
ENABLING TECHNOLOGIES FOR A WEB-BASED

URBAN STREET CONSTRUCTION PERMIT SYSTEM

BY

CHANGXIN QI

B.S., CivIL ENGINEERING

ZHEJIANG UNIVERSITY (1986)

M.S., CIVIL ENGINEERING

ZHEJIANG UNIVERSITY (1991)

MASSACHUSETTS INSTITUTE.
OF TECHNOLOGY

JUN 0 4 ?01

LIBRARIES

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING
In Civil and Environmental Engineering

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUNE 2001

Copyright 02001 Changxin Qi. All Rights Reserved.
The author hereby grants to MIT permission to reproduce and distribute publicly paper

and electronic copies of this thesis document in whole or in part.

Signature of Author

Certified by

Accepted by

Department of Civil and EAvironi n al Engineering
May 11, 2001

' (j George Kocur
Senior Lecturer in Civil and Environmental Engineering

Thesis Supervisor

Oral Buyukozturk
Chairman, Departmental Committee on Graduate Studies

BARKER

ENABLING TECHNOLOGIES FOR A WEB-BASED

URBAN STREET CONSTRUCTION PERMIT SYSTEM

By
Changxin Qi

Submitted to the Department of Civil and Environmental Engineering on May 11, 2001,
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering
in Civil and Environmental Engineering

ABSTRACT

This thesis is focused on the enabling technologies for a web-based urban street
construction permit system. The web-based application system can automatically verify
the various constraints, issue the permit if the constraints are met, notify the relevant
persons of the issuance of the permit, update the pavement status for the affected street
and prepare the billing report for further processing with the existing billing system.

The web-based permit system is divided into two sub-systems: External System and
Internal System. The external system is used by contractor/utility companies for permit
application, and the internal system is used solely by authorized internal users for
maintenance of the system or permit application on behalf of contractor/utility companies
when there is such a necessity. These two sub-systems share the same underlying
database system.

In order to develop this web-based permit system, the following J2EE technologies have
been used: Enterprise JavaBeans, JavaServer Pages, Servlet and JDBC API. Other J2EE
technologies such as Transaction, JNDI and XML are also discussed where appropriate.

The following development environments to support these technologies are also
presented in this thesis: Red Hat Linux 7.0, Java 2 Platform, Tomcat Server 3.2.1,
Database MySQL 2.1.4, and JDBC Driver 2.0.4 for MySQL.

As an example, Arlington permit system was used to demonstrate the design of an Entity-
Relationship model, and an Enterprise JavaBeans application.

Thesis Supervisor: George Kocur, Ph.D.
Title: Senior Lecturer in Civil and Environmental Engineering

Acknowledgments

I would like to thank my thesis advisor, Prof. George Kocur, for his support and advising

throughout the development of my thesis. George has an amazing ability in working

efficiently with deep insight into the subject, which inspired me a lot. It has been a

wonderful experience to do research under his guidance.

My thanks also to Andreas Klimke and Rajesh Prasad, my friends who worked with me

on the Arlington Permit System Project, and Ron Santosuosso, the director of the

Arlington Public Works Department Engineering Division who provided us help for the

Arlington Project.

Special thanks go to my wife Jian, my six-years-old daughter Han-Xiao, and my four-

months-old son Sheng-Kai for their love, support and smile.

Table of Contents

1 Introduction .. 9

1.1 Overview of the W eb-based Permit System 9

1.2 M ulti-tier Software Architecture .. 12

1.3 Outline of This Thesis .. 15

2 Developm ent Environm ent .. 17

2.1 Red Hat Linux 7.0 .. 17

2.1.1 Installation-Related Enhancements... 18

2.1.2 System-Related Enhancements .. 18

2.1.3 Red Hat Linux 7 Installation procedure.. 18

2.2 Java 2 Platform ... 22

2.2.1 Java 2 Platform, Standard Edition 1.3 (J2SE).................................. 22

2.2.2 Java 2 Platform, Enterprise Edition 1.3 (J2EE) 24

2.3 Tomcat Server 3.2.1 ... 26

2.4 M ySQL 2.1.4 ... 26

2.5 M ySQL JDBC driver 2.0.4.. 27

3 J2EE Platform Technologies .. 29

3.1 JDBC API.. 29

3.1.1 Goals for JDBC.. 29

3.1.2 JDBC Architecture.. 30

3.1.3 Standard steps in querying databases... 32

3.2 W eb Components .. 35

3.2.1 W eb Component Roles .. 35

3.2.2 Servlets.. 37

3.2.3 JavaServer Pages Technology... 38

3.2.4 JSP Pages Versus Servlets ... 39

4

3.2.5 W eb Component Containers ... 39

3.3 EJB Components ... 40

3.3.1 The Advantages of EJB Technology ... 40

3.3.2 Enterprise Application Models .. 41

3.3.3 EJB Architecture ... 42

3.3.4 EJB Developer Roles .. 43

4 Database Design for the Arlington Permit System............45

4.1 Entity-Relationship M odel ... 45

4.2 Normalization and Denormalization .. 46

5 Case Study of the Online Street Construction Permit System-

An Enterprise Java Beans Approach.. 59

5.1 Enterprise JavaBeans Technology... 59

5.1.1 The EJB Container ... 59

5.1.2 Enterprise Beans .. 62

5.1.2.1 Remote and Home Interfaces... 62

5.1.2.2 Business Methods .. 64

5 .1.2 .3 E ntity B eans.. . 66

5.1.2.4 Session B eans 68

5.1.2.5 Methods in the Home Interface .. 71

5.1.2.6 Application of the Remote and Home Interfaces.. 71

5.2 Enterprise JavaBeans Deployment...73

5.2.1 Preparation W ork ... 73

5.2.1.1 Building the Permit Application.. 73

5.2.1.2 Checking the Environment Variables... 74

5.2.1.3 Starting the Platform and Tools ... 75

5.2.2 Assembling the Permit Application .. 75

5.2.2.1 Creating the J2EE Application .. 75

5.2.2.2 Packaging the Web Client .. 76

5.2.2.3 Packaging the Enterprise Beans...77

5.2.3 Deploy the J2EE Application... 80

5.2.4 Run the J2EE Application... 81

5

6 Conclusions.. 84

6.1 Summary of the W ork .. 84

6.2 Future W ork.. 85

6

Table of Figures

Figure 1-1 W eb Site G row th .. 10

Figure 1-2 Main Menu of Internal Permit System..11

Figure 1-3 Perm it A pplication Page... 12

Figure 1-4 J2EE Application Model .. 14

Figure 2-1 Components of Java 2 SDK, Standard Edition v. 1.3 23

Figure 2-2 The Typical Multi Tiered J2EE Application .. 25

Figure 2-3 MySQL JDBC in a Three-tier Model.. 28

Figure 3-1 A Two-tier JDBC Architecture. ... 31

Figure 3-2 A Three-tier JDBC Architecture. ... 32

Figure 3-3 Presentation Components .. 36

Figure 3-4 EJB A rchitecture .. 42

Figure 4-1 E-R Diagrams for Arlington Permit System .. 46

Figure 5-1 E JB C ontainer... 61

Figure 5-2 Example to Show Enterprise Java Beans Concept 63

Figure 5-3 D eploy T ool... 76

Figure 5-4 Components for Permit Application Ready for Deployment 80

Figure 5-5 Perm it A pplication.. 82

Figure 5-6 Retrieve Permit Application from Database.................... 83

7

List of Tables

Table 4-1 m a e ... 48

Table 4-2 Com pany Table... 50

Table 4-3 Com panyStreetW orkType Table ... 51

Table 4-4 Com panyW orkType Table .. 51

Table 4-5 Contact Table... 52

Table 4-6 FA Q Table ... 52

Table 4-7 H oliday Table ... 52

Table 4-8 Intersection Table .. 53

Table 4-9 Login Table.. 53

Table 4-10 Perm it Table.. 54

Table 4-11 Restriction Table.. 56

Table 4-12 Street Table .. 57

Table 4-13 StreetW orkType Table... 57

Table 4-14 W orkType Table .. 58

Table 5-1 Environm ent V ariables Checklist ... 74

8

1 Introduction

1.1 Overview of the Web-based Permit System

Any person who needs to perform road construction on the public roads of a town or city

generally must first obtain a permit from the Public Works Department of the city or

town. The most frequent type of road construction work is opening an excavation, as

required by utility companies (telco, gas, cable TV). The work is performed either by the

utility company itself, or by a contractor. Usually the permit issuing procedure is tedious

and inefficient, because the person(s) or firm performing the work or their representative

have to physically go to the Public Works Department for the permit, and at least one

staff member always needs to be in the Public Works Department office to issue a permit.

Also, the validating of the street and dates for the permit has to be done manually, since

there are restrictions on certain streets and dates during which no construction may be

allowed.

Recent years have witnessed the rapid development of computer technologies, and the

Internet growth is also astonishing. According to the graph shown in Figure 1-1

[Zakon2001], the number of web sites increased 200 times from early 1996 to early

2001! As the number of people within the United States connected to the Internet

increases steadily, more and more municipal governments have utilized a Web site as one

of their main information vehicles to the public.

As a public access initiative, the town of Arlington, Massachusetts provides a web site

[Arlington2001a] (http://www.town.arlington.ma.us/) for official and unofficial

information. The web site provides on-line town bill lookup as well as information about

weather, schools, the Fire Department, Treasurer's Office and many other town functions.

9

(n

-o

.0

E
z

Web Site Growth

30000000

25000000

20000000

15000000

10000000

5000000

0
CO CO Ic -q 10O CO (0 (0 N1 0))0
0)))))0000) 0))0 0)00 MM

, a, a, , :, a) a)Ya)

Year

o ,

Figure 1-1 Web Site Growth

A natural extension of the above services is a web-based on-line street opening permit

issuing system. The web-based permit application form will be automatically evaluated to

meet constraints set by the Arlington Department of Public Works. This includes

verification of streets and addresses, verification of the proposed dates for the street

opening etc. The permit will then automatically be issued on-line. Furthermore, the

system will update the pavement status for the affected street (e.g., the Arlington

pavement management system will be notified of any additional patches, manholes or

gates added to the street). Monthly and weekly reports will be prepared by the system

upon request. Billing information will be generated for further processing with the

existing billing system.

10

I I I I I

,O 0 ,M

ARLINGTON DEPARTMENT OF PUBLIC WORKS

----- Permit Syste--
Street Opening Permit System Home Page - Internal

Welcome to the Street opening Permit System Internal Home Page.

Plese select one of the following options:

MAIN MENU

Companies Menu
Permits Menu
Street Restrictions Menu
Holiday Schedule Menu
Miscellaneous Settings and Options
Billing Transfer to Microsoft Excel
Data Evaluation, Reports
Frequently Asked Questions Admin
Help and Instructions
About the Software
External User Homepage *

|W =C0 | FDocument Done | r _ .

