
DATA MODELING IN A PAVEMENT MANAGEMENT SYSTEM

By

Wai-Kei Yim

Bachelor of Engineering (with Honors) in Civil Engineering
The University of Warwick, July 2000

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL
ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF ENGINEERING IN CIVIL AND ENVIRONMENTAL ENGINEERING

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2001

© 2001 Wai-Kei Yim. All Rights Reserved

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic

copies of this thesis document in whole or in part.

Signature of Author:
Depart t of Civil and Environmental Engineering

May 11, 2001

C>11

Certified by:

Senior Lecturer of
George Kocur

Civil gnd Environmental Engineering
Thesis Supervisor

Accepted by:
Oral Buyukozturk

Chairman, Departmental Committee on Graduate Studies

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 0 4 2001

LIBRARIES

L.

Data Modeling in a Pavement Management System

By

Wai-Kei, Yim

Submitted to the Department of Civil and Environmental Engineering
On May 11, 2001 in Partial Fulfillment of the Requirements for the

Degree of Master of Engineering in Civil and Environmental Engineering

ABSTRACT

Data modeling is one of the critical steps in the software development
process. The use of data becomes a profitable business today and the data
itself is a valuable asset of the company. In this thesis, the process of
developing a data model will be introduced in the first part. The second part
will be a case study. The case study is about the development of the data
model of a pavement management system. This is an actual project
implemented for the Public Works Department of Arlington, MA.

Thesis Supervisor: Dr. George Kocur

Title: Senior Lecturer of Civil and Environmental Engineering

Content

Page

Title Page

Abstract

Content 4-5

Figure List 6

Acknowledgement 7

1 Introduction 8

2 Data Modeling Theory, Process and Background 10

2.1 The Development of Relational Database and Data

Modeling 10

2.1.1 Flat Files 10

2.1.2 Database Management Systems 11

2.1.3 Hierarchical Model 11

2.1.4 Network Model 12

2.1.5 Relational Theory 13

2.1.6 Standard Query Language (SQL) 15

2.1.7 Conclusion 16

2.2 Data Modeling 18

2.2.1 Business Rules Expression 18

2.2.2 Entity Relationship Approach 19

2.2.3 Data Modeling Phases 20

2.3 Process of Data Modeling 23

2.3.1 Model Types 23

2.3.2 Entity Relationship Diagram (ERD) 23

4

2.3.3 Key Based Model (KBM) 29

2.3.4 Fully Attributed Model (FAM) 34

2.3.5 Business Rules Implementation 39

2.3.6 Normalization 43

2.3.7 Conclusion 47

2.4 Data Modeling in Practice 48

2.4.1 Data Model in Real World 48

2.4.2 Data Model Quality 49

3 M.Eng Information Technology: Arlington Project 52

3.1 Project Background 52

3.2 Data Modeling Requirements 55

3.2.1 Street Data 56

3.2.2 Pavement Analysis 56

3.3 Case Study of Data Modeling 61

3.3.1 Street Data Model 61

3.3.2 Pavement Analysis Model 68

3.3.3 Pavement Condition Model 72

3.3.4 Pavement Management System Model 75

4 Conclusion 79

References 80

Appendix:
Appendix 1 Database Documentation 81

5

Figure List
Page

la Summary data for the Arlington database 9

2.3.2a Entity Relationship Diagram (ERD) Example 24

2.3.2b Optional one to many and mandatory one to one

relationship 28

2.3.3a Primary Key, Composite Key and Foreign Key

Example 30

2.3.3b Independent Entity 32

2.3.3c Associative Entity 33

2.3.3d Recursive Relationship 34

2.3.4a Generalizations and Specializations 37

3.2a Pavement Management System Model 55

3.2.2a Pavement Analysis Options 56

3.2.2b New Scenario is created 57

3.2.2c Scenario Details 58

3.2.2d Pavement Action Menu 59

3.2.2e Compare Scenario 60

3.3.1a Street Data Model 61

3.3.1b Sample Data of Street Data Model 62

3.3.2a Pavement Analysis Model 68

3.3.2b Sample Data of Pavement Analysis Model 68

3.3.3a Pavement Condition Model 72

3.3.3b Sample Data of Pavement Condition Model 73

3.3.4a Pavement Management System Model (Completed

Model) 75

6

Acknowledgement

Sincere thanks are due to Dr. George Kocur, my thesis supervisor, of the

Civil and Environmental Engineering Department - Information Technology

Group at the Massachusetts Institute of Technology (MIT) for indispensable

help with the production of this thesis. Dr. Kocur provided helpful comments

and reviewed the development materials.

I am grateful for the opportunity provided by the Public Works Department of

Arlington, MA for the development of a pavement management system,

especially to Ron Santosuosso of Engineering. This application was used as a

case study in the thesis.

Thanks are also owed to my MIT colleagues working for the Arlington Project.

My Architecture Group workmates - William Wai Ming Cheung, Wesley Yatlun

Choi and Warit Durongdej contributed to the development of the data model

for the pavement management system. Thanks are also given to the

Pavement Condition Model Group - Yusuke Mizuno and Sang Hyun Lee - for

their contribution of the pavement condition model.

7

1 Introduction

Most applications today involve the use of data. Some industries such

as the financial industry and the marketing industry rely heavily on the

information derived from data. In this information technology era, data is a

valuable asset to many different industries. The intelligent use of this asset

helps companies with their decision-making.

In the software development process, there are several key stages,

most of which involve the data to be used. They are risk analysis, system

analysis, data modeling, software product design, development, quality

assurance testing and deployment. The objective of this thesis is the

introduction of data modeling that is closely related to the result of system

analysis. A good data model reflecting the business rules correctly reduces

wasted time on software product design and coding. The data modeling

process will be described in the first part and then followed by a case study

of the pavement management system from the Arlington pavement

management system project.

A database is an organized collection of data values. A data model is a

specification of data structures and business rules required to support a

specific business area. These are the foci of the thesis. Moreover, in order to

use the data in a productive way, special care is needed in data collection,

data manipulation and data quality.

8

Summary data for the Arlington database:

1. 90 miles of streets

2. Over 550 streets

3. Over 750 street sections

4. One database

5. 21 tables

6. 26 relationshiis between tables

Fig. la Summary data for the Arlington database

The data model of the pavement management system can be divided

into three parts: street data model, pavement analysis model and pavement

condition model. In the case study, each individual part will be described in

depth and then followed by a description of the combined data model of the

whole system. The development of the data model adopted some basic

techniques to design a good data model. However, not all the techniques

described in the theoretical part were applicable to this case. Compared to

the other complicated systems, our data model is relatively simple. Although

it is a relatively simple data model, it represents the business and

engineering requirements well and it did not impose any significant problems

in the coding stage.

9

2 Data Modeling Theory, Process and Background

2.1 The Development of Relational Database and Data

Modeling

There are several key stages in the development of relational

databases and data modeling:

" Flat Files

" Database Management Systems

* Hierarchical Model

" Network Model

* Relational Theory

* Standard Query Language (SQL)

2.1.1 Flat Files

When computing power was limited in early days, system analysts

spent much effort to run a very small program in a limited machine. The

programmers at that time tried to store as much data as possible in a single

master file. There was one record type to hold all the fields and the master

file could be passed to other users. Each piece of the master file had to come

with a program that read the file and described its layout. The access

methods and descriptions of data of the flat files were left in the programs.

Data integrity could not be guaranteed in this approach. The same data was

recorded in different locations and accessed by different methods and

10

formats. When information demands became more sophisticated, a new

approach of organizing data was required to replace flat files.

2.1.2 Database Management Systems

A database management system (DBMS) is a database that is a

collection of non-redundant data, which can be shared by different

applications. The processing program focuses on access strategies, pointers

and indexes, which are not the concerns of external users. Thus, the actual

storage schemes are not directly accessed by the programs and users. The

role of a program is to understand the conceptual schema definition, which is

described in terms of entities, attributes, relationships, and the presentation

and input of data to and from users. A data model tells how information is

represented and manipulated in a database system. Historically, there have

been three main kinds of data models in database applications: hierarchical

model, network model and relational model.

2.1.3 Hierarchical Model

In the early 1960s, the business world organized its data using the

hierarchical model. Rather than having one flat file as the only record type,

some business models need to deal with multiple record types that are

hierarchically related to each other. The database keeps track of not only the

record types and attributes, but also the hierarchical relationships between

them. The attribute that shows the level in the database structure is called

the key.

11

Advantages

" Data is organized in a tree structure.

* Data is accessed easily via the key, but difficult via the other

attributes.

Disadvantages

" Tree structure is not flexible.

" Only one to many relationship is available.

2.1.4 Network Model

The network model was proposed in 1971 as part of the work of

CODASYL (Conference on Data Systems Languages). In the network model,

data structure is separated from physical storage. This eliminates redundant

data with its associated errors and costs. In this model, the concepts of a

data definition language and data manipulation language are used. Unlike the

hierarchical model, many to many relationships are available. This makes the

network model more flexible than the hierarchical model. However, there are

two restrictions in this model. The first one is that links between records of

same type are not allowed. The second one is that a record can be owned by

more than one record of different types, but it cannot be owned by more

than one record of the same type.

12

2.1.5 Relational Theory

Hierarchical model and network model were commonly used in the late

1960s and 1970s. The reads and writes of the data files were managed by

DBMS while the accessing program managed data access. To browse through

the records in a file, the program had to understand a lot about the record

arrangements.

In 1969, Dr. E. F. Codd proposed the relational model in his report

"Derivability, Redundancy, and Consistency of Relations Stored in Large Data

Banks." The main difference is that the relational model distinguishes

between a database's file structure and its logical design. In 1970, he

explained his relational concepts in his article entitled " A Relational Model of

Data for Large Shared Data Banks." The work on the relational theory

continued in 1970s but no commercial DBMS adopted it at that time.

Relational Concepts

In the relational approach, pointers, which are used in hierarchy or

network structures to set up the linkage and organize the structure of data,

do not exist any more. Instead, tables are used to organize the structure of

the data.

The basics of the relational approach are:

" Each table contains only a single record type.

* Each record has a fixed number of fields, all explicitly named.

13

" Each record is unique - duplicates are not allowed.

" Records can be arranged in any order - there can be no hidden

meaning implicit in the order of the rows of the table.

" A field takes its value from a domain of possible values.

* The same domain is used for all fields in a column and may be used

for multiple columns.

" Fields are distinct - no repeating groups are allowed.

* New tables can be produced on the basis of matching field values from

the same domain.

With this approach, redundant data is avoided. It allows flexible

relationships between data, although many to many relationships are not

directly allowed. By having an association table that has two one to many

relationships in the middle, a many to many relationship between two tables

can be represented.

Relational Model

A data model consists of a number of object types, integrity rules, and

relational operators. Relations and domains are the object types. A relation is

a table while domain is a pool of data. The integrity rules are a set of valid

states of databases that conform to the model. For example, the primary key

cannot be null and every foreign key value must match some other existing

primary key value. The relational operators are the means of manipulating a

database with different instances of the object types. In the relational model,

14

normalization is required. Normalization is a means to find the simplest

structure for a given set of data. There are five rules, or normal forms, that

will be discussed later.

Advantages

" Relational model is the most flexible database model.

" This is the basis of an area of formal mathematical theory.

* Storing data from an event into multiple tables and accessing the data

afterwards only works if the database was well designed.

Disadvantages

* There is no obvious match of implementation and model.

" The user has to know the content of relations in order to use data

manipulation languages.

* A number of tables must be jointly used to get useful information.

2.1.6 Standard Query Language (SQL)

SQL stands for Structured Query Language. SQL is used to

communicate with a database. It is the standard language for relational

database management systems. In the early days of relational database era,

the performance of database management systems was poor. The availability

of more powerful computers and the development of data control methods

have improved the performance gradually. SQL has become the standard

data control method since the 1980s, after IBM released its first SQL based

product, SQL/DS.

