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Abstract
The focus of this work is to evaluate the accuracy of methods for extracting damping
ratios with respect to: three extraction methods, different damping ratios, added noisy
data, separated modes and close modes.
To achieve this goal, a simulated analytical signal is analyzed by estimating the modal
parameters. The simulated analytic signal is useful because the exact values are known
and the characteristic of the FRF can be varied in order to observe how the accuracy of
damping ratios is affected.
Results show that the Continuous Wavelet Transform method gives the most accurate
estimations even for data corrupted by the noise. The Complex Exponential method
presents better results in the cases with higher modes and higher damping ratios without
the noise. Wavelet Packet method and Continuous Wavelet Transform method are more
suitable in the cases for extracting lower damping ratios than those for higher damping
ratios even for data corrupted by the noise. And in general, the estimation results are
more accurate in the cases with separated modes than those with close modes.
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Chapter 1

Introduction

1.1 Problem Statement

Damping is a mechanism that dissipates vibration energy in dynamic systems. Its

value is very important for the design and analysis of vibration structures because the

dynamic response of structures and the transmission of vibrations to the surroundings

are critically determined by the damping mechanism. In general, structural damping

can be classified either as hysteretic or viscous. Hysteretic damping arises from

microstructural phenomena and is characterized by material properties. Viscous

damping is proportional to the magnitude of the velocity, and opposite to the direction

of motion. But in practice, the concept of equivalent viscous damping is used to

model the overall damped behavior of the system as being viscous. In this thesis, the

damping ratio, or fraction of critical damping is used to describe viscous damping.

Once the structure is modeled, the stiffness and mass distributions are quite well

determined, but there is great uncertainty regarding the energy dissipating mechanism

provided by the damping distributions of the structure because they are the most

sensitive to noise, measurement errors, inadequate excitation, etc.

A lot of work has being devoted to the development and improvement of techniques

for measuring damping values. Those techniques can be classified into time domain

11



methods, which are based on the impulse response function (IRF) and frequency

domain methods, which are based on the frequency response function (FRF). A

combined time-frequency approach can also be applied to estimate the damping of the

system by using, for example, the Wigner-Ville distribution. Normally for real

structures, the damping ratio ranges between 2 to 20% [1].

This thesis will present three different methods of extracting damping ratios for

multi-degree-of-freedom (MDOF) systems. These are the Complex Exponential

Method (CEM), the Wavelet Packet Method (WPM) and the Continuous Wavelet

Transform Method (CWT).

1.2 Scope and Limitations

The goal of this thesis is to investigate how the accuracy of methods of extracting

damping ratios with respect to: three extraction methods, different damping ratios,

added noisy data, separated modes and close modes.

To achieve this goal, a simulated analytical signal is analyzed by estimating the modal

parameters. The simulated analytic signal is very useful because the exact values are

known and the characteristic of the FRF can be varied in order to observe how the

accuracy of damping ratios is affected.

The subject of wavelet analysis is a broad and rapidly developing field. There are

many different wavelets, but only the Coiflet wavelet and Morlet wavelet are used and

evaluated in this study. A survey and evaluation of other wavelets is beyond the scope

of the thesis.

1.3 Thesis Organization

Chapter 2 gives a brief review of relative theories of the extraction methods.

12



Principles of WPM and CWT are included.

The implementation of the simulated analytical signal is discussed in Chapter3. The

sample rate, number of samples and signal with different damping ratios, noise,

separated modes and close modes are defined in detail.

Chapter 4 analyzes the results by comparing those methods. A percent of error is

calculated to investigate the accuracy.

A summary of the main points of the thesis and suggestions follow in Chapter5.

The appendix contains theories of CEM and Hilbert transform. The Matlab codes for

processing data specified to this thesis are also included.
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Chapter 2

Theory

2.1 The Wavelet Packet Method

2.1.1 Wavelet Packet Analysis

The wavelet packet method (WPM) is a generalization of wavelet decomposition that

offers a richer signal analysis.

In wavelet analysis, a signal is split into an approximation and a detail. The

approximation is then itself split into a second-level approximation and detail, and the

process is repeated. For an n-level decomposition, there are n+1 pieces in the

decomposition. In wavelet packet analysis, the details as well as the approximations

can be split. This yields a decomposition with 2" pieces. Figure 2.1 shows the

wavelet packet decomposition tree.

For instance, wavelet packet analysis allows the signal S to be represented as Al +

AAD3 + DAD3 + DD2. This is an example of a representation that is not possible with

ordinary wavelet analysis. Wavelet packet nodes are waveforms indexed by three

naturally interpreted parameters: position, scale (as in wavelet decomposition), and

frequency. For a given orthogonal wavelet function, we generate a library of bases

called wavelet packet bases. Each of these bases offers a particular way of coding

14



S

Al D1

-AA2 -DA2 -AD2 -DD2

AAA3 DA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3

Figure 2.1 The wavelet packet decomposition tree

signals, preserving global energy and reconstructing exact features. A deep

explanation of the wavelet packet analysis can be found in references [8] [9] [10].

In this project, the Coiflet coif5 wavelet is used.

2.1.2 WPM Based Damping Ratio Extraction Procedure

The linear MDOF system is governed by the general equation

[M]X+ [C]X+ [K]X = F (2.1)

where [M], [C], [K], F are mass, damping, stiffness matrices and excitation vector

respectively.

By using modal analysis, N uncoupled equations similar to a SDOF system can be

obtained,

mi xi (t )+ ci xi (t)+ ki xi(t) = fi (t) (2.2)

for i = 1,2,..., N . The impulse response of this MDOF system can be given in general

form as

h(t)=JAie- "''sin(V1 -T w,it + V/i (2.3)
i=1
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where wn is the natural frequency, N is the number of modes considered, Ai is the

residue magnitude of the i th mode and 6 is the damping ratio. This response

represents a linear combination of its signal modal components. Each mode is given by

an exponentially decaying harmonic function.

As discussed in section 2.1.1, the signal, an impulse response of a MDOF system, can

be split into wavelet packet nodes. Each node represents a filtered range of frequencies.

By analyzing the FRF of each node, a certain number of nodes is assigned to each

mode, which has the frequency response most similar to those of the assigned nodes.

After reconstructing the IRF of each mode, damping ratios can then be extracted using

the Hilbert transform as shown in Appendix B. The WPM based procedure above is

shown schematically in Figure 2.2.

2.2 The Continuous Wavelet Transform

2.2.1 The Morlet Wavelet

In the early 1980s, Morlet introduced a 'wavelet', which was dilated and translated to

form a family of analyzing functions. These functions are given by

1 t -b
V/a,b t= f(t ) (2.4)

a a

which is a dilation (denoted by a) and translation (denoted by b) of the mother wavelet

q (t). The continuous wavelet transform (CWT) is defined as

W(a,b)= f(tol ,b(t)dt (2.5)

where the bar denotes complex conjugation. The wavelet transform computes the

correlation between the signal and the dilation and translation of the wavelet lp (t).

The coefficients are therefore a measure of the similarity between the wavelet and the

function f(t)[8][9][11].
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Figure 2.2 The WPM based damping ratio extraction procedure
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The Morlet wavelet used in this project is defined as

v'M (t) = eiwo'e (2.6)

Traditionally, the parameters a and wo are defined as

WO = c 2 (2.7)

The Fourier spectrum of the Morlet wavelet is a shifted Gaussian function [6]

G(f)= V2e (2.8)

The corresponding wavelet is plotted in Figure 2.3.

