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Abstract

The focus of this work is to evaluate the accuracy of methods for extracting damping
ratios with respect to: three extraction methods, different damping ratios, added noisy
data, separated modes and close modes.

To achieve this goal, a simulated analytical signal is analyzed by estimating the modal
parameters. The simulated analytic signal is useful because the exact values are known
and the characteristic of the FRF can be varied in order to observe how the accuracy of
damping ratios is affected.

Results show that the Continuous Wavelet Transform method gives the most accurate
estimations even for data corrupted by the noise. The Complex Exponential method
presents better results in the cases with higher modes and higher damping ratios without
the noise. Wavelet Packet method and Continuous Wavelet Transform method are more
suitable in the cases for extracting lower damping ratios than those for higher damping
ratios even for data corrupted by the noise. And in general, the estimation results are
more accurate in the cases with separated modes than those with close modes.
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Chapter 1

Introduction

1.1 Problem Statement

Damping is a mechanism that dissipates vibration energy in dynamic systems. Its
value is very important for the design and analysis of vibration structures because the
dynamic response of structures and the transmission of vibrations to the surroundings
are critically determined by the damping mechanism. In general, structural damping
can be classified either as hysteretic or viscous. Hysteretic damping arises from
microstructural phenomena and is characterized by material properties. Viscous
damping is proportional to the magnitude of the velocity, and opposite to the direction
of motion. But in practice, the concept of equivalent viscous damping is used to
model the overall damped behavior of the system as being viscous. In this thesis, the
damping ratio, ¢ or fraction of critical damping is used to describe viscous damping.
Once the structure is modeled, the stiffness and mass distributions are quite well
determined, but there is great uncertainty regarding the energy dissipating mechanism
provided by the damping distributions of the structure because they are the most
sensitive to noise, measurement errors, inadequate excitation, etc.

A lot of work has being devoted to the development and improvement of techniques

for measuring damping values. Those techniques can be classified into time domain
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methods, which are based on the impulse response function (IRF) and frequency
domain methods, which are based on the frequency response function (FRF). A
combined time-frequency approach can also be applied to estimate the damping of the
system by using, for example, the Wigner-Ville distribution. Normally for real
structures, the damping ratio ranges between 2 to 20% [1].

This thesis will present three different methods of extracting damping ratios for
multi-degree-of-freedom (MDOF) systems. These are the Complex Exponential
Method (CEM), the Wavelet Packet Method (WPM) and the Continuous Wavelet

Transform Method (CWT).

1.2 Scope and Limitations

The goal of this thesis is to investigate how the accuracy of methods of extracting
damping ratios with respect to: three extraction methods, different damping ratios,
added noisy data, separated modes and close modes.

To achieve this goal, a simulated analytical signal is analyzed by estimating the modal
parameters. The simulated analytic signal is very useful because the exact values are
known and the characteristic of the FRF can be varied in order to observe how the
accuracy of damping ratios is affected.

The subject of wavelet analysis is a broad and rapidly developing field. There are
many different wavelets, but only the Coiflet wavelet and Morlet wavelet are used and
evaluated in this study. A survey and evaluation of other wavelets is beyond the scope

of the thesis.

1.3 Thesis Organization
Chapter 2 gives a brief review of relative theories of the extraction methods.

12



Principles of WPM and CWT are included.

The implementation of the simulated analytical signal is discussed in Chapter3. The
sample rate, number of samples and signal with different damping ratios, noise,
separated modes and close modes are defined in detail.

Chapter 4 analyzes the results by comparing those methods. A percent of error is
calculated to investigate the accuracy.

A summary of the main points of the thesis and suggestions follow in Chapter5.

The appendix contains theories of CEM and Hilbert transform. The Matlab codes for

processing data specified to this thesis are also included.
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Chapter 2
Theory

2.1 The Wavelet Packet Method

2.1.1 Wavelet Packet Analysis

The wavelet packet method (WPM) is a generalization of wavelet decomposition that
offers a richer signal analysis.

In wavelet analysis, a signal is split into an approximation and a detail. The
approximation is then itself split into a second-level approximation and detail, and the
process is repeated. For an n-level decomposition, there are n+1 pieces in the
decomposition. In wavelet packet analysis, the details as well as the approximations
can be split. This yields a decomposition with 2" pieces. Figure 2.1 shows the
wavelet packet decomposition tree.

For instance, wavelet packet analysis allows the signal S to be represented as Al +
AAD3 + DAD3 + DD2. This is an example of a representation that is not possible with
ordinary wavelet analysis. Wavelet packet nodes are waveforms indexed by three
naturally interpreted parameters: position, scale (as in wavelet decomposition), and
frequency. For a given orthogonal wavelet function, we generate a library of bases

called wavelet packet bases. Each of these bases offers a particular way of coding

14
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Figure 2.1 The wavelet packet decomposition tree

signals, preserving global energy and reconstructing exact features. A deep
explanation of the wavelet packet analysis can be found in references [8][9][10].

In this project, the Coiflet coif5 wavelet is used.

2.1.2 WPM Based Damping Ratio Extraction Procedure
The linear MDOF system is governed by the general equation

M]x+[clx+[K]x =F (2.1)
where [M], [C], [K ] F are mass, damping, stiffness matrices and excitation vector

respectively.

By using modal analysis, N uncoupled equations similar to a SDOF system can be

obtained,
My xr t)+e x.r' )+ kx, ()= f.() (2:2)
for i=12,...,N . The impulse response of this MDOF system can be given in general

form as

N
: h(t):ZAievg"w"*r sin( l—g','fwnit+w,.) (2.3)
i=1
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where w, is the natural frequency, N is the number of modes considered, A, isthe

residue magnitude of the ith mode and ¢, is the damping ratio. This response
represents a linear combination of its signal modal components. Each mode is given by
an exponentially decaying harmonic function.

As discussed in section 2.1.1, the signal, an impulse response of a MDOF system, can
be split into wavelet packet nodes. Each node represents a filtered range of frequencies.
By analyzing the FRF of each node, a certain number of nodes is assigned to each
mode, which has the frequency response most similar to those of the assigned nodes.
After reconstructing the IRF of each mode, damping ratios can then be extracted using
the Hilbert transform as shown in Appendix B. The WPM based procedure above is

shown schematically in Figure 2.2.

2.2 The Continuous Wavelet Transform

2.2.1 The Morlet Wavelet

In the early 1980s, Morlet introduced a ‘wavelet’, which was dilated and translated to
form a family of analyzing functions. These functions are given by

1 -b
W, ='J7V’(£a-) 2.4)

which is a dilation (denoted by a) and translation (denoted by b) of the mother wavelet

(1) . The continuous wavelet transform (CWT) is defined as
W(ab) = [ fOw,,Od (2.5)
where the bar denotes complex conjugation. The wavelet transform computes the

correlation between the signal and the dilation and translation of the wavelet w(r).

The coefficients are therefore a measure of the similarity between the wavelet and the
function f(¢)[8][9][11].
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Figure 2.2 The WPM based damping ratio extraction procedure
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The Morlet wavelet used in this project is defined as

v, ()= eiw°'e‘[éJ (2.6)

Traditionally, the parameters & and w, are defined as

a=42

f 2
= .| 2.7
o In2 @7)

The Fourier spectrum of the Morlet wavelet is a shifted Gaussian function [6]

G(f)= Jime 1) (2.8)

The corresponding wavelet is plotted in Figure 2.3.

2.2.2 CWT Based Damping Ratio Extraction Procedure

For a SDOF system given by equation (2.2), when the damping term (c/ 2m)2 <<1,
the solution of the system can be given in the form of an analytic signal

x(t)= AQ)™ V' = A )™V (2.9)
Assuming that the envelope A(t) is slowly varying, the Morlet wavelet transform of

the equation (2.9) can be approximated as [6][12]
(wg xXa, b)= A(bﬁ*[(a ¢(b))]ei”’(b) + 0[

where G’ () denotes the complex conjugate of G() The modulus of this function is

Al,

¢D (2.10)

given by

6w, xYa.b) = A(b#c;*(agb(b)] 2.11)

For a given value of dilation, a,, equation (2.11) can be rewritten as

G*(i iaown\/l—?) (2.12)

Taking the natural logarithm of each side yields,

I(ngXao,bj = Aoe_gw"b
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1n'(ngXa0,bj =—{w b+ 1n(AO}G* (w: iagw, J1- {2 D (2.13)
Thus the damping ratio { of the system can be estimated from the slope of the

straight line of the wavelet modulus |(ngXa0 ,bi plotted in a natural logarithm scale.