Figure 1-2 Main Menu of Internal Permit System

Figure 1-2 and Figure 1-3 show some screen shots of the Arlington web-based street

opening permit system [Arlington2001b]. The advantages of the permit system are:

(1) Allowing contractors and utilities to obtain permits via the Web instead of coming to

the DPW office, or receiving permits via fax.

(2) Eliminating the need to have a DPW staff member always available at the counter to

process applications.

(3) Automating the procedure of validating the street address and the date constraints.

(4) Automatically updating the relevant data in the pavement management system such

as the number of manholes and gates for the convenience of maintenance and

statistics purpose.

(5) Automatic report generation periodically

(6) Automatic billing information transfer

11

I

ARLINGTON DEPARTMENT OF PUBLIC WORKS

Permit System

File New Application

This form is to be used by the Department of Public Works only,

Test Contractor Company

Type of Work, Drain/Water/Sewer

Dig Safe Number 1123-45678

First Day of Work: 113 _May _ 2001

Last Day of Work 12 IIJun Jj2001 j

Type of Street Work: Sewer and water

Street Where Work Is To ABEENROA
Be Done:

In Front of Premises: From #126

Length of Working Area
(Feet):

------ocum t Done

To #so

I J
~ ~t

Figure 1-3 Permit Application Page

1.2 Multi-tier Software Architecture

The three-tier software architecture emerged in the 1990s to overcome the limitations of

the two-tier architecture. The middle tier server is between the user interface (client) and

the data management (server) components. This middle tier provides process

management where business logic and rules are executed and can accommodate hundreds

of users by providing functions such as queuing, application execution, and database

staging. The three-tier architecture is used when an effective distributed client/server

12

design is needed that provides increased performance, flexibility, maintainability,

reusability, and scalability, while hiding the complexity of distributed processing from

the user. These characteristics have made three tier architectures a popular choice for

Internet applications and net-centric information systems.

Some Internet applications have light clients written in HTML and application servers

written in C++ or Java, and the gap between these two layers is too big to link them

together. Instead, there is an intermediate layer (web server) implemented in a scripting

language. This layer receives requests from the Internet clients and generates html using

the services provided by the business layer. This additional layer provides further

isolation between the application layout and the application logic, so sometimes people

call it multi tier architecture instead of three-tier architecture to show that there are

additional layer(s).

A multi-tier architecture facilitates software development because each tier can be built

and executed on a separate platform, thus making it easier to organize the

implementation. Also, the architecture makes it easier for different tiers to be developed

in different languages, such as a graphical user interface language or light internet clients

(HTML, applets) for the top tier; C/C++, Java or SmallTalk for the middle tier; and SQL

for much of the database tier.

The solution provided by Sun Microsystems, Inc is the J2EE architecture (The Java 2

SDK, Enterprise Edition). Fig. 1-4 shows the J2EE application model [SUN1999]:

In our development of web-based street opening permit system, we use enabling

technologies such as JSP, Java servlets, and JDBC to create our application model. We

did not use Enterprise Java Beans given the limited scale of our application, but this

thesis explores their usage in applications for scalability, transparency and other issues.

13

Client Side
Presentation

Server Side
Presentation

Server Side
Business Logic

Enterprise
Information System

A-1

~FV

Figure 1-4 J2EE Application Model

14

1.3 Outline of This Thesis

This first chapter has described the existing problems in current street opening permit

issuing practice and introduced our solution to the problem by developing an on-line

permit issuing system. We also briefly introduced the multi tier architecture that will be

used as the infrastructure of our web-based permit system. The remaining part of the

thesis is organized as follows:

Chapter 2 focuses the development environment. It describes the installation of the

operating system, Java software development kit, web server, database management

system and its driver. It provides guidance as well as a record of the actual installation

procedure, and thus is helpful for future deployment in similar environments.

Chapter 3 discusses the J2EE platform technologies---JDBC API, web components and

EJB components. By using the JDBC API, we can access a wide variety of different SQL

databases with the same Java syntax. Web components, servlet and JSP technology will

also be discussed briefly in this chapter. The EJB architecture and enterprise application

model are described. The advantages of EJB technology as well as the EJB developer

roles will also be discussed.

Chapter 4 deals with the design of the database that provides the core of the whole

system. Using the Arlington permit system as an example, the Entity-Relationship model

is presented; normalization and denormalization are also discussed.

As a case study of the Arlington permit system, Chapter 5 demonstrates how the

Enterprise JavaBeans Technology can be used in the online street construction permit

system. A ProcessPermit session bean and a Permit entity bean as well as web client are

15

used for the analysis, and a step-by-step procedure of deploying EJB application are also

illustrated.

Chapter 6 gives a short summary of the work and possible future work in this area.

16

2 Development Environment

With our client (Arlington Department of Public Works) in mind, we decided to develop

our web-based street permit system using open source tools. We use the Linux operating

system, Java 2 platform, Tomcat server, MySQL database management system and

corresponding JDBC drivers. In this chapter, each of these components is introduced and

some of the installation procedures are also briefly described.

2.1 Red Hat Linux 7.0

Linux is a free, open source UNIX like operating system designed for personal

computers. Linux is not UNIX, but it does share UNIX's command set and look-and-feel,

so if you know UNIX, then you know Linux, and vice versa.

Linus Torvalds at the University of Helsinki in Finland originally developed Linux, but

now most of Linux is from the Free Software Foundation so numerous programmers

worldwide helped develop the operating system.

Nearly 60% of Linux installations either are Red Hat or based on Red Hat Linux. One of

the main features of the installation package is the Red Hat Packet Manager (RPM).

Using the RPM enables you to safely install and uninstall packages. Another main feature

is the ability to install from an X session.

The operating system we used is Red Hat Linux 7[RedHat200]. It has the following new

features and enhancements:

17

2.1.1 Installation-Related Enhancements

(1) The Red Hat Linux 7 installation program is capable of installing Red Hat Linux from

multiple CD-ROMs.

(2) The Red Hat Linux 7 installation program supports the newest version of the RPM

Package Manager: RPM 4.0.

(3) Xconfigurator helps to configure the X Window System during the installation more

thoroughly than before.

(4) The installation program now supports USB devices (mice and keyboards).

(5) Help text has been added to the text mode installation program in the new version.

(6) LDAP and Kerberos can now be configured for account authentication at install-time.

2.1.2 System-Related Enhancements

(1) Many core system components have been upgraded in Red Hat Linux 7.

(2) Many drivers are added or updated to Red Hat Linux 7.

(3) The newest version of the RPM Package Manager is included in Red Hat Linux 7.

RPM 4.0 now includes a virtualized database access framework.

(4) All packages that comprise Red Hat Linux 7 have been optimized for maximum

performance.

(5) Red Hat Linux 7 includes support for USB. The usbview graphical tool is also

included and can be used to display the devices present on the Universal Serial Bus.

(6) Expanded hardware accelerated 3-D support is included in Red Hat Linux 7.

(7) Red Hat Linux 7 has many other new features related to encryption, communication

and window manager etc, etc.

2.1.3 Red Hat Linux 7 Installation procedure

18

The installation of Red Hat Linux 7 is straightforward. Here we briefly describe the

major steps in the installation procedure:

(1) Determining Language, Keyboard, and Mouse Settings

The first several screens during the installation are used to gather important information

about the input such as the language, keyboard, and mouse device we want to use.

(2) Choosing Installation Class

The install type screen that follows gives the user the option to select an installation class.

These options are as follows:

Workstation: This option will automatically install Linux with X and the KDE and/or

GNOME desktop environments.

Server System: This path will automatically install Linux with additional server

packages, including the Apache Web server. X is not automatically installed in this

option.

Custom System. Custom enables the user to select exactly which packages to install.

Upgrade: Upgrade will let you keep your current Linux installation on your hard

drive and will simply upgrade your current version of Red Hat Linux to 7.

In setting up the Arlington server, we chose the Custom System because we need to

customize some options as we can see in the following description.

(3) Selecting Partition Options

19

In this step, you need to decide whether to partition your hard drive by yourself or have

Linux do it. If you want to manually partition the Linux portion of the hard drive

yourself, you have the choice of two tools: Disk Druid and Linux fdisk.

In setting up the Arlington server, we choose to manually partition with the Disk Druid

option.

Choose "add" to add the Linux partitions. Create the partitions according to the following

recommendations:

A swap partition (16MB, minimum) -- Swap partitions are used to support virtual

memory. In other words, data is written to a swap partition when there is not enough

RAM to store the data your system is processing. The minimum size of your swap

partition should be equal to your computer's RAM, or 16MB (whichever is larger).

A /boot partition (16MB, maximum) -- The partition mounted on /boot contains the

operating system kernel which allows your system to boot Red Hat Linux, along with

files used during the bootstrap process. This partition should be no larger than 16MB.

A variable-sized root partition (You can assign the rest of your available disk space to

the root partition) -- This is where "/" (the root directory) resides. If only the above

three partitions are created, all files except those stored in /boot will reside on the root

partition.

(4) Networking Your Computer

In this step of the installation procedure, you need to provide the networking

configuration information about your computer such as IP address, netmask, gateway,

and DNS etc.

(5) Setting the Time Zone

20

(6) Configuring Your Accounts

Create the root account and any additional user account in this step. You need to prepare

the root password and passwords for any additional accounts.

(7) Selecting Package Groups

In this step, you decide what packages will be installed on your Linux machine. In setting

up Arlington server, we checked the option of "everything".

(8) Configuring the X Window System

In this step, you need to configure the X window system to determine how X coordinates

with your graphics card and monitor to generate graphic displays.

There are several sub-steps:

a. Choose monitor & sync rates - default settings usually work

b. Choose graphic card, amount of video memory, then test.

c. Choose graphical logon and choose Gnome or KDE as you wish.

(9) Finishing the Installation

Linux will format, then install on disk and then finish the installation.

21

2.2 Java 2 Platform

The Java 2 Platform provides a comprehensive, end-to-end architecture for building and

deploying network-centric applications for the customer. Currently there are three

editions for Java 2 Platform, i.e., Standard Edition, Enterprise Edition and Micro Edition.

We focus on the Standard Edition and Enterprise Edition.

2.2.1 Java 2 Platform, Standard Edition 1.3 (J2SE)

J2SE provides an infrastructure for building and deploying network-centric enterprise

applications for various computers, from the PC to the workgroup server[SUN2000a].

The J2SE is implemented by the Java 2 Software Development Kit (SDK), Standard

Edition and the Java 2 Runtime Environment, Standard Edition.

