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ABSTRACT

The purpose of this thesis is to develop a method to
predict deformations in braced excavations, which includes
the effects of excess pore pressure dissipation. The time
variables considered are time for construction compared with
time required for pore pressure equilization due to altered
flow conditions and shear. The method will apply the Stress
Path Method to determine appropriate soil parameters to use
in the existing finite element program, BRACE III in a way
that accounts for time effects.

The method will be applied to an actual case to
demonstrate its applicability and illustrate its use.
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CHAPTER ONE

INTRODUCTION

1.0 INTRODUCTION

An engineer should carefully consider the role of time
and specifically the role of excess pore pressure
dissipation, in designing and constructing "deep'" or major
excavations. Design economy, safety, and the potential for
damage to the excavation and adjacent facilities can be
highly influenced by the effect of time on the response of
the soil mass.

Presently the usual practice of engineers is to idealize
the excavation or "unloading" case and assume "undrained" or

"drained" conditions. For excavations in clay the most
ined y

common approach is to use "undrained" strength and
deformation parameters for design. This approach assumes
the following:
(1) Construction occurs rapidly.
(2) No dissipation of excess pore pressure OCCUTrS
during construction (i.e., no drainage occurs).
(3) The soil strength is the in-situ undrained shear
strength.
The assumptions above are applicable only for an
"jnstantaneous'" excavation. Actual excavations 1in cohesive

soils are not "instantaneous'" and are partially drained.
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Although for some situations (i.e. rapid temporary
excavation in soil with a very low permeability) the
undrained assumption is nearly valid at least for design
purposes, many major braced excavations are open for months
or even years. Significant pore pressure dissipation
following shear stressing of the soil or altered flow
conditions may occur. Undetected layers of pervious soil
may facilitate rapid drainage. As a consequence unpredicted
and significant increases or decreases in soil strength may
occur as well as variation in the stress/strain
characteristics of the soil with time.

Although relatively few studies of instrumented
excavations have been made to observe the effect of time on
the performance of braced cuts, some significant
observations have been made. To briefly summarize several
cases:

(1) Bjerrum & DiBiagio (1956) reported on an
experimental 4 meter deep trench in stiff-fissured
clay instrumented for the purpose of studying the
influence of time on earth pressure. They observed
the average force per meter as measured in the
struts increase from 2.3 tons/meter to 7.17
tons/meter over several months (Sept. to Dec.).

(2) Measurements from a braced slurry wall in stiff
Boston Blue Clay reported by Jaworski (1973)

indicate a gradual and significant increase in



16

earth pressure after excavation to the design
depth.

(3) DiBiagio & Roti (1972) reported earth and pore
pressure measurements for a braced slurry wall
excavation in soft clay. Significant decreases and
increases in earth and pore pressures during and
after completion of excavation to the final depth
were observed.

(4) Lambe (1968) reported piezometer data for an
excavation 22 feet deep penetrating an
overconsolidated medium Boston Blue Clay.

Negative excess pore pressures in the clay at the
bottom of the excavation decreased during the 24 day
period the cut was open. This indicated an overall
decrease in the strength of the soil as well as a
decreasing factor of safety with time.
The above observations reflect the fact that time is an
important variable to be recognized by the engineer.

Recently Clough & Osaimi (1979) investigated pore

pressure dissipation for excavations, including braced
excavations using a finite element model to determine how
long the undrained case was applicable. From the results
the authors concluded that pore pressure dissipation for
excavation 1n clay is likely to occur to a greater degree
than previously believed and that the undrained assumption

should be used with care.
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Determining the degree to which dissipation of pore
pressure occurs for a given braced cut can be a complex and
difficult task. For sands time may be a factor with respect
to other phenomena such as soil transport (piping).

The engineer should attempt to assess the importance of
several variables prior to design:

(1) The rate of excavation and total time for which the
design support system is to be in service (i.e.
temporary or permanent).

(2) The character of altered groundwater conditions due
to the imposition of new boundary conditions and
groundwater control.

(3) The changes in total stress distribution due to
excavation.

(4) The effect of excess pore pressure dissipation
on the soil strength and deformation parameters.

(5) The effect of forced delay-(i.e. labor strikes etc).

Although construction time may be accurately estimated
for reasonable weather and contractor conditions unforseen
events such as labor strikes may unexpectably extend
construction time and hence influence performance.

Critical excavation events such as placing support or
bracing after an excavation stage can be most influenced by
such delays. Clough & Davidson (1977) report one case where
a final phase of construction (just prior to casting
and backfilling pile caps and slab) at the bottom of a

foundation excavation for a major office building, was
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adversely affected by an unexpected delay. The slab was to
be used to support raker bracing for the sheet pile wall. A
carpenter strike delayed pile cap formwork for six days
during which the excavation stayed open and the walls crept
inward. After 20 centimeters of movement had occurred some
remedial support was applied by temporary filling of the
pile cap excavation to retard further movement. Eventually
over 30 centimeters of wall movement occurred. A large
crack appeared behind the wall. Figure 1.1 shows movement
versus time and the pertinent events for this excavation.

Corbet, Davies and Langford (1974) reported on a braced
excavation in stiff London Clay where a national building
workers strike led to delay of a critical period in the
excavation. Although the specific results of this delay are
not reported, the authors state that the delay was a cause
of concern for the stability of the excavation.

It is apparent to the author that the profession would
benefit from additional research and measurements of
excavation performance vs. time. The behavior of
excavations penetrating intermediate soils between the clay
and sand types such as silts, clayey silts and clayey sands
etc. are of particular interest. The demand for the
engineer to design with economy and safety warrant a better
understanding of the role of time and drainage on behavior of

soil subject to excavation unloading.
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1.1 THESIS OBJECTIVE

The objective of this thesis is to formulate and
apply a method which includes the effects of pore pressure
change with time to predict deformations of an excavation.

1.2 THESIS SCOPE

Following the discussion of the effect of time for
several simple cases, the significance of measurements
made over time for several braced excavations will be
discussed. Several current design and analysis approaches
will be discussed. A Stress Path Method approach will be
outlined and applied for a type A prediction of a case
study. This method will include a composite of finite
element analysis, and stress path testing of soil specimens
in the lab to predict the role of time in the study of a

deep braced excavation.
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CHAPTER TWO

THE ROLE OF TIME

2.0 INTRODUCTION

In this chapter the effect of time on strength and
deformation for several simple examples will be discussed to
outline the importance of excess pore pressure dissipation
for braced excavations. Related observations and
measurements of pressure and time from the literature will
be discussed. Various current methods of analysis and
design will be reviewed on the basis of how the methods
incorporate time effects. Limitations and assumptions made
for each method are discussed.

2.1 STRESS PATHS

Use of stress paths and the Stress Path Method (Lambe
1967, Lambe & Marr 1979) provides an organized framework
within which the field problem can be studied. Stress paths
for field situations can be modeled using standard
laboratory tests, such as the three dimensional triaxial
test.

2.1.1 Undrained Shear

At this point it is convenient to refer to Figures 2.1.1
and 2.1.2 constructed by the writer. Shown in the figures
are an example of braced excavation geometry and total and
effective stress paths for normally and overconsolidated

clay soil elements adjacent to the excavation.
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The total stress paths between points 1A and 1B and

between 2A and 2B represent the type of unloading typically
experienced by soil elements 1 and 2. The mode of total
stress change for element 2 at the center line of the
excavation is extension unloading. Soil element 1 behind
the wall experiences compression unloading or an "active"
stress condition.

Typical effective stress paths for the undrained shear
can be traced between points 1A and 1C and points 2A and 2C
on each p-q plot. The horizontal width of the shaded area
at any given value of q is the value of excess pore pressure
generated by shear.

The shaded region also represents the region within
which the effective stress paths lie for partially drained
conditions. There are an infinite number of possible
effective stress paths in this region. Rapid excavation in
a material such as silt for example, may exhibit partially
drained behavior.

2.1.2 Dissipation Of Pore Pressure Following Shear

Strength and stress—-strain modulus of the soil are
dependent on the effective stress path. Since changes 1in
pore pressure directly affect the effective stress path,
these changes are important in the field and when estimating
soil parameters for design.

Figure 2.1.3a-d shows stress paths for the example

geometry of Figure 2.1.1 for typical overconsolidated and
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normally consolidated clays. The plots in the figure
exhibit a range of situations bracketing the type of pore
pressure behavior likely to occur during and after
excavation to the design depth. A simplifying assumption is
made in order to draw these plots; undrained shear due to
excavation occurs first and then is followed by dissipation
of excess pore pressure.

Excess pore pressure results from the total stress
release due to excavation and/or from decrease in pore
pressure due to altered flow conditions (i.e. construction
dewatering). With respect to dissipation of excess pore
pressures the following qualitative conclusions can be made
after construction of the Figure 2.1.3 plots:

Normally Consolidated Clay

(1) 2.1.3a--This soil will undergo a minor decrease 1in
strength (i.e. move towards the failure envelope)
following dissipation of excess pore pressure to
the original pore water pressure. This occurs at
both the bottom of the excavation and behind the
excavation wall. Consolidation heave will occur.

(2) 2.1.3b-- Consolidation due to dissipation of
positive excess pore pressure caused by dewatering
will result in settlement. The soil will experience
an increase in strength with consolidation. Net
vertical strain will be higher with dewatering for

element 1 due to additional compressive strains at
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constant shear stress. However the net vertical
strain for element 2 will be less than the strain
associated with no dewatering. If two dimensional
steady state flow conditions are attained the
steady-state pore pressure can be determined from
a flow net. Although it may be unlikely that full
steady state flow conditions will be reached, this
condition represents an outside bound.

(3) 2.1.3c--For an increasing over consolidation ratio
the effective stress path will shift to the right
due to the generation of large negative excess
pore pressures. Subsequent consolidation will
result in a substantial decrease in strength
and a consolidation heave.