2.2.2 CWT Based Damping Ratio Extraction Procedure

For a SDOF system given by equation (2.2), when the damping term (c/2m)2 «1,

the solution of the system can be given in the form of an analytic signal

x(t)= A(t4w y'" = A(ti'(t) (2.9)

Assuming that the envelope A(t) is slowly varying, the Morlet wavelet transform of

the equation (2.9) can be approximated as [6][12]

(wgxXa,b)= A(b)G* ({a (b)))ei(b) +0( A , (2.10)

where G* () denotes the complex conjugate of G(). The modulus of this function is

given by

(wgxXa,bl = A(b Gj aP(b)j (2.11)

For a given value of dilation, ao, equation (2.11) can be rewritten as

(wgxXao,bJ = Ae 'wb G* (±iaown i - ) (2.12)

Taking the natural logarithm of each side yields,

18
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In (w9xXao ,b = - l( IAoG(± iaown 1 -T)) (2.13)

Thus the damping ratio of the system can be estimated from the slope of the

straight line of the wavelet modulus (wgxXaO,bl plotted in a natural logarithm scale.

The procedure can be extended to a MDOF system on the assumption that the MDOF

system governed by equation (2.1) can be uncoupled. Equation (2.12) and (2.13) can

then be rebuilt for a MDOF system as

(wgx9xi ajb = Aie-'W'b'' G(+ ia w, 1- 2) (2.14)

ln (wgxi Xa,b= -{wjb +nlA G*( iaiwn1--{2 (2.15)

for i = 1,2,..., N .

The damping ratio ( of the i th mode can be estimated from equation (2.15) as the

slope of the straight line of the wavelet modulus (wgxjXa , b, for the given values of

dilation a related to the natural frequency f,, of the system, plotted against b in a

natural logarithm scale [6][12]. The CWT based procedure above is shown

schematically in Figure 2.4.
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Figure 2.4 The CWT based damping ratio extraction procedure
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Chapter 3

Implementation Procedure

3.1 General Procedure

In order to evaluate the accuracy of extracting damping ratios by the three methods

proposed in the previous chapter, several simulations are performed. The simulated

analytic signal is set with known properties. The algorithms based on the methods of

CEM, WPM, CWT are coded in Matlab 6.0 written specifically for this thesis. The

details of this implementation can be found in Appendix C.

For simplicity, the impulse response of the 3-DOF systems is simulated. However, it

is assumed that the procedure can be extended to general MDOF systems. By setting

the damping ratio of the first mode and adding specified noise, a simulated signal can

be generated. Three extraction methods are then provided to perform the estimation.

Different input parameters are required for each method. The main menu for choosing

one of three methods is shown in Figure 3.1.

3.2 Simulated Analytical Signal

3.2.1 Signal Parameters

In this section the parameters of the simulated analytical data sets are presented.
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Figure 3.1 The user interface of three methods for extracting damping ratios

Table 3.1 gives the sampling parameters in the signal.

Table 3.1 Sampling parameters in the signal

Sample Rate Number of Samples

2048 Hz 2048

The accuracy of three methods with respect to signals having separated modes and

close modes, different damping ratios and noisy data, is discussed. In this thesis, only

the underdamped case, which is 0 < < 1, is considered and is the one usually

encountered. The underdamped system oscillates with a decaying amplitude and a

frequency w,, (1 - { )12 , somewhat less than the frequency of the undamped

oscillation. Values of 0.001 and 0.02 are used for lower and higher damping ratios of

23



the first mode respectively Damping ratios are assumed to increase linearly with the

modal frequencies [1]. The properties of simulated analytical data sets with separated

and close modes are presented in Table 3.2 and 3.3 respectively. The IRF, FRF plots

for each simulated data set are represented in Figure 3.2 and 3.3. The properties of

simulated analytical data set with higher damping ratios are presented in Table 3.4.

The IRF, FRF plots are represented in Figure 3.4.

Table 3.2 Properties of the simulated data set with separated modes and lower damping ratios

Mode Residue Natural Frequency Damping Ratio

1 5 128 0.0010000000

2 15 256 0.0020000000

3 22.5 512 0.0040000000

Table 3.3 Properties of the simulated data set with close modes

Mode Residue Natural Frequency Damping Ratio

1 5 256 0.0010000000

2 15 307.2 0.0012000000

3 22.5 399.36 0.0015600000

Table 3.4 Properties of the simulated data set with separated modes and higher damping ratios

Mode Residue Natural Frequency Damping Ratio

1 5 128 0.0200000000

2 15 256 0.0400000000

3 22.5 512 0.0800000000
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Figure 3.2 (a) IRF and (b) FRF plot of the simulated data set with separated modes,

lower damping ratios and no noise (SNR = oo dB)
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Figure 3.4 (a) IRF and (b) FRF plot of the simulated data set with separated modes,

higher damping ratios and no noise (SNR = oo dB)
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The simulated signal is also corrupted by zero mean Gaussian noise, as discussed in

the next section.

3.2.2 Signal-to-Noise Ratio

In analog and digital communications, signal-to-noise ratio, SNR, is a measure of

signal strength relative to background noise. The ratio is usually measured in decibels

(dB). The formula is given by

SNR = 10logi (,j (3.1)
Un/

where o2 is the signal variance and o- is the noise variance.

Given a signal, s(t) with known a-, and desired SNR, the generated noise signal is

n(t) = c-nN(0,1) (3.2)

where N(0,1) is a Normally (Gaussian) distributed random variable with zero mean

and unit variance.

In the simulation, SNR is set equal to -o dB, 20 dB and 10 dB. Figure 3.5 shows the

IRF and FRF of the simulated data set with separated modes, lower damping ratios

and noisy data (SNR = 20 dB)

3.2.3 Error Measurement

In order to evaluate the damping ratio accuracy, a percentage error defined in equation

(3.3) is calculated.

Err(/) e 'x100% (3.3)

where , is the estimated damping ratio and {, is the theoretical damping ratio.
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Figure 3.5 (a) IRF and (b) FRF plot of the simulated data set with separated modes,

lower damping ratios and noisy data (SNR = 20 dB)
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Chapter 4

Results and Discussion

4.1 Simulated Analytical Signal With Separated Modes

This part summarizes the results of the three methods for extracting damping ratios, for

the separated modes. The frequencies corresponding to the separated modes are 128,

256, 512 (Hz). Other parameters of the signal are defined in Chapter 3.

4.1.1 CEM Results

This method requires two additional input parameters: DOF and truncation of

frequencies to perform. The effect of truncation becomes important if the truncation

limits are close to the modal frequencies. The problem with the truncation is that when

the IRF is calculated it has time leakage and some information is lost, therefore the

estimated damping ratio will deviate from the exact solution. Table 4.1 represents an

example with truncation limits between 58.06 and 611.10 (Hz). A complete

development of this method is shown in Appendix A.

In order to avoid the effect of truncation, only cases without truncation are considered,

i.e. the entire range of frequency from 0 to 1024 (Hz) is taken to process. Figure 4.1

shows IRF, FRF and phase angle plot of the simulated and fitted curve with lower
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Table 4.1 Estimation results with truncation for separated modes

Frequency Theoretical Value SNR Estimated Value Error

(Hz) (,) (dB) (M) (%)

128 0.0010000000 00 0.2365217096 23552.2

256 0.0020000000 00 0.0176099322 780.5

512 0.0040000000 00 0.0032943060 -17.6

damping ratios and noisy data (SNR = 20 dB). Table 4.2 and 4.3 summarize the results

without truncation.

