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Abstract: The ATLAS detector at the Large Hadron Collider is used to search for high-

mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search

is sensitive to heavy neutral Z ′ gauge bosons, Randall-Sundrum gravitons, Z∗ bosons,

techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results

are presented based on an analysis of pp collisions at a center-of-mass energy of 7TeV

corresponding to an integrated luminosity of 4.9 fb−1 in the e+e− channel and 5.0 fb−1

in the µ+µ−channel. A Z ′ boson with Standard Model-like couplings is excluded at 95%

confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling

k/M Pl = 0.1 is excluded at 95% confidence level for masses below 2.16 TeV. Limits on the

other models are also presented, including Technicolor and Minimal Z ′ Models.
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1 Introduction

Searches for new resonances decaying to a dilepton final state have had a long and successful

history. These channels contributed to the discovery of the quarkonium resonances J/ψ

and Υ, as well as the discovery of the Z boson. Various models beyond the Standard

Model (SM) contain additional bosons which can decay into dileptons, providing a fully
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reconstructable final state with small, well-understood backgrounds. In this article, data

collected by the ATLAS experiment at the LHC are used to search for new resonances

decaying into dielectron and dimuon final states.

The Sequential Standard Model (SSM) [1] defines the Z ′

SSM couplings to SM fermions

to be the same as the SM Z boson couplings and is often used in the literature as a

benchmark model. A number of models predict additional neutral vector gauge bosons.

One class postulates larger symmetry groups in which the SM gauge group is embedded.

This is usually motivated by gauge unification or restoration of left-right symmetry, which

is violated by the weak interaction. In one scheme, the SM gauge group derives from the E6

group which, upon symmetry-breaking via the SU(5) subgroup, results in two additional

U(1) gauge groups named U(1)χ and U(1)ψ with associated gauge bosons Z ′

χ and Z ′

ψ that

can mix [1, 2]. In the Minimal Z ′ Models [3, 4], the phenomenology is controlled by only

two effective coupling constants in addition to the Z ′ boson mass. This parameterization

encompasses many models, including a left-right symmetric model [5, 6] and the pure (B–L)

model [7], where B (L) is the baryon (lepton) number, and B–L is the conserved quantum

number.

A second set of models is motivated by various solutions to the hierarchy problem

of the SM relating the very different scales of electroweak symmetry breaking and the

gravitational Planck scale (MPl). One class of such models introduces a new doublet of

vector bosons (Z∗,W ∗) [8] with masses not far from the weak scale [9], which couple to

SM fermions only via magnetic-type interactions. Compared to Z ′ bosons, interactions

mediated by Z∗ bosons are additionally suppressed in low-energy processes by powers of

the small momentum transfer. Thus, the search for the Z∗ boson is well-motivated at

the LHC.

An alternative solution to the hierarchy problem has been proposed in models that

allow the gravitational force to propagate into extra spatial dimensions. Among them, the

Randall-Sundrum (RS) model [10] predicts a warped space-time metric in one extra dimen-

sion. Due to warping, the apparent strength of gravity in the four-dimensional subspace

populated by the SM particles is exponentially suppressed. The RS model predicts excited

states of the graviton, G∗, whose couplings to the SM particles are not exponentially sup-

pressed. The graviton is a spin-2 boson that can decay into dilepton final states with a

coupling strength of k/M Pl, where k is a scale that defines the warp factor of the extra

dimension, and M Pl = MPl/
√
8π.

In Kaluza-Klein TeV−1 models [11–13], the extra-dimensional momentum is quantized

by the inverse of the size of the extra dimension, creating a tower of massive Kaluza-Klein

(KK) states corresponding to each SM particle. The Kaluza-Klein towers corresponding to

the photon and the Z boson, γKK and ZKK, would manifest themselves as nearly degenerate

resonances decaying to dilepton final states. This work is the first direct search for these

Kaluza-Klein states. Previous bounds on the Kaluza-Klein boson mass were obtained from

indirect measurements [14, 15].

Technicolor models [16–18] provide a dynamical scenario of Standard Model elec-

troweak symmetry breaking (EWSB) by postulating a new strong binding force between

techni-fermions. This model predicts additional bound states, techni-mesons, which are res-
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onances with masses of a few hundred GeV that can decay into fermion-antifermion pairs.

Two main Technicolor models have a well-developed phenomenology at LHC energies. In

Low-scale Technicolor (LSTC) [19, 20], the coupling constant varies slowly (walks) due to

the existence of many scales of strong interactions while the phenomenology is dictated

by the lowest mass particles. Minimal Walking Technicolor (MWT) [21–23] is a minimal

model that is conformal and satisfies electroweak precision measurements.

One of the main limitations of the Standard Model is its inability to incorporate gravity.

To address this problem, a consistent quantum theory of all four fundamental forces should

be developed to seamlessly unify the SM and General Relativity (GR). However, so far no

generally accepted formulation of quantum gravity exists, and therefore it is common to

apply a phenomenological approach to the problem by considering extensions of GR and

assuming that they might arise from a more fundamental theory, such as String Theory.

Among such extensions is gravity with Torsion [24]. In Torsion models, the spin of the

elementary particles is the source of an extra field called Torsion, which interacts with SM

fermions [25, 26]. This article reports on the first interpretation of a high mass dilepton

search in terms of a Torsion resonance.

Previous searches have set direct and indirect constraints on the mass of new heavy

resonances [27, 28]. The Tevatron data [29, 30] have excluded a Z ′

SSM boson with a mass

lower than 1.071TeV [30]. Recent measurements from the LHC experiments [31, 32],

based on up to 5 fb−1 of data, have excluded a Z ′

SSM boson with a mass lower than

2.33TeV [32]. Indirect constraints from LEP [33–36] have excluded Z ′

SSM bosons with

mass less than 1.787TeV [28]. Constraints on the mass of the RS graviton have been

set by the ATLAS [37], CMS [32], CDF [38] and D0 [39] collaborations, excluding RS

gravitons with a mass less than 2.14TeV for k/M Pl = 0.1 [32]. A Z∗ with mass less than

1.152TeV has been excluded by ATLAS [40]. A search for the techni-mesons ρT and ωT in

the dilepton final state has been conducted by CDF, resulting in a lower bound on the ρT
and ωT masses of 280GeV [41]. The constraints from electroweak precision measurements

give a lower limit on the ZKK/γKK boson masses around 4TeV [14, 42].

The results reported in this article use the full data sample recorded by ATLAS in

2011, corresponding to a total integrated luminosity of 4.9 (5.0) fb−1 in the e+e− (µ+µ−)

channel.

2 ATLAS detector

The ATLAS detector [43] consists of an inner tracking detector surrounded by a 2 T super-

conducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer.

Charged particle tracks in the pseudorapidity1 range |η| < 2.5 are reconstructed with the

inner detector, which consists of silicon pixel, silicon strip, and transition radiation detec-

tors. The superconducting solenoid is surrounded by a hermetic calorimeter that covers

1ATLAS uses a right-handed coordinate system with the z-axis along the beam pipe. The x-axis points

to the centre of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, φ) are used in the

transverse (x, y) plane, φ being the azimuthal angle. The pseudorapidity is defined in terms of the polar

angle θ as η = − ln tan(θ/2).
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|η| < 4.9. For |η| < 2.5, the electromagnetic calorimeter is finely segmented and plays an

important role in electron identification. Outside the calorimeter, air-core toroids provide

the magnetic field for the muon spectrometer. Three stations of precision drift tubes (with

cathode strip chambers for the innermost station for |η| > 2.0) provide an accurate mea-

surement of the muon track curvature in the range |η| < 2.7. Resistive-plate and thin-gap

chambers provide muon triggering capability in the range |η| < 2.4.