(4) 2.1.3d--1f the absolute value of change in pore
pressure due to altered flow conditions is equal
to or greater than the absolute value of the excess
pore pressure due to shear, the strength will
increase. Otherwise the strength will decrease
with time.

For a given excavation with excess pore pressures
generated by shear and dewatering the net excess pore
pressure can be estimated by super-imposing or adding the
two. Lambe (1968) discusses this. Figure 2.1.4
schematically illustrates the procedure for simplifying the

field situation.
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2.1.3 Stress Paths---Summary

The use of stress paths to illustrate the various
possibilities assists the engineer in his judgement.
Qualitatively the pore pressure-strength-strain relation is
clarified in one's mind. Similarily Henkel (1970) uses
stress paths to illustrate active and passive earth
pressures for excavation in normally and highly
overconsolidated clays. For comparison, several of Henkel's
plots are reproduced in Figure 2.1.5 showing a slightly
diffe;ent graphical portrayal of stress paths. Henkel
recognizes the utility in applying this type of approach as
an aid to the engineer in his understanding of how a given
excavation may behave.

2.2 THE PERFORMANCE OF BRACED EXCAVATIONS VS. TIME

Cohesive soils are assigned low permeabilities compared
to cohesionless soils which have high permeabilities. In
general for the time associated with most construction
projects involving loading or unloading of the soil or
changes in flow conditions, some degree of drainage occurs
in cohesive soils. For sands the condition of full drainage
is achieved rapidly.

2.2.1 Braced Excavations In Cohesionless Sand

For excavations in sand deposits steady-state seepage
conditions are achieved rapidly. Figure 2.2.1 shows stress
paths illustrating this behavior. Since sand has a
relatively high permeability pore pressure dissipation is

virtually instantaneous. The total stress path equals the



26

effective stress path and the steady state pore pressure can
be obtained from a flow net. Therefore time does not play a
significant role. Although the following two sections are
not specifically bound to the thesis objective, they serve
to illustrate the different type of role time plays in the
excavation in cohesionless soil (vs. cohesive soil).

2.2.2 Piping, Suffosion

Where silts and sands or gravels, are present, time
plays a role with respect to migration or erosion of soil
particles via high seepage gradients into the excavation.
This migration is referred to as piping or suffosion.

Figure 2.2.2 graphically illustrates the mechanisms
responsible for suffosion and/or piping. Peck (1969) points
out that inadequate groundwater control may lead to damaging
settlements resulting from migration of sand into the cut.
Over a period of time migration of silt size particles can
clog construction dewatering wells and render them
ineffective. Particles can also be piped through cracks or
holes in a sheet pile wall. Serious conditions can be
anticipated by field montoring of flow into and out (pump
effluent) of the excavation for the presence of suspended
soil particles. Also at the bottom of the excavation piping
failure by heave may occur. The mechanics of this phenomena
were elucidated by Terzaghi (1942) and discussed by Terzaghi
& Peck (1967) and D'Appolonia (1971).

2.2.3 Effects of Frost Action

Field observations have shown the effect of frost action
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to be substantial. Several cases show the loads in the
struts may increase several fold. Pappas & Sevsmith
monitored performance of a deep braced cofferdam in
sensitive Leda clay. Abnormally large increases in strut
load were detected during December excavation. Since
heating of the adjacent soil resulted in rapid load
reduction, the problem was concluded to be one of frost
action.

DiBiagio & Bjerrum (1956) observed after ground freezing
within and at the surface of an excavation trench, decreases
in load in the upermost struts, and severe increases in the
lower bracing levels buckling some of the walers and
struts. Although reliable deformation measurements were not
available, visual observations led to the conclusion that an
upward expansion of the soil during freezing caused the
unusual changes in distribution of pressure. Figure 2.2.3
shows the dramatic time vs. strut load behavior.

Terzaghi & Peck (1967) report that braced cuts in Oslo &
Chicago were subjected to below freezing weather. They
observed earth pressures climb to magnitudes several times
greater than those prior to freezing.

Ground freezing as these cases illustrate can result in
unpredictable and radical behavior. Since the formation of
frost lenses is time dependent, the potential for damage can
be anticipated by monitoring the wall movements and strut

1 Refer to Clough and Davidson (1977)
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2.2.4 Braced Excavations In Normally Consolidated Clay

For clays one expects a soft normally comsolidated clay
to have a lower coefficient of consolidation than an
overconsolidated clay since this value 1is generally found to
be higher in recompression than in primary consolidation as
shown in Figure 2.2.4 for a varved clay. We would therefore
expect soft clay to dissipate excess pore pressures at a
slower rate.

At least one braced excavation case illustrates that for
normally consolidated clay the ideal undrained condition 1is
not sustained over the course of time for a temporary
excavation. DiBiagio and Roti (1972) measured the
magnitude of total earth pressure, pore pressure and
deformations of a braced slurry-trench wall in a soft clay
in Oslo. Below the clay the wall was keyed into a pervious
bedrock. Measurements were made before,during and after
excavation. Figure 2.2.5 shows the soil profile and
geometry of the excavation as well as the instrumentation
layout. Instrumentation included fifteen earth pressure
cells and two piezometers.

The measurements during the excavation stages shown in
Figure 2.2.6 indicate only minor decreases in pore pressure
occured until the excavation approached bedrock and
groundwater control was facilitated through this layer.
Consequently, the pore pressure at the bottom of the clay
was significantly reduced, accompanied by a marked reduction
in total earth pressure on the wall. The excavation

remained open to this depth for approximately 200 days. A
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downward gradient in the clay contributed to consolidation
settlements during this period before the "sealing" of the
excavation bottom with the construction of a base slab. The
pore pressure built up steadily from this point on
decreasing the rate of settlement and increasing the total
earth pressure back towards its initial value.

Over the course of the construction of this excavation
the total earth pressure varied dramatically due primarily
to changes in pore pressures. For the center of the clay
layer, piezometer PZ-9 shows a small decrease in pore
pressure over the time of construction. Coupled with the
fact that the location of the resultant earth force moved
upward towards the center of the layer with time, this
writer concludes that this central point of the soft clay
behaved partially drained. As a practical matter, in this
specific zone the undrained assumption may be reasonable.
However, looking at the clay mass as a whole the assumption
is not correct as piezometer PZ-8 clearly shows. After
careful study, the writer concludes that because the
decrease in pore pressure in PZ-9 occurred before dewatering
and remained relatively constant, dewatering did not
significantly affect the center of the clay and the negative
increment of pore pressure was due solely to changes in
total stress. Conversely the lower portion of the clay
layer shows the effect of both changes in total stress and

changes in flow conditions.
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Although admittedly this is only omne case, it
illustrates that pore pressure dissipation can be a factor
even for impervious walls in soft clay. Dissipation of
positive excess pore pressures resulting from dewatering can
lead to large pressure decreases against the wall during
construction. More rapid dissipation of excess pore
pressures can be expected for sheet pile and other
non-slurry-trench walls which are characteristically more
permeable.

2.2.5 Braced Excavation In Overconsolidated Clay

Some interesting conclusions from field data suggest the
undrained assumption to be seriously in error for the
overconsolidated clay.

Referring now to Figure 2.2.7, Lambe (1968) observed
piezometer readings from the medium clay layer at the bottom
of a temporary braced excavation for the CAES building
foundation at MIT. The excavation was open for 24 days.
Very litle dewatering was attempted in this excavation. The
stress paths for a point at piezometer P-1 are reproduced in
the figure. Note that u,, is the pore pressure immediately
after excavation. Thereafter the pore pressure increased to
a value greater than u, but still less than ug (the
pre-excavation static porewater pressure). The dissipation
of negative excess pore pressure moves the effective stress
path towards failure and results in a consolidation heave.
It follows as Lambe concludes that there is a progressive

decrease in strength leading to a decreasing factor of
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safety with time. Therefore the end of the unloading period
is the most critical time for this excavation. The end of
the unloading period is defined as just before the load is
replaced in the excavation. Hence, the most critical
condition occurs some time after completion of the
excavation.

Observations and measurements were made for braced
slurry-trench and sheet pile walls in stiff clay for a
subway excavation in Boston (see Figure 2.2.8). Pore
pressures, deformations and strut loads were measured.
Figure 2.2.9 shows a redrawn compilation of strut load and
pore pressure versus time for a test cross section at the
slurry wall. Observations of piezometers indicate
excavation was accompanied by steady decreases in water
pressure behind the wall from an initial total head of 106
feet decreasing to 82 feet measured in piezometer P-4 behind
the wall after the final cut had been made. Following mud
slab placement, axial strut loads increased steadily as did
pore water pressure measured in the piezometer P-4 as shown
in the figure. Since measurements showed very little
outward wall movement (less than 1 inch) the change in pore
water pressure can be associated with altered flow
conditions resulting from construction. Seepage through
wall panel joints was observed. Figure 2.2.10 shows
measured pore pressure vs. depth. Steady state seepage
predictions compared well with end of construction pore

pressure measurements. Hence, it can be argued that the
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drained parameters, C andgb are more applicable for this "

end
of construction" case.

In constrast to the slurry wall case in the soft clay in
Oslo, pore pressures throughout the stiff clay drop
significantly. Imposition of new boundary water pressure
conditions are met with a relatively quick drainage. Also
the strut loads at the end of excavation do not accurately
reflect the strut loads which the bracing will experience
over the life of the structure. The trend in the figure
shows an increase in strut load by a factor of approximately
1.5. Similar trends are seen in adjacent struts.

