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The two-handed tile assembly model is not
intrinsically universal?

Erik D. Demaine??, Matthew J. Patitz? ? ?, Trent A. Rogers†,
Robert T. Schweller‡, Scott M. Summers§, and Damien Woods¶

Abstract. In this paper, we study the intrinsic universality of the well-
studied Two-Handed Tile Assembly Model (2HAM), in which two “su-
pertile” assemblies, each consisting of one or more unit-square tiles, can
fuse together (self-assemble) whenever their total attachment strength
is at least the global temperature τ . Our main result is that for all
τ ′ < τ , each temperature-τ ′ 2HAM tile system cannot simulate at least
one temperature-τ 2HAM tile system. This impossibility result proves
that the 2HAM is not intrinsically universal, in stark contrast to the
simpler abstract Tile Assembly Model which was shown to be intrinsi-
cally universal (The tile assembly model is intrinsically universal, FOCS
2012). On the positive side, we prove that, for every fixed tempera-
ture τ ≥ 2, temperature-τ 2HAM tile systems are intrinsically universal:
for each τ there is a single universal 2HAM tile set U that, when ap-
propriately initialized, is capable of simulating the behavior of any tem-
perature τ 2HAM tile system. As a corollary of these results we find an
infinite set of infinite hierarchies of 2HAM systems with strictly increas-
ing power within each hierarchy. Finally, we show how to construct, for
each τ , a temperature-τ 2HAM system that simultaneously simulates all
temperature-τ 2HAM systems.

1 Introduction

Self-assembly is the process through which unorganized, simple, components au-
tomatically coalesce according to simple local rules to form some kind of target
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structure. It sounds simple, but the end result can be extraordinary. For example,
researchers have been able to self-assemble a wide variety of structures experi-
mentally at the nanoscale, such as regular arrays [28], fractal structures [13,24],
smiling faces [23], DNA tweezers [29], logic circuits [21], neural networks [22],
and molecular robots [18]. These examples are fundamental because they demon-
strate that self-assembly can, in principle, be used to manufacture specialized
geometrical, mechanical and computational objects at the nanoscale. Potential
future applications of nanoscale self-assembly include the production of smaller,
more efficient microprocessors and medical technologies that are capable of di-
agnosing and even treating disease at the cellular level.

Controlling nanoscale self-assembly for the purposes of manufacturing atom-
ically precise components will require a bottom-up, hands-off strategy. In other
words, the self-assembling units themselves will have to be “programmed” to
direct themselves to do the right thing–efficiently and correctly. Thus, it is nec-
essary to study the extent to which the process of self-assembly can be controlled
in an algorithmic sense.

In 1998, Erik Winfree [27] introduced the abstract Tile Assembly Model
(aTAM), an over-simplified discrete mathematical model of algorithmic DNA
nanoscale self-assembly pioneered by Seeman [25]. The aTAM essentially aug-
ments classical Wang tiling [26] with a mechanism for sequential “growth” of
a tiling (in Wang tiling, only the existence of a valid, mismatch-free tiling is
considered and not the order of tile placement). In the aTAM, the fundamental
components are un-rotatable, but translatable square “tile types” whose sides
are labeled with (alpha-numeric) glue “colors” and (integer) “strengths”. Two
tiles that are placed next to each other interact if the glue colors on their abut-
ting sides match, and they bind if the strengths on their abutting sides match
and sum to at least a certain (integer) “temperature”. Self-assembly starts from
a “seed” tile type and proceeds nondeterministically and asynchronously as tiles
bind to the seed-containing-assembly. Despite its deliberate over-simplification,
the aTAM is a computationally expressive model. For example, Winfree [27]
proved that it is Turing universal, which implies that self-assembly can be di-
rected by a computer program.