3 Lepton reconstruction

Electron candidates are formed from clusters of cells reconstructed in the electromagnetic

calorimeter that are associated with a charged particle track in the inner detector. Mea-

surements of the transverse calorimeter shower shape and the longitudinal leakage into the

hadronic compartment [44] are also used to improve electron-hadron identification.

The energy of an electron is obtained from the calorimeter, and its direction from

the associated track. At large transverse energy (ET), the calorimeter energy resolution

is dominated by a constant term which is measured in data to be 1.2% in the barrel

(|η| < 1.37) and 1.8% in the endcaps (1.52 < |η| ≤ 2.47) [44]. For dielectron masses above

200GeV, the mass resolution is below 2% over the entire η range.

Muon tracks are first reconstructed separately in the inner detector (ID) and in the

muon spectrometer (MS). The two tracks are then matched and a combined fit is performed

to the inner detector and muon spectrometer hits, taking into account the effect of multiple

scattering and energy loss in the calorimeters.

The muons used in this work have hits in either three or two (out of three) stations

of the muon spectrometer. Muons with hits in three stations, referred to as tight muons,

comprise about 95% of the sample, and have transverse momentum (pT) resolution at 1TeV

ranging from 10% to 25%. Muons with hits in two stations, referred to as loose muons,

have slightly worse pT resolution than the tight muons. Loose muons are accepted only

in the barrel region of the muon spectrometer (|η| < 1.05), excluding small geometrical

regions where the detector alignment is known to be less precise.

4 Event selection

The data used for this study are required to have been recorded during periods of stable

LHC beams, and when all relevant systems of the detector were operating normally. Col-

lision candidates are selected by requiring a primary vertex with at least three associated

charged particle tracks, each with pT more than 0.4 GeV.

In the e+e− channel, events were triggered by a diphoton trigger, requiring the pres-

ence of two electromagnetic clusters fulfilling a set of requirements [45] on the shape of

the energy deposit and with a transverse energy threshold of 20GeV. The efficiency of

the diphoton trigger was measured in data to be 99% for electron pairs forming dilepton

masses above 100GeV. This was done using a tag-and-probe method on electrons from

decays of Z bosons, selected using a single-electron trigger and requiring two electrons in
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the event to pass the event selection described below. Since the trigger signals are satu-

rated for electromagnetic clusters with very high energies, the trigger-level bunch-crossing

identification, which uses the pulse shape, is challenging and performed by a dedicated

algorithm, implemented in the first-level calorimeter trigger hardware.

Dielectron events are selected by requiring two electron candidates with the medium

level of identification defined in ref. [44], with transverse energy ET larger than 25 GeV and

|η| ≤ 2.47; the transition region between the barrel and endcap calorimeters is excluded. A

hit in the first layer of the pixel detector is required if an active pixel module is traversed, to

suppress background from photon conversions. To suppress background from QCD multijet

production, the electron with the higher ET must be isolated, requiring ΣET(∆R < 0.2)

less than 7 GeV, where ∆R =
√

(∆η)2 + (∆φ)2 and ΣET(∆R < 0.2) is the sum of the

transverse energies in calorimeter cells around the electron direction in a cone of ∆R

smaller than 0.2. The sum excludes the core of the electron energy deposition and is

corrected for transverse shower leakage and pile-up from additional pp collisions. The

two highest ET electrons passing the above selection criteria are used to reconstruct the

dielectron candidate. The curvature measured by the inner detector for the high-energy

electrons relevant to this analysis is not large enough to allow a precise determination of

the transverse momentum and charge of the electrons. To avoid losses in efficiency, the

two electron candidates are not required to have opposite charge. For the selection criteria

described above and dielectron invariant masses (mee) greater than 130GeV, the overall

event acceptance times efficiency (Aǫ) for a Z ′ boson of mass 2 TeV is about 66%.

In the µ+µ− channel, events were triggered by at least one of two single-muon triggers,

one with a pT threshold of 22GeV as reconstructed from the combination of ID and MS

information, and the second with a pT threshold of 40GeV as reconstructed by the MS in

the barrel region only. The typical single-muon trigger efficiency was measured in data to

be 85% in the barrel (considering the union of both trigger paths) and 86% in the endcaps.

The trigger efficiency is lower for muons than it is for electrons because of the smaller

geometrical acceptance of the muon trigger detectors.

A dimuon event candidate is constructed from two opposite-charge muons, each with pT
greater than 25GeV, |η| < 2.4. In order to reject muons from cosmic radiation, the impact

parameter with respect to the primary vertex must be smaller than 0.2 mm in the trans-

verse plane and 1.0 mm along the beam axis, and the primary vertex must be reconstructed

within 20 cm from the centre of the detector along the beam direction. To ensure good pT
resolution, each muon is required to have a minimum number of hits in each of the inner

detector components as well as in three (two) muon spectrometer stations for tight (loose)

muons. Muon candidates are excluded from the analysis if they cross regions of the muon

spectrometer in which the bending power of the magnetic field is rapidly changing with the

track position or the detector is less precisely aligned or calibrated. In addition, the dif-

ference between the standalone momentum measurements from the inner detector and the

muon spectrometer must not exceed five (three) times the sum in quadrature of the stan-

dalone resolutions for tight (loose) muons. Finally, to suppress background from QCD mul-

tijet production, each muon must be isolated, requiring the sum of the pT of all other tracks

in a cone of size ∆R < 0.3 to be less than 5% of the transverse momentum of the muon.
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Dimuon event candidates with two tight muons are considered first (tight dimuon

selection). If more than one such pair is found in an event, the one with the highest scalar

sum of the leptons’ pT is selected. If no tight muon pair is found, pairs with one tight

muon and one loose muon (loose dimuon selection) are considered. Similarly, if more than

one loose muon pair is found in an event, the one with the highest
∑ |pT| is selected.

For the selection criteria described above, the overall event Aǫ for a Z ′ boson of mass

2 TeV decaying into a dimuon final state is 43%, including 4% from the loose dimuon

selection. The lower acceptance compared to the dielectron channel is due to the stringent

hit requirements in the muon spectrometer.

For both channels, the dominant and irreducible background is due to the Z/γ∗ (Drell-

Yan) process, characterized by the same final state as the signal. Small contributions

from tt̄ and diboson (WW , WZ and ZZ) production are also present in both channels.

Semi-leptonic decays of b and c quarks in the e+e− and µ+µ− samples, plus a mixture

of photon conversions and hadrons faking electrons in the e+e− sample, are backgrounds

that are referred to below as QCD background. Events with jets accompanying W bosons

(W + jets) may similarly produce dilepton candidates.

The expected signal and backgrounds, with the exception of the ones from QCD and

W+jets, are evaluated with simulated samples and rescaled using the most precise available

cross-section predictions, as explained in more detail in section 6. The total SM prediction

is then normalized to the data in an invariant mass interval around the Z peak (70–

110GeV). In the dielectron channel, the rescaling is done after adding the QCD multijet

and W + jets backgrounds evaluated directly from data, as described in section 6.