2.2.6 Braced Excavation In Stiff Fissured Clay

One interesting case for excavation in this type of soil
is the experimental trench in stiff marine clay Bjerrum &
DiBiagio (1956) studied. Figure 2.2.11 shows a section of
the excavation, corresponding soil profile and test data.
Strut loads during the Autumn (Sept. to mid Nov.) show a
gradual and marked increase followed by enormous winter load
increases attributed to frost action and previously
discussed in section 2.2.3 (see also Figure 2.2.3). Autumn
rainfall data compared to the total earth pressure show
sharp load increases following periods of rainfall. The
most intense period of rainfall is followed by the maximum
value of pore pressure observed for Autumn in mid November.
Pore pressures plotted in Figure 2.2.11 show the measured
pore pressure versus time over this period. The fissures in

the clay facilitate access of water to the clay mass. Total
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stress release from excavation in fissured and weathered
clays can lead to further opening of the fissures and
increases in permeability. Prolonged construction under
such conditions leads to progressive weakening or softening,
as well as increases in the succeptibility of the soil to
rapid changes in pore pressure.

The effect of fissuring on stability is dramatically
illustrated by the short term slip failure of an unsupported
excavation in London Clay reported by Skempton and
LaRochelle (1965). The results of this study lend
understanding to braced excavation in stiff fissured clay as
well. The slip occurred shortly after excavation had been
completed. The estimated mobilized shear strength in the
clay mass was approximately 55% of the average undrained
strengths measured from triaxial tests. The authors
attributed the difference between the measured strengths in
the triaxial tests and the actual failure to (1) pore
pressure migration within the intact clay, and (2)
fissuring. It was shown that by increasing the time to
failure for the triaxial tests, strength decreased.
Conventional tests run at a time to failure of 15 minutes
correspond to straim rates much higher than and
unrepresentative of the strain rate due to excavation. This
influence of strain rate on strength is attributed to pore
pressure migration. Figure 2.2.12 shows the results of
strength versus time to failure for a series of undrained

triaxial tests performed to study this behavior. Secondly,
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the authors conclude that at least five factors related to
the fissuring can weaken the clay during excavation.

Several of the important factors are, absorption of water
along fissures leading to increases in water content
(softening), reduction of strength to zero as fissures open,
and progressive failure.

Quantifying the effect of fissures and the rate of
softening on stability and deformation to predict
performance is difficult,

Corbet et al (1974), and Cole and Burland both reported
observations made for a raker braced diaphragm wall in a 20
meter deep excavation for a basement in stiff fissured
London Clay. 1In view of the uncertainties cited in the
previous paragraph, detailed construction performance
monitoring was undertaken. Wall movement and verticality
were monitored. Earth pressure however, was not monitored.
Several of the conclusions drawn by the authors after
observing the construction performance are reiterated below.

(1) Wall movements showed a clear time dependence.

(2) Early intermal support placement is essential
to minimize movements.

(3) Performance monitoring is important for construction
control and is of research value for future exca-
vations.

(4) Inward wall movement is associated with a
progressive softening and reduction in stiffness

of the clay. The greatest reduction in stiff-
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ness was found to be near the ground surface behind
the wall. This is attributed to the opening of
fissures due to lateral stress release.

In summary, one can clearly see that time is a very
significant factor for load and deformation behavior of
excavation in stiff fissured clay. Although additional
observations and measurements of field situations are needed
to advance our understanding of this case we can make
several conclusions of practical value at this time. The
undrained assumption 1s not applicable to excavations 1in
stiff fissured clay which remain open for several months,
construction performance monitoring is important and 1is
recommended, and minimizing construction time is desireable.

2.2.7 Braced Excavation in Silt

Very little well documented information on excavation
performance in silt has been reported in the literature.
Lambe (1969), et al, and MIT (1972) reported on a study of
two instrumented Boston subway cuts in fill overlying organ-
ic silt, underlain by glacial till as seen in Figure
2.2.13. The test sections, Section A and Section B were
monitored for stresses and deformation and compared against
predicted behavior. No significant strut load variation
with time was measured. However, one conclusion reached in
the studies was that for braced excavation in sands and
silts the pore pressure behind the excavation can be ex-
pected to be less than static due to construction. Some

agreement between the final measured pore pressures and
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steady state pore pressures predicted by finite element
analysis (FEDAR, Taylor and Brown 1967) indicates the pore
pressure in the silt was probably in a transient state near
steady state. See Figure 2.2.14 .

Although these two test sections penetrate silt, soil
conditions are not truly representative of an excavation in
silt due to the upper fill and stiff lower strata.
Therefore general conclusions by the writer regarding
excavation in silt cannot be made. However the cases are
representative of the fact that many excavations do
penetrate several soil types and cannot be easily
categorized.

These studies are valuable case histories. They
illustrate the type of construction monitoring data which
predictions of construction performance can be evaluated from.
As a result, our understanding of braced excavations can be
extended. The reader is referred to the references for
additional details. Use of finite element computer programs
like BRACE and FEDAR to model braced excavation and flow
respectively showed encouraging predictive capabilities.

2.3 METHODS OF ANALYSIS AND DESIGN

The following currently used methods of analysis and
design will be discussed as they relate to the incorporation
of time effects.

(1) Semi-empirical Methods

(2) Numerical Analysis Methods

(3) The Stress Path Method
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2.3.1 Semi-empirical Methods

Several well known semi-empirical design methods are the:

(1) Terzaghi and Peck Method (1948, 1967)

(2) Tschebotarioff Method (1973)

(3) DM-7 (Navdocks) Method (1971)

These methods are similar and are commonly used in
practice. They are intended to estimate maximum lateral
strut loads. Only the Terzaghi and Peck Method (1967) will
be discussed to illustrate this design approach.

Terzaghi and Peck presented the original apparent
pressure envelopes in 1948 for braced excavations in sand or
in clay. Peck, Hansen & Thornburn (1974) is the most
recent published version. The design envelopes were
derived from classical earth pressure theory and actual
measurements of strut loads in excavations. Hence the
method is referred to as semiempirical. Difficulty in
reliably measuring stresses against the sheeting required
the apparent stress distribution to be inferred or
backfigured from the strut loads. The envelopes are
intended to give maximum values of strut load to be
experienced and are not truly representative of the actual
stress distribution. Over the years modifications and
adjustments have been made to accomodate newer observations
and experience. Figures 2.3.la and 2.3.1b show the design
envelopes of the Terzaghi and Peck Method for sand and clay.

The pressure envelope for sand is based in part on strut

load measurements for braced excavations in New York,
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Munich, and Berlin. An equivalent uniform earth pressure
was fit through the apparent pressures in the excavation.
Several qualifications attend the application of this method
for sand.

(1) The authors emphasize that the diagram has been

developed from a limited number of excavations

varying in depth from 28' to 40'.

(2) The diagram is a pressure distribution for

estimating the maximum values of strut loads to be

expected for similar cuts.

(3) The groundwater level is assumed to be below the

bottom of the cut. Comsequently, (in the writer's

opinion), seepage or static water pressures should
be added to the pressure distribution. Ries (1973)
points out that for impervious diaphram type walls
which typically retard drainage of the soil behind
the wall, this assumption (water level below cut)
is likely to be seriously in error.

For sands detrimental time related effects have been
associated with piping and piping heave at the bottom of the
excavation. This problem cannot simply be incorporated into
any pressure envelope. Application of the Terzaghi and Peck
method for sands must accompany an awareness of such
conditions. Also, in the writer's opinion the groundwater
pressures which may be experienced over the life of the
structure should be added especially since these pressures

can be substantial.
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Several relevant facts one should be aware of when using
the clay envelopes of the Terzaghi and Peck method are
summarized below.

(1) Cuts are assumed to be temporary. The@ﬁ=0”condition
or undrained condition is assumed to prevail.
Average undrained strength of the clay along the
side the cut 1s used.

(2) Although the data from the test cuts (Oslo and
Chicago) from which the envelopes evolved included
measurements showing large increases in strut load
due to freezing during cold weather, these
measurements were not used for formulation of the
envelopes. Therefore the effects of freezing
should be considered separately.

(3) The authors (1967) admit that due to little
available data on cuts in stiff intact clays, sandy
clays, and clayey sands etc., design envelopes have
yet to be worked out. However more recently, Peck
(1969) reports that the trapezoidal clay envelope
fit the measured values of five cuts in stiff clay
conservatively and therefore could be used as a
guideline. Peck suggests that limited data for at
least one deep cut in dense clayey sand and stiff
sandy clay shows drained behavior and the
appropriate drained strength parameters can be
input into an equation for Kz;. Presumably, the

equation for earth pressure for excavation in sand
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is then modified to include this expression.

(4) Use of the trapezoidal envelope for stiff fissured
clay is discussed by the authors (Terzaghi and Peck
1967, Peck 1969) in light of the measurements made
by DiBiagio and Bjerrum (1957) which showed time
dependent behavior. This case has been discussed
by the writer in earlier sections of this paper.
The authors suggested that the lower value for
maximum design pressure, .2¥H be used if movements

of the sheeting are minimal and construction time

is short. If these conditions do not apply, use

of the higher pressure value of .4%¥H is recommended.
Hence Terzaghi and Peck, in an indirect way have
assigned some importance to time effects for stiff
fissured clay.

In summary, it is the writer's opinion that these
methods provide a useful guideline for estimating maximum
strut loads. The method has been tempered with experience
although to extend the scope of the Terzaghi and Peck method
more experience for a large variety of cuts is required.

The limitations of the method should be realized and may be
understood by studying the evolution of its formulation.
Major braced cuts open for extended periods should not be
designed on the basis of this method alone. The engineer's
understanding of the excavation problem may benefit by using

other more fundamental techniques.
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2.3.2 Finite Element Analysis

Over recent years the advent of the high speed digital
computer has enabled numerical analysis to become a popular
and viable technique for solving complex engineering
problems. The use of the electronic computer to solve large
sets of equations by matrix algebra allows the engineer to
mathematicaly model problems in detail. Previously such
sets of equations could be set up but the solution was too
complicated to achieve practically by hand.

Application and theory of the Finite Element Method is
now well documented in the literature (Desai and Abel 1972,
Zienkiewicz 1967, Bathe and Wilson 1976) for engineering
analysis. Subsequently, over the last decade several finite
element computer programs to model construction of braced
excavations have been developed and used by several
investigators including Wong (1971), Jaworski (1973) and
Clough and Duncan (1971).