15

SQL statements are used to perform tasks in a relational database

such as updating data, retrieving data and defining data. Some common

relational database management systems that use SQL are: Oracle, Sybase,

Microsoft SQL Server, Microsoft Access, and MySQL. Although most database

systems use SQL, most of them also have extensions that are usually only

used on their system. However, the standard SQL commands such as

"Select", "Insert", "Update", "Delete", "Create", and "Drop" can be used to

accomplish almost everything that one needs to do with a database. With

this standardized database language, we can develop applications using

many high level languages such as Java, C++ and Visual Basic by embedding

SQL statements into the program codes.

2.1.7 Conclusion

In conclusion, by using the most up to date database tools, there are a

number of advantages of a well-designed database system:

" Sharing data - Data becomes reusable after collecting and storing data

from different applications.

" Standards and policies enforcement - Naming standards and business

policies can be incorporated into the design. A data object or part of

the design can thus be reused.

" Security application - Databases can prevent unauthorized access and

invalid ways of processing data. Data can be made available to

different levels and different people.

16

" Integrity maintenance - The accuracy and validity of the data can be

improved by using good integrity maintenance features.

" Redundancy and inconsistency reduction - Redundancy leads to higher

costs and extra processing.

Database design and data modeling will be discussed more in depth in

later chapters and the M.Eng Information Technology Project - Pavement

Management System will be used as an example to explain the design of a

good database.

17

2.2 Data Modeling

To build a good database, data modeling is very important. A data

model is the foundation for a database to support the business activities. It

represents the business rules and ideas. If a good data model were not

present, this would result in a flawed database. Databases and data models

should be designed to be extensible, expandable and stable. To achieve that,

one needs to understand the initiatives for the databases and the business

environment. Moreover, the database and data model designer must

understand the important issues by listening to the users in order to build an

effective database.

2.2.1 Business Rules Expression

Business rules can be reflected by the data model in certain areas.

Data constraints are dictated by business policy. Business rules can be

incorporated into the database design. Thus, a data model is a precise and

formal statement of business rules. To achieve these goals, a data model

must be simple enough to represent important concepts clearly and it must

be rich enough to cover all possibilities. There is a trade-off between

complexity and effectiveness. A data model is an effective medium for

discussions with business people. The data model represents their

requirements and the essentials of the business.

Good practice is necessary to have a well-designed database and the

following are some of the key steps.

18

1. Talk to end-users to find out what they need. Then think about the

data and how it will be used.

2. Brainstorming. Jot down words that describe the data. The major

entities will map into database tables later on.

3. Look at the grouped data to see if each group has a logical name and a

single theme. Carry out 'normalization', which will be discussed in

detail later.

4. Think about the groupings and how they are related.

5. Decide on names for the tables, fields and data types for the fields.

2.2.2 Entity Relationship Approach

The concepts of entity and relationship are ways to talk about

business needs. This approach was referred to as Entity - Relationship (ER)

modeling. Now, many modeling approaches, which emphasize the logistics of

the system, are also referred to "ER models". Entities and relationships are

used to represent all data and its associations. An entity is something that

can be distinctly identified and a relationship is an association among

entities.

Advantages

" It is intuitive.

" It can be converted to a relational database model easily.

19

Disadvantages

* It cannot specify some kinds of constraints (for example, maximum

number of records).

2.2.3 Data Modeling Phases

Typically, there are three phases in data modeling: conceptual design,

logical design and physical design. An Entity Relationship Diagram (ERD) is

used in the conceptual design stage to represent the business rules and

information requirements. An ERD gives a rough picture of what the

database will look like, what kind of data will be stored and what kind of

information can be retrieved. An ERD shows what a system can do and not

how it does it. There is no process or activity captured in an ERD. Moreover,

an ERD should be technology independent. Then in the logical design phase,

an ERD is mapped to a table set and the attributes are normalized. The

logical design should also be technology independent.

The final phase, the physical design phase, involves implementing the

logical model using the specific database technology chosen. The designer

needs to make sure that the naming standards conform to the tables and

column names in the databases. Another step is to note the columns for

indexing. In addition to primary keys, the designer needs to index foreign

keys, candidate keys and other frequently accessed columns. One also needs

to implement supertype and subtype. Moreover, based on anticipated

20

activities and use patterns, the designer can plan for file placements on disk.

Last, capacity estimation is required before implementing the database.

Data modeling has the following advantages:

" It is a mean of communication - it uses a notation to record and

present concepts and constraints.

" It helps elicit and document requirements - it is a precise statement of

requirements and it can be used to determine which requirements

need to be changed.

* It reduces the cost to change - it is cheaper to change the model than

a completed system. Different trial versions of a model can be used to

get the best results. This reduces the efforts and expenses to build the

actual product.

Data modeling has the following disadvantages:

" The data model requires a trade-off between precision and

understandability. The designer must take a balance between a

business perspective model which talks to humans and a technology

model which talks to the computer.

" The data model needs to deal with time and two-dimensional

representation. However, there is no data model language that takes

time relationships into account very well.

" The data model is limited by pre-defined symbols and graphical

notations. The limited set of symbols make it easier to learn and

21

understand but it limits the things that can be represented. For

example, if a person is weak in vocabulary, he needs more words to

express his thoughts that could be expressed precisely by a few words.

22

2.3 Process of Data Modeling

2.3.1 Model Types

The data modeling language uses different types of models. It allows

us to look at a broad area and then refine it in different stages. These model

types include:

* Entity Relationship Diagram (ERD)

" Key Based Model (KBM)

" Fully Attributed Model (FAM)

" Transformation Model (TM)

* Database Management System Model (DBMSM)

The ERD, KBM and FAM are used for logical data models. Their scope

and level of detail are their differences. When a model is broad, it does not

represent lots of detail and vice versa. Because of their natural correlation,

the ERD and the KBM are used as architectural models. They set the shape of

all models in different stages of development. The FAM is the final form of

the logical model in system development. The first three models will be

discussed in details.

2.3.2 Entity Relationship Diagram (ERD)

The ERD was discussed earlier and it will be discussed in more detail

in this section. As mentioned before, the thorough analysis of requirements is

a preliminary step in creating an ERD. The data modeler needs to gather

requirements before he can model the data. He gets the information by

23

interviewing the clients. During the interview, he asks questions and makes

the problem clearer so that he can fully understand the situation. After the

analysis, he needs to identify the entities, define entity properties and specify

the relationships among the entities. Besides coping with the present needs,

he should also consider future developments and direction by looking at the

strategic plans for the corporation, the departments and the groups. This will

make the design and the database extensible and expandable. If not, the

design today may be obsolete. Rectangles are used to represent entities and

their properties. Lines are used to represent the relationships and connect

entities to entities. In the pavement management system, for example (Fig.

2.3.2a), the diagram shows a scenario header that contains information

about a pavement management scenario such as the year and its name. The

details consist of the names of individual streets and the pavement actions

planned for each street. The header has many details.

is Composed of
ScenarioHeader ScenarioDetails

Fig. 2.3.2a ERD Example

There are two types of ERD: enterprise ERD and detail ERD. Enterprise

ERD contains only entity names and relationships. It does not resolve many

to many relationships. It omits entity properties as it aims at providing a

general perspective of the database design. The detail ERD is the extension

of enterprise ERD. Properties are added for each entity based on the

requirements. Many to many relationship is resolved using an associative

entity. Reference entities are also used to list values that limit the domain.

24

Identify and Define Entities

To identify the entities, one needs to ask four 'w' questions:

" Why does the client want the new system?

" What functions does this system need to provide?

" How is the client going to use this system?

* What are the long-term expectations about the system by the client?

Entity modeling helps the designer to know how people to use the

data. To have a better definition and description of the static data store, the

database designer can create process flow and data flow diagrams. They give

a better picture on how the data will be used. We will discuss process flow

and data flow diagrams later.

To identify the entities for ERD, it would be helpful to hunt for

descriptive names from business sources. A descriptive noun describes an

entity which you want to capture and store while a descriptive verb describes

activities and interactions between nouns. When defining the entities,

descriptions of data need to be identified. The most important source is the

end users. By talking to real people, one can get a background

understanding of concepts and thus a basic vocabulary of nouns.

In the entity definition, there should be three parts:

* A sentence to describe the basic concept

25

" Several sentences to express the data model and include the business

rules. Some significant attributes, relationships and significant

business rules are described.

" Examples

Process Modeling

The process model shows the structure of activities and how the data

flows through the processes. It is a technique to understand what the

company does and how it does it.

Unified Modeling Language (UML) is the leading modeling language

available to represent the process model. It is a modeling language for

specifying, visualizing, constructing and documenting the mechanics and

algorithms of a process. UML provides different diagram types such as - use

case diagrams, sequence diagrams and class diagrams which can be used to

model all kinds of systems which can be large and complex. It helps to break

up complex systems into subsystems in order to overcome difficulties in

comprehending such systems. It also provides good models with well-defined

semantics, which are essential for communication among project teams and

to assure architectural soundness. The use of UML shows a top down

functional decomposition of a system and exposes the system's structures.

Moreover, it also shows the flow of data through a system, and the work or

the processing performed on the data as it moves through the system.

26

Process modeling is necessary to find out how a system works. This

helps to build a reliable, well-functioning and long lasting database. It is a

combination of logical and graphical models which describe how a system

works.

Identify and Define Relationships

It is reasonably simple to identify the relationship type between

entities. Some are obvious but some needs effort to resolve. When entities

are joined together to provide information, some forms of relationship can be

identified. The sources for identifying entities are basically the same as those

for identifying relationships. However, there is one more important source to

identify relationship, which is the entity definition.

Cardinality is a qualifier for a relationship that expresses the maximum

degree to which two entity types can be related. There are three cases of

cardinality:

" Many to many relationship - It is a typical case of relationship

cardinality in ERD. Many instances of one entity type relate to many

instances of another entity type. In this case, an associative entity

standing for this relationship forms two one to many relationships with

the two entities.

* One to many relationship - It is also very common in ERD. Many

instances of this entity type relate to one instance of another entity.

27

* One to one relationship - It is rare in a data model. An instance of an

entity type relates to one instance of another entity.

The relationships above are maximum cardinality. There is also

minimum cardinality. Sometimes it is regarded as the concept of optionality.

When a relationship is optional, an instance of an entity type can exist

without joining any relationship. For example, one may say that an instance

of an entity type 'can' relate to one instance of another entity type rather

than relate to one instance of another entity type. On the other hand, a

relationship is mandatory if it is not optional. In this case, 'can' is replaced by

'must'.

The definition of relationship should have the following:

* Simple sentences to define the relationship from its elements.

0 Business rules which are conditions that restrict the basic definition.

0 Integrity rules that discuss how the deletion, creation or update of an

entity affect its related entities.

PrecindStret~ata H ---0+ Dangat
PK Precinct PK Ses nnonnD PKFK SeptionlD

Deecnptlon StreetNaniMATE
StartTwrminue MANWAT
EnP mhu MANSEW

FK1 Preci nct MANyLE
FaniType MANOdt
Func~lm CATCH.DAS
PsvementType WAT.OQATES
Length GA&LGATES

Fig. 2.3.2b Optional one to many and mandatory one to one relationship

For example, in Fig. 2.3.2b, Precinct has an optional one to many

relationship with StreetData because a Precinct record 'may' appear in more

than one place in the StreetData entity. On the other hand, StreetData has a

28

mandatory one to one relationship with DrainageData because each

StreetData record 'must' have a DrainageData record. The figure only shows

optional relationships because of the limited function of the modeling

software.

2.3.3 Key Based Model (KBM)

KBM focuses on the model architecture. It forms the skeleton of the

information system. The use of keys is the fundamental idea of data

modeling. In a logical model, key is used to identify an entity instance.

Primary Keys (PK)

The primary key is a unique identifier. Its value is a unique way to

distinguish an instance of an entity from the others. No two instances have

the same primary key value. The following are the criteria for choosing the

primary key of an entity:

" An attribute that must have a value.

" An attribute that must have a unique value.

" An attribute whose value determines the value of other attributes in an

entity.