The procedure can be extended to a MDOF system on the assumption that the MDOF
system governed by equation (2.1) can be uncoupled. Equation (2.12) and (2.13) can

then be rebuilt for a MDOF system as

‘(ng,. Xa,.b) = Aie';'w"’b‘G*(i ia,w, J1-{° ) (2.14)
In|(w,x, Xa,.b) = =C,w, b+ ln[A,..G*(i'iaiwn. J1-27 D (2.15)

for i=12,...,N.

The damping ratio ¢, of the ith mode can be estimated from equation (2.15) as the

slope of the straight line of the wavelet modulus |(w o Xi Xai ,b} , for the given values of

dilation a; related to the natural frequency f, of the system, plotted against b in a

natural logarithm scale [6][12]. The CWT based procedure above is shown

schematically in Figure 2.4.
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Chapter 3

Implementation Procedure

3.1 General Procedure

In order to evaluate the accuracy of extracting damping ratios by the three methods
proposed in the previous chapter, several simulations are performed. The simulated
analytic signal is set with known properties. The algorithms based on the methods of
CEM, WPM, CWT are coded in Matlab 6.0 written specifically for this thesis. The
details of this implementation can be found in Appendix C.

For simplicity, the impulse response of the 3-DOF systems is simulated. However, it
is assumed that the procedure can be extended to general MDOF systems. By setting
the damping ratio of the first mode and adding specified noise, a simulated signal can
be generated. Three extraction methods are then provided to perform the estimation.
Different input parameters are required for each method. The main menu for choosing

one of three methods is shown in Figure 3.1.

3.2 Simulated Analytical Signal

3.2.1 Signal Parameters

In this section the parameters of the simulated analytical data sets are presented.
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Figure 3.1 The user interface of three methods for extracting damping ratios

Table 3.1 gives the sampling parameters in the signal.

Table 3.1 Sampling parameters in the signal

Sample Rate Number of Samples

2048 Hz 2048

The accuracy of three methods with respect to signals having separated modes and
close modes, different damping ratios and noisy data, is discussed. In this thesis, only

the underdamped case, which is 0<{ <1, is considered and is the one usually

encountered. The underdamped system oscillates with a decaying amplitude and a
frequency wn(l—g’ 2)”2, somewhat less than the frequency of the undamped

oscillation. Values of 0.001 and 0.02 are used for lower and higher damping ratios of

23



the first mode respectively. Damping ratios are assumed to increase linearly with the

modal frequencies [1]. The properties of simulated analytical data sets with separated

and close modes are presented in Table 3.2 and 3.3 respectively. The IRF, FRF plots

for each simulated data set are represented in Figure 3.2 and 3.3. The properties of

simulated analytical data set with higher damping ratios are presented in Table 3.4.

The IRF, FRF plots are represented in Figure 3.4.

Table 3.2 Properties of the simulated data set with separated modes and lower damping ratios

Mode Residue Natural Frequency Damping Ratio
1 5 128 0.0010000000
2 15 256 0.0020000000
3 22.5 512 0.0040000000

Table 3.3 Properties of the simulated data set with close modes

Mode Residue Natural Frequency Damping Ratio
1 5 256 0.0010000000
2 15 307.2 0.0012000000
3 22,5 399.36 0.0015600000

Table 3.4 Properties of the simulated data set with separated modes and higher damping ratios

Mode Residue Natural Frequency Damping Ratio
1 5 128 0.0200000000
2 15 256 0.0400000000
3 225 512 0.0800000000
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IRF With Three Close Frequencies
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The simulated signal is also corrupted by zero mean Gaussian noise, as discussed in

the next section.

3.2.2 Signal-to-Noise Ratio

In analog and digital communications, signal-to-noise ratio, SNR, is a measure of
signal strength relative to background noise. The ratio is usually measured in decibels
(dB). The formula is given by

0_2
SNR = 1010g10(—52] 3.1)
O

n

where o is the signal variance and o, is the noise variance.

Given a signal, s(¢) with known o, and desired SNR, the generated noise signal is
n(t)=o,N(0,1) (3.2)

where N(0,1) is a Normally (Gaussian) distributed random variable with zero mean

and unit variance.

In the simulation, SNR is set equal to «dB, 20 dB and 10 dB. Figure 3.5 shows the

IRF and FRF of the simulated data set with separated modes, lower damping ratios

and noisy data (SNR =20 dB)

3.2.3 Error Measurement

In order to evaluate the damping ratio accuracy, a percentage error defined in equation

(3.3) is calculated.

Err(%)= £e =80 100% (3.3)

t

where {, isthe estimated damping ratio and ¢, is the theoretical damping ratio.
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Figure 3.5 (a) IRF and (b) FRF plot of the simulated data set with separated modes,

lower damping ratios and noisy data (SNR =20 dB)
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Chapter 4

Results and Discussion

4.1 Simulated Analytical Signal With Separated Modes

This part summarizes the results of the three methods for extracting damping ratios, for
the separated modes. The frequencies corresponding to the separated modes are 128,

256, 512 (Hz). Other parameters of the signal are defined in Chapter 3.

4.1.1 CEM Results

This method requires two additional input parameters: DOF and truncation of
frequencies to perform. The effect of truncation becomes important if the truncation
limits are close to the modal frequencies. The problem with the truncation is that when
the IRF is calculated it has time leakage and some information is lost, therefore the
estimated damping ratio will deviate from the exact solution. Table 4.1 represents an
example with truncation limits between 58.06 and 611.10 (Hz). A complete
development of this method is shown in Appendix A.

In order to avoid the effect of truncation, only cases without truncation are considered,
i.e. the entire range of frequency from 0 to 1024 (Hz) is taken to process. Figure 4.1

shows IRF, FRF and phase angle plot of the simulated and fitted curve with lower
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Table 4.1 Estimation results with truncation for separated modes

Frequency Theoretical Value SNR Estimated Value Error
(Hz) () (dB) ($e) (%)
128 0.0010000000 s 0.2365217096 23552.2
256 0.0020000000 %0 0.0176099322 780.5
512 0.0040000000 - 0.0032943060 -17.6

damping ratios and noisy data (SNR = 20 dB). Table 4.2 and 4.3 summarize the results

without truncation.
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(a) IRF plot of the simulated and fitted curve
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(c) Phase angle plot of the simulated and fitted curve
Figure 4.1 (a) IRF, (b) FRF and (c) phase angle plot of the simulated and fitted curve

with separated modes, lower damping ratios and noisy data (SNR = 20 dB)
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Table 4.2 Estimation results based on the CEM with lower damping ratios for separated modes

Frequency  Theoretical Value SNR Estimated Value Error
(Hz) (£, (dB) (¢.) (%)
128 0.0010000000 o 0.0010000002 0.0
20 0.0800783134  7907.8
10 0.0791687633  7816.9
256 0.0020000000 ol 0.0020000000 0.0
20 0.0335427316  1577.1
10 0.1075900155  5279.5
512 0.0040000000 oo 0.0039999998 0.0
20 0.0106645845 166.6
10 0.0428453288 971.1

Table 4.3 Estimation results based on the CEM with higher damping ratios for separated modes

Frequency  Theoretical Value SNR Estimated Value Error
(Hz) () (dB) 6.) (%)
128 0.0200000000 i 0.0200000029 0.0
20 0.1056261912 428.1
10 0.0676097338 238.0
256 0.0400000000 ad 0.0400000039 0.0
20 0.0911037669 127.8
10 0.1697063481 324.3
512 0.0800000000 ad 0.0799999978 0.0
20 0.0908770838 13.6
10 0.1300957561 62.6
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4.1.2 WPM Results

In this method, we first generate a library of wavelet packet bases for a given
orthogonal wavelet function, coifS. The decomposition level is set at 5 therefore
2° =32 sets of coefficients are generated. By reconstructing the coefficients and
visualizing the FRF of each recovered IRF, we can select the most suitable nodes,
which are numbered from AAAAAS to DDDDDS5 as Nodel to Node32 at level 5, to
represent a specified mode. The FRF of selected nodes are shown in Figure 4.2, 4.3
and 4.4. The response of each mode is then the summation of the selected nodes. In
order to find the envelope of each response, the Hilbert transform is performed. After
taking the natural logarithm of the envelope plot, a linear plot is obtained. The results
are shown in Figure 4.5, 4.6 and 4.7. The Least Square Method is then applied to find
the regression line. The damping ratio can be calculated from the slope of the
regression line. Table 4.4 summarizes the selected nodes corresponding to three

modes.

