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ABSTRACT

We develop the theory of duality for projective varieties

defined over fields of arbitrary characteristic. A central

concept in this work is that of reflexivity and our main tool

is the rank of certain local Hessians which provides a numer-

ical criterion for reflexivity. Many of our results are

necessary and sufficient conditions for reflexivity. We also

analyze the reflexivity of a general hypersurface section of

a given variety. Toward the classification of non-reflexive

varieties, we determine all smooth in codimension one hyper-

surfaces with rank zero local Hessians and we solve the

classification problem for a special class of these varieties.
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1. INTRODUCTION

The theory of the duality of projective varieties is a subject

whose time has come again. It began in classical antiquity as the

theory of polar reciprocation, in which a point and a line in the same

plane correspond through the mediation of a conic, and it progressed for

centuries as part of the theory of conics. With the intense development

of geometry that began around the turn.of the 19th century, the theory

changed in two important ways: the mediation of the conic was

eliminated, and the theory became a central part of algebraic geometry.

It remained central throughout the 19th century, but then, for about

fifty years, as interest in the intrinsic properties of algebraic

varieties grew, interest in duality waned. In the mid 1950's the

current renaissance began, and with every passing year there have been

concurrently greater awareness, greater development, and greater

application of the theory.

The current revival of activity in the theory of the duality, and

in the larger theory of the conormal variety, is due mainly to their

importance in four areas: (1) Lefschetz theory -- whose needs inspired

the contributions of Wallace [1956] and [1958], Moishezon [1967] and

Katz [1973]; (2) the theory of the ranks and the classification of

varieties embedded in a projective space -- some recent contributions

here are found in Mumford [1978], Piene [1978.], Kleiman [1981], Lascoux

[1981], Urabe [1981], and Holme [1978], Griffiths-Harris [1979],

Fujita-Roberts [1981], Zak [1983], Pardini [1983], Lanteri [1984],

Lanteri-Struppa [1984]; (3) the theory of singularities,

stratifications, and constructible functions -- this area is nicely

.surveyed in Merle [1982], Teissier [1983]; and finally, (4) the needs

of enumerative geometry, which inspired the'development of the subject

in Hefez-Sacchiero [1983], in Kleiman [1984], and in the present work.



Consider a reduced embedded projective variety defined over an

algebraically closed field of arbitrary characteristic. Its conormal

variety may be defined as the closure in the graph of the point-

hyperplane incidence correspondence of the set of all point-hyperplane

pairs such that the point is a simple point of the variety and the

hyperplane contains the tangent space at that point. The dual variety

is defined as the image in the dual projective space of the conormal

variety. The original variety is called reflexive if its conormal

variety is equal to that of the dual variety. In other words,

reflexivity means that a hyperplane H is tangent at a point P if and

only if in the dual projective space the hyperplane corresponding to P

is tangent to the dual variety at the point corresponding to H. Lastly,

the original variety will be called ordinary if it is reflexive and if

its dual is a hypersurface. All these notions are defined more formally

and in greater generality in Section 2.

Reflexivity is a stronger and more useful condition on the variety

than the condition that it be equal to its dual's dual. Reflexivity is

a non-trivial condition. For instance, in characteristic p > 0, the

smooth curve with equation y = xp+1 + xP is not reflexive, but it is

equal to its dual's dual; see Wallace [1956], last section. Reflexivity

is the rule. Indeed, there are many theorems giving frequently

satisfied conditions that imply reflexivity. For example, the Segre-

Wallace criterion, recalled in Discussion (2.4,iv), asserts that a

variety is reflexive when the characteristic is zero and the variety is

irreducible and whenever else the map from the conormal variety to the

dual variety is separable (that is, smooth on a dense open subset of

the conormal variety). Several theorems giving conditions that imply

reflexivity are main results in the present work, and they will be

introduced below.

Two of the main results of the present work were announced

previously. The first is Theorem (4.13), and it concerns the ranks of

an irreducible embedded projective variety. The ranks are fundamental



8

extrinsic invariants. They appear, notably, in the contact formula,

which expresses the number of n-folds in an r-parameter family that

touch r given varieties in general position just in terms of the ranks

of the given varieties and the characteristic numbers of the family;

see Fulton-Kleiman-MacPherson [1983]. Now, Theorem (4.13) asserts

that, if the variety is irreducible, then the ith rank is nonzero

precisely when i lies in a certain interval. This result is relatively

easy to prove, and it is surprising perhaps that it was not found

before. The proof proceeds by assuming the result for a hyperplane

section by induction on the dimension of the variety.

The second result that was previously announced is now part of

Theorem (5.9). This result was used in an essential way in Ful-ton-

Kleiman-MacPherson [1983]; namely, it was used to show that, in the

enumeration of the contact formula, bitangencies never occur if the

characteristic is 0 nor, more generally, if the varieties in question

are reflexive and the characteristic is different from 2. The result

itself asserts that a general hyperplane section of a reflexive variety

(of dimension at least 1) is again reflexive, unless the characteristic

is 2 and some component of the dual variety is a hypersurface. In

addition, Theorem (5.9) asserts a converse; namely, in any .

characteristic, the original variety is reflexive if the hyperplane

section is reflexive and if no component of the dual variety is a

hypersurface.

Theorem (5.9), as stated so far, is sharp. Indeed, in any

characteristic p > 0, there.is a variety such that the dual variety is

a hypersurface and the section is ordinary yet the variety is not

ordinary; see Remark (5.1l,i). Moreover, if the characteristic is 2

and if the variety is ordinary, then necessarily the hyperplane section

is not reflexive, although the section's dual-is necessarily a

hypersurface; see Theorem (5.9,ii). Nevertheless, something more can

be said, and this is done in Section 5 through the introduction and

study of a new notion, semi-ordinariness. In particular, Theorem

(5.9,ii) asserts in addition that every component of the section is
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semi-ordinary, and Theorem (5.9,iv) asserts that, if every component

of the variety is semi-ordinary, then the section is ordinary. Hence,

as Corollary (5.10) states, in any characteristic, a general hyperplane

section of an ordinary variety (of dimension at least 2) is again

ordinary.

It is furthermore reasonable t.o conjecture that, given an ordinary

variety in characteristic 2, a general hyperplane section's general

tangent hyperplane is tangent at a unique point of contact, as is the

case in all other characteristics. This conjecture implies that, in

characteristic 2 as well, there are no bitangencies in the enumerati.on

of the contact formula; see Fulton-Kleiman-MacPherson [1983].

Theorem (4.10), a third main result, gives two properties that

together characterize ordinariness. The first is a well-known property

of an ordinary variety X (cf. Wallace [1958], Lemma d, p. 5); namely,

the dual of the section of any component of X by a general hyperplane

M is equal to the cone of tangent lines to the dual of that component

drawn from the point representing M. The second property of X is that

the tangent hyperplane at a general point of the dual of X is not a

component of the dual of the section of X by its tangent hyperplane

represented by that point. This property is established in

characteristic different from 2 on the basis of Theorem (5.9,i); the

proof will work without change in characteristic 2 if the above

conjecture is established. Conversely, it is proved that, in any

characteristic, these two properties imply ordinariness. The first

property alone implies ordinariness if the characteristic is 0 but it

does not do so more generally; see Remark (4.11).

Theorem (5.9) is supplemented by Theorem (5.6), a fourth main

result. It asserts that, if the characteristic is different from 2 or

if each component of the variety is of odd dimension, then the section

by a general hypersurface of degree at least 2 is ordinary. This

theorem too is sharp; namely, if the characteristic is 2 and the

dimension of some component is even, then necessarily the section is

not ordinary; see Corollary (3.4). In fact, the section's dual is
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still a hypersurface; this fact was proved by Ein ([1984], II, Theorem

(1.3)) in answer to a question posed by the present authors before they

had proved Theorem (5.6). In Ein's proof the characteristic and the

parity of the dimensions never enter the discussion. On the other hand,

the proof of Theorem (5.6) is logically independent of Ein's work.

Theorem (3.5) is a fifth main result. Already in the special case

of a plane curve, it appears to be new. In this case, the theorem

asserts that, if the curve is not reflexive, then at a general point

the order of contact of the tangent line is equal to the inseparable

degree of the function field of the curve over that of its dual curve,

and conversely. In the general case, it is necessary to assume that

the dimension of the original irreducible variety X and the dimension

of its dual variety sum to the dimension of the ambient projective

space; in other words, each irreducible component V of the locus of

points of contact of a general tangent hyperplane H is a component of

the intersection of H and X. The reasonableness of this hypothesis is

discussed in Remark (3.6). Now, Theorem (3.5) asserts that, if X is

not reflexive, then the multiplicity of appearance of V in the

intersection is equal to the inseparable degree of the function field

of the conormal variety over that of the dual variety, and conversely.

On the other hand, the multiplicity of appearance of V is equal to 2 if

X is reflexive; this conclusion follows from Theorem (3.2) and

Proposition (2.2,ii).

Section 4 contains some minor results relating the size and shape

of the dual of a variety to that of a hypersurface section. These

results and their proofs are for the most part not really new, but they

are difficult to reference. At any rate, they are presented

systematically, and they are needed in the proofs of some of the main

theorems.

To prove the main results, two principal methods are used. One of

these is a method of specialization, which is new in the theory of the

duality. For example, Lemma (4.3) implies that there always exists a

hyperplane that is tangent to the section of a given variety by a

............. I'll, I'll ----------- ..........
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general hypersurface M but that is nowhere tangent to the variety.

This assertion is obvious in the case that M is the union of a general

plane and a general hypersurface of degree one less than that of M; in

the proof, M is degenerated into such a union. Similarly, in the

proofs of the parts of Theorems (5.6-) and (5.9) that deal with the

reflexivity of the section, M is degenerated into a convenient special

hypersurface. In the same way, it is possible to generalize these

theorems to the case so that M is replaced by a general complete

intersection. To justify this method of specialization, the basic

theory of Sections 2 and 3 is set over an arbitrary noetherian base

scheme. As it happens, it takes no additional effort to develop the

theory in this generality,

The second principal method of proof is a refinement of the mode

of employment of the Hessian used by Wallace [1956] and by Katz [1973],

who pioneered the theory of the duality in arbitrary characteristic.

The basic properties of the Hessian are given in Propositions (2.2) and

(2.6) and Theorem (3.2). These properties include bounds on the size

of the Hessian, the openness of the condition that the bounds are

achieved, and the connection with reflexivity and ordinariness. The

special case of Theorem (3.2) in which the base is a field and in which

the variety is a hypersurface was discovered by Wallace, that in which

the dual variety is a hypersurface was discovered by Katz. Theorem

(3.2) moreover relates the reflexivity (resp. ordinariness) of the

general member of a family to that of a single member. The additional

key to the task of relating the reflexivity (resp. ordinariness) of a

variety to that of a general hypersurface section is Lemma (5.2), which

compares the two corresponding Hessian ranks.

The first five sections are fruits of joint work with Steven

Kleiman.

Section 6 contains a study of reflexiveness, ordinariness and

quasi-ordinariness for Segre and Grassmann varieties. Our analysis for

Segre varieties is complete and the results are summarized in Theorem

(6.3). On the other hand, our analysis for Grassmannians is rather
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incomplete because of the difficulty we found in computing the rank of

certain matrices. We have answers in the case of Grassmannians of d

planes in IP when d and n are odd, namely G is ordinary, and whend,n
d=l and n is even, in this case we find that G is always reflexive

l,n
and its dual is of codimension 3.

Section 7 deals with the hypersurfaces which are completely opposite

to reflexive varieties, that is, hypersurfaces with rank zero local

Hessians. The main result here is Theorem (7.4) which allows us to

describe through Corollary (7.7) the hypersurfaces in characteristic

p > 2, which are smooth in codimension 1 and with rank zero local

Hessians. Namely they are of the form

Y P (Yp, .. ,yP )+ ... + Y P (Y, . Y0 )(1.1)00 0 n+l n+l n+lo n+l

where q is a positive power of p and the L.'s are linear polynomials.

The central result is Theorem (8.8) which describes the m-Jacobian

schemes of this family. There is also in this section a new proof for

an old theorem of H. Hasse, Theorem (8.10), which is fundamental for the

next section.

Section 9 has as main result Corollary (9.11) which asserts that

for fixed q, all non-singular hypersurfaces of type (1.1) are projective-

ly equivalent.

The results stated in Theorem (7.4), in its corollaries, and in

Corollary (9.11) in the case of plane curves and for q = p, were first

proved by R. Pardini [1983].

Finally, in section 10, we illustrate our previous results with

projective curves. The new result we have is Proposition (10.7) which

describes the tangent cone at a point of the dual of a projective curve.
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2. BASIC THEORY

(2.1) Setup. Fix a noetherian ground scheme S.

Let A be an S-scheme of finite type, k a field, and x a k-point of

A. For each subscheme C of A containing x, set

h(C/A/S;x) = dim A/S - dimk C1 x). (2.1.1)

Let B be a subscheme of A containing x. Assume that B is defined

in a neighborhood of x by a single equation,

B : f= 0 about x.