The first two points are obvious. To look up a distinct record in the

database, it must have a unique value, which cannot be null in the primary

key. The third point relates to part of the dependency concept in relational

theory. More details will be discussed later on this point.

29

If a single attribute cannot serve as a primary key, a combination of

attributes is also possible. A group of two or more attributes can be regarded

as a primary key and this is called a composite key. If we have too many

attributes which can serve as primary key, we should choose a key what has

a stable value, a short value and an enterprise determined value. A stable

value means that the value would not change once it is in the database. A

short value means that it is short strings and easy to remember or identify.

Enterprise determined means the values are controlled internally rather than

dictated by an external party.

Foreign Keys (FK)

A foreign key attribute in a child entity is a primary key attribute from

a parent entity across a relationship. The attribute(s) is migrated from the

parent to child. An FK attribute can act as key or data in the child entity. This

tells whether the relationship is identifying or nonidentifying.

PK,FKI ScenarolD PK ScenarlolD
PK SectioniD onroef

PavemntActlonlD Year
Pave PlanCost Cc sileted
Remarks Usefmme

Remarks
DetedStamp

Fig. 2.3.3a Primary Key, Composite Key and Foreign Key Example

Identifying Relationships

An identifying relationship specifies that the relationship is identity

dependent and existence dependent. Identity dependence means that the

30

child's identity depends on the parent's identity. In modeling, it means that

the FK in child is also its PK. Existence dependence means that the existence

of child depends on the parent's existence. In modeling, if an instance of

child exists, an instance of its parent must exist. The above example is an

identifying relationship.

Nonidentifying Relationship

A nonidentifying relationship cannot be identity dependent. The FK in a

nonidentifying relationship must be in the child's data area rather than key

area. However, a nonidentifying relationship can also be existence

dependent.

In Fig. 2.3.2b, for example, Precinct has a non-identifying relationship

with StreetData because the migrated FK Precinct from the Precinct entity is

in the data area of the StreetData entity. However, the relationship between

StreetData and DrainageData is identifying because the migrated FK

SectionID from StreetData is the PK or part of the PK of DrainageData.

Role Naming

The name of migrated FK attribute in the child entity may not fit with

the needs in the child entity. To make the role clear in the child, we can

change the name of the FK attribute and this is called role name. Role

naming is more critical when there are more than one relationship between

two entity types. If the parent entity contributes an attribute twice to the

31

child entity due to two existing relationships, it would be very confusing

without new role names for both FKs.

Independent Entity

An independent entity is one that does not depend on other entities for

its identity. Any FKs are not its primary key. This can also be called a 'kernel'

entity, 'fundamental' entity or 'strong' entity. The login entity in Fig. 2.3.3b is

an independent entity, which has no relationship with any other entities.

Logjjin~j
PK LoginNsms

IPasswordI
lFiretNeme

L&"N sm
Position
Emai

Fig. 2.3.3b Independent Entity

Dependent Entity

A dependent entity depends on at least one other entity for its

identity. There is at least one identifying relationship but can have any

number of nonidentifying relationships. An FK is part of its primary key.

There are three types of dependent entity. They are a characteristic entity,

associative entity and category entity. The first two types will be discussed in

this chapter and the category entity will be discussed in a later section.

A characteristic entity is more than a simple entity, which has a single

value. It has multiple values and some attributes of its own. It depends on a

single parent for both existence and identity. Moreover, it forms a key by

32

adding one more attribute. This type is very common for representing

repeating groups and time related facts. The ScenarioDetails entity in Fig.

2.3.3a is a characteristic entity because it takes ScenarioID as part of its PK

from ScenarioHeader entity and adds SectionID to form its composite key.

In data modeling, a many to many relationship is usually resolved into

two one to many relationships along with a new, associative entity type. The

associative entity records any attributes about the association. It represents

the association between other entities. Its PK is the combination of the

contributed PKs of all its parents. None or one more attribute may need for

its PK if there are more than two association instances. In Fig. 2.3.3c, for

example, as Action entity has a many to many relationship with

DefectValidation entity, an associative entity called ActionEffect must be

present to form two one to many relationships with these two entities.

Actan AcionEfct DefectVaidation

PIK ActionlO PK,FK1 ActioniD PIK DefectiDKFK2 D PK Dfeclu
Description Description
Units Effect Dvcont
Cost Dvcoeff
Comment MaxDVApplyscton

Fig. 2.3.3c Associative Entity

Recursive Relationships

The relationship we have discussed so far is simply an association

between two entities which is not necessarily distinct. However, if an entity

type is related to itself, a recursive relationship is introduced. There are a few

features about a recursive relationship:

33

" It is nonidentifying.

* It has role named FK.

" It is optional in both directions.

* There are additional business rules, which are stated as part of the

relationship definition.

I IlName l
L- - HTit'l Ie .

IDepartmentl
FK1 Empoyeanger

Fig. 2.3.3d Recursive Relationship

In Fig. 2.3.3d, for example, a manager, who is also an employee,

manages zero or many employees. This is a typical example of recursive

relationship.

2.3.4 Fully Attributed Model (FAM)

The FAM focuses on implementation and serving as a non-technical

specification of the system's data structures. It extracts from the architecture

models for its basics and the details are filled out based on the requirement

statements of the project.

Attributes

The attributes are discovered in the same way as entities and

relationships. The only difference is that they are record facts which actually

store the entity values. Discussion with end users and looking into the data

dictionary are still the only way to discover the attributes. It is reasonably

simple to do it by looking for the components of the entity.

34

Here are some guidelines for an attribute:

" It belongs to only one entity. Each attribute represents some facts.

Each fact is only associated with one thing.

" It corresponds to a domain. A domain is a defined set of values. An

attribute only has one domain which can be shared by many

attributes.

* It is a part of the system documentation. Good naming and good use

of domain can save some efforts on documentation.

Attributes also have cardinality and optionality aspects. It is possible

to have a multi-valued attribute but it is not a practice to do so. Having all

attributes with a cardinality of one keeps the model simple and easy to

extend. Sometimes an attribute can record 'no value'. For example, when the

system cannot recognize the value or the value is not applicable to the entity

instance. If an attribute is specified as mandatory, no record will be allowed

to be added to the system unless all mandatory attributes are filled, and

these attributes cannot be removed at any time. The other non-mandatory

attributes may have 'null' values. Null values may cause the following

problems:

* It causes inconsistencies in the implementation. Database

management systems may not define and implement the concept of

null. This leads to complexity, unpredictability and inconsistency if we

use different platforms.

35

" There are inconsistencies in evaluation. It is impossible to compare an

unknown value with an actual value.

" Arbitrary treatment is required. Some standards may need to apply for

dealing with the inconsistencies mentioned about.

Although there are some problems with optionality of attributes, capturing

business requirements accurately should have the first priority.

If the value of an attribute can be computed from other values in the

system, it is called derived attribute. In theory, a derived attribute should not

exist in the system because the most up to date value can be obtained

whenever it is needed. Derived attributes cause redundancy and

inconsistency in the data model. However, its existence can express the

requirements in a clear way. It is also a trade off between simplicity and

convenience. The following are some criteria for considering the use of a

derived attribute:

" If this fact is accessed very often, it is good to have this attribute in

the data model. The business users may think that it is missing or that

you have ignored them.

" Derived attribute in the model can be used to document an algorithm

or calculation rule which is used to determine its value in the system.

" If an attribute is referred to by rules recorded elsewhere in the model,

it must be documented.

" When the derived attribute is derived by some other related values, it

would be good to have it in the data model.

36

* If the derivation of the value involves many resources, it is better to

store it in an entity.

Generalization and Specialization

Entities are concepts that are relevant to the system. Some are

generalizations of the others while some are more specialized. It would be

useful if we incorporated these generalizations and specializations of entities

into the data model.

A generalization hierarchy is used to group entities that share common

characteristics. The entity type that represents the general concept is called

generalization entity. It groups the facts that are in common to all of its

instances and it is represented by either a square or puffy box. The top

generalization entity can be either independent or dependent. A category

entity is an entity type, which specifies additional and different facts. It is

represented by puffy box. Moreover, a subtype can also be a supertype of

the others. For example, in Fig. 2.3.4a, the Student entity is the

generalization entity of the Undergraduate and Graduate entities.

Student

Fig. 2.3.4a Generalizations and Specializations

37

The connection between a supertype and a subtype is called a

generalization structure rather than a relationship. It is because the structure

of subtype and supertype is the same instance. A Supertype is specialized by

its subtype and subtype is generalized by its supertype. In a relationship, the

instances are separated and different instances are related. Moreover, a

generalization structure is not named explicitly.

A subtype category cluster is a set of one or more generalization

structures where the subtypes share the same supertype. An instance of a

supertype can only be an instance of a subtype. The subtypes in a cluster are

mutually exclusive. A cluster is represented by an underlined circle. An entity

can be a supertype of more than one cluster and the subtypes in a cluster

are not mutually exclusive of the subtypes in other clusters.

Every subtype must have a supertype. How about the other way

round? When an instance of a supertype must be an instance of at least one

subtype in a cluster, it is called complete cluster and it is represented by

double underlined circle. An incomplete cluster is represented by single

underlined circle. In this cluster, an instance of a supertype may be an

instance of any subtypes.

A category discriminator is an attribute of a supertype, which contains

information relation to a cluster. Its value determines the cluster, which an

instance of the supertype belongs to. In a complete cluster, the value of the

38

discriminator must be present. In an incomplete cluster, it may or may not

have a value.

In a generalization hierarchy, one or more entity types can fully

describe an instance. Generalization contains the inheritance of properties

including attributes and relationships by the subtype from its supertype(s).

Subtype inherits the properties of its supertype while it contains its own

specific properties. It is also possible to have multiple inheritances in the

data model. However, the data model should avoid that because there are

potentials for inheritance conflicts.

For example, in the pavement management system, street is a

supertype while private street, public street or paper street can be its

subtype.

2.3.5 Business Rules Implementation

Business Rule Basics

Vocabulary is used to describe the important things and the rules that

constrain and control those things. Terms and facts are the vocabulary of the

business. Terms are basic words and they exist as entity types and domain

classes of the system. Facts are simple and declarative sentences are

associated with terms. These facts are the relationships, attributes and

generalization structures of data model. The rules are classified by the scope

39

of their coverage. The constraint rules must be true and the conditional rules

may be true depending on certain conditions.

Integrity Constraints and Unification

Despite limiting the cardinality and specifying a mandatory

relationship, there are also other integrity rules about relationships. These

are called referential integrity rules. It means that when a foreign key has a

value, that value will match the value of an entity identifier in the system.

Referential integrity constraints specify some behaviors. The behaviors

include insert, replace and delete. Many database management systems have

these behaviors implemented and the programmers and designers do not

need to write codes to enforce these rules.

Constraints on relationships are difficult to show in data model.

However, unification, a kind of relationship constraint, can be stated in a data

model. Unification means two or more foreign keys pointing to the same

parent will migrate to the same child. When there are two or more paths of

identifying relationships to a child instance from a parent, it is called

unification. In unification, same name for the foreign keys from the common

parent is used in the child. It can only be used if all the relationships in all

paths are identifying. Moreover, it requires that the parent of the instance to

be the same.

40

User Defined Domains and Reference Entities

Constraints on attributes ensure that only valid values are in the

database. Four general validation rules can be applied to the attribute's

value:

" Individual character

" Value within specification

" Value within context

" Value dependency

The first one is very basic. The system only checks an individual

character to see if certain characters are valid. For example, an email

address must contain the character '@'. This is defined using built-in data

types in the system. The second constraint uses domain rules. The attribute

value must be within a pre-defined range or conform to the rules of certain

algorithms. This is defined with a domain rule. For example, the cost of any

construction project must be positive. The third one involves the attribute

value, the validation rule and the context of the system at the place where

the rule is checked. A typical case is the uniqueness of certain attributes. The

last one is the most complex. It depends on the validation of the other

attribute values.