In this paper, we work in a generalization of the aTAM, called the two-
handed [3] (a.k.a., hierarchical [5], q-tile [6], polyomino [17]) abstract Tile As-
sembly Model (2HAM). A central feature of the 2HAM is that, unlike the aTAM,
it allows two “supertile” assemblies, each consisting of one or more tiles, to fuse
together. For two such assemblies to bind, they should not “sterically hinder”
each other, and they should have a sufficient number of matching glues dis-
tributed along the interface where they meet. Hence the model includes notions
of local interactions (individual glues) and non-local interactions (large assem-
blies coming together). In the 2HAM, an assembly of tiles is producible if it
is either a single tile, or if it results from the stable combination of two other
producible assemblies.

We study the intrinsic universality in the 2HAM. Intrinsic universality uses
a special notion of simulation, where the simulator preserves the dynamics of
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the simulated system. In the field of cellular automata, the topic of intrinsic
universality has given rise to a rich theory [2, 4, 7, 8, 12, 19, 20] and indeed has
also been studied in Wang tiling [14–16] and tile self-assembly [10,11]. The aTAM
has been shown to be intrinsically universal [10], meaning that there is a single
set of tiles U that works at temperature 2, and when appropriately initialized, is
capable of simulating the behavior of an arbitrary aTAM tile assembly system.
Modulo rescaling, this single tile set U represents the full power and expressivity
of the entire aTAM model, at any temperature. Here, we ask whether there such
a universal tile set for the 2HAM.

The theoretical power of non-local interaction in the 2HAM has been the
subject of recent research. For example, Doty and Chen [5] proved that, surpris-
ingly, N × N squares do not self-assemble any faster in so-called partial order
2HAM systems than they do in the aTAM, despite being able to exploit massive
parallelism. More recently, Cannon, et al. [3], while comparing the abilities of
the 2HAM and the aTAM, proved three main results, which seem to suggest
that the 2HAM is at least as powerful as the aTAM: (1) non-local binding in the
2HAM can dramatically reduce the tile complexity (i.e., minimum number of
unique tile types required to self-assemble a shape) for certain classes of shapes;
(2) the 2HAM can simulate the aTAM in the following sense: for any aTAM
tile system T , there is a corresponding 2HAM tile system S, which simulates
the exact behavior—modulo connectivity—of T , at scale factor 5; (3) the prob-
lem of verifying whether a 2HAM system uniquely produces a given assembly is
coNP-complete (for the aTAM this problem is decidable in polynomial time [1]).

Main results. In this paper, we ask if the 2HAM is intrinsically universal :
does there exist a “universal” 2HAM tile set U that, when appropriately initial-
ized, is capable of simulating the behavior of an arbitrary 2HAM tile system? A
positive answer would imply that such a tile set U has the ability to model the
capabilities of all 2HAM systems.1 Our first main result, Theorem 1, says that
the 2HAM is not intrinsically universal, which means that the 2HAM is inca-
pable of simulating itself. This statement stands in stark contrast to the case of
the aTAM, which was recently shown to be intrinsically universal by Doty, Lutz,
Patitz, Schweller, Summers and Woods [10]. Specifically, we show that for any
temperature τ , there is a temperature τ 2HAM system that cannot be simulated
by any temperature τ ′ < τ 2HAM system. It is worthy of note that, in order to
prove this result, we use a simple, yet novel combinatorial argument, which as
far as we are aware of, is the first lower bound proof in the 2HAM that does not
use an information-theoretic argument. In our proof of Theorem 1 we show that
the 2HAM cannot simulate massively cooperative binding, where the number of
cooperative bindings is larger than the temperature of the simulator).

Our second main result, Theorem 3, is positive: we show, via constructions,
that the 2HAM is intrinsically universal for fixed temperature, that is, the tem-

1 Note that the above simulation result of Cannon et al. does not imply that the 2HAM
is intrinsically universal because (a) it is for 2HAM simulating aTAM, and (b) it is
an example of a “for all, there exists...” statement, whereas intrinsic universality is
a “there exists, for all...” statement.
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perature τ 2HAM can simulate the temperature τ 2HAM. So although our im-
possibility result tells us that the 2HAM can not simulate “too much” coopera-
tive binding, our positive result tells us it can indeed simulate some cooperative
binding: an amount exactly equal to the temperature of the simulator.