The J2SE provides a stable, secure and feature-complete development and deployment

environment designed for the Web. It provides cross-platform compatibility, safe network

delivery, and scalability. It facilitates rapid application development. Besides, J2SE

version 1.3 improves performance greatly. Figure 2.1 shows the components of Java 2

SDK, Standard Edition v.1.3.

22

Java HotSpot Runtime LInt CompIier Q av ug-ijj

Java Compiler Java Deugr te Tools

..

Figure 2-1 Components of Java 2 SDK, Standard Edition v. 1.3

Installation procedure:

1. Go to http://java.sun.com/j2se/1.3/download-linux.html [SUN2000b] and choose

RedHat RPM shell script for downloading.

2. Launch the executable file downloaded, j2sdkO-13_O-linux-rpm.bin, by using the

following commands from the directory in which it is located:

chmod a+x j2sdk-_3_O-linux-rpm.bin

./j2sdk-1_3_0-linux-rpm.bin

The script will create the file j2sdk-1_3_0-linux.rpm in the current directory.

3. As a root user run the rpm command to install the packages:

rpm -iv j2sdk-1.3_0-linux.rpm

This will install the packages comprising the Java 2 SDK.

23

2.2.2 Java 2 Platform, Enterprise Edition 1.3 (J2EE)

Java 2 Platform, Enterprise Edition (J2EE) is a complete edition of the Java 2 platform

that extends mission critical enterprise applications to any web browser[SUN2001a].

J2EE provides a component-based approach to the development and deployment of

enterprise applications. The J2EE platform gives you a multi-tiered distributed

application model, the ability to reuse components, a unified security model, and flexible

transaction control. The developer can not only deliver customer solutions to market

faster, but also make it platform-independent so that J2EE component-based solutions are

not tied to the products and APIs of any one vendor.

The multi-tier J2EE applications are divided into the following three or four tiers as

shown in Figure 2.2.

(1) Client tier: Application clients and HTML pages or applets are client components at

the client tier.

(2) Web tier: JSP pages or servlets are web components at the web tier.

(3) Business tier: Enterprise beans are business tier at the business tier. They are used to

solve or meet the needs of a particular business domain such as banking, retail, or

finance.

(4) Enterprise information system tier: It includes enterprise infrastructure systems such

as enterprise resource planning, database systems, and other legacy information

systems.

24

Web Tier Business Tier EIS Tier

Dynamic
HTML pages

C

Inst

JSP Enterprise
Pages JavaBeans Database

lient Machine J2EE Server Machine Server Machine

Figure 2-2 The Typical Multi Tiered J2EE Application

allation procedure:

1. Before installation, you need to first install Java 2 SDK, Standard Edition (J2SE)

on your machine.

2. Go to http://developer.java.sun.com/developer/earlyAccess/j2ee/ [SUN2001b]for

downloading j2sdkee-1_3-beta-linux.tar.gz.

3. Change to the directory where you want to install the software. To uncompress

and unpack the download bundle, run this command:

tar xvzf j2sdkee-1_3-beta-linux.tar.gz

The j2sdkee 1.3 directory is created and the software is installed into it.

4. Edit the user configuration script that is in the userconfig.sh file of the bin

directory of your installation. The userconfig.sh file sets these environment

variables: J2EECLASSPATH - the classpath referenced by the J2EE server. It

must include the location of JDBC driver classes. However, it does not need to

include the Java 2 SDK, Enterprise Edition classes (j2ee-jar); the Java 2 SDK,

Standard Edition software; or the classes contained in the enterprise application.

JAVAHOME - the absolute path of the directory in which the Java 2 SDK,

Standard Edition is installed.

5. Update the PATH environment variable so it includes the bin directory of this

release.

25

Client Tier

2.3 Tomcat Server 3.2.1

Tomcat is the Servlet+JSP Engine that is a subproject of the Jakarta Project, and it is the

Reference Implementation for the Java Servlet 2.2 and JavaServer Pages

1.1[Jakarta1999]

Here are the major steps in the installation of Tomcat Server 3.2.1:

(1) Download jakarta-tomcat-3.2.1.zip from http://jakarta.apache.org/builds/jakarta-

tomcat/release/v3.2.1/bin/

(2) Unzip the file into directory /usr/local. This should create a new subdirectory named

"jakarta-tomcat-3.2.1".

(3) Change directory to "jakarta-tomcat-3.2.1" and set a new environment variable

(TOMCATHOME) to point to the root directory of the Tomcat hierarchy as follows:

TOMCATHOME=/usr/local/j akarta-tomcat-3.2.1; export TOMCATHOME

(4) Set the environment variable JAVAHOME to point to the root directory of your

JDK hierarchy, then add the Java interpreter to your PATH environment variable.

Usually this should have already been done when you install your Java platform.

(5) Start Tomcat using the following command:

/usr/local/j akarta-tomcat-3.2.1/bin/tomcat.sh start

2.4 MySQL 2.1.4

MySQL is one of the most popular open sources SQL database. It is provided by a

company called MySQL AB. MySQL is a relational database management system. The

tables are linked by defined relationships so it possible to combine data from several

tables on request. MySQL is fast, reliable, and easy to use. The connectivity, speed, and

security make MySQL highly suited for accessing databases on the Internet.

MySQL is a client/server system that consists of a multi-threaded SQL server that

supports different back ends, several different client programs and libraries,

administrative tools, and a programming interface.

26

If you install the Red Hat Linux 7 in a full set, MySQL should already have been

installed, what you need to do is to find the location of the software and start the MySQL

server (as root user) as follows:

/usr/bin/mysqljinstalldb

/usr/bin/safe-mysqld --user=mysql &

Then you can use /usr/bin/mysqladmin version to verify that the server is running.

Also, You can check to see the whole installation procedure by reading the MySQL

manual [MySQL19951.

2.5 MySQL JDBC driver 2.0.4

The JDBC API defines Java classes to represent database connections, SQL statements,

result sets, database metadata, etc. It allows a Java programmer to issue SQL statements

and process the results. JDBC is the primary API for database access in Java. The JDBC

API is implemented via a driver manager that can support multiple drivers connecting to

different databases.

In a three tier model as shown in Figure 2.3, a user's commands are delivered to a

"middle tier" of services, which then send SQL statements to the database. The database

processes the SQL statements and sends the results back to the middle tier, which then

sends them to the user.

You can download the MySQL JDBC driver 2.0.4 [Matthews2001] through

http://mmmysql.sourceforge.net/.

27

Browser etc.

Application Server

MySQL JDBC

MySQL

Figure 2-3 MySQL JDBC in a Three-tier Model

28

3 J2EE Platform Technologies

3.1 JDBC API

JDBC is a Java Application Programming Interface (API) that provides a standard

framework for accessing data sources, usually relational databases that use the Structured

Query Language (SQL). With the help of the JDBC API, it is possible to access wide

ranges of SQL databases with the same Java syntax.

3.1.1 Goals for JDBC

Two goals are set for the design of JDBC[Asbury1999]:

(1) Support Common Database Standards

Because JDBC Supports common database standards, enterprise developers can take

advantage of the latest Java technologies and at the same time can maintain a high degree

of interoperability with other industry-standard products.

(2) Keep the API simple

Keep the common cases simple by providing standard activities with specific APIs.

Application programmers can write and maintain less code with the methods for common

cases being already provided. Actually one of the best features of JDBC is that Java

programmers can develop database access strategies for their applications rapidly with

the help of JDBC. A developer can create a connection to a database, query the database,

and update values by writing very little code. JDBC also supports a transaction model so

29

programmers can make updates in the database and undo all of them as a single

transaction if it becomes necessary.

3.1.2 JDBC Architecture

The basic architecture of JDBC is not complicated. A class called DriverManager

provides a service for managing a set of JDBC drivers. The DriverManager class attempts

to load the driver classes referenced in the jdbc.drivers system property. Drivers can be

loaded explicitly by using Class.forName. The driver should register itself with the

DriverManager when it is loaded. The call DriverManager.getConnectiono looks for a

registered driver that can handle the data source described by the URL and returns an

object from the driver. A connection represents a session with the data source and

includes methods for executing database operations. Besides, a connection provides the

so- called meta-data, which includes information about the data source structure. The

protocol used to define the data source is in the format of

jdbc:subprotocol:datasourcename. The getConnectiono method takes username and

password for registration with data sources, but the username and password may be

omitted according to the design of the database.

In section 3.1.3 (Standard steps in querying databases), the architecture described above

will be explained in more detail.

According to the location of the database, the driver, the application, and the

communication protocols used, there are several typical scenarios for using JDBC, which

can be grouped into two- and three-tier architectures.

In a two-tier architecture, the application and the database driver are on the same

machine. The JDBC driver can access the database, which is running on a database server

through network. As such, the database driver is responsible for handling the networked

communication. A simple two-tier JDBC architecture is shown in Figure 3.1. As we can

30

see from the figure, the Java application running on the client machine uses a JDBC

driver that resides on the same machine. The local driver uses a vendor-specific client

library for accessing the database remotely through the network. The Java application

accesses this resource transparently with no need to deal with network communication

issues by itself.

Server Side

Database
Network

Client Side

Figure 3-1 A Two-tier JDBC Architecture.

In a three-tier architecture, the application or applet runs on one platform and the

database driver is located on another. The database driver can be accessed through the

following mechanisms:

> An applet may access the driver through a Web server

> An application may access a remote server program that communicates locally with a

database driver

> An application may communicate with an application server that accesses the

database on behalf of an application

31

Client
Application

JDBC driver

Vendor-specific
client library

A three-tier architecture is shown in Figure 3.2 in which an applet on the client Web

browser communicates with a server application and the server application accesses a

database behind the firewall.

Database
-t

Client
Network Side

Figure 3-2 A Three-tier JDBC Architecture.

By encapsulating all the database access logic in the JDBC driver, the driver vendor deals

with the issues of communicating with the database and database vendor's client library.

Therefore we can write applications that function in a two-tier or three-tier environment

with few or no changes to the code. The JDBC design allows any Java programmer to

access a relational database with little additional effort.