Assume that A/S is smooth at x of relative dimension n. Then

Sing.(B)

will denote the subscheme of B defined in a neighborhood of x.by the

(n-l)th Fitting ideal of G1/S

(2.2) Prorosition. Let D ,'..., D be a basis of the first partial

derivative operators on 0 Then
A~x

(i)- Sing(B) :f, D f, ... , Dnf = 0 in A at x.

(ii) h(Sing(B)/A/S;x) = rank[(D.D.f) (x)].
J i

Proof. In view of the conormal-cotangent sheaf sequence of B in A, it

is clear that Sing(B) is defined in A at x by the vanishing of f and

of its partial derivatives D f. The corresponding Jacobian matrix is

then

[(D.f)(x); (D.D.f)(x)]
i 3 i

Its rank is clearly equal to h(Sing(B)/A/S;x) in view of the conormal

sheaf-cotangent sheaf sequence of Sing(B) in A. The first column of

this matrix vanishes. Hence the assertion holds.
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(2.3) Setup continued. Let E be a locally free sheaf on S of constant

rank N+1. Denote by E* the dual sheaf, and set

P = IP(E) and P* = P(E*).

Let X be a closed subscheme of P. Denote by

Xsm sm

the S-smooth locus. In Kleiman [1984], it was assumed that Xsm is

dense in X: in the present work, it has turned out to be more convenient

to proceed without this hypothesis.

Let C(X/P) or, for short, CX denote the conormal scheme. It i's

defined in terms of the normal sheaf N(X sm/P) as the closure in P x P*

of

CXsm P(N(Xsm/P)(-l))

Let (X/P)' or X' denote the scheme-theoretic image of CX in P*: it is

the smallest closed subscheme of P* factoring the projection. It is

called the.dual (or reciprocal) of X. Let

q :CX + P and q' CX+ P*

denote the projections. The same symbols q and q' will also be used to

denote the corresponding maps

q : CX -+ X and q' CX -+ X

when it is convenient and there is no possibility of confusion.

The conormal scheme CX' of X' may be viewed as another closed

subscheme of P x P*. If

CX = CX'
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then X will be called reflexive in P. If X is reflexive and if X' is a

hypersurface, then X will be called ordinary in P.

Let T be an S-scheme. Let H be a hyperplane of P Then H

corresponds to a T-point H' of P*, and this (standard) correspondence

is bijective. Moreover, if H' is viewed as a subscheme of P* , rather

than as a map of T into P*, then H' is just the dual of H. Now, the

scheme-theoretic fiber of CX over H' is embedded by the orojection qT
into X, because CX lies in X x P*. The corresponding subscheme of XT

'-1
H T H'

will be called the H-contact locus.

(2.4) Discussion. (i) Clearly CXsm is the full inverse image ql1Xsm

in CX; in particular, it is a dense open subscheme. Clearly CXsm is

S-smooth of constant relative dimension N-1. Clearly, if X is reduced

(resp. irreducible), then CX and X' are too.

(ii) Let T -+ S be an arbitrary base change. Let W be an irreducible

component of XYT such that

W n (Xsm )T 1 0

It is easy to prove, see Kleiman [1984], (3.9,ii), that then CW is an

irreducible *component of (C.X),T; whence, W' c (XT'.

Suppose that S is reduced. Then, by Kleiman [1984], (3.10)

(adjusted to do away with the hypothesis that Xsm is dense and

dominates S), there exists a topologically dense open subscheme S0 of

S such that, if the image of T lies in S0, then

C(XT) = (CX),T and (XT)' = (X')T

(Of course, if Xsm does not dominate S, then these schemes may be

empty.) In particular, if S = Spec(k) and k is a field, then the

formation of CX and that of X' commute with any field extension K/k;
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whence, then X is reflexive (resp. ordinary) if and only if XK is so.

(iii) Let X , X2, be the irreducible generically smooth components

of X. It is clear that X is reflexive if and only if (a) each X. is
I

reflexive and (b) X.! c X! implies that i = j. Note that (b) is
1 J -

equivalent to (b') every comoonent of CX dominates a comoonent of X'.

(iv) The Segre-Wallace criterion asserts that X is reflexive if and

only if the projection q' : CX -+ X' is smooth on a dense open subscheme

of CX. In (4.4) of Kleiman [1984], the criterion is established under

the hypothesis that X s is dense in XI; however, this hypothesis is

automatically satisfied if q' is smooth on a dense open subscheme of

CX because CXsm is a dense open subscheme that is S-smooth.

(v) The following statements are equivalent:

(a) X is ordinary.

(b) Each generically smooth component of X is ordinary.

(c) The projection q' : CX -+ X' is birational.

(d) q' is etale on a dense open subscheme of CX'.

Indeed, (a) and (b) are equivalent by (iii), because (iii,b)

obviously holds when the X.. are ordinary. Now, (a) implies (c) because

the normal sheaf of X'sm in P* is invertible. Trivially, (c) implies

(d). Finally, (d) implies (a) by the Segre-Wallace criterion (iv).

(2.5) Lemma. Let T be an S-scheme, and H a hyperplane of P . Then

XH n (Xsm) = Sing((Xsm) n H) (2.5.1)

as schemes, where the scheme structure on the right is defined at a

point x by the (dim X/S - 1)-th Fitting ideal of the sheaf of

differentials.

Proof. It suffices to prove that

CX sm = Sing(((Xsm x P*) n I)/P*) (2.5.2)
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where I is the universal hyperplane on P x P* (that is, the graph of the

point-hyperplane incidence correspondence), because (2.5.1) may be

obtained from (2.5.2) by taking the fiber of each side over the T-point

H' of P* representing H.

To prove (2.5.2), it suffices to work locally on S; so we may
N

assume that S is affine and that P = IP . Let t0 ' ''' tN be a system

of homogeneous coordinates for P, and let t*, ... , t* be the dual

system for P*. Then I is given by

I :t t + ... + tNt* 0 . (2.5.3)

To prove (2.5.2), it suffices to show that each point x of Xsm has

a neighborhood in X over which (2.5.2) holds. Set

m = N - dim (X/S)

and let F1 , . FM be homogeneous polynomials in t 0, ' ' tN that

define X in a neighborhood U of x in P.

Let D ... , D denote the partial-derivative operators with

respect to t0, ... , tN. Consider the (m+l)x(m+l)-minors of the matrix

t* . . .t*
0 N

D 0F . D .N F 1

-. DO m DN Fm .

On the one hand, these minors define

CXsm n (U x P*)

in U x P*, because their vanishing is just the condition that the first

row of the matrix belong to the space spanned by the remaining rows,

which is just the conormal space in question. On the other hand, these

minors define the singular locus of the P*-scheme
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((Xsm n U) - P*) n I

because the matrix is just the Jacobian matrix of a system of m+1

equations defining the scheme in U x P*

(2.6) Proposition. Let (x, H') be a k-point of CXsm where k is a

field. Denote by H the hyperplane of Pk corresponding to H', and set

h(x,H) = h(Sing(Xk n H)/Xk/k; x)

(i) Then h(x,H) < [dim X/S + dimH, X'/S - (N-1)] < dim X/S.

(ii) There is an open (possibly empty) subset RX (resp. OX) of CXsm

such that (x,H') belongs to it if and only if in (i) the first and

second (resp. first and third) terms are equal.

(iii) The image in S of any open subset of RX (resp. of OX) is open.

(iv) If X is reflexive (resp. ordinary), then RX (resp. OX) is dense

in CX.

Cv) If RX (resp. OX) is dense in CX and if the open subset of CX on

which q' : CX -+ X' is flat is dense, then X is reflexive (resp.

ordinary).

(vi) Each component of RX (resp. of OX) dominates a component of X'.

Proof. It follows immediately from (2.5) and then from (2.3.1) and
(2.1.1) that

h(x,H) = h(XH/Xk/k; x) = dim X/S - dim X,(x,H') . (2.6.1)Hk' x k CX/X'

On the other hand, the standard theory of smoothness yields that

dim CX/X' < dim QCX (x,H')(x,H') k CX/X?

that equality holds if CX/X' is smooth at (x,H'), and that if CX/X' is
flat at (x,H') and if equality holds, then CX/X' is smooth at (x,H').
Now, by standard dimension theory,
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0 < [dim x,H') X/S - dimH,X'/S] < dim(x,H') CX/X' , (2.6.2)

and the second and third terms are equal if CX/X' is flat at (x,H').

Since

dim H')CX/S = N-1
(x,HI

(see (2.4,i)), therefore (i) holds. Note for future use that if the

first and second terms in (i) are equal, then the second and third

terms in (2.6.2) are equal

The points z of CX at which dimk(z) CX/X, (z) (resp. dim X'/S)

achieves a local minimum form an open subset. Therefore (ii) holds

because of (2.6.1) and (i).

Obviously, (iii) holds because RX (resp. OX) is open in CXsm by

(ii) and because the structure map CXsm - S is smooth, so open.

It follows from the Segre-Wallace criterion (2.4,iv) and from

the discussion in the first paragraph above that (iv) and (v) hold.

Finally, to prove (vi), let Z be the closure of a component of

RX (resp. of OX), and assume that (x,H') lies over the generic point of

Z. Then

dim (x,H)Z/S - dimH, q'Z/S = dim (x,H') Z/qZ

Moreover, since (x,H') is a point of RX, the second and third terms in

(2.6.2) are equal by the last statement of the first paragraph. Hence

dimH, q'Z/S = dimH, X'/S

Now, (iii) implies that H' lies over the generic point. of a component

of S. It follows that q'Z is a component of X'. Thus (vi) holds.
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3. THE HESSIAN CRITERION. GENERIC ORDER OF CONTACT.

(3.1) Setup. Use the notation and hypotheses of (2.1) and (2.3).

(3.2) Theorem (The Hessian Criterion). Assume that X is reduced.

Then the following statements are equivalent:

(a) X is reflexive (resp. ordinary).

(b) There is a dense open subscheme RX (resp. OX) of CXsm such that a

k-point (x,H') of CXsm, where k is a field, belongs to RX (resp. OX) if

and only if

h(Sing(X k n H)/Xk/k; x) = dim X/S + dimH, X'/S - (N-1) (3.2.1)

(resn. h(Sing(Xk n H)/Xk/k; x) = dim X/S

where H is the hyperplane of Pk corresponding to H'.

(b') Each component of CXsm supports some k-point (x, H') of CXsm for-

some field k, which may vary with the component, such that (3.2.1)

holds.
0

(c) There exists an open subscheme S of S that is dense in the image

of X sm, and for each k-point of S where k is a field, the corresponding

fiber Xk is reflexive (resp. ordinary) in Pk'

Proof: Consider the open subscheme RX (resp. OX) of CXsm introduced in

(2.6,ii). Then (a) implies (b) by (2.6,iv). Trivially (b) implies

(b'). Now, assume (b'). Then RX (resp. OX) meets each component of

CXsm. Being open, it is therefore dense in CX. Mow, since X is

reduced, so are CX and X'. Hence, by the lemma of generic flatness

(EGAIV-(6.9.3), p. 154), q' is flat over a dense open subset of X'.

Therefore, the open subscheme of CX on which q' is flat is dense by

(2.6,vi), because P.X.(.resn. OX) is dense. Conseauently, (2.6,v)

implies (a).

To prove the equivalence of (a) and (c), we obviously may replace

X by the closure of Xsm and S by the (scheme-theoretic) image of X.
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Thus we may assume that each component of X dominates a component of S

and that S is reduced (as X is). Then, there is a dense ooen subscheme

S of S such that, for each k-point of S where k is a field,

C(Xk) = (CX)k' C((k)') = C((X')k) and C((X')k) = (CX')k (3.2.2)

by (2. 4, ii) aDplied to X and to X' .
0

Assume (a). Then (3.2.2) implies (c) with S = S Conversely,

assume (c). Then (3.2.2) implies that, over each point of the dense
0

open subscheme S n SI of S, the fiber of CX and that of CX' are equal.

Since CX (resp. CX') is reduced and since each of its components

dominates a component of S, therefore CX = CX'. Thus (a) holds.

(3.3) Corollary (Wallace [1956], 6.2). Assume that X is a reduced

hypersurface. Set n = N-1. For a k-point x of Xsm, where k is a field,

and for a system of inhomogeneous coordinate functions t , ... , tN for

X at x ordered so that dt , dtn form a basis of Qk/k at x, let

D , )...,D denote the corresponding partial differential operators of

the dual basis, and consider the condition on x and t1 , ... , tN that

rank[(D D.' t )(x)] = dim X'/Sj i N x

Then the following statements are equivalent:

(a) X is reflexive.

(b) There is a dense open subscheme WX of Xs snch that a k-point x of

Xsm, where k is a field, belongs to WX if and only if x plus any given

properly ordered system t1, ... , tN satisfy the condition.