Table 4.4 Summary of selected nodes corresponding to three separated modes

Frequency (Hz) Selected Nodes
128 Node(3), Node(7)
256 Node(5), Node(13)
512 Node(9), Node(25)

Table 4.5 and 4.6 summarize the estimation results with lower damping ratios and
higher damping ratios respectively. Figure 4.8 shows the IRF and FRF of the simulated
and fitted curve, which is obtained by adding the effects of the selected six nodes, with

lower damping ratios and no noise added.
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(b) FRF plot of wavelet packet node 7
Figure 4.2 (a) FRF plot of wavelet packet node 3 and (b) node 7 representing the first

mode (128 Hz) with lower damping ratios and no noise (SNR = o dB)
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Figure 4.3 (a) FRF plot of wavelet packet node 5 and (b) node 13 representing the

second mode (256 Hz) with lower damping ratios and no noise (SNR = o dB)
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Figure 4.4 (a) FRF plot of wavelet packet node 9 and (b) node 25 representing the

third mode (512 Hz) with lower damping ratios and no noise (SNR = < dB)
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(b) The natural logarithm of the envelope plot
Figure 4.5 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope plot for the first

mode (128 Hz) with lower damping ratios and no noise (SNR = o= dB)
38



Envelop Function or Each Wlode by Periorming Hiberi Transiorm

18 T T —T T T T T T

Ampitude (Units)

o . . . . . .
Q on 0.2 03 0.4 0.5 0.8 0.7 0.8 09 1
Time (Seconds)

(a) The envelope plot of the recovered IRF
Seleci Two Poinks in the Time Domain (X Axis)
3 T T L T T T T T T

Log-Ampliiude (U niis)

2

1 1 1 1 L 1 1
4] [N ] 0.2 03 04 0.5 08 07 0.8 09 1
Time (Seconds)

(b) The natural logarithm of the envelope plot
Figure 4.6 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope plot for the

second mode (256 Hz) with lower damping ratios and no noise (SNR = oo dB)
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Figure 4.7 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope plot for the third

mode (512 Hz) with lower damping ratios and no noise (SNR = co dB)
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Table 4.5 Estimation results based on the WPM with lower damping ratios for separated modes

Frequency  Theoretical Value SNR Estimated Value Error
(Hz) (¢) (dB) (¢.) (%)
128 0.0010000000 e 0.0010002010 0.0
20 0.0010062009 0.6
10 0.0011231249 12.3
256 0.0020000000 e 0.0020001153 0.0
20 0.0019535783 2.3
10 0.0020962840 4.8
512 0.0040000000 e 0.0040009695 0.0
20 0.0039105249 2.2
10 0.0038905812 -2.7

Table 4.6 Estimation results based on the WPM with higher damping ratios for separated modes

Frequency Theoretical Value SNR Estimated Value Error
(Hz) (¢.) (dB) (¢.) (%)

128  0.0200000000 oo 0.0199940737 0.0

20  0.0205325482 2.7

10  0.0210118603 5.1

256  0.0400000000 co 0.0407593580 1.9

20  0.0460069535 15.0

10 0.0487173964 21.8

512 0.0800000000 oo 0.0194593050 -75.7

20  0.0199934186 -75.0

10 0.0738355996 -1.7
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Figure 4.8 (a) IRF and (b) FRF plot of the simulated and fitted curve with separated

modes, lower damping ratios and no noise (SNR = oo dB)
42



4.1.3 CWT Results

This method first computes the pseudo-frequencies corresponding to the scales given
from O to 60 and the wavelet function, cmor. Therefore the scales to the nearest integer
16, 8 and 4 are assigned to represent each mode because they characterize the nearest
modal frequencies. Table 4.7 summarizes the corresponding scales and
pseudo-frequencies of each mode. The above results can also be achieved by analyzing
the plot of the continuous wavelet transform coefficients. In this thesis, the wavelet
function cmor is complex and the continuous wavelet transform coefficients are
complex as well. In Figure 4.9, observe that there are three brighter peaks around scale
4, 8 and 16, just like our previous computation. For each assigned scale, the magnitude
of the continuous wavelet coefficients is calculated. By taking the natural logarithm of
the magnitude of coefficients, a linear plot is obtained. The results are shown in Figure
4.10, 4.11 and 4.12. The Least Square Method is then applied to find the regression
line. The damping ratio can be calculated from the slope of the regression line. Table
4.8 and 4.9 summarize the estimation results with lower damping ratios and higher

damping ratios respectively.

Table 4.7 Summary of corresponding scales and pseudo-frequencies for separated modes

Frequency (Hz) Corresponding Scale Pseudo-Frequency (Hz)

(To Nearest Integer)

128 16 127.938
256 8 255.875
512 4 511.750
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(b) Imaginary part of continuous wavelet coefficients
Figure 4.9 (a) Real and (b) imaginary part of continuous wavelet coefficients for

separated modes with lower damping ratios and no noise (SNR = < dB)
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(b) The natural logarithm of the modulus of continuous wavelet coefficients
Figure 4.10 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of

the modulus for the first mode (128 Hz) with lower damping ratios and no noise (SNR = o= dB)
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(b) The natural logarithm of the modulus of continuous wavelet coefficients
Figure 4.11 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of

the modulus for the second mode (256 Hz) with lower damping ratios and no noise (SNR = oo dB)
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Coet= of CWT with Dilsiion Corresponding io ihe Analy=ed Frequency—-Absoluie Value
20 T T T T T T T T T

Ampliude (Uniis)

s L A 1

Q aa 0.2 a3 0.4 0.5 Q.8 07 0.8 0.9 1
Time (Seconds)

(a) The modulus plot of continuous wavelet coefficients

Selec! Two Poink in the Time Domain (X Axis)
3 T T T T T T T T

Log—-Ampliiude (U nis)

L 1 1 L 1 1
0 04 0.2 03 0.4 0.5 0.8 0.7 0.8 09 1
Time (Seconds)

(b) The natural logarithm of the modulus of continuous wavelet coefficients
Figure 4.12 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of

the modulus for the third mode (512 Hz) with lower damping ratios and no noise (SNR = o dB)
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Table 4.8 Estimation results based on the CWT with lower damping ratios for separated modes

Frequency Theoretical Value

SNR Estimated Frequency Estimated Value Error

(Hz) (¢,) (dB) (Hz) (¢.) (%)
128 0.0010000000 o0 127.9375  0.0009999992 0.0
20 127.9375  0.0010153860 1.5

10 127.9375 0.0011174334 11.7

256 0.0020000000 oo 255.8750  0.0020001986 0.0
20 255.8750  0.0019999981 0.0

10 255.8750 0.0019112178 -4.4

512 0.0040000000 oo 511.7500  0.0039971511 0.0
20 511.7500  0.0040033523 0.1

10 511.7500  0.0040296956 0.7

Table 4.9 Estimation results based on the CWT with higher damping ratios for separated modes

Frequency Theoretical Value

SNR Estimated Frequency Estimated Value Error

(Hz) (¢, (dB) (Hz) £.) (%)
128 0.0200000000 e 127.9375  0.0199999989 0.0
20 127.9375 0.0210598981 5.3
10 127.9375 0.0150054876 -25.0
256 0.0400000000 o 255.8750  0.0403160007 0.8
20 255.8750 0.0412185046 3.0
10 255.8750 0.0383236299 -4.2
512 0.0800000000 o0 511.7500 0.0831832863 3.9
20 511.7500 0.0849756493 6.2
10 511.7500  0.0767286681 -4.1
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4.1.4 Discussion

CEM: The results demonstrate that the accuracy of estimation is adversely affected
when the FRF is truncated. For example in the case of the third mode without
noisy data (SNR=codB) for lower damping ratios, the percentage error surges
from 0% to —17.6% (Table 4.1). For the cases without truncation, the results are
only good (0%) when there is no noisy data and are affected significantly by
adding the noisy data in the signal. The percentage error is usually too high to be
accepted in the cases with noisy data. We can also observe that the method gives
better estimations for higher modes and cases with higher damping ratios (Table
4.2 and 4.3).