3.1.3 Standard steps in querying databases

The following standard steps are needed in order to query databases[Hall2000]:

(1) Load the JDBC driver

32

Web Server

Server
Application

JDBC driver

Vendor-specific
client library

The JDBC driver is a program that knows how to communicate with the actual database

server; it translates calls written in the Java programming language into the specific

format required by the server. In order to load the driver, we only need to use

Class.forName as follows:

Class.forName("org.gjt.mm.mysql.Driver").newInstance(;

The above segment is used to load MySQL driver. For other drivers, the Class.forName

statement should be changed accordingly. For example, the statement corresponding to

the Oracle and Sybase driver are as follows:

Class.forName("oracle.jdbc.driver.OracleDriver");

Class.forName("com.sybase.jdbc.SybDriver");

(2) Establish the connection

Once the JDBC driver is loaded, we need to pass the URL, the database username and

password to the getConnection method of the DriverManager class in order to make the

actual network connection. The URL uses the jdb :protocol and the server host and

database name are embedded with in the URL. For MySQL database, the statements to

establish the connection are shown as follows:

dbCon = DriverManager.getConnection(

"jdbc:mysql://localhost/test-pavement?user=&password=");

(3) Create a statement object

After establishing the connection, now we can create a statement object from the

connection as follows:

Statement statement = dbCon.createStatement 0;

33

The statement object is used to send queries and commands to the database.

(4) Execute a query

After we get a statement object, we can use the object to send SQL queries by using the

executeQuery method. This method returns an object of type ResultSet as follows:

String query = "SELECT * FROM Holiday";

ResultSet rs = statement.executeQuery(query);

(5) Process the results

After we get the result set, we can use several methods such as next (move through the

table a row at a time), get Xxx (take a column index or column name as an argument and

return the result as a variety of different Java types), findColumn (get the index of the

named column), wasNull (was the last getXxx result SQL NULL?) and getMetaData

(retrieve information about the ResultSet in a ResultSetMetaData object) to process the

results.

For example, the following statements print out the first column in all rows of a

ResultSet.

While (rs.nextO) {

System.out.println(rs.getString(1));

}

(6) Close the connection

We simply use the following statement to close the connection:

34

dbCon.closeo;

3.2 Web Components

A Web component is a software application that provides a response to a

request [SUN2001a]. A Web component usually generates the user interface for a Web-

based application. There are two kinds of Web components: servlets and JavaServer

Pages (JSP).

3.2.1 Web Component Roles

In the J2EE application programming model Web components can serve two roles: as

front components and as presentation components.

(1) Front Components

Instead of doing presentation, front components manage other components and handle

HTTP requests or convert the requests into a form that an application can understand.

Front components provide a single entry point to an application, thus making security,

application state, and presentation uniform and easier to maintain.

(2) Presentation Components

Presentation components generate the HTML/XML response that can determine the user

interface. A JSP page acting as a presentation component may contain presentation logic

or reusable custom tags. A custom tag is a user-defined JSP language element that

increases productivity by encapsulating recurring tasks so that they can be reused across

more than one application. Besides, a servlet can also be a presentation component.

35

Modular design facilitates separation of roles. Content providers can concentrate on how

content is displayed, and component developers can focus on the logic that is used in the

JavaBeans component to manipulate the data, and on the JSP page that generates the

HTML representation of the data.

Other requirements that presentation components must address are creating a consistent

look and feel for an application and at the same time providing mechanisms for

personalizing the user interface. For example, consider an application in which all pages

share a common banner, navigation menu, body, and footer as shown in Figure 3.3. Each

item in the example can be seen as a component that is used to generate the final look and

feel, can contain dynamic information, and should be customizable.

There are two ways of constructing the page shown in Figure 3.3. We could build the

page using custom tags and JavaBeans components or break up each portion into separate

JSP pages each containing their own necessary custom tags and JavaBeans components,

then build the whole page from a JSP page that integrates the others using runtime

includes.

Figure 3-3 Presentation Components

36

When appropriately arranged, a clean separation between presentation logic, data, and

content can be achieved.

It is a good practice to use JavaBeans components or custom tags to do data rendering.

These are created by a developer who is familiar with the Java programming language. If

JavaBeans components and custom tags are designed in a general manner, they should be

reusable in other parts of the application or in other applications.

3.2.2 ServIets

A servlet is a program that extends the functionality of a Web server. Servlets receive a

request from a client, generate the response on the fly and then send the response

containing an HTML or XML document to the client.

A servlet developer uses the servlet API to:

> Initialize and finalize a servlet

> Access a servlet's environment

> Receive requests and send responses

> Maintain session information on behalf of a client

> Interact with other servlets and other components

Usually JSP pages can be used for most purposes. However, under some special

circumstances, servlets are more appropriate. The following are these two circumstances.

Generating Binary Data

Servlets are well suited for dynamically generating binary data such as images or a new

content type. Requests for content of that type would be mapped to servlets that know

37

how to generate the content, but from the Web client's point of view, it is merely

requesting delivery of an ordinary image.

Extending a Web Server's Functionality

Servlets are a portable mechanism for extending the functionality of a Web server. For

example, if a new data format must be supported, a servlet can be mapped to the file

type for the format.

A good example of a servlet that extends a Web server is the servlet that is mapped to

JSP files. This servlet parses all files that end with a jsp file extension and compiles the

JSP pages into servlets. The Web container then executes the resulting servlets and the

resulting response is sent back to the client.

3.2.3 JavaServer Pages Technology

The JavaServer Pages (JSP) technology provides a new way to generate dynamic content

for a Web client. A JSP page is a text-based document that describes how to process a

request to create a response. A JSP page usually contains:

> Template data to format the Web document. Typically the template data uses HTML

or XML elements. Document designers can edit and work with these elements on the

JSP page without affecting the dynamic content. This makes development simpler

because it separates presentation from dynamic content generation.

> JSP elements and scriptlets to generate the dynamic content in the Web document.

Most JSP pages use JavaBeans and/or Enterprise JavaBeans components to perform

the more complex processing required of the application.

38

Standard JSP actions can access and instantiate beans, set or retrieve bean attributes,

and download applets. JSP is extensible through the development of custom actions.

The custom actions are encapsulated in tag libraries.

3.2.4 JSP Pages Versus ServIets

Both JSP pages and servlets have their own advantages thus should be used according to

the actual situation. In some cases it is hard to say whether a servlet or JSP page is better.

When both servlet and JSP technology is available in an environment, JSP pages should

usually be used. However, servlets are best suited for low-level application functions that

don't require frequent modification.

The Java code used within JSP pages should remain relatively simple. Therefore, we

should encapsulate complex tasks within custom tags and JavaBeans components. Even a

sophisticated Web application can consist solely of JSP pages, custom tags, and

JavaBeans components; servlets are generally not necessary.

JSP pages combine dynamic content with logic in a presentation-centric, declarative way.

JSP pages should be used to handle the HTML representation that is generated by a page.

They are coded in HTML-like pages with structure and content familiar to Web content

providers. However, JSP pages are more powerful than ordinary HTML pages. JSP pages

can handle application logic through the use of JavaBeans components and custom tags.

JSP pages themselves can also be used as modular, reusable presentation components that

can be bound together using a templating mechanism.

3.2.5 Web Component Containers

Servlet containers, JSP containers, and Web containers host web components.

39

In addition to standard container services, a servlet container provides network services,

decodes requests, and formats responses. All servlet containers must support HTTP as a

protocol for requests and responses, but may also support additional request-response

protocols such as HTTPS.

A JSP container provides the same services as a servlet container and an engine that

interprets and processes a JSP page into a servlet.

A Web container provides the same services as a JSP container and access to the J2EE

service and communication APIs.

3.3 EJB Components

The Enterprise JavaBeans (EJB) component architecture is a reusable, server-side

component model that enables enterprises to build scalable, secure, cross-platform,

mission-critical applications[Rothl998]. Because the EJB developers no longer need to

write code that deals with transaction management, security, connection pooling etc, they

can focus their attention on writing business logic.

3.3.1 The Advantages of EJB Technology

The Enterprise JavaBeans Technology has the following advantages:

> High productivity: The developers gain productivity by developing on the Java

platform. More importantly, as mentioned above, they gain productivity by focusing

only on writing their own business logic.

40

Industry Support: Customers who are going to build EJB systems have a lot of

solutions to choose from. Dozens of companies are supporting or are going to

support Enterprise JavaBeans technology.

> Protection of Investments: Enterprise JavaBeans technology builds on top of the

existing systems in the enterprise today. So the investment made by an enterprise

will be protected.

> Architectural Independence: Because Enterprise JavaBeans technology insulates the

developer from the underlying middleware; any improvement and change in the

middleware layer made by EJB server vendor will not affect a user's EJB

application.

> Server-Side Write Once, Run Anywhere: EJB technology takes the notion of Java

Platform's Write Once, Run Anywhere one step further to run on any server that

strictly implements the Enterprise JavaBeans APIs.

3.3.2 Enterprise Application Models

EJB technology provides an infrastructure that take care of system level programming

such as transactions, security, threading, naming, object-life cycle, resource pooling,

remote access, and persistence etc so those originally manually coded features become

simple declarative properties of the enterprise beans. Therefore the effort to build

distributed applications is greatly reduced and high development efficiency is achieved.

There are two enterprise application models and EJB covers both models because it is

designed to be broadly applicable.

For one model, the client begins a session with an object that performs a task on behalf of

the client and session beans cover this model. A session bean is an object that represents

41

a transient conversation with a client, and its fields contain the state of the conversation

and are transient. For this reason, a session bean is gone if either the server or the client

crashes.

For the other model, the client accesses an object that represents an entity in a database

and entity beans cover this model. An entity bean represents data in a database, as well as

the methods to act on that data. Entity beans are transactional, and are persistent. As long

as the data remains in the database, the entity Bean exists.

3.3.3 EJB Architecture

Figure 3.4 shows the architecture of EJB technology.

EJB Server

EJB Container

emote Interface

EJB

Database
EJB Client

Home Interface

Figure 3-4 EJB Architecture

42

The EJB server is a collection of services for supporting an EJB installation and it

manages the resources needed to support EJB components.

The EJB container is where an Enterprise Bean lives, just as a database is where a record

lives. It provides a scalable, secure, transactional environment in which Enterprise Beans

can operate. It handles the creation and destruction of an object.

When an Enterprise Bean is installed in a container, the container provides an

implementation of the bean's EJBHome interface, and remote interface. It also makes the

bean's EJBHome interface available in the Java Naming and Directory Interface (JNDI).

The remote interface is automatically generated when an Enterprise Bean is installed on a

server. The EJBObject, which is an implementation of the remote interface, acts like a

proxy, taking the remote object invocations and calling the appropriate methods on the

Enterprise Bean instance.

The EJBHome interface is implemented when an Enterprise Bean is installed in the

container. The EJBHome interface allows for the creation and deletion of a bean as well

as querying information about a bean.

3.3.4 EJB Developer Roles

Five developer roles are existed in EJB technology. They are server provider, container

provider, Enterprise Beans provider, application assemblers, and deployers.

Server providers specialize in distributed transaction management. They deal with

distributed objects and low-level systems services.

43

Container providers specialize in systems programming. The container provides the

secure, scalable, transactional environment for a bean, so the provider needs experience

in these areas.