Advantages of using this technique include:

(1) Complex soil and structure geometries and

properties can be modeled.

(2) Construction sequence and details can be simulated.

(3) Detailed information on stress changes and

deformations can be obtained.

(4) ©Parameter studies can reveal the relative importance

of input data (strengths, moduli, sheeting stiffness
and penetration etc.) for a given excavation.

(5) Critical stages of excavation can be predicted.



42

Some limitations have yet to be overcome. One such
limitation lies in the difficulty in modeling the soil
structure interaction (i.e., soil sheeting interface).
Nevertheless, even in the relatively young stage of
development for finite element modeling of excavation,
encouraging results and insights have been gained. 1Indeed,
in practice, MIT (1972), Cole and Burland (1972), Palmer
and Kenney (1972), Clough and Tsui (1974), Duncan and Chang
(1970), and others have demonstrated the powerful
applicability of the method.

The finite element program developed at MIT for analysis
of excavation is called BRACE. The reader is referred to
the theses by Wong (1971) and Jaworski (1973) for details.
The program in its present form will model the stress strain
behavior of the soil via a linear or bi-linearly elastic
modulus. The program does not model the effects of time on
strength, modulus, loads or deformations. If necessary,
these effects must be indirectly considered by inputing soil
parameters which include the effect of time (e.g., pore
pressure dissipation). Conventional soil parameter input
for such a program is the undrained soil strength and
undrained modulus to model the undrained case (total stress
analysis) or drained parameters, C and gB for the drained
case (effective stress analysis).

Pore Pressure Dissipation

Recently, new insight into the evaluation of the

validity of the undrained assumption and total stress
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analysis for excavation has been presented by Clough and
Osaimi (1979). The authors used the finite element
technique to model excavation sequence for given rates of
excavation (meters per day). The purpose of the study was
to show how pore pressure dissipation occurs during and
after excavation. The name of this computer program 1is
TIME-CONSTRUCT and at this writing is not available for
distribution (Clough 1980) since its documentation is not
complete. In any event, the published results by the
authors are of interest to the engineer and will be
discussed in the following paragraphs.

Using TIME-CONSTRUCT Clough and Osaimi analyzed several
cases. Results of the analysis of a one dimensional
excavation are shown in Figure 2.3.2. For wide excavation
the one dimensional unloading and drainage represent the
central protion of the bottom of the cut. The figure shows
that decreasing the excavation rate corresponds to an
increase in the percentage of consolidation at the end of
construction for the wide range of permeabilities analysed.

Figures 2.3.3a and b summarize the analysis results for
two dimensional excavation for cases of both linear and
nonlinear soil behavior. Contours of negative excess pore
pressure shown indicate that the pore pressure response at
the bottom of the excavation is essentially one
dimensional. Dissipation of the excess pore pressures will
occur vertically. Of general interest, in Figure 2.3.3a

contours of negative excess pore pressure for no wall in
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place are shown for comparison with the supported excavation
in the linearly behaving soil. As would be expected the
presence of an impervious wall markedly inhibits
consolidation. Therefore we can conclude that for the
realistic case of a more pervious wall (sheetpile), the
magnitudes of negative excess pore pressure would be at
values somewhere between the two cases. In any event more
consolidation would occur for the sheet pile wall than for
the impermeable type.

Note that this analysis by Clough and Osaimi does not
consider the role of drainage due to dewatering which
accompanies excavation construction. As a result, the
dissipation of excess pore pressures due to shear alone will
produce an upward movement of the soil mass behind the
wall. Since measurements and observations for many case
studies consistently show settlement occurs behind the wall
with time, we can conclude for such excavations one or more
of the following:

(1) The dissipation of negative excess pore pressure
due to shear behind the wall is negated by equal
or larger positive excess pore pressures resulting
from dewatering.

(2) The heave movements are non-existent behind the
wall due to greater settlement resulting from
inward wall movement and/or loss of ground towards

the bottom of the excavation with time.
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(3) Other factors including surcharging by traffic or

equipment as Clough & Osaimi suggest.

One important conclusion was drawn by Clough and Osaimi
as a result of their study. The undrained, "end of
construction'" case is unlikely to occur even in thick
deposits of low permeability clay. They further note that
consolidation in the field is likely to occur more rapidly.
This latter conclusion is probably based on the commonly
accepted fact that comnsolidation in the field generally
occurs several times more rapidly than predicted by
available methods. Extrapolating test results using small
specimens in the lab in analyses of the field situation where
undetected drainage layers may exist may explain some of
the discrepancy.

2.3.3 The Stress Path Method

Lambe's Stress Path Method is a useful method for both
understanding and analyzing a given geotechnical engineering
problem. Lambe (1967) and Lambe and Marr (1979) describe
the fundamentals and applications of this method. By
selecting and analyzing representative or "average' soil
elements, one can attempt to estimate the stresses and
strains that will occur in the field for each phase of
construction.

For a supported excavation one can subject
representative soil specimens to the in-situ initial
stresses, apply the total stress changes associated with

excavation and measure the strains, pore pressures (and
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hence, effective stresses), and coefficients of
consolidation and lateral earth pressure, K,.

Of course the method has some limitations one should be
aware of. Sample disturbance affects measured values of
coefficient of consolidation, strength, and modulus. K,
determined from reloading to the initial stresses is not
truly representative of the initial K, in the field. Stress
path tests can be both expensive and difficult to run. Many
of these limitations however, are present to varying degrees
in the other methods available to the geotechnical
engineer. The advantages of the method outweigh the
limitations, particularly if the engineer is aware of the
limitations. The value and the applicability of this method
lie in the evaluation of the predicted versus measured
performance of actual geotechnical projects.

2.4 CONCLUSIONS

The measurements from the case histories cited from the
literature show that time effects (pore pressure
dissipation) are of significant importance in braced
excavation. For cohesive soils partially drained conditions
exist during construction and the undrained assumption is
only a design simplification which is in error and may be
seriously in error in some excavations.

Recent numerical techniques allow analysis which may
include the effects of time, but most use linear
stress-strain parameters. Other numerical techniques which

have non-linear parameter models, are expensive and
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difficult to use and don't consider time effects. Although
Clough and Osaimi have developed a computer program
(TIME-CONSTRUCT), which considers non-linear and time
dependent stress strain behavior, their studies to date have
only.treated a simple, hypothetical excavation.

Nevertheless their work is a significant advance in this
area of study. The writer looks forward to an evaluation of
predicted versus actual performance of an actual excavation
using TIME-CONSTRUCT.

The Stress Path Method provides a rational way to select
soil parameters which include time effects. One may combine
the Finite Element Method with the Stress Path Method. The
powerful numerical technique can be used to model sequential
excavation and obtain the complex stress distribution in
conjunction with the Stress Path Method used to determine
the appropriate soil parameter input. The deformations of
an excavation could then be predicted using this fundamental

approach.
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CHAPTER THREE

PROPOSED PROCEDURE FOR INCORPORATING

TIME IN THE PREDICTION OF THE PERFORMANCE OF A

BRACED EXCAVATION

3.0 INTRODUCTION

In this chapter the writer outlines a proposed procedure
to incorporate a major time effect (pore pressure
dissipation) in the prediction of construction performance.
Acknowledging advantages of certain aspects of available
Finite Element techniques and the Stress Path Method, lead
the writer to use both in a composite procedure. Hence this
procedure integrates the use of a sophisticated computer
model as a tool for a Stress Path Method approach.

The fundamental basis for this method is the Stress Path
Method. The most recent edition is presented by Lambe and
Marr (1979). The basic principle behind the Stress Path
Method is the effective stress principle, which states that
the effective stress equals the total stress minus the pore
pressure.

g=0-1u
Soil behavior is dependent on the effective stress history
and future changes in effective stress.

Table 3.1 illustrates the types of geotechnical
problems; force, deformation, stability, and flow, which the

geotechnical engineer must face in practice. Generally, he
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must predict the performance of constructed facility. Table
3.2 summarizes the steps used in the Stress Path Method to
predict performance for the classes of problems presented in
Table 3.1. The method developed in this chapter by the
writer follows the steps in Table 3.2 for force and
deformation.

3.1 OUTLINE OF THE PROPOSED METHOD

This procedure is an iteration whose solution can be
improved with each pass through the steps outlined. Actual
field performance measurements during construction can be
input to update or adjust the solution. The proposed
procedure is as follows:

Step Description

(1) Using a finite element computer program which
models braced excavation (i.e. BRACE), input

an initial geometry and initial soil and structure

properties (i.e. strength, moduli, pore pressure
parameters).

(2) From Step (1) obtain total stresses (approximate).

AT

(3) From Step (2) obtain ug(the excess pore pressure

generated by the change in total stress due to

excavation).

(4) Estimate wuw.(the excess pore pressure resulting

from the altered flow conditions associated with
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the excavation). A hand drawn flow net or other

method (FEDAR) may be necessary if steady state
conditions are anticipated.

(5) Run dissipation analysis for actual drainage

condition (i.e. one, two, or three way drainage)

with estimated coefficient of consolidation.

Estimate the percentage of dissipation, D.

(6) Select a representative element(s) or prediction

point and an undisturbed soil samplefs)

(7 Consolidate the soil specimenis) to the estimated

in-situ stresses. Measure the coefficient of
consolidation.

(8) Shear the sample by applying a total stress path

obtained for the representative element. In
other words apply AJ . Measure the actual u, and
the shear strains €g. The first set of tests might
be sheared under conditions of no drainage. If a
second set are executed after the first pass through
the procedure, partially drained tests may be
required.

(9) Using the results of (5) and of (7) and the
estimated time t for the excavation construction,

determine the percentage of dissipation,D.

(10) Then,

=y e e e e o e e v e e e = - —————— i . e e e o S - S v M o ———— o ——

1. One might use superposition as shown previously in
Figure 2.1.4 to obtain the initial net excess pore press.



(11)

(12)

(13)

(14)
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Apply ay.to the soil specimen. Measure the

consolidation strain, E}.