IRF
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(a) IRF plot of the simulated and fitted curve
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Figure 4.1 (a) IRF, (b) FRF and (c) phase angle plot of the simulated and fitted curve

with separated modes, lower damping ratios and noisy data (SNR = 20 dB)
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Table 4.2 Estimation results based on the CEM with lower damping ratios for separated modes

Frequency Theoretical Value SNR Estimated Value Error

(Hz) (0,) (dB) ('se) (%)

128 0.0010000000 0 0.0010000002 0.0

20 0.0800783134 7907.8

10 0.0791687633 7816.9

256 0.0020000000 0 0.0020000000 0.0

20 0.0335427316 1577.1

10 0.1075900155 5279.5

512 0.0040000000 0 0.0039999998 0.0

20 0.0106645845 166.6

10 0.0428453288 971.1

Table 4.3 Estimation results based on the CEM with higher damping ratios for separated modes

Frequency Theoretical Value SNR Estimated Value Error

(Hz) (0, (dBM,) (%)

128 0.0200000000 0 0.0200000029 0.0

20 0.1056261912 428.1

10 0.0676097338 238.0

256 0.0400000000 0 0.0400000039 0.0

20 0.0911037669 127.8

10 0.1697063481 324.3

512 0.0800000000 0 0.0799999978 0.0

20 0.0908770838 13.6

10 0.1300957561 62.6
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4.1.2 WPM Results

In this method, we first generate a library of wavelet packet bases for a given

orthogonal wavelet function, coif5. The decomposition level is set at 5 therefore

25= 32 sets of coefficients are generated. By reconstructing the coefficients and

visualizing the FRF of each recovered IRF, we can select the most suitable nodes,

which are numbered from AAAAA5 to DDDDD5 as Nodel to Node32 at level 5, to

represent a specified mode. The FRF of selected nodes are shown in Figure 4.2, 4.3

and 4.4. The response of each mode is then the summation of the selected nodes. In

order to find the envelope of each response, the Hilbert transform is performed. After

taking the natural logarithm of the envelope plot, a linear plot is obtained. The results

are shown in Figure 4.5, 4.6 and 4.7. The Least Square Method is then applied to find

the regression line. The damping ratio can be calculated from the slope of the

regression line. Table 4.4 summarizes the selected nodes corresponding to three

modes.

Table 4.4 Summary of selected nodes corresponding to three separated modes

Frequency (Hz) Selected Nodes

128 Node(3), Node(7)

256 Node(5), Node(13)

512 Node(9), Node(25)

Table 4.5 and 4.6 summarize the estimation results with lower damping ratios and

higher damping ratios respectively. Figure 4.8 shows the IRF and FRF of the simulated

and fitted curve, which is obtained by adding the effects of the selected six nodes, with

lower damping ratios and no noise added.
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Figure 4.2 (a) FRF plot of wavelet packet node 3 and (b) node 7 representing the first

mode (128 Hz) with lower damping ratios and no noise (SNR = oo dB)
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Figure 4.3 (a) FRF plot of wavelet packet node 5 and (b) node 13 representing the

second mode (256 Hz) with lower damping ratios and no noise (SNR = oo dB)
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Figure 4.4 (a) FRF plot of wavelet packet node 9 and (b) node 25 representing the

third mode (512 Hz) with lower damping ratios and no noise (SNR = o dB)
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(b) The natural logarithm of the envelope plot

Figure 4.5 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope plot for the first

mode (128 Hz) with lower damping ratios and no noise (SNR = dB)
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Figure 4.6 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope plot for the

second mode (256 Hz) with lower damping ratios and no noise (SNR = - dB)
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Table 4.5 Estimation results based on the WPM with lower damping ratios for separated modes

Frequency Theoretical Value SNR Estimated Value Error

(Hz) () (dB) (',) (%)

128 0.0010000000 00 0.0010002010 0.0

20 0.0010062009 0.6

10 0.0011231249 12.3

256 0.0020000000 00 0.0020001153 0.0

20 0.0019535783 -2.3

10 0.0020962840 4.8

512 0.0040000000 0o 0.0040009695 0.0

20 0.0039105249 -2.2

10 0.0038905812 -2.7

Table 4.6 Estimation results based on the WPM with higher damping ratios for separated modes

Frequency Theoretical Value SNR Estimated Value Error

(Hz) ( ,) (dB) (se) (%)

128 0.0200000000 00 0.0199940737 0.0

20 0.0205325482 2.7

10 0.0210118603 5.1

256 0.0400000000 00 0.0407593580 1.9

20 0.0460069535 15.0

10 0.0487173964 21.8

512 0.0800000000 00 0.0194593050 -75.7

20 0.0199934186 -75.0

10 0.0738355996 -7.7
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4.1.3 CWT Results

This method first computes the pseudo-frequencies corresponding to the scales given

from 0 to 60 and the wavelet function, cmor. Therefore the scales to the nearest integer

16, 8 and 4 are assigned to represent each mode because they characterize the nearest

modal frequencies. Table 4.7 summarizes the corresponding scales and

pseudo-frequencies of each mode. The above results can also be achieved by analyzing

the plot of the continuous wavelet transform coefficients. In this thesis, the wavelet

function cmor is complex and the continuous wavelet transform coefficients are

complex as well. In Figure 4.9, observe that there are three brighter peaks around scale

4, 8 and 16, just like our previous computation. For each assigned scale, the magnitude

of the continuous wavelet coefficients is calculated. By taking the natural logarithm of

the magnitude of coefficients, a linear plot is obtained. The results are shown in Figure

4.10, 4.11 and 4.12. The Least Square Method is then applied to find the regression

line. The damping ratio can be calculated from the slope of the regression line. Table

4.8 and 4.9 summarize the estimation results with lower damping ratios and higher

damping ratios respectively.

Table 4.7 Summary of corresponding scales and pseudo-frequencies for separated modes

Frequency (Hz) Corresponding Scale Pseudo-Frequency (Hz)

(To Nearest Integer)

128 16 127.938

256 8 255.875

512 4 511.750
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Figure 4.9 (a) Real and (b) imaginary part of continuous wavelet coefficients for

separated modes with lower damping ratios and no noise (SNR = oo dB)
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Figure 4.10 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of

the modulus for the first mode (128 Hz) with lower damping ratios and no noise (SNR = co dB)

45

I



25
Coetis o CWT wflh Dilation Correspond ing tb the Analysed Frequency-Absolute Value

20

15

< 10

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (Seconds)

(a) The modulus plot of continuous wavelet coefficients

3.5

3

2.5

2

1 .