Enterprise Bean providers provide the components for EJB applications. They are

typically domain experts developing business logic in the form of beans. They include

their components into an EJB JAR file.

Application assemblers build applications from third party Beans. They are domain

experts and may also build a GUI on the client side.

Deployers are usually familiar with an enterprise's operational environment. They take

packaged applications and set the applications' security and transaction descriptors.

44

4 Database Design for the Arlington Permit

System

In this chapter we will describe the database design for the Arlington permit system.

4.1 Entity-Relationship Model

An Entity-Relationship (E-R) diagram depicts entities that represent things or concepts

and the relationships that represent associations between each pair of entities. In this

section, as our first step in database design, an Entity-Relationship model is employed to

construct the concept design of the database. Entities are identified and relations are

established.

Although some experts suggest that attributes should be included in the E-R model by

putting them in ovals and connecting them by lines with the entity, some others

recommend keeping attributes out of the E-R diagram[Gilbert1998].

Because some entities in our database have many attributes, including them in the E-R

diagram may make the E-R diagram difficult to read, we decided not to include the

attributes in our E-R diagram. Instead, in order to keep track of all these attributes, we

will list them in next section when we begin to analyze normalization and

denormalization.

The E-R diagram is shown in Figure 4-1.

45

Contact

1:M

1

0: M 1 1 0:M
CompanyWorkType MCompany CompanyStreetWorkType

0:M 1 :M

1 ::M 1

1 :
WorkType Permit StreetWorkType

:M
M:M

FAQ

0: M 0:M

2: M 2: M
Street Intersection

Login
1

Restriction Admin Holiday

Figure 4-1 E-R Diagrams for Arlington Permit System

4.2 Normalization and Denormalization

In this section we will list the attributes for all tables that we used in our system and

evaluate the tables according to normalization and denormalization rules.

46

Before we actually evaluate each table, let us take a look at normalization and

denormalization.

The objective of normalization is mainly to prevent the occurrence of update anomalies

through proper decomposition of relations.

There are two grouping of normal forms[Elmasril999]: The first group includes First

Normal Form (1NF), Second Normal Form (2NF), Third Normal Form (3NF), and

Boyce-Codd Normal Form (BCNF). The second group includes Fourth Normal Form

(4NF) and Fifth Normal Form (5NF).

Because normalization to 5NF is not usually necessary from a practical point of view,
normalization to BCNF should be enough. In this section, we only restrict our discussion

of normalization to BCNF.

INF: A relation is said to be in iNF if and only if all underlying domains contain atomic

values only. This requires a relation can neither have a multi-valued attribute nor a

composite attribute.

2NF: A relation is said to be in 2NF if and only if it is in iNF and every non-key attribute

is not partially dependent on any key of the relation. This requires us to take out attributes

in the relations that are dependent only on a part of the key.

3NF: A relation is said to be in 3NF if and only if it is in 2NF and every non-key attribute

is non-transitively dependent on every key of the relation.

BCNF: A relation is said to be in BCNF if and only if every determinant that fully

determines some other attributes in the relation is a key. This requires us to take out all

attributes in the relations that do not solely dependent on the key.

47

Denormalization is an approach to help balance the goals (ease of use, performance,

maintainability) and limitations (development time, limited machine power, program

complexity). In the past it was usually important to denormalize after complete

normalization in order to achieve a better performance and to make the application easier

to use. But now the situation is changing greatly. Especially in our model,

denormalization is never really necessary since the database is small and performance

would be good with a fully normalized model. So we will not discuss denormalization

further more and only limit the discussion to normalization.

Now let us evaluate each table in our system one by one.

Table 4-1 Admin Table

Field Name Definition

AdmBasicFee The basic application fee for a street opening in US dollar

(e.g. $25).

AdmFromi

AdmTol These fields provide information about additional fees for

AdmAddFee1 utilities (Water) according to the length of street work

AdmFrom2 area. The format is as follows: From work area length of

AdmFroml feet to AdmTol feet, the additional fee is
AdmTo2

AdmAddFeel; From work area length of AdmFrom2 feet
AdmAddFee2
__________ _ to AdmTo2 feet, the additional fee is $ AdmAddFee2;

Adm~rom3 From work area length of AdmFrom3 feet to AdmTo3
AdmTo3 feet, the additional fee is $ AdmAddFee3.

AdmAddFee3

AdmIssueWeekend This flag determines whether permits are issued on

weekends or not.

This flag determines whether permits are issued on
AdmlssueHolidays

holidays or not.

AdmWeekendFroml This field determines what day of the week the weekend

starts.

48

This field determines what time of the day the weekend
AdmWeekendFrom2

starts.

This field determines whether the weekend starts from the
AdmWeekendFrom3

morning (am) or the afternoon (pm).

AdmWeekendTol This field determines what day of the week the weekend

ends.

AdmWeekendTo2 This field determines what time of the day the weekend

ends.

This field determines whether the weekend ends from the
AdmWeekendTo3

morning (am) or the afternoon (pm).

AdmMinNotification The minimum notification time before work may

commence in hours (e.g. 48 hours)

AdmMaximumValidDays Maximum valid days for a permit

AdmWorkTypeChecking The flag to determine whether to perform company work

type checking or not.

The flag to determine whether to perform street work type
AdmStreetWorkTypeChecking

checking or not

The flag to determine whether to perform premises range
AdmPremisesChecking

checking or not

The flag to determine whether to require drawing fil
AdmDrawingFileRequiredfrmuitesont

from utilities or not

AdmEmailNotification The flag to determine whether to send email notification

for each issued permit or not

AdmMailServer SMTP Server for email notification

AdmEmailAddress Email Address for email notification

This table has many attributes. These attributes are all single atomic values, so it is in

INF. But the following functional dependencies are identified:

{ AdmFrom1, AdmTo 114 AdmAddFee 1;

{ AdmFrom2, AdmTo2} 4 AdmAddFee2;

49

{ AdmFrom3, AdmTo3} -> AdmAddFee3;

In other words, AdmAddFeel, AdmAddFee2, AdmAddFee3 are not fully dependent on

the all the keys in the relation, so it is not in 2NF. Besides, they are also repeating groups

and should be put in a separate table. But as we know, this table stores all miscellaneous

options and has only one record. The attributes directly correspond to one web page, and

our permit system is simple enough, so from a practical point of view, it is fine to put all

these attributes in one table.

Table 4-2 Company Table

Field Name Definition

ComID The company ID uniquely identifies a contractor. It is an internal

parameter used to reference the full contractor name. [Primary key]

ComName The company name. Can be either a contractor name or a utility company

name.

ComType The type of the company. Can be either 'utility' or 'contractor'.

ComContact A contact name. It is optional and may be useful for large companies.

ComLicense Contractors have a license number, which is also used as the password fof

the contractor login.

ComStreet Company's street name.

ComCity Company's city.

ComState Company's state.

ComZip Company's zip code.

ComPhone Company's phone number.

ComFax Company's fax number.

ComPager Company's pager number.

CornEmail For utility companies, the email is also used as the password.

The state of a company. Inactive Companies will not be listed in outputs
ComnActive

unless specifically requested, and will not be allowed to apply for permits.

50

In the Arlington Permit System, a company often has several contact persons for permit

application. Besides, there are several attributes such as contact name, contact phone and

contact email etc. So ComContact is a multi-valued attribute as well as a composite

attribute. We have to create a separate relation that holds the primary key (ComID) and

the attributes of that composite attribute. This table is already been created by the name

of Contact. So in order to make the Company table in INF, we should delete the

ComContact attribute.

ComStreet, ComCity and ComState together can determin ComZip, so from this point of

view, it does not satisfy the 3NF rule. We could delete ComZip from the table and add

another table that list Street, City, State and its corresponding zip code, but in our system

it may not necessary. Actually zip codes are the most common example of violating 3NF,
yet people usually allow this special case of violating 3NF.

Table 4-3 CompanyStreetWorkType Table

Field Name Definition

CSTCompanyID The company ID from the company table. [Primary key, foreign key]

The type of street work the company performs, according to the
CSTType

StreetWorkType table. [Primary key, foreign key]

This table is an intermediate table and it is very simple. It is in BCNF.

Table 4-4 CompanyWorkType Table

Field Name Definition

CWTCompanyID The company ID from the company table. [Primary key, foreign key]

CWTType The type of work the company performs, according to the WorkType

table. [Primary key, foreign key]

This table is also an intermediate table and very simple. It is in BCNF.

51

Table 4-5 Contact Table

It is in BCNF.

Table 4-6 FAQ Table

Field Name Definition

FAQID Sequentially assigned number of the frequently asked question. [Primary

key]

FAQQuestion The question text.

FAQAnswer The answer text.

FAQPosition The position of that question and answer set located.

It is in BCNF.

Table 4-7 Holiday Table

Field Name Definition

HolName The name of the holiday. [Primary

key]

HolDate The date of the holiday.

52

Field Name Definition

The company ID. [Primary key, foreign
ConCompanylD

key]

ConName Contact name. [Primary key]

ConPhone Phone number of the contact.

ConPager Pager number of the contact.

ConEmail Email address of the contact.

It is in BCNF.

Table 4-8 Intersection Table

It is in BCNF.

Table 4-9 Login Table

53

Field Name Definition

The intersection ID number will uniquely identify an intersection.
IntID

[Primary key]

The ID number of the governing street of the intersection, usually

the major one of the intersecting streets.

IntSecondStreetID The ID number of the second street of the intersection.

The closest premises to the intersection on the governing street.

IntClosestPremises This field is required to check against restrictions and to map the

openings added to the street.

Field Name Definition

The user names (internal users only). [Primary
LogName

key]

LogPassword The password of that user.

FirstName The first name of that user.

LastName The last name of that user.

Department The department of that user.

Position The position of that user.

Email The email address of that user.

The attributes of this table are all single atomic values, so it is in INF. But the following

functional dependencies are identified:

{ First Name, Last Name} Department;

{ First Name, Last Name} Position;

In other words, Department and Position are not fully dependent on the all the keys in the

relation, so it is not in 2NF. So it is suggested to create a separate table with LogName,

FirstName, LastName, Department, and Position as its attributes. But just to keep the

system simple, we still put them in the same table.

Table 4-10 Permit Table

Field Name Definition

PerID Permit ID number. Each permit has a unique ID. [Primary

key]

PerIssue The issue date of the permit.

PerComID The company ID number. This number identifies the company

in the company table. [Foreign key]

The type of work, according to the types defined in the

WorkType table. [Foreign key]

PerDigSafe The digSafe-number as entered by the applicant.

The contact name. It is the name entered by the applicant. This

PerContact will ensure that the person responsible for the application can

be identified.

The application may be approved or not approved. This is

determined with this flag.

PerValidFrom The day when the street work may commence.