5 Simulated samples

The Z ′, G∗, and LSTC signals, as well as the Z/γ∗ process, are generated with Pythia

6.421 [46] using MRST2007 LO** [47, 48] parton distribution functions (PDFs). The

Minimal Z ′ and ZKK/γKK signals are obtained by reweighting the large sample of Z/γ∗

events from Pythia with the appropriate ratio of differential cross sections [3, 49]. Z∗ and

Torsion signals are generated with CompHEP [50], while MadGraph [51] is used for MWT

signals; CTEQ6L1 [52] PDFs are used in both cases.

The diboson processes are generated with Herwig 6.510 [53] using MRST2007 LO**

PDFs. The tt̄ background is generated with MC@NLO 4.01 [54] using CTEQ66 [55] PDFs.

For tt̄ events, Jimmy 4.31 [56] is used to describe multiple parton interactions and Her-

wig to describe the remaining underlying event and parton showers. Final-state photon

radiation is handled by photos [57]. The generated samples are processed through a full

ATLAS detector simulation [58] based on GEANT4 [59].

6 Expected signals and backgrounds

The Z/γ∗ cross section is calculated at next-to-next-to-leading order (NNLO) in QCD

using PHOZPR [60] with MSTW2008 NNLO PDFs [61]. The ratio of this cross section

to the leading-order cross section is used to determine a mass-dependent QCD K-factor,
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which is then applied to the results of the leading-order simulation. The same QCD K-

factor is applied to the Z ′, ZKK/γKK, Torsion, and LSTC signals. Its value is 0.91 at

2TeV and slowly increases up to 1.15 at 250GeV. A different K-factor is applied to the

G∗ signal, with values that vary between 1.6 and 1.8 depending on the graviton mass and

k/M Pl [62],
2 and with a value of 1.75 above 750GeV, consistent with ref. [37]. Finally, no

QCD K-factor is applied to the leading-order Z∗ cross section since the Z∗ model uses an

effective Lagrangian with a different Lorentz structure.

The Z ′

SSM, Z ′(E6), Torsion states, and techni-mesons interfere minimally with the

Z/γ∗ process, and the Z∗ and G∗ do not interfere at all. The effect of interference on the

resonance line-shape is therefore neglected for all these states. On the other hand, the

interference of the ZKK/γKK boson with Z/γ∗ is very strong and cannot be neglected [13,

42]. The interference effect is also taken into account in the Minimal Z ′ Models framework.

Higher-order electroweak corrections (beyond the photon radiation included in the sim-

ulation) are calculated using Horace [63, 64], yielding an electroweak K-factor (KEW) due

to virtual heavy gauge boson loops. Its value at 2TeV is 0.92 in the dielectron channel and

0.93 in the dimuon channel, and slowly increases up to 1.05 at 250GeV. The electroweak

K-factor is applied only to the Z/γ∗ background and not to the expected signals, with the

exception of Technicolor and Kaluza-Klein states. In the case of Technicolor, KEW is ap-

plied because production proceeds via the Z/γ∗ process. Since interference is an important

feature of the Kaluza-Klein boson model, the electroweak K-factor is applied to the full am-

plitude (M) of the process, including the ZKK/γKK amplitude:
∣

∣MZ/γ∗ +MZKK/γKK

∣

∣

2 −→
KEW×

∣

∣MZ/γ∗ +MZKK/γKK

∣

∣

2
. This approximation is conservative. Although interference

is taken into account for Minimal Z ′ bosons, for consistency with the treatment of the other

Z ′ models the electroweak K-factor is applied only to the pure Z/γ∗ part of the amplitude:
∣

∣MZ/γ∗ +MZ′

∣

∣

2 −→
∣

∣MZ/γ∗ +MZ′

∣

∣

2
+ (KEW − 1)×

∣

∣MZ/γ∗
∣

∣

2
.

For the other backgrounds, the diboson cross sections are calculated to next-to-leading

order (NLO) using mcfm [65] with an uncertainty of 5%, and the tt̄ cross section is predicted

at approximate-NNLO, with an uncertainty of +7.0/− 9.6% [66, 67].

At very high masses, the statistical significance of the diboson and tt̄ simulated samples

becomes insufficient. Therefore their invariant mass distribution is fitted to the functional

form y(x) = p1 · xp2+p3 log x which is then used to extrapolate the tt̄ background above

0.8TeV and the diboson background above 1.5TeV.

The QCD multijet and W + jets backgrounds in the e+e− sample are estimated pri-

marily from data using several techniques.

First, a “reversed electron identification” technique [40] is used, in which only the

QCD multijet background is estimated from data, while the W + jets component comes

from the Monte Carlo simulation. Events with both electron candidates failing one of

the medium identification criteria are used to determine the shape of the QCD multijet

background mee distribution. The chosen criterion, the difference in η between the cluster

and the track, does not affect kinematic distributions. The small contamination from non-

QCD processes, located mainly beneath the Z peak, is subtracted using MC samples of

2The authors have kindly provided updates to their calculations, at the LHC energy of 7 TeV.
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the other backgrounds (Z/γ∗, tt̄, diboson and W + jets). The shape of these backgrounds

is obtained by summing their contributions according to the most precise available cross-

section predictions. The mass distributions of the QCD and non-QCD backgrounds are

fitted for their relative contributions in the 70GeV < mee < 200GeV range. The QCD

multijet background shape is fitted in the 110–800GeV range using the functional form

y(x) = p1 · xp2+p3 log x and is extrapolated beyond 800GeV. The systematic uncertainty

includes the uncertainty from the relative normalization procedure, namely the QCD mul-

tijet fraction from the first fit, the uncertainty from the choice of the reversed selection and

the uncertainty from the range of the second fit.

A second independent data-driven method is used to obtain an estimate of the QCD

multijet and W +jets backgrounds together. It uses fake rates computed from jet-enriched

samples, obtained from jet triggers or from the signal trigger. The fake factors are defined

as the probability for a jet to pass the “tight” (T) selection, that is all selection criteria, if

it passes the “loose” (L) selection, that is the same reverse identification selection as in the

reverse electron identification method. The fake factors depend only slightly on transverse

momentum and more importantly on pseudorapidity. Since isolation is applied only to the

leading electron, two different fake factors are needed: flead, applied to the leading electron,

and fsubl, applied to the subleading electron. The QCD multijet and ℓ+jets backgrounds

are estimated by selecting events with candidate pairs having each electron identified either

as “tight” or “loose”. The final estimate is then

Nℓ+jets &QCD = fsublNTL + fleadNLT − fleadfsublNLL.

The same functional form as before is finally used to fit this estimate between 140GeV and

850GeV and extrapolate it above this energy range. The systematic uncertainty includes

the uncertainty from the η or pT dependence of the fake factors and the uncertainty from

the range of the fit.

All methods yield consistent results and the final estimate is given by the mean of the

central values. The uncertainty, conservatively assigned to be the maximum of the largest

of up and down deviations of each method, is 33% at mee = 200GeV and grows to about

110% at 2TeV.

In the dimuon channel, the QCD multijet background is estimated in data from a sam-

ple of non-isolated dimuon events. The W + jets background is evaluated using simulated

samples. Both backgrounds are found to be negligible in the dimuon channel after the

isolation selection is applied.

7 Systematic uncertainties

The systematic uncertainties in this analysis are reduced by the fact that the backgrounds

are normalized to the data in the region of the Z peak. This procedure makes the analysis

insensitive to the error on the measurement of the integrated luminosity as well as other

mass-independent systematic uncertainties. Instead, a constant systematic uncertainty of

5%, due to the uncertainty on the Z/γ∗ cross section in the normalization region, is assigned

to the signal expectation.
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The mass-dependent systematic uncertainties include theoretical effects due to the

PDFs, QCD and electroweak corrections, as well as experimental effects, namely efficiency

and resolution. These uncertainties are correlated across all bins in the search region.