0.5

0

-0.5t

0

Sele Two Poins in the T ime Domain (X Axis)

oi0. 0.2 023 0.4 0.5 0.8 07 0.8 0.9 1
Time (Seconds)

(b) The natural logarithm of the modulus of continuous wavelet coefficients

Figure 4.11 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of

the modulus for the second mode (256 Hz) with lower damping ratios and no noise (SNR = oo dB)
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Figure 4.12 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of

the modulus for the third mode (512 Hz) with lower damping ratios and no noise (SNR = oo dB)
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Table 4.8 Estimation results based on the CWT with lower damping ratios for separated modes

Frequency Theoretical Value SNR Estimated Frequency Estimated Value Error

(Hz) (,) (dB) (Hz) (Me) (%)

IQ Al An0I00100 00 127 0'1'7 A M00099) A

0.0020000000

0.0040000000

20

10

00

20

10

20

10

127.9375

127.9375

255.8750

255.8750

255.8750

511.7500

511.7500

511.7500

0.0010153860 1.5

0.0011174334 11.7

0.0020001986 0.0

0.0019999981 0.0

0.0019112178 -4.4

0.0039971511 0.0

0.0040033523 0.1

0.0040296956 0.7

Table 4.9 Estimation results based on the CWT with higher damping ratios for separated modes

Frequency Theoretical Value SNR Estimated Frequency Estimated Value Error

(Hz) (,) (dB) (Hz) (M) (%)

128 0.0200000000 0 127.9375 0.0199999989 0.0

20 127.9375 0.0210598981 5.3

10 127.9375 0.0150054876 -25.0

256 0.0400000000 0 255.8750 0.0403160007 0.8

20 255.8750 0.0412185046 3.0

10 255.8750 0.0383236299 -4.2

512 0.0800000000 - 511.7500 0.0831832863 3.9

20 511.7500 0.0849756493 6.2

10 511.7500 0.0767286681 -4.1
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4.1.4 Discussion

CEM: The results demonstrate that the accuracy of estimation is adversely affected

when the FRF is truncated. For example in the case of the third mode without

noisy data (SNR=o dB) for lower damping ratios, the percentage error surges

from 0% to -17.6% (Table 4.1). For the cases without truncation, the results are

only good (0%) when there is no noisy data and are affected significantly by

adding the noisy data in the signal. The percentage error is usually too high to be

accepted in the cases with noisy data. We can also observe that the method gives

better estimations for higher modes and cases with higher damping ratios (Table

4.2 and 4.3).

WPM: The results show good accuracy of estimation even for the data corrupted by the

noise. It fails only in the cases of the third mode for higher damping ratios (Table

4.6). By decreasing the SNR from oo dB to 10dB in the case of the second mode

for lower damping ratios, the percentage error slightly deviates from 0% to 4.8%

(Table 4.5). There are two factors influencing the accuracy of estimations: the

selected nodes and the time ranges for the Least Square Method. Because of

disturbances at the beginning and end of the plot of natural logarithm, choosing

suitable time ranges gives a better regression line. Other observations are that the

method performs better for lower damping ratios (Table 4.5 and 4.6) and the fitted

curve in Figure 4.8 is not a perfect reconstruction because only the effects of the

selected nodes are considered.

CWT: The results show better accuracy of estimation even for the data corrupted by

the noise. By decreasing the SNR from o dB to 10dB in the case of the second

mode for lower damping ratios, the percentage error slightly deviates from 0%

to -4.4% (Table 4.8). Other observations are that choosing time ranges for the
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Least Square Method affects the accuracy of estimation as well and the method

performs better for lower damping ratios (Table 4.8 and 4.9).

4.2 Simulated Analytical Signal With Close Modes

This part summarizes the results of the three methods by analyzing the signal with

close modes. The frequencies corresponding to the close modes are 256, 307.2, 399.36

(Hz). Other parameters in the signal are defined in Chapter 3.

4.2.1 CEM Results

Table 4.10 summarizes the results without truncation. Figure 4.13 shows the IRF, FRF

and phase angle plot of the simulated and fitted curves with lower damping ratios and

noisy data (SNR = 20 dB).

Table 4.10 Estimation results based on the

Frequency Theoretical Value SNR

(Hz) (00 (dB)

256 0.0010000000

307.2

399.36

0.0012000000

0.0015600000

CEM for close modes

20

10

00

20

10

00

20

10

50

Estimated Value

0.0009999997

0.1395905363

0.1031841278

0.0012000006

0.0214321119

0.1076112707

0.0015599998

0.0109457636

0.0519293293

Error

(%)

0.0

13859.1

10218.4

0.0

1686.0

8867.6

0.0

601.7

3228.8

>0
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(b) FRF plot of the simulated and fitted curve
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(c) Phase angle plot of the simulated and fitted curve

Figure 4.13 (a) IRF, (b) FRF and (c) phase angle plot of the simulated and fitted curve

with close modes and noisy data (SNR = 20 dB)

4.2.2 WPM Results

The same procedure as in section 4.1.2 can be followed to extract damping ratios. The

FRF of selected nodes are shown in Figure 4.14, 4.15 and 4.16. Table 4.11 summarizes

the selected nodes corresponding to the three modes. Figure 4.17, 4.18 and 4.19 show

the results of mode response after taking the Hilbert transform and natural logarithm.

Figure 4.20 shows the IRF and FRF of the simulated and fitted curve with lower

damping ratios and no noise added. Table 4.12 summarizes the estimation results.
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Figure 4.14 (a) FRF plot of wavelet packet node 5 and (b) node 13 representing the

first mode (256 Hz) without noisy data (SNR = oo dB)
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Figure 4.15 (a) FRF plot of wavelet packet node 6 and (b) node 14 representing the

second mode (307.2 Hz) without noisy data (SNR = oo dB)
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Figure 4.16 (a) FRF plot of wavelet packet node 11 and (b) node 27 representing the

third mode (399.36 Hz) without noisy data (SNR = oo dB)
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Figure 4.17 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope

plot for the first mode (256 Hz) without noisy data (SNR = oo dB)
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Figure 4.18 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope

plot for the second mode (307.2 Hz) without noisy data (SNR = oo dB)
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Figure 4.19 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope

plot for the third mode (399.36 Hz) without noisy data (SNR = co dB)
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Figure 4.20 (a) IRF and (b) FRF plot of the simulated and fitted curve with close

modes and no noise (SNR = oo dB)
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Table 4.11 Summary of selected nodes corresponding to three close modes

Frequency (Hz) Relative Nodes

256 Node(5), Node(13)

307.2 Node(6), Node(14)

399.36 Node(11), Node(27)

Table 4.12 Estimation results based on

Frequency Theoretical Value

(Hz) (0,)

256 0.0010000000

307.2 0.0012000000

the WPM fo

SNR

(dB)

00

20

10

00

20

10

00

20

10

399.36 0.0015600000

r close modes

Estimated Value

0.0009999698

0.0010103531

0.0008083364

0.0012056756

0.0012120838

0.0010319571

0.0015610941

0.0015280909

0.0015548646

4.2.3 CWT Results

The same procedure as in section 4.1.3 can be followed to extract damping ratios.

Table 4.13 summarizes the corresponding scales and pseudo-frequencies of each mode.