As an immediate corollary of these results, we get a separation between
classes of 2HAM tile systems based on their temperatures. That is, we exhibit
an infinite hierarchy of 2HAM systems, of strictly-increasing temperature, that
cannot be simulated by lesser temperature systems but can downward simulate
lower temperature systems. Indeed, we exhibit an infinite number of such hier-
archies in Theorem 4. Thus, as was suggested as future work in [10], and as has
been shown in the theory of cellular automata [8], we use the notion of intrinsic
universality to classify, and separate, 2HAM systems via their simulation ability.

As noted above, we show that temperature τ 2HAM systems are intrinsically
universal. We actually show this for two different, seemingly natural, notions of
simulation (called simulation and strong simulation), showing trade-offs between,
and even within, these notions of simulation. For both notions of simulation,
we show tradeoffs between scale factor, number of tile types, and complexity
of the initial configuration. Finally, we show how to construct, for each τ , a
temperature-τ 2HAM system that simultaneously simulates all temperature-τ
2HAM systems. We finish with a conjecture:

Conjecture 1. There exists c ∈ N, such that for each τ ≥ c, temperature τ 2HAM
systems do not strongly simulate Temperature τ − 1 2HAM systems.

2 Definitions
2.1 Informal definition of 2HAM

The 2HAM [6, 9] is a generalization of the aTAM in that it allows for two as-
semblies, both possibly consisting of more than one tile, to attach to each other.
Since we must allow that the assemblies might require translation before they
can bind, we define a supertile to be the set of all translations of a τ -stable as-
sembly, and speak of the attachment of supertiles to each other, modeling that
the assemblies attach, if possible, after appropriate translation. We now give a
brief, informal, sketch of the 2HAM.

A tile type is a unit square with four sides, each having a glue consisting
of a label (a finite string) and strength (a non-negative integer). We assume a
finite set T of tile types, but an infinite number of copies of each tile type,
each copy referred to as a tile. A supertile is (the set of all translations of) a
positioning of tiles on the integer lattice Z2. Two adjacent tiles in a supertile
interact if the glues on their abutting sides are equal and have positive strength.
Each supertile induces a binding graph, a grid graph whose vertices are tiles,
with an edge between two tiles if they interact. The supertile is τ -stable if every
cut of its binding graph has strength at least τ , where the weight of an edge
is the strength of the glue it represents. That is, the supertile is stable if at
least energy τ is required to separate the supertile into two parts. A 2HAM
tile assembly system (TAS) is a pair T = (T, τ), where T is a finite tile set
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and τ is the temperature, usually 1 or 2. Given a TAS T = (T, τ), a supertile
is producible, written as α ∈ A[T ] if either it is a single tile from T , or it is
the τ -stable result of translating two producible assemblies without overlap. A
supertile α is terminal, written as α ∈ A2[T ] if for every producible supertile
β, α and β cannot be τ -stably attached. A TAS is directed if it has only one
terminal, producible supertile.2

2.2 Definitions for simulation

In this subsection, we formally define what it means for one 2HAM TAS to
“simulate” another 2HAM TAS. For a tileset T , let AT and ÃT denote the set
of all assemblies over T and all supertiles over T respectively. Let AT<∞ and

ÃT<∞ denote the set of all finite assemblies over T and all finite supertiles over
T respectively.

In what follows, let U be a tile set. Anm-block assembly, or macrotile, over tile
set U is a partial function γ : Zm×Zm 99K U , where Zm = {0, 1, . . .m− 1}. Let
BUm be the set of all m-block assemblies over U . The m-block with no domain
is said to be empty. For an arbitrary assembly α ∈ AU define αmx,y to be the
m-block defined by αmx,y(i, j) = α(mx+ i,my + j) for 0 ≤ i, j < m.