PerValidUntil The last day when work may be conducted.

The type of street work, according to the types defined in the

StreetWorkType table. [Foreign key]

54

The street ID. This number identifies the street in the street
PerStreetID

table. [Foreign key]

PerIntersection This flag determines whether the application was made for an

intersection.

PeritartPremises The premises number in front of which the work area starts.

PerEndPremises The premises number in front of which the work area ends.

The street ID that intersecting with the other street to form an

intersection. This street number and the other street numbef

PerlntersectingStreetlD together identify the intersection where the work is conducted.

[Foreign key]

PerWorkAreaLength The length of the work area.

PerWorkAreaWidth The width of the work area.

Description of the purpose of work. Right now, this is a text

field that has a limit of 255 chars.

PerDrawingFile Name of the drawing file that is required for utility companies

File content type for the drawing file that is required for utility
PerFileContentType

companies

File length of the drawing file that is required for utility
PerFileLength copne

companies

PerUtilityEmail Email address for the utility company

PerApplicationFee The total fee assessed to this application in US-$.

Number of telephone manholes added to the street section(s)
PerTelephoneManholes

within the work area of this permit.

PerWaterManholes Number of water manholes added to the street section(s)

within the work area of this permit.

PerSewerManholes Number of sewer manholes added to the street section(s)

within the work area of this permit.

er IectricManholes Number of electric manholes added to the street section(s)

within the work area of this permit.

55

PerCatchBasins Number of catch basins added to the street section(s) within

the work area of this permit.

PerWaterGates Number of water gates added to the street section(s) within the

work area of this permit.

PerGasGates Number of gas gates added to the street section(s) within the

work area of this permit.

Number of other openings added to the street section(s) within

the work area of this permit.

This additional field is used to track the submission of new
PerTimeStamp

manhole data to the pavement management system.

PerActive To remove an application, its active parameter is set to No,

which will remove this permit from all reports and views.

PerLastEditDate This field indicates the date when the permit was last

modified.

PerLastEditUser The name of the user who was the last modifying the permit.

This table has many attributes, but its attributes are all single atomic values, so it is in

INF. But the following functional dependencies are identified:

PerWorkAreaLength->PerApplicationFee

In other words, PerApplicationFee is transitively dependent on the all the keys in the

relation, so it is not in 3NF. Actually PerApplicationFee is a derived attribute and might

be deleted from the table. But for the sake of simplicity, it is fine to have the derived

attribute in the table.

Table 4-11 Restriction Table

Field Name Definition

ResID The ID number of the restriction. This is required only internally tI

uniquely identify each restriction. [Primary key]

56

ResStreetlID Identifies the street that is restricted in the Street table. [Foreign key]

ResWholeStreet This flag determines whether the whole street or just a section of the

street is restricted.

ResStartPremises The start premises from where the street is restricted.

ResEndPremises The end premises to where the street is restricted.

ResStartDate The first date (included), from when the street is restricted.

ResEndDate The last date (included), to when the street is restricted.

ResComment Comment on the reason why the restriction was applied.

Determines whether the restriction is currently active or not.

ResActive Restrictions are "deactivated", but not deleted to maintain a history of

restrictions.

It is in BCNF.

Table 4-12 Street Table

Field Name Definition

StrID The Street ID uniquely identifies each street. [Primary

key]

StrName The name of the street.

StrRemarks Any remarks regarding the street

It is in BCNF.

Table 4-13 StreetWorkType Table

Field Name Definition

Types of street work. Values are 'Street opening only', 'Sewer only', Water

only', 'Sewer and water', 'Other'

57

This is a simple validation table. It is in BCNF.

Table 4-14 WorkType Table

This is a simple validation table. It is in BCNF.

From the discussion above, we can see that most tables are in BCNF. Some tables could

be normalized, but because our system is simple and time was limited, the simplifications

noted above were made.

58

Field Name Definition

Pre-defined types of work. Values are 'Gas', Electric', Telco', 'CableTV',
WoTType

Drain/Water/Sewer', Driveway', 'Other'

5 Case Study of the Online Street

Construction Permit System-An Enterprise

Java Beans Approach

In this chapter, we will use the ProcessPermit session bean and the Permit entity bean as

examples to demonstrate how the Enterprise JavaBeans Technology can be used in the

online street construction permit system. First we will discuss Enterprise JavaBeans

Technology in the context of the online street construction permit system, and then a

step-by-step procedure of deploying EJB will be illustrated [Bodoff200 1].

5.1 Enterprise JavaBeans Technology

The Enterprise Java Beans specification specifies the architecture for the development

and deployment of transactional server-side software components that are called

enterprise beans. These enterprise beans are distributed objects that reside in Enterprise

JavaBeans containers. The distributed clients throughout the network receive the remote

services provided by the enterprise beans.

The EJB specification separates the distributed computing infrastructure from the

business logic by the EJB API, which defines protocols, classes and interfaces. These

specifications ensure portability across vendors.

5.1.1 The EJB Container

As mentioned earlier, the EJB container is an environment that hosts and manages

Enterprise beans. An enterprise bean must work in this environment; otherwise it cannot

function. The EJB container manages all the major aspects of an enterprise bean such as

59

remote access to the bean, security, persistence, transactions, concurrency, and access to

and pooling of resources.

The container shields the client from accessing the enterprise bean directly, so the client

has to communicate with the enterprise beans via the container. This arrangement ensures

that the container performs all the management of persistence, transactions, and security,

so the bean developer can concentrate on the implementation of business logic without

any need to take care of anything else.

Containers manage many beans at the same time. In order to reduce memory

consumption and processing, they manage the beans and pool resources carefully.

An enterprise bean relies on the container to do a lot of things, from accessing a JDBC

connection or another enterprise bean, to accessing the identity of its caller or obtaining a

reference to itself. The enterprise bean uses one of the three mechanisms to interact with

its container.

> Callback methods

> EJBContext interface

> Java Naming and Directory Interface (JNDI)

The callback methods are defined by the Enterprise Bean interface. Every enterprise bean

implements a subtype of that interface. The container invokes these methods to notify the

bean when it's going to activate the bean, end a transaction, remove the bean from

memory, etc. In this way, it gives the bean a chance to perform some action before or

after some event.

60

Client

<<req~est>>

These are three mechanisms

through which the EJB .---------------.

interacts with its container

Security Managem ent
Transaction Management
Persistence Management

EJB Container

Enterprise Java Bean

Callback m ethod()
EJBContext()
JNDI ENC()

Figure 5-1 EJB Container

The EJBContext interface provides methods to communicate with the container so that

the enterprise bean can obtain information about its environment like the identity of its

client and the status of a transaction etc.

The Java Naming and Directory Interface (JNDI) is an extension to the Java platform for

accessing naming systems like LDAP and file systems, etc. Every enterprise bean has

access to a special naming system called the Environment Naming Context (ENC), which

is managed by the container and accessed by enterprise beans using JNDI. The JNDI

ENC allows a bean to access resources like JDBC connections and other enterprise beans

etc.

61

1i................. 1
Cy-
0-

..

__1

The EJB specification defines a bean-container protocol that is designed to make

enterprise beans portable between EJB containers so that enterprise beans can be

developed once and run in any EJB container.

Besides the advantage of portability, the Enterprise Java Beans makes the programming

model simpler. The developers are relieved from the tedious task of managing security,

transactions, concurrency and resources etc. Instead, the developer only needs to

concentrate his or her attention on the business logic.

5.1.2 Enterprise Beans

EJB server-side components include remote and home interfaces that define a bean's

business methods, as well as the bean class that implements the interfaces. The client

accesses the enterprise beans over the network through their home and remote interfaces.

These interfaces define the methods that are used to create, update and delete the bean

from EJB server. A bean is a server-side component that represents a business concept

like a permit or a permit processor. This concept is shown in Figure 5-2.

5.1.2.1 Remote and Home Interfaces

Although both the remote and home interfaces represent the bean, the home interface

defines the life-cycle methods of the component such as create, destroy, find etc. while

the remote interface defines the business methods of the bean such as to use

theProcessPermit bean to calculate the permit fee. The remote interface extends the

javax.ejb.EJBObject interface while the home interface extends the javax.ejb.EJBHome

interface.

62

ProcessPermit
ProcessPermit sessioI

bean and Permit entity Hor elnterface()
bean in the EJB Remoteinterface()
container

i..!

WebServer

<<req 1est>>

W orkstation

WebBrowser

Figure 5-2 Example to Show Enterprise Java Beans Concept

The following example shows how a Permit entity bean might be accessed from a

ProcessPermit session bean. Here the homepermit interface is the PermitHome type and

the remote interface is the Permit type.

// Obtain a reference that implements the home interface

InitialContext ctx = new InitialContexto;

63

//
Main Server

.EJB3 Container

«<entity >

Perm it

Hom einterface()
Rem oteInterface()

<<process>>

.....................................

0-
0-

Object objref = ctx.lookup("permit");

PermitHome homepermit = (PermitHome) PortableRemoteObject.narrow(objref,

PermitHome.class);

// Use the home interface to create a new instance of the Home bean.

Permit thePermit = homepermit.create(perid, percomname, perworktype,

perworkarealength, perapplicationfee);

// using a business method on the Permit.

thePermit.getperapplicationfee()

The remote interface defines the business methods of a bean that are specific to the

business concept it represents. Below is the definition of a remote interface for a Permit

bean.

import javax.ejb.EJBObject;

import java.rmi.RemoteException;

public interface Permit extends EJBObject {

public String getperid() throws RemoteException;

public String getpercomnameo throws RemoteException;

public String getperworktypeo throws RemoteException;

public int getperworkarealength() throws RemoteException;

public int getperapplicationfeeo throws RemoteException;

}

5.1.2.2 Business Methods

Business methods can also represent tasks that a bean performs. Both entity beans and

session beans can have task-oriented methods, but session beans do not represent data

like entity beans.

64

The following shows the remote interface for a ProcessPermit bean, which is a session

bean.

import javax.ejb.EJBObject;

import java.rmi.RemoteException;

import javax.ejb.DuplicateKeyException;

import javax.ejb.CreateException;

public interface ProcessPermit extends EJBObject {

public Permit processPermit(String perid, String percomname, String

perworktype, String retperid, int perworkarealength, int basicfee, int

additionalfee[], int from[], int to[]) throws RemoteException,

DuplicateKeyException, CreateException;

public Permit getRecord(String perid) throws RemoteException;

}

The business method processPermit defined in the ProcessPermit remote interface

represents processes instead of a simple accessor. The ProcessPermit bean acts as if it

were an administrator who processes a permit and uses Permit bean to store the necessary

information. But we do not need to put the information of PrecessPermit into our

database because we only need that "Permit Processor" to perform the administrative task

for us. This kind of bean is usually a session bean.