In addition, there is an uncertainty on the QCD and W + jets backgrounds affecting the

dielectron channel. The theoretical uncertainties are applied to the background expectation

only. The experimental uncertainties are assumed to be correlated between signal and all

types of backgrounds. All systematic uncertainties quoted below refer to narrow resonances

with dilepton masses of 2TeV. All systematic uncertainties estimated to have an impact

≤ 3% on the expected number of events are neglected.

The combined uncertainty on the PDFs, strong coupling αS, and renormalization/facto-

rization scale variations is 20%, the largest contribution being the uncertainty on the PDFs.

The αS and PDF uncertainties are evaluated using the MSTW2008NNLO eigenvector PDF

sets and the PDF sets corresponding to variations of αS, at the 90% confidence level (CL).

The spread of the variations covers the difference between the central values obtained with

the CTEQ and MSTW PDF sets. The scale uncertainties are estimated by varying the

renormalization (µR) and factorization (µF) scales independently up and down by a factor

of two, but with the constraint 0.5 ≤ µF/µR ≤ 2 to avoid large logarithmic corrections.

The resulting maximum variations are taken as the uncertainties. In addition, a systematic

uncertainty of 4.5% is attributed to electroweak corrections [40] for both channels. This

contribution includes the difference in the electroweak scheme definition between Pythia

and Horace, and higher order electroweak and O(ααS) corrections.

In the dielectron channel, the largest experimental systematic uncertainty is due to the

estimate of the QCD multijet and W + jets backgrounds, which translates into a system-

atic uncertainty on the total background of 26% at 2TeV. Other experimental systematic

uncertainties in the dielectron channel include uncertainties due to the extrapolation of the

tt̄ and diboson backgrounds, which are significant only above 2TeV and uncertainties due

to the electron reconstruction and identification efficiency at high ET, which are estimated

to be less than 3% for electron pairs. The uncertainties on the calorimeter energy cali-

bration are estimated to be between 0.5% and 1.5%, depending on transverse energy and

pseudorapidity and have a negligible effect on the event yield as do the uncertainties on

the corrections applied to the simulation to reproduce the calorimeter resolution at high

energy.

In the dimuon channel, the combined uncertainty on the trigger and reconstruction

efficiency for muon pairs is estimated to be 6% at 2TeV. This uncertainty is dominated by

a conservative estimate of the impact from large energy loss due to muon bremsstrahlung

in the calorimeter, which may interfere with reconstruction in the muon spectrometer. In

addition, the uncertainty on the resolution due to residual misalignments in the muon spec-

trometer propagates to a change in the observed width of the signal line-shape; however,

its effect on the final result has a negligible impact for final states which do not interfere

strongly with Z/γ∗. Finally, the muon momentum scale is calibrated with a statistical

precision of 0.1% using the Z → ℓ+ℓ− mass peak. As with the dielectron channel, the

momentum calibration uncertainty has negligible impact in the dimuon channel search.
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Source Dielectrons Dimuons

Signal Background Signal Background

Normalization 5% NA 5% NA

PDF/αs /scale NA 20% NA 20%

Electroweak corrections NA 4.5% NA 4.5%

Efficiency - - 6% 6%

W + jets and QCD background NA 26% NA -

Total 5% 34% 8% 21%

Table 1. Summary of systematic uncertainties on the expected numbers of events at mℓℓ = 2TeV.

NA indicates that the uncertainty is not applicable, and “-” denotes a negligible entry.

A summary of all systematic uncertainties common to all final states investigated in

this search is shown in table 1. Additional systematic uncertainties that apply to strongly

interfering states (such as ZKK/γKK) are discussed later.

8 Data-SM expectation comparison

Figure 1 shows the invariant mass (mℓℓ) distribution for the dielectron (top) and dimuon

(bottom) final states after final selection. The bin width of the histograms is constant in

logmℓℓ, chosen such that a possible signal peak spans multiple bins and the templates are

smooth. Figure 1 also displays the expected Z ′

SSM signal for two mass hypotheses. Tables 2

and 3 show the number of data events and the estimated backgrounds in bins of recon-

structed dielectron and dimuon invariant mass above 110GeV. The number of observed

events in the normalization region, from 70 to 110GeV, is 1,236,646 in the dielectron chan-

nel and 985,180 in the dimuon channel. The dilepton invariant mass distributions are well

described by the Standard Model.

The data are compared to the Monte Carlo simulation in the search region 0.13TeV<

mℓℓ < 3.0TeV. The agreement is first studied by computing the significance of the dif-

ference in each mass bin, with statistical and systematic uncertainties taken into account.

The largest positive local significance is about 2σ in the dielectron channel and about 1σ

in the dimuon channel, and the largest negative local significance is −2σ in both channels.

The comparison is then performed by means of templates [40, 68]. The templates

provide the expected yield of events (n̄) in each mℓℓ bin. When neglecting interference, n̄

is given by n̄ = nX(λ, ννν) + nZ/γ∗(ννν) + nobg(ννν), where nX represent the number of events

produced by the decay of a new resonance X (X = Z ′, Z∗, G∗,TS, ρT/ωT,R1/R2, where

ρT/ωT and R1/R2 are techni-mesons, see below); nZ/γ∗ and nobg are the number of Z/γ∗

(Drell-Yan) and other backgrounds events, respectively. The symbol λ represents the pa-

rameter of interest of the model, and ννν is the set of Gaussian-distributed nuisance parame-

ters incorporating the systematic uncertainties. When including the effects of interference,

n̄ = nX+Z/γ∗(λ, ννν) + nobg(ννν), where nX+Z/γ∗ is the number of signal plus Z/γ∗ events

and X can be ZKK/γKK or a Minimal Z ′ boson. Signal templates provide the expected

line-shape of the dilepton resonances.
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Figure 1. Dielectron (top) and dimuon (bottom) invariant mass (mℓℓ) distributions after final

selection, compared with the stacked sum of all expected backgrounds, with two example Z ′

SSM

signals overlaid. The bin width is constant in logmℓℓ.

The significance of a signal is summarized by a p-value, the probability of observing

a signal-like excess at least as extreme as the one observed in data, assuming the null

hypothesis. The outcome of the search is ranked using a log-likelihood ratio (LLR), with

the likelihood function defined as the product of the Poisson probabilities over all mass
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mee[GeV] 110–200 200–400 400–800 800–1200 1200–3000

Z/γ∗ 26700± 1100 2960± 120 265± 13 12.1± 0.9 1.47± 0.18

tt̄ 1300± 120 410± 40 26.5± 2.8 0.41± 0.17 0.034± 0.034

Diboson 415± 21 146± 8 16.2± 0.9 0.88± 0.05 0.101± 0.011

QCD and W + jets 1900± 600 510± 200 50± 31 2.0± 1.8 0.26± 0.31

Total 30300± 1300 4030± 240 357± 34 15.4± 2.0 1.86± 0.35

Data 29816 4026 358 17 3

Table 2. Expected and observed number of events in the dielectron channel. The errors quoted

include both statistical and systematic uncertainties.