For a partial function R : BUm 99K T , define the assembly representation
function R∗ : AU 99K AT such that R∗(α) = β if and only if β(x, y) = R(αmx,y)
for all x, y ∈ Z2. Further, α is said to map cleanly to β under R∗ if either (1) for
all non empty blocks αmx,y, (x+u, y+ v) ∈ dom β for some u, v ∈ {−1, 0, 1} such
that u2 + v2 < 2, or (2) α has at most one non-empty m-block αmx,y. In other
words, we allow for the existence of simulator “fuzz” directly north, south, east
or west of a simulator macrotile, but we exclude the possibility of diagonal fuzz.

For a given assembly representation function R∗, define the supertile repre-
sentation function R̃ : ÃU 99K P(AT ) such that R̃(α̃) = {R∗(α)|α ∈ α̃}. α̃ is
said to map cleanly to R̃(α̃) if R̃(α̃) ∈ ÃT and α maps cleanly to R∗(α) for all
α ∈ α̃.

In the following definitions, let T = (T, S, τ) be a 2HAM TAS and, for some
initial configuration ST , that depends on T , let U = (U, ST , τ

′) be a 2HAM
TAS, and let R be an m-block representation function R : BUm 99K T .

Definition 1. We say that U and T have equivalent productions (at scale factor
m), and we write U ⇔R T if the following conditions hold:

1.
{
R̃(α̃)|α̃ ∈ A[U ]

}
= A[T ].

2. For all α̃ ∈ A[U ], α̃ maps cleanly to R̃(α̃)

Definition 2. We say that T follows U (at scale factor m), and we write T aR
U if, for any α̃, β̃ ∈ A[U ] such that α̃→1

U β̃, R̃(α̃)→≤1T R̃
(
β̃
)

.

2 We do not use this definition in this paper but have included it for the sake of
completeness.
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Definition 3. We say that U weakly models T (at scale factor m), and we
write U |=−R T if, for any α̃, β̃ ∈ A[T ] such that α̃→1

T β̃, for all α̃′ ∈ A[U ] such

that R̃(α̃′) = α̃, there exists an α̃′′ ∈ A[U ] such that R̃(α̃′′) = β̃, α̃′ →U α̃′′, and

α̃′′ →1
U β̃
′ for some β̃′ ∈ A[U ] with R̃

(
β̃′
)

= β̃.

Definition 4. We say that U strongly models T (at scale factor m), and we
write U |=+

R T if for any α̃, β̃ ∈ A[T ] such that γ̃ ∈ Cτ
α̃,β̃

, then for all α̃′, β̃′ ∈

A[U ] such that R̃(α̃′) = α̃ and R̃
(
β̃′
)

= β̃, it must be that there exist α̃′′, β̃′′, γ̃′ ∈

A[U ], such that α̃′ →U α̃′′, β̃′ →U β̃′′, R̃(α̃′′) = α̃, R̃
(
β̃′′
)

= β̃, R̃(γ̃′) = γ̃, and

γ̃′ ∈ Cτ ′

α̃′′,β̃′′ .

Definition 5. Let U ⇔R T and T aR U .
1. U simulates T (at scale factor m) if U |=−R T .
2. U strongly simulates T (at scale factor m) if U |=+

R T .

For simulation, we require that when a simulated supertile α̃ may grow,
via one combination attachment, into a second supertile β̃, then any simulator
supertile that maps to α̃ must also grow into a simulator supertile that maps to
β̃. The converse should also be true.

For strong simulation, in addition to requiring that all supertiles mapping to
α̃ must be capable of growing into a supertile mapping to β̃ when α̃ can grow
into β̃ in the simulated system, we further require that this growth can take
place by the attachment of any supertile mapping to γ̃, where γ̃ is the supertile
that attaches to α̃ to get β̃.