Figure 4.21 shows the continuous wavelet coefficients. Figure 4.22, 4.23 and 4.24

show the modulus plot of continuous wavelet coefficients and the natural logarithm of

the modulus. Table 4.14 summarizes the estimation results with lower damping ratios.
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Table 4.13 Summary of corresponding scales and pseudo-frequencies for close modes

Frequency (Hz) Corresponding Scale Pseudo-Frequency (Hz)

(To Nearest Integer)

256 8 255.8750

307.2 7 292.4285

399.36 5 409.4000

Table 4.14 Estimation results based on the CWT for close modes

Frequency Theoretical Value SNR Estimated Frequency Estimated Value Error

(Hz) ( ,) (dB) (Hz) (M) (%)

256 0.0010000000 00 255.8750 0.0014256900 42.6

20 255.8750 0.0013769379 37.7

10 255.8750 0.0012866067 28.7

307.2 0.0012000000 oo 292.4285 0.0011897881 -0.9

20 292.4285 0.0011776139 -1.9

10 292.4285 0.0011617518 -3.2

399.36 0.0015600000 oo 409.4000 0.0015658358 0.4

20 409.4000 0.0015502614 -0.6

10 409.4000 0.0015241656 -2.3
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(a) Real part of continuous wavelet coefficients
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(b) Imaginary part of continuous wavelet coefficients

Figure 4.21 (a) Real and (b) imaginary part of continuous wavelet coefficients for

close modes without noisy data (SNR = oo dB)
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(b) The natural logarithm of the modulus of continuous wavelet coefficients

Figure 4.22 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of the

modulus for the first mode (256 Hz) without noisy data (SNR = c0 dB)
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(b) The natural logarithm of the modulus of continuous wavelet coefficients

Figure 4.23 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of

the modulus for the second mode (307.2 Hz) without noisy data (SNR = c- dB)
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(b) The natural logarithm of the modulus of continuous wavelet coefficients

Figure 4.24 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of

the modulus for the third mode (399.36 Hz) without noisy data (SNR = 00 dB)
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4.2.4 Discussion

CEM: The results demonstrate good accuracy of estimation without noisy data. In the

presence of noisy data, it affects the results significantly. We can also observe that

the method gives better estimations for higher modes (Table 4.10).

WPM: The results show less accuracy of estimation compared to the cases based on

WPM with separated modes but the error remains less than 10% except for the

case with noisy data (SNR=10 dB) (Table 4.12). There exist more oscillations in

the envelope plot of the recovered IRF as shown in Figure 4.18 and 4.19. The

problem could be the overlap of the close modal frequencies within the bandwidth

of wavelet packet bases. Therefore it becomes more crucial to choose the suitable

time ranges for the Least Square Method to obtain better regression line or use a

decomposition with higher than 5 levels to improve.

CWT: The results show that less accuracy of estimations of the first mode compared to

the cases with separated modes but the error remains less than 5% for the other

two modes (Table 4.14). The problem could be frequency selectivity of the

mother wavelet is not good enough. There also exist more oscillations in the

modulus plot of continuous wavelet coefficients as shown in Figure 4.22, 4.23

and 4.24. It may be improved by choosing the suitable values of the parameters,

a and wo , of the mother wavelet to give it a narrower bandwidth.
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Chapter 5

Summary

5.1 Conclusion

Three methods of extracting damping ratios have been presented. Based on the results

in Chapter 4, the following conclusions can be made.

1. The CWT method gives the most accurate estimations even for data corrupted by

the noise. The worst is the CEM method.

2. The CEM method gives better results in the cases with higher modes and higher

damping ratios. One disadvantage of this method appears to be its sensitivity to

noise.

3. The WPM and CWT methods perform slightly better in the cases for extracting

lower damping ratios than those for higher damping ratios, even for data corrupted

by the noise.

4. The estimation results are more accurate in the cases with separated modes than

those with close modes.

5.2 Recommendation

The recommendations to improve the frequency selectivity using the same wavelets
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are more levels for the WPM method and different parameters (a, wo) of the mother

wavelet for the CWT method.

Future work on this topic would most certainly involve the use of other wavelets.

There is a great possibility that other wavelets would lead to more accurate damping

ratio measurement.

The methods also have yet to be applied to experimental data. In this thesis only

simulated analytic signals with known parameters are considered.
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Appendix A

The Complex-Exponential Method

In the frequency domain, the frequency response function (FRF) in terms of receptance

ajk (displacement at point j due to a force at point k ) for a linear, viscously

damped system with N degrees of freedom (DOF) can be given by [2]

(A.1)axN( = A *
r=1 W r r +'1) Wr - r Wr r + W+ r r

where wr is the natural frequency, r is the damping ratio, r Alk is the residue

corresponding to each mode r and * denotes complex conjugate. Another way of

writing equation (A. 1) is

2N A
act (w)=I r jk

r=1 Wr + (W-Wr)

(A.2)

where

W Wr r

Wr+N= r

(A.3)r+N jk r k

The Complex-Exponential Method (CEM) [2][3] works with the corresponding

impulse response function (IRF), obtained from equation (A.2) by an inverse Fourier

transform

2N

hjk~t I rAjkeYr"
r=1

(A.4)

or, simply
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2N

h(t)= Aes't (A.5)
r1

where sr = -Wrr + 1Wr and the properties in equation (A.3) hold. The time response

h(t) (real-valued) at a series of L equally spaced time intervals, At, is

2N

h= h(O) = A;
r=1

2N

h= h(At) = SAr( t
r=1

2N

hL h(L.At) AeS(LAt) (A.6)
r=1

or, simply

2N

h= A
r=1

2N

r=1

2N

hL A;Vr (A-7)
r=1

with

Vr = eAt (A.8)

The roots sr for an underdamped system always occur in complex conjugate parts, so

do the modified variable Vr. Thus, there always exists a polynomial in Vr of order

L with real coefficients A (called the autoregressive coefficients) such that the

following relation is verified

Ilo + /V,. + 2V2 +-+ LVL =0 (A.9)

In order to calculate the coefficients Ay to evaluate Vr, multiply both sides of

equation (A.7) by fO to 1 L and sum the result. This procedure gives

L L 2N )=2N L

P /3hj = jX , I AVr,=X A A,/3 Vr (A.10)
j=0 j=0 r=1 r=1 j=0
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The inner summation in the right side of equation (A. 10) is exactly the polynomial in

equation (A.9). Therefore, that summation is going to be equal to zero for each value of

V,, it follows that

L

#/3,hj = 0, for each V, (A.11)
j=0

From equation (A. 11), it will be possible to calculate the coefficients /ij ( hj is

measured). These coefficients are used to calculate the V,., and are calculated as

follows: we make M = L/ 2, and n = 2* DOF . There will be n sets of data points

h, each set shifted one time interval, and L is assumed equal to 1. This gives

ho hi h2  ... hn 1 ] 8 h 1
hi h2 h3 ... h n hn+

- (A. 12)

hhM_ h hM+ : hn+M-2 1 n-1 hIn+M-

or, simply

[h] {#3}= {'} (A.13)
Mxn nxi Mx1

From this equation it is possible to calculate {#}, as [h] and {h'} are known

matrices. This can be done using pseudo-inverse technique, multiply by [hy

(transpose), and then solve for { }. The result is

{#}= (h [h])' hf {h'}) (A.14)

After calculating {i }, it is used to calculate the V, . In order to calculate the natural

frequencies, and damping ratios, equation (A.8) is used, as follows

Rr =ln(Vr)=sr.-At

fR =J
2nAt
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, =2 (A.15)

1+ Imag(R,)
Re al(R,)

With the values of Vr, we can then calculate the residues A, if equation (A.7) is

written as

1 1 - 1 A ho

V, V2' 2

V1 V2 .-- V2N A2

V 2
N-

1  2
N-

1 
--- V 2N-1 A' h_V V2 2N _2N 2N,
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Appendix B

The Hilbert Transform

The shape of a signal that contains a rapidly oscillating component that varies slowly

with time is called its "envelope". Based on the approach of the Hilbert transform, the

rapid oscillations can be removed from the signal to produce the representation of the

envelope.