mµµ [GeV] 110–200 200–400 400–800 800–1200 1200–3000

Z/γ∗ 21200± 1200 2090± 230 173± 15 7.7± 0.8 0.98± 0.16

tt̄ 900± 100 270± 50 18± 11 0.32± 0.07 0.019± 0.007

Diboson 289± 32 97± 24 11.8± 2.7 0.59± 0.26 0.087± 0.016

Total 22400± 1200 2460± 240 203± 19 8.7± 0.9 1.09± 0.16

Data 21945 2294 197 10 2

Table 3. Expected and observed number of events in the dimuon channel. The errors quoted

include both statistical and systematic uncertainties.

bins in the search region, using a Z ′

SSM template. Explicitly:

LLR = −2 ln
L(data | n̂Z′ , M̂Z′ , ν̂νν)

L(data | (n̂Z′ = 0), ˆ̂ννν)

where n̂Z′ , M̂Z′ , ν̂νν and ˆ̂ννν are respectively the best-fit values for the Z ′ normalization,

Z ′ mass and nuisance parameters, which maximize the likelihood L given the data, assum-

ing in the numerator that a Z ′ signal is present and in the denominator that no signal

is present. The LLR is scanned as a function of Z ′ cross section and MZ′ over the full

considered mass range. The observed p-value for the dielectron and dimuon samples is

36% and 68%, respectively. For the combination of both channels, the observed p-value

is 40%.

9 Limit-setting procedure

In the absence of a signal, upper limits on the number of events produced by the decay of

a new resonance are determined at the 95% Confidence Level (CL).

The limit on the number of signal events is converted into a limit on the ratio of

cross section times branching fraction σB(X → ℓ+ℓ−)/σB(Z → ℓ+ℓ−) by dividing by the

observed number of Z boson events and the ratio of corresponding acceptances. This ratio

of σB is then converted into a limit on σB(X → ℓ+ℓ−) by multiplying it by the theoretical

value of σB(Z → ℓ+ℓ−). Because of the strong destructive interference between Kaluza-

Klein bosons and Z/γ∗, limits are set on the coupling strength of the resonance to the

fermions instead of the cross section times branching ratio. The same is done for the class

of Minimal Z ′ Models, where the coupling strength γ′ is one of the two parameters defining

the model.
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Model Z ′

ψ Z ′

N Z ′

η Z ′

I Z ′

S Z ′

χ

sin θE6 0 −1/4
√

3/8
√

5/8 3
√
6/8 1

cos θE6 1
√
15/4

√

5/8 −
√

3/8 −
√
10/8 0

Table 4. Mixing angle values for the E6 models considered.

The same Bayesian approach [69] is used in all cases, with a flat prior probability

distribution for the signal cross section times branching fraction (σB), when neglecting

interference. When including the effects of interference, the prior is flat for the coupling

strength to the second or to the fourth power. The most likely number of signal events, and

the corresponding confidence intervals, are determined from a likelihood function defined

as the product of the Poisson probabilities over all mass bins in the search region, using

the appropriate signal templates. The nuisance parameters are integrated out.

Most of the dilepton resonances searched for in this analysis are narrow compared

to the detector resolution. The effect of width variations on the resonance line-shape is

neglected for the E6 analysis. On the other hand, the dependence of the width on the

coupling strength is taken into account in the MWT, Torsion and G∗ analyses by using

several templates for a given pole mass in which various values of the couplings are selected.

Signal templates include the acceptance times efficiency of the signal, at a given pole mass

MX , over the full search region. The product Aǫ is different for each model due to different

angular distributions, boosts, and line-shapes.

The expected exclusion limits are determined using simulated pseudo-experiments with

only Standard Model processes by evaluating the 95% CL upper limits for each pseudo-

experiment for each fixed value of the resonance pole mass MX . The median of the distri-

bution of limits is chosen to represent the expected limit. The ensemble of limits is also

used to find the 68% and 95% envelopes of the expected limits as a function of MX .

The combination of the dielectron and dimuon channels is performed under the as-

sumption of lepton universality by defining the likelihood function in terms of the total

number of signal events produced in both channels. For each source of uncertainty, the

correlations across bins, as well as the correlations between signal and background, are

taken into account.

10 Limits on spin-1 SSM and E6 Z′ bosons

Due to mixing between the U(1)χ and U(1)ψ groups, in the E6 models the lightest new

boson is a linear combination of the Z ′

χ and Z ′

ψ bosons depending on the mixing angle θE6 .

For six specific values of this mixing angle, the diboson resonance is named Z ′

ψ, Z
′

N, Z
′

η, Z
′

I,

Z ′

S, and Z
′

χ. The corresponding mixing angle values are displayed in table 4. Like the SSM,

these models prescribe the couplings of the Z ′ boson to the SM fermions. The expected

intrinsic width of the Z ′ boson in the E6 models is predicted to be between 0.5% and

1.3% [70, 71] of its mass, while in the SSM the intrinsic width is predicted to be about 3%.

Figure 2 shows the 95% CL observed and expected exclusion limits on σB(Z ′ → e+e−)

and σB(Z ′ → µ+µ−) obtained with Z ′

SSM templates. It also shows the theoretical cross
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Figure 2. Expected and observed 95% CL limits on σB and expected σB for Z ′

SSM production

and the two E6-motivated Z ′ models with lowest and highest σB for the dielectron (left), and the

dimuon (right) selections. The dashed lines around the Z ′

SSM theory curve represent the theoretical

uncertainty, which is similar for the other theory curves.
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Figure 3. Expected and observed 95% CL limits on σB and expected σB for Z ′

SSM production and

the two E6-motivated Z ′ models with lowest and highest σB for the combination of the dielectron

and dimuon channels. The dashed lines around the Z ′

SSM theory curve represent the theoretical

uncertainty, which is similar for the other theory curves.

section times branching fraction for the Z ′

SSM and for the lowest and highest σB of E6-

motivated Z ′ models. The combination of the dielectron and dimuon channels is shown in

figure 3. The rise of the σB limit at high invariant mass is due mainly to the fast fall of the

parton luminosity at high momentum transfer which enhances the low-mass tail, causing

a distortion in the resonance peak shape.

The 95% CL σB limit is used to set mass limits for each of the models considered. The

limits obtained for the Z ′

SSM are displayed in table 5. The combined observed (expected)
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Z ′

SSM → e+e− Z ′

SSM → µ+µ− Z ′

SSM → ℓ+ℓ−

Observed limit [TeV] 2.08 1.99 2.22

Expected limit [TeV] 2.13 2.00 2.25

Table 5. The observed and expected 95% CL lower limits on the mass of the Z ′

SSM boson for the

e+e− and µ+µ− channels separately and for their combination.

Model Z ′

ψ Z ′

N Z ′

η Z ′

I Z ′

S Z ′

χ

Observed limit [TeV] 1.79 1.79 1.87 1.86 1.91 1.97

Expected limit [TeV] 1.87 1.87 1.92 1.91 1.95 2.00

Table 6. The observed and expected 95% CL lower limits on the masses of E6-motivated Z ′ bosons.

Both lepton channels are combined.

Z∗ → e+e− Z∗ → µ+µ− Z∗ → ℓ+ℓ−

Observed limit [TeV] 2.10 1.97 2.20

Expected limit [TeV] 2.13 1.99 2.22

Table 7. The observed and expected 95% CL lower limits on the mass of the Z∗ boson for the

e+e− and µ+µ− channels separately and for their combination.

mass limit for the Z ′

SSM is 2.22 (2.25) TeV. The combined mass limits on E6-motivated Z ′

are given in table 6.

