1.264 Lecture 5

Unified Modeling Language (UML)
Unified Modeling Language

• Graphical, object-oriented modeling language. Options:
 Sketch language to define system requirements
 Blueprint language for system design
 Implementation language to automatically generate software

• ‘Open standard’ managed by Object Management Group
 Many implementations of UML (Microsoft, IBM, Borland, …)

• Why is UML coming into wide use?
 Speeds up requirements process
 Lessens information loss between requirements and design processes, and between design and implementation
 Clearer than natural language
 Provides a level of precision, but avoids details
 Supports iterative development (i.e., spiral model)
 Supports both high level requirements/design in early spirals and detailed requirements/design later
 Hope that analysts can produce software without programmers
Unified Modeling Language uses

• Requirements:
 Use cases, which are very structured scenarios used to define system requirements
 Good basic approach, but needs narrative to support
 Class diagrams
 Show relationships and behavior of all objects (things) in system
 Derived from data models, which we cover in next lecture
 Component diagrams to show high level view of system

• Design:
 More detailed use cases, class diagrams, component diagrams
 Activity and/or sequence diagrams, used to model workflows, to find related or duplicate processes that can be generalized
 State diagrams for complex objects
 Other diagram types, as needed

• Implementation:
 Class, state and other diagrams (vendor-specific)
Use cases

• Capture requirements of system as structured scenarios
 Use case diagrams capture how use cases relate to each other
 The actual use cases are usually text
 A note: Users are called ‘actors’
• Exercise:
 Passenger browses bus routes and selects one to get info
 Passenger selects day of week, time period and direction
 Passenger selects origin and destination points
 System displays schedule and countdown clock to next bus
 Passenger opts for mobile phone notification of given bus at
 given stop
• What alternatives are there?
 Passenger selects origin, destination first
 Passenger clicks on map
 Etc.
• What can go wrong with the chosen alternative?
 No service at requested time or stops; out of town phone,…
Use case example
Use case exercise

• Add one of the exception cases:
 – No service
 – Out of town phone
 – Others…

• Create ‘included’ use cases for one diagram case:
 – Break down complex use cases into smaller one
 – (You can use ‘extend’ if you want, but it’s ill-defined)
Use case solution
Component diagram

- Draw the components for the bus information system example:
 - Web server
 - Application server (creates Web pages dynamically)
 - Database server (holds bus route database)
 - Telecom system interface from Web server
 - Telecom system
Component diagram example
Dynamic UML models

- While static models (use cases, class diagram, component diagram) are done for the system as a whole, dynamic models are done only for key components
- State diagram
 - Specifies behavior of a single object
- Sequence diagram
 - Shows details of one scenario and messages that flow between objects in that scenario over time
 - Heavily used in standards
- Activity diagram
 - Shows flow of logic, data, messages
 - Often less structured than other UML diagrams
 - Replaces flow charts
- Communication diagram
 - Shows flow of messages as a graph
 - Used as variant of sequence diagram
- Others, as needed
State diagram example

- Active Account
- Inactive Account
- Account Overdue
- Terminated Account
- Collections

Transition: PurchaseOrPayment
State diagram exercise

• Model one other state:
 – Suspended account (identity theft)
State diagram solution
Sequence diagram example
Sequence diagram exercise

• Add a discount calculation based on the total order quantity, in addition to the customer discount
Sequence diagram solution

1. getOrderCost
2. getQuantity
3. getProduct
4. getPrice
5. getExtendedPrice
6. getQtyDiscount
7. getCustDiscount
8. returnOrderCost
Activity diagram

- Shows flow of messages, logic, actions
- This is at a much higher level of abstraction than flow charts
 - Flow charts show logic for single method (if statements, loops, etc.)
 - Activity diagrams show flow among objects
Activity diagram example
Activity diagram exercise

• Add a ‘close order’ activity
Activity diagram solution
UML Summary

• Use UML after writing scenarios and narratives as an initial requirements document
 Refine them into use cases
• Prepare the initial data model (next lecture)
 Add operations/methods to the entities, after understanding the data, to create a class diagram
• Use UML component diagrams to give overview of the system, in requirements
• Use UML state diagrams, sequence diagrams and activity diagrams to specify objects and processes
 Prepare these selectively for complex or interesting objects
• UML is becoming a ‘universal’ language: new staff coming to a project can read it, and this reduces the learning curve very substantially
 Developers and analysts can both understand it readily
 I use UML even for analysis-only projects (as well as writing requirements and modeling data)