(b') Each component of Xsm supports some k-point x for some field k

such that x plus some properly ordered system t1 , . .., tN satisfy the

condition.

Proof. Let x be a k-point of Xsm, where k is a field, and t , ... , tN
an inhomogeneous coordinate system for Xk at x. Then the dt. generate

X /kat x; so, reordering them, we may assume that dt1 , ... , dt form
X /ki
a basis.
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Denote by H the hyperplane tangent to Xk at x. Then for some a.

in k

Xk n H: a1 t + ... + a t + aNtN = 0.

If the dual basis of dt1 , ... , dtn is D , D n, then by (2.2)

h(Sing(Xk n H)/Xk/k; x) = rank[aN4 (D D itN)(x)]

Now, aN 1 0; otherwise, a dt + ... + a dtn would be 0, whence all the

ai would be 0. Thus in particular, for a fixed x, the stated condition

does not depend on the choice of t1 , ... , tN. Finally, it is now

evident that (3.2) implies the assertion with WX = q(RX).

(3.4) Corollary (Katz [1973], note on p. 3 and Prop. 3.3). Assume

that S = Spec(k) where k is a field of characteristic 2 and that some

generically smooth component of X is of odd dimension. Then X is not

ordinary.

Proof: Suppose that X were ordinary. Then by (3.2) there would be a

k-point x in the appropriate component of CXsm, for some field k, such

that

h(Sing(Xk n H)/Xk/k; x) = dim X/S

is odd. However, this number is by (2.2) equal to the rank of a skew-

symmetric matrix whose diagonal terms are all 0 because char(k) is 2.

And the rank of such a matrix is even (Bourbaki [1959], cor. 3, p. 81).

(3.5) Theorem (Generic Order of Contact). Assume that S is the

spectrum of a field k, that X is irreducible and geometrically reduced,

and that

dim(X) + dim(X') = N .5

d".

(3.5.1)
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Let K be an algebraically closed field containing k, let H' be a K-point

of X', and let H denote the corresponding hyperplane of P Consider

the condition on H' that each irreducible component V of the contact

locus XH meetsX Km and be such that

i(V, H.XK' K) = [k(CX) k(X')]. (3.5.2)

where the term on the left is the intersection multiplicity and the

term on the right is the inseparable degree of the extension of

function fields. Now, the following statements are eouivalent:

(a) X is not reflexive.

(b) There exists *a dense open subset of X' such that, if H' belongs to

it, then the above condition is satisfied.

(b') If H' lies over the generic point of X', then the condition is

satisfied.

(b") There exists a scheme-theoretic point of X' such that, if H' lies

over it, then the condition is satisfied.

Proof. Trivially, (b) implies (b'). Trivially, (b') implies (b"). 3y

EGA IV 3-(9.8.6), D. 86, there exists an open, but possibly emPty, subset

of X' such that, if H' belongs to it, then the condition is satisfied;

hence, (b') implies (b). Note, moreover, that whether or not the

condition is satisfied depends only on the image of H' in X'.

If V meets Xsm, then by (a trivial case of) the criterion of

multiplicity 1

i(V, H.XK' K > 2

because H n X is singular.along V by (2.5). On the other hand, the

right hand side of (3.5.2) is equal to 1 if and only if X is reflexive

by the Segre-Wallace criterion (2.4,iv). Hence (b") implies (a).

Finally, assume (a). To prove (b'), let E be a generic li-near

space of dimension N-2-n, where n = dim(X); that is, E is a subspace of
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P L where L is a field containing k, and E corresponds to an L-Point

lying over the generic point of the appropriate Grassmannian. Let x

be a K-point of X where K is an algebraically closed field containing
L'-

L, such that x lies over the generic point of XL. Let H denote the

hyperplane of PK spanned by EK and the tangent n-space to XK at x. Let

V denote the irreducible component of H n XK containing x. Since the

corresponding point H' lies over the generic point of X and since V is

an irreducible component of XH meeting X, it is clear that it will

suffice to show that now (3.5.2) holds.

Choose a system of affine coordinates for PL such that E lies in

the hyperplane at infinity and is cut out of it by the vanishing of the

first n+1 coordinate functions and such that x = (0, ... , 0,1).

Denote the restrictions of these functions to XL by to, t , ... , tn'
Then for some a. in K we have at x,

XK n H : f = a0t0 + a 1t +... + a t = 0. (3.5.3)

Now, X is not a linear space because of (3.5.1). Hence, X does not lie
'K

in H. Hence, some a. is nonzero; assume a0 / 0. Then dt 1 ... , dtn
form a basis of /L at x. Let D , ... , D denote the dual basis.

Then, by (3.2), (2.2) and (3.5.1), because X is not reflexive,

(D.D t )(x) = 0 for i,j = 1, ... , n

as x lies over a generic point of XL, therefore in the function field

of XL

D.D.t = 0 . (3.5.4)

Consider the Hasse differential operators D ( where

(i) = (i , ..., i n) '
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They compose according to the following rule (EGA IV4 , 16.11.2.2, p.,54):

D D ((i+j) D
(j) (i (i (i+j)

where the coefficient is the usual product of binomial coefficients.

The coefficient is not divisible by p.= char(k) so long as i < p for

all Z. Therefore, it follows from (3.5.4) that there exists a power

p and an integer m where 1 < m < n such that

D (i)t 0 if 2 < i < pe for Z = 1, ... , n (3.5.5)

e
D t # 0 where i = 0 if Z # m and i = , . (3.5.6)
(i) 0 m

Note that it is not Dossible that D t = 0 for all (i) such that

2 < i for some Z; indeed, such vanishing occurs only if X is linear,

but by assuinntion X is not reflexive.

Consider the Taylor exnansion at x of the function f of (~.5.3) .

The zeroth and first order coefficients vanish because X. n H is

singular at x. Now, for any (i), the corresoonding coefficient is

(D (if)(x)(i)

e
Hence (3.5.5), (3.5.6) and (3.5.3) imply that f lies in the p th power

of the maximal ideal of X at x but not in its (p +1)th power.

Consider a reduced equation g = 0 for V in XK at x. ThenL 'K

f = ugr (3.5.7)

for some unit u in the local ring of XK at x. Since V is a cormnonent of

XH, we may replace x by a simple point of V if necessary. Since x is a

simple point of XK, then g is in the maximal ideal of x but not in its

square. Hence, by the preceding paragraph
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r = p . (3.5.8)

In view of (3.5.7) and (3.5.8), obviously for all i

D.f = (D.u)gr = (D.u)(u 1)f .
1 1 1

However, the D f together with f generate the ideal of XH in the local

ring of X at x by (2.5) and (2.2,i). Therefore f alone generates.

Thus H n X and XH are scheme-theoretically equal at x. Since XH is

isomorphic to the fiber of CX over the K-point HI of X' representing H

and since HI lies over the generic point of X', therefore (3.5.2) holds,

and the proof is complete.

(3.6) Remark. As in (3.5), assume that S is the spectrum of a field k

and that X is irreducible and geometrically reduced. Let K be an

algebraically closed field containing k, let H' be K-point of X', and

let H denote the corresponding hyperplane of P Then, the contact

1-ocus XH is a subvariety of XK that is isomorphic to the fiber of CX

over 14'; see (2.3.1). Hence

dim(X) > dim(XH) > dim(CX) - dim(Xt )

Therefore

dim(X) + dim(X') > N-1 . (3.6.1)

Equality holds in (3.6.1) if and only if X is a linear space (as

is well known). Indeed, consider the tangent space T to X at a simDle
K

K-point. Clearly, T' is contained in X, and the two are equal,
K'-

on the one hand, if and only if T is equal to X K and on the other, if
and only if T' and X' have the same dimension.

Hypothesis (3.5.1) is that the sum in (3.6.1) be equal to N.

11 . I I I I I - - - 11 W-- Uw"
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Suppose that the sum is strictly greater than N and that H' is a

general point of X'. Let V be any irreducible component of H n X .

Then, since H is tangent to XK precisely along X and since

dim(XH) = (N-1) - dim(X') < dim(X)-l = dimn(V)

by (a trivial case of) the criterion of multiplicity 1,

i(V, H.X P ) = 1

In particular, the conclusion of (3.5), that this intersection

number be equal to the inseparable degree

[k(CX) k(X')].

if and only if X is not reflexive, is false. Indeed, the inseparable

degree is equal to 1 if and only if X is reflexive by the Segre-Wallace

criterion (2.4,iv).
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4. COMPARATIVE SIZE AND LOCATION - NONVANISHING OF THE RANKS

(4.1) Setup. Keeping the notation and hypotheses of (2.1) and (2.3),

assume that the ground scheme S is the spectrum of a field k, and

assume that X is a geometrically reduced closed subscheme of the

projective N-space P over k, such that each component of X is of

dimension at least 1 and at most (N-1).

Unless there is an explicit indication to the contrary in a

particular discussion, let M be a hypersurface of arbitrary degree, and

set

SY=X M.

Assume moreover that M is general; that is, as is conventional, assume

that the k-point representing M in the appropriate proj.ective space

lies outside of a certain proper closed (k-) subscheme which will

appear, though usually, imDlicitly, in the discussion at hand. If k is

infinite, then obviously such M will exist.

(4.2) Lemma. The subscheme qI Y of CX is geometrically reduced, it is

irreducible (resp. geometrically irreducible) if X is so and if the

dimension of X is at least 2, and its image q'q 1Y in the dual scheme

X' is such that

q'q~1Y CY' .

Proof: Since M is general, it is not hard to see (1) that q~ (Y - X sm

is nowhere dense in q 1Y, (2) that Y r) Xsm is irreducible (reso.

geometrically irreducible) if X is so and is of dimension at least 2,

(3) that

y n xsm _ Ysm
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and (4) that q Y passes through no point of CX of depth 1 and

codimension > 2 (there are finitely many such points; see for instance

Kleiman [1966], Example 3, p. 311). Since CXsm is locally a product of

Xsm and a projective space (2) implies that q~ -l f X sm) is irreducible

(resp. geometrically irreducible) if X is so and is of dimension at

least 2. Similarly, (3) implies that qI ( r Xsm) is smooth; hence (4)

implies q~1Y is geometrically reduced.

In view of (3) clearly any hyperpLane tangent to X at a point of

Y sm is also tangent to Y; in other words,

q- y Xsm) C CYsm

Now, the set on the left is dense in q 1Y by (1) and the set on the

right is dense in CY by definition. Hence

q'q1 Y C Y'

-1 -l

Finally, Y' 7 q'q Y because q'q Y C X' and because of (4.3) next.

(4.3) Lemma. Y' is not contained in any given subset Z of P*.

Proof. First suppose that.deg(M) = 1. Since M is general, then

M' f Z. However, obviously M' E Y'. Thus Y' 7 Z.

Suppos.e that deg(M) > 2. Degenerate M into M U M where M is a

general hyperplane and M1 is a general hypersurface of degree one less

than that of M. For i = 1,2 set

Y. = Y n M..
1 1

Since the corresponding family that degenerates Y into Y U Y is flat

along Y1 U Y2, the smooth locus of the family meets Y U Y2 in its

smooth locus. It follows, see (2.4,ii), that CY specializes to

CY U CY2 U D U ... U D
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where the D. are suitable subvarieties of PxP*.
1

Now, Y 7 Z because Y is a general hyperplane. It follows that

Y Z.

(4.4). Lemma. (i) Let M be an arbitrary hypersurface. If no component
-l

of X' is a hypersurface, then the subset q'q Y of X' is equal to X'.

(ii) Let M be a hypersurface that contains a general point of each

component of X. If X' is a hypersurface and if each component of CX

dominates a component of X', then q.'q1 Y is of pure codimension 1 in X.

Proof. (i) Since no component of X' is a hypersurface, the fibers of

q' are all of dimension at least 1. Now, q embeds these fibers in X

(their images are the contact loci.) Since M is a hypersurface, it

therefore meets each of these images. So q Y meets each fiber of q'.

So q'q Y is all of X'.

(ii) Since X' is a hypersurface, each component of X' has the same

dimension as CX. Since each component of CX dominates a component of

X', therefore q' is finite on a dense open subset of CX, say U. Since

M contains a general point of each component of X, clearly U r) qI Y is

dense in q 1Y. Hence, the restriction of q' is finite on a dense open

subset of q1 Y. Therefore, q'q 1Y is of pure codimension 1 in X', as

q 1Y is so in CX.

(4.5) Prooosition. If X' is a hypersurface and each component of CX

dominates a component of X', then Y' is a hypersurface distinct from

X'; if no component of X' is a hypersurface, then X' Y'.

Proof. The assertions are immediate consequences of (4.2), (4.3) and

(4.4).

(4.6) -- Lemma. Let M be an arbitrary hyperplane.

(i) Then Y' is a cone; its vertex is the point M' and its base is

the dual (Y/M)' of Y in M. Moreover, Y' is the cone of lines from M'

to q'q1 Y.