The definition of the Hilbert transform of x(t) is [4]

XH (t) x( ) d.- (B.1)
S-t-I

We can then use the Hilbert transform to calculate a new time signal from the original

real signal. The transformed signal has the same amplitude and frequency content as

the original signal and includes phase information that depends on the phase of the

original signal. By combining two signals, the analytical signal forms as follows,

x(t) = x(t) - iX H (t) (B.2)

where the real part is the original signal and the imaginary part is a version of the

original real sequence with a 900 phase shift. The magnitude of the analytic signal is

the envelope of the original time signal. When the envelope is plotted on a natural

logarithm scale, the graph is a straight line. Then, the slope of the line is determined for

estimating the damping ratio. The approach in detail is shown next [5][6][7].

The impulse response function of a signal-degree-of-freedom (SDOF) system can be

described with the following equation

x(t) = Ae - "'t sin w( 1 - )- t) (B.3)
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where w, is the natural frequency, is the damping ratio, and A is the residue. The

Hilbert transform of the signal is, from equation (B.1),

XH (t) = Ae-wt CO 1- (2W)- t) (B.4)

The analytic signal is,

x(t) = Aedw"t(sin w i-g 2 ).t)-icos(w( i-2 )- ) (B.5)

The magnitude of the analytic signal eliminates the oscillatory component, and gives

the envelope as follows,

x(t) = j(AeW~t Y (Sin'(Wn i-( )-t )+cos(w 1-(2 =Wn Ae W"t (B.6)

Taking the natural logarithm of each side yields,

ln =x(t) ln(Aedwjt )= ln(A)- (Own ). t (B.7)

This is the equation of a straight line. If the slope of the line is calculated, we can

estimate the damping ratio as follows,

= -slope 
(B.8)

Wn
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Appendix C

The Matlab Codes

Generating Data With Three Separated Modes

%################################################################%

% Project Title: Extracting Damping Ratios Using Wavelet

% Name: Jiun-Yan Wu
% ID: 926119127
% Date: 5/11/2001

% irf_1: To Generate a Simulated IRF(x) With Three Separated Modes
% x = (A1*exp(-al*t).*sin(wd1*t) +A2*exp(-a2*t).*sin(wd2*t) +
A3*exp(-a3*t).*sin(wd3*t));

%################################################################%
clear;
cdc;
format long g;
close all hidden;
%################################################################%

% Defining Data Parameters

%################################################################%
df = 1;
% Total Time
tt = 1/df;
% Sampling Frequency Number
L = tt*2048;
t = linspace(0,tt,L);
dt = t(3) - t(2);
N = L/2;
f = linspace(0,df*(N-1),N);
%################################################################%

% Simulating IRF Generated by Setting First Damping Ratio

%################################################################%
% First Mode
Al =5;
El = input(First Damping Ratio: ');
fnl = df*N/8;
wnl = fn*2*pi;
al = E1*wnl;
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wdl = wnl*sqrt(l - EA2);
% Second Mode
A2 = 3*Al;
E2 = 2*El;
fn2 = 2*fnl;
wn2 = fn2*2*pi;
a2 = E2*wn2;
wd2 = wn2*sqrt(l - E2A2);
% Third Mode
A3 = 1.5*A2;
E3 = 2*E2;
fn3 = 2*fn2;
wn3 = fn3*2*pi;
a3 = E3*wn3;
wd3 = wn3*sqrt(l - E3A2);
% Simulated IRF With Three Separate Modes
x = (Al *exp(-a1 *t).*sin(wdl *t) + A2*exp(-a2*t).*sin(wd2*t) +

A3*exp(-a3*t). *sin(wd3*t));
%################################################################%

% Adding Noise Level SNR (db)

%#############################################################
noiselevel = menu('Select Noise Level SNR(db)',TNFINITE','20','lO');
if noiselevel == 1

snr=inf;
elseif noiselevel == 2

snr=20;
elseif noiselevel == 3

snr=10;
end
vars=cov(x);
varnoise = var_s/(OA(snr/10));
n=sqrt(var-noise)*randn(length(x), 1);
x=x+n';
% Calculating the Frequency Response Function (FRF)
x-ft = fft(x);
% Display Freqs. and Damping Ratios
disp('Natural Frequencies and Damping Ratios for the Data With Three Separate
Frequencies')

NaturalFrequency__DampingRatio = [fnl El ; fn2 E2 ; fn3 E3]
fig =1;
p-fig = menu('Plot graphs?','Yes','No');
if pjfig == 1
%######################################%

% Graphing Data

%################################################################%
figure(fig);
plot(t,x);
title(sprintf(IRF With Three Separate Frequencies'));
xlabel(Time (Seconds)');
ylabel(Real');
fig =fig+1;
figure(fig);
semilogy(f,abs(x_ft(1:N)));
title(sprintf('FRF With Three Separate Frequencies'));
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xlabel('Frequency (Hz)');
ylabel('Semilog Magnitude');
end
%################################################################%

% Menu for Selecting One Method to Analyze

%################################################################%
method = menu('Choose Extracting Method',CEM','WPM','CWT');
if method == 1
cemanalysis
elseif method == 2
wpm-analysis
elseif method == 3
cwtanalysis
end

Generating Data With Three Close Modes

%##############################################################%

% Project Title: Extracting Damping Ratios Using Wavelet

% Name: Jiun-Yan Wu
% ID: 926119127
% Date: 5/11/2001

% irf_1: To Generate a Simulated IRF(x) With Three Close Modes
% x = (A1*exp(-al*t).*sin(wd1*t) +A2*exp(-a2*t).*sin(wd2*t) +
A3*exp(-a3*t).*sin(wd3*t));

%################################################################%
clear;
cdc;
format long g;
close all hidden;
%###################################%

% Defining Data Parameters

%################################################################%
df = 1;
% Total Time
tt = 1/df;
% Sampling Frequency Number
L = tt*2048;
t = linspace(0,tt,L);
dt = t(3) - t(2);
N = L/2;
f = linspace(0,df*(N-1),N);
%################################################################%

% Simulating IRF Generated by Setting First Damping Ratio

%################################################################%
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% First Mode
Al =5;
El = input(First Damping Ratio: ');
fnl = df*N/4;
wnI = fnI*2*pi;
al = El*wnl;
wdl = wn*sqrt(l -EA2);
% Second Mode
A2 = 3*A1;
E2 = 1.2*El;
fn2 = 1.2*fnl;
wn2 = fn2*2*pi;
a2 = E2*wn2;
wd2 = wn2*sqrt(l - E2A2);
% Third Mode
A3 = 1.5*A2;
E3 = 1.3*E2;
fn3 = 1.3*fn2;
wn3 = fn3*2*pi;
a3 = E3*wn3;
wd3 = wn3*sqrt(1 - E3A2);
% Simulated IRF With Three Separate Modes
x = (Al*exp(-al*t).*sin(wdl*t) + A2*exp(-a2*t).*sin(wd2*t) +

A3*exp(-a3*t).*sin(wd3*t));
%################################################################%

% Adding Noise Level SNR (db)

%###############################################################%
noiselevel = menu('Select Noise Level SNR(db)', TINFINITE','20','10);
if noiselevel == 1

snr=inf;
elseif noiselevel == 2

snr=20;
elseif noiselevel == 3

snr=10;
end
vars=cov(x);
varnoise = vars/(^OA(snr/10));
n=sqrt(var-noise)*randn(length(x), 1);
x=x+n';
% Calculating the Frequency Response Function (FRF)
x_ft = fft(x);
% Display Freqs. and Damping Ratios
disp('Natural Frequencies and Damping Ratios for the Data With Three Close