As we already knew from the previous discussion, there are two kinds of enterprise

beans: entity beans that represent data in a database, and session beans that represent

processes or act as agents performing tasks.

65

5.1.2.3 Entity Beans

Corresponding to every remote interface, there is an implementation class called the bean

class. The bean class is the key element of the bean that actually implements the business

methods defined in the remote interface. The Permit bean class is an entity bean that

implements the remote interface.

/Container managed entity bean

import j ava.rmi.RemoteException;

import javax.ejb.CreateException;
import javax.ejb.EntityBean;

import javax.ejb.EntityContext;

public class PermitBean implements EntityBean {

public String perid;

public String percomname;

public String perworktype;

public int perworkarealength;

public int perapplicationfee;

public String getperid() {

return this.perid;

}

public String getpercomnameo {
return this.percomname;

}

public String getperworktypeo {

66

return this.perworktype;

I

public int getperworkarealengtho {

return this.perworkarealength;

I

public int getperapplicationfeeo {

return this.perapplicationfee;

I

public String ejbCreate(String perid, String percomname, String perworktype,

int perworkarealength, int perapplicationfee)

throws CreateException {

this.perid = perid;

this.percomname = percomname;

this.perworktype = perworktype;

this.perworkarealength = perworkarealength;

this.perapplicationfee = perapplicationfee;

return null;

}

public void ejbRemoveo throws RemoteException { }

public void setEntityContext(javax.ejb.EntityContext ctx){ }

public void ejbActivateo { I
public void ejbPassivateo { I

public void ejbPostCreate(String perid, String percomname, String

perworktype, int perworkarealength, int perapplicationfee) {}

public void ejbLoado { I
public void ejbStoreo { I

public void unsetEntityContexto{ }

67

I

The application can use the remote interface to the Permit bean to access permit data

without any need to write database access logic. Entity beans implement the

javax.ejb.EntityBean type that defines a set of notification methods that the bean uses to

interact with its container.

5.1.2.4 Session Beans

The ProcessPermit bean is a session bean. Session beans represent a set of processes or

tasks, which are performed on behalf of the client application. Session beans may use

other beans to perform a task or access the database directly. The ProcessPermit session

bean uses Permit entity bean to access the database directly.

import java.rmi.RemoteException;
import javax.ejb.SessionBean;

import javax.ejb.SessionContext;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import javax.ejb.DuplicateKeyException;
import javax.ejb.CreateException;

public class ProcessPermitBean implements SessionBean {

PermitHome homepermit;

public Permit processPermit(String perid, String percomname, String

perworktype, String retperid, int perworkarealength, int basicfee, int

additionalfee[], int from[], int to[])

throws DuplicateKeyException, CreateException {
Permit thePermit = null;

68

int perapplicationfee = basicfee;

// Process additional fees (for water)

if ((perworktype.equals("Sewer and water"))

(perworktype.equals("Water only")))

{
// Add the additional fee according to the length

for (int i=O; i<3; i++)

{
if ((perworkarealength>=from[i]) && (perworkarealength<to[i]))

perapplicationfee+=additionalfee[i];

}

/ If out of range, assign maximum fee.

if (perworkarealength>=to[2]) perapplicationfee+=additionalfee[2];

}

try {

InitialContext ctx = new InitialContexto;

Object objref = ctx.lookup("permit");

homepermit = (PermitHome)PortableRemoteObject.narrow(objref,

PermitHome.class);

} catch (Exception NamingException) {

NamingException.printStackTraceo;

}

/Store data in entity Bean

try {

thePermit = homepermit.create(perid, percomname, perworktype,

perworkarealength, perapplicationfee);

I catch (java.rmi.RemoteException e) {

69

String message = e.getMessage(;

e.printStackTraceo;

}

return thePermit;

}

public Permit getRecord(String perid) {
Permit record=null;

//Use primary key to retrieve data from entity Bean

try {

record = homepermit.findByPrimaryKey(perid);

I catch (java.rmi.RemoteException e) {

String message = e.getMessageo;

} catch (javax.ejb.FinderException e) {

e.printStackTraceo;

I

return record;

}
public void ejbCreateo { }

public void setSessionContext(SessionContext context) { }

public void ejbRemoveo { I
public void ejbActivateo { I
public void ejbPassivateo { }

public void ejbLoado { I
public void ejbStoreo { I

}

EJB does not require that the bean class implement the remote or home interfaces but the

bean class does provide implementations for all the business methods defined in the

remote interface.

70

5.1.2.5 Methods in the Home Interface

Besides a remote interface, all beans have a home interface. The home interface provides

life cycle methods for creating, destroying, and locating beans that are not specific to a

single bean instance. The definition of the home interface for the Permit bean is as

follows:

import javax.ejb.EJBHome;

import javax.ejb.CreateException;
import javax.ejb.FinderException;
import java.rmi.RemoteException;
public interface PermitHome extends EJBHome {

public Permit create(String perid, String percomname, String perworktype, int

perworkarealength, int perapplicationfee)

throws CreateException, RemoteException;

public Permit findByPrimaryKey(String perid)

throws FinderException, RemoteException;

}

The createO method is used to create a new entity, which results in a new record in the

database. A home may have many createo methods. The number and data type of the

arguments of each createO are left up to the bean developer, but the return type must be

the remote interface data type. The findByPrimaryKeyo method is used to locate specific

instance of the Permit bean and we may define as many find methods as necessary.

5.1.2.6 Application of the Remote and Home Interfaces

The remote and home interfaces are used by applications to access enterprise beans at

runtime. The home interface allows the application to create or locate the bean, while the

71

remote interface allows the application to invoke a bean's business methods. The

following code shows the concept:

ProcessPermitHome homeprocesspermit;

ProcessPermit theProcessPermit;

Permit thePermit, retrecord;

InitialContext ctx = new InitialContexto;

Object objref = ctx.lookup("processpermit");

homeprocesspermit =(ProcessPermitHome)PortableRemoteObject.narrow

(objref, ProcessPermitHome.class);

/Create remote interface

theProcessPermit = homeprocesspermit.createo;

/Call session bean to calculate the application fee

thePermit = theProcessPermit.processPermit (perid, percomname,

perworktype, retperid, perworkarealength, basicfee, additionalfee, from, to);

/Retrieve record from the database

retrecord = theProcessPermit.getRecord(retperid);

//Display data returned by session Bean

out.println("<H1 >Permit You Want to Retrieve</H1>");

out.println("<P>Permit Number: " + retrecord.getperid() + "<P>");

out.println("<P>Contractor/Utility Company: "+ retrecord.getpercomnameo

+ "<P>");

out.println("<P>Type of Work: "+ retrecord.getperworktypeo + "<P>");

out.println("<P>Length of Working Area (Feet): " +

retrecord.getperworkarealengtho + "<P>");

out.println("<P>Application Fee ($): "+ retrecord.getperapplicationfeeo

+ "<P>");

72

5.2 Enterprise JavaBeans Deployment

In previous section, by using the permit application as an example, we have already

described the components of Enterprise JavaBeans. In this section, we will demonstrate

how to build, deploy and run an Enterprise JavaBeans application using the source files

described in previous section. J2EE SDK only supports version 6.1 of Redhat Linux but it

supports Windows 2000, so in this section we limit our discussion to J2EE SDK under

Windows 2000 environment. Because Cloudscape DBMS is included in the J2EE SDK,

we also use Cloudscape for our system in this section.

5.2.1 Preparation Work

Before we actually start deploying the permit application, we need to do some

preparation work as shown below:

5.2.1.1 Building the Permit Application

To build the permit application code we need to install ant as well as J2EE SDK. Ant is a

portable Java-based make tool that is hosted by the Jakarta project at the Apache

Software Foundation. Ant can be downloaded from:

http://jakarta.apache.org/builds/jakarta-ant/release/v1.2/bin.

By default ant uses a configuration file build.xml as the makefile. In order to build the

permit application, we need to edit the relevant lines in the build.xml file as shown

below:

<property name="j2ee-home" value="C:\qcx\prog\j2sdkee 1.3" />

<target name="ejb" depends="init, permit" >

73

<chmod perm="go+r" type="both">

<fileset dir=".." />

</chmod>

</target>

<target name="permit" depends="init">

<mkdir dir="$ { build }/$ { ejb }I/permit" />

<javac srcdir="${ejb}/permit" destdir="$ { build }/${ ejb }/permit"

classpath="${j2eepath}" />

</target>

The above editing is based on the assumption that J2EE SDK installation directory is in

C:\qcx\prog\j2sdkeel.3 and all the java source files for permit application are in permit

sub-directory under the ejb directory.

After editing the build.xml file, simply execute "ant permit" command to build the permit

application.

5.2.1.2 Checking the Environment Variables

The environment variables should be set to the values described in the following table.

Table 5-1 Environment Variables Checklist

ENVIRONMENT VARIABLE VALUE

JAVAHOME Location of the J2SE SDK installation.

J2EEHOME Location of the J2EE SDK installation.

ANTHOME Location of the ant installation.

PATH Include the bin directory of the J2EE SDK and

ant installation.

74

5.2.1.3 Starting the Platform and Tools

Before we can assemble, deploy and run the permit application, we need to start the J2EE

server, the database server and the deploy tool.

To launch the J2EE server, type this command:

j2ee -verbose

To launch the database server, type this command:

cloudscape -start

To launch the deploy tool, type this command:

deploytool

5.2.2 Assembling the Permit Application

The permit application contains three J2EE components: an enterprise session bean, an

enterprise entity bean and a web client. In order to assemble all these components

together, we need to create a new J2EE application, packaging the enterprise beans and

packaging the web client.

5.2.2.1 Creating the J2EE Application

Once we have launched the deploy tool, we should see a GUI tool as shown in Figure 5-

3.

75

Figure 5-3 Deploy Tool

1. In the GUI deploy tool, select New Application from the File menu.

2. Locate the directory where you want to place the application EAR file. In

our case, the directory is ../src/ejb/permit.

3. In the File name field enter PermitApp.ear.

4. Click New Application and then OK.

5.2.2.2 Packaging the Web Client

To package a web component, we run the New Web Component Wizard of the

deploytool. During this process, the wizard puts the client files (PermitServlet.class

servlet files and permit.html file) into a WAR file and then adds the WAR file to the

application's PermitApp.ear file.

To start the New Web Component Wizard, select New Web Component from File menu.

The wizard displays the following dialog boxes.

1.Introduction Dialog Box:

> Read and Click Next

76

2.WAR File General Properties Dialog Box

> In the combo box labeled Create New WAR File in Application, select

PermitApp.

> In the WAR Display Name field, enter PermitWAR and Click Add.