(ii) Projection from M' induces a dominating map,
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T : (q'Iq Y - M') + (Y/M)' , r(H') = (H n M/M)'

Moreover, a k-point L' of (Y/M)' belongs to the image of 7 if Y L XM*
(iii) If M' I X, then projection from M' induces a finite and

surjective map,

T : q'q Y -+ (Y/M)' , Tr(H') = (H n M/M)'

Proof. Obviously, we may replace k by any extension field, and so we

may assume that k is algebraically closed.

Fix a k-point (y, H') of CYsm such that H # M. Then any hyperplane

in the pencil generated by H and M is obviously tangent to Y at y.

Hence Y' is a cone with vertex M', because a dense open subset is. Its

base is contained in (Y/M)' because H n M is a hyperplane in M that is

tangent to Y at y. Note moreover that projection from M' carries H' to

(H r) M/M)'.

Given a hyperplane L of M that is tangent to Y at a simple k-point

y, consider the span H of L and the tangent space T Y (note that Y is

necessarily a simple point of X). Note that T Y does not lie in M and

that it meets M in T Y. It is now evident that H is tangent to X, that

H is a hyperplane, and that H n M is equal to L. Hence the base of

the cone Y' contains a dense subset of (Y/M)'. Moreover, this dense

subset lies in the image of (q'q1 Y - M') under projection from M'.

Therefore (i) and the first part of (ii) hold.

To prove the second part of (ii), let y be a k-point of Y that

does not belong to X.. Consider the rational correspondence from q Y

onto C(Y/M) induced by lYXxr . Let (z, H') be a k-point of q Y that

corresponds to (y, L'). Obviously, z = y. So H' MI' because y XM'

Obviously, Tr(H') = (L/M)'.

Finally, (i) and (ii) obviously imply (iii).

(4.7) Proposition. Let M be a hyperplane. (i) Assume that 1M

contains a general point of each component of X and that M' g X' or
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or M' E X' but q'q IY is not a cone with M' as vertex. If X' is a

hypersurface and if each component of CX dominates a component oF XI,

then the dual (Y/M)' of Y in M is a hypersurface in the dual projective

space I*.

(ii) Assume that MI' X' or that MI' E X' but X' is not a cone with

M' as vertex. If no component of X' is a hypersurface, then

dim(Y/M)' = dim(X')

in fact, (Y/M)' is equal to the projection of X' from MI'.

Proof. The assertions follow immediately from (4.4) and (4.6).

(4.8) Proposition (Landman [1976]). Let M be a hyperplane. If no

component of X' is a hypersurface, then Y' is the cone of lines from

M' to X'; moreover, if MI' X' or if MI' E X' but X' is not a cone with

M' as its vertex, then X' Y' and

dim(Y') = dim(X') + 1

Proof. The first assertion follows immediately from (4.4) and (4.6);

the second assertion follows immediately from the first.

(4.9) Lemma. Let M and H be arbitrary hyperplanes, and let x be a

simple k-point of X. Suppose that both M and H pass through x and that

they are transverse to X at x. Then H is tangent to X n M at x if and

only if M is tangent to X n H at x.

Proof. The hypotheses imply that both X n M and X n H are smooth at x

and that their tangent spaces at x are given by

T (X n M) = (T X) r) M and T (X n H) = (T X) n H.

Hence, H is tangent to X n M at x if and only if H contains (T x) n M;

whence, if and only if (T X) n H is equal to (T X) n M because H does

not contain T X; whence by symmetry, if and only if M is tangent to

X n H at x.
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(4.10) Theorem. (i) (cf. Wallace [1958], Lemma d, p. 5) If X is

ordinary, then

(a) for any general hyperplane M and for any irreducible component

X. of X, the dual Y! of the section X. n M is equal to the
1 1 1

cone of tangent lines from M' to X .

(ii) If X is ordinary and if the characteristic is different from

2, then

(b) for any general hyperplane H tangent to X, the hyperDlane

tangent to X' at H' is not a component of (X n H)'.

(iii) Conversely, if the ground field k is algebraically closed of

any characteristic, then (a) and (b) together imply that X is ordinary.

Proof. (i) Obviously, we may assume that X is irreducible. Since M
-l

is general, q Y meets any given non-empty open subset of CX. Hence

the set

U = X,sm -qq 1Y

is nonempty. Obviously U is open in q'q 1Y, and by (4.2) q'q~ Y is
-I

irreducible. Moreover, Y' is the cone of lines from M' to q'q Y by

(4.6). Therefore, to prove that Y' is the cone of tangent lines from

M' to X', it suffices to replace k by its algebraic closure and to prove

that, for each k-point (y, H') of CX' sm, conditions (A) and (E) below

are equivalent.

Note that since X' is a hypersurface, the tangent space to X' at H'

is all of the hyperplane y'. Hence each of the following conditions is

obviously equivalent to the next one:

(A) The line from M' to H' is tangent to X' at H.

(B) The hyperplane y' contains the point '.

(C) The point y is contained in the hyperplane M.

(D) The point (y, H') of CX' = CX lies in the subset q~ 1

(E) The point H' of X1sm lies in the subset q'q 1l.

(ii) Let I denote the graph of the point-hyperplane incidence

correspondence and consider the closed subscheme A of XxX'xP* defined by
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A = (CX)xPI

Obviously, each K-point of A, where K is an extension field of k, is a

triple (y, H', G') such that the point y lies in both the H-contact

locus XH and the hyperplane G. Cbviously, A is a bundle of projective

(N-1)-spaces over CX. Obviously, each component of A projects onto P*

because each component of X is of dimension at least 1 and so intersects

every hyperplane G.

It will be shown below that there is a dense open subset U of A

such that each K-point (y, H', G') of U has the following three

properties:

(1) G is transverse to Xsm

(2) y is the entire support of the H-contact locus (XK n G)H'

(3) the G-contact locus (XK r) H)G, if nonemoty, is contained in

the xmooth locus (XK n H)sm.

Assume for the moment that U exists.

Fix a dense open subset U of V'sm contained in the image of U, and

consider a k-point H' of U'. Let K be an algebraically closed field

containing k, and lift H' to a K-point (y, H', G') of U. Then, because

y lies in X and X is ordinary, y' is the hyperplane tangent to X' at
H

H'. Moreover, G' lies in y'. However, G' does not lie in (X n H).'.

Indeed, if it did, then G would be tangent to X n H at a simple K-point

x by (3). Hence (1) and (4.9) would imply that H is tangent to X n G at

x. Therefore, (2) would imply that x = y. However, x is a simple point

of X n H, and y is not. Thus (b) holds.

The subset U is obtained by intersecting three other dense open

subsets of A, which correspond to the three properties. The first of

these, U1 , is obtained by starting with a nonempty open subset of P*

whose K-points G' have Property (1) and then taking the subset's inverse

image in A. This inverse image is dense because each component of A

projects onto P*.

The second subset U2 exists because X is ordinary and the

characteristic is different from 2. Indeed, these hypotheses imply,
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according to (5.9,i) and (3.2,a<=>c), that the total space of the family

of hyperplane sections of X, namely (XxP*) n I, is ordinary in I/P*.

Hence there is a dense open subset V2 of the conormal scheme on which

the map to the dual scheme is birational. Moreover, it may be assumed

that V2 lies over a nonempty open subscheme W of P* such that the

formation of the conormal scheme, the dual scheme and the map between

them commutes with base-change to the fiber over each point of W, see

(2.4,ii). Then, for any extension field K of k, the K-points of V', are

triples (y, L', G') such that G is a hyperplane such that X n G is

ordinary in G, and L is a hyperplane of G such that the L-contact locus

(X n G) L is just the reduced subscheme supported at the point y. In

view of (4.6), it is evident that there is a natural map to the present

conormal scheme from A-A, where L is the diagonal of XCx CX, and that

the inverse image of V2 may be taken as U2 ; that is, U, is dense and the

K-points of U2 have Property (2).

The third subset U3 is constructed as follows. Consider the family

T/X' of sections of X by its tangent hyperplanes. Form the s~ingular

locus of T/X', form its inverse image D in the conormal scheme

C(T/PxX'), and form the image C of D in the dual scheme T'. View T' as

a subscheme of X'xP*, and consider the inverse image B of C in-A. Now,

there is a dense open subset V' of X' such that the formation of

C(T/PxX') and of T' commutes with base-change over each point of V', see

(2.4,ii). Take U3 to be the intersection of the inverse image in A of

V' with (A-B). It is evident that the K-points of U3 have Property (3).

Finally, U3 is dense by reason of dimension; indeed, D is nowhere dense

in C(T/PxX'), both C(T/PxX') and A are pure and they have the same

dimension, and the map from A into X'xP* is birational onto its image.

The proof of (ii) is now complete.

(iii) Obviously, (a) and (b) will continue to hold if X is replaced

by any one of its irreducible components. Hence, by (2.4,v) we may

assume that X is irreducible.

Note that X' is a hypersurface. Indeed, if not, then (a) and (4.4)

and (4.6,iii) would imply that for any general hyperplane 1M, the cone
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of all lines from M' to X' is equal to the cone of tangent lines; in

other words, projettion of X' from M' is everywhere ramified. However,

the projection is generically unramified because the center M' is in

general position.

Note next that the dual X" of X' is not a point. Indeed,

otherwise, X' would be a hyperplane. Whence, for a general hyperplane

M, the cone of tangent Y' lines from M' to X' would be empty. So X

would be a finite set of points, contrary to a hypothesis in (4.1).

In view of the above two notes and of (a) and (b), it is clear

that there exists a dense open subset U of C(Xtsm) whose k-points

(y, H') are such that

(1) XH is finite,

(2) y', which is just the hyperplane tangent to X' at H', is not

a component of (X n H)', and

(3) for any general hyperplane M through y, the cone of tangent

lines from M' to X' is equal to Y'.

To establish (iii), it obviously suffices to prove that y lies in XH.

Suppose that y does not lie in XH. Let M be a general hyperplane

throughy.- Then M does not contain any point of XH by (1). Moreover,

M' does not lie in (X n H)' by (2), because M' is a general point of y'

Hence, there exists an open neighborhood V of H' in P* whose k-Doints

G' are such that

(4) M' does not lie in (X r) G)' and

(5) M does not contain any point of XG'

The line from M' to H' is tangent to X' at H',. because Mt lies in

y' and y' is the hyperplane tangent to X' at H'. Hence this line lies

in Y' by (3). So Ht lies in Y'. So the intersection of V and Y' is

nonempty. Let G be a general k-point of this intersection. Then G is

tangent to Y at a simple point x of Y. Hence M' lies in (X 0 G)' by

(5) and (4.9). This conclusion contradicts (4). Thus (iii) holds.

(4.11) Remark. (i) If in (4.10,iii) the characteristic is 0, then

(b) is superfluous; (a) alone implies that X is' ordinary. The proof is

simple. Indeed, by the first paragraph of the proof of (4.10,iii), we
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may assume that X is irreducible; by the second, X' is a hypersurface.

Since the characteristic is 0, the Segre-Wallace criterion (2.4,iv) now

implies that X is ordinary.

Moreover, in characteristic 0, it is also easier to prove that

(4.10,ii) holds. Indeed, consider a hyperplane H tangent to X at a

general k-point- x. Since X is ordinary, x' is the hyperplane tangent to

X' at H'. Suppose that x' is a component of (X n H)'. Then x' is the

dual of some (reduced and irreducible) component Z of X n H. Now, Z is

reflexive by the Segre-Wallace criterion (2.4,iv) because the

characteristic is 0. Hence Z = x. So dim X = 1. However, then x
x

supports an isolated, nonreduced component of X n H, in contradiction

to the fact that Z is reduced.

(ii) If in (4.10,iii) the characteristic is D > 0, then (a) alone does

not imply that X is ordinary. If it did, then (a) would imply (b) at

least if p # 2 by (4.10,ii). However, (a) does not imply (b). In fact,

the following statement will be proved next:

(4.11.1) If (b) fails, if X' is a hypersurface but not a hyperplane,

and if X is irreducible, then (a) holds.

After (4.11.1) is proved a specific example illustrating it will be

discussed. Finally, there is a short discussion of the irreducible

varieties X, other than the points, such that X' is a hyperplane. For

such an X, (a) fails. However, (b) may either fail or hold; specific

examples will be discussed. In particular, (4.11.1) is sharp.

Throughout this remark, k will be algebraically closed.

To prove (4.11.1), note that Y' is irreducible because X is

irreducible, and note that Y' is equal to the cone of all lines from M'

to q'q Y by (4.6,i). Hence, to prove (a), it suffices to show that, if

a line L' contains M' and is tangent to X' at a smooth k-point H', then

L' meets X' at a k-point G' of q'q 1Y. Indeed, then (1) Y' will contain

the cone of tangent lines from M' to X', because, by definition, the

cone of tangent lines is the closure of the cone of these lines L'-.
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Furthermore, then (2) the cone of tangent lines is a hypersurface,

because X' is a hypersurface but not a hyperplane and because the points

of contact H' are just the smooth k-points of X' in the polar locus C,

where projection from M' ramifies. Note that the set of smooth points

of X in C form a dense (open) subset of C; in fact, each component of

C meets any given open subset of X', because M.' is a general point of

P*. (For the theory of polar loci, see for example Kleiman [1977], IV,

B.) Since Y' is irreducible, (1) and (2) imply (a). Moreover, because

(b) fails, and again because each component of the polar locus C meets

any given- open subset of X', we may assume that the hyperplane tangent

to X' at H', denote it by y', is a.component of Z', where Z = X n H.