We can use user defined domain and reference entities to be the

constraints. A user defined domain means that there is a pool of valid data

and the input value is checked to see if it presents in the pool. In the

41

reference entity method, the key(s) in the entity is used to check the

validation whenever it appears in the system. The choice between these two

depends on how volatile the values are, the source of values and the point of

enforcement. The reference entity method is suggested if the values are

changed frequently and if the definition of values is controlled internally.

Moreover, one needs to check if the database management system supports

user defined domains.

Surrogate Keys

In any entity, there must be a unique attribute to identify each

individual record. That key can be a meaningful attribute which stores data.

It can also be a meaningless and system generated identifier attribute -

surrogate key. It is usually used when the original primary key is a

composite key. This decreases the size of the primary key and the number of

foreign key attributes to migrate in a relationship. The ScenarioID attribute in

ScenarioHeader entity in Fig. 2.3.3a is a surrogate key.

Here are some considerations when choosing a surrogate key rather

than a natural primary key:

" A surrogate key should be used if it simplifies the key structures in the

model. For example, use a surrogate key if the composite key is too

long.

" Surrogate keys are usually created for internal system and internal

use. However, sometimes the system users also use the surrogate key

42

to track something. If a surrogate key is convenient or the business is

familiar with it, the modeler should use it.

* A time stamp may be a good surrogate key if time is a useful value in

the record. However, it is not natural to many people and different

time stamps may be only differ by a very small amount. So a choice

must be made depending on the business needs.

2.3.6 Normalization

Normalization is a design standard that shows the database design in

normal form specifications. It is also a process of organizing attributes into

relation sets. After normalization, anomalies are minimized. The word

'normalization' implies a meaning of making the relationships right. There are

five normal forms (1NF - 5NF). The five normal forms will be discussed in

details.

Relational Model and Normalization

An unnormalized table is not a relation. A relation is a table with some

special qualifications. A relation must have the following properties:

" One record type in each table

" Fixed number of fields in each row of table

* The value of a field from a domain of possible values

* Same domain for all fields in a column

* Unique row

" No hidden meaning in any row

43

0 Distinct fields

When a table is in the form of relation, it is in its 'normal form'.

Logical Model and Normalization

A logical model represents reality. There are two ways to build a

logical model. It can be derived from an accurate ERD. This method gives

you a chance to review the ERD. Another alternative is using normalization

techniques. A logical model is also platform and technology independent. It

represents a normalized design and shows what the database looks like.

However, it does not offer any guidance on how to implement the database.

It is also a good way to document the database design. It was primarily

concerned with the concepts and structures required to support the business

requirements.

Relational Data Analysis and Normalization

The relational data analysis organizes attributes into relations. The

relations are used to build data models, which are compared and merged into

the logical data model to form the final system. With these processes, the

quality of data model is guaranteed and it can be used as the specification of

the system. The relational data analysis is a series of steps, which normalize

data through the five normal forms step by step. Although there are five

normal forms, in many cases, placing entities in the 3NF is generally enough

and it is not a common practice to carry out the normalization up to 5NF. In

general, there are five conceptual steps to do the relational data analysis:

44

* Put all data in a single, unnormalized table.

" Choose a key from the unnormalized data.

" Move repeating groups into separate tables (1NF).

" Move attributes not dependent on the whole key into separate tables

(2N F).

" Move attributes which depend on other attributes into separate tables

(3NF).

Five Normal Forms

* First Normal Form - This requires that there must be only one value at

each row and column intersection. No repeating groups in a table can

satisfy the first normal form.

" Second Normal Form - It states that every non-key attribute must

depend on the whole primary key. There is no single non-key column

which only depends on part of a composite primary key.

" Third Normal Form - It imposes one more rule than second normal

form. There is no non-key attribute which depends on any other non-

key attribute. It has to be a fact about the primary key.

* Fourth Normal Form - It bans independent one to many relationship

between primary key and non-key attribute.

" Fifth Normal Form - It implements a principle that eliminates all

redundant data in a table. It is a good practice to break tables into the

smallest possible pieces. This allows a better control over the database

integrity.

45

Denormalization

Although it is not common, some system designers may use

denormalization to get certain results and it was more common in early days.

In early days when the computers were not as powerful as those today, it

would take a long time for the system to execute a join table query, i.e. a

query that gets data from more than one table. To improve the processing

time, redundant data may be added into different tables. This shortens the

time for very common queries because only one table is accessed. However,

the programmers need to take extra care because when data is changed, the

program needs to change the data in more than one place. This is a trade off

among efficiencies in processing time, efforts to program common queries

and efforts in programming the whole system. However, as computing power

(CPU power) has increased in recent years, this is no longer a problem.

Today, the most useful way of denormalization is data warehousing.

Redundant data appears in the database so that quick searches on can be

carried out without much extra effort in carrying out many algorithms or SQL

statements. This is very useful in the internet era and the common e-

Commerce sites today, because customized content can be packaged and

sent to different customers with short response time from the system. When

data is received from the customer, information is generated and is stored in

multiple places. However, this requires very careful programming.

46

2.3.7 Conclusion

This chapter describes a comprehensive process of designing a data

model. However, not all steps in the process are applicable to every case or

design. Different systems or designs have their own distinct characteristics

such as business needs, constraints and complexity, so it is general that

different designs adopt a slightly different process to cope with their

particular needs.

47

2.4 Data Modeling in Practice

2.4.1 Data Model in Real World

Data models in real world are usually very large and complex. They

may be developed by different groups of people and then integrated at the

end. For such large data models, it is impossible for everyone to understand

every part of the system. Thus, some techniques are used to deal with a

large model in smaller parts while keeping its overall integration and

integrity. Two techniques, data model views and user view sessions will be

discussed in this section.

Data Model Views

A data model view is a small part of the completed data model for the

system. It is useful for complicated relationships in a particular business

activity. This technique has three uses:

" Find out missing facts, which are important to the business activity.

" Document all model terms and facts at any level.

" Examine the feasibility of the paths of relationships.

A data model view can have a broad range of levels of detail. Broad

view models are useful for modeling an application that is shared across

different departments. In this case, view models are developed with each

user area and then the results are merged together. A local view model

shows the information requirements of a report or query.

48

User View Sessions

Many projects are completed by groups of people. In a large-scale

project, the responsibilities and communication methods of each participant

are formalized. Work progress is planned in the user view sessions. People

from different groups meet to monitor progress and take the chance for each

group to interact with each other in person. This is also a good opportunity to

make important decisions.

In these user view sessions, different groups prepare an individual

data view model. To combine every piece into a completed model, the

following is needed to follow:

" Identify and solve conflicts such as naming differences, type conflicts,

cardinality conflicts and business rule conflicts.

" Modify a data view model to conform the others. The best data view

model can be used as a skeleton and then other pieces of views can be

incorporated into it.

" Merge views. Merge all views together into a completed model after

the modification of all differences.

2.4.2 Data Model Quality

Data Model Quality Considerations

There are three main considerations of data model quality. They are

completeness, accuracy and semantics.

49

" Completeness - A complete data model must include definitions, key

attribute identifications, domain rules, integrity constraints, algorithms

for derived data and specifications of data format. Moreover,

consistency is also a part of completeness.

* Accuracy - The data model must implement the business rules

correctly. This includes not missing important requirements and

reflecting irrelevant requirements. Precision accounts for data quality

as well.

* Semantics - Proper definitions of the data model components are

another key point. Clarity is important.

Data Stewardship

Data stewardship relates to the quality of the model and the data

values stored in the system. The concept of stewardship of data includes the

use of enterprise data across a wide variety of applications and

organizational boundaries. Specifications are needed to define the use of

data. It is impractical to allow one person or group to be responsible for the

stewardship of the model and its contents. The responsibility should be

divided up.

Data stewardship includes three areas of responsibility. They are data

definer, data producer and data consumer. Each area of responsibility may

consist of business and system components.

50

A data definer defines the data requirements for adopting the

objectives of the enterprise. He ensures that the data is shared effectively.

The business side data definers define the meaning of the data. They state

the data requirements that implement the business requirements. The

system side data definers create and maintain the data model. Both parties

work together to establish and maintain the business requirements linked to

the data.

Business side data producers create and originate data. They usually

perform the business activities and have some linkages with the front end

users. They are also responsible for the quality of the data. The system data

producers build the database for getting new data. They also give support for

physical data security, integrity and access. Moreover, they manage the

physical data, and control the access and the use of data.

Data consumers use the data to perform the business activities. They

ensure that the modification, use and automation of data do not nullify the

values of data. The business role carries out the business activities. The

system data consumers define and maintain the system processes.

51

3 M.Eng Information Technology: Arlington Project

3.1 Project Background

Arlington, MA has 90 miles of streets that are inspected on a regular

basis to determine maintenance and repaving plans. There is an annual

budget for pavement maintenance and reconstruction. Analysis is performed

to determine which streets have the largest needs and to prepare the best

maintenance program. The Arlington Public Works Department currently has

a 10-year-old DOS-based pavement maintenance system. The old system

uses DBase as its database system, which is a product of the 1980s. As it is

not a relational database and the data was not normalized, there is much

redundant data. It was difficult for our project team to use the old database

design. Instead, we used the old data to examine the functions of the old

system and to restructure the data model to support the new pavement

system.

There are three main parts in our new system. They are street

inventory, pavement inspection and pavement analysis. Our new Pavement

Management System can be highly effective in improving pavement

maintenance, as well as reducing the administrative burdens of frequent data

collection. There are three components: an inspection component (data

collection), a Windows web-based (data collection, usage and change)

application for internal department use, and a relational database for storing

and retrieving the street data (data maintenance).

52

There would be migration of data from the existing database to the

new database to preserve the current data. A new database will be set up to

store the data and to provide linkage to the new pavement management

system. The database would be restructured to take account of the revised

model for pavement condition calculations.

Inspection (Data Collection)

The surveyor inputs the data into a Palm TM Pilot so that the data can

be uploaded to the main database in the office through a customerized data

transfer interface. The data collected at this stage would be: Surveyor ID,

Date/Time of Survey, Global Positioning System (GPS, Latitude/Longitude),

Street Name, Relevant Data (such as major cracks, number of patches,

drainage problems, etc).

Windows Web-based Application (Data Collection, Usage and

Change)

This application should integrate the new pavement management

model to enable a user to generate current conditions for a particular

pavement section and to predict future deterioration.

The system should be able to create a new individual profile for each

user. The user can modify and update his/her own personal preferences and

settings through the application. The user can browse, search, add, update,

and delete records in the application. Besides, the user should be able to get

53

results through a series of calculations based on the model, user's preference

and data in the databases in the pavement analysis section. Moreover, the

user can change his settings or preferences in the main menu including login

information.

Relational Database (Data Maintenance)

The relational database was designed using MySQL. In MySQL, the

user can set up the primary key for the tables. However, relationships

(linkage) cannot be set up to enforce changes (referential integrity). Thus,

the programmer needs to manage for changes in different tables according to

the data. To simplify the design of the data model, Microsoft Access was used

before the database was implemented in MySQL. During system

implementation, MyAccess was used to transfer tables from Access into

MySQL directly. Record and table changes can also be done on MySQL using

the Access user interface with the help of MyAccess.

Conclusion

These are a very brief overview of the requirements for the whole

pavement system. In later sections, the process of data modeling will be

discussed in more details. The requirements of the street data and pavement

analysis sections will be discussed in the next chapter.