> Navigate to ../build/ejb/permit directory and add PermitServlet.class

> Navigate to ../src/ejb/permit directory and add permit.html

> Click Finish

3.Component Type Dialog Box

> Select the servlet radio button and Click Next

4.Component General Properties Dialog Box

> Make PermitServlet the servlet class

> Make the display name PermitServlet

5. Component Aliases Dialog Box

> Specify PermitAlias and Click Finish

5.2.2.3 Packaging the Enterprise Beans

In this section we will run the New Enterprise Bean Wizard of the deploytool to perform

these tasks:

> Creating and packaging the ProcessPermit session bean's deployment

descriptor and the bean's classes in an EJB JAR file.

> Creating and packaging the Permit entity bean's deployment descriptor and the

bean's classes in that same EJB JAR file just created.

> Insert the EJB JAR file into the application's PermitApp.ear file.

To package the ProcessPermit session bean into an EJB JAR file, select New Enterprise

Bean from File menu. The wizard displays the following dialog boxes.

1.Introduction Dialog Box

77

> Read and Click Next.

2.EJB JAR Dialog Box

> In the combo box labeled Enterprise Bean Will Go In, select PermitApp.

> In the JAR Display Name field enter PermitJAR.

> Click the Add button next to the Contents text area.

> Select the following classes from the beans directory and click Add:

ProcessPermit.class, ProcessPermitBean.class, and ProcessPermitHome.class.

3.General Dialog Box

> Under Bean Type, select the Session and Stateless radio button.

> In the Enterprise Bean Class combo box, select ProcessPermitBean.

> In the Home Interface combo box, select ProcessPermitHome.

> In the Remote Interface combo box, select ProcessPermit.

> In the Enterprise Bean Name field, enter ProcessPermitBean.

4.Dialog Boxes for Environment Entries, Security etc.

> Click Next continuously until come to the Transaction Management dialog

box.

5. Transaction Management Dialog Box

> Select Container-managed transactions.

> In the list below make processPermit and getRecord required and Click Next

then Finish.

To package the Permit entity bean into the same EJB JAR file, select New Enterprise

Bean from File menu. The wizard displays the following dialog boxes.

1.Introduction Dialog Box

> Read and Click Next.

2.EJB JAR Dialog Box

> In the combo box labeled Enterprise Bean Will Go In, select PermitJAR. This

will add the new bean to the existing JAR file instead of creating a new JAR

file.

78

In the JAR Display Name field enter PermitJAR.

> Click the Add button next to the Contents text area.

> Select the following classes from the beans directory and click Add:

Permit.class, PermitBean.class, and PermitHome.class.

3.General Dialog Box

> Under Bean Type, select the Entity radio button.

> In the Enterprise Bean Class combo box, select PermitBean.

> In the Home Interface combo box, select PermitHome.

> In the Remote Interface combo box, select Permit.

> In the Enterprise Bean Name field, enter PermitBean.

4.Entity Setting Dialog Box

> Select Container managed persistence.

> In the list below check perid, percomname, perworktype, perworkarealength,

perapplicationfee. The primary key class is java.lang.String, and the primary

key field is perid. Click Next.

4.Dialog Boxes for Environment Entries, Security etc.

> Click Next continuously until come to the Transaction Management dialog

box.

5. Transaction Management Dialog Box

> Select Container-managed transactions.

> In the list below make create, findByPrimaryKey, getperid, getpercomname,

getperworktype, getperworkarealength and gerperapplicationfee required and

Click Next then Finish.

After all these have been done, we need to set JNDI names. In the Local Applications

window, select PermitApp, and in the Inspection window, select JNDI names tab, give

PermitBean the JNDI name of permit and ProcessPermitBean the JNDI name of

processpermit.

Before we can deploy the J2EE permit application, we need to specify the deployment

setting for the Permit entity bean and generate the SQL. In the local application window,

79

select PermitBean, and in inspecting window, select Entity tab and click the Deployment

Setting button. And in the Deployment Setting window do the following operation:

> Type jdbc/Cloudscape for the Database JNDI name.

> Check the Create table on deploy and Delete table on undeploy boxes.

> Click Generate SQL. -

Now we should have all the necessary components ready for deployment. The application

deployment tool now should look like Figure 5-4.

Figure 5-4 Components for Permit Application Ready for Deployment

5.2.3 Deploy the J2EE Application

Now it is possible to deploy the Permit application.

80

Select Deploy Application from the Tools menu.

> Set the Target Server as localhost.

> Click Next and make sure the JNDI names show processpermit for

ProcessPermitBean and permit for PermitBean.

> Click Next and make sure the Context Root name shows PermitRoot.

> Click Next then Finish to start the deployment.

> When deployment is completed, click OK.

5.2.4 Run the J2EE Application

To run the web application described in this chapter, go to the URL:

http://J2EEServer:8000/PermitRoot/permit.html

Where J2EEServer should be replaced by the name of the host running the J2EE server.

After input the permit application information such as contractor/utility company name,

street work type, length of work area etc, the application can calculate the application fee

accordingly and stored information in the database. It can also retrieve permit

information from database. A simple example is shown in Figure 5.5 and Figure 5.6.

81

Permit Application

Permit Number:

1150

Contractor/Utility Company:

Massachusetts Water

Type of Work:

Sewer and water

Length of Working Area (Feet):

1 0

Enter the permit number of the permit that you want to retrieve from database:

110 1

Submit Reset

Figure 5-5 Permit Application

82

Permit You Just Applied
Permit Number: 150

Contractor/Utility Company: Massachusetts Water Resources Authority

Type of Work: Sewer and water

Length of Working Area (Feet): 80

Application Fee ($): 225

Permit You Want to Retrieve
Permit Number: 101

Contractor/Utility Company: Boston Gas

Type of Work: Gas

Length of Working Area (Feet): 80

Application Fee ($): 25

i gunt: 0ane ...6 Re.r. ee er

Figure 5-6 Retrieve Permit Application from Database

83

6 Conclusions

6.1 Summary of the Work

This thesis is focused on the enabling technologies for a web-based urban street

construction permit system. The main J2EE technologies we have discussed includes:

> Enterprise JavaBeans

> JavaServer Pages

> Servlet

> JDBC API

Besides, other J2EE technologies such as Transaction, JNDI and XML are also discussed

where appropriate.

The following development environments to support these technologies are also

described in detail:

> Red Hat Linux 7.0

> Java 2 Platform

> Tomcat Server 3.2.1

> Database MySQL 2.1.4

> JDBC Driver 2.0.4 for MySQL

As an example, Arlington permit system was used to demonstrate the design of Entity-

Relational model, and the Enterprise JavaBeans application.

84

6.2 Future Work

As we already described in Chapter 1, the current practice of issuing permit for urban

street construction is very tedious and inefficient. To solve the problem, we developed a

web-based urban street construction permit system that mainly use JavaServer pages,

Servlets, Java bean to implement the system.

As we know, street permit issuing is a typical activity for all cities and towns in the U.S.;

the system we developed should find extensive use in other American towns besides

Arlington town. However, the scale of the town, the computing platforms in the town's

relevant department and other environment are quite different from town to town, and for

the permit system to be extensively used in U.S. towns, it is crucial that the permit system

should be robust, scalable, and portable. Enterprise JavaBeans approach proves to be an

effective way of realizing that purpose.

Future work should focus on the following aspects:

> From our database normalization analysis in Chapter 4, we found that there were

several cases in which it is better to separate some attributes from their original

table and put them in a new table. Just for the simplicity of the Arlington Permit

System, we did not implement these separations. But in order to develop a general

permit application system that can be applied to different towns in the U.S., we

should separate these tables although it does add some complexity.

> In Chapter 5, a prototype permit application system was developed using the

Enterprise JavaBeans approach, but effort is needed to make it a completed permit

system. We developed our prototype permit system on Java 2 Platform, Enterprise

Edition 1.3 Beta release because it is free, but for a real project application, we

need to implement it on an earlier but more stable release of the platform.

> The differences and similarities of the requirements for permit systems for

different towns in the U.S. should be fully studied so we can develop several types

of business logic to cater for each town's particular needs.

85

A typical platform and a reference implementation of the permit system may be

recommended for each type of business logic mentioned above.

86

Bibliography

[Arlington2001a] "Arlington Online", http://www.town.arlington.ma.us/, 2001

[Arlington2001b] Klimke,Wolfgang Andreas, Qi, Changxin and Prasad, Rajesh. "Street
Opening Permit System Project Report", MIT, 2001

[Asbury1999] Asbury, Stephen and Weiner, Scott R. "Developing Java Enterprise
Applications", John Wiley & Sons, 1999

[Bodoff2001] Bodoff, Stephanie et al. "The J2EE Tutorial", Sun Microsystems, Inc.,
2001

[Elmasri1999] Elmasri, Ramez and Navathe, Shamkant B. "Fundamentals of database
systems", Third Edition, Benjamin/Cummings Publishing, 1999

[Gilbertl998] Gilbert, Stephen and McCarty, Bill. "Object-Oriented Design in Java",
Sams,1998

[Hall2000] Hall, Marty. "Core Servlets and JavaServer Pages", Prentice-Hall Inc., 2000

[Jakartal999] "The Jakarta Project, Tomcat", http://jakarta.apache.org/tomcat/index.html,
1999

[Matthews2001] Matthews, Mark.
http://mmmysql.sourceforge.net/, 2001

"MM MySQL JDBC driver",

[MySQL1995] "MySQL Reference Manual", http://www.mysql.com/doc/index.html,
1995

[RedHat2000] "Red Hat Linux 7.0, The Official Red Hat Linux Reference Guide", Red
Hat, Inc., 2000

[Rothl998] Roth, Bill. "An Introduction to Enterprise JavaBeans Technology",
http://developer.java.sun.com/developer/technicalArticles/ebeans/IntroEJB/, 1998

[SUN1999] "Java 2 Platform, Enterprise Edition, Overview",
http://java.sun.com/j2ee/overview2.html, 1999

[SUN2000a] "Java 2 Platform, Standard Edition, Version 1.3",
http://iava.sun.com/i2se/1.3/. 2000

[SUN2000b] "Java 2 Platform, Standard Edition for Linux",
http://java.sun.com/j2se/1.3/download-linux.html, 2000

87

[SUN2001a] "Java 2 Platform, Enterprise
http://java.sun.com/j2ee/blueprints/, 2001

[SUN2001b] "Java 2 SDK, Enterprise Edition

Edition Blueprints",

1.3 Beta release",
httD://develover.iava.sun.com/develo-er/earlvAccess/i2ee/. 2001

[Zakon2001] Zakon, Robert H. "Hobbes' Internet Timeline v5.3",
http://www.zakon.orv/robert/internet/timeline/#Growth. 2001

88