Projection from H' induces a map from (Z' - H') onto (Z/H)' by

(4.6,i) with H as M. Now, H' E L' C y' because L' is tangent to X' at

H'. Hence, (L/H)' E (Z/H)' where L = M n H, because y' C Z', so

ME Z'. We may assume that ZL E XH; indeed, otherwise, some point of

XH would lie in L, and so H' may be taken as G'. Therefore, (4.6,ii)

implies that there exists a k-point G' of q'q 1Z such that G r H = L.

Obviously, G' lies in q'q 1L and in L'. Thus the proof is complete.

A specific example of an irreducible variety X such that X' is a

hypersurface but not a hyperplane and such that (b) fails is the smooth

variety defined by

X X + ... + X = 0 . (4.11.2)
0 N

Indeed, as a k-point x = (x0 ' ... ' xN), the tangent hyperplane is.

H: xX +...+xNAN =0.

Hence, X' has the same equation as X. In particular, X' is a smooth

hypersurface but not a hyperplane.

Consider Z = X r) H. It is smooth except at x because, obviously,

H is tangent to X only at x. Let N = (:0' .''' N) be a k-point of
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Since z lies in H, it satisfies the following equation:

x0 40 + + x N N = 0

Raising this equation to the oth power yields an equation that shows

that the hyperplane tangent to X at z contains the point,

xP= (x0 ' ' x'' N

-l -

Hence, q'q Z lies in the hyperplane tangent to X' at H'. Now, Z' is

obviously equal to the cone of lines from H' to q'q Z'; see (4.b,i).

Therefore, Z' is contained in the hyperplane tangent to X' at H'.

Assume x0  1 and view X,..., X as a system of homogeneous
1 N

coordinates for H. Then Z is given in H by the equation,

(X1 X + N + Xp+ + X +1+ +XN = 0

which may be rewritten as

XILS I+ .+ XNLN = 0

where the L. are linear homogeneous polynomials. Obviously the L.2 are

the partial derivatives of the left side of this equation. Hence the

L. vanish simultaneously only at x, because x is the unique singular

point of Z. Moreover, the Gauss map, which carries a simple k-point :

of Z to the tangent space of Z at z, factors as the composition of

projection from x followed by the Frobenius p-th power map. Hence,

(Z/H'), which is equal to the closure of the image of the Gauss map, is

a hypersurface if and only if Z is not a cone with x as vertex.

A short, straightforward computation shows that every line L in H,

through x, intersects Z at x with multiplicity at least p. Moreover,

such an L intersects Z at x with multiplicity at least p+l if and only

if L lies on the hyperplane
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N x X + + XN X 0 . (4.11.3)~0 0 NN

Now, a line L that intersects Z at x with multiplicity at least p+ and

that contains a second point of Z must lie on Z by Bezout's theorem.

Hence, Z is a cone with x as vertex if and only if x = x .

It is evident in view of (4.6,i) that (Z/H)' is a hypersurface if

and only if Z' is one. Hence, together the conclusions of the above

three paragraphs yield that Z' is eoual to the hyperplane tangent to X'

at H' if and only if x $ xE. Thus (b) fails.

In this example, it is easy to check (a) directly. Indeed,

consider any hyperplane M which is transverse to X; that is, M' E X'.

Say

M : a0 0 + .. + aNX,, = I

Suppose that the line L' from M' to H' is tangent to X' at H'. Then the

point xP lies in M;. in other words,

a0 0 ... + aNXN 2 0

Using this equation and the equation of X, it is easy to see that L'

also meets X' at the point G' = (y0 ' yN P) where

yi = (a p+l + ... + a+N ) 0  = (a 0x0 + ... + aN XN) a .

Multiplying both sides of the preceding equation by a. and summing up

gives

a0 P + ... + aN yp = 0

So the point y = (y 0 ' Y ) lies in M. Hence y belongs to Y = X n N.

Therefore, G' belongs to q'q Y. Thus the cone of tangent lines from SI'

to X' is included in the cone of lines from M' to q'q~ IY. The opposite
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inclusion may be checked similarly. Thus the two cones are equal.

However, the second cone is equal to Y' by (4.6,i). Thus (a) holds.

Finally, consider an irreducible variety X, not a point, such that

X' is a hyperplane. For it, (a) fails. Indeed, any line tangent to X1

must lie in X', so the cone of tangent lines from a point M' off X' is

empty. However, since X is not a point, Y = X n M is nonempty.

Moreover, Y is geometrically reduced, because M' lies off X' and

because X is geometrically reduced as X' is nonempty. Hence, Y' is

nonempty.

A specific example of an irreducible variety Z, not a point, such

that Z' is a hyperplane, and for which (b) fails is the section

Z = X r H of the variety X defined in (4.11.2) by the hyperplane H

tangent to X at a k-point x such that x # xP- and such that

xp3 P3+1 0  (4.11.4)

provided N > 4. Indeed, by the discussion of X above, Z' is the

hynerplane (xP-)', and Z is smooth except at x. Since Z is smooth

except at x and since it'is a hypersurface in H, which is a projective

space of dimension > 3, obviously Z is irreducible.

Let y be a general k-point of Z. Set G = T X and W = Z f G. Then
2y

x q G because Z' $ x' as x # xP . Moreover, in view of the above

analysis of the Gauss map of Z, it is clear that G is not tangent to Z

at any simple point aside from y. Hence W is smooth except at y. Now,

it is evident that the equation of P1 in G is of the same form as the

equation of Z in H. Furthermore, (4.6,i) implies that W' C Z'. To

prove that W' = Z', it therefore suffices to prove that W is not a cone

with y as vertex, by the argument used above to prove that Z' = (xP ) '

The point xP2 lies on G, on H and on X, so on W. Hence, if W were
7

a cone with y as vertex, then the line L joining y and xP~ would lie on

W, so on X. Now, (4.11.4) implies that y does not satisfy the equation

2 2
y0/p 0p 1/p XN~=
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because the points y that satisfy this equation form a closed set that
2

does not contain x: So xP 9 N, where

N : y0 0 + ... + y N N = 0

Hence, L intersects X with multiplicity p at y by the discussion about

(4.11.3). So L does not lie on X. Thus (b) fails.

A specific example of an irreducible variety X, not a point, such

that X' is a hyperplane, and for which (b) holds is the even

dimensional, smooth quadric hypersurface X in characteristic 2. By the

general Plucker formula (Kleiman [1977], IV, 49, p. 357),

deg(q')deg(X') = 2

Now, X is not ordinary by (3.4). Hence X' is a hyperplane.

Consider any k-Doint x of X. Let H denote the hyperplane tangent

to X at x, and set Z = X n H. Then Z is a quadric hypersurface with a

singular point at x. Hence Z is a cone with x as vertex by Bezout's

theorem. It is now evident that Z' lies in the hyperplane x', but Z'

x'. Thus (b) holds.

(4.12) Setup continued. Recall (Fulton-Kleiman-MacPherson [19831,

(1.3)) that the ith rank of X is defined as the nonnegative integer

r =fq*C1 (O(l)) q'*C(0(1)) I[Cx],

where N is the dimension of the ambient projective space. It is

evident that ri = r (X) behaves additively in X.
1

(4.13) Theorem. Assume that X is irreducible. Then r. / 0 if and only

if i E [(N-1-dim X'), dim X].

Proof. It is easy to see using the projection formula with respect to

q' and q that
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r = 0 if i = [(N-1-dim X), dim X]

r. 0 if i =(N-i-dim XI), dim X

In particular, the assertion holds if X is of dimension 1 (or 0).

Proceeding by induction on dim X, assume the assertion holds for a

general hyperplane section Y of X. Now, it is known that

r. =r (Y/M) if i > 1

(see Piene [1978], (4.2); note however, that r. is equal to Piene's

(n-i)-th class, where n = dim X.) The assertion is now easy to prove;

use (4.7) and consider separately the two cases in which X' is and is

not a hypersurface.
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5. COMPARATIVE REFLEXIVITY

(5.1) Setup. Keep the notation and hypotheses of (4.1); however, also

allow X = P. Set p = char(k).

(5.2) Lemma. Fix a k-point x of X sm. Let H be a hypersurface not

containing X. Assume that H is tangent to X at x; that- is, x belongs to

the singular locus Sing(X n H). Set n = dim X. Set
x

hx = h(Sing(X n H)/X/k; x)

(i) Assume that H is general of degree at least 2.

(a) If either p # 2 or n is even, then hX = n.

(b) If p = 2 and n is odd, then hX = n-l.

(ii) Let M be a general hypersurface containing x. Set Y = X n M, and

set

h = h(Sing(Y n H)/Y/k; x)

(a) If h < n, then h = hX'
(b) If hX = n and p $ 2, then h = n-l.X Y
(c) If hX = n and p = 2, then hY = n-2-.

Proof. Choose inhomogeneous coordinates t 1, ... , tN centered at x for

the ambient projective space P such that the restrictions u. = t.|X for

i = 1, ... , n are local parameters for X at x. Say H : F = 0, and set

f = F/X. Since H is tangent to X at x, the Taylor series for f begins,

at least, with a quadratic form Q in u 1 , ... , un. Let D , Dn

denote the partial derivative operators with respect to u1 , ... , un
Then (D.D.f)(x) is equal to D.D.Q. So (2.2,ii) yields that

h = rank[D.D.Q]. . (5.2.1)
X e 1 i <n

Since the right side is Iower semi-continuous in H, so is hx.
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To prove (i)(a) (resp. (b)), it suffices by lower-semicontinuity

to give- one H such that hX = n (resp. hX = n-1, note that in case (b)

h < n because h is even by Bourbaki [1959], cor. 3, p. 81). Now,

obviously any H such that

=2 + + U if p # 2
1 n

or

Q = us+ + uu 2 + +u u if n = 2s (resp. if n = 2s+1 and p=2)

is such that hX = n (resp. h. = n-1), because of (5.2.1)

To prove (ii), fix H and make a linear change of coordinates with

coefficients in k so that

2+ aQ = au + + a u if p 2 , (5.2.2)
1 1 r r

or

Q = (a.u' + u.u . + b.u .) + c u? if p = 2,
j= 1 1 15 =2s+l11

where r and s are suitable integers and the a's, b's and c's are

suitable elements of k; such a change is oossible by Bourbaki [1959],

§6, no. 1, Thm. 1, p. 90, and Exer. 27, p. 112.

Since M is general, the restrictions v. = u.IY for

i = 1, ... , n-i are local narameters for Y at x. Let E 1, ... , En-i
denote the corresponding partial derivative operators. Then (2.2,ii)

yields that

h = rank[E.E. Q(v , .. ,v )]. . (5.2.3)

If hX < n, then in view of (5.2.1) clearly in (5.2.2) r < n if

p 2, and 2s < n if p = 2. Hence in view of (5.2.2) and (5.2.3)
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obviously h = h .
Assume hX = n. If p 1 2, then r = n and a $ 0 for all i in

(5.2.2). So, if the equation of Y in X were un 0, then h would be

n-1 in view of (5.2.3). Hence, by lower semi-continuity, since Y is

general, hy = n-i.

If p = 2, then 2s = n in (5.2.2). Moreover, h is even, so at

most n-2. Hence, to complete the proof, it suffices by lower semi-

continuity to observe that, if the equation of Y in X were u = 0,

Then h would be n-2.

(5.3) Discussion. Return, for this discussion alone, to the general

setup of (2.1) and (2.3).

(i) The subscheme X will be called semi-ordinary if X is not ordinary

but there exists a dense open subset U of CXsm such that for every

K-point (x, H') of U, where K is any field, we have

h(Sing(X K( H)/X /K; x) > dim (X) - 1 . (5.3.1)
K K' - x

(ii) It is clear from the proof of (2.6,ii) that the subset U of CXsm

whose K-points (x, H') satisfy (5.3.1) is open (but possibly empty).

It is now easy to check that the following conditions, which are

similar to those in (3.2), are equivalent:

(a) X is semi-ordinary

(b) X is not ordinary and every component of CXsm has a K-point

(x, H') for which (5.3.1) holds.

(c) There exists an open dense subscheme S0 of S such that, for

each K-point of S0, the corresponding fiber XK is semi-

ordinary in P .

(iii) For S = Speck where k is a field, it follows from (2.6,i) that

if X is semi-ordinary, then every component of X' has codimension less

or equal than 2 in P.

(iv) Every curve over a field is either ordinary or semi-ordinary (but

not both).
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(5.4) Theorem. Reembed X via the d-fold Veronese map for some d > 2.