54

3.2 Data Modeling Requirements

DrainageD
PK,FK1 Section

MANTE
MANW
MANSE
MANEL
MANOT
CATCH
WATG
GASG
CULV_(
HDWL_
FLOW
DITCH
LEAK-C
BA DI
SIDES
DRAIN_
CROS_
GRADE
CURB-
CURB-
CURBJ
CURBI
CURBJ_
ESTC
Update
Remark

PKCurbActioniD

Description
Units-
EstUnltCost
Comment

Login

Passwordi
LFirstName

lLstNamel
Departmen

t

Position
Email

ata Constructdon History PrcntFn~asDeteriorationata Ptf recinct FznoClas
PK,FK1 SectioniD PK,FK1 ActioniD

ID PK CompletedDate PK Precinct - PK Func Class PK,FK2 FtnCD
______~ ~ _______PK Func Clss

ri PK,FK3 PavementTypL FK3 ScenariolD Description I Descnption -

AT FK2 ActionD TlmeCoeff
EI I T - - - - - - - - - - - - - - 1TrafficCoeff

E NewPSI- - -

H FinalCost
_BAS Remarks i Paerenteyp
ATES -- PK TYPE
ATES
COND D S P DEtCP
COND
COND PK ActioniD
COND FacilityType treetData D
OND StetaaDescriptionONDUnt

COND PK TYPE H- SectionD PK,FK1 SectionlD Units
L_DR PK SurveyDate Cost
POCK DESCP StreetName PK,FK2 DefectiD Comment
SLOPE Strtae ApplySection

TYPE EndTerminus Value

LOC FK4 Precinct Inspector
OC FK2 FacIlType DeletedStamp I

COND PK StreetlD FK1 FuncClass
REV FK3 PavementType ActionEffoctLENTH StreetName Length
3_REP dt
rimeStamp ar rsL Actin

EndrAddressL SeaioDtails PK,FK2 ______il

StartAddressR PK,FK1 ScenarlolD Effect
EndAddressR PK,FK3 SectioniDI
StartLongitude
StartLatitude FK2 PavementActioniD

Curt>Details EndLongitude PavementPlanCoat
EndLatitude RemarksEn~ ue Remarks DefectValidation

H-P PK,FK1 ScenarKlSc enar

S~dswM&~ Cmpletd Cefotlat

PK,FK3 SectPonlD I dectedStamp P K Defect D
PK,FK2 CurbActonl I'Zp ConstrDescription

Curbtength Dvconst
Cur~la~os iScenarioHeader Dvcoeff

Remrks - - -- - - - -- -- PIK ScenarlolD)MaD

ScenarloName

Completed DefectData

PIK SidewalkActioniD PKF1ScenariolD) 1 ---- Usemame PK etol

Description -- PK,FK2 SideActioniD DeletedStamp I PK,FK1 DefectlD

Units Value
EstUnitCost Sideengt InspectionUpdate
Comment Rieaksa Construction Update

Fig. 3.2a Pavement Management System Model

Fig. 3.2a is the data model of the pavement management system. As

mentioned before, data model reflects the business rules in certain areas. It

is a precise and formal statement of business rules. This data model is

relatively simple and it can represent several pages of requirements. In a

more complex system, a data model is very useful to represent the

requirements in a precise way.

55

3.2.1 Street Data

In "Street Data", there are a number of tables, which store the

physical data of the street sections. Some old tables were imported from the

existing application. The main ones are StreetData and DrainageData. Due to

the requirements of new functions, more tables are needed for inspection

data, construction and maintenance data, and the most up to date defect

data of a street section. In the application, the user should be allowed to

view the meaningful data of each section in a single window to avoid jumping

from screen to screen, which is the case in the existing application. The user

should be allowed to edit and add new records.