WPM: The results show good accuracy of estimation even for the data corrupted by the
noise. It fails only in the cases of the third mode for higher damping ratios (Table
4.6). By decreasing the SNR from c>dB to 10dB in the case of the second mode
for lower damping ratios, the percentage error slightly deviates from 0% to 4.8%
(Table 4.5). There are two factors influencing the accuracy of estimations: the
selected nodes and the time ranges for the Least Square Method. Because of
disturbances at the beginning and end of the plot of natural logarithm, choosing
suitable time ranges gives a better regression line. Other observations are that the
method performs better for lower damping ratios (Table 4.5 and 4.6) and the fitted
curve in Figure 4.8 is not a perfect reconstruction because only the effects of the
selected nodes are considered.

CWT: The results show better accuracy of estimation even for the data corrupted by
the noise. By decreasing the SNR from e dB to 10dB in the case of the second
mode for lower damping ratios, the percentage error slightly deviates from 0%

to —4.4% (Table 4.8). Other observations are that choosing time ranges for the
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Least Square Method affects the accuracy of estimation as well and the method

performs better for lower damping ratios (Table 4.8 and 4.9).

4.2 Simulated Analytical Signal With Close Modes

This part summarizes the results of the three methods by analyzing the signal with

close modes. The frequencies corresponding to the close modes are 256, 307.2, 399.36

(Hz). Other parameters in the signal are defined in Chapter 3.

4.2.1 CEM Results

Table 4.10 summarizes the results without truncation. Figure 4.13 shows the IRF, FRF

and phase angle plot of the simulated and fitted curves with lower damping ratios and

noisy data (SNR = 20 dB).

Table 4.10 Estimation results based on the CEM for close modes

Frequency Theoretical Value  SNR Estimated Value Error
(Hz) (¢) (dB) (£.) (%)
256 0.0010000000 ad 0.0009999997 0.0
20 0.1395905363 13859.1
10 0.1031841278 10218.4
307.2 0.0012000000 e 0.0012000006 0.0
20 0.0214321119  1686.0
10 0.1076112707  8867.6
399.36 0.0015600000 o 0.0015599998 0.0
20 0.0109457636 601.7
10 0.0519293293  3228.8
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(b) FRF plot of the simulated and fitted curve
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(c) Phase angle plot of the simulated and fitted curve
Figure 4.13 (a) IRF, (b) FRF and (c) phase angle plot of the simulated and fitted curve

with close modes and noisy data (SNR = 20 dB)

4.2.2 WPM Results

The same procedure as in section 4.1.2 can be followed to extract damping ratios. The
FRF of selected nodes are shown in Figure 4.14, 4.15 and 4.16. Table 4.11 summarizes
the selected nodes corresponding to the three modes. Figure 4.17, 4.18 and 4.19 show
the results of mode response after taking the Hilbert transform and natural logarithm.
Figure 4.20 shows the IRF and FRF of the simulated and fitted curve with lower

damping ratios and no noise added. Table 4.12 summarizes the estimation results.
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Figure 4.14 (a) FRF plot of wavelet packet node 5 and (b) node 13 representing the

first mode (256 Hz) without noisy data (SNR = <o dB)

53



Nodeb

104 F L L} T T T

10° b 5
B 2
=10 |
=
f=2]
(3]
=
=
=2 1
£ 10 1
A N :

10° | 4

10‘1 1 1 1 1 1

0 200 400 600 800 1000 1200
Frequency (Hz)
(a) FRF plot of wavelet packet node 6
Node14

10% ¢ : : . - :

10° | .
2 L
=10 F E
= >
f=7] S
(1] 9
E 8 4
= I
= 1
ew'p | 3
w L

10° b ;

10'1 1 { ! 1 1

0 200 400 600 800 1000 1200

Frequency (Hz)
(b) FRF plot of wavelet packet node 14
Figure 4.15 (a) FRF plot of wavelet packet node 6 and (b) node 14 representing the

second mode (307.2 Hz) without noisy data (SNR = o dB)
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Figure 4.16 (a) FRF plot of wavelet packet node 11 and (b) node 27 representing the

third mode (399.36 Hz) without noisy data (SNR = o dB)
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Envelop Function for Each Mode by Performing Hilbert Transform
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Figure 4.17 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope

plot for the first mode (256 Hz) without noisy data (SNR = = dB)
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Envelop Function for Each Mode by Performing Hilbert Transform
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(b) The Natural logarithm of the envelope plot
Figure 4.18 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope

plot for the second mode (307.2 Hz) without noisy data (SNR = o dB)
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(b) The Natural logarithm of the envelope plot
Figure 4.19 (a) The envelope plot of IRF and (b) the natural logarithm of the envelope

plot for the third mode (399.36 Hz) without noisy data (SNR = < dB)
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Figure 4.20 (a) IRF and (b) FRF plot of the simulated and fitted curve with close

modes and no noise (SNR = < dB)
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Table 4.11 Summary of selected nodes corresponding to three close modes

Frequency (Hz) Relative Nodes
256 Node(5), Node(13)
307.2 Node(6), Node(14)
399.36 Node(11), Node(27)

Table 4.12 Estimation results based on the WPM for close modes

Frequency Theoretical Value SNR Estimated Value Error
(Hz) (£, (dB) (£.) (%)
256 0.0010000000 e (0.0009999698 0.0
20 0.0010103531 1.0
10 0.0008083364 -19.2
307.2 0.0012000000 e 0.0012056756 0.5
20 0.0012120838 1.0
10 0.0010319571 -14.0
399.36 0.0015600000 e 0.0015610941 0.1
20 0.0015280909 -2.0
10 0.0015548646 -0.3

4.2.3 CWT Results

The same procedure as in section 4.1.3 can be followed to extract damping ratios.
Table 4.13 summarizes the corresponding scales and pseudo-frequencies of each mode.
Figure 4.21 shows the continuous wavelet coefficients. Figure 4.22, 4.23 and 4.24
show the modulus plot of continuous wavelet coefficients and the natural logarithm of

the modulus. Table 4.14 summarizes the estimation results with lower damping ratios.
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Table 4.13 Summary of corresponding scales and pseudo-frequencies for close modes

Frequency (Hz) Corresponding Scale Pseudo-Frequency (Hz)
(To Nearest Integer)
256 8 255.8750
307.2 7 292.4285
399.36 5 409.4000

Table 4.14 Estimation results based on the CWT for close modes

Frequency Theoretical Value SNR Estimated Frequency Estimated Value Error

(Hz) (£, (dB) (Hz) (£.) (%)
256 0.0010000000 = 255.8750  0.0014256900 42.6

20 255.8750  0.0013769379  37.7

10 255.8750  0.0012866067  28.7

307.2 0.0012000000 = 292.4285  0.0011897881  -0.9
20 292.4285 0.0011776139  -1.9

10 292.4285 0.0011617518  -3.2

399.36 0.0015600000 < 409.4000  0.0015658358 0.4
20 409.4000  0.0015502614  -0.6

10 409.4000  0.0015241656  -2.3
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(a) Real part of continuous wavelet coefficients
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(b) Imaginary part of continuous wavelet coefficients
Figure 4.21 (a) Real and (b) imaginary part of continuous wavelet coefficients for

close modes without noisy data (SNR = o dB)
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(b) The natural logarithm of the modulus of continuous wavelet coefficients
Figure 4.22 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of the

modulus for the first mode (256 Hz) without noisy data (SNR = oo dB)
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(b) The natural logarithm of the modulus of continuous wavelet coefficients
Figure 4.23 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of

the modulus for the second mode (307.2 Hz) without noisy data (SNR = ©= dB)
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(b) The natural logarithm of the modulus of continuous wavelet coefficients
Figure 4.24 (a) The modulus plot of continuous wavelet coefficients and (b) the natural logarithm of

the modulus for the third mode (399.36 Hz) without noisy data (SNR = oo dB)
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4.2.4 Discussion

CEM: The results demonstrate good accuracy of estimation without noisy data. In the
presence of noisy data, it affects the results significantly. We can also observe that
the method gives better estimations for higher modes (Table 4.10).

