
MIT Open Access Articles

Combining Binary Search Trees

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Demaine, Erik D., John Iacono, Stefan Langerman, and Ozgur Ozkan. “Combining
Binary Search Trees.” Lecture Notes in Computer Science (2013): 388–399.

As Published: http://dx.doi.org/10.1007/978-3-642-39206-1_33

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/86199

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/86199
http://creativecommons.org/licenses/by-nc-sa/4.0/

Combining Binary Search Trees?

Erik D. Demaine1, John Iacono2??, Stefan Langerman? ? ?3, and Özgür Özkan2†

1 Massachusetts Institute of Technology
2 Polytechnic Institute of New York University

3 Université Libre de Bruxelles

Abstract. We present a general transformation for combining a con-
stant number of binary search tree data structures (BSTs) into a single
BST whose running time is within a constant factor of the minimum of
any “well-behaved” bound on the running time of the given BSTs, for
any online access sequence. (A BST has a well-behaved bound with f(n)
overhead if it spends at most O(f(n)) time per access and its bound
satisfies a weak sense of closure under subsequences.) In particular, we
obtain a BST data structure that is O(log logn) competitive, satisfies
the working set bound (and thus satisfies the static finger bound and
the static optimality bound), satisfies the dynamic finger bound, satis-
fies the unified bound with an additive O(log logn) factor, and performs
each access in worst-case O(logn) time.

1 Introduction

Binary search trees (BSTs) are one of the most fundamental and well-studied
data structures in computer science. Yet, many fundamental questions about
their performance remain open. While information theory dictates the worst-
case running time of a single access in an n node BST to be Ω(log n), which
is achieved by many BSTs (e.g., [2]), BSTs are generally not built to execute
a single access, and there is a long line of research attempting to minimize the
overall running time of executing an online access sequence. This line of work
was initiated by Allen and Munro [1], and then by Sleator and Tarjan [15] who
invented the splay tree. Central to splay trees and many of the data structures in
the subsequent literature is the BST model. The BST model provides a precise
model of computation, which is not only essential for comparing different BSTs,
but also allows the obtaining of lower bounds on the optimal offline BST.

In the BST model, the elements of a totally ordered set are stored in the
nodes of a binary tree and a BST data structure is allowed at unit cost to
manipulate the tree by following the parent, left-child, or right-child pointers at
each node or rotate the node with its parent. We give a formal description of

? See [9] for the full version.
?? Research supported by NSF Grant CCF-1018370

? ? ? Directeur de Recherches du F.R.S.-FNRS. Research partly supported by the F.R.S.-
FNRS and DIMACS.

† Research supported by GAANN Grant P200A090157 from the US Department of
Education.

the model in Section 1.1. A common theme in the literature since the invention
of splay trees concerns proving various bounds on the running time of splay
trees and other BST data structures [4, 6, 7, 12, 15]. Sleator and Tarjan [15]
proved a number of upper bounds on the performance of splay trees. The static
optimality bound requires that any access sequence is executed within a constant
factor of the time it would take to execute it on the best static tree for that
sequence. The static finger bound requires that each access x is executed in
O(log d(f, x)) amortized time where d(f, x) is the number of keys between any
fixed finger f and x. The working set bound requires that each access x is
executed in O(logw(x)) amortized time where w(x) is the number of elements
accessed since the last access to x. Cole [6] and Cole et al. [7] later proved that
splay trees also have the dynamic finger bound which requires that each access x
is executed in O(log d(y, x)) amortized time where y is the previous item in the
access sequence. Iacono [14] introduced the unified bound, which generalizes and
implies both the dynamic finger and working set bounds. Bose et al. [4] presented
layered working set trees, and showed how to achieve the unified bound with an
additive cost of O(log log n) per access, by combining them with the skip-splay
trees of Derryberry and Sleator [12].