2.3 Intrinsic universality

Let REPR denote the set of all m-block (or macrotile) representation functions.
Let C be a class of tile assembly systems, and let U be a tile set. We say U is
intrinsically universal for C if there are computable functionsR : C→ REPR and
S : C→

(
AU<∞ → N ∪ {∞}

)
, and a τ ′ ∈ Z+ such that, for each T = (T, S, τ) ∈ C,

there is a constant m ∈ N such that, letting R = R(T ), ST = S(T ), and
UT = (U, ST , τ

′), UT simulates T at scale m and using macrotile representation
function R. That is, R(T ) gives a representation function R that interprets
macrotiles (or m-blocks) of UT as assemblies of T , and S(T ) gives the initial
state used to create the necessary macrotiles from U to represent T subject to
the constraint that no macrotile in ST can be larger than a single m×m square.

3 The 2HAM is not intrinsically universal
In this section, we prove the main result of this paper: there is no universal
2HAM tile set that, when appropriately initialized, is capable of simulating an
arbitrary 2HAM system. That is, we prove that the 2HAM, unlike the aTAM,
is not intrinsically universal.

Theorem 1. The 2HAM is not intrinsically universal.
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In order to prove Theorem 1, we prove Theorem 2, which says that, for any
claimed 2HAM simulator U , that runs at temperature τ ′, there exists a 2HAM
system, with temperature τ > τ ′, that cannot be simulated by U .

Theorem 2. Let τ ∈ N, τ ≥ 2. For every tile set U , there exists a 2HAM TAS
T = (T, S, τ) such that for any initial configuration ST and τ ′ ≤ τ − 1, the
2HAM TAS U = (U, ST , τ

′) does not simulate T .

The basic idea of the proof of Theorem 2 is to use Definitions 3 and 1 in
order to exhibit two producible supertiles in T , that do not combine in T because
of a lack of total binding strength, and show that the supertiles that simulate
them in U do combine in the (lower temperature) simulator U . Then we argue
that Definition 2 says that, because the simulating supertiles can combine in
the simulator U , then so too can the supertiles being simulated in the simulated
system T , which contradicts the fact that the two originally chosen supertiles
from T do not combine in T .

Proof. Our proof is by contradiction. Therefore, suppose, for the sake of ob-
taining a contradiction, that there exists a universal tile set U such that, for
any 2HAM TAS T = (T, S, τ), there exists an initial configuration ST and
τ ′ ≤ τ − 1, such that U = (U, ST , τ

′) simulates T . Define T = (T, τ) where T
is the tile set defined in Figure 1, the default initial state is used, and τ > 1.
Let U = (U, ST , τ

′) be the temperature τ ′ ≤ τ − 1 2HAM system, which uses
tile set U and initial configuration ST (depending on T ) to simulate T at scale
factor m. Let R̃ denote the assembly replacement function that testifies to the
fact that U simulates T .
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Fig. 1: The tile set for the proof of Theorem 2. Black rectangles represent
strength-τ glues (labeled 1-8), and black squares represent the strength-1 glue
(labeled 0).

We say that a supertile l̃ ∈ A[T ] is a left half-ladder of height h ∈ N if it
contains h tiles of the type A2 and h− 1 tiles of type A3, arranged in a vertical
column, plus τ tiles of each of the types A1 and A0. (An example of a left half-
ladder is shown on the left in Figure 2. The dotted lines show positions at which
tiles of type A1 and A0 could potentially attach, but since a half-ladder has
exactly τ of each, only τ such locations have tiles.) Essentially, a left half-ladder
consists of a single-tile-wide vertical column of height 2h− 1 with an A2 tile at
the bottom and top, and those in between alternating between A3 and A2 tiles.
To the east of exactly τ of the A2 tiles, an A1 tile is attached and to the east of
each A1 tile, an A0 tile type is attached. These A1-A0 pairs, collectively, form
the τ rungs of the left half-ladder. We can define right half-ladders similarly.
A right half-ladder of height h is defined exactly the same way but using the
tile types B3, B2, B1, and B0 and with rungs growing to the left of the vertical
column. The east glue of A0 is a strength-1 glue matching the west glue of B0.
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Fig. 2: Example half-ladders with τ rungs.