Find;

e'r:ES'*‘Ec

This 1is a convenient simplification of the actual,
partially drained behavior. Here it is assumed
that the summation of the strains for undrained
shear followed by consolidation are equal to the
strain for a partially drained stress path
terminating at the same final effective stress.
Later, one might use stress path tests with partial
drainage to refine the solution.

Compute a soil modulus,E and Poisson's ratio .V ;

AQy EvorL = Ev £ Evor- €
= + - AT - =Sy _ _&voty
E = %, £ Ho V== g T 2E,

Here we assume that the actual stress strain curve
can be replaced with a single modulus passing

passing through the actual stress level.

Re-input parameters established from the test data

into the computer program (BRACE). For a series of
tests, contours of equal strain can be plotted as
seen in Figure 3.1. From such plots moduli can be

determined for any element by plotting the total
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stress path on this plot, estimating the
"undrained" strains and adding them to the
estimated consolidation strains.
(15) Check against original total stress paths and
reiterate procedure if necessary to refine solution.

Below are summarized the main simplifications and
assumptions made in the presentation of the method;

(1) Deformations for an undrained unloading followed
by consolidation to a final effective stress point
equal deformations for a partially drained stress
path terminating at the same final effective stress.

(2) The actual stress strain curve can be replaced with
single modulus passing through the actual stress
level.

(3) The dissipation analysis is not too affected by
details of initial pore pressure distribution.

(4) Contour plots of equal vertical strain can be
constructed similar to the plot for the normally
consolidated soil in Figure 3.1.

Obviously this method relies on a laboratory testing
technique to obtain a soil modulus. Sample disturbance and
other factors influence this value. Another limitation lies
in the difficulty in correctly assessing the pore pressure
dissipation. However the writer believes the application
of this Stress Path Method type technique 1is a rational
approach for obtaining input for the computer program. As

Finite Element parameter studies have shown for supported
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excavation, notably the Palmer and Kenney (1971) study, the

soil deformation or stress strain modulus is found to have
the greatest influence on the solution. One of the proposed
method's main objectives is to obtain and use this modulus
in a way which considers the effect of pore pressure

dissipation.
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Step | Force and deformation Stability Flow
(N (2) (3) (4)
1 Estimate stress- Estimate location of Estimate flow
strain pattern surface of minimum pattern
stability
2 Select average element or select several elements
3 For selected element(s), determine stress paths for:
(a) Geological history, i.e., past; and (b) design life
of structure, i.e., future
4 On soil existing at or near selected elements in field situation
Run tests along stress paths determined in step 3
(Orient samples for tests same as in field)
(Use field permeant in flow tests)
5 Obtain stress strain Obtain strength or Obtain permeability;
or modulus strength parameters Measure any
movement of
soll fines
6 Force = f(stress) or Factor of safety = Determine flow net
f(modulus) average strength/
average shear stress
Deformation = Average shear stress Evaluate stability of
f(strain or) from: Force polygon; soil 1o flow
f(modulus) or elastic analysis;
or finite element
analysis; or
stress paths

from Lambe and Marr (1979)

STRESS PATH METHOD

TABLE

22
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CHAPTER FOUR

ILLUSTRATION AND APPLICATION

OF THE PROPOSED PROCEDURE

TO A CASE STUDY

4.0 INTRODUCTION

To serve as a vehicle to develop and illustrate the
application of the method to handle partially drained
conditions outlined in chapter 3, the writer will make a
prediction of the performance of a braced cut in Tokyo,
Japan. The excavation is currently underway and is
scheduled to take over two years to reach a design depth of
29.5 meters. Specifically, the writer will attempt to
predict the loads and deformations for a critical excavation
stage. The excavation depth at this stage is approximately
20 meters.

It is emphazized that the available soil test data 1is
insufficient. Particularly lacking is adequate information
on the stress history of the deposit, as well as a lack of
good information pertaining to the character of the soil
below 45 meters. Initial groundwater conditions (i.e.
static or non-static) have not been measured. Summarizing
the missing information:

(1) stress history (oedometer tests)

(2)  ue

(3) 1limited soil samples and tests
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Nevertheless, the main purpose of this chapter is to
illustrate the proposed method and demonstrate its
applicability. 1In the process a prediction is made using
the available test and boring data.

4.1 TYPE OF PREDICTION

In Lambe's (1973) Rankine lecture "Predictions in Soil

Engineering", Lambe classified predictions as follows:
PREDICTION WHEN PREDICTION RESULTS AT TIME
TYPE MADE OF PREDICTION
A Before event = —=-=-----
B During event Not known
Bl During event Known
C After event Not known
Cl After event Known

The writer's prediction will be a classification A
prediction. A prediction of early stages of the excavation
currently underway would fall into the class B category.

The writer did not have measurements of performance of these
stages prior to prediction.

4.2 PROJECT DESCRIPTION

4.2.1 General

The excavation is for construction of a pumping station

facility for the Nakagawa Sewage Treatment Plant in Tokyo
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and 1s designated site B. The excavation support system is
designed as a cross-lot braced, concrete filled pipe pile
wall. Plan dimensions of the excavation are approximately
79 meters long and 52.5 meters wide from wall to wall,
internal dimension. Cross lot bracing will have inter-
mediate vertical support derived from columns supported by
deep concrete piers. Within the excavation, lime
stabilization of the upper 25 meters of soil has been
executed. Figure 4.2.1 shows a plan view and cross secton
showing these construction details. Also shown are recent
boring locations.

4.2.2 Construction Schedule

Figure 4.2.2 depicts the schedule for construction and
pertinent events during this period.

4.3 SUBSURFACE CONDITIONS

4.3.1 So1l Conditions

Limited preliminary soil data indicated that the soil
profile consists of intensely stratified deposits of
relatively soft sandy silt, fine sands, clayey silt and
silty clay extending to a depth of approximately 45 meters.
Below these lies a relatively dense stratum of sand and
sandy clay layers.

The cohesive soil deposits are of moderate to high
plasticity. Blow counts (blows/30cm) in the top 30 meters
of soil are typically less than 10, gradually increasing

below this depth to approximately 50 at a depth of 50 meters.
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4.3.2 Groundwater

Groundwater level is encountered in borings at
approximately 1 to 1.5 meters below ground surface.
Elevation on the boring logs coincides with depth (i.e.
depth = 5 meters, elevation = -5 meters).Unfortunately it is
not known to which datum (i,e., sea level) these elevations
are referenced to.

Unfortunately initial pore pressure data are not
available to verify static or nonstatic groundwater
conditions at this site. Static groundwater conditions are
assumed in this study. It should be noted however, that
previous work in the Tokyo area by Lambe (1968) at a
Kawasaki City Site revealed that pore pressures were
non-static due to long term pumping from the lower acquifer
55 meters below the ground surface. The total head in this
layer was ultimately reduced to -5 meters. Therefore the
static initial condition assumption may be in error.

4.4 NAKAGAWA PREDICTION

4.4.1 Initial Model of Field Situation

Following the steps of the outlined procedure in Chapter
3 the writer selected an initial soil profile based on the
limited preliminary soil data. A finite element mesh was
developed to model this excavation using the BRACE III
computer program. The mesh geometry was organized to
closely model excavation and bracing levels as well as

simplified soil stratification. Areas of anticipated high
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stress concentrations (i.e. elements adjacent to wall) are
modeled with smaller elements. The initial profile, and
finite element mesh are shown in Figure 4.4.1. Figure 4.4.2
is a detail of the excavation and wall zone showing the
excavation and bracing levels to model the field situation.

Linearly elastic stress strain moduli were employed for
the initial BRACE II1 analysis. This run will be referred
to henceforth as Run A. Values were obtained using an
E./Gyo €equal to 75 which corresponds roughly to a value of Eg
/Sa. = 250. These values were used to model the entire
deposit. Input values of Poisson's Ratio of 0.45 and 0.40
were selected for cohesive and cohesionless soils,
respectively.

4.4 ,2 Stress Paths from Initial BRACE III Analvysis

To check the results of the initial BRACE III analysis,
(Run A) total stress paths were plotted on p-q diagrams for
selected '"average'" elements both behind and within the
excavation. Several of these total stress paths are shown
in Figure 4.4.3 for this linearly elastic analysis. The
stress paths illustrate the compression and extension type
unloading one might expect behind the wall and at the bottom
of the excavation. Within the excavation for soil elements
near the wall, (e.g., element No. 345), the total stress
paths become less easily categorized, although a straight
path extended between the initial and final points indicates

the simpler extension mode of unloading.
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4.4.3 Laboratory Tests And Revised Soil Profile

General

Five '"undisturbed" 1 meter long, 8 cm diameter brass
Shelby tubes and 7 jar samples from recent borings adjacent
to the excavation were made available to the writer for
stress path testing at MIT. In all, 4 anisotropically
consolidated undrained triaxial stress path tests, 10
Atterberg limit index tests, and 6 combined sieve analyses
(mechanical and hydrometer) were executed by the writer to
supplement the available information on soil conditions.
Visual classification and torvane tests were also made.
Results of one unconsolidated undrained triaxial test
performed at MIT were supplied by Mr. Matthew Southworth.
In addition to the above, results of six isotropically
consolidated compression tests performed in a Japanese lab

were also obtained.

Soil Classification

Table 4.1 summarizes the index properties and visual
classification of the tube and jar samples. Figures A.l
through A.6 in the appendix give complete grain size plots
for the combined sieve analyses. Figure 4.4.4 gives the

plasticity chart . Atterberg Limits plot near the A - line.
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Stress Path Tests

Figures 4.4.4a through 4.4.4d 1llustrate results of the
stress path tests executed by the writer for four
"undisturbed" samples of sandy and clayey silts.