(i) (Cf. Katz [1973], Thm. 2.5) If p $ 2 or if each component of X is
of even dimension, then X is ordinary.

(ii) If p = 2 and if some component of X is of odd dimension, then X

is semi-ordinary.

Proof. Clearly it suffices in view of (2.4,ii and v) (resp. (5.3,ii))

to treat the case in which k is algebraically closed and X is

irreducible. Fix a general k-point (x, H') of CXs. Under the

Veronese map X n H is identified with the section of X by a general

hypersurface of degree d and tangent to X at x. Hence, (i) (resp.

(ii)) results from (5.2,i,a) and (3.2) (resp. (5.2,i,b), (5.3,ii) and

(3.4)).

(5.5) Remark. If X is irreducible, then (5.4) and (5.3,iii) yield

that X' is a hypersurface, except possibly if p = 2 and dim(X) is odd,

in which case codim(X') < 2. Probably X' is always a hypersurface;

possibly this conjecture may be proved by modifying Ein's argument,

Ein [1984], II, (1.3).

(5.6) Theorem. Let M be a general hypersurface of degree at least 2,

and consider Y = X n M.

(i) If p / 2 or if each component of X is of odd dimension, then Y is

ordinary.

(ii) If p = 2 and if some component of X is of even dimension, then Y

is semi-ordinary. In fact, if X is irreducible, if x is a given k-point

of Xsm and if M is general containing x, then, in (i), Y is ordinary,

and in (ii), Y is semi-ordinary.

Proof. (i) It is not hard to reduce the question to the case in which

X is irreducible (see (2.4,v)) and of dimension at least 2. In this

case, the family of section Y of X by the hypersurfaces M of given

degree and not containing X (resp. and containing x) is flat, and its

total space is irreducible. Hence by (2.4,ii) and (3.2) it suffices to

find one such Y defined over a suitable extension field K of k and a

K-point (y, H') of CYsm such that
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h(Sing(Y n H)/Y/K; y) = dim Y (5.6.1)

(res. and such that y = x).

Let K be the algebraic closure of k. Let y be a K-point of Xsm

(resp. set y = x). Let H be any hyperplane defined over K and

transversal to XK at y. Set

Z = K ( H.

Let M be a general hypersurface defined over K and tangent to Z at y.

Set

Y = nK

sm
Then (y, H') is a K-point of CYs. Finally, (5.2,i,a) yields

that

h(Sing(Z r) M)/Z/K; y) = dim Z . (5.6.2)

Since Z n M = Y n H and dim Z = dim Y, therefore, (5.6.1) holds by
y y

(2.1.1), and the proof of (i) is complete.

(ii) Note that (i) takes care of the comDonents of X of odd dimension,

hence we may assume by (5.3,ii) that X is irreducible of even dimension.

By (3.4) we have that Y is not ordinary. Now, the proof proceeds as in

(i) but with two changes. First, (5.6.1) has to be replaced by

h(Sing(Y r) H)/Y/K; y) = dim Y - 1

This condition is by (5.3,ii) sufficient for Y to be semi-ordinary. The

second change is that (5.6.2) has to be replaced by

h(Sing(Z n M)/Z/K; y) = dim Z - 1 ;
y

this condition is satisfied by (5.2,i,b).
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(5.7) Remark. In (5.6,ii) as well as in (5.6,i), Y' is a hypersurface;

both cases are covered by (1.3) of Ein [1984], II. In particular,

therefore in (5.6,ii), Y is in fact not reflexive.

(5.8) Proposition. Let M be a hyperplane and Y a geometrically

reduced, closed subscheme of M. Then Y is reflexive (resp. ordinary,

resp. semi-ordinary) in the ambient projective N-space if and only if

Y is reflexive (resp. ordinary, resp. semi-ordinary) in M.

Proof. By (2.4,ii) and (5.3,ii) we may assume that k is algebraically

closed. Now, let (y, H') be a k-point of CYsm such that H P Y. Set

L = M r) H. Obviously,

h(Sing(Y n H)/Y/k; y) = h(Sing(Y r L)/Y/k; y) . (5.8.1)

Now, Y' is the cone over (Y/M)' with vertex M' by (4.6); so

dim Y + dimH,Y' - (N-1) = dim Y + dim L/M),(Y/M)' - (N-2),

and projection of Y' from M', which carries H to L, maps onto (Y/M)'.

Therefore the assertions follow from (3.2) and (5.3,ii).

(5.9) Theorem. Let M be a general hyperplane, and consider Y = X n M.

(i) If p # 2 and if X is ordinary, then Y is ordinary in P and in M.

(ii) If p = 2 and X is ordinary, then every component of Y is semi-

ordinary in P and in M, and every component of Y' (resp. of (Y/M)') is

a hypersurface.

(iii) Assume that no component of X' is a hypersurface. Then

dim(Y') - 1 = dim(Y/M)' = dim X' (5.9.1)

and X is reflexive if and only if Y is reflexive in P (resp. in M).

(iv) If every component of X is semi-ordinary, then Y is ordinary.

Proof. If X = P, then (i), (ii) and (iv) do not apply, while (iii)

and (iv) is trivial; so we may assume that X / P. By (2.4,ii) and

(5.3,ii) we may assume that k is algebraically closed. Consider the
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irreducible components X. of X, and set Y. = X. fl M. Then the Y. are
1 ~ 1 11

the irreducible components of Y. Hence, we may assume that X is

irreducible -- in (i), (ii) and (iv), because of (2.4,v); and in (iii),

because of (2.4,iii) and also because of (4.8); indeed, (4.8) implies

that X! C X' if and only if Y! C Y'.
1 21 1 J

Recall from (4.5) and (4.7) that if X' is a hypersurface, then Y'

and (Y/M)' are also. Recall from (4.7) and (4.8) that if no component

of X' is a hypersurface, then (5.9.1) holds. Recall from (5.8) that Y

-is reflexive (resp. ordinary, resp. semi-ordinary) in P if and only if

it is so in M.

Suppose that X is reflexive. To prove that the general hyperplane

section Y of X is reflexive in (i) and (iii), and semi-ordinary in (ii),

it suffices by an argument similar to that in (5.6) to find one

hyperplane section Y and a k-point (x, H') of CYsm such that

h(Sing(Y r) H)/Y/k; x) = dim Y + dimH,Y' - (N-1) (5.9.2)

(resp. h(Sing(Y n H)/Y/k; x) = dim Y - 1 ).x

Since k is algebraically closed, by (3.2, a b) there exists a

k-point (x, H') of CXsm such that

h(Sing(X n H)/X/k; x) = dim X + dimH,X' - (N-1) (5.9.3)

Let M be a general hyperplane containing x, and set Y = X r M. Then
sm

(x, H') is a k-point of CYs. Therefore, (i) holds by (5.2,ii,b), and

(ii) holds by (5.2,ii,c), while half of the second assertion of (iii)

holds by (5.2,ii,a).

Suppose now that X is not a hypersurface and that Y is reflexive

in M. By (3.2, a * b), there exists a k-point (x, L') of C(Y s/M)

such that

h(Sing(Y r) L)/Y/k; x) = dim xY + dimL,(Y/M)' - (N-2) .
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Then x lies in Xsm, and by (4.7) there is a hyner)lane H tangent to X

at x such that L = M n H and dimL ,(Y/M)' = dim HX' Hence X is reflexive

by (5.2,ii,a) and (3.2, b' * a).

To prove (iv), let (x, H') be a k-point of CXsm such that

h(Sing(X n H)/X/k; x) = dim(X) - 1.

Then (5.2,ii,a) yields that

h(Sing(Y n H)/Y/k; x) = dim(X) - 1 (= dim Y)

Therefore, Y is ordinary by (3.2, b' a).

(5.10) Corollary. In any characteristic, if X is ordinary of dimension

> 2, then a general codimension -2 linear section of X is also ordinary

in P and in M.

(5.11) Remarks. (i) In any positive characteristic p, it may happen

that X is irreducible, X' is a hypersurface and Y is ordinary, but that

X is not ordinary. Indeed, in view of (5.9,iv), it suffices to exhibit

an irreducible semi-ordinary variety X such that X' is a hypersurface.

If p = 2, the smooth quadric hypersurface X in P4, given by

X : vw = xy + xz-+ yz

has the required properties, as is easy to verify.

If p > 3, consider the surface

X : z = x2  p+

The hyperplane H tangent to X at (x , y0 , ) is given by
00 0

H : z = 2x x + y py x
0 0 0
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Hence X' is the locus of the point (2x , y0  , -x2 ). Therefore X' is

a surface. Moreover X' is not birationally equivalent to X under the

duality correspondence, so X is not ordinary. Now, take P = (0,0,0)

and H : z = 0. Then h(P, H) = 1, so X is semi-ordinary.

(ii) The proofs of (5.9,i) and (5.9,ii) work without change when M is

a general hypersurface of any degree. Thus they yield a weaker version

of (5.6).

(iii) Probably more than stated in (5.9,ii) is true. It is reasonable

to conjecture that, if p = 2 and X is ordinary, then, as is the case in

all other characteristics, a general tangent hyperplane to Y is tangent

at a unique point of contact. Moreover, the map q' : CY -+ Y' should

be purely inseparable of degree 2. If the first part of this conjedture

is true, the proof of (4.10,ii) will work in any characteristic.

(iv) Assertion (5.9,iii) is dual to a result (Lem. 3, p. 334) of

Wallace [1956], which asserts that, if X is not a hypersurface, then

X is reflexive if and only if a general central proje.ction of X is

reflexive. Neither result implies the other, but Wallace's is easy to

prove using (2.4,iv) and (2.5); for, a general hyperplane section-maps

birationally onto a general hyperplane section.

(5.12) Proposition. Let M be a general hyperplane. If Y is ordinary,

then X is either ordinary or semi-ordinary.

Proof. Since Y is ordinary, then (Y/M) is ordinary by (5.8). By

(2.4,ii and v) and (5.3,ii), we may assume that k is algebraically

closed and that X is irreducible.
sm

Let (x, L') be a k-point of C(Y /M) such that

h(Sing(Y n L)/Y/k; x) = dim Y

sm
Obviously, there exists a k-point (x, H') of CX such that H n M = L;

hence

h(Sing(Y n H)/Y/k; x) = dim Y .5 (5.12.1)
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If X is not ordinary, then by (5.2,ii,a)

h(Sing(X n H)/X/k; x) = h(Sing(Y n H)/Y/k; x)

hence, by (5.12.1)

h(Sing(X n H)/X/k; x) = dim Y = dim(X) - 1

Therefore X is semi-ordinary.
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6. REFLEXIVITY FOR GRASSMANNIANS AND SEGRE VARIFTIES

(6.1) Segre Varieties. Let n,m be positive integers with n < m.

K be any field. The image of IPn x IP in IP (n+1)(m+l)-1 via the
K K Kvat

embedding

n Pm (n+1) (m+ 1)
K K K

(X ; ... ; Xn)
0 n

is the Segre variety S (nm)

coordinates of IP n+1)+

tions

W Wkk= W kj ik

In the open set U = ( W
00

w.. - w .w.
1J OJ iO

W..
where w = n2. At the

tangent space 0 o S K(n,m)

w.. = 0
1J

0

x (Y 0; ... ; Y m) - (X 0Y ;

Calling W..,

S K(n,m)

...; X Y )n m

(i,j) E [0,n] x [0,m], the

is given by the following equa-

(i,j), (k,9) E [0,n] x [0,m].

# 0}, the equations of X are

(i,j) E [0,n] x [0,m]

point P = (1; 0;

is given by

, (ij) E [l,n] x [1,m].

Hence a tangent hyperplane H to S K(n,m) at

H a. . w..
i>j 
j >1

with a..
13

E K. Since w. and w .,
10 Oj'

P has equation

= 0

i=l, ... , n, j=l, m, are a

regular system of parameters for S K(n,m)

Let

Segre

U, the

... ; X.iY.i;

. .. ; 0) E S (n, m) n

at P, we have that H n X is



f= ia..w. w
i>l1J 10 0J

= 0 ,

and the hessian (n+m)x(n+m) matrix of f at P with respect to w. and
10

w . is made of the following blocks.
03

10 (P) = 0]
awio awko

L 2 -2 . . (P) = [(a. )]
10 1]

D 2 (P)
io D oj

L 2
w 3w

o- 03

t
= [(a. )]

(P) = [0]

Since for a general tangent hyperplane H at P, the a..
1e

elements in K, we have that

rk[(a. .)] =
1J

are general

min(n,m) = n .