Frequencies')
NaturalFrequencyDampingRatio = [fnl El ; fn2 E2 ; fn3 E3]
fig =1;
p-fig = menu(Plot graphs?','Yes',No');
if pjfig == 1
%###########################################################%

% Graphing Data

%################################################################%
figure(fig);
plot(t,x);
title(sprintf(IRF With Three Close Frequencies'));
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xlabel(Time (Seconds)');
ylabel('Real');
fig =fig+1;
figure(fig);
semilogy(f,abs(x_ft(1:N)));
title(sprintf('FRF With Three Close Frequencies'));
xlabel('Frequency (Hz)');
ylabel('Semilog Magnitude');
end
%################################################################%

% Menu for Selecting One Method to Analyze

%#################################################%
method = menu('Choose Extracting Method','CEM','WPM','CWT');
if method == 1
cemanalysis
elseif method == 2
wpm-analysis
elseif method == 3
cwtanalysis
end

The Complex-Exponential Method

%##############################################################%

% Project Title: Extracting Damping Ratios Using Wavelet

% Name: Jiun-Yan Wu
% ID: 926119127
% Date: 5/11/2001

% cemanalysis: The Complex-Exponential Method

%################################################################%
method = 'cem';
format long g;
%################################################################%

% Defining Data Parameters

%################################################################%
frf =x_ft;
N = length(frf)/2;
frf = conj(frf(1:N)');
f = f(1:N);
df = f(3) - f(2);
%################################################################%

% Specifing the Frequency Range

%############################# ###################################%
specify = menu(How do you want to specify the freq. range?','Point on Graph',Type
it');
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if specify == 1
figure(fig + 1);
semilogy(f(1:N),abs(frf(1:N)));
title('Select The First Point (Minimum Frequency)');
xlabel(Frequency (Hz)');
ylabel('Semilog Magnitude');
[x-fr1,y]=ginput(1);
figure(fig + 1);
semilogy(f(1:N),abs(frf(1:N)));
title('Select The Second Point (Maximum Frequency)');
xlabel(Frequency (Hz)');
ylabel('Semilog Magnitude');
[x-fr2,y]=ginput(1);
sprintf(The Selected Frequency Range Is:\n\tMinimum freq = %8.4g\n\tMaximum
freq = %8.4g',xfri,x_fr2)

else
figure(fig + 1);
semilogy(f(1:N),abs(frf(1:N)));
title('FRF');
xlabel('Frequency (Hz)');
ylabel('Semilog Magnitude');
x_fri = input(Minimum Frequency (Hz):');
x_fr2 = input(Maximum Frequency (Hz):');
sprintf(The Selected Frequency Range Is:\n\tMinimum freq = %d\n\tMaximum freq =
%d',x_frl,x-fr2)

end
%####################################################### ########%

% Isolating the Frequency Range

%###########################################################%
x_fri = round(x-frl/df + 1);
x_fr2 = round(x-fr2/df + 1);
% Putting Zeros Before the Isolated
frf_Fl = zeros(x_frl-1,1);
% Isolated FRF Components
frf_ Fl(x frl:xfr2) = frf(xfri:x fr2);
% Putting Zeros After the Isolated FRF Components
frfF1(x-fr2+1:N) = ones(N-(x fr2),1);
% Adding the Conjugate Components to the FRF
frfFI(N+1) = real(frfFI(N));
frLFl(N+2:2*N) = conj(frfFl(N:-1:2));
[r,c] = size(frfFl);
if r <c
frf = conj(frfF1');
else
frf = frf_Fl;
end
%###########################################################%

% Calculating the Impulse Response Function from the FRF Inverse

%##############################################################%
figure(fig + 1);
semilogy(f(xfri:x_fr2),abs(frf(x_fri:x-fr2)));
title(sprintf('FRF (Truncated)'));
xlabel('Frequency (Hz)');
ylabel('Semilog Magnitude');
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n = input(How many DOF?: ');
irf = real(ifft(frf));
% Time parameters
t = linspace(0,1/df,2*N);
dt = t(2)-t(1.);
%################################################################%

% Processing Data

%##############################################################%
L = length(irf);
M = L/2;
n=n*2;
for r = 1:n
hl(:,r) = real(irf(r:M-1+r));
end
for r = 1:M
hvl(r,:) = -real(irf(n+r));
end
BI = inv(hl'*hl)*(hl'*hvl);
B1(n+1,1) = 1;
Blv = B1(n+1:-1:1);
V_cem = roots(B lv);
% Calculating the Natural Freq & Damping Ratio
n = length(Vcem);
for r = 1:n
wn cem(r) = abs(log(V_cem(r)))/dt;
Fn cem(r) = wn-cem(r)/(2*pi);
Damp-ratio-cem(r) = sqrt(1/(((imag(log(V-cem(r)))/real(log(V_cem(r))))A2)+1));
end
% Calculating eigenvector
for r = 0:(2*N - 1)
VaIcem(r+1,:) = [conj(Vscem').^r];
end
Arcem = (inv(conj(Va_cem')*Va cem)*conj(Va-cem')*(irf));
% Calcualting the IRF Curve Fit
x_cem = Vacem*Ar cem;
% Calcualting the FRF Curve Fit
frfcem = fft(x-cem);
%############################################### #############%

% Graphing Data

%############################################################%
figure(fig + 2);
semilogy(f(x_frl:x_fr2),abs(frf(xfri:xfr2)),'-',f(xfri:x-fr2),abs(frf-cem(xfrl:xfr
2)),':');

title(sprintf(FRF'));
xlabel('Frequency (Hz)');
ylabel('Semilog Magnitude');
legend('Simulated Curve','Curve Fit',O)
figure(fig + 3);
plot(f(xj-frl:x fr2)',angle(frf(x_fri:xfr2)),'-',f(x fri:x fr2)',angle(frf cem(x-frl:xfr

2)),':');
title(sprintf('Phase Angle'));
xlabel(Frequency (Hz)');
ylabel('Phase Angle (Radians)');
legend('Simulated Curve','Curve Fit',O)
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figure(fig + 4);
plot(t,irf,'-',t,real(xcerm),':');
title(sprintf(IRF'));
xlabel(Time (Seconds)');
ylabel(Real');
legend('Simulated Curve','Curve Fit',O)
%###############################################################%

% Displaying Result

%################################################################%
NaturalfreqDampingratioscem = [ Fn_cem' Damp_ratio-cem']

The Wavelet Packet Method

%############################################### ###########%

% Project Title: Extracting Damping Ratios Using Wavelet

% Name: Jiun-Yan Wu
% ID: 926119127
% Date: 5/11/2001

% wpm-analysis: The Wavelet Packet Method

%##########################################################%
method = 'wpm';
x_ori=x;
format long g;
%############################################################%

% Defining Data Parameters

%################################################################%
wname='coif5';
1 = input('Enter Decomposition Level:');
% Decomposing IRF Using 'wname' by 1 Level
[th d]=wpdec(x,l,wname);
m=power(2,l);
node = zeros(m,2048);
%################################################################%

% Visualizing FRF for Each Node (Denoted From Node 1 to Node 2ALevel)