A BST data structure satisfies the dynamic optimality bound if it is O(1)-
competitive with respect to the best offline BST data structure. Dynamic opti-
mality implies all other bounds of BSTs. The existence of a dynamically optimal
BST data structure is a major open problem. While splay trees were conjectured
by Sleator and Tarjan to be dynamically optimal, despite decades of research,
there were no online BSTs known to be o(log n)-competitive until Demaine et
al. invented Tango trees [8] which are O(log log n)-competitive. Later, Wang et
al. [17] presented a variant of Tango trees, called multi-splay trees, which are also
O(log log n)-competitive and retain some bounds of splay trees. Bose et al. [3]
gave a transformation where given any BST whose amortized running time per
access is O(log n), they show how to deamortize it to obtain O(log n) worst-case
running time per access while preserving its original bounds.

Results and Implications. In this paper we present a structural tool to com-
bine bounds of BSTs from a certain general class of BST bounds, which we
refer to as well-behaved bounds. Specifically, our method can be used to pro-
duce an online BST data structure which combines well-behaved bounds of all
known BST data structures. In particular, we obtain a BST data structure that
is O(log log n) competitive, satisfies the working set bound (and thus satisfies
the static finger bound and the static optimality bound), satisfies the dynamic
finger bound, satisfies the unified bound with an additive O(log log n), and per-
forms each access in worst-case O(log n) time. Moreover, we can add to this list
any well-behaved bound realized by a BST data structure.

Note that requiring the data structures our method produces to be in the
BST model precludes the possibility of a trivial solution such as running all data
structures in parallel and picking the fastest.

Our result has a number of implications. First, it could be interpreted as a
weak optimality result where our method produces a BST data structure which
is O(1)-competitive with respect to a constant number of given BST data struc-
tures whose actual running times are well-behaved. In comparison, a dynamically
optimal BST data structure, if one exists, would be O(1)-competitive with re-

2

spect to all BST data structures. On the other hand, the existence of our method
is a necessary condition for the existence of a dynamically optimal BST. Lastly,
techniques introduced in this paper (in particular the simulation of multiple
fingers in Section 2) may be of independent interest for augmenting a BST in
nontrivial ways, as we do here. Indeed, they are also used in [5].

1.1 Preliminaries

The BST model. Given a set S of elements from a totally ordered universe,
where |S| = n, a BST data structure T stores the elements of S in a rooted tree,
where each node in the tree stores an element of S, which we refer to as the key
of the node. The node also stores three pointers pointing to its parent, left child,
and right child. Any key contained in the left subtree of a node is smaller than
the key stored in the node; and any key contained in the right subtree of a node
is greater than the key stored in the node. Each node can store data in addition
to its key and the pointers.

Although BST data structures usually support insertions, deletions, and
searches, in this paper we consider only successful searches, which we call ac-
cesses. To implement such searches, a BST data structure has a single pointer
which we call the finger, pointed to a node in the BST T . The finger initially
points to the root of the tree before the first access. Whenever a finger points
to a node as a result of an operation o we say the node is touched, and denote
the node by N(o). An access sequence (x1, x2, . . . , xm) satisfies xi ∈ S for all
i. A BST data structure executes each access i by performing a sequence of
unit-cost operations on the finger—where the allowed unit-cost operations are
following the left-child pointer, following the right-child pointer, following the
parent pointer, and performing a rotation on the finger and its parent—such
that the node containing the search key xi is touched as a result of these oper-
ations. Any augmented data stored in a node can be modified when the node
is touched during an access. The running time of an access is the number of
unit-cost operations performed during that access.

An offline BST data structure executes each operation as a function of the
entire access sequence. An online BST data structure executes each operation
as a function of the prefix of the access sequence ending with the current access.
Furthermore, as coined by [3], a real-world BST data structure is one which can
be implemented with a constant number of O(log n) bit registers and O(log n)
bits of augmented data at each node.

The Multifinger-BST model. The Multifinger-BST model is identical to the
BST model with one difference: in the Multifinger-BST model we have access to
a constant number of fingers, all initially pointing to the root.

We now formally define what it means for a BST data structure to simulate
a Multifinger-BST data structure.

Definition 1. A BST data structure S simulates a Multifinger-BST data struc-
ture M if there is a correspondence between the ith operation opM [i] performed
by M and a contiguous subsequence opS [ji], opS [ji + 1], . . . , N(opS [ji+1 − 1]) of
the operations performed by S, for j1 < j2 < · · · , such that the touched nodes
satisfy N(opM [i]) ∈ {N(opS [ji]), N(opS [ji + 1]), . . . , N(opS [ji+1 − 1])}.