11 Limits on spin-1 Z∗ bosons

A model with quark-lepton universality is adopted [72, 73] to fix the coupling strength

of the Z∗ boson to fermions. The gauge coupling is chosen to be the same as in the SM

SU(2) group, and the scale of the new physics is proportional to the mass of the new heavy

bosons. The parameters of the model are fixed by requiring that the total and partial decay

widths of W ∗, the charged partner of Z∗, be the same as those of the W ′

SSM boson with

the same mass. The width of the Z∗ is then 3.4% of its mass. As a result of the tensor

form of the coupling, the Z∗ does not interfere with Z/γ∗, and the angular distribution of

its decay to dileptons is different from that of a Z ′ boson.

Figure 4 shows the 95% CL observed and expected exclusion limits on σB(Z∗ →
ℓ+ℓ−) as well as the cross section times branching fraction expected from theory. The

corresponding 95% CL limits on the mass of the Z∗ boson are shown in table 7.

12 Limits on spin-2 Randall-Sundrum gravitons

The phenomenology of the RS model used in this work can be described in terms of the mass

of the graviton and the ratio k/M Pl. The expected intrinsic width of the G∗ is proportional

to (k/M Pl)
2, and is 1.4% for k/M Pl = 0.1. Limits at the 95% CL on σB(G∗ → ℓ+ℓ−) are

computed assuming two values of k/M Pl: 0.1 and 0.2. These limits are then compared

to the theoretical cross section times branching fraction assuming eight different values
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Figure 4. Expected and observed 95% CL limits on σB and expected σB for Z∗ boson production

for the combination of dielectron and dimuon channels. The dashed lines around the Z∗ theory

curve represent the theoretical uncertainty.

G∗ → e+e− G∗ → µ+µ− G∗ → ℓ+ℓ−

Observed limit [TeV] 2.03 1.92 2.16

Expected limit [TeV] 2.04 1.93 2.17

Table 8. The observed and expected 95% CL lower limits on the mass of the G∗ with a coupling

of k/M Pl= 0.1 for the e+e− and µ+µ− channels separately and for their combination.

k/M Pl 0.01 0.03 0.05 0.1 0.12 0.14 0.17 0.2

Observed limit [TeV] 0.92 1.49 1.72 2.16 2.23 2.32 2.42 2.51

Expected limit [TeV] 1.02 1.53 1.81 2.17 2.25 2.33 2.44 2.53

Table 9. The observed and expected 95% CL lower limits on the mass of the G∗ with varying

coupling k/M Pl. Both lepton channels are combined.

of k/M Pl between 0.01 and 0.2. The σB limits obtained with k/M Pl = 0.1 are used for

k/M Pl hypotheses below or equal to 0.1, while those with k/M Pl = 0.2 are used for k/M Pl

hypotheses larger than 0.1 and below or equal to 0.2. Limits at the 95% CL on the graviton

mass are derived from this comparison for each k/M Pl hypothesis and are shown in table 8

for k/M Pl = 0.1, and in table 9 and figure 5 for the combined dilepton channel for all

values of k/M Pl.

13 Limits on Torsion models

The Torsion heavy state (TS) can be treated as a fundamental propagating field character-

ized by its mass, MTS, and the couplings between TS and fermions. These couplings are
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Figure 5. Exclusion regions in the plane of k/M Pl versus graviton mass for the combination of

dielectron and dimuon channels. The region above the curve is excluded at 95% CL.

ηTS 0.05 0.1 0.2 0.3 0.4 0.5

Observed limit [TeV] 1.52 1.94 2.29 2.50 2.69 2.91

Expected limit [TeV] 1.58 1.96 2.31 2.55 2.77 3.02

Table 10. The observed and expected 95% CL lower limits on the mass of Torsion heavy states

with varying coupling ηTS. Both lepton channels are combined.

assumed to be universal at the Planck scale and remain so at the TeV scale for all fermions

except the top quark [25]. Therefore the phenomenology of Torsion decays to dilepton

states can be described in terms of two parameters: the TS mass and one coupling (ηTS).

Since ηTS can a priori take any value between 0 and 1, the intrinsic width could be very

large. The interference effects with Z/γ∗ are negligible.

Limits are computed on σB(TS → ℓ+ℓ−) for five values of ηTS in the range 0.1–0.5.

Limits on σB are then translated into limits on MTS in the same way as above for the RS

graviton, by comparing them to the theoretical σB as a function of MTS for each value

of ηTS. Additionally, the σB limits obtained for ηTS = 0.1 are used to set mass limits for

ηTS = 0.05, which is conservative because the TS width is smaller for ηTS = 0.05. The

resulting exclusion region in the (MTS, ηTS) plane is displayed in figure 6 and table 10

for the combined dielectron and dimuon channels. The limits on MTS obtained in each

channel for ηTS = 0.2 are shown in table 11.

14 Limits on Technicolor

LSTC model. The Low-scale Technicolor (LSTC) model [19, 20, 74] postulates the ex-

istence of vector (ρT, ωT) and axial (aT) techni-mesons, in addition to light techni-pions
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dielectron and dimuon channels. The region above the curve is excluded at 95% CL.

TS → e+e− TS → µ+µ− TS → ℓ+ℓ−

Observed limit [TeV] 2.15 2.07 2.29

Expected limit [TeV] 2.20 2.08 2.31

Table 11. The observed and expected 95% CL lower limits on the mass of Torsion heavy states

with a coupling of ηTS = 0.2 for the e+e− and µ+µ− channels separately and for their combination.

(πT). Due to techni-isospin symmetry, ρT and ωT are nearly degenerate in mass. Therefore

this analysis searches for a combination of ρT and ωT, with ωT being the dominant com-

ponent since its branching fraction to dileptons is approximately one order of magnitude

larger than that of the ρT. In this work, the LSTC parameters are chosen to be the same

as in ref. [74] (in particular, the LSTC parameter sinχ = 1/3) and the mass of the aT state

is assumed to be 10% higher than that of ρT.

Limits are computed on σB for the decay of the techni-mesons to dilepton final states.

When building the signal templates, it is assumed that the mass splitting is MρT −MπT =

MW . Negative interference contributions are neglected. The intrinsic widths of the ρT, ωT

and aT resonances are much smaller than the experimental resolution. The resulting limits

on the ρT/ωT mass are displayed in table 12.

The σB limits are then translated into exclusion regions in the (MρT/ωT
,MπT) plane,

shown in figure 7. The notation ρT/ωT indicates the combination of the two resonances.

The mass splitting between ρT and πT determines whether decay modes such as ρT →
WπT or multi-πT are allowed kinematically. Therefore the choice of the value of the

mass of πT has an impact on the ratio between the aT and ρT cross sections. Another
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ρT/ωT → e+e− ρT/ωT → µ+µ− ρT/ωT → ℓ+ℓ−

Observed limit [TeV] 0.85 0.70 0.85

Expected limit [TeV] 0.85 0.71 0.89

Table 12. The observed and expected 95% CL lower limits on the mass of the ρT/ωT in the

MρT
−MπT

=MW hypothesis for the e+e− and µ+µ− channels separately and for their combination.
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Figure 7. The 95% CL excluded region (in red) in the plane πT mass as a function of the ρT/ωT

mass, assuming MaT
= 1.1 × MρT/ωT

, for the combination of dielectron and dimuon channels.