WPM: The results show less accuracy of estimation compared to the cases based on
WPM with separated modes but the error remains less than 10% except for the
case with noisy data (SNR=10 dB) (Table 4.12). There exist more oscillations in
the envelope plot of the recovered IRF as shown in Figure 4.18 and 4.19. The
problem could be the overlap of the close modal frequencies within the bandwidth
of wavelet packet bases. Therefore it becomes more crucial to choose the suitable
time ranges for the Least Square Method to obtain better regression line or use a
decomposition with higher than 5 levels to improve.

CWT: The results show that less accuracy of estimations of the first mode compared to
the cases with separated modes but the error remains less than 5% for the other
two modes (Table 4.14). The problem could be frequency selectivity of the
mother wavelet is not good enough. There also exist more oscillations in the
modulus plot of continuous wavelet coefficients as shown in Figure 4.22, 4.23
and 4.24. It may be improved by choosing the suitable values of the parameters,

a and w,, of the mother wavelet to give it a narrower bandwidth.
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Chapter 5

Summary

5.1 Conclusion

Three methods of extracting damping ratios have been presented. Based on the results

in Chapter 4, the following conclusions can be made.

1. The CWT method gives the most accurate estimations even for data corrupted by
the noise. The worst is the CEM method.

2. The CEM method gives better results in the cases with higher modes and higher
damping ratios. One disadvantage of this method appears to be its sensitivity to
noise.

3. The WPM and CWT methods perform slightly better in the cases for extracting
lower damping ratios than those for higher damping ratios, even for data corrupted
by the noise.

4. The estimation results are more accurate in the cases with separated modes than

those with close modes.

5.2 Recommendation

The recommendations to improve the frequency selectivity using the same wavelets
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are more levels for the WPM method and different parameters (¢, w, ) of the mother
wavelet for the CWT method.

Future work on this topic would most certainly involve the use of other wavelets.
There is a great possibility that other wavelets would lead to more accurate damping
ratio measurement.

The methods also have yet to be applied to experimental data. In this thesis only

simulated analytic signals with known parameters are considered.
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Appendix A

The Complex-Exponential Method
In the frequency domain, the frequency response function (FRF) in terms of receptance

«, (displacement at point j due to a force at point k) for a linear, viscously

damped system with N degrees of freedom (DOF) can be given by [2]

y A, A;

r

) e ‘ A
O e o T Tt G- T)

where w, is the natural frequency, ¢

(A.1)

is the damping ratio, , A, is the residue

r

corresponding to each mode r and * denotes complex conjugate. Another way of

writing equation (A.1) is

) 2ZN rAjk 2
a., (w)= - A.
P~ Ty a— A2
where

w, :wr,/il—ff ,

W;+N =_W;

v A= AL (A.3)

The Complex-Exponential Method (CEM) [2]{3] works with the corresponding
impulse response function (IRF), obtained from equation (A.2) by an inverse Fourier

transform

2N
h,(®)=), ,A jkes" (A4
r=1
or, simply
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2N ,
h(t) =Y Ae (A.5)

r=1

where s, =-w,{, +iw, and the properties in equation (A.3) hold. The time response

h(t) (real-valued) at a series of L equally spaced time intervals, At, is
2N ,
hy =h(0)= Y A,
=1

2N
b =h(Ar) =) Ae ™

r=1

2N
h, =h(LAD) = Ae "™ (A.6)
r=1
or, simply
2N ,
hO = 2 Ar
r=1
2N ,
h=Y AV,
r=1
2N ,
h, =Y AV} (A7)
=1
with
Vr - es,At (A,8)

The roots s, for an underdamped system always occur in complex conjugate parts, so
do the modified variable V,. Thus, there always exists a polynomial in V, of order
L with real coefficients f (called the autoregressive coefficients) such that the

following relation is verified
B+ BV, +B,V++B V=0 (A.9)
In order to calculate the coefficients (4, to evaluate V,, multiply both sides of

equation (A.7) by f, to [, and sum the result. This procedure gives

iﬁjh,. = i(ﬂjif\;w ) = %[A;iﬂ,w'] (A.10)

j=0 = r=1 J
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The inner summation in the right side of equation (A.10) is exactly the polynomial in
equation (A.9). Therefore, that summation is going to be equal to zero for each value of

V_, it follows that

L
Y B;h; =0, foreach V, (A.11)
j=0

From equation (A.l1), it will be possible to calculate the coefficients f; (h;is

measured). These coefficients are used to calculate the V,, and are calculated as

follows: we make M =L/2, and n=2* DOF . There will be n sets of data points

h, , each set shifted one time interval, and /5, is assumed equal to 1. This gives

hy, h h, - h,_, B, h,
bk R P AL P (A.12)
CYREN VAR YRR v V- Pryint -
or, simply
blgr-p) A1

From this equation it is possible to calculate {A}, as [#] and @} are known

matrices. This can be done using pseudo-inverse technique, multiply by [h]T

(transpose), and then solve for {6 }. The result is

8Y= (T )" (nF & ) (A14)

After calculating {f}, it is used to calculate the V, . In order to calculate the natural

frequencies, and damping ratios, equation (A.8) is used, as follows
R, =In(V,)=s, At
R

r

=
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¢ =\/'1+(Im:g(Rr)]2 (A.15)

Real(R,)

With the values of V,, we can then calculate the residues A, if equation (A.7) is

written as
T 11 - 1 A By |
Vl Vz V2N A; hl
VPV e Vo A, (571 L (A.16)
_‘/IZN—I V22N—1 e VZZAIIV“I AéN ) hZN
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Appendix B

The Hilbert Transform

The shape of a signal that contains a rapidly oscillating component that varies slowly
with time is called its “envelope”. Based on the approach of the Hilbert transform, the
rapid oscillations can be removed from the signal to produce the representation of the

envelope.

The definition of the Hilbert transform of x(z) is [4]

X,,(t)=lj_°° *@) 4y (B.1)
ns=tr—1

We can then use the Hilbert transform to calculate a new time signal from the original
real signal. The transformed signal has the same amplitude and frequency content as

the original signal and includes phase information that depends on the phase of the

original signal. By combining two signals, the analytical signal forms as follows,
x(0) = x(t) = iX , (1) (B.2)

where the real part is the original signal and the imaginary part is a version of the
original real sequence with a 90° phase shift. The magnitude of the analytic signal is
the envelope of the original time signal. When the envelope is plotted on a natural
logarithm scale, the graph is a straight line. Then, the slope of the line is determined for
estimating the damping ratio. The approach in detail is shown next [S][6][7].