3.2.2 Pavement Analysis

~~~ L4 n.n*,

PAVEMENT ANALYSIS

Select Year

oed "ando Select Year
20007-

Conpwa 9canano Select Year

20111 Town of Arlington Department of Public Works. All ri hts reserved. F or questions or comments, pie ase send e-mail to

Fig. 3.2.2a Pavement Analysis Options

In Fig. 3.2.2a, under "Pavement Analysis", there are three sub-

categories. They are 'Create new scenario', 'Load scenario' and 'Compare

56



scenario'. The pavement condition model is implemented in the analysis. The

pavement condition (PSI) would be in the range of 0 (worst) to 5 (best). A

user can choose any pavement section he wants to display by querying the

database or choosing from the drop-down menu.

0 2001 Town of Arlington Department of Public Works. All rights reserved. For questions or comments, please send e-mail to
webmaotardbtown arlinoton-ma us

C U

Fig. 3.2.2b New Scenario is created

Under 'Create new scenario', the name of the new scenario must be

entered. No duplicate names will be allowed if a past record is found. In Fig.

3.2.2b, after the scenario is created, the user can obtain information about

street sections in the database by query. The results generated would be

based on the PSI range, district, street name and the time of last

maintenance action. Also, there is a drop-down menu for easy query.

57

I I Wh*"



Pavement Managvenat andl 1InSPeCtIon Slyston

PAVEMENT ANALYSIS

Scenario Completed? INZj Sub ,, i1

ALPINE STREET 57 BLOSSUM SUMMER No action 5.0 5.0 0 rISTREET STREET At

ALPINE STREET 58 300'S OF BLOSSUM No action 5.0 5.0 0BRANCH AVENUE STREET _____-

ALPINE STREET 59 A6 PARK 350 N No action 5.0 5.0 0AENUE EXT QU
APPLETON 299 ARK AVENUE WACHUSETT No action 5.0 5.0 rSTREET 29PRAVNEAVENUE ALUM_ ____

APPLETON 30WACHUSETT HOSQ#2PLTN 300 WNUET HOUSE #425 No action 5.0 5.0STREET _ __AVENUE 5.0U I5.
APPLETON 301 HOUSE #425 WADSWORTH No action 5.0 5.0r

ARIZONA 617 DECATUR 20' S No action 5.0 5.0 0
TERRACE I_ __STREET ______ ____ ___ _________

BARTLETT 4 GRAY STREET WOODLAND No action 5.0 5.0 CAVENUE STREET RE 0 1.

DECTUR 612 FTEb O o action m 5.0 5.0

Fig. 3.2.2c Scenario Details

All results generated by the query would be displayed and user would

be able to click on one of the sections and choose a particular action for that

street as shown in Fig. 3.2.2c. All results displayed on this page belong to

the same scenario that the user just created. A user should be able to

remove some of the sections or add more sections by doing additional

queries.

When loading the scenario, the user can filter the list of scenarios

displayed by the system, by year. The user then chooses the desired

scenario to load. The summary page is displayed after the user creates or

loads a scenario. It lists all streets currently in that scenario. This would be

the same as the result page after a new scenario is created.

58



Pavement Mlanagement aind hnasg.fin Sysbe

Street name LPINE STREET LOSSUM STREET U M R

Current PSI: 5.0
Predicted PSI: for YearF20 j a

Crack Seal5.0 0 $0.0

Chlp Seal .0 $1.35 $15 ... ... 0.0 r

Crack and Chip Seal 5.0 $1.35 $135 0.0 r

Overlay 5.0 $3.06 $306 - 0.0 r
Surface Patch 5.0 $1.53 $153 0.0
Grind/Mlll 5.0 $2 $2 0.0
Full Depth Patch 5.0 $6.12 $[612 0.0
Rubber Seal 5.0 $2.85 $1285 0.0 r

Reconstruction 5.0 $6.11 $11 0.0 C
ApptyAciontoStst cancel IGraph| st satows _ _

Fig. 3.2.2d Pavement Action Menu

Once the user selects a particular section, a list of possible actions is

displayed along with the name of the scenario, street details, and current PSI

as shown in Fig. 3.2.2d. The actions include maintenance actions such as

crack sealing, sand seal, slurry seal, etc. For each action, the result and

other information for that action is printed on the screen such as 'Predicted

PSI', 'Predicted Cost', and 'Benefit / Cost Ratio'. The user is able to select

the desired action. Also, the user can enter the 'Planned Cost' to consider

other circumstances. Curb actions and sidewalk actions are provided as add-

ons of the street section to allow the user to conduct additional maintenance

actions. Furthermore, the system predicts the pavement condition from the

current time to 5 years later if no action is taken in the current year. The

user is able to see the details of the selected pavement section in a new

window by clicking on the 'Street Details'.

59



After the user chooses an action or no action for one particular

pavement section, the summary page is displayed again to show all selected

pavement sections and their associated actions. The user can go back to add

more sections to scenario. If the scenario is used as the maintenance action

plan for that year, after the completion of all maintenance actions, the user

can choose 'Construction Completed' to input the information to the

database. Before that, the user would be asked about the actual cost of all

actions for every single street section in the scenario. The associated data

such as defects and construction history would be updated accordingly.

PavoimsntIMauage~mat su gi icUin Svstwn

PAVEMENT ANALYSIS

c) o f on De o p bli W r A rt Flor questions or comment, please send e-mail to I

Fig. 3.2.2e Compare Scenario

In Fig. 3.2.2e, under "Compare scenario", users can compare different

scenarios in a particular year. In addition, details of the selected scenario

should be shown as well to assist the user to make a wise decision.

60



3.3 Case Study of Data Modeling

Based on the implementation of three main functions in the pavement

management system, the final data model is divided into three parts: Street

Data Model, Pavement Analysis Model and Pavement Condition Model. There

is a brief description for each model. Besides the description, characteristics

of each entity and relationships between entities will also be discussed.

Keys in the model diagrams:

Solid line: Identifying relationship

Dashed line: Non-identifying relationship

PK: Primary Key

FK: Foreign Key

Bold attribute: Mandatory field

(Note: The database documentation in Appendix 1 contains all the information about

the entities and attributes used in the final data model. The role of every attribute is

not discussed in detail in this chapter.)

Street Data Model

IStreetName

PK Precinct

Description DSP

------ ---- -- ----0T8nptbo Y~

PK,FK1 SectionD
PK CoPleted Dte

ScenerolD) 0
ActIoniD
OIdPSi
NewPSI
FinalCost
Remarks

FuncCaeec

- - - - - - - - - 4- PK Func Class

IDescription

StreetData
PK ISectionID

FK3
FK2
FK1
FK4

StreetName
StertTermlnus
EndTerminus
Precinct
FaclType
FuncCss
P nTye __ _
Length
Width I
Start~ddreseL
End dressLL
StartAddreasR
EndAddressR
Stwtongitude
Starti-atitude
EndLongitude
EndLatitude
Remarks
DeletedStamp

Street Data Model

61

3.3.1

DefwctData

PK,FK1 SectIonlDI
PK Dif_01D

Value l
I iptructionUpdate I

C ainageData
PK,FK1 SectionlD

MANTEL
MANWAT
MANSEW
MANELE
MANOTH
CATCH-BAS
WALOATES
GASGATES
CUL'_LOND
HDWL.COND
FLOW-COND
DITOI-OOND
LEAK-COND
BADICOND
SIDESLDR
DRAIN-POCK
CRO&SLOPE
GRADES
CURBLTYPE
CURB LOC
CURBCOOND
CURB..REV
CURBLENTH
EST_.BREP
UpdateTimeStamp
Remarks

PK,FK1 SectionD
PK SurveyDate
PK DefectID

Value
inspector

Fig. 3.3.la



Table: StreetData
SectionID StreetName StartTerminus EndTerminus Precinct FacilType FuncClass

300 APPLETON WACHUSETT HOUSE #425 1 20 4
STREET AVENUE

301 APPLETON HOUSE #425 WADSWORTH 1 20 4
STREET ROAD

PavementType Length Width StartAddressL EndAddressL StartAddressR EndAddressR
10 2500 24 208 524 209 425
10 1549 24 526 540 427 509

StartLongitude StartLatitude EndLongitude EndLatitude Remarks DeletedStamp
-71186399 42420295 -71195500 42419200 NULL N
-71195500 42419200 -71199304 42416946

Table: DrainageData
SectionID MANTEL MANWAT MANSEW MANELE MANOTH CATCH BAS

300 0 0 24 0 0 16
301 0 0 20 0 0 9

WAT GATES GAS GATES CULV COND HDWL COND FLOW COND DITCH COND LEAK COND
0 17 NONE NONE NONE NONE NONE
9 1 NONE NONE NONE NONE NONE

BA DI COND SIDE SL DR DRAIN POCK CROS SLOPE GRADES CURB TYPE CURB LOC
GOOD GOOD POOR GOOD GOOD GRANITE BOTH SIDE
GOOD GOOD POOR GOOD GOOD GRANITE BOTH SIDE

CURB COND CURB REV CURB LENTH EST CB REP UpdateTimeStamp Remarks
GOOD 6 5000 30 00000000000000 NULL
GOOD 6 3098 75 00000000000000 NULL

Table: PavementType
TYPE DESCP

10 BIT. CONC., CONVENTIONAL
20 CHIP SEAL, CONVENTIONAL

Table: FuncClass
Func Class DESCP

1 Major Arterial
4 Local

Table: FacilityType
TYPE DESCP
20 PUBLIC ROAD
30 RECREATIONAL

Fig. 3.3.1b Sample Data of Street Data Model

62



In Fig. 3.3.1b, sample data of street data model is shown. Two sample

records are extracted from the tables. However, the actual tables contain

many more records.

Description of Street Data Model

The street data model represents the physical raw data of all street

sections. The names of the entities and attributes are descriptive.

StreetData and DrainageData store the data of different street

sections. Many of the data in the database were imported from the existing

application. These two tables are mainly used to generate query results. The

data in these tables is very unlikely to be changed in the future. These two

tables can be combined together as the data has the same role in the model.

The reason for separation is that the DrainageData entity is also accessed by

another Arlington project - the Street Opening Permit System, which will

keep updating the DrainageData entity in the future. Moreover, although

those two tables have the same role in the model, the data can be divided

into two different areas. It is also worth noticing that there is an independent

entity called StreetName that stores the unique street names in Arlington. To

achieve a better data model, the PK of StreetName entity StreetID can be

migrated to StreetData instead of having a StreetName attribute in the

StreetData entity. However, our data model does not implement this.

63



Some street features such as precinct, facility type, functional

classification and pavement type have their own tables. These tables were

imported from the existing application. In order to keep the old data, we

have to use their original key rather than a surrogate. This decreases the

efficiency of our model because the original primary keys are not meaningful

and they are not chosen in any particular order. The presence of the feature

tables reduces duplicated data in the database and allows easier data

manipulation, update and insert as only one table is involved in these

processes. These tables are queried when street data is needed.

The data model adopts new functions such as inspection and

pavement analysis in our pavement management system. InspectData is

used to store the data from street inspection while DefectData stores the

most up to date physical defects of all street sections. The update of the

DefectData entity depends on both the new inspection data and construction

action data. ConstructionHistory stores the construction and maintenance

actions on all streets in the future. New records are frequently added to

InspectData and ConstructionHistory but after records are added, they are

not changed. The DefectData entity is updated whenever there is new data in

these two entities. The number of records in the DefectData entity is fixed if

no new streets are added because it stores the most up to date defect data

and each street section has fixed number of defect types. While new defect

types could in theory be added to the model, the implementation of the

pavement system hardcodes the current defect types.

64



The user is allowed to delete any street records by changing the

DeletedStamp attribute in the StreetData from the default 'N' to 'Y' in the

application. If the user wants to undelete the 'deleted' street record in the

future, he needs to change the value back to 'N' directly in the database. This

approach avoids the loss of relationships with other entities that may cause

system errors.

Characteristics of Each Entity

StreetData:

The SectionID is the surrogate key. When anything concerning the

street data is needed, it must be used as an identifier. This entity also

has four foreign keys from the feature tables for validation, as

described below.

DrainageData:

The migrated SectionID is its primary key. The eight kinds of manhole

in this entity need to be updated by the permit system. The condition

attribute has a fixed number of condition types.

StreetName:

StreetID is the primary key. When a new street section is added, the

application needs to check if it is a new street.

DefectData:

The SectionID and DefectID form the composite key of this entity. This

entity saves the most up to date defect data from inspection and

65



construction data. The pavement condition (PSI) is calculated based on

the defect data in this entity and the last modified time.

InspectData:

The SectionID, SurveyDate and DefectID form the composite key of

this entity. It is because each street has different kinds of defects and

the system must keep track of every inspection.

ConstructionHistory:

The SectionID and CompletedDate form the composite key of this

entity. As there can only be one action for each street section in the

chosen scenario, thus ActionID is not part of the primary key.

FuncClass:

This functional classification entity has FuncClass as its primary key

and Description attribute describes the human understandable

meaning of the record.

FacilityType, PavementType:

These two entities have TYPE as their primary keys and the DESCP

attribute describes the human understandable meaning of the record.

As these entities were directly imported from the existing application,

we did not make improvements because all street data would have

needed to be changed.

Precinct:

The Precinct number itself is the primary key of this entity. This serves

the role of 'district' or geographical entity in the system. The town of

Arlington is divided into 21 precincts.

66



Relationships

This model has both identifying and non-identifying relationships. The

street feature tables have non-identifying relationships with the StreetData

entity, as the migrated attributes in StreetData are not part of the primary

key. As SectionID in the StreetData entity is used as the identifier of street

section, it is used as the whole or part of primary key in DefectData,

InpectData, ConstructionHistory and DrainageData entities. In other words,

these tables have a migrated foreign key from StreetData as their primary

key and thus their relationships with StreetData are identifying.

The modeling software Microsoft Visio 2000 cannot show mandatory

one to many relationships and one to one relationships, so the optional one

to zero or many relationship and one to zero or one relationship symbols are

used respectively in the model. The relationships between entities in this

street data model are obvious. All street feature tables have one to zero or

many relationships with StreetData table. Time is used in both

ConstructionHistory and InspectData, and thus StreetData has one to zero or

many relationships with them because a street section may have the same

inspection data and construction data at different times. The relationship

between StreetData and DefectData is one to many because each street

section has different kinds of defect. StreetData has one to one relationship

with DrainageData because both entities must exist to store the data of a

street section.

67



Pavement Analysis Model

PK SidewalkActionlD

Description
Units
EstUnitCost
Comment

SideDetails

PK,FK1 ScenarlolD
PK SectionlD
PK,FK2 SideActionlD

SideLength
SidePlanCost
Remarks

ScenanoDetails

PK,FK1 ScenariolD
PK SectionlD

FK2 PavementActionlD
PavementPlanCost
Remarks

) |i !

Scenado~eader

PK ScenarolD

ScenarloName
Year
Completed
Username
Remarks
DeletedStamp

Action

PK ActionlD

Description
Units
Cost
Comment
A I SQcp-I#%nt

CurbAction

PK CurbActionlD

Description
Units
EstUnitCost
Comment

CurbDetails

PK,FK1 ScenariolD
PK SectionlD
PK,FK2 CurbActioniD

CurbLength
CurbPlanCost
Remarks

Fig 3.3.2a Pavement Analysis Model

Table: ScenarioHeader
ScenarioID ScenarioName Year Completed Username Remarks DeletedStamp

32 test02 2003 N mit N
6 testing 2002 Y mit wesley N

Table: ScenarioDetails
ScenarioID SectionID PavementActionID PavementPlanCost Remarks

6 20 4 20000 NULL
6 13 1 10000 NULL

Table: SideDetails
ScenarioID SectionID SideActionID SideLength SidePlanCost Remarks

6 43 3 100 2000 NULL
6 355 2 200 3000 NULL

Table: SidewalkAction
SidewalkActionID Description Units EstUnitCost Comment

1 Concrete sidewalk Square yard 18
(4 inch slab)

3 No Action Square yard 0

Fig. 3.3.2b Sample Data of Pavement Analysis Model

68

3.3.2

I pptoy

I I 1 -04I go



In Fig. 3.3.2b, sample data of pavement analysis model is shown. Two

sample records are extracted from the tables. However, the actual tables

contain many more records.

Description of Pavement Analysis Model

The pavement analysis model represents the pavement analysis

function in the pavement management system. A street section has three

main parts: pavement, curb and sidewalk.

As each scenario may have more than one street section, we need two

separated tables. One is ScenarioHeader, which stores the scenario

information. Another one is ScenarioDetails, which stores the street section

details in the scenario. When a user creates a new scenario, a new record is

added to the ScenarioHeader entity. Street section details are added to the

ScenarioDetails entity when the user inputs street sections to the scenario.

As the Public Works Department at Arlington needs to write a budget plan

each year for the maintenance actions on all the streets, scenarios are

created when they prepare for the annual budget plan. If a scenario is

chosen to be an annual maintenance plan, the user needs to tell the system

when the scenario is completed. Therefore, the data in ConstructionHistory

can be updated and the actual cost of the scenario can be stored. The

scenarios can be deleted or restored as the same way the street records in

the Street Data model.

69



In the model, we have an action table for each part of the street

section. They are Action, CurbAction and SidewalkAction. They store the

information about the actions available to different parts of the street. The

data in these tables are relatively stable unless there are new action types.

However, no new action is allowed to be added from the web application,

because the pavement condition calculation is hardcoded to cope with the

available actions at the time of development. In the Action entity, there is an

extra attribute called ApplySection, which stores the information of whether

the action is applied to the entire section area. This affects the value of

attributes in the DefectData entity when update is made.

Each street section in a scenario can only have one pavement action.

The pavement action attribute becomes the data part of the ScenarioDetails

record. However, as there can be more than one sidewalk action and one

curb action for each street section in the scenario, we need a SideDetails

entity and a CurbDetails entity respectively which are similar to the situation

of SecenarioHeader and ScenarioDetails.

Characteristics of Each Entity

ScenarioHeader:

This entity has a surrogate key called ScenarioID that is also used as

an identifier of the scenario in the entire pavement analysis model.

ScenarioDetails:

70



Each scenario can have many street sections. Therefore, its composite

key contains SectionID from StreetData and ScenarioID from

ScenarioHeader.

Action:

A surrogate key called ActionID serves as the primary key of this

entity.

CurbAction:

The CurbActionID attribute is a surrogate key of this entity.

CurbDetails:

A composite key is needed as it contains scenario, street section and

curb action information. The ScenarioID from ScenarioHeader, the

SectionID from StreetData, and the CurbActionID from CurbAction

form the composite key.

SidewalkAction:

A surrogate key called SidewalkActionID becomes the primary key of

this entity.

SideDetails:

Similar to CurbDetails, this entity contains scenario, street section and

sidewalk action information. The ScenarioID from ScenarioHeader, the

SectionID from StreetData, and the SidewalkActionID from

SidewalkAction form the composite key.

Relationships

71



As one scenario can have zero or more than one street section, the

ScenarioHeader has a one to zero or many relationship with ScenarioDetails.

This is an identifying relationship because the migrated foreign key

ScenariolD from ScenarioHeader is part of the primary key of

ScenarioDetails. Because the presence of SideDetails and CurbDetails records

depends on the presence of street sections in the scenario, it has the same

relationship as that between ScenarioDetails and ScenarioHeader.

All action tables have one to zero or many relationship with details

tables. In the case of curb and sidewalk, the relationships are identifying

relationships while the relationship of Action and ScenarioDetails is

nonidentifying.

3.3.3 Pavement Condition Model

Action Funcaass

PKFK1 ActioniD PK ActioniD PK Func .Class

Description Description
EffectUnits

Cost
Comment
ApplySection Deterioration

PK DefectlD PK SectioniD PK,FK3 ActonlD

PKFK1 DefectiDp nveryp PKFK1 PavementLType

Dvcoeff InspectionUpdate TimeCoeff
MaxDV ConstructionUpdate DESCP

Fig. 3.3.3a Pavement Condition Model

Table: Deterioration
ActionID Func Class PavementType TimeCoeff TrafficCoeff

1 1 10 0.2 0
1 4 10 0.12 0

Table: DefectValidation
DefectID Description Dvconst Dvcoeff MaxDV

2 Longitudinalcrack 0 0.669 0.783

72



4 Alligator 0 | 8.72 0.6976

Table: ActionEffect
ActionID DefectID Effect

6 7 1
6 8 0.5

Fig. 3.3.3b Sample Data of Pavement Condition Model

In Fig. 3.3.3b, sample data of pavement condition model is shown.

Two sample records are extracted from the tables. However, the actual

tables contain many more records.

Description of Pavement Condition Model

This model represents the calculation of both current PSI and

predicted PSI, and the relations between different actions and defects. The

calculation of current PSI is based on the most up to date defect data in the

DefectData entity, the weight of each defect contributed to the deduction of

pavement condition, and the number of years between the time of query and

the last modified time of DefectData records. Most of the calculation

procedures are done in JavaBean programs and the model only represents

how the entities are related.

DefectValidation entity stores the weights of each defect contributed to

the deduction of pavement condition. The coefficients can be changed in the

future by database administrator to fit with the actual pavement condition in

Arlington. It is linked to the Action entity through an associative entity

ActionEffect to establish relationships between actions and defects.

73



In the pavement analysis, the predicted PSI is calculated based on the

functional classification and pavement type of the street, as well as the

action type. This information is stored in the Deterioration entity. In the

current implementation, the coefficients are the same for all pavement types.

If accurate coefficients for different pavement types are derived in the future,

the database administrator can change the data directly in the database.

Characteristics of Each Entity

Deterioration:

As this entity contains the PSI coefficients of all combinations of

action, functional classification and pavement type, the migrated

foreign keys from these three tables form the composite key of this

entity.

DefectValidation:

A surrogate key DefectID is the primary key of this entity.

ActionEffect:

This is an associative entity. Therefore, it has a composite key, which

is composed of the migrated foreign keys ActionID from the Action

entity and DefectID from the DefectValidation entity.

Relationships

The Action, FuncClass and PavementyType entities have one to one or

many relationships with the Deterioration entity. As the composite key of

74



Deterioration is composed of the primary key from these three tables, they

are identifying relationships. DefectData has an identifying relationship with

DefectValidation due to the same reason. As Action and DefectValidation

have many to many relationship, an associative entity called ActionEffect is

needed. Therefore, ActionEffect has two one to one or many identifying

relationships with Action and DefectValidation.

3.3.4 Pavement Management System Model

DrainageData

PK,FK1 SectionlD

MANTEL
MANWAT
MANSEW
MANELE
MANOTH
CATCHBAS
WATGATES
GASGATES
CULVCOND
HDWL-COND
FLOWCOND
DITCHCOND
LEAKCOND
BADICOND
SIDESLDR
DRAINPOCK
CROS-SLOPE
GRADES
CURBTYPE
CURBLOC
CURB COND
CURBREV
CURBLENTH
EST-CBEP
Update

CurbActionI

PK CurbActionlD

Descriptionl
Units L
EstUnitCostI
Comment

ConstructionHistory Deterioration
Precinct FuncClass

PK,FK1 SectioniD
PK CompletedDate PK Precinct PK Func Class

FK3 ScenariolD Description Description
FK2 ActionlD

OIdPSI

FinalCost
Remarks PavementType - - - - - - - -

- PKction

FacilityType

LtreetName

PK StreetlD

StreetName

StreetData

PK SectionlD

StreetName
StartTerminus
EndTerminus

FK4 Precinct
FK2 FacilType
FK1 FuncClass
FK3 PavementType

Length

InspectData

PK,FK1 SectioniD
PK SurveyDate
PK,FK2 DefectD

Value
Inspector
DeletedStamp

ActionEftect

Tiresamp StartAddressL anarioDetals
EndAddressL
StartAddressR PK,FK1 ScenariolD
EndAddressR PK,FK3 SectionlD
StartLongitude

_ StartLatitude FK2 PavementActionlD

CurbOetails EndLongitude PavementPlanCost
_ EndLatitude Remarks

PK,FK1 ScenarolD I Remarks
PK,FK3 SectionlD I DeletedStamp
PK,FK2 CurbActionlD I

CurbLength I
CurbPlanCost I
Remarks t ---- ScenarioHeader

- - - - - - - - - - - - - PK ScenariolD

K ScenaroName

SieakcinSideDetails Ye1 :aroaeSiddwatktctlsnCompleted

PK SidewalkActionlD PK,FK1 ScenarolD - - Username -

PK,FK3 SectioniD Remarks PK,F

Description d ~ PK,FK2 SideActioniD DeletedStamp PK,

Units
EstUnitCost SideLength
Comment SdePanCost

Remarks

1W
-w

DefecIData

K2 SectionlD
K1 DefectD

Value
InspectionUpdate
ConstructionUpdate

Fig. 3.3.4a Pavement Management System Model (Completed Model)

75



Keys in the Pavement Management System Model

Dark Background and White Text: System entity

White Background and Black Text: Pavement Analysis Model entities

Medium Background and Black Text: Street Data Model entities

Dark Background and Black Text: Pavement Condition Model entities

Medium, thick relationship: Pavement Condition Model relationships

Light, thin relationship: Street Data Model relationships

Medium, thin relationship: Pavement Analysis relationships

Dark, thin relationship: Relationships between three models

Description of the Pavement Management System Model

This is the completed data model of the Pavement management

System. It is a combined model of street data model, pavement analysis

model and pavement condition model. A system entity called Login is added

to store the user information. This data model consists of twenty-one tables

and twenty-six relationships. It can represent the requirements of the whole

system in a satisfactory way.

Linkages between different models

Street Data Model and Pavement Analysis Model:

There are two linkages between these two models. One is the

SectionID attribute in the StreetData entity. The migrated foreign key

SectionID from StreetData to CurbDetails, ScenarioDetails and SideDetails

becomes part of the PK of these three entities. Therefore, they have

76



identifying relationships. A street section may not exist in the scenario and

once it is in a scenario, it may have more than one action. Therefore,

StreetData have one to zero or many relationship with the three details

tables. Another linkage is the non-identifying relationship between

ScenarioHeader and ConstructionHistory. As a scenario may not be chosen to

be the annual plan, and once the scenario is completed, records will be

added to the ConstructionHistory, they have one to zero or many

relationship.

The street data is queried in the pavement analysis process. When the

chosen scenario is completed, i.e. the construction and maintenance actions

are finished; the data in ConstructionHistory and DefectData will be updated

accordingly.

Street Data Model and Street Condition Model:

The main interaction between these two models is the exchange of

data or information. There are three areas of linkages between these two

models. The first one is that the data in DefectData, FuncClass and

PavementType is used in the Deterioration and DefectValidation entities

during the calculations of current PSI when street data is queried, and the

calculation of predicted PSI in the pavement analysis. DefectValidation has a

one to many identifying relationship with DefectData, as the number of

records in DefectData, where DefectID is part of the composite key, is partly

dependent on the number of defect types in DefectValidation. FuncClass and

77



PavementType have one to many identifying relationships with Deterioration

due to the same reasons.

The second area of linkage is the relationship between

ConstructionHistory and Action. The ActionID FK is part of the

ConstructionHistory record and thus these two entities have a one to zero or

many relationship. This relationship is not identifying because ActionID is in

the data area of ConstructionHistory.

The third one is the one to zero or many relationship between

DefectValidation and InspectData. Not all defect types may be found on a

street section, or a street section may have no defects. Therefore, the

relationship is one to many. It is identifying because DefectID is part of the

composite key in InspectData.

Pavement Analysis Model and Street Condition Model:

In the pavement analysis, the PSIs at different times are calculated

when the street sections are added to the scenario. These include the current

PSI before any action and predicted PSI after an action. These two

calculations are based on the physical PSI calculated from the defect data in

DefectData. There is only a one to zero or many non-identifying relationship

between Action and ScenarioDetails. ActionID is in the data area of

ScenarioDetails and it may not appear or may appear many times in any

ScenarioDetails records.

78



4 Conclusion

As mentioned before, not all of the data modeling procedures or

conditions are applicable to every application. In the case study, the data

model of Pavement Management System is a relatively simple data model.

However, it covers certain basic steps of modeling the business and

engineering needs.

Despite modeling the requirements correctly, another main concern of

data model is that it is flexible and extendable. Our data model is readily

understandable and new functions can be incorporated without many

difficulties.

Due to the rising importance of marketing, the trend of data modeling

will implement the concepts of data warehousing and data mining. Data

warehousing aims at providing decisive data to ease the effort of decision-

making. Data mining involves statistical analysis on data to help with making

marketing strategies. As these two techniques are relatively new, there are

rooms for improvements. Moreover, in order to carry out data warehousing

and data mining in existing systems, as the original designs did not

implement these needs, it increases the difficulties of making best use of

these two new concepts.

79



References

1. Bowman, J.S., Emerson, S.L., and Darnovsky, M., The Practical SQL
Handbook, Reading MA: Addison-Wesley, 2000.

2. Bruce, T.A., Designing Quality Databases with IDEF1X Information
Models, New York: Dorset House Publishing, 1992.

3. Chen, P.P.S., The Entity Relationship Model - Toward a Unified View of
Data, Communications of the Association for Computing Machinery.

4. Codd, E.F., A Relational Model of Data for Large Shared Data Bases,
Communications of the Association for Computing Machinery.

5. Date, G.J., An Introduction to Database Systems, Reading MA: Addison-
Wesley, 1987.

6. Howe, D.R., Data Analysis for Data Base Design, London: Arnold, 1983.
7. Kent, W., A simple guide to five normal forms in relational database

theory, Communications of the Association for Computing Machinery,
1983.

8. Kofler, M., Visual Basic Database Programming, Reading MA: Addison-
Wesley Longman.

9. McConnell, S., Rapid Development, Bothell WA: Microsoft Press, 1996.
10. Prasad, Qi & Klimke, Street Opening Permit System Project Report,

Cambridge MA: Massachusetts Institute of Technology, 2001.
11. Tsichritzis, D.C., and Lochovsky, F.H., Database Management Systems,

New York: Academic Press, 1977.
12. A Primer on Relational Database System, IBM System Journal.
13. Introduction to Data Modeling, Academic Computing and Instructional

Technology, The University of Texas at Austin, June 2000.
<http://www.utexas.edu/cc/database/datamodeling/dm/>

14. Data Modeling, University of Washington - Extension, Distance Learning
DAT R M 125, cited in February 2001.
<http://www.extension.washington.edu/webulearningobjects/datrm125
/>

15. Klinkenberq, B., Database Concepts I, University of British Columbia,
August 1997.
<http://www.geog.ubc.ca/courses/klink/gis.notes/ncgia/u43.html>

16. UML Tutorial - part 1, Sparx Systems, Australia, 2001.
<http://www.sparxsystems.com.au/UMLTutorial.htm>

17. Poolet, M.A., Data Modeling, Process Modeling, Logical Modeling & Entity
Modeling, SQL Server Magazine, February - May 2000.
<http://www.sqlmag.com/Articles/>

80



Appendix

Table Name
Action
Action Effect
ConstructionHistory
CurbAction
CurbDetails
DefectData
Deterioration
DefectValidation
DrainageData
FacilityType
FuncClass
InspectData
Login
PavementType
Precinct
ScenarioDetails
ScenarioHeader
SideDetails
SidewalkAction
StreetData
StreetName
Tiger

1 Database Documentation

Description
Available street maintenance actions and their cost
Relation between street maintenance actions and defects
Construction and maintenance history on the street segments
Available curb actions and their costs
Details of a curb action on a street segment in a scenario
Defects of the street segments based on the data from inspection and construction
Deterioration model defined by maintenance actions and functional types
Number of manholes and gates, and the other drainage data
Number of manholes and gates, and the other drainage data
Types and ownerships of the street segments or facilities
Functional type of street segments
Defect data from road inspection
Details of sign-up user
Construction material of the street segments
Precinct information of Arlington
The actions and details on street segments associated with a scenario
The details of scenarios created
Details of a sidewalk action on a street segment in a scenario
Available sidewalk actions and their costs
Primary details of all street segments
All streets in Arlington
Details of geographic information of the streets in Arlington from Tiger data

Table Name
Action

Attribute Name
ActionlD

Description
Units
Cost

Comment

ApplySection

Table Name
Action Effect

Attribute Name
ActionlD

DefectlD

Effect

Type
integer(1 0)
unsigned
text
text
double
unsigned
text

integer(1 0)
unsigned

Type
integer(1 0)
unsigned
integer(1 0)
unsigned
Double

Null Key Default
Primary null

Yes
Yes

Yes

null
null
0

null

Extra
auto
increment

0

Null Key Default Extra
Primary 0

Primary 0

0

Description
ID of street maintenance action

description of street maintenance action
the unit of quantity of street maintenance action
estimate unit cost of street maintenance action

additional comment about street maintenance
action
whether this action is applied to the entire section
area (1: Yes, 0: No)

Description
ID of street maintenance action

ID of defect type

whether the action affects the defect (1: effective,
0: no effect)

81



Table Name
ConstructionHistory

Attribute Name
SectionlD

CompletedDate

ScenariolD

ActionlD

OldPSI

NewPSI

FinalCost

Remarks

Type
integer (10)
unsigned
timestamp
(14)
integer (10)
unsigned
integer (10)
unsigned
double
unsigned
double
unsigned
double
unsigned
text

Table Name
CurbAction

Attribute Name
CurbActionlD

Description
Units
EstUnitCost

Comment

Type
integer (10)
unsigned
text
text
double
unsigned
text

Null Key Default Extra
Primary 0

Yes Primary null

0

0

0

0

0

Yes null

Null Key Default
Primary null

0

Yes

Extra
auto
increment

null

Description
ID of street segment with the construction action

the time when the user clicks 'scenario is
completed'
the scenario in which the construction action is
belongs to
pavement action ID

PSI before construction action

PSI after construction action

the final cost of the construction action of the
street segment
comment

Description
action ID for curb

description of curb action
the unit of quantity of curb
estimate unit cost of curb action

remarks

Table Name
CurbDetails

Attribute Name
ScenariolD

SectionlD

CurbActionlD

CurbLength

CurbPlanCost

Remarks

Type
integer (10)
unsigned
integer (10)
unsigned
integer (10)
unsigned
integer (10)
unsigned
double
unsigned
text

Null Key Default Extra
Primary 0

Primary 0

Primary 0

0

0

Yes null

Description
ID of scenario in which this curb action is belongs
to
ID of street segment with the construction action

ID of action type on the curb

the length of the curb which needs action

the planned budget for this curb action

comment

Table Name
DefectData

Attribute Name
SectionlD

Type
integer (10)

Null Key Default
Primary 0

Extra Description
street segment ID

82



DefectlD

Value
InspectionUpdate

ConstructionUpdate

unsigned
integer (10)
unsigned
double
big integer
(14)
unsigned
big integer
(14)
unsigned

Primary 0

Yes

Yes

0
null

null

defect type on the street segment

the numerical value of the defect
the time when this record is modified from the
inspection

the time when this record is updated from the
construction history

Table Name
DefectValidation

Attribute Name
DefectlD

Description
Dvconst

Dvcoeff

MaxDV

Table Name
Deterioration

Type
integer (10)
unsigned
text
double

double

double

Attribute Name
ActionlD

FuncClass

Pavementjype

TimeCoeff
TrafficCoeff

Table Name
DrainageData

Attribute Name
SectionlD

MANTEL

MANWAT

MANSEW

MANELE

MANOTH

Type
integer(10)
unsigned
integer(10)
unsigned
integer(1 0)
unsigned
double
double

Type
integer (11)
unsigned
integer (10)
unsigned
integer (10)
unsigned
integer (10)
unsigned
integer (10)
unsigned
integer (10)
unsigned

Null Key Default
Primary null

Yes null
0

Extra
auto
increment

0

0

Null Key Default Extra
Primary 0

Primary 0

Primary 0

0
0

Null Key Default Extra
Primary 0

0

0

0

0

0

Description
ID of defect type

description of defect type
relation between defect density and deduct value
(constant)
relation between defect density and deduct value
(slope)
maximum deduct value of defect

Description
ID of street maintenance action

ID of functional type

ID of pavement type

time coefficient of deterioration model
traffic coefficient of deterioration model

Description
street segment ID

number of telephone manholes

number of water manholes

number of sewer manholes

number of electric manholes

number of other manholes

83



CATCHBAS

WATGATES

GASGATES

CULVCOND

HDWLCOND

FLOWCOND

DITCHCOND

LEAKCOND

BA_DICOND

SIDESLDR

DRAINPOCK

CROSSLOPE

GRADES

CURBTYPE

CURBLOC

CURBCOND

CURBREV

CURBLENTH

ESTCBREP

UpdateTimeStamp

Remarks

Table Name
FacilityType

Attribute Name
TYPE

DESCP

Table Name
FuncClass

Attribute Name

integer (10)
unsigned
integer (10)
unsigned
integer (10)
unsigned
text

text

text

text

text

text

text

text

text

text

text

text

text

double
unsigned
double
unsigned
double
unsigned
timestamp
(14)
text

Type
integer (11)

text

Type

0

0

0

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Yes null

Null Key Default Extra
Primary 0

Yes null

Null Key Default Extra

number of catch basins

number of water gates

number of gas gates

rating for the condition of the curb. None, Good,
Fair, Poor
rating for the condition of the headwall. None,
Good, Fair, Poor
rating for the condition of the flow of the culvert.
None, Good, Fair, Poor
rating for the condition of the ditch. None, Good,
Fair, Poor
rating for the condition of the waterway. None,
Good, Fair, Poor
rating for the condition of the basin and drop inlet.
None, Good, Fair, Poor
rating for the condition of the side slope drainage.
Good, Poor
rating for the condition of the drainage pockets.
None, Poor
rating for the condition of the cross slopes. None,
Good, Fair, Poor
rating for the condition of the grades. None, Good,
Fair, Poor
type of curb in this section. None, Granite,
Concrete, Bituminous, Berm
side location of the curbs within this section of
pavement. Odd, Even, Both
condition of the curb in this section. Excellent,
Good, Fair, Poor
inches of curb reveal within this section of
pavement
total length of the curbs within this section of
pavement
estimated length of curb needing repair within this
section of pavement
the update time from the permit system on the
number of manholes and gates
Comment

Description
the ID of type and ownership of the street
segment
description of the type and ownership

Description

84



Primary null auto
increment

null

ID of functional type

text description of functional type

Attribute Name
SectionlD

SurveyDate

DefectlD

Value
Inspector
DeletedStamp

Type
integer (11)
unsigned
big integer
(14)
unsigned
integer (11)
unsigned
double
text
set ('Y','N')

Null Key Default Extra
Primary 0

Primary 0

Primary 0

Yes
0
null
N

Description
street segment ID

the date of the survey

defect type ID

the value of the defect type from inspection
name of inspector
whether this street segment has been deleted by
user

Table Name
Login

Attribute Name
LoginName

Password
FirstName
LastName
Department
Position
Email

Table Name
PavementType

Attribute Name
TYPE

DESCP

Type
variable
characters
(255)
text
text
text
text
text
text

Type
integer (10)
unsigned
text

Null Key
Primary

Yes
Yes

Default Extra

null
null

Null Key Default
Primary null

Yes null

Extra
auto
increment

Description
login name chosen by the user

password chosen by user
first name of the user
last name of the user
department of the user
position of the user
email address of the user

Description
ID of pavement type

text description of pavement type

Table Name
Precinct

Attribute Name
Precinct
Description

Table Name
ScenarioDetails

Type
integer (11)
text

Null Key Default Extra
Primary 0

Yes null

Description
the precinct number
description of the precinct

85

integer (10)
unsigned
text

FuncClass

Description

Table Name
InspectData

Yes



Attribute Name
ScenariolD

SectionlD

PavementActionlD

PavementPlanCost

Remarks

Table Name
ScenarioHeader

Attribute Name
ScenariolD

ScenarioName
Year
Completed
Username
Remarks
DeletedStamp

Table Name
SidewalkAction

Attribute Name
SidewalkActionlD

Description
Units
EstUnitCost

Comment

Type
integer (11)
unsigned
integer (11)
unsigned
integer (11)
unsigned
integer (11)
unsigned
text

Type
integer (11)
unsigned
text
integer (11)
set ('Y','N')
text
text
set ('Y','N')

Type
integer (10)
unsigned
text
text
double
unsigned
text

Null Key Default Extra
Primary 0

Primary 0

0

0

Yes

Description
ID of the scenario created

street segment ID in the scenario

ID of the pavement action from action table

the planned / budget cost of the action on the
street

null comment

Null Key Default
Primary null

Yes
Yes

Extra
auto
increment

0
N
null
null
N

Null Key Default Extra
Primary null auto

increment

0

Yes null

Description
ID of the scenario created

the name of the scenario chosen by the user
the year in which this scenario planning for
whether this scenario was carried into action
the creator of this scenario
comment
whether this scenario has been deleted by the
user

Description
action ID for sidewalk

description of sidewalk action
the unit of quantity of sidewalk
estimate unit cost of sidewalk action

remarks

Table Name
SideDetails

Attribute Name
ScenariolD

SectionlD

SideActionlD

SideLength

SidePlanCost

Remarks

Type
integer (10)
unsigned
integer (10)
unsigned
integer (10)
unsigned
integer (10)
unsigned
double
unsigned
text

Null Key Default Extra
Primary 0

Primary 0

Primary 0

0

0

Yes

Description
ID of scenario in which this curb action is belongs
to
ID of street segment with the construction action

ID of the sidewalk action from the sidewalk action
table
the length of sidewalk which needs construction

the planned / budget cost of the action on the
sidewalk

null comment

86

i



Table Name
StreetData

Attribute Name
SectionlD

StreetName
StartTerminus

EndTerminus

Precinct

FacilType

FuncClass

PavementType

Length

Width

StartAddressL

EndAddressL

StartAddressR

EndAddressR

StartLongitude

StartLatitude
EndLongitude

EndLatitude
Remarks
DeletedStamp

Type
integer (11)
unsigned
text
text

Null Key Default
Primary null

Extra
auto
increment

text

integer (11)
unsigned
integer (11)
unsigned
integer (11)
unsigned
integer (11)
unsigned
integer (11)
unsigned
integer (11)
unsigned
integer (11)
unsigned
integer (11)
unsigned
integer (11)
unsigned
integer (11)
unsigned
integer (11)

null

null

null

null

null

null

null

null

null

null

null

null
null

null
null
N

Yes

Yes

Yes

Yes

Yes

integer (11) Yes
integer (11) Yes

integer (11)
text
set ('Y','N')

Yes
Yes

Description
street segment ID

the name of the street segment
the street which intersects with the start point of
current street segment
the street which intersects with the end point of
current street segment
precinct of the street segment

type and ownership of the street segment

the functional class of the street segment

the material and construction type of the street
segment
the length of the street segment

the width of the street segment

the house number at the start point of this street
segment on left hand side
the house number at the end point of this street
segment on left hand side
the house number at the start point of this street
segment on right hand side
the house number at the end point of this street
segment on right hand side
the longitude at the start point of the street
segment
the latitude at the start point of the street segment
the longitude at the end point of the street
segment
the latitude at the end point of the street segment
Comment
whether this street segment has been deleted by
user

Table Name
StreetName

Attribute Name
StreetlD

StreetName

Type
integer (10)
unsigned
text

Null Key Default
Primary null

Extra
auto
increment

Description
ID of the street

the name of the street

Table Name
Tiger

87



Attribute Name
ID

StreetName
StartAddress_L

EndAddress_L

StartAddress_R

EndAddress_R

StartLongitude

StartLatitude
EndLongitude

EndLatitude
Remarks
ZipCode_L

ZipCode_R

Type
integer (10)
unsigned
text
integer (10)
unsigned
integer (10)
unsigned
integer (10)
unsigned
integer (10)
unsigned

Null Key Default
Primary null

Yes
Yes

Yes

Yes

Yes

integer (11) Yes

integer (11) Yes
integer (11) Yes

integer (11)
text
integer (10)
unsigned
integer (10)
unsigned

Yes
Yes
Yes

Yes

null
null

null

null

null

null

null
null

null
null
null

null

/ ~ /

Extra
auto
increment

Description
ID for tiger street segment only

street name of the tiger street segment
the house number at the start point of this street
segment on left hand side
the house number at the end point of this street
segment on left hand side
the house number at the start point of this street
segment on right hand side
the house number at the end point of this street
segment on right hand side

the longitude at the start point of the street
segment
the latitude at the start point of the street segment
the longitude at the end point of the street
segment
the latitude at the end point of the street segment
comment
zip code of the left side of the tiger street segment

zip code of the right side of the tiger street
segment

88