The dotted line corresponds to MρT/ωT
−MπT

= MW . The black dashed line shows the expected

limit, with the green dashed lines showing the ±1σ bands. The blue hashed region in which

MπT
> MρT/ωT

is excluded by theory. This search is insensitive in the region below the purple

dashed-dotted line (MπT
< MρT/ωT

/3).

foundational assumption of the LSTC model is that the walking TC gauge coupling causes

an enhancement of MπT relative to MρT and the other vector meson masses. This tends

to close off the ρT → πTπT decay channel and, even more strongly, closes off the ωT and

aT → 3πT channels [75]. IfMωT > 3MπT , the ωT → πTπTπT channel opens up and quickly

becomes the dominant decay mode of ωT. Therefore the dilepton branching fractions

become substantially smaller and there is no sensitivity in the MπT < MρT/ωT
/3 region in

the dilepton channel.

MWT model. The Minimal Walking Technicolor (MWT) [21–23] model can be charac-

terized by the following parameters:

• bare axial and vector masses: MA and MV ;

• g̃, the strength of the spin-1 resonance interaction;

• MH , the Higgs boson mass;

• s, the coupling of the Higgs boson to composite spin-1 states;

• S, the S-parameter obtained using the zeroth Weinberg Sum Rule [76, 77].
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g̃ 6 5 4 3 2

Observed limit [GeV] 359 485 768 1175 1566

Expected limit [GeV] 352 516 742 1233 1605

Table 13. The observed and expected 95% CL lower limits on the MA parameter with varying

coupling g̃. Both lepton channels are combined.

 [GeV]AM
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Dilepton 95% Exclusion 
Dilepton 95% Expected limit 

σ 1±Dilepton 95% Expected limit 
Running regime
EW precision test

ATLAS
-1

 L dt = 4.9 fb∫ee: 
-1

 L dt = 5.0 fb∫: µµ

 = 7 TeVs
 ll→ 2, R1R

Figure 8. Bounds in the (MA, g̃) plane of the MWT parameter space: (i) The electroweak

precision measurements exclude the dark area in the bottom left corner. (ii) The requirement to

stay in the walking regime excludes the hatched area in the right corner. (iii) The red area (black

dashed line) shows the observed (expected) exclusion at 95% CL in the dilepton channel. The green

dashed lines show the ±1σ bands of the expected exclusion limit.

This model predicts only two resonances, R1 and R2. MR1 is lower than MR2 and

generally very close to MA. In contrast to LSTC, R1 and R2 are neither degenerate

nor very narrow. In this work, three free parameters have been set to MH = 200GeV,

s = 0, and S = 0.3, following the recommendation from ref. [78]. The mass of the lightest

resonance,MR1 , is then scanned in steps of 100GeV for various values of g̃. For each choice

of g̃ and MR1 , the values of MR2 , MA and MV are uniquely determined.

Limits on σB(R1/R2 → ℓ+ℓ−) are first set as a function of MR1 assuming g̃ =

2, 3, 4, 5, 6, where the notation R1/R2 indicates that both resonances are taken into ac-

count in the spectrum. They are then translated into a 95% CL exclusion area in the

(MA, g̃) plane, as shown in figure 8 and table 13. The limits from the Tevatron, as well

as the theoretical limits, including the requirement to stay in the walking regime, are de-

scribed in detail in ref. [77]. Note that the edge of the excluded area varies only very

weakly as a function of s and MH , so a Higgs boson mass of ≈ 125GeV would not change

the results significantly. A theoretical re-interpretation of the CMS results from W ′ boson

searches [79], in terms of the parameters MA and g̃, is described in ref. [78].
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15 Limits on spin-1 Kaluza-Klein S1/Z2 bosons

The model proposed in ref. [14] assumes a single extra spatial dimension with size of order

1TeV−1, compactified onto an S1/Z2 orbifold. In the minimal model considered here, all

of the SM fermions are on the same orbifold point. The model is completely specified by

a single parameter, the compactification scale, which drives the masses of the KK modes.

As for the case of Z ′

SSM, this type of model can be classified as sequential to the Standard

Model since the KK couplings are kept SM-like, although enhanced by a factor of
√
2.

However, contrary to any of the Z ′ models, the interference with Z/γ∗ is very strong and

is a potentially distinctive feature of this type of model [13, 80].

Because of the strong destructive interference effects mentioned above, it is not possible

to put limits on σB as done for the preceding models. Instead, a coupling strength g is

introduced that multiplies the fermion couplings, gXλf , where X stands for the new massive

ZKK/γKK resonance, and λf can be the helicity coupling, λf =L,R, as done in ref. [13].

The resulting differential cross section, after the gXλf −→ g × gXλf transformation, is

dσ

ds
∝

∣

∣

∣

∣

∣

Z/γ∗ +
gXλqg

X
λℓ

s−m2
X + iΓXmX

∣

∣

∣

∣

∣

2

−→
∣

∣

∣

∣

∣

Z/γ∗ + g2
gXλqg

X
λℓ

s−m2
X + ig2ΓXmX

∣

∣

∣

∣

∣

2

.

Flat priors of g4 and g2 are used in the limit-setting procedure, as opposed to σB used

earlier. A flat prior in g4 can be assumed when the pure ZKK/γKK cross-section term

dominates. If the interference term between ZKK/γKK and Z/γ∗ dominates, a flat prior

in g2 is better motivated. Two-dimensional templates are produced in order to scan the g

parameter in the region 0–2.2 and the ZKK/γKK pole masses (MKK) between 130GeV and

6TeV.

The strong interference with the Z/γ∗ implies a greater sensitivity to shape distor-

tions, especially at the high-end of the mass window, and therefore, two more systematic

uncertainties which are found to be negligible in the non-interfering channels have to be

taken into account here. First, an uncertainty on the muon momentum resolution, which

goes up to 20%–30% above 2.5TeV. Second, an uncertainty on the extrapolation of the

tt̄ and diboson backgrounds, due to the fit function choice and the fit range variation; in

the dimuon channel, this uncertainty ranges from 2% to 6% in the 2–3TeV mass range,

relative to the full background. These two uncertainties do not affect the dielectron channel

due to a better resolution and to the dominance of the QCD and W + jets background

uncertainties over the tt̄ and diboson background uncertainties.

The observed and expected limits on g4 and g2 are translated into limits on g, which

are shown as a function of MKK in figure 9 for the combination of dielectron and dimuon

channels. The fast broadening of the expected one and two-sigma bands above 2TeV is

due to the destructive interference becoming the dominant feature of the signal shape.

Lower limits on MKK are derived from the ZKK/γKK hypothesis (g = 1); they are

displayed in table 14. Contrary to the non-interfering case, high-mass candidates in data

induce observed limits which are better than expected. The obtained mass limits are higher

than the indirect limits from electroweak precision measurements [14, 42].
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Figure 9. Expected and observed 95% CL limits on g as a function of MKK, for the combination

of dielectron and dimuon channels, using a flat prior on g4 (left) and on g2 (right).

ZKK/γKK → e+e− ZKK/γKK → µ+µ− ZKK/γKK → ℓ+ℓ−

g4 prior

Observed limit [TeV] 3.35 3.55 4.16

Expected limit [TeV] 3.11 3.38 4.07

g2 prior

Observed limit [TeV] 4.03 3.93 4.71

Expected limit [TeV] 3.52 3.79 4.53

Table 14. The observed and expected 95% CL lower limits on the mass of the ZKK/γKK (i.e.

g = 1) for the e+e− and µ+µ− channels separately and for their combination.