Therefore

h(P;H) = 2n (6.1.1)

To conclude our discussion we will need the following:

(6.2) Lemma* (Landman [1976]). Let X be an (n+m)-dimensional

variety ruled by I m over an n-dimensional variety Z in an N-

dimensional projective space. Then

dim X' < N - m - 1 + n

Proof. Denoting by Fz the fiber over z E Z, then clearly

*
See also Mumford [1978]
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given locally in X at P by the equation
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X' c u F'
zEZ Z

Hence

dim X' < dim F' + dim Z = N - rn-1 + n
-z

(6.3) Theorem. For an arbitrary field K, and for arbitrary positive

integers m and n with n < m, we have

(i) SK(n,m) is reflexive

(ii) dim(S K(nm)') = (n+1l)(m+l) - 2 - (m-n)

(iii) SK(n,m) is ordinary if and only if n = m

(iv) SK(n,m) is semi-ordinary if and only if n = m-1.

Proof. From (2.6,i), (6.1.1) and (6.2) we have

2n = h(P,H) < dim S K(n,m) + dim(S K(n,m)') - (N-1) < 2n

where N = (n+l)(m+l) - 1

Now, (i) and (ii) follow from (3.2), while (iii) follows from (i), (ii)

and (3.2), and (iv) follows from (5.3,ii).

N n+l
(6.4) Grassmannians. Let G C IP , where N =(+) - 1, be the

d,n nd+ 1
Grassmann variety of d-planes in IPn embedded via the PlUcker embedding.

NK
Give IP coordinates p(j , ... , d) with 0 < j0 < ... < jd < n.

N 0-
Then G is cut out of IP by the following quadratic equations

d,n

d+l

(QR) I (-) p(j , ... jd-lk )p(k , ... ,, ... , kd 1) = 0
X=0

where j0, ... , jd-1 and k ... , k d+ are any sequences of integers with

0 < j , k < n, k means that the integer k has been reomved from the

sequence, and p(j , ..., jd) have to be interpreted as being skew-

symmetric functions of j0, ... , jd such that p(j, ... jd) = 0 if any

two j are equal (see for example Kleiman-Laksov [1972]).
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Consider the following partition of the coordinates of ]PN in sets

Sm, for 0 < m < d+l, where

Sm ' {p(j ' Id)/exactly m of the integers jo, ... , jd are not

among the integers 0, 1, ... , d}

If j E {0, 1, ... , d}, then from (QR) we get the relation

(-l) d- o'..''' d)p(0,...,d) =

d v v

0(-1)Ap j , . , ,..., d ) p(0,. . A . . d
x= 0

(6.4.1)

Let U be the open subset of ]PN defined by p(O, ... , d) $ 0.
After making p (0, ... , d) = 1, from (6.4.1) it is easy to see that

every element of Sm can be expressed as a homogeneous polynomial of

degree m. in the elements of S . In particular, S is a regular system

of parameters of G n U.
d,n

Now, it is clear that the quadratic term of the restriction to Gdn

dd~nof the equation of a general tangent hyperplane to G d,n at P =

(1, 0, ... , 0) is a general linear combination of the elements of S2*
From (6.4.1) it follows, for ct, E {O, ... , d}, that

V V

p(O... a...K...dpv) = p(O. ... ...dv)p(0... a... .dv) -

V V
-p(0 ... a...dyp)p(0 ... ... dv) (6.4.2)

If we put

V
X = p(0...v.. .dp), a = 0, ... , d; yi = d+l, .. , n

then S is the set of these elements and from (6.4.2) we have
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S, = {x x - x x 'v; f, = 0,.. .,d;p,v = d+l,. .. ,n; ca< and p<v}.
- 6,I ad,V ca,p S,v'

It follows then that the Hessian matrix associated to a general

tangent hyperplane H to Gd,n at P is given by

A00 A ... A j
A =

.Ado Adl . dd-

where each block A.. is an (n-d)x(n-d) matrix with entries in K, A is

symmetric, A.., for i = 0, ... , d, is the zero matrix, A.. for i < j,
11 1J

is a general skew-symmetric matrix with zero diagonal entries.

Since Gd,n is a homogeneous embedded variety, the rank of the

Hessian matrix associated to a general tangent hyperplane at a general

point is equal to the rank of the above A. Recall also that we have the

following isomorphisms as embedded subvarieties of IPN

Gd,n = Gn-d-l,n (6.4.3)

Now, to analyze the rank of A, it suffices, because of the above

isomorphisms, to consider the following three cases:

(a) (d+l) and (n-d) are even,

(b) (d+l) is odd and (n-d) is even, and

(c) (d+l) and (n-d) are odd.

Since the computation of the rank of a general A as above showed

to be fairly complicated, we will do it only in some few cases and then

state our conjectures for the remaining cases.

(6.5) Case (a). In this case we are able to compute the rank of A.

Indeed, it is easy to produce a particular matrix A which is invertible,

take for example
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0 -B
B 0

A= 0

0

0

0 -B
B 0

0

0 -B
B 0

where B is an (n-d)x(n-d) non-singular, skew-symmetric matrix with zero

diagonal entries. Now, A corresponds to some tangent hyperplane H to

Gd,n at P, hence

h(P,H) = rkA = dim Gd,n

Therefore, from (3.2) it follows that Gd,n
is ordinary.

(6.6) Case (b). We will distinguish two subcases:

(b') n - d = 2. This is the same in view of (6.4.3) to study G1,n with

n even. In this case A is equal to

0 -B

B 0.

where B is a skew-symmetric (n-l)x(n-1) matrix with zero diagonal entries.

Hence a general such A has rank 2(n-2) (cf. Bourbaki [1959], Cor. 3,

p. 81). Therefore for n even, Gl'n is not ordinary.

If charK = 0, then G1,n is reflexive by the Segre-Wallace

criterion, so for a general H we have, from (3.2), that

h(P,H) = dim G + dim G'
1,n 1,n

- (N-1) .

Since h(P,H) = rkA = 2(n-2), it follows that

dim G' = N-3
l,n
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Suppose now that char K/ 0. D. Mumfotd [1978] computed the

dimension of G' his computation works in arbitrary characteristic and
1,n

gives

dim G,n = N-3 .

It is easy to check that

h(P,H) = dim G n + dim G' - (N-1)
1,n

hence by (3.2) it follows that G1,n is reflexive. So we proved the

following result:

If n is even, then in arbitrary characteristic, G1,n is reflexive

and dim G, = N-3.
l,d

(b") n-d > 2. It is not easy to determine the rank of a general A.

We suspect that A is always invertible as some examples indicate. If

this is true, then Gd,n is ordinary.

(6.7) Case (c). Since also here it is hard to determine the rank of a

general A, we will just state our conjecture.

G' is a hypersurface and G is ordinary if char K $ 2 and
d,n d,n

semi-ordinary if char K = 2.
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7. HYPERSURFACES WITH RANK ZERO LOCAL HESSIANS

(7.1) Keep the notations and hypotheses of (2.1) and (2..3).

(7.2) Definition. We will say that X has rank zero local Hessians, if

for every K-point (x,H') of CX sm, where K is a field, we have

h(x,H) = 0

From now up to (7.8), inclusive, we will assume that S = Spec(k),

where k is a field of characteristic p > 0. Note that if char(k) = 0,

and X is geometrically reduced and irreducible, then X has rank zero

local Hessians if and only if X is linear.

As always, K will denote an extension field of k. If

G E K[Y, .. YN

then G. (resp. G. .) will denote the partial derivative with respect to
1 1J

Yi (resp. Y. and Y.) .

(7.3) Proposition. Let p > 2 and let X : G = 0, be a hypersurface in an

(n+l)-projective space P over k. If X has rank zero local Hessians, then

for every algebraically closed field K we have the following set of

identities on the K-points of X (hence on X K)

2G..G.G. = G2G.. + G.G.. , i,j = 0, ... , n+1 . (7.3.1)
13 1 3 1 33 J

Proof. The equalities are trivially satisfied on the rational points

of Sing(X). Let Q be a rational point of X . We may assume thatK K
Q = (1; a1 ; ... ; a n+1) with a6E K, i =1, ... , n+l. Consider the

Taylor expansion of G at Q:

n+1 n+1
G(l,y ,...,y + . G.(Q) (y-a ) + G - a)( - a )+...

n i=1 ij=11
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Since by hypothesis X has vanishing Hessians, then

h(Q,(T QX)) = h(Sing(X K n TQ X K )/XK/K; Q) = 0

Now, since dim Q(XK) = dim Q(TQ X K), it follows from (2.1.1) that

h(Sing(X K n TQ X K)/TQX K/K; Q) = 0

This implies that the polynomial

n+1
I G. .(Q)(y. - a.)(y. - a.) (7.3.2)

i,j=l

vanishes at the K-points of

n+1
SG. (Q)(y. - a.) = 0 . (7.3.3)

i=l1 1 1

Therefore the polynomial in the left side of (7.3.3) divides the

polynomial in (7.3.2). Now, a straightforward computation, using

Euler's identity for homogeneous polynomials, shows that

n+1 n+1
G jQ)(yi - a) = YG y(Q) y.

i=l i=01

and that

n+1 n+1 n+1

SG. .(Q)(y. -a.)(y. -a.)= G. .(Q)y y. -2(deg(G)-l) G (Q)y ,
i, j= i, j=0 ij i i=0

where y = 1. Hence there exist elements b, .. , b n+ in K such that

n+o n+1 n+1

SG. .(Q)Y.Y. = b Y. G.(Q)Y.]
ii j=0 ij i j=o i jl i=0

Identifying the corresponding terms we get the equalities

b.G.(Q) = G. .(Q) ,1 1 11

and
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b.G.(Q) + b.G.(Q) = 2G. .(a)
1 3 3 1 13

These equalities imply (7.3.1) for all i,j = 0, ... , n+l, at any smooth

rational point Q of XK. This completes the proof.

(7.4) Theorem. Let p > 2. Let X : G = 0 be a hypersurface in IPn+1

which is smooth in codimension one. If X has rank zero local Hessians,

then for every i,j = 0, ... , n+1 we have that G.. = 0 in k[Y , ... , Y ].
13o n+1

Proof. If for some i, G. = 0, then G.. = 0 for all j = 0, ... , n+1.
1 13

Suppose now that G. $ 0. Let K be the algebraic closure of k. We denote

by S. the intersection of the hypersurfaces in Pn+l defined by G = 0

and G. = 0. Let V be an irreducible component of S.. Since the codimen-
1 . 1

sion of Sing(XK) in XK is greater or equal than 2, there exists an index

j different from i such that V is not a component of S.. So in 0 we

have K

ord (G.) = 0

From this and from (7.3.1) we have that

ord (G .) > ord (G ) . (7.4.1)

Now, if G.. / 0, then it follows from (7.4.1) that every irre'ducible
11

component V of S. is an irreducible component of the intersection S in
n+l1

]P of {G = 01 and {G.. = 01. Set d = deg G. Then from Bezout's
K 11

inequality (cf. Fulton [1984], Eg. 12.3.1, page 223) we have that

(d-2)d = (deg G. .)(deg G) > (ord (G. .))(deg V) >
V=irred.

Comp. of S

(ordv(G )) (deg V) > (deg G 1)(deg G) = (d-l)d
V=irred.

Comp. of S.
11
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contradiction. Therefore, G.. = 0 for all i = 0, ... , n+l.

Now, for all i,j we have from (7.3.1) the following set of

identities on X :

G..G.G. = 0
13 1 J

Note that the hypothesis on the singularities of X imply that X is

geometrically irreducible, so from the above identity it follows that

on X , either G. = 0 or G. = 0. But anyone of these conditions implies

that G.. = 0 in k[Y , ..., Y ].ijo n+l

(7.5) Remarks. (i) For n = 1, (7.4) was first proved by R. Pardini

[1983].

(ii) The hypothesis of regularity in codimension one is essential in

theorem (7.4). Indeed, for p > 2 the plane curve X : Yp-2 2 + YP = 0
o 1 2

is not reflexive because clearly the point (0;0;1) is a strange point

of X. Hence X has rank zero local Hessians but, nevertheless, G =

2Yp- 2 # 011

(iii) Theorem (7.4) has trivially the following converse:

Let p > 2, and let X be defined in IPn+1 by G = 0. If G. . = 0 for all
k

i,j = 0, ..., n+l, then X has rank zero local Hessians.

(7.6) Corollary. The hypotheses being as in (7.4), we have that

pl (deg(G) - 1)

Proof. From (7.4) and from Euler's identity we have for all j = 0,

n+1 that

n+1
0 = 1 G. . Y. = (deg(G) - 1)G.

i=0

Since not all the G.'s are zero, it follows that pI(deg(G) - 1).

(7.7) Corollary. The hypotheses being as in (7.4), there exist

-----. ...................................