The impulse response function of a signal-degree-of-freedom (SDOF) system can be

described with the following equation

x(t) = Ae ™ sin(wn (Jl -0 );) (B.3)
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where w, is the natural frequency, ¢ is the damping ratio, and A is the residue. The

Hilbert transform of the signal is, from equation (B.1),

X, (t)= Ae™™" cos(wn (\/1 -7 ) t) (B.4)
The analytic signal is,
x(f) = Ae ¥ (sin(wn (w/I -7 ) t)— icos(wn (1/1 -7 ) t)) (B.5)

The magnitude of the analytic signal eliminates the oscillatory component, and gives

the envelope as follows,

‘x—(ﬁ. = \/ (Ae‘gw"' )z—(sin 2 (wn (\/:{,7) t)+ cos’ (wn W) t)) = Ae o (B.6)

Taking the natural logarithm of each side yields,

Infx(@)| = In(Ae ™ )= In(4)- (G, )-¢ (B.7)

This is the equation of a straight line. If the slope of the line is calculated, we can

estimate the damping ratio as follows,

— slope

=

(B.8)

wn
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Appendix C

The Matlab Codes

Generating Data With Three Separated Modes

Dottt HHHHHHHHHHHHHH AR Do
%

% Project Title: Extracting Damping Ratios Using Wavelet

%

% Name: Jiun-Yan Wu

% 1ID: 926119127

% Date: 5/11/2001

%

% irf_1: To Generate a Simulated IRF(x) With Three Separated Modes

% x = (Al*exp(-al*t).*sin(wd1*t) + A2*exp(-a2*t).*sin(wd2*t) +
A3*exp(-a3*t).*sin(wd3*t));
%

ToHHEHHHHHHHHEHAHEHEHRHE A AR Y
clear;

cle;

format long g;

close all hidden;

QoHHHEHHEHHEH AR Do
%

% Defining Data Parameters

%

ToHHHHHHHHHHRHHH B Y
df =1;

% Total Time

tt = 1/df;

% Sampling Frequency Number

L = tt*2048;

t = linspace(0,tt,L);

dt =t(3) - t(2);

N =L/2;

f = linspace(0,df*(N-1),N);

TR HEHHEH R AR Yo
%

% Simulating IRF Generated by Setting First Damping Ratio

%

GoHHHEHHHHEHHHEHEHHE A Do
% First Mode

Al =5;

El = input(’First Damping Ratio: °);

fnl = df*N/8;

wnl = fnl1*2%pi;

al = El*wnl;

75



wdl = wnl*sqrt(1 - E172);
% Second Mode
A2 =3*Al;
E2 =2*E1l;
fn2 = 2*fnl;
wn2 = fn2*2%pi;
a2 = E2*wn2;
wd2 = wn2*sqrt(1 - E2/2);
% Third Mode
A3 =1.5%A2;
E3 = 2*E2;
fn3 = 2*fn2;
wn3 = fn3*2*pi;
a3 = E3*wn3;
wd3 = wn3*sqrt(1 - E3/2);
% Simulated IRF With Three Separate Modes
x = (Al*exp(-al*t).*sin(wd1*t) + A2*exp(-a2*t).*sin(wd2*t) +
A3*exp(-a3*t). *sin(wd3*t));
oH AR AR A AR Do
%
% Adding Noise Level SNR (db)
%
Do B HHHHHHIHHHHEHEEHEHHAHHEHHEREHH AR T
noise_level = menu(’Select Noise Level SNR(db)’, INFINITE’,”20°,’10";
if noise_level ==
snr=inf;
elseif noise_level == 2
snr=20;
elseif noise_level ==
snr=10;
end
var_s=cov(x);
var_noise = var_s/(10"(snr/10));
n=sqrt(var_noise)*randn(length(x),1);
X=X+n";
% Calculating the Frequency Response Function (FRF)
x_ft = fft(x);
% Display Freqs. and Damping Ratios
disp(’Natural Frequencies and Damping Ratios for the Data With Three Separate
Frequencies’)
Natural_Frequency_Damping_Ratio = [ fnl E1 ; fn2 E2 ; fn3 E3]
fig =1;
p_fig = menu(’Plot graphs?’,’Yes’, No’);
if p_fig ==
GoHHHHHHEHHHHEHRHHH A BB R YO
%
% Graphing Data
%
ToHHHHHHHEHHE AR AR Yo
figure(fig);
plot(t,x);
title(sprintfCIRF With Three Separate Frequencies’));
xlabel("Time (Seconds)’);
ylabel('Real’);
fig =fig+1;
figure(fig);
semilogy(f,abs(x_ft(1:N)));
title(sprintfCFRF With Three Separate Frequencies’));
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xlabel(Frequency (Hz));

ylabel(’Semilog Magnitude’);

end

ToHHHHEHHEHHHHHHBHHHEHEHHHE R Yo
%

% Menu for Selecting One Method to Analyze

%

ToHHHHEHHEHHEHHARHA AR AR T
method = menu(’Choose Extracting Method’,’CEM’,WPM’,’CWT’);

if method ==

cem_analysis

elseif method == 2

wpm_analysis

elseif method == 3

cwt_analysis

end

Generating Data With Three Close Modes

Qo HEHEHEH AR o

%

% Project Title: Extracting Damping Ratios Using Wavelet

%

% Name: Jiun-Yan Wu

% ID: 926119127

% Date: 5/11/2001

%

% irf_1: To Generate a Simulated IRF(x) With Three Close Modes

% x = (Al*exp(-al*t).*sin(wd1*t) + A2*exp(-a2*t).*sin(wd2*t) +
A3*exp(-a3*t).*sin(wd3*t));

%

GoHHHHH A HEHEHEHHEHEHEH AR AR A3 9

clear;

cle;

format long g;

close all hidden;

ToHHHHHHEH AR 90

%

% Defining Data Parameters

%

Dot B AR AR Do

df =1;

% Total Time

tt = 1/df;

% Sampling Frequency Number

L = tt*2048;

t = linspace(0,tt,L);

dt =t(3) - t(2);

N=L1/2;

f = linspace(0,df*(N-1),N);

ToHBHHHBHHHEHHHHHH AR HE A

%

% Simulating IRF Generated by Setting First Damping Ratio

%

GoHHHHHHHHHHHHHHEHHHEHHHHH R Yo

77



% First Mode
Al =35;
El = input(First Damping Ratio: ’);
fnl = df*N/4,
wnl = fnl*2*pi;
al = El*wnl;
wdl = wnl*sqrt(1 - E172);
% Second Mode
A2 =3*Al;
E2 = 1.2*El,
fn2 = 1.2*fnl;
wn2 = fn2*2*pi;
a2 = E2*wn2;
wd2 = wn2*sqrt(1 - E2/2);
% Third Mode
A3 =1.5%A2;
E3 = 1.3*E2;
fn3 = 1.3*fn2;
wn3 = fn3*2*pi;
a3 = E3*wn3;
wd3 = wn3*sqrt(1 - E3/2);
% Simulated IRF With Three Separate Modes
X = (Al*exp(-al*t).*sin(wd1*t) + A2*exp(-a2*t). *sin(wd2*t) +
A3*exp(-a3*t).*sin(wd3*t));
ToHHHHHHHE AR AR AR
%
% Adding Noise Level SNR (db)
%
Dot HHBHHHHHHHHHHE AR AR Do
noise_level = menu(’Select Noise Level SNR(db)’/INFINITE’,20’,’10%;
if noise_level == 1
snr=inf;
elseif noise_level ==
snr=20;
elseif noise_level ==
snr=10;
end
var_s=cov(X);
var_noise = var_s/(10”(snr/10));
n=sqrt(var_noise)*randn(length(x),1);
X=x+n’
% Calculating the Frequency Response Function (FRF)
x_ft = fft(x);
% Display Fregs. and Damping Ratios
disp('Natural Frequencies and Damping Ratios for the Data With Three Close
Frequencies’)
Natural_Frequency_Damping_Ratio = [ fnl E1 ; fn2 E2 ; fn3 E3]
fig =1,
p_fig = menu(’Plot graphs?’,’Yes’, No’);
ifp_fig==1
Do HAEHEHHHH AR Yo
%
% Graphing Data
%
QoA A A Do
figure(fig);
plot(t,x);
title(sprintfCIRF With Three Close Frequencies’));
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xlabel('Time (Seconds)’);

ylabel('Real’);

fig =fig+1;

figure(fig);

semilogy(f,abs(x_ft(1:N)));

title(sprintfCFRF With Three Close Frequencies’));
xlabel(Frequency (Hz)));

ylabel(’Semilog Magnitude’);

end
ToHHHHHHHHFHHHHEHEHEHEHEHERHHH A AR Do
%

% Menu for Selecting One Method to Analyze

%

Dot HHHHHEHHHH AR A Do
method = menu(’Choose Extracting Method’, CEM’,WPM’,’CWT");
if method == 1

cem_analysis

elseif method ==

wpm_analysis

elseif method == 3

cwt_analysis

end

The Complex-Exponential Method

TotHHHHHHHHHHEHEHHHHHHH A Do
%

% Project Title: Extracting Damping Ratios Using Wavelet

%

% Name: Jiun-Yan Wu

% ID: 926119127

% Date: 5/11/2001

%

% cem_analysis: The Complex-Exponential Method

%

TotHHHHHHHHHHHHHHHAHEHHHHH A Do
method = cem’;

format long g;

Tot iR AR Y
%

% Defining Data Parameters

%

GoHHHHHHHHHHHHEHIHE IR T
frf = x_ft;

N = length(frf)/2;

frf = conj(frf(1:N)");

f =1f(1:N);

df = £(3) - f(2);

GoHHHHIHHHHEHHHHHEHEHHAHEHH R Y
%

% Specifing the Frequency Range

%

ToHHHHHH AR Yo
specify = menu(How do you want to specify the freq. range?’,’Point on Graph’, Type

it’);
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if specify ==

figure(fig + 1);

semilogy(f(1:N),abs(frf(1:N)));

title("Select The First Point (Minimum Frequency)’);

xlabel(’Frequency (Hz)’);

ylabel("Semilog Magnitude’);

[x_frl,y]=ginput(1l);

figure(fig + 1);

semilogy(f(1:N),abs(frf(1:N)));

title("Select The Second Point (Maximum Frequency)’);

xlabel(’Frequency (Hz)’);

ylabel('Semilog Magnitude’);

[x_fr2,y]=ginput(1);

sprintf('The Selected Frequency Range Is:\n\tMinimum freq = %8.4g\n\tMaximum
freq = %8.4g’x_frl,x_{r2)

else

figure(fig + 1);

semilogy(f(1:N),abs(frf(1:N)));

titleCFRF);

xlabel(’Frequency (Hz));

ylabel('Semilog Magnitude’);

x_frl = input(Minimum Frequency (Hz): ’);

x_fr2 = input(Maximum Frequency (Hz): °);

sprintf("The Selected Frequency Range Is:\n\tMinimum freq = %d\n\tMaximum freq =
%d’ ;x_frl,x_fr2)

end

Qo HHHFHEHHEHEHHEHEHE AR T

%

% Isolating the Frequency Range

%

TR T

x_frl = round(x_fr1/df + 1);

x_fr2 = round(x_fr2/df + 1),

% Putting Zeros Before the Isolated

frf_F1 = zeros(x_frl-1,1);

% Isolated FRF Components

frf_F1(x_frl:x_fr2) = frf(x_frl:x_fr2);

% Putting Zeros After the Isolated FRF Components

frf_F1(x_fr2+1:N) = ones(N-(x_{r2),1);

% Adding the Conjugate Components to the FRF

frf_F1(N+1) = real(frf_F1(N));

frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));

[r,c] = size(frf_F1);

if r <c

frf = conj(frf_F1°);

else

frf = frf_F1;

end

ToHHHHHEHHHHEHEH AR Yo

%

% Calculating the Impulse Response Function from the FRF Inverse

%

DotHHHHHEHHEHEHHE AR Yo

figure(fig + 1);

semilogy(f(x_fr1:x_fr2),abs(frf(x_frl:x_fr2)));

title(sprintfCFRF (Truncated)’));

xlabel(Frequency (Hz));

ylabel(’Semilog Magnitude’);
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n = input(How many DOF?: ’);

irf = real(ifft(frf));

% Time parameters

t = linspace(0, 1/df,2*N);

dt = t(2)-t(1);
QoA AR Y
%

% Processing Data

%

ToHHHEHHHHHHHHH AR AR Yo
L = length(irf);

M=L/2;

n=n*2;

forr=1:n

h1(:,r) = real(irf(r:M-1+41));

end

forr=1:M

hv1(r,:) = -real(irf(n+r));

en

B1 =inv(h1™*h1)*(h1*hvl);

Bl(n+1,1)=1;

Blv =Bl(n+1:-1:1);

V_cem = roots(B1v);

% Calculating the Natural Freq & Damping Ratio

n = length(V_cem);

forr=1:mn

wn_cem(r) = abs(log(V_cem(r)))/dt;

Fn_cem(r) = wn_cem(r)/(2*pi);

Damp_ratio_cem(r) = sqrt(1/(((imag(log(V_cem(r)))/real(log(V_cem(r))))*2)+1));

end

% Calculating eigenvector

forr=0:2*N-1)

Va_cem(r+1,:) = [conj(V_cem’)."r |;

end

Ar_cem = (inv(conj(Va_cem’)*Va_cem)*conj(Va_cem’)*(irf));

% Calcualting the IRF Curve Fit

x_cem = Va_cem*Ar_cem;

% Calcualting the FRF Curve Fit

frf_cem = fft(x_cem);

ToHHHHHHHHHHEHEEHEHEHEH AR T

%

% Graphing Data

%

ToHHHIHHEHHEHHEEHEHEHEHEHEHA AR A Y

figure(fig + 2);

semilogy(f(x_frl:x_fr2),abs(frf(x_frl:x_fr2)),-’ f(x_frl:x_fr2),abs(frf_cem(x_frl:x_fr
2),";

title(sprintfCFRF));

xlabel(’Frequency (Hz)’);

ylabel("Semilog Magnitude’);

legend('Simulated Curve’,’Curve Fit’,0)

figure(fig + 3);

plot(f(x_frl:x_fr2)’,angle(frf(x_fr1:x_fr2)), -’ f(x_frl:x_fr2)angle(frf_cem(x_frl:x_fr
2)),7);

title(sprintf('Phase Angle’));

xlabel(’Frequency (Hz)));

ylabel(’Phase Angle (Radians)’);

legend(’Simulated Curve’,’Curve Fit’,0)
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figure(fig + 4);

plot(t,irf, -’ t,real(x_cem),”’);

title(sprintfCIRF));

xlabel("'Time (Seconds)’);

ylabel('Real’);

legend("Simulated Curve’,’Curve Fit’,0)

GO HHHHERHEHEHE AR AR AR AR Yo
%

% Displaying Result

%

o HHHEHHHEHHBHEHHHEHHHHEH R A Yo
Natural_freq_Damping_ratio_cem = [ Fn_cem’ Damp_ratio_cem’ |

The Wavelet Packet Method

ot HEHHRHHHHHHHHER AR AR AR A Y0
%
% Project Title: Extracting Damping Ratios Using Wavelet
%
% Name: Jiun-Yan Wu
% ID: 926119127
% Date: 5/11/2001
%
% wpm_analysis: The Wavelet Packet Method
%
ToHBHHHEHHHEHHHHHHHEHHHAHE AR Yo
method = 'wpm’;
X_Ori=x;
format long g;
Do HH A Y
%
% Defining Data Parameters
%
Dot AR Yo
wname="coif5’;
1 = input(’Enter Decomposition Level: °);
% Decomposing IRF Using 'wname’ by | Level
[th d]=wpdec(x,],wname);
m=power(2,});
node = zeros(m,2048);
Do A Yo
%
% Visualizing FRF for Each Node (Denoted From Node 1 to Node 2"Level)
%
GoHHHFHEHHHHHHEHEHHE R A A
% Reconsturcting IRF for Each Node From its Coeffs.
for k=1:m
node(k,:)=wprcoef(th,d,[l k-1});
end
% Graphing FRF for Nodes
for k=1:m/2
x_dft_1=fft(node(2*k-1,:));
x_dft_2=fft(node(2%k,:));
fig=fig+k;
figure(fig);
subplot(2,1,1);
semilogy(f,abs(x_dft_1(1:N))); ax=gca;
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axTITL=get(ax,title’);
str1=[Node’ num2str(2*k-1)];
set(axTITL, String’,strl);
xlabel(’Frequency (Hz)’);
ylabel("Semilog Magnitude’);
subplot(2,1,2);
semilogy(f,abs(x_dft_2(1:N)));ax=gca;
axTITL=get(ax,title’);
strl1=['Node’ num2str(2*k)];
set(axTITL, String’,str1);
xlabel(Frequency (Hz)’);
ylabel('Semilog Magnitude’);
end
ToHHHHHHEHHEHE AR AR Yo
%
% Processing Data
%
TOHHHHHHHHHHHHEHHAHEHEHRHH R
n = input(How many DOF 7);
wpm=zeros(n,2048);
abswmp=zeros(n,2048);
logwmp=zeros(n,2048);
x_wpm=zeros(1,2048);
for k=1:n
index="a’;
disp(’Reconstruct Each Mode by Analysing FRF’);
while (index ~= Q@)
disp('Choose Node Number: For Example by Typing node(3,:) for Node3 ’);
add=input(”);
wpm(k,:)=wpm(k,:)+add;
index=input(’-----Add "a” or Quit "q”-----");
end
x_wpm=x_wpm+wpm(k,:);
frf_wpm=fft(x_wpm);
% Performing Hilbert Transform to get the Envelop Function
abswmp(k,:)=abs(hilbert(wpm(k,:)));
fig=fig+1;
figure(fig);
plot(t,abswmp(k,:));
title(Envelop Function for Each Mode by Performing Hilbert Transform’);
xlabel("Time (Seconds)’);
ylabelCAmplitude (Units)’);
% Performing Natural Logarithm to get the Straight Line
logwmp(k,:)=log(abswmp(k,:));
fig=fig+1;
figure(fig);
plot(t,Jogwmp(k;:));
title("Select Two Points in the Time Domain (X Axis)’);
xlabel('Time (Seconds)’);
ylabel('Log-Amplitude (Units)’);
[X,y]=ginput(2);
sprintf("The Selected Time Range Is:\n\tMinimum Time: %8.5g \n\tMaximum Time:
%8.5g’,x(1),x(2))
ToHHHHHHHHHHHHHEHHHEHEHHE AR
%
% Least Square Method to Calculate Slope, and Then Damping Ratio
%
ToHHHHHHHHHHHHHHE R D
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[np] = round(x/dt + 1);

tl = t(np(1):p(2));

% Calculates the Amount of Points Data

m = length(tl);

temp=logwmp(k,np(1):np(2));

% Summatory of the t points (x components)

sum_x = sum(tl);

% Summatory of the env_dB points (y components)

sum_y = sum(temp);

% Summatory of the square value of each t points (x components)

sum_x_sq = dot(tl,tl);

% Summatory of the multiplication of t and env_dB points (x and y components)
sum_xy = dot(tl,temp);

LQ1 = [m sum_x; sum_x sum_x_sq];

LQ2 = [sum_y ; sum_xy];

LQ3 =inv(LQ1) * LQ2;

slope(k) = LQ3(2);

end

Damp_ratio_wpm(1)=-slope(1)/wnl;

Damp_ratio_wpm(2)=-slope(2)/wn2;

Damp_ratio_wpm(3)=-slope(3)/wn3;
Do R Yo
%

% Graphing Data

%

Qo HHHHHHHEHHHEH R T
figure(fig + 1);

semilogy(f,abs(x_ft(1:N)),-’,f,abs(frf_wpm(1:N)),");

title(sprintf(FREF’));

xlabel(’Frequency (Hz)’);

ylabel("Semilog Magnitude’);

legend(Simulated Curve’,’Curve Fit’,0)

figure(fig + 2);

plot(t,x_ori,-’,t,real(x_wpm),”’);

title(sprintfCIRF’));

xlabel("Time (Seconds)’);

ylabel('Real’);

legend(’Simulated Curve’,’Curve Fit’,0)

ToHHHHHHHEHHE AR
%

% Displaying Result

%
TR YO
Damping_Ratio_WPM = [Damp_ratio_wpm’ ]

The Continuous Wavelet Transform Method

ToHHHHHHHHHHHHHEHIHHHHHEH AR Yo
%

% Project Title: Extracting Damping Ratios Using Wavelet

%

% Name: Jiun-Yan Wu

% ID: 926119127

% Date: 5/11/2001

%
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% cwt_analysis: The Continuous Wavelet Transform Method
%
otHHHHHEHHHE AR Yo
method = cwt’
format long g;
QotHHHHEHHHHEHEHH AR HEHE AR Do
%
% Defining Data Parameters
%
QotHHHHEHHHHEHHHHHEHEHE AR Yo
wname = ’'cmorl-1.5%
A=0; B=1;P=2048;
t = linspace(A,B,P);
delta = (B-A)/(P-1);
ot AR Do
%
% Calculating Scales to Frequencies
%
Do HHHHHHHEHHAHHHHHEHEHRHEHEHE AR AR Do
scales =[1:1:60];
tab_PF = scal2frq(scales,wname,delta);
n = input(How many DOF?: *);
for k=1:n
sprintf('Type Natural Frequency (Hz) for Mode %d’,k)
tab_FREQ(k)=input(”);
[dummy,ind] = min(abs(tab_PF-tab_FREQ(k)));
PF_app(k) = tab_PF(ind);
SC_app(k) = scales(ind);
end
Corres_Scale_to_Pseudo_Freq = [SC_app’ PF_app’ ]
ToHHHEHHHHHHEHHE R HHEHEH AR A DD
%
% Processing Data
%
ToHHHHHHHHEHHEH BB A
coeffs=cwt(x,scales,wname,plot’); ax = gca; colorbar
% Set Zeros Matrix
c=zeros(60,2048);
absc=zeros(60,2048);
logc=zeros(60,2048);
for k=1:n
c(k,:)=coeffs(SC_app(k),:);
absc(k,:)=abs(c(k,:));
loge(k,:)=log(absc(k,:));
end
TotHHHHHHHHHHH AR AR A Do
%
% Graphing Data
%
ToHHEHHIHHEH AR A AR Yo
for k=1:n
figure(fig + k*2-1);
plot(t,absc(k,:));
title(sprintf(’Coeffs of CWT with Dilation Corresponding to the Analysed
Frequency-Absolute Value?));
xlabel("Time (Seconds)’);
ylabelCAmplitude (Units)’);
figure(fig + k*2);
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plot(t,loge(k,);

title("Select Two Points in the Time Domain (X Axis)’);

xlabel("Time (Seconds)’);

ylabel('Log-Amplitude (Units)’);

[x.yl=ginput(2);

sprintf("The Selected Time Range Is:\n\tMinimum Time: %8.5g \n\tMaximum Time:
%8.5g’,x(1),x(2))

QoHHHHHHHHHHEHHHHEHAHAAHE A AR AR Yo

%

% Least Square Method to Calculate Slope, and Then Damping Ratio

%

GoHHHHHHHEHHHHEHHH AR Do

[np] = round(x/dt + 1);

tl = t(np(1):p(2));

% Calculates the Amount of Points Data

m = length(tl);

temp=Ilogc(k,np(1):np(2));

% Summatory of the t points (x components)

sum_x = sum(tl);

% Summatory of the env_dB points (y components)

sum_y = sum(temp);

% Summatory of the square value of each t points (x components)

sum_x_sq = dot(tl,tl);

% Summatory of the multiplication of t and env_dB points (x and y components)

sum_xy = dot(t1,temp);

LQ1 = [m sum_x; sum_x sum_x_sq];

LQ2 = [sum_y ; sum_xy];

LQ3 =inv(LQ1) * LQ2;

slope(k) = LQ3(2);

end

Damp_ratio_cwt(1)=-slope(1)/wnl;

Damp_ratio_cwt(2)=-slope(2)/wn2;

Damp_ratio_cwt(3)=-slope(3)/wn3;

ToHHHHHHHEHHHHHHHHAHHHRHEHE AR AR

%

% Displaying Result
0

ToHHHHHHHHHHHHHEHEHAHHHAHAHEHE AR Yo

Natural_Freq_Damping_Ratio_CWT = [ PF_app’ Damp_ratio_cwt’ ]
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