16 Limits on Minimal Z′ bosons

Limits are also set in the framework of Minimal Z ′ Models [3]. In this framework, the

coupling of the new boson Z ′

Min to fermions is determined by its coupling to the B–L

current, gBL, and its coupling to the weak hypercharge Y, gY. It is convenient to refer

to the ratios g̃BL ≡ gBL/gZ and g̃Y ≡ gY/gZ , where gZ is the coupling of the SM Z

boson defined by gZ = 2MZ/v (v = 246GeV is the Higgs vacuum expectation value in

the SM). γ′ and θ are chosen as independent parameters with the following definitions:

g̃BL = γ′ cos θ, g̃Y = γ′ sin θ. The γ′ parameter measures the strength of the Z ′

Min boson

coupling relative to the SM Z boson coupling, while θ determines the mixing between the

generators of the B–L and the weak hypercharge Y gauge groups. Specific values of γ′ and

θ correspond to Z ′ bosons in various models such as the Z ′

B−L boson and Z ′

3R boson.

Signal templates are built which take into account both the interference and the de-

pendence of the Z ′

Min boson width on γ′ and θ. The coupling to hypothetical right-handed

neutrinos and to W boson pairs is neglected. As for the KK model, the two-dimensional

signal templates are made by reweighting the simulated Z/γ∗ samples with the ratio of

differential cross sections δσ(Z ′

Min+Z/γ
∗)/δσ(Z/γ∗). For a given value of θ and for each of

the tested pole masses, dilepton invariant mass templates are created with varying values
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γ′ 0.1 0.2

Range of observed limits [TeV] 0.67-1.43 1.11-2.10

Range of expected limits [TeV] 0.58-1.47 1.17-2.07

Table 15. Range of the observed and expected 95% CL lower limits on the Z ′

Min boson mass for

θ ∈ [0, π] and representative values of the relative coupling strength γ′. Both lepton channels are

combined.

Z ′

Min mass [TeV] 1 2

Range of observed limits 0.08-0.16 0.16-1.10

Range of expected limits 0.07-0.15 0.17-1.01

Table 16. Range of the observed and expected 95% CL upper limits on the relative coupling

strength γ′ for θ ∈ [0, π] and representative values of the Z ′

Min boson mass. Both lepton channels

are combined.

of γ′ between 0.01 and 2. The templates at these chosen values of γ′ are interpolated to

all values of γ′ by using a smooth interpolating function in each dilepton mass bin. The

likelihood fit across all dilepton mass bins finds the most probable value of γ′ for each θ

and Z ′

Min boson mass MZ′

Min
.

Systematic uncertainties are applied as in the case of σB limits. Limits are set on the

relative coupling strength γ′ as a function of the Z ′

Min boson mass, as shown in figure 10.

The two θ values yielding the minimum and maximum cross sections are used to define a

band of limits in the (γ′, MZ′

Min
) plane. Table 15 shows the range of the lower limits on

the Z ′

Min boson mass for representative values of γ′. The range of the upper limits on γ′

for representative values of the Z ′

Min boson mass is shown in table 16.

17 Conclusions

Searches for heavy resonances in the dilepton invariant mass spectrum have been presented.

Proton-proton collisions at a center-of-mass energy of 7TeV with 4.9 fb−1 in the e+e−

channel and 5.0 fb−1 in the µ+µ−channel have been used. The observed invariant mass

spectra are consistent with the SM expectations. Limits are set on the cross section times

branching fraction σB for spin-1 and spin-2 bosons. The resulting mass limits are 2.22 TeV

for the Sequential Standard Model Z ′ boson, 1.79−1.97 TeV for various E6-motivated

Z ′ bosons, and 2.16 (0.92) TeV for a Randall-Sundrum graviton G∗ with the coupling

parameter k/M Pl equal to 0.1 (0.01). The G∗ boson limits are the most stringent to date.

Experimental limits have also been set on Technicolor models, on Z∗, and for the first time,

on Kaluza-Klein modes of electroweak bosons, general Minimal Models of Z ′ bosons, and

Torsion models in quantum gravity.
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Navarro167, R.W. Gardner31, N. Garelli30, H. Garitaonandia105, V. Garonne30, C. Gatti47,

G. Gaudio119a, B. Gaur141, L. Gauthier136, P. Gauzzi132a,132b, I.L. Gavrilenko94, C. Gay168,

G. Gaycken21, E.N. Gazis10, P. Ge33d, Z. Gecse168, C.N.P. Gee129, D.A.A. Geerts105,

Ch. Geich-Gimbel21, K. Gellerstedt146a,146b, C. Gemme50a, A. Gemmell53, M.H. Genest55,

S. Gentile132a,132b, M. George54, S. George76, P. Gerlach175, A. Gershon153, C. Geweniger58a,

H. Ghazlane135b, N. Ghodbane34, B. Giacobbe20a, S. Giagu132a,132b, V. Giakoumopoulou9,

V. Giangiobbe12, F. Gianotti30, B. Gibbard25, A. Gibson158, S.M. Gibson30, D. Gillberg29,

A.R. Gillman129, D.M. Gingrich3,d, J. Ginzburg153, N. Giokaris9, M.P. Giordani164c,

R. Giordano102a,102b, F.M. Giorgi16, P. Giovannini99, P.F. Giraud136, D. Giugni89a, M. Giunta93,

P. Giusti20a, B.K. Gjelsten117, L.K. Gladilin97, C. Glasman80, J. Glatzer48, A. Glazov42,

K.W. Glitza175, G.L. Glonti64, J.R. Goddard75, J. Godfrey142, J. Godlewski30, M. Goebel42,
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M.K. Jha20a, H. Ji173, W. Ji81, J. Jia148, Y. Jiang33b, M. Jimenez Belenguer42, S. Jin33a,

O. Jinnouchi157, M.D. Joergensen36, D. Joffe40, M. Johansen146a,146b, K.E. Johansson146a,

P. Johansson139, S. Johnert42, K.A. Johns7, K. Jon-And146a,146b, G. Jones170, R.W.L. Jones71,

T.J. Jones73, C. Joram30, P.M. Jorge124a, K.D. Joshi82, J. Jovicevic147, T. Jovin13b, X. Ju173,

C.A. Jung43, R.M. Jungst30, V. Juranek125, P. Jussel61, A. Juste Rozas12, S. Kabana17,

M. Kaci167, A. Kaczmarska39, P. Kadlecik36, M. Kado115, H. Kagan109, M. Kagan57,

E. Kajomovitz152, S. Kalinin175, L.V. Kalinovskaya64, S. Kama40, N. Kanaya155, M. Kaneda30,

S. Kaneti28, T. Kanno157, V.A. Kantserov96, J. Kanzaki65, B. Kaplan108, A. Kapliy31,

J. Kaplon30, D. Kar53, M. Karagounis21, K. Karakostas10, M. Karnevskiy42, V. Kartvelishvili71,

A.N. Karyukhin128, L. Kashif173, G. Kasieczka58b, R.D. Kass109, A. Kastanas14, M. Kataoka5,

Y. Kataoka155, E. Katsoufis10, J. Katzy42, V. Kaushik7, K. Kawagoe69, T. Kawamoto155,

G. Kawamura81, M.S. Kayl105, S. Kazama155, V.A. Kazanin107, M.Y. Kazarinov64, R. Keeler169,

R. Kehoe40, M. Keil54, G.D. Kekelidze64, J.S. Keller138, M. Kenyon53, O. Kepka125,
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S. Migas73, L. Mijović136, G. Mikenberg172, M. Mikestikova125, M. Mikuž74, D.W. Miller31,
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Roma, Italy
134 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
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