Let LEFT ⊆ A[T ] and RIGHT ⊆ A[T ] be the set of all left and right half-
ladders of height h, respectively. Note that there are

(
h
τ

)
half-ladders of height

h in LEFT (RIGHT ). Define, for each l̃ ∈ LEFT , the mirror image of l̃ as the

supertile
¯̃
l ∈ RIGHT such that

¯̃
l has rungs at the same positions as l̃.

For some l̃ ∈ LEFT , we say that
˜̂
l ∈ A[U ] is a simulator left half-ladder of

height h if R̃
(

˜̂
l
)

= l̃. Note that
˜̂
l need not be unique. (One could even imagine

˜̂
l and

˜̂
l′ satisfying R̃

(
˜̂
l
)

= l̃ and R̃
(

˜̂
l′
)

= l̃ but
˜̂
l and

˜̂
l′ only differ by a single

tile!) The notation Cτ
α̃,β̃

is defined as the set of all supertiles that result in the

τ -stable combination of the supertiles α̃ and β̃.

For some ˜̂r ∈ A[U ], we say that ˜̂r is a mate of
˜̂
l if R̃

(
˜̂r
)

= r̃ ∈ RIGHT , where

r̃ =
¯̃
l, Cτ

l̃,r̃
6= ∅ (they combine in T ), and Cτ−1ˆ̃

l,ˆ̃r
6= ∅ (they combine in U). For a

simulator left half-ladder
˜̂
l, we say that

˜̂
l is combinable if

˜̂
l has a mate. Part 1 of

Definition 5 guarantees the existence of at least one combinable simulator left
half-ladder for each left half-ladder. It is easy to see from Part 1 of Definition 5
that an arbitrary simulator left half-ladder need not be combinable, since by
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Definition 3, it may be a half-ladder
˜̂
l ∈ A[U ], which must first “grow into” a

combinable left half-ladder
˜̂
l′ (analogous to α̃′ →U α̃′′ in Definition 3).

Denote as LEFT ′ some set that contains exactly one combinable simulator
left half-ladder for each l̃ ∈ LEFT . Note that, by Definitions 1 and 3, there must

be at least one combinable simulator left half-ladder
˜̂
l for each l̃, but that there

also may be more than one, so the set LEFT ′, while certainly not empty, need
not be unique. By the definition of LEFT ′, it is easy to see that |LEFT ′| =

(
h
τ

)
.

We know that each combinable simulator left half-ladder
˜̂
l has exactly τ rungs,

and furthermore, since glue strengths in the 2HAM cannot be fractional, it is
the case that τ ′ of these rungs bind to (the corresponding rungs of) a mate with
a combined total strength of at least τ ′. (Note that some, but not all, of these
τ ′ rungs may be redundant in the sense that they do not interact with positive
strength.)

There are
(
h
τ ′

)
ways to position/choose τ ′ rungs on a (simulator) half-ladder

of height h. (Note that a rung on a simulator half-ladder need not be a m×m
block of tiles but merely a collection of rung-like blocks that map to rungs in
the input system T via R̃.) Now consider the size

(
h
τ ′

)
set of all possible rung

positions, each denoted by a subset X ⊂ {0, 1, . . . , h − 1}, and the size
(
h
τ

)
set

LEFT ′. For each simulated half-ladder
˜̂
l ∈ LEFT ′, there must exist a set of τ ′

rungs X such that
˜̂
l binds to a mate via the rungs specified by X, with total

strength at least τ ′. As there are
(
h
τ

)
elements of LEFT ′ and only

(
h
τ ′

)
choices

for X, the Generalized Pigeonhole Principle implies that there must be some
set LEFT ′′ ⊂ LEFT ′ with |LEFT ′′| ≥

(
h
τ

)
/
(
h
τ ′

)
such that every simulator left

half-ladder in LEFT ′′ binds to a mate via the τ ′ rungs specified by a single
choice of X, with total strength at least τ ′. In the case that h ≥ 2τ , we have
that |LEFT ′′| ≥

(
h
τ

)
/
(
h
τ ′

)
≥
(
h
τ

)
/
(
h
τ−1
)

= h−τ+1
τ .