3

For any access sequence X, there exists an offline BST data structure that ex-
ecutes it optimally. We denote the number of unit-cost operations performed by
this data structure by OPT(X). An online BST data structure is c-competitive
if it executes all sequences X of length Ω(n) in time at most c ·OPT(X), where
n is the number of nodes in the tree. An online BST that is O(1)-competitive is
called dynamically optimal.

Because a BST data structure is a Multifinger-BST data structure with one
finger, the following definitions apply to BST data structures as well.

Definition 2. Given a Multifinger-BST data structure A and an initial tree T ,

let T (A, T,X) =
∑|X|
i=1 τ(A, T,X, i)+f(n) be an upper bound on the total running

time of A on any access sequence X starting from tree T , where τ(A, T,X, i)
denotes an amortized upper bound on the running time of A on the ith access
of access sequence X, and f(n) denotes the overhead. Define TX′(A, T,X) =∑|X′|
i=1 τ(A, T,X, π(i)) where X ′ is a contiguous subsequence of access sequence

X and π(i) is the index of the ith access of X ′ in X. The bound τ is well-
behaved with overhead f(n) if there exists constants C0 and C1 such that the
cost of executing any single access xi is at most C1 · f(n), and for any given tree
T , access sequence X, and any contiguous subsequence X ′ of X, T (A, T,X ′) ≤
C0 · TX′(A, T,X) + C1 · f(n).

1.2 Our Results

Given k online BST data structures A1, . . . ,Ak, where k is a constant, our main
result is the design of an online BST data structure which takes as input an
online access sequence (x1, . . . , xm), along with an initial tree T ; and executes, for
all j, access sequence (x1, . . . , xj) in time O

(
mini∈{1,...,k} T (Ai, T, (x1, . . . , xj))

)
where T (Ai, T,X) is a well-behaved bound on the running time ofAi. To simplify
the presentation, we let k = 2. By combining k BSTs two at a time, in a balanced
binary tree, we achieve an O(k) (constant) overhead.

Theorem 3. Given two online BST data structures A0 and A1, let
TX′(A0, T,X) and TX′(A1, T,X) be well-behaved amortized upper bounds with
overhead f(n) ≥ n on the running time of A0 and A1, respectively, on
a contiguous subsequence X ′ of any online access sequence X from an ini-
tial tree T . Then there exists an online BST data structure, Combo-BST =
Combo-BST(A0,A1, f(n)) such that

TX′(Combo-BST, T,X) = O(min(TX′(A0, T,X), TX′(A1, T,X)) + f(n)).

If A0 and A1 are real-world BST data structures, so is Combo-BST.

Corollary 4. There exists a BST data structure that is O(log log n)-competitive,
satisfies the working set bound (and thus satisfies the static finger bound and the
static optimality bound), satisfies the dynamic finger bound, satisfies the unified
bound4 with an additive O(log log n), all with additive overhead O(n log n), and

4 The Cache-splay tree [11] was claimed to achieve the unified bound. However, this
claim has been rescinded by one of the authors at the 5th Bertinoro Workshop on
Algorithms and Data Structures.

4

performs each access in worst-case O(log n) time.

Proof. We apply Theorem 3 to combine the bounds of the splay tree, the multi-
splay tree [17], and the layered working set tree [4]. The multi-splay tree is
O(log log n)-competitive. Observe that OPT(X) is a well-behaved bound with
overhead O(n) because any tree can be transformed to any other tree in O(n)
time [16]. Therefore, O(log log n)-competitiveness of multi-splay trees is a well-
behaved bound with overhead O(n log log n). On the other hand, the multi-
splay tree also satisfies the working set bound. The working set bound is a
well-behaved bound with O(n log n) overhead because only the first instance of
each item in a subsequence of an access sequence has a different working set
number with respect to that subsequence and the log of each such difference is
upper bounded by log n. The working set bound implies the static finger and
static optimality bounds with overhead O(n log n) [13]. The splay tree satisfies
the the dynamic finger bound [6, 7], which is a well-behaved bound with O(n)
overhead because the additive term in the dynamic finger bound is linear and
only the first access in a subsequence may have an increase in the amortized
bound which is at most log n. The layered working set tree [4] satisfies the
unified bound with an additive O(log log n). Similar to the working set bound,
the unified bound is a well-behaved bound with O(n log n) overhead because
only the first instance of each item in a subsequence of an access sequence has
a different unified bound value with respect to that subsequence and each such
difference is at most log n. Therefore, because the O(log log n) term is additive
and is dominated by O(log n), the unified bound with an additive O(log log n) is
a well-behaved bound with O(n log n) overhead. Lastly, because the multi-splay
tree performs each access in O(log n) worst-case time and because O(log n) is a
well-behaved bound with no overhead, we can apply the transformation of Bose
et al. [3] to our BST data structure to satisfy all of our bounds while performing
each access in O(log n) worst-case time. ut

To achieve these results, we present OneFinger-BST, which can simulate any
Multifinger-BST data structure in the BST model in constant amortized time
per operation. We will present our Combo-BST data structure as a Multifinger-
BST data structure in Section 4 and use OneFinger-BST to transform it into a
BST data structure.

Theorem 5. Given any Multifinger-BST data structure A, where opA[j] is the
jth operation performed by A, OneFinger-BST(A) is a BST data structure such
that, for any k, given k operations (opA[1], . . . , opA[k]) online, OneFinger-BST(A)
simulates them in C2 · k total time for some constant C2 that depends on the
number of fingers used by A. If A is a real-world BST data structure, then so is
OneFinger-BST(A).

Organization and Roadmap. The rest of the paper is organized as follows.
We present a method to transform a Multifinger-BST data structure to a BST
data structure (Theorem 5) in Section 2. We show how to load and save the state
of the tree in O(n) time in the Multifinger-BST model using multiple fingers in
Section 3. We present our BST data structure, the Combo-BST, in Section 4.
We analyze Combo-BST and prove our Theorem 3 in Section 5.

5

2 Simulating Multiple Fingers

In this section, we present OneFinger-BST, which transforms any given
Multifinger-BST data structure T into a BST data structure OneFinger-BST(T).

Structural Terminology. First we present some structural terminology de-
fined by [10], adapted here to the BST model; refer to Figure 1.

prosthetic fingers

fingers
knuckles

T

tendons

hand T ′

Fig. 1: A tree T with a set of fingers, and the corresponding hand structure.

Given any Multifinger-BST T with a set F of fingers f1, . . . , f|F |, where
|F | = O(1), let S(T, F) be the be the Steiner tree with terminals fi, that is, the
union of shortest paths in T between all pairs of fingers5 F . We define prosthetic
fingers, denoted by P ′(T, F), to be the set of nodes with degree 3 in S(T, F)
that are not in F . Then, we define the set of pseudofingers, denoted by P (T, F),
to be P (T, F) = F ∪ P ′(T, F). Note that |P (T, F)| ≤ 2|F | = O(1). The hand
H(T, F) is the compressed Steiner tree obtained from the Steiner tree S(T, F)
by contracting every vertex not in P (T, F) (each of degree 2). A tendon τx,y is
the shortest path in S(T, F) connecting two pseudofingers x and y (excluding
nodes x and y), where x is an ancestor of y and x and y are adjacent in H(T, F).
We refer to x as the top of τx,y and y as the bottom of τx,y. A knuckle is a
connected component of T after removing all of its pseudofingers and tendons.

To avoid confusion, we use parentT (x), left-childT (x), and right-childT (x)
to denote the pointers of a node x in the Multifinger-BST T , and use
parent(x), left-child(x), and right-child(x) to denote the pointers of a node x
in OneFinger-BST(T).

Our Approach. To simulate a Multifinger-BST data structure, OneFinger-BST
needs to handle the movement and rotation of multiple fingers. To accomplish
this, OneFinger-BST maintains the hand structure. We discuss how this is done
at a high level in Section 2.2. However, a crucial part of maintaining the hand

5 For convenience, we also define the root of the tree T to be a finger.

6

is an efficient implementation of tendons in the BST model where the distance
between any two fingers connected by a tendon is at most a constant. We will
implement a tendon as a pair of double-ended queues (deques). The next lemma
lets us do this by showing that a tendon consists of an increasing and a decreasing
subsequence. See Figure 2a.

Lemma 6. A tendon can be partitioned into two subsets of nodes T> and T<
such that the level-order key values of nodes in T> are increasing and the level-
order key values of nodes in T< are decreasing, where the maximum key value
in T> is smaller than the minimum key value in T<.

Proof. Letting T> to be the set of all nodes in tendon τx,y whose left-child is also
in the tendon, and T< to be the set of all nodes in tendon τx,y whose right-child
is also in the tendon yields the statement of the lemma. ut

Deque-BST. It is straightforward to implement double ended queues (deques)
in the BST model. We implement the deques for storing T> and T< symmetri-
cally. LeftDeque-BST is a BST data structure storing the set of nodes in T>
and RightDeque-BST is a BST data structure symmetric to LeftDeque-BST
storing the set of nodes in T<. We denote the roots of LeftDeque-BST and
RightDeque-BST by r> and r< respectively. Because they are symmetric struc-
tures, we only describe LeftDeque-BST. Any node x to be pushed into a
LeftDeque-BST is given as the parent of the r>. Similarly, whenever a node
is popped from LeftDeque-BST, it becomes the parent of r>. LeftDeque-BST
supports the following operations in constant amortized time: push-min(T>, x),
push-max(T>, x), pop-min(T>), pop-max(T>).

2.1 Tendon-BST

We now present a BST data structure, Tendon-BST, which supports the following
operations on a given tendon τx,y, where x′ = parentT (x) and y′ = parentT (y),
τx′,y ← AddTop(τx,y), τx,y ← AddBottom(τx,y′ , y), τx,y ← RemoveTop(τx′,y),
τx,y′ ← RemoveBottom(τx,y).

Implementation. We implement the Tendon-BST operations using
LeftDeque-BST and RightDeque-BST. See Figure 2b. Nodes x, r>, r<, and
y form a path in Tendon-BST where node x is an ancestor of nodes r>, r<,
and y; and node y is a descedant of nodes x, r>, and r<. There are four
such possible paths and the particular one formed depends on the key values
of x and y, and the relationship between node y and its parent in T . These
invariants imply that the distance between x and y is 3. When we need to
insert a node into the tendon, we perform a constant number of rotations to
preserve the invariants and position the node appropriately as the parent of
r> or r<. We then call the appropriate LeftDeque-BST or RightDeque-BST
operation. Removing a node from the tendon is symmetric. Because deques
(LeftDeque-BST, RightDeque-BST) can be implemented in constant amortized
time per operation, and Tendon-BST performs a constant number of unit-cost
operations in addition to one deque operation, it supports all of its operations
in constant amortized time.

7

x

∈ T>
∈ T<

y

(a) τx,y and sets T> and T<

r<

r>

x

y

(b) Tendon-BST storing τx,y.

Fig. 2: A tendon in Multifinger-BST T and how its stored using Tendon-BST.

2.2 OneFinger-BST

At a high level, the OneFinger-BST data structure maintains the hand H(T, F),
which is of constant size, where each node corresponds to a pseudofinger in
P (T, F). For each pseudofinger x the parent pointer, parent(x), either points
to another pseudofinger or the bottom of a tendon, and the child pointers,
left-child(x), right-child(x), each point to either another pseudofinger, or the root
of a knuckle, or the top of a tendon.

Intuitively, the Tendon-BST structure allows us to compress a tendon down to
constant depth. Whenever an operation is to be done at a finger, OneFinger-BST
uncompresses the 3 surrounding tendons until the elements at distance up to
3 from the finger are as in the original tree, then performs the operation.
OneFinger-BST then reconstructs the hand structure locally, possibly chang-
ing the set of pseudofingers if needed, and recompresses all tendons using
Tendon-BST. This is all done in amortized O(1) time because Tendon-BST oper-
ations used for decompression and recompression take amortized O(1) time and
reconfiguring any constant size local subtree into any shape takes O(1) time in
the worst case.

ADT. OneFinger-BST is a BST data structure supporting the following op-
erations on a Multifinger-BST T with a set F of fingers f1, . . . , f|F |, where
|F | = O(1):

– MoveToParent(fi): Move finger fi to its parent in T , parentT (fi).
– MoveToLeftChild(fi): Move finger fi to its left-child in T , left-childT (fi).
– MoveToRightChild(fi): Move finger fi to its right-child in T , right-childT (fi).
– RotateAt(fi): Rotate finger fi with its parent in T , parentT (fi).

8

Implementation. We augment each node with a O(|F |) bit field to store the
type of the node and the fingers currently on the node.

All the OneFinger-BST operations take as input the finger they are to be per-
formed on. We first do a brute force search using the augmented bits mentioned
above to find the node pointed to by the input finger. Note that all such fingers
will be within a O(1) distance from the root . We then perform the operation as
well as the relevant updates to the tree to reflect the changes in H(T, F). Specif-
ically, in order to perform the operation, we extract the relevant nodes from the
surrounding tendons of the finger by calling the appropriate Tendon-BST func-
tions. We perform the operation and update the nodes to reflect the structural
changes to the hand structure. Then we insert the tendon nodes back into their
corresponding tendons using the appropriate Tendon-BST functions.

Theorem 7. Given any Multifinger-BST data structure A, where opA[j] is the
jth operation performed by A, OneFinger-BST(A) is a BST data structure such
that, for any k, given k operations (opA[1], . . . , opA[k]) online, OneFinger-BST(A)
simulates them in C2 · k total time for some constant C2 that depends on the
number of fingers used by A. If A is a real-world BST data structure, then so is
OneFinger-BST(A).

Proof. Note that before opM [1], all the fingers are initialized to the root of the
tree and therefore the potentials associated with the deques of the tendons is
zero. All finger movements and rotations are performed using OneFinger-BST
operations. Each operation requires one finger movement or rotation and at
most a constant number of Tendon-BST operations, as well as the time it takes to
traverse between fingers. Because the time spent traversing between a constant
number of fingers is at most a constant, this implies that OneFinger-BST(M)
simulates operations (opM [1], . . . , opM [k]) in C2 · k time for any k. ut

3 Multifinger-BST with Buffers

In our model, each node in the tree is allowed to store O(log n) bits of augmented
data. In this section, we show how to use this O(n log n) collective bits of data to
implement a traversable “buffer” data structure. More precisely, we show how to
augment any Multifinger-BST data structure into a structure called Buf-MFBST
supporting buffer operations.

Definition 8. A buffer is a sequence b1, b2, . . . , bn of cells, where each cell can
store O(log n) bits of data. The buffer can be traversed by a constant number of
buffer-fingers, each initially on cell b1, and each movable forwards or backwards
one cell at a time.

ADT. In addition to Multifinger-BST operations, Buf-MFBST supports the
following operations on any buffer-finger bf of a buffer: bf.PreviousCell(),
bf.NextCell(), bf.ReadCell(), bf.WriteCell(d).

9

Implementation. We store the jth buffer cell in the jth node in the in-order
traversal of the tree. PreviousCell() and NextCell() are performed by traversing
to the previous or next node respectively in the in-order traversal of the tree.

Lemma 9. Given a tree T , traversing it in-order (or symmetrically in reverse-
in-order) with a finger, interleaved with r rotation operations performed by other
fingers, takes O(n+ r) time.

Proof. The cost of traversing the tree in-order is at most 2n. Each rotation
performed in between the in-order traversal operations can increase the total
length of any path corresponding to a subsequence of the in-order traversal by
at most one. Thus, the cost of traversing T in-order, interleaved with r rotation
operations, is O(n+ r). ut

Tree state. We present an augmentation in the Multifinger-BST model, which
we refer to as TSB, such that given any Multifinger-BST data structure M , TSB
augments M with a tree state buffer. The following operations are supported
on a tree state buffer: SaveState(): save the current state of the tree on the tree
state buffer, LoadState(): transform the current tree to the state stored in the
tree state buffer. Let the encoding of the tree state be a sequence of operations
performed by a linear time algorithm LeftifyTree(T) that transforms the tree into
a left path. There are numerous folklore linear time implementations of such an
algorithm. We can save the state of T by calling LeftifyTree(T) and recording
the performed operations in the tree state buffer. To load a tree state in the tree
state buffer, we call LeftifyTree(T) then undo all the operations in the tree state
buffer. Note that TSB maintains up to n cells but we may need to store more
data. We can either pack more data into each cell or use multiple copies of TSB.
We can also apply TSB to itself to allow for multiple buffers.

Lemma 10. Given any Multifinger-BST data structure M with k fingers,
TSB(M) is a Multifinger-BST data structure with O(k) fingers such that the
number of operations performed to execute SaveState() or LoadState() is O(n).

Proof. Because LeftifyTree(T) runs in linear time, there can be only O(n) rota-
tions, and by Lemma 9 the running time of both operations is O(n). ut

4 Combo-MFBST and Combo-BST

Given two online BST data structures A0 and A1, let TX′(A0, T,X) be any
well-behaved upper bound with overhead f(n) ≥ n on the running time of
A0, and let TX′(A1, T,X) be any well-behaved upper bound with overhead
f(n) ≥ n on the running time of A1 on a contiguous subsequence X ′ of X,
for any online access sequence X and initial tree T . Then Combo-MFBST =
Combo-MFBST(A0,A1, f(n)) is defined as follows. It uses a tree state buffer
ST∗ implemented as a TSB. It stores the initial tree state T in ST∗ by calling
SaveState() before executing any accesses. Then, Combo-MFBST executes any
online access sequence in rounds by alternating between emulating A0 and A1.
Specifically, each round consists of C3 · f(n) operations that execute the access

10

sequence using BST data structure Aµ, for µ ∈ {0, 1}, always starting from the
initial tree T . When the operation limit C3 ·f(n) gets reached, say in the middle
of executing access xi, Combo-MFBST transforms the tree back to its initial state
T by calling LoadState() on ST∗; and toggles the active BST data structure by
setting µ to 1 − µ. The next round re-runs access xi, this time on the opposite
BST data structure. By picking a suitably large C3, we ensure that every round
completes at least one access, and thus no access gets executed by the same BST
data structure in more than one round.

Lemma 11. Given two BST data structures, A0 and A1, Combo-MFBST =
Combo-MFBST(A0,A1, f(n)) for any f(n) is a Multifinger-BST data structure
with O(1) fingers. Furthermore, if A0 and A1 are real-world BST data structures,
then so is Combo-MFBST.

Proof. Combo-MFBST(A0,A1, f(n)) has one tree state buffer which has O(1)
fingers by Lemma 10. Because TSB augments each node with at most O(log n)
bits and Combo-MFBST uses only a constant number of registers each of size
O(log n) bits, the lemma follows. ut

Definition 12. Given two online BST data structures A0 and A1,
Combo-BST(A0,A1, f(n)) = OneFinger-BST(Combo-MFBST(A0,A1, f(n))).

5 Analysis

Theorem 13. Given two online BST data structures A0 and A1, let
TX′(A0, T,X) and TX′(A1, T,X) be well-behaved amortized upper bounds with
overhead f(n) ≥ n on the running time of A0 and A1, respectively, on a
contiguous subsequence X ′ of X for any online access sequence X and ini-
tial tree T Then there exists an online BST data structure, Combo-BST =
Combo-BST(A0,A1, f(n)) such that

TX′(Combo-BST, T,X) = O(min(TX′(A0, T,X), TX′(A1, T,X)) + f(n)).

If A0 and A1 are real-world BST data structures, so is Combo-BST.

Proof. Let Amin = A0 if TX′(A0, T,X) ≤ TX′(A1, T,X), and Amin = A1 other-
wise. Let X ′′ = X ′1 · . . . ·X ′k be the subsequence of X ′ executed by Amin. If the
Combo-MFBST terminates after at most 2k+ 1 rounds (k of them performed by
Amin), then taking into account the TSB traversal at every round which takes
O(n) = O(f(n)) time by Lemma 10 we have

TX′(Combo-MFBST, T,X) = O(k · f(n) + k · n). (1)

Now we need to bound k. Each round but the last one runs for C3 · f(n) steps
exactly, and in particular, T (Amin, T,X

′
j) ≥ C3 · f(n) for all j < k, that is, it

might need more steps to complete the last access of X ′j . Summing over all j, we

get C3(k−1)f(n) ≤
∑k−1
j=1 T (Amin, T,X

′
j) ≤ C0

∑k−1
j=1 TX′

j
(Amin, T,X) +C1(k−

1)f(n) ≤ C0TX′(Amin, T,X)+C1(k−1)f(n) by well-behavedness, the definition
of T and the fact that X ′js are disjoint subsets of X ′. Therefore, setting C3 > C1

11

yields k−1 ≤ O(TX′(Amin, T,X)/f(n)). Combining with Equation 1, we obtain
the desired bound for Combo-MFBST. By Lemma 11, Combo-MFBST is a real-
world Multifinger-BST data structure. Applying OneFinger-BST (Theorem 5)
yields our result. ut

References

1. Brian Allen and J. Ian Munro. Self-organizing binary search trees. Journal of the
ACM, 25(4):526–535, 1978.

2. Rudolf Bayer. Symmetric binary B-Trees: Data structure and maintenance algo-
rithms. Acta Informatica, 1:290–306, 1972.

3. Prosenjit Bose, Sébastien Collette, Rolf Fagerberg, and Stefan Langerman. De-
amortizing binary search trees. In Proceedings of the 39th International Colloquium
Automata, Languages, and Programming (ICALP), pages 121–132, 2012.

4. Prosenjit Bose, Karim Doüıeb, Vida Dujmovic, and John Howat. Layered working-
set trees. Algorithmica, 63(1-2):476–489, 2012.

5. Prosenjit Bose, Karim Doüıeb, John Iacono, and Stefan Langerman. The power and
limitations of static binary search trees with lazy finger. arXiv:1304.6897, 2013.

6. Richard Cole. On the dynamic finger conjecture for splay trees. Part II: The proof.
SIAM Journal on Computing, 30(1):44–85, 2000.

7. Richard Cole, Bud Mishra, Jeanette P. Schmidt, and Alan Siegel. On the dynamic
finger conjecture for splay trees. Part I: Splay sorting log n-block sequences. SIAM
Journal on Computing, 30(1):1–43, 2000.

8. Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pǎtraşcu. Dynamic opti-
mality — almost. SIAM Journal on Computing, 37(1):240–251, 2007.

9. Erik D. Demaine, John Iacono, Stefan Langerman, and Özgür Özkan. Combining
binary search trees. arXiv:1304.7604, 2013.

10. Erik D. Demaine, Stefan Langerman, and Eric Price. Confluently persistent tries
for efficient version control. Algorithmica, 57(3):462–483, 2010.

11. Jonathan Derryberry. Adaptive Binary Search Tree. PhD thesis, CMU, 2009.
12. Jonathan Derryberry and Daniel Dominic Sleator. Skip-splay: Toward achieving

the unified bound in the BST model. In Proceedings of the 11th International
Symposium on Algorithms and Data Structures (WADS), pages 194–205, 2009.

13. John Iacono. Improved upper bounds for pairing heaps. In Proceedings of the 7th
Scandinavian Workshop on Algorithm Theory (SWAT), pages 32–45, 2000.

14. John Iacono. Alternatives to splay trees with O(logn) worst-case access times.
In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 516–522, 2001.

15. Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. J. ACM, 32(3):652–686, 1985.

16. Daniel Dominic Sleator, Robert Endre Tarjan, and William P. Thurston. Rotation
distance, triangulations, and hyperbolic geometry. In Proceedings of the 18th Annual
ACM Symposium on Theory of Computing (STOC), pages 122–135, 1986.

17. Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator.
O(log logn)-competitive dynamic binary search trees. In Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 374–383,
2006.

12

	Combining Binary Search Trees