In order to simulate the stress changes that the writer
predicted would occur in the field the procedure in Chapter
3 was employed. Based on the length of construction time
for this project, it was assumed that consolidation due to
altered flow conditions would occur, particularly within the
excavation where construction dewatering is inevitable.
Consequently the testing procedure consisted of the
following 3 steps.

(1) Consolidating the samples to the estimated in situ

stress state.

(2) Shearing undrained via compression or extension
unloading to the failure envelope (define failure
envelope while maintaining integrity of the
sample). This procedure reflects the trends of
Stress Paths from BRACE III Run A which indicated
substantial zones of local yielding.

The tests were stress controlled. Pore
pressures were allowed to stabilize for each
decrement of applied stress.

(3) Applying a change in pore pressure (back pressure)
to simulate post shear consolidation and measure
the coefficient of consolidation.

Unfortunately no tests were performed where negative
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excess pore pressures were allowed to dissipate although
this situation is likely to occur in the field as well.
This is mainly because the writer originally assumed deep
dewatering was to be implemented, later to learn that this
was not the plan. Not having a sufficient knowledge of the
initial pore pressure distribution in the field, initial
pre-shear effective stresses for the triaxial tests were
computed assuming static pore pressure conditions.
Admittedly, this assumption may be in error for the actual
case.

Coefficient of Consolidation

Table 4.2 summarizes values of coefficient of
consolidation computed from both pre-shear and post-shear
consolidation. Both square root of time and log time
methods were used. The small load increment ratios often
yielded type III curves (Ladd, 1973) for log time and the
time for 100% consolidation was difficult to obtain from
this type of plot. Thus, this writer has more confidence in
the reliability of square root of time Cy, data. Figures A.7
through A.14 show typical square root of time vs. volume
change plots for the triaxial tests.

Revised Soil Profile

Based on the recent soil borings (October 1979) and the
results of the tests run at MIT on the samples taken from
these borings a revised soil profile was constructed for the

prediction. The profile is shown in Figure 4.4.6. Strata
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below 45 meters was inferred from older borings in the same
general area.

The strength profile shown in the figure was selected
for extension and compression unloading. The selection of
this simple profile was influenced by:

(1) available undrained strength data -- although

high Su/d, values determined from triaxial tests
(to be discussed later) indicated some over-
consolidation , useful stress history data 1is
missing and would help put such data in
perspective. Other factors such as high strain
rate used in CIU compression tests and the
unquantified effects of the lime stablization of
soil may have increased the test strengths.
Because of the lack of better information on this
deep deposit, the writer used strength data from
the tests run at MIT, selecting the lower values of
Su/Jue to represent the deposit.

(2) Limitations of the BRACE III computer program --

BRACE III is limited in the number of soil
materials that may be input. The writer elected to
use the maximum number (20) of materials to model
different moduli at the "cost" of assuming a simple
strength profile described by two values of the
ratio Su/Gwo .

The CIU compression tests shown in Figure 4.4.7 are

plotted with the triaxial tests performed at MIT. The wide
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scatter of strength from the Japanese CIU tests can be
attributed to the wide range of confining pressures a series
of samples from a given depth were consolidated to and
sheared at. The high strain rate at which the shear stress
was applied is also a source of error. By increasing the
time to failure as Skempton and Larochelle showed (Figure
2.2.12), the measured strength will decrease. Similarly the
CIU tests, tested at a strain rate of 0.5% per minute most
likely give unrepresentative and higher undrained strengths
because pore pressures are not allowed to equalize. This 1is
substantiated by the controlled stress, stress path tests
performed by the writer which indicated that it took a
significantly longer time (15 + 5 minutes per increment,
increments as shown on Figure 4.4.5) for pore pressures to
equalize during undrained shear.

Consequently the writer applied a correction based on
the Skempton chart. First, strengths for the sample depths
extrapolated from each series of tests were obtained by
estimating the strength associated with the 1insitu
octahedral effective stress.

= Guo *28h0
ocT 2

In other words for example, if two undrained tests of

samples retrieved from a depth of 10 meters were sheared at
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consolidated pressures of 5 TSM and 10 TSM, and Ezu-in the
field was 6.3 TSM the approximated strength was extrapolated

in the following fashion:

Su = Su +
S

€3-§ [
€3

to-5 "

Su. - Su.]
1) [

This strength was then reduced by 20% to correct for the
excessively high strain rate. Table 4.3 summarizes the
corrected CIU strengths as well as the other triaxial test
data from the MIT tests. The agreement between the two 1is
good for the compression tests. The extension tests have
strengths equalling approximately 50% of the strength
measured in the compression tests.

In comparison, undrained triaxial test data on normally
consolidated Kawasaki Clay (P.I. = 40 + 10%) with a slightly
higher P.I. from Ladd et al (1965) show values of su/é’v°
equalling .445 and .225 for compression and extension
respectively.

Although the strength data showing large Su/{y, ratios
indicates that there is probably some overconsolidation from
18 to 28 meters, stress history data is not available to
define the degree of preconsolidation. As previously stated
because of the lack of sufficient data, for the purpose of
this study the strength for the undrained deposit will be
assumed to increase constantly with depth equal to 0.430vo
for compression and 0.22Gyo for extension. These values

agree well with Ladd et al (1965) although they may be
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slightly conservative values in the light of test data
available from 18 to 28 meters.

Contours of Equal Vertical Strain

Based on the available CIU and CAU tests, plots of equal
vertical strain were constructed. Figures 4.4.8a and 4.4.8b
show contours of vertical strain on a p-q plot drawn through
the effective stress paths for the CIU tests. The two
stress path compression tests TC-1 and TC-2 are also plotted
and show reasonably good agreement. For extension unloading
the two stress path tests TE-1 and TE-2 are plotted on
Figure 4.4.8c and estimated contours of equal vertical
strain are averaged through these effective stress paths.
These plots will be used to extrapolate strains for various
loadings at any depth to obtain soil moduli.

4.4.4 Revised BRACE III Analysis for Partially Drained

Conditions

A. General

As previously stated, this prediction will address the
excavation when it has attained a 20 meter depth. One
reason for selecting this depth is illustrated with the help
of Figure 4.4.9. This figure shows a simplified soil
profile and the Nakagawa excavation geometry for the sixth
excavation stage (depth = 19.5 meters). At this depth,
bottom stability due to uplift becomes critical. A simple
computation for the geometry in the figure determines the
critical depth, Z.g for equilibrium of the soil mass against

uplift;
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Z¥r - (2 -20) Wur

Z =
R ?‘T
— 45%1.8 - (45-1-5)x10
1.8
Zw ¥ 21 METERS

At this excavation depth, the effective stress is zero
at 45 meters and the upward force equals the downward force
(i.e., the factor of safety is one).

Consequently this prediction will treat the loads and
deformations to be anticipated for a depth just prior to the
depth where bottom instability is imminent. Two new BRACE
I1I1 runs B and C are made for this prediction. For the
final Run C updated stresses from the previous run are used

to obtain moduli.

B. Computation of Partially Drained Moduli

The partially drained moduli incorporate both undrained

and consolidation strains in the relation:

ATY Evor- &y
. A% L Svettv ATy
E £V ev?.
where:

Ev S ToTAL VERTICAL STRAIN €. .= ToTAL YOLUMETRIC STRAIN

vou

1) Undrained Shear Strains

Using the linearly elastic BRACE III RUN A, the writer
selected approximately 50 elements inside and outside of the
excavation and tabulated the values of total stress change

in terms of p-u, and q for the initial and sixth excavation
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stage. (Table 4.4 shows such tabulated values of stress for
the final BRACE III RUN C). Total stress paths are then
constructed from these values. Using the appropriate plot
of strain contours,(see Figure 4.4.10)the total stress path
(minus the static pore pressure) can be superimposed and the
undrained strains can be scaled off between contours along
the estimated effective stress path.

2) Consolidation Strains Due to Dissipation of Excess Pore

Pressure within the Excavation

Given the final effective stress point established by
the undrained shear, the excess pore pressure ~ U, due to
shear (typically negative in this case) can be obtained by
subtracting the value of (p, - u) for the sixth excavation
stage from the value of p. Refer to Figure 4.4.10.

The average degree of consolidation for this geometry is
estimated using one dimensional consolidation theory. Within
the excavation the impermeable wall is likely to inhibit

lateral drainage. The Terzaghi equation for the

dimensionless time factor Tv is;

T St
v HJZ
For a depth of excavation equal to 20 meters the time
factor within the excavation is computed using:
-3 2
(a) Cy = 3x 10 cm7second
selected as an average value from the stress path

test data

(b) t =.5t ¥ 8 morths computed from
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Figure 4.4.11 to represent an average time for
unloading similar to the procedure used to compute
settlement time for embankment loading (see Lambe &
Whitman p. 414 1969)
(c) HJ = (45-19.5) T2 =12.15 meters
The drainage path length for the consolidating
cohesive layer. This assumes double drainage.
The time factor then equals 0.05 for this stage of
construction for the soil at the bottom of the excavation.
For a linear distribution of excess pore pressure this
will yield an average degree of consolidation of
approximately 25 7 obtained from Figure 4.4.12a. Having
observed the distribution of negative excess pore pressure
within the excavation to be reasonably linear and also
considering the study by Osaimi (1977) which indicates a one
dimensional vertical dissipation of negative excess pore

pressure the writer uses Figures 4.4.12b to approximate the

degree of dissipation for negative excess pore pressure for

any depth or discrete element below the bottom of the

excavation. (Ideally a plot of Z vs. Uz would be derived
and constructed to represent the actual initial distribution
of excess pore pressure.) By multiplying the specific
degree of dissipation Uz times the initial excess pore
pressure one estimates the actual negative excess pressure
dissipated. This value is then tabulated (Table 4.4), later
to be added to the positive excess pore pressure dissipated,

due to surficial or shallow dewatering within the excavation.
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The excess pore pressure due to shallow dewatering can
be analyzed using Figure 4.4.13 for a change in piezometric
level at one drainage boundary only. This case also
experiences double drainage and therefore the time factor
will be the same as previously computed. The dissipated
excess pore pressures are obtained using this figure and are
computed for various depths and elements (Aup).

The summation of Au, + Auy = Au_ gives a net value of
dissipated pore pressure in TSM. Using Figure 4.4.14a
and/or 4.4.14b based on the post-shear consolidation from
the series of stress path tests, volumetric and vertical
strain can be extrapolated for a given depth. Since stress
path tests with dissipation of negative excess pore pressure
were not run the plot in Figure 4.4.14a shows inferred lines
for this case. Since this is an unloading problem, the
strains due to dissipation of negative excess pore pressure
are not likely to be in the zone of primary consolidation
and therefore are likely to have a similar relationship to
changes in pore pressure (but opposite in sign) as the early
recompression stage of the stress path tests.

(3) Consolidation Due to Pore Pressure Dissipation Behind

the Excavation

The steel pile wall is assumed to be impermeable. The
steel interlocks between the piles have been grouted to

prevent leakage.
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Below the lower silt layer the total head is assumed to
remain constant and this stratum is assumed to have free
access to a distant source of groundwater.

Given these assumptions, dewatering due to shallow
pumping within the excavation will not affect pore pressures
behind the wall.

The stress path test TC-1 indicates that the upper
organic silt has a coefficient of consolidation of

. -5 2 . .
approximately 7 x 10 cm /sec., Computing a time factor for
this doubly drained stratum for the time associated with the

20 meter deep excavation we get:
lv = .016

and from Figure 4.4.12

Uy 12
AVG

similarly for the lower clayey silt we compute

T, ¥.03

U¥2zo0%
AVG

Continuing with the use of one dimensional theory as was
used for within the cut, strains are estimated for consolida-
tion and added to the undrained strains obtained from the
contours of equal strain plots. See Table 4.4,

(4) Contours of Moduli

Contours of moduli can then be constructed across the

finite element grid using the tabulated values for the



101
discrete elements analyzed. Figure 4.4.15 shows the
contours of moduli in tons per square meter. Stress strain
moduli for the granular layers above and below the cohesive
soils were estimated using empirical formulas based on blow
count (Mitchell and Gardner, 1975) and compared with ranges
of modulus for granular soils in the literature. The
modulus in the layered lower sand and sandy clay stratum was
reduced from 1650 outside of the excavation to 1000 within
the excavation to recognize the fact that the shear stress
level in this interior zone is higher and therefore the
secant modulus will be lower.

The values of modulus from this plot were substituted
into the BRACE III computer program by initially assuming 14
soil materials (moduli) and assigning the appropriate values
of moduli to the finite elements. Total stresses from this
computer Run B were used to improve the solution by
determining new or updated moduli as shown in Figure
4.4.16 The final Run C was made using Fig. 4.4.16 and 20
materials. The current version of BRACE III will handle a
maximum of 20 soil materials. Ideally zones of soil with
similar modulus and Poisson's ratio would be contoured,
since these values can also be estimated as shown in Table
4.4 for the final run. Unfortunately, the current version
of BRACE III is as previously stated, limited to how many
materials may be input.

Ultimately the writer observed that in general

Poisson's ratio will follow the trends outlined below:
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a) Zones Inside the Excavation
1) where dewatering prevails and the net excess
pore pressure is positive, dissipation will
tend to increase Poisson's ratio
2) where the net excess pore pressure is negative,
dissipation will tend to decrease Poisson's
ratio
b) Zones Outside of the Excavation
1) where the net excess pore pressure 1is positive
dissipation will tend to reduce Poisson's ratio
2) where the net excess pore pressure is negative,
dissipation will tend to increase Poisson's
ratio
Ultimately an average value of 0.49 was selected for the
cohesive soils, this value at the upper range of typical
values (0.2 - 0.5) usually used in finite element analysis
modeling of soil. 1In general the undrained strains in this
case tended to dominate the deformations.
(5) Ko
Ko = 0.5 for all soils was selected based on review of
stress path Ko consolidation data on these soils, the l-sin
Q equation and empirical correlations of Ko versus P.I.

(6) Anisotropy

To account for anisotropic shear strength, The Davis and
Christian (1971) yield criterion was used in BRACE III.

Also, any yielded Elements are assigned a modulus equalling
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1 to 10% of the unyielded modulus, depending on the initial

modulus value.

C. Predicted ,Loads Deformations and Stability

(1)

General

From the final BRACE III run,

contours of

deformation and stress are shown in Figures 4.4.17

through 4.4.23. Figure 4.4.23 1is

undissipated excess pore pressure

a contour plot of

and is 1intended

to show the approximate trends prior to

consolidation.

Related aspects of techniques
II1 computer program to model the
interaction are discussed in this

Deformations

Figure 4.4.17 illustrates the

after the sixth excavation stage.

used in the BRACE
s0l1l structure

section.

deformed geometry

Inward movement

of the steel pile wall towards the excavation range

from 12 centimeters at the top of

the wall to a

maximum of nearly 44 centimeters at a 27 meter

depth. Bottom heave varies from 40 centimeters

near the wall to 76 centimeters at the center

line. Figures 4.4.18 and 4.4.19 show selected

lines of lateral displacement and

respectively.

bottom heave,

Maximum ground surface settlement behind the

excavation is 20 centimeters occurring 25 meters

behind the excavation. Figure 4.4.24 compares
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ground surface settlement with Peck's chart. Note
the uncharacteristic heaving of the excavation
face. Ground surface settlement begins to occur at
a distance of 3 meters behind the excavation. 1In
the 3 meter wide zone between the wall and this
point a very small net upward movement occurs. In
the writer's opinion, since this is contrary to the
downward movements we would normally associate with
past experience, this lifting of the excavation
face is due in part to the way which the BRACE III
computer program models the soil-structure
interaction. When excavation release is simulated
the upward forces applied to the nodes on the newly
exposed surfaces of the excavation include an
upward force applied to the nodes shared by
sheeting elements. Consequently, as the bottom of
the excavation heaves, the sheeting may also heave
slightly.

This behavior is enforced by the technique
intended to allow the soil to slip behind the
wall. This technique involves setting the axial
stiffness of the sheeting equal to either the soil
stiffness, or zero above a selected level (usually
above the depth of excavation). BRACE III runs in
this study set the axial stiffness of the sheeting

equal to the soil stiffness.
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Simulation of strut installation is made by
fixing the node at which the strut is applied in
the horizontal direction. A BRACE III1 computer
study by the writer comparing this method with
fixing the node in both vertical and horizontal
directions indicated that more settlement occurs
directly behind the excavation face with the latter
method. Although this technique was not imple-
mented in the current BRACE III analyses, fixing
the node in both directions may be a more realistic
approach. Therein is evidence of the difficulty 1in
modeling the soil structure interaction.

BRACE III1 Input options used for strut
installation in the final Run C included:

a) no prestressing of struts

b) zero crushing of shims (or timber wedges)

as a percentage of movement already occurred at

strut level

Although no prestressing of the struts was
employed for the initial linearly elastic Run A and
Run B, shim crushing was set to 50%. The first
revised Run B (the first of the two runs using the
partially drained modulus) showed large inward
sheeting movements (up to 1 meter at a 20 meter
depth) magnified by the crushing of the
shims. Acknowledging this error, the final BRACE

III Run C assumed no crushing of shims. Unfortu-
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nately, the writer does not have knowledge of the
actual prestressing and shimming techniques and
details for this excavation.

Movements above the excavation level are also
as Jaworski (1973) states, a function of bracing
details. The selection of the related input
parameters are usually drawn from the engineer's
experience or knowledge of actual performance in
the field.

Loads

Figure 4.4.25 shows the strut loads and total
lateral stresses behind the wall. The negative
values in several struts can be attributed at least
in part to the lack of prestressing in the struts.
Furthermore, since for early stages of excavation
the sheeting typically behaves as a cantilever
followed by a more convex distribution of
displacement, the tendency for the top of the
sheeting is to bend back away from the excavation
during later excavation stages. This would give
negative load to a non-prestressed upper strut, as
indeed the upper two strut loads illustrate.
Consequently the load is shifted to the lower
struts. The unusual negative load in one of the
lower level struts is probably a result of several
factors. While lack of prestressing may contribute

to this result, Jaworski notes that four to five
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sheeting elements between strut levels may be
required to accurately model the sheeting
behavior. Otherwise,uncharacteristic sheeting
forces may be transferred to the strut. Only two
to three sheeting elements were used between strut

levels in this study.

4. Stability

Stability for an excavation of these dimensions

's bottom heave

1s typically analyzed using Terzaghi
analysis for shallow excavation (H/B< 1) as shown
in Figure 4.4.26. Bjerrum and Eide would be used
for cases where H/B > 1. For comparison recall the
basal stability analysis made in section 4.4.4A
indicating instability at an excavation level of 21
meters. Also note that for both analyses any
beneficial, stabilizing effects of the concrete
support piers have been neglected. The plan area
of these columns 1is approximately 13% of the plan
view area of the bottom of the excavation.

For the Nakagawa excavation, the average
strength along the assumed failure surface can be
estimated by:

(1) selecting several average elements along

the assumed failure surface
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(2) constructing stress paths including the

effects of pore pressure dissipation
(3) selecting a strength for each element based
on an assumed failure loading path starting
from the final effective stress point
determined in (2)
(4) average the strengths and input the Terzaghi
equation for Factor of Safety shown in
Figure 4.4.26
The extended time for which this excavation
remains open has resulted in a dissipation of net
negative excess pore pressure for elements outside
of the excavation and for the majority of the
elements within the cut. Consequently, the soil
strength decreases with time as the soil swells and
the water content increases. Hence in the
stability analysis the actual or "partially
drained" value of ¢ is input into the equation
below. This method 1s used instead of the commonly
used ”§B= 0 concept where Su, the undrained
strength 1is substituted for c3

Factor of

_ 1 e Ne
Safety H F-m

Although the ”q5= 0" approach is a convenient

simplification, if it is used for this case the
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Factor of Safety may be unconservative.

Figure 4.4.27 shows the excavation geometry at the 20
meter stage and several "average'" elements. Several of the
stress paths for these elements have been plotted in Figure
4.4.28 and an average strength selected from strengths
estimated from the stress paths 1s 8 TSM (refer to Table
4.5).

The resulting factor of safety using this method is 1.6,
Using the same strength for the final excavation depth of
29.5 meters, the computed factor of safety is 1.1. Although
some error 1s involved in making this extrapolation because
the stress paths for the "average'" elements will be
different as well as the strengths. In other words,
strength does not equal a constant (as the Terzaghi solution
assumes) and the factor of safety for the full 29.5 meter

depth 1s probably overestimated.
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Triaxial

Test TC-1 TC=2 TE=-1 TE=~?2
Depth m 10 19 gL 28
Fitting
Method log t v i log t /Tt log ¢ /T log t /T

0.27 0.30 7.1 1.1 Lb.s | o.74 0.26 | 0.60
Pre-Shear 0.03 | 0.12 3.5 2.0 2.1 | 0.65 0.22 | 0.33
1.4 5.0 0.26 0.85 0.26 0.72
1.15
33
Average 0.15 | 0.21 | 3.0 2.7 2.3 1.3 0.25 0.55
1.3
Post-Shear 0.08 1.8 L.6 3.1.
0.06 5.0 20 0.60
2.8 O.BO
Average 0.07 3.4 2.7 1.3

COEFFICIENT OF CONSOLIDATION CM>/SEC x 10 =2

SUMMARY OF COEFFICIENT OF CONSOLIDATION
DATA FROM STRESS PATH TESTS
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.0 GENERAL

Review of case history braced excavations shows that the
role of time is important. Dissipation of excess pore
pressures, the major time effect influencing the soil
response, will often lead to a decrease in factor of safety
with time. The writer concludes that an excavation warrants
the best technology available because of this time dependent
behavior, for the safety of the workers and the surrounding
environment (general public, existing structures, etc.).
Similarly, deformations are also a function of pore pressure
dissipation. The magnitude of movements and deformations
which can be tolerated and anticipated are a major concern
in braced excavation, particularly in urban areas. This
thesis presents the formulation and application of a method
intended to better predict such movements by including the
effects of pore pressure dissipation. The application of
the method shows that one can combine the Stress Path Method
with the Finite Element Method to obtain a powerful approach
including the effects of non-linear soil behavior and
consolidation.

The assumption that undrained conditions prevail in

braced excavation in cohesive so0il need not be merely
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accepted for lack of another method. The proposed method to
model partially drained conditions can be applied. Although
it is illustrated for a major excavation, the method can
also be applied to less complicated problems on a simpler
scale to estimate stability and deformation. One does not
need a large finite element program to apply The Stress Path
Method. However for complex geometries such as the Nakagawa
Treatment Plant Excavation, the finite element program BRACE
IIT 1s a powerful tool, and the use of it is justified.

5.1 LIMITATIONS

One limitation of the proposed method as applied in
chapter four is that there 1s a significant amount of hand
work 1involved. However, compared to the alternative of
additional tests and testing time, the amount of handwork is
not unreasonable. In this case study only one stage of
construction performance was predicted. Figure 5.1 helps to
illustrate that for one to predict performance of other
excavation stages the entire procedure must be iterated for
each stage. A better approach to model all stages would be
to execute the hand work for one or two excavation stages
and then fit a polynomial curve or hyperbolic equation
through the stress strain data. An initial modulus for the
earlier stages can be obtained from the undrained stress
strain test data. Kondner (1963), and Duncan and Chang
(1970) present and discuss utilization of the hyperbolic

model (refer to Figure 5.2) where;

((S; - Gg‘) = 8/ [ El: + € R¢ ] s R4=(¢-635+/(¢.-G3)u7

(oo -0
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The current version of BRACE III however, does not have
this capability to model such nonlinear stress strain
behavior, although the program could easily be modified.

As a practical matter one should be aware of several

limitations when using the proposed method.

(1) Large finite element computer programs such as
BRACE 111 require experience for proper useage and
effectiveness. It can also be expensive to run the
program and analyze the results.

(2) Stress path tests are both expensive and difficult
to run, although several carefully executed stress
path tests may be of significantly more value than
a larger number of more common laboratory tests
(e.g. UU Tests). Well known factors such as sample
disturbance can significantly influence laboratory
test results.

(3) Program modifications to make the proposed method
and BRACE 1II more compatible are needed (i.e.,
modify and dimension the program to handle input of
many varied soil properties)

5.3 SUGGESTIONS FOR FURTHER RESEARCH

Some suggestions by the writer for further research and
work 1in this area of interest include:
(1) Additional studies of the type made by Clough and
Osaimi, applied to actual excavations, i.e.,
predicted vs. actual performance (e.g.,

deformations), Such study for a variety of soil



(2)

(3)
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conditions would help evaluate the applicability of
the sophisticated numerical technique, and
hopefully broaden our understanding of the role of
time in braced excavation.

Evaluation and updating of the prediction in this
paper, and other predictions using the proposed
method by comparison with actual field results.
For the Nakagawa site, additional testing (i.e.
oedometer tests) are needed because of the limited
test data available to date. From additional test
data and field measurements the BRACE III program
input can be revised and the prediction updated.
Improvement of the soil structure interaction
modeling 1n the BRACE II1 computer program. There
is an inherent strain incompatability between soil
and sheeting elements (Jaworski 1973).
Displacement compatability 1s not maintained along
inter-element boundaries between the one
dimensional sheeting elements and the two
dimensional elements of the soil continuum. The
wall elements which have three degrees of freedom
per node assume curved deformed positions. Soil
elements have only two degrees of freedom and
maintain straight boundaries in the deformed

position.
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(4) Develop Brace III program capability to model
nonlinear stress strain behavior, perhaps by
employing a subroutine which uses a hyperbolic
relationship as proposed by Kondner (1963).

5.4 CONCLUSIONS

The objective of this thesis was to formulate and
apply a method which includes the effects of pore pressure
change with time to predict deformation in an excavation.
This thesis shows that one can combine the Stress Path
Method to obtain soil parameters with the Finite Element
Method to perform analysis in a way that includes the
effect of time on deformation of a braced excavation. The
approach is outlined in Chapter 3 and applied in Chapter 4.

Advantages of the approach outlined in Chapter 3
are:

(1) Caomplex nonlinear time analysis is avoided.

(2) The fundamentals of the field problem are examined
by the engineer as he selects his input so that he
retains a feel for the problem.

(3) A few tests can be used and extrapolated to cover
an entire geometry.

The proposed approach is an iterative procedure. The
application to the example in Chapter 4 suggests that two
to three iterations give a reasonable solution, especially
for the overall deformations.

For the example case consisting of an excavation in a
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clayey silt, the effect of time on deformations within
the excavation is significant although not major. Heave
and inward wall movements within the excavation appear to
increase by approximately 10 to 20 percent with consolida-
tion.

Within the top 8 meters (depth of 20 to 28 meters) of
the bottom of the excavation at the 20 meter excavation
depth, the negative excess pore pressures due to unloading
and the positive excess pore pressures due to shallow or
surficial dewatering, substantially offset each other.
This results in a relatively small net excess pore pressure
for this case. 1In other words, because of the dewatering
the dissipation of large negative excess pore pressure
and resulting heave is minimized.

For this particular soil the negative excess pore
pressures due to excavation are offset by the excess pore
pressures generated by surficial dewatering. Consequently,
the effects of time on predicted movement are relatively
small in this case. With other soils and other conditions
of flow, the effect of time on deformations could be con-
siderable.

In addition, for this particular case the example
shows that the undrained heave is large when compared to
the consolidation movements. For other situations invol-
ving higher factors of safety against bottom heave the
contribution of time to total deformation will be more

significant.
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Again, a practical advantage of the proposed method
is that such fundamental behavior can be observed and
quantified by the engineer during his analysis of the

field situation.
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LIST OF SYMBOLS

Intercept of Kf line

Cohesion intercept based on effective stress

Anisotropically consolidated triaxial test

sheared under undrained conditions

Constant rate of strain consolidation test

Center for Advanced Engineering Study

Isotropically consolidated triaxial test
sheared under conditions of no drainage

Coefficient of consolidation
Initial tangent modulus

Effective stress path

Height of cut

Elevation head

Pressure head

Total head

Length of drainage path

Active earth pressure coefficient

At rest earth pressure coefficient,
ground surface

Overconsolidation ratio
Plasticity index

Sv *SN, G.“I*EH

2

-\ zz'/z
[2 )+ ?vu]

Undrained shear strength of soil

Total stress path

horizontal

Total stress path minus initial pore pressure
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Pore pressure
Steady state pore pressure
Excess pore pressure
Excess pore pressure due to excavation
Excess pore pressure due to dewatering
Unconsolidated undrained triaxial test
Water content, natural
Liquid limit
Plastic limit
Depth
Depth to water table
Consolidation ratio
Average degree of consolidation
Slope of the Kf line
Unit weight
Total unit weight of soil
Unit weight of water
Strain

Young's modulus

Total vertical stress
Total horizontal stress
Octahedral stress
Vertical effective stress

Horizontal effective stress

unloading

Initial total and effective stresses, vertical

Initial total and effective horizontal

stresses

Friction angle, friction angle based on effective

stress
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APPENDIX A
GRAINSIZE PLOTS AND SQUARE ROOT OF TIME

CONSOLIDATION PLOTS - NAKAGAWA SOIL SPECIMENS
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APPENDIX B

VERTICAL EFFECTIVE STRESS VERSUS DEPTH - NAKAGAWA



183

N
AN
0 20 20 40
T TSM
NAKAGAWA

VERTICAL EFFECTIVE STRESS VS. DEPTH

F1G.B.l