%#############################################################%
% Reconsturcting IRF for Each Node From its Coeffs.
for k=1:m

node(k,:)=wprcoef(th,d,[l k-1]);
end
% Graphing FRF for Nodes
for k=1:m/2

x_dft_1=fft(node(2*k-1,:));
x_dft_2=fft(node(2*k,:));
fig=fig+k;
figure(fig);
subplot(2, 1,1);
semilogy(f,abs(xdftl(1:N))); ax=gca;
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axTITL=get(ax,'title');
strl=['Node' num2str(2*k-1)];
set(axTITL,'String',strl);
xlabel('Frequency (Hz)');
ylabel('Semilog Magnitude');
subplot(2,1,2);
semilogy(f,abs(xdft_2(1:N)));ax=gca;
axTITL=get(ax,'title');
str1=['Node' num2str(2*k)];
set(axTITL,'String',strl);
xlabel('Frequency (Hz)');
ylabel('Semilog Magnitude');

end
%####################################%

% Processing Data

%####4##########################################################%
n = input(How many DOF ?');
wpm=zeros(n,2048);
abswmp=zeros(n,2048);
logwmp=zeros(n,2048);
x-wpm=zeros(1,2048);
for k=1:n

index='a';
disp('Reconstruct Each Mode by Analysing FRF');

while (index -= 'q')
disp('Choose Node Number: For Example by Typing node(3,:) for Node3');
add=input(");
wpm(k,:)=wpm(k,:)+add;
index=input('-----Add "a" or Quit "q"----'

end
x_wpm=x-wpm+wpm(k,:);
frf wpm=fft(xwpm);

% Performing Hilbert Transform to get the Envelop Function
abswmp(k,:)=abs(hilbert(wpm(k,:)));
fig=fig+1;
figure(fig);
plot(t,abswmp(k,:));
title('Envelop Function for Each Mode by Performing Hilbert Transform');
xlabel(Time (Seconds)');
ylabel('Amplitude (Units)');
% Performing Natural Logarithm to get the Straight Line
logwmp(k,:)=log(abswmp(k,:));
fig=fig+1;
figure(fig);
plot(t,logwmp(k,:));
title('Select Two Points in the Time Domain (X Axis)');
xlabel(Time (Seconds)');
ylabel('Log-Amplitude (Units)');
[x,y]=ginput(2);
sprintf(The Selected Time Range Is:\n\tMinimum Time: %8.5g \n\tMaximum Time:

%8.5g',x(1),x(2))
%################################################################%

% Least Square Method to Calculate Slope, and Then Damping Ratio

%################################################################%
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[np] = round(x/dt + 1);
ti = t(np(1):np(2));
% Calculates the Amount of Points Data
m = length(tl);
temp=logwmp(k,np(1):np(2));
% Summatory of the t points (x components)
sum_x = sum(tl);
% Summatory of the envdB points (y components)
sumy = sum(temp);
% Summatory of the square value of each t points (x components)
sum x sq = dot(tl,tl);
% Summatory of the multiplication of t and envdB points (x and y components)
sum-xy = dot(tl,temp);
LQ1 = [m sum-x; sumx sum-x-sq];
LQ2 = [sumy ; sumxy];
LQ3 = inv(LQ1) * LQ2;
slope(k) = LQ3(2);
end
Dampratiowpm(1)=-slope(1)/wn1;
Damp_ratio-wpm(2)=-slope(2)/wn2;
Damp-ratio-wpm(3)=-slope(3)/wn3;
%################################################################%

% Graphing Data

%###############################################################%
figure(fig + 1);
semilogy(f,abs(xjft(1:N)),'-',f,abs(frfwpm(1:N)),':');
title(sprintf(FRF'));
xlabel('Frequency (Hz)');
ylabel('Semilog Magnitude');
legend('Simulated Curve','Curve Fit',O)
figure(fig + 2);
plot(t,xori,'-',t,real(xwpm),':');
title(sprintf(IRF'));
xlabel(Time (Seconds)');
ylabel('Real');
legend('Simulated Curve','Curve Fit',O)
%################################################################%

% Displaying Result

%##############################################################%
DampingRatioWPM = [Dampratiowpm']

The Continuous Wavelet Transform Method

%################################################################%

% Project Title: Extracting Damping Ratios Using Wavelet

% Name: Jiun-Yan Wu
% ID: 926119127
% Date: 5/11/2001
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% cwtanalysis: The Continuous Wavelet Transform Method

%##############################################################%
method = 'cwt';
format long g;
%################################################################%

% Defining Data Parameters

%#############################################################%
wname = 'cmorl-1.5';
A=O;B= 1;P=2048;
t = linspace(A,B,P);
delta = (B-A)/(P-1);
%########################################################%

% Calculating Scales to Frequencies

%##############################################################
scales = [1:1:60];
tabPF = scal2frq(scales,wname,delta);
n = input('How many DOF?: ');
for k=1:n

sprintf(Type Natural Frequency (Hz) for Mode %d',k)
tabFREQ(k)=input(");
[dummy,ind] = min(abs(tab_PF-tab_FREQ(k)));
PFapp(k) = tabPF(ind);
SCapp(k) = scales(ind);

end
CorresScaletoPseudoFreq = [SC-app' PF app']
%#######################################################%

% Processing Data

%############################################# ##################%
coeffs=cwt(x,scales,wname,'plot); ax = gca; colorbar
% Set Zeros Matrix
c=zeros(60,2048);
absc=zeros(60,2048);
logc=zeros(60,2048);
for k=1:n

c(k,:)=coeffs(SCapp(k),:);
absc(k,:)=abs(c(k,:));
logc(k,:)=log(absc(k,:));

end
%################################################################%

% Graphing Data

%#############################################################%
for k=1:n
figure(fig + k*2-1);
plot(t,absc(k,:));
title(sprintf('Coeffs of CWT with Dilation Corresponding to the Analysed
Frequency-Absolute Value'));

xlabel(Time (Seconds)');
ylabel('Amplitude (Units)');
figure(fig + k*2);
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plot(t,logc(k,:));
title('Select Two Points in the Time Domain (X Axis)');
xlabel(Time (Seconds)');
ylabel('Log-Amplitude (Units)');
[x,y]=ginput(2);
sprintf(The Selected Time Range Is:\n\tMinimum Time: %8.5g \n\tMaximum Time:

%8.5g',x(1),x(2))
%#############################################################%

% Least Square Method to Calculate Slope, and Then Damping Ratio

%################################################################%
[np] = round(x/dt + 1);
tI = t(np(1):np(2));
% Calculates the Amount of Points Data
m = length(tl);
temp=logc(k,np(1):np(2));
% Summatory of the t points (x components)
sum_x = sum(tl);
% Summatory of the envdB points (y components)
sumy = sum(temp);
% Summatory of the square value of each t points (x components)
sum_x_sq = dot(tl,tl);
% Summatory of the multiplication of t and env_dB points (x and y components)
sum xy = dot(tl,temp);
LQ 1 = [m sum-x; sumx sum-x-sq];
LQ2 = [sumy ; sum xy];
LQ3 = inv(LQ1) * LQ2;
slope(k) = LQ3(2);
end
Damp-ratioscwt(1)=-slope(1)/wnl;
Damp_ratiocwt(2)=-slope(2)/wn2;
Damp-ratiocwt(3)=-slope(3)/wn3;

%#############################################################%

% Displaying Result

%##################################################
Natural__Freq_-DampingRatioCWT = [ PF -app' Damp-ratio-cwt']
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