infinitely sized, so, removing the j-th
load/store does not generate extra space that can be used for storage of older blocks that otherwise
would not have found space). So, the probability Pr[stZ(ORAM∞L [s]) > R|a(s) = a] is maximized
when a = (ai)

s
i=1 is a sequence of block addresses without duplicates.

Bounding Usage for Each Subtree. In view of Lemma 3, we fix a sequence a of N distinct
block addresses. The randomness comes from the independent choices of labels (xi)

N
i=1 and (yi)

N
i=1.

As a corollary to Lemmas 1 and 2, we obtain

Pr[st(ORAMZ
L [s]) > R]

= Pr[stZ(ORAM∞L [s]) > R]

= Pr[∃T uT (ORAM∞L [s]) > n(T)Z +R]

≤
∑
T

Pr[uT (ORAM∞L [s]) > n(T)Z +R],

where T ranges over all subtrees containing the root, and the inequality follows from the union
bound.

Since the number of ordered binary trees of size n is equal to the Catalan number Cn, which is
≤ 4n,

Pr[st(ORAMZ
L [s]) > R]

≤
∑

n≥1 4n maxT :n(T)=n Pr[uT (ORAM∞L [s]) > nZ +R].

We next give a uniform upper bound for

Pr[uT (ORAM∞L [s]) > nZ +R]

in terms of n, Z and R.

5.3 Usage of Subtree via Eviction Game

In view of Lemma 3, we assume that the request sequence is of length N , and consists of distinct
block addresses. Recall that the 2N labels in x = (xi)

N
i=1 and y = (yi)

N
i=1 are independent, where

each label corresponds to a leaf bucket. The indices i are given in reversed order, i.e, i = N is the
first access and i = 1 is the last access.

At every time step i, a block is requested. The block resides in a random path with some label
xi previously chosen (however the random choice has never been revealed). This path is now visited.
Henceforth, this path is called the eviction path Pevict(i).

Then, the block is logically assigned to a freshly chosen random path with label yi, referred to
as the assigned path Passign(i).

13

Variable Meaning

T a subtree rooted at the root of the ORAM∞ binary tree

T̂ augmented tree by including every child (if any) of every node in T
F nodes of a subtree T that are leaves to the ORAM binary tree
E set of exit nodes of a subtree T

Ê := E ∪ F set of all leaves of T̂
Z capacity of each bucket

Table 3: Notations for the analysis.

Exit nodes

Nodes in the subtree T

Leaves of ORAM tree

Figure 2: A subtree containing some leaves of the original ORAM binary tree, augmented with
the exit nodes

Recall that given subtree T , we want to probabilistically bound the quantity uT (ORAM∞L [s]),
which is the number of blocks that, at the end of an access sequence s, survive in the subtree T , i.e.,
have not been evicted out of the subtree T .

Definition 2 (Exit node). For a given path P leading to some leaf node, suppose that some node u
is the first node of the path P that is not part of T , then we refer to node u as the exit node, denoted
u := exit(P, T). If the whole path P is contained in T , then the exit node exit(P, T) is null.

To bound the number of surviving blocks in T at the end of an access sequence of N , we focus
on an individual block that is requested at step i in this sequence. Suppose this block resides in path
Pevict(i), and is assigned to some path Passign(i) at the end of the request. Observe that this block
will be evicted from tree T at the end of the sequence iff the following holds: there exists a later
step j ≤ i (recalling that smaller indices mean later) such that both exit nodes exit(Pevict(j), T) and
exit(Passign(i), T) are equal and not null. Otherwise the block will survive in tree T at the end of
the sequence — and will contribute to the count of the total surviving blocks.

We next define some notations relating to the subtree T .
Let F be the set of nodes in T that are also leaves of the ORAM binary tree; we denote l := |F |.

We augment the tree T by adding nodes to form T̂ in the following way. If a node in T has any
child node v that is not in T , then node v will be added to T̂ . The added nodes in T̂ are referred to
as exit nodes, denoted by E; the leaves of T̂ are denoted by Ê = E ∪ F . Observe that if T contains
n nodes and |F | = l, then |Ê| = n− l + 1.

We summarize the notations we use in Table 3.

Eviction Game. Consider the following eviction game, which is essentially playing the ORAM
access sequence reversed in time. Initially, all nodes in Ê are marked closed ; all nodes in F will

14

remain closed, and only nodes in E may be marked open later.
For i = 1, 2, . . . , N , do the following:

1. Pick a random eviction path starting from the root, denoted Pevict(i). The path will intersect
exactly one node v in Ê. If v is an exit node in E, mark node v as open (if that exit node is
already marked open, then it will continue to be open).

2. For a block requested in time step i, pick a random assignment path Passign(i) starting from

the root. The path Passign(i) will intersect exactly one node in Ê. If this node is closed, then
the block survives; otherwise, the block is evicted from T .

For i ∈ [N], a block bi from step i survives because its corresponding assignment path intersects
a node in F , or an exit node that is closed. We define Xi to be the indicator variable that equals 1 iff
the path Passign(i) intersects a node in F (and block bi survives), Yi to be the indicator variable that
equals 1 iff the path Passign(i) intersects a node in E and block bi survives. Define X :=

∑
i∈[N]Xi

and Y :=
∑

i∈[N] Yi; observe that the number of blocks that survive is X + Y .

5.4 Negative Association

Independence is often required to show measure concentration. However, the random variables X
and Y are not independent. Fortunately, X and Y are negatively associated. For simplicity, we
show a special case in the following lemma, which will be useful in the later measure concentration
argument.

Lemma 4. For X and Y defined above, and all t ≥ 0, E[et(X+Y)] ≤ E[etX] · E[etY].

Proof. Observe that there exists some p ∈ [0, 1], such that for all i ∈ [N], p = Pr[Xi = 1]. For
each i ∈ [N], define qi := Pr[Yi = 1]. Observe that the qi’s are random variables, and they are
non-increasing in i and determined by the choice of eviction paths.

For each i ∈ [N], Xi + Yi ≤ 1, and hence Xi and Yi are negatively associated. Conditioning on
q := (qi)i∈[N], observe that the (Xi, Yi)’s are determined by the choice of independent assignment
paths in different rounds, and hence are independent over different i’s. Hence, it follows from [9,
Proposition 7(1)] that conditioning on q, X and Y are negatively associated.

In particular, for non-negative t, we have E[et(X+Y)|q] ≤ E[etX |q] ·E[etY |q] = E[etX] ·E[etY |q],
where the last equality follows because X is independent of q. Taking expectation over q gives
E[et(X+Y)] ≤ E[etX] · E[etY].

5.5 Stochastic Dominance

Because of negative association, we consider two games to analyze the random variables X and Y
separately. The first game is a balls-and-bins game which produces a random variable X̂ that has
the same distribution as X. The second game is a modified eviction game with countably infinite
number of rounds, which produces a random variable Ŷ that stochastically dominates Y , in the
sense that Ŷ and Y can be coupled such that Y ≤ Ŷ .

1. Balls-and-Bins Game: For simplicity, we assume N = 2L. In this game, N blocks are
thrown independently and uniformly at random into N buckets corresponding to the leaves
of the ORAM binary tree. The blocks that fall in the leaves in F survive. Observe that the
number X̂ of surviving blocks has the same distribution as X.

15

2. Infinite Eviction Game: This is the same as before, except for the following differences.

(a) Every node in Ê is initially closed, but all of them could be open later. In particular, if
some eviction path Pevict(i) intersects a leaf node v ∈ F , node v will become open.

(b) There could be countably infinite number of rounds, until eventually all nodes in Ê are
open, and no more blocks can survive after that.

Let Ŷ be the total number of surviving blocks in the infinite eviction game. Observe that a
block with assigned path intersecting a node in F will not be counted towards Y , but might
be counted towards Ŷ if the node is closed. Hence, there is a natural coupling such that the
number of surviving blocks in the first N rounds in the infinite game is at least Y in the finite
eviction game. Hence, the random variable Ŷ stochastically dominates Y . Hence, we have for

all non-negative t, E[etY] ≤ E[etŶ].

5.6 Measure Concentration for the Number of Surviving Blocks in Subtree

We shall find parameters Z and R such that, with high probability, X + Y is at most nZ +R. For
simplicity, we assume N = 2L is a power of two.

Lemma 5. Suppose that the address sequence is of length N , where L := dlog2Ne. Moreover,
suppose that T is a subtree of the binary ORAM tree containing the root having n = n(T) nodes.
Then, for Z = 5, for any R > 0, Pr[uT (ORAM∞L [s]) > n · Z +R] ≤ 1

4n · (0.9332)n · e−0.5105R.

Proof. Because of negative association between X and Y , and stochastic dominance by X̂ and Ŷ ,
we analyze X̂ and Ŷ .

Observe that if T has n nodes, among which l are in F , then T̂ has n− l + 1 leaves in Ê.

Balls-and-Bins Game. Recall that Xi is the indicator variable for whether the assigned path
Passign(i) intersects a bucket in F . Then, X̂ =

∑
i∈[n]Xi. Recall that l = |F | and there are

N = 2L leaf buckets in the binary ORAM tree. Observe that for real t, E[etXi] = (1− l
N) + l

N e
t ≤

exp(l
N (et − 1)), and hence by independence, E[etX̂] ≤ exp(l(et − 1)).

Infinite Eviction Game. For each v ∈ Ê, suppose v is at depth dv (the root is at depth 0), and
let its weight be w(v) := 1

2dv
. Observe that the sum of weights of nodes in Ê is 1.

Define Mj to be the number of surviving blocks such that there are exactly j open nodes at the

moment when the corresponding assigned paths are chosen. Since Ê contains n− l + 1 nodes, we
consider j from 1 to k = n− l. (Observe that for in the first round of the infinite eviction game, the
first eviction path closes one of the nodes in Ê, and hence, the number of remaining open nodes
for the first block is n − l.) Let Qj be the number of rounds in which, at the moment when the
assigned path is chosen, there are exactly j open nodes. Let wj be the weight of the jth open node.

Define qj := 1−
∑j

i=1wi. Observe that conditioning on qj , Qj follows the geometric distribution
with parameter qj ; moreover, conditioning on qj and Qj , Mj is the sum of Qj independent Bernoulli
random variables, each with expectation qj .

Define Ŷ :=
∑k

j=1Mj . We shall analyze the moment generating function E[etŶ] for appropriate

values of t > 0. The strategy is that we first derive an upper bound φ(t) for E[etMk |w], where
w := {wj}j≤k, that depends only on t (and in particular independent of w or k). This allows us to

conclude that E[etŶ] ≤ (φ(t))k.

16

For simplicity, in the below argument, we assume that we have conditioned on w = {wj}j≤k
and we write Q = Qk, M = Mk and q = qk.

Recall that M is a sum of Q independent Bernoulli random variables, where Q has a geometric
distribution. Therefore, we have the following.

E[etM |w] =
∑
i≥1

q(1− q)iE[etM |Q = i,w] (1)

≤
∑
i≥1

q(1− q)i−1 exp(qi(et − 1)) (2)

=
q exp(q(et − 1))

1− (1− q) exp(q(et − 1))
(3)

=
q

exp(−q(et − 1))− (1− q)
(4)

≤ q

1− q(et − 1)− 1 + q
(5)

=
1

2− et
. (6)

From (1) to (2), we consider the moment generating function of a sum of i independent Bernoulli
random variables, each having expectation q: E[etM |Q = i,w] = ((1− q) + qet)i ≤ exp(qi(et − 1)).
In (3), for the series to converge, we observe that (1− q) exp(q(et − 1)) ≤ exp(q(et − 2)), which is
smaller than 1 when 0 < t < ln 2. In (5), we use 1− u ≤ exp(−u) for all real u.

Hence, we have shown that for 0 < t < ln 2, E[et
∑k
j=1Mj |w] = E[et

∑k−1
j=1 Mj |w] · E[etMk |w]

(since conditioning on w, Mk is independent of past history), which we show from above is at most

E[et
∑k−1
j=1 Mj |w] · (1

2−et). Taking expectation over w gives E[et
∑k
j=1Mj] ≤ E[et

∑k−1
j=1 Mj] · (1

2−et).
Observe that the inequality holds independent of the value of q = qk. Therefore, the same

argument can be used to prove that, for any 1 < κ ≤ k, we have E[et
∑κ
j=1Mj] ≤ E[et

∑κ−1
j=1 Mj] ·(1

2−et).

Hence, a simple induction argument on k = n− l can show that E[etŶ] ≤ (1
2−et)

n−l.

Combining Together. Let Z be the capacity for each bucket in the binary ORAM tree, and R
be the number blocks overflowing from the binary tree that need to be stored in the stash.

We next perform a standard moment generating function argument. For 0 < t < ln 2, Pr[X+Y ≥
nZ +R] = Pr[et(X+Y) ≥ et(nZ+R)], which by Markov’s Inequality, is at most E[et(X+Y)] · e−t(nZ+R),

which, by negative associativity and stochastic dominance, is at most E[etX̂] · E[etŶ] · e−t(nZ+R) ≤
(e

−tZ

2−et)
n−l · el(et−1−tZ) · e−tR.

Putting Z = 5, and t = 0.5105, one can check that max{ e−tZ2−et , e
et−1−tZ} ≤ 1

4 · 0.9332, and so the

probability is at most 1
4n · (0.9332)n · e−0.5105R.

Proof of Theorem 1. By applying Lemma 5 to inequality (1), we have the following: Pr[st(ORAMZ
L [s]) >

R|a(s) = a] ≤
∑

n≥1 4n · 1
4n · (0.9332)n · e−0.5105R ≤ 14 · (0.6002)R, as required.

5.7 Bounds for Shared Stash

We now show that if all levels of the recursion use the same stash, the stash size is O(logN) · ω(1)
with high probability.

17

Suppose there are K = O(logN) levels of recursion in the recursive Path ORAM. We consider
a moment after a sequence of ORAM operations are executed. For k ∈ [K], let Sk be the
number of blocks in the stash from level k. From Theorem 1, for each k ∈ [K], for each R > 0,
Pr[Sk > R] ≤ 14 · (0.6002)R. Observing that a geometric distribution G with parameter p satisfies
Pr[G > R] ≤ (1− p)R, we have the following.

Proposition 1. For each k ∈ [K], the random variable Sk is stochastically dominated by 3 + G,
where G is the geometric distribution with parameter p = 1− 0.6002 = 0.3998.

From Proposition 1, it follows that the number of stash blocks in the common storage is
stochastically dominated by 3K +

∑
k∈[K]Gk, where Gk’s are independent geometric distribution

with parameter p = 0.3998. It suffices to perform a standard measure concentration analysis on a
sum of independent geometrically distributed random variables, but we need to consider the case
that the sum deviates significantly from its mean, because we want to achieve negligible failure
probability.

Lemma 6 (Sum of Independent Geometric Distributions). Suppose (Gk : k ∈ [K]) are independent
geometrically distributed random variables with parameter p ∈ (0, 1). Then, for R > 0, we have
Pr[

∑
k∈[K]Gk > E[

∑
k∈[K]Gk] +R] ≤ exp(−pR

2 + K
2).

Proof. We use the standard method of moment generating function. For t ≤ p
2 , we have, for each

k ∈ [K],

E[etGk] =
∑
i≥1

p(1− p)i · eit (7)

=
pet

1− (1− p)et
=

p

p+ e−t − 1
(8)

≤ p

p− t
=

1

1− t
p

(9)

≤ 1 +
t

p
+

2t2

p2
(10)

≤ exp(
t

p
+

2t2

p2
), (11)

where in (8), the geometric series converges, because t ≤ p
2 < ln 1

1−p , for 0 < p < 1. In (9), we

use the inequality 1− e−t ≤ t; in (10), we use the inequality 1
1−u ≤ 1 + u+ 2u2, for u ≤ 1

2 .

Observing that E[Gk] = 1
p , we have for 0 < t ≤ p

2 ,

Pr[
∑

k∈[K]Gk > E[
∑

k∈[K]Gk]+R] ≤ E[exp(t
∑

k∈[K]Gk)] ·exp(−t(Kp +R)) ≤ exp(−tR+ 2t2K
p2

).

Putting t = p
2 , we have Pr[

∑
k∈[K]Gk > E[

∑
k∈[K]Gk] +R] ≤ exp(−pR

2 + K
2), as required.

From Lemma 6, observing that K = O(logN) and p = 0.3998, to achieve failure probability
1

Nω(1) , it suffices to set the capacity of the common stash storage to be 1
p · (O(K) + (logN) · ω(1)) =

Θ(logN) · ω(1) blocks.

18

6 Applications and Extensions

6.1 Oblivious Binary Search Tree

Based on a class of recursive, binary tree based ORAM constructions, Gentry et al. propose a novel
method for performing an entire binary search using a single ORAM lookup [12]. Their method is
immediately applicable to Path ORAM. As a result, Path ORAM can be used to perform search
on an oblivious binary search tree, using O(log2N) bandwidth. Note that since a binary search
requires navigating a path of O(logN) nodes, using existing generic ORAM techniques would lead
to bandwidth cost of O((logN)3/ log logN).

6.2 Stateless ORAM

Oblivious RAM is often considered in a single-client model, but it is sometimes useful to have
multiple clients accessing the same ORAM. In that case, in order to avoid complicated (and possibly
expensive) oblivious state synchronization between the clients, Goodrich et al. introduce the concept
of stateless ORAM [19] where the client state is small enough so that any client accessing the
ORAM can download it before each data access and upload it afterwards. Then, the only thing
clients need to store is the private key for the ORAM (which does not change as the data in the
ORAM changes).

In our recursive Path ORAM construction, we can download and upload the client state before
and after each access. Since the client state is only O(logN) · ω(1) and the bandwidth is O(logN)
when B = Ω(log2N), we can reduce the permanent client state to O(1) and achieve a bandwidth of
O(logN) · ω(1). Note that during an access the client still needs about O(logN) · ω(1) transient
client storage to perform the Access operation, but after the Access operation completes, the client
only needs to store the private key.

For smaller blocks when B = Ω(logN), we can achieve O(1) permanent client storage, O(logN) ·
ω(1) transient client storage, and O(log2N) bandwidth cost.

6.3 Secure Processors

In a secure processor setting, private computation is done inside a tamper-resistant processor (or
board) and main memory (e.g., DRAM) accesses are vulnerable to eavesdropping and tampering. As
mentioned earlier, Path ORAM is particularly amenable to hardware design because of its simplicity
and low on-chip storage requirements.

Fletcher et al. [10, 11] and Ren et al. [30] built a simulator for a secure processor based on Path
ORAM. They optimize the bandwidth cost and stash size of the recursive construction by using a
smaller Z = 3 in combination with a background eviction process that does not break the Path
ORAM invariant.

Maas et al. [25] built a hardware implementation of a Path ORAM based secure processor using
FPGAs and the Convey platform.

Ren et al. [30] and Maas et al. [25] report about 1.2X to 5X performance overhead for many
benchmarks such as SPEC traces and SQLite queries. To achieve this high performance, these
hardware Path ORAM designs rely on on-chip caches while making Path ORAM requests only
when last-level cache misses occur.

19

Figure 3: Empirical estimation of the required stash size to achieve failure probability less than
2−λ where λ is the security parameter. Measured for N = 216, but as Figure 4 shows, the stash size
does not depend on N (at least for Z = 4). The measurements represent a worst-case (in terms
of stash size) access pattern. The stash size does not include the temporarily fetched path during
Access.

6.4 Integrity

Our protocol can be easily extended to provide integrity (with freshness) for every access to the
untrusted server storage. Because data from untrusted storage is always fetched and stored in the
form of a tree paths, we can achieve integrity by simply treating the Path ORAM tree as a Merkle
tree where data is stored in all nodes of the tree (not just the leaf nodes). In other words, each
node (bucket) of the Path ORAM tree is tagged with a hash of the following form

H(b1 ‖ b2 ‖ . . . ‖ bZ ‖ h1 ‖ h2)

where bi for i ∈ {1, 2, . . . , Z} are the blocks in the bucket (some of which could be dummy blocks)
and h1 and h2 are the hashes of the left and right child. For leaf nodes, h1 = h2 = 0. Hence only two
hashes (for the node and its sibling) need to be read or written for each ReadBucket or WriteBucket
operation.

In [29], Ren et al. further optimize the integrity verification overhead for the recursive Path
ORAM construction.

7 Evaluation

In our experiments, the Path ORAM uses a binary tree with height L = dlog2(N)e − 1.

7.1 Stash Occupancy Distribution

Stash occupancy. In both the experimental results and the theoretical analysis, we define the stash
occupancy to be the number of overflowing blocks (i.e., the number of blocks that remain in the

20

Figure 4: The stash size to achieve failure probability less than 2−λ does not depend on N (Z = 4).
Measured for a worst-case (in terms of stash size) access pattern. The stash size does not include
the temporarily fetched path during Access.

Security Parameter (λ)
Bucket Size (Z)
4 5 6
Max Stash Size

80 89 63 53

128 147 105 89

256 303 218 186

Figure 5: Required max stash size for large security parameters. Shows the maximum
stash size required such that the probability of exceeding the stash size is less than 2−λ for a
worst-case (in terms of stash size) access pattern. Extrapolated based on empirical results for λ ≤ 26.
The stash size does not include the temporarily fetched path during Access.

stash) after the write-back phase of each ORAM access. This represents the persistent local storage
required on the client-side. In addition, the client also requires under Z log2N transient storage for
temporarily caching a path fetched from the server during each ORAM access.

Our main theorem in Section 5 shows the probability of exceeding stash capacity decreases
exponentially with the stash size, given that the bucket size Z is large enough. This theorem is
verified by experimental results as shown in Figure 4 and Figure 3. In each experiment, the ORAM
is initially empty. We first load N blocks into ORAM and then access each block in a round-robin
pattern. I.e., the access sequence is {1, 2, . . . , N, 1, 2, . . . , N, 1, 2, . . .}. In section 5, we show that this
is a worst-case access pattern in terms of stash occupancy for Path ORAM. We simulate our Path
ORAM for a single run for about 250 billion accesses after doing 1 billion accesses for warming-up
the ORAM. It is well-known that if a stochastic process is regenerative (empirically verified to be
the case for Path ORAM), the time average over a single run is equivalent to the ensemble average
over multiple runs (see Chapter 5 of [20]).

Figure 3 shows the minimum stash size to get a failure probability less than 2−λ with λ being
the security parameter on the x-axis. In Figure 5, we extrapolate those results for realistic values of
λ. The experiments show that the required stash size grows linearly with the security parameter,

21

(a) Z=3 (b) Z=4 (c) Z=5

Figure 6: Average bucket load of each level for different bucket sizes. The error bars represent the
1/4 and 3/4 quartiles. Measured for a worst-case (in terms of stash size) access pattern.

which is in accordance with the Main Theorem in Section 5 that the failure probability decreases
exponentially with the stash size. Figure 4 shows the required stash size for a low failure probability
(2−λ) does not depend on N . This shows Path ORAM has good scalability.

Though we can only prove the theorem for Z ≥ 5, in practice, the stash capacity is not exceeded
with high probability when Z = 4. Z = 3 behaves relatively worse in terms of stash occupancy, and
it is unclear how likely the stash capacity is exceeded when Z = 3.

We only provide experimental results for small security parameters to show that the required
stash size is O(λ) and does not depend on N . Note that it is by definition infeasible to simulate for
practically adopted security parameters (e.g., λ = 128), since if we can simulate a failure in any
reasonable amount of time with such values, they would not be considered secure.

A similar empirical analysis of the stash size (but with the path included in the stash) was done
by Maas et al. [25].

7.2 Bucket Load

Figure 6 gives the bucket load per level for Z ∈ {3, 4, 5}. We prove in Section 5 that for Z ≥ 5, the
expected usage of a subtree T is close to the number of buckets in it. And Figure 6 shows this also
holds for 4 ≤ Z ≤ 5. For the levels close to the root, the expected bucket load is indeed 1 block
(about 25% for Z = 4 and 20% for Z = 5). The fact that the root bucket is seldom full indicates
the stash is empty after a path write-back most of the time. Leaves have slightly heavier loads as
blocks accumulate at the leaves of the tree. Z = 3, however, exhibits a different distribution of
bucket load (as mentioned in Section 7.1 and shown in Figure 3, Z = 3 produces much larger stash
sizes in practice).

8 Conclusion

Partly due to its simplicity, Path ORAM is the most practical ORAM scheme known-to-date under
a small amount of client storage. We formally prove asymptotic bounds on Path ORAM, and
show that its performance is competitive with or asymptotically better than the the best known

22

construction (for a small amount of client storage), assuming reasonably large block sizes. We also
present simulation results that confirm our theoretic bounds.

Acknowledgments

Emil Stefanov was supported by the National Science Foundation Graduate Research Fellowship
under Grant No. DGE-0946797 and by a DoD National Defense Science and Engineering Graduate
Fellowship. Elaine Shi is supported by NSF under grant CNS-1314857. Christopher Fletcher was
supported by a National Science Foundation Graduate Research Fellowship, Grant No. 1122374
and by a DoD National Defense Science and Engineering Graduate Fellowship. This research was
partially supported by the DARPA Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH)
program under contract N66001-10-2-4089, and a grant from the Amazon Web Services in Education
program. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the funding agencies.

We would like to thank Kai-Min Chung and Jonathan Katz for helpful discussions. We would
like to thank Kai-Min Chung for pointing out that our algorithm is information-theoretically
(statistically) secure.

References

[1] Personal communication with Kai-Min Chung, 2013.

[2] M. Ajtai. Oblivious rams without cryptogrpahic assumptions. In Proceedings of the 42nd ACM
symposium on Theory of computing, STOC ’10, pages 181–190, 2010.

[3] D. Asonov and J.-C. Freytag. Almost optimal private information retrieval. In PET, 2003.

[4] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious storage: Making oblivious
RAM practical. Manuscript, http://dspace.mit.edu/bitstream/handle/1721.1/62006/

MIT-CSAIL-TR-2011-018.pdf, 2011.

[5] K.-M. Chung, Z. Liu, and R. Pass. Statistically-secure oram with Õ(log2 n) overhead. http:
//arxiv.org/abs/1307.3699, 2013.

[6] K.-M. Chung and R. Pass. A simple oram. https://eprint.iacr.org/2013/243.pdf, 2013.

[7] I. Damg̊ard, S. Meldgaard, and J. B. Nielsen. Perfectly secure oblivious RAM without random
oracles. In TCC, 2011.

[8] I. Damg̊ard, S. Meldgaard, and J. B. Nielsen. Perfectly secure oblivious ram without random
oracles. In TCC, pages 144–163, 2011.

[9] D. P. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence. Random
Struct. Algorithms, 13(2):99–124, 1998.

[10] C. Fletcher, M. van Dijk, and S. Devadas. Secure Processor Architecture for Encrypted
Computation on Untrusted Programs. In Proceedings of the 7th ACM CCS Workshop on
Scalable Trusted Computing, pages 3–8, Oct. 2012.

23

http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://arxiv.org/abs/1307.3699
http://arxiv.org/abs/1307.3699
https://eprint.iacr.org/2013/243.pdf

[11] C. W. Fletcher. Ascend: An architecture for performing secure computation on encrypted data.
In MIT CSAIL CSG Technical Memo 508, April 2013.

[12] C. Gentry, K. Goldman, S. Halevi, C. Julta, M. Raykova, and D. Wichs. Optimizing oram and
using it efficiently for secure computation. In PETS, 2013.

[13] O. Goldreich. Towards a theory of software protection and simulation by oblivious rams. In
STOC, 1987.

[14] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams. J. ACM,
1996.

[15] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced data via
oblivious RAM simulation. In ICALP, 2011.

[16] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Oblivious ram simulation
with efficient worst-case access overhead. In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, CCSW ’11, pages 95–100, New York, NY, USA, 2011. ACM.

[17] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Practical oblivious storage.
In CODASPY, 2012.

[18] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-preserving group
data access via stateless oblivious RAM simulation. In SODA, 2012.

[19] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-preserving group
data access via stateless oblivious ram simulation. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages 157–167. SIAM, 2012.

[20] M. Harchol-Balter. Performance Modeling and Design of Computer Systems: Queueing Theory
in Action. Performance Modeling and Design of Computer Systems: Queueing Theory in
Action. Cambridge University Press, 2013.

[21] A. Iliev and S. W. Smith. Protecting client privacy with trusted computing at the server. IEEE
Security and Privacy, 3(2):20–28, Mar. 2005.

[22] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In Network and Distributed System Security Symposium
(NDSS), 2012.

[23] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-based oblivious RAM and
a new balancing scheme. In SODA, 2012.

[24] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman. Shroud: Ensuring private
access to large-scale data in the data center. FAST, 2013:199–213, 2013.

[25] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz, and D. Song.
Phantom: Practical oblivious computation in a secure processor. ACM CCS, 2013.

[26] R. Ostrovsky. Efficient computation on oblivious rams. In STOC, 1990.

24

[27] R. Ostrovsky and V. Shoup. Private information storage (extended abstract). In STOC, pages
294–303, 1997.

[28] B. Pinkas and T. Reinman. Oblivious RAM revisited. In CRYPTO, 2010.

[29] L. Ren, C. Fletcher, X. Yu, M. van Dijk, and S. Devadas. Integrity verification for path oblivious-
ram. In Proceedings of the 17th IEEE High Performance Extreme Computing Conference,
September 2013.

[30] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas. Design space exploration and
optimization of path oblivious ram in secure processors. In Proceedings of the Int’l Symposium
on Computer Architecture, pages 571–582, June 2013. Available at Cryptology ePrint Archive,
Report 2012/76.

[31] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O((logN)3) worst-case
cost. In ASIACRYPT, pages 197–214, 2011.

[32] S. W. Smith and D. Safford. Practical server privacy with secure coprocessors. IBM Syst. J.,
40(3):683–695, Mar. 2001.

[33] E. Stefanov and E. Shi. Path o-ram: An extremely simple oblivious ram protocol. CoRR,
abs/1202.5150, 2012.

[34] E. Stefanov and E. Shi. ObliviStore: High performance oblivious cloud storage. In IEEE
Symposium on Security and Privacy, 2013.

[35] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM. In NDSS, 2012.

[36] P. Williams and R. Sion. Usable PIR. In NDSS, 2008.

[37] P. Williams and R. Sion. Round-optimal access privacy on outsourced storage. In CCS, 2012.

[38] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage. In CCS, 2008.

[39] P. Williams, R. Sion, and A. Tomescu. Privatefs: A parallel oblivious file system. In CCS,
2012.

25

	Introduction
	Related Work

	Problem Definition
	The Path ORAM Protocol
	Overview
	Server Storage
	Client Storage and Bandwidth
	Path ORAM Initialization
	Path ORAM Reads and Writes
	Security Analysis

	Recursion and Parameterization
	Recursion Technique
	Parameterization
	Shared Stash

	Bounds on Stash Usage
	-ORAM
	Usage/Capacity Bounds
	Usage of Subtree via Eviction Game
	Negative Association
	Stochastic Dominance
	Measure Concentration for the Number of Surviving Blocks in Subtree
	Bounds for Shared Stash

	Applications and Extensions
	Oblivious Binary Search Tree
	Stateless ORAM
	Secure Processors
	Integrity

	Evaluation
	Stash Occupancy Distribution
	Bucket Load

	Conclusion