Let k = |U |4m2

, which is the number of ways to tile a neighborhood of four
m × m squares from a set of |U | distinct tile types. If h = τ

(
kτ−1 + τ

)
, then

|LEFT ′′| ≥ kτ−1 + 1. There are kτ
′ ≤ kτ−1 ways to tile τ ′ neighborhoods that

map to tiles of type A0 (plus any additional simulator fuzz that connects to
simulated A0 tiles), under R̃, at the ends of the τ ′ rungs of a simulator left
half-ladder. This tells us that there are at least two (combinable) simulator left

half-ladders
˜̂
l1,

˜̂
l2 ∈ LEFT ′′ such that

˜̂
l1 binds to a mate via the rungs specified

by X, with total strength at least τ ′,
˜̂
l2 binds to a mate via the rungs specified

by X, with total strength at least τ ′ and the rungs (along with any surrounding

fuzz) specified by X of
˜̂
l1 are tiled exactly the same as the rungs specified by X

of
˜̂
l2 are tiled. Thus, we can conclude that ˜̂r, a mate of

˜̂
l1, is a mate of

˜̂
l2. We

can conclude this because, while
˜̂
l1 and

˜̂
l2 agree exactly along τ ′ of their rungs,

they also each have one rung in a unique position and since consecutive rungs in
T have at least two empty spaces between then, the offset simulator rungs (and

even their fuzz) cannot prevent
˜̂
l2 from matching up with the mate of

˜̂
l1.
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However, R̃
(

˜̂r
)

= r̃ ∈ R, R̃
(

˜̂
l2

)
= l̃2 ∈ L but Cτ

r̃,l̃2
= ∅ because r̃ and l̃2

differ from each other in one rung location and therefore interact in T with total
strength at most τ − 1. This is a contradiction to Definition 2, which implies
Cτ
r̃,l̃2
6= ∅. ut

Corollary 1. There is no universal tile set U for the 2HAM, i.e., there is no U
such that, for all 2HAM tile assembly systems T = (T, S, τ), there exists an ini-
tial configuration ST and temperature τ ′ such that U = (U, ST , τ

′) simulates T .

Proof. Our proof is by contradiction, so assume that U is a universal tile set.
Denote as g the strength of the strongest glue on any tile type in U . Let T ′ =
(T ′, 4g + 1) be a modified version of the TAS T = (T, τ) from the proof of
Theorem 2 with each τ -strength glue in T converted to a strength 4g + 1 glue
in T ′ (all other glues and labels are unmodified). For any initial configuration
ST , we know that U = (U, ST , τ

′) does not simulate T for any τ ′ < 4g + 1. If
τ ′ ≥ 4g + 1, then the size of the largest supertile in A[U ] is 1, whence U is not
a universal tile set. ut

4 The temperature-τ 2HAM is intrinsically universal

In this section we state our second main result, which states that for fixed tem-
perature τ ≥ 2 the class of 2HAM systems at temperature τ is intrinsically
universal. In other words, for such τ there is a tile set that, when appropriately
initialized, simulates any temperature τ 2HAM system. Denote as 2HAM(k) the
set of all 2HAM systems at temperature k.

Theorem 3. For all τ ≥ 2, 2HAM(τ) is intrinsically universal.