65

homogeneous polynomials P , .. , P n+ in k[T, .. , T n+1], all of those

which are not zero of the same degree, such that

G(Y, ... , Y ) = Y P (Y , ... , Y ) + ... + Y P (Y , .. Y ) .
0 n+1 0 0 0 n+1 n+1 n+1 o n+1

Proof. From (7.6) and Euler's identity we have that

G(Y ,1 ..., Y ) = Y 0G 0(Y ,0 .. Y n) + .. + Y n1G (Y , ... , Y ) .)o n+loo o' n+1d n+1- n+l o' n+1

Now, since by (7.4), for every i all the partial derivatives of G. are
1

zero, it follows that the G. 's are homogeneous polynomials in Y , ... ,

Yp
n+1

(7.8) Corollary. If p > 3, then the smooth hypersurfaces of degree
n+l

Zp+ 1 in IP with rank zero local Hessians are the rational points ofk
a non-empty open set S in a projective space over k of dimension

Z+n+l
(n+2)( ) - 1.

n+1

Proof. The dimension follows from the count of coefficients in (7.7),

the openness comes from elimination theory and the non-emptiness follows

by observing that the hypersurface

9Ap+1 p+
Y +.. + Y = 0
o . n+1

has obviously the required properties.

(7.9) Let S be as in (7.8) and let V be an (n+2)-dimensional k-vector

space. Set P = ]P(V ) = SXk]P(V) . Define X to be the graph of the

point-hypersurface incidence correspondence in P. So X is the total
+1

family of all smooth hypersurfaces in IPk of degree Zp+1 and with

vanishing Hessians.

Now, X/S is flat since X is a family of divisors parameterized

by S (cf. Mumford [1966] p. 72). Since every fiber of X over S is smooth

of dimension n, it follows that X/S is smooth of relative dimension n
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(cf. EGAIV 17.5.1, p. 67). It is clear that X has rank zero local

hessians and that we have an S-isomorphism C(X/P) ~ X.

(7.10) m-Jacobians. Keep the notation and hypotheses of (2.1) and (2.3).

Let X be a closed subscheme of P = IP(E), smooth over S of relative

dimension n. Let Z = X x P*. Let m be a positive integer. The m-

Jacobian J m(X/P) is the subscheme of Z defined by

J m(X/P) = IP(Coker(wv ))

where w is the natural map from EX to the sheaf of (m-l)-principal parts

PX ((1)). It is standard theory (see for example Vainsencher [1981],

page 404) that, locally, J M(X/P) is cut out of Z by the set of equations

D F = 0 , l(i)I < m-1 , (7.10.1)

where i-= (i, ... , in) E n, I(i) = i1 + + in, the D 's are
n +1 n(i)

the Hasse differential operators of Z over P* (cf. EGAIV 4, 16.11), and

F is a local equation of the incidence correspondence I in Z.

It is known, and easy to verify from the definitions, that

J (X/P) commutes with base change. It follows easily from (2.5.2),

(2.2.i) and the above description of J m(X/P) that

J2 (X/P) = C(X/P)

(7.11) Proposition. Keep the hypothesis of (7.10) and assume that all

the residual fields of the points of S have the same characteristic

p > 0. If X has rank zero local Hessians and if for some s E S, Xs is

not a linear subspace of Ps, then there exists a positive integer e such

that

J 2 (X/P) = ... J (X/P) D J (X/P)
e e

p # p +1

Proof. For every point s E S, it follows by (2.1.1) that Xs has rank

--------------------------------------- 1- 1- -- ....................................
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zero local Hessians. Hence by the same argument we used in the proof

of (a) -* (b') in theorem (3.5), for every s E S for which X is non-

linear, there exists a positive integer e(s) such that

J (X /P ) =
2s s

... = J P se (s)
p

(X /P ) D e(s) +1
/ p +

(X /P ) .
s s

put

e = min{e(s)/X is non-linear}
5

By the commutativity of the formation of J M(X/P) with base change,

we have for all s E S that

J 2 (X/P) = J (X/P) ,
p

and for s realizing the minimum e, that

e (X/P) D J (X/P) s

This proves the proposition.

(7.12) Remark. In some cases we can give an interpretation for the
e

integer p . For example, when S = Speck and dim X + dim X' = dim P,

then the proof of (3.5) shows that

pe = [k(CX) : k(X')].

See also (8.8) for another result about p
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8. A CLASS OF HYPERSURFACES

(8.1) Let k be algebraically closed of characteristic p > 0, and let

n be a positive integer. In this section we will study the smooth

hypersurfaces M in an (n+l)-projective space over k given by equations

of the form

G(Y ,...,Y ) =Y L (Yq, .. Y ) + .. +Y L (Yq,...,Yq 0 ,o n+l o o o n+l n+l n+1 o n+1

(8.1.1)

where q = pe for some positive integer e, and where for every i = 0,

... , n+1,

n+
L.(T , ... , TI) = a T.

i 0 n+1 .= 1

with a. E k for i,j = 0, ... , n+l.
1

If p > 2, these hypersurfaces have, by (7.5,iii), rank zero

local Hessians. We do not make this restriction here.

The smoothness of M implies that

det(a3). . 0
1 1,J

Hence all the hypersurfaces like M, with fixed e, form a smooth family

X over

S = PGL(n+l, k)

of relative dimension n, embedded in P = x k n+l
k k

(8.2) Notation. If C = (C). . is any matrix with entries in k and
r =1 1,s

r = ps, where s is any positive integer, then we define
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(r) = ((C r

Note that C ( is not the r-th power of C with respect to matrix

product. It is clear that, whenever the matrices involved are compat-

ible with the situation, we have the equalities:

(r) ~(r) +D(r) ( CDr) (r).D(r) (t (r) t t((r)
(C+D) = C + D (C.D) C D , (C

(C-1)(r) = (C (r), det(C ) = (det C) (r)

If C E /An+2 \{O} and D E GL(n+2, k), then we will use the
k

notations [C] and [D] to represent respectively the class of C and D

in IPn+l and in PGL(n+l, k).
k

(8.3) With these notations, equation (8.1.1) for M can be written

matricially as follows

G(Y , ... , Y n+) = YA( Y) = 0 , (8.3.1)

where

Y =(Y , ... , Y )n+ , '

and

A = (a.)
1 1,j

It is clear that ([A], [Y], [Y*]) E C(X/P) if and only if (8.3.1)

and (8.3.2) below hold.

[Y*] = [Y(q)tA] . (8.3.2)

From (8.3.2) we get
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[Y ( ] = [Y* tA- ] . (8.3.3)

Raising (8.3.1) to the q-th power and using (8.3.2) we get the

following equation for M', the dual of M,

Y*( A 1)( y)(q) = . (8.3.4)

(8.4) Remarks. (i) From (8.3.4) it follows that M' is a smooth

hypersurface of the same type of M. It is also clear that M satisfies

biduality, i.e. (M')' = M; and that M is self dual if and only if [A] =

It A-lII[A ].

(ii) From (8.3.3), it follows that for every [Y*] E M', the contact

locus of [Y*]' in M is just one point. In particular we have that the

maps qM : CM + M' and q' o q- : M-+ M' are -purely inseparable. From

this and by the general PlUcker formula,

deg q' . deg X' = deg X . (deg(X) - 1) n

(see Kleiman [1977], IV, 49, p. 357), we have that

[k(X) k(X')]. = qn

(iii) Applying (8.3.2) twice, we see that the map

b : M + CM -+ M' CM' + (M') = M

is given by

[Y] (q2) A

(8.5) In the next theorem we will give explicit equations defining the

schemes J2 (X/P) J (X/P), ... , in X xk k n
2 q k k
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Let U be the open set of X, over an affine open subset of S

(which we still denote by S), defined by

Y /0
0

and (A ( Y))n+l / 0 .

Set V = U x k
tk k

contained in the o

. From (8.3.2) it is clear that C(X/P) n V is

pen subset v of V defined by Y . 0 . Set
0 n+1l

Y.

y. = - V

and set

*

y Y* i

n+1

i = 1, . .. , n+l

,i=0, ... , n.

Let D for (n n , be the Hasse differential
( ,- -- ,n n+l* n

operators on V over S xk P associated to y . yn
We denote by D., for 1 < i < n and j > 0,- the differential

operator D such that ZQ = 0 if r / i and Z. = j.
we have, for every permutation a of 1, ... , n, that

D zn)

Clearly

=D zC O oD a(n)
a(n) 'a(n)

Let

F = y* + y Y + ... + y Y*+ y+ 1 = 0 (8.5.1)

be the equation of the incidence correspondence I in V .

(8.6) Lemma. For every i = 1, ... , n, we have on J (X/P) n V,

q q q

D iy = -y*i n+l 1

Proof. From (7.10.1) we have on J (X/P) that
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DjF = 0
1

for 0 < j < q-1 and 1 < i < n .

From Leibniz formula for Hasse differential operators (see Teichmiiller

[1936], (4) p. 91) we have on J (X/P) n V, for all i = 1, ... , n, that

q .1 .
D F q= (D F)(D 3  -) = .

j=0

Hence on J (X/P) n V and for every i = 1, ... , n, we have for F as

defined in (8.5.1) that

0 = D0(y* + y + . y *) =q y*q + D y"q
1 o '1 1 n + n+l n+l i i n+1

From which the lemma follows.

(8.7) Proposition (i) If Z + + kn > 1 and for some i, 1 < , .< q-1,

then

D
~l''''

F = 0 on V
0

(ii) For every i = 1, ... , n, we have on C(X/P) 11 V that

D F = [-(YA) + y*q(YA) ][(A(t) -
i i 1 n+1 n+1

where Y = (1, y1, ... , yn+1)

Proof. From (8.5.1) we have, for every (Z1 , ... , n) such that

z1 + .. +Z n> 1,

D 'k ' ) F = D ' ' n) n+1
(8.7.1)

Now, to compute the derivative in the right side of (8.7.1), we apply

the operator D. to the equation (8.3.1) where Y = (1, y1, ... , y+ 1)1 1 +
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By Leibniz formula we have

(YA(tY) (DY)A(D (t (q)) (8.7.2)
1 j=0 .

From Leibniz formula and by induction it is easy to check that

D y = q q-v 
1  V

V1).y D y . D 1

X>o
(cf. Teichmiiller [1936], p. 92). Hence

y

for 1 < Z < q-1 .

So from (8.7.2) we have that

(i) if 1 < Z < q-1, then

0 = (D. Y)A(t )(q) = (D y )(A t (q)

Suppose that for some i, Z 2 > 1. Since

on V , then

Z,.

Di yn+ = 0

+ (D. y )(A (tY (q))
i n+1 n+1

(8.7.3)

D y = 0 and (A( ) 01 1 Y n+l

on V
0

Suppose that for every i, Z. < 1. Then there exist i and j with i / j

such that 9. = Z. = 1, hence from (8.7.3) by differentiating the left
1 J

and right sides with respect to D', we get D±DIy
Sn+1

any case we have on V that

= 0 on V
0

So in

zD1  zo D. z o 9, 9, 9,. 9,.D )n+ = D 1 o...o D o D. o..o D n(D.3 (D. y )) = 0,

and the proof of (i) is complete.

(ii) if 9. = q, then
1

D t Y)(q) = 0
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0 = YA(D (tYA (q) + (8.7.4)

= (YA) + (YA) (D q y+) + (Dq y+)(At (q)
1 n+l i n+l 1 n+l n+l

Now, from (i) we have that C(X/P) n V = J (X/P) n V, so by (8.6) and

(8.7.4), (ii) follows.

(8.8) Theorem. (i) J2 (X/P) = ... = J (X/P), scheme theoretically.

(ii) ([A], [Y], [Y*]) is a K-point of J (X/P) if and only if the

following conditions are satisfied.

(a) YA(t) (q) = 0 , (b) [Y*] = [Y A()t] and

(c) [Y q 2 )tA) ]q)= [YA].

(iii) J (X/P) D J (X/P) # 0
q q+l

Proof. Note that C(X/P) can be covered by sets like V on which

statements analogous to (8.7) hold. It is clear now that (i) follows

from (8.7,i).

In view of (i) we have that on V J q+(X/P) is cut out of

C(X/P) by D F = 0, i = 1, ... , n. Since (a) and (b) are equivalent to

([A], [Y], [Y*]) E C(X/P), from (8.7,ii) we have that ([A], [Y], [Y*]) E

J q+(X/P) if and only if (a), (b) and (c') below, are satisfied

(c') (YA). = y* (YA) , i 1, ... , n.
1 1 n+l

To complete the. proof of (ii) we have only to show that (a), (b) and

(c') are equivalent to (a), (b) and (c). Clearly (a), (b) and (c)

imply (a), (b) and (c'). To show the converse, since YA # 0 (recall

that A is invertible), it suffices to show that (c') also holds when

i = 0. Multiplying both sides of (c') by y and summing the equalities

for i = 1, ... , n+l (note that (c') is trivially satisfied when i =

n+1), we get
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n+1 n+1
(YA) y = yq y*q (YA)n+

i=l i=n

So, from (a) and (8.5.1) (which is implied by (a) and (b)), we get

(YA) = y*q(YA)

and the proof of (ii) is complete.

To prove (iii) it suffices to note that C(X/P)Id Jq+1 (X/P)Id 0,
where Id is the identity matrix; indeed, the scheme on the left side is

positive dimensional, while the scheme in the middle is zero-dimensional.

Now observe that if a E k is such that aq+1 = -1 then for Y

(0, ... , 1, a) and