In the full version of this paper we prove this theorem for two different, but
seemingly natural notions of simulation. The first, simply called simulation, is
where we require that when a simulated supertile α̃ may grow, via one attach-
ment, into a second supertile β̃, then any simulator supertile that maps to α̃
must also grow into a simulator supertile that maps to β̃. The converse should
also be true. The second notion, called strong simulation, is a stricter definition
where in addition to requiring that all supertiles mapping to α̃ must be capable
of growing into a supertile mapping to β̃ when α̃ can grow into β̃ in the simulated
system, we further require that this growth can take place by the attachment of
any supertile mapping to γ̃, where γ̃ is the supertile that attaches to α̃ to get β̃.
Theorem 3 is proven for both notions of simulation. For each notion we provide
three results, and in all cases we provide lower scale factor for simulation relative
to strong simulation.

When we combine our negative and positive results, we get a separation
between classes of 2HAM tile systems based on their temperatures.

Theorem 4. There exists an infinite number of infinite hierarchies of 2HAM
systems with strictly-increasing power (and temperature) that can simulate down-
ward within their own hierarchy.
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Proof. Our first main result (Theorem 2) tells us that the temperature τ 2HAM
cannot be simulated by any temperature τ ′ < τ 2HAM. Hence we have, for
all i > 0, c ≥ 4, 2HAM

(
ci
)
� 2HAM

(
ci−1

)
, where � is the relation “cannot

be simulated by”. Moreover, Theorem 3 tells us that temperature τ 2HAM is
intrinsically universal for fixed temperature τ . Suppose that τ ′ < τ such that
τ/τ ′ ∈ N. Then temperature τ 2HAM can simulate temperature τ ′ (by simu-
lating strength g ≤ τ ′ attachments in the temperature τ ′ system with strength
g (τ/τ ′) attachments in the temperature τ system). Thus, for all 0 < i′ ≤ i,

2HAM
(
ci
)

can simulate, via Theorem 3, 2HAM
(
ci

′
)

. The theorem follows by

noting that our choice of c was arbitrary. ut

We have shown that for each τ ≥ 2 there exists a single set of tile types Uτ ,
and a set of input supertiles over Uτ , such that the 2HAM system strongly simu-
lates any 2HAM TAS T . A related question is: does there exist a tile set that can
simulate, or strongly simulate, all temperature τ 2HAM TASs simultaneously?
Surprisingly, the answer is yes!

Theorem 5. For each τ > 1, there exists a 2HAM system S = (Uτ , τ) which
simultaneously strongly simulates all 2HAM systems T = (T, τ).
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F. C. Simmel, and P. Sośık, editors, DNA14, volume 5347 of Lecture Notes in
Computer Science, pages 112–126. Springer, 2008.

18. K. Lund, A. T. Manzo, N. Dabby, N. Micholotti, A. Johnson-Buck, J. Nangreave,
S. Taylor, R. Pei, M. N. Stojanovic, N. G. Walter, E. Winfree, and H. Yan. Molec-
ular robots guided by prescriptive landscapes. Nature, 465:206–210, 2010.

19. N. Ollinger. Intrinsically universal cellular automata. In The Complexity of Simple
Programs, in Electronic Proceedings in Theoretical Computer Science, volume 1,
pages 199–204, 2008.

20. N. Ollinger and G. Richard. Four states are enough! Theoretical Computer Science,
412(1):22–32, 2011.

21. L. Qian and E. Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332(6034):1196, 2011.

22. L. Qian, E. Winfree, and J. Bruck. Neural network computation with DNA strand
displacement cascades. Nature, 475(7356):368–372, 2011.

23. P. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006.

24. P. W. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology, 2(12):2041–2053, 2004.

25. N. C. Seeman. Nucleic-acid junctions and lattices. Journal of Theoretical Biology,
99:237–247, 1982.

26. H. Wang. Proving theorems by pattern recognition – II. The Bell System Technical
Journal, XL(1):1–41, 1961.

27. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, June 1998.

28. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of
two-dimensional DNA crystals. Nature, 394(6693):539–44, 1998.

29. B. Yurke, A. Turberfield, A. Mills Jr, F. Simmel, and J. Neumann. A DNA-fuelled
molecular machine made of DNA. Nature, 406(6796):605–608, 2000.

12


	The two-handed tile assembly model is not intrinsically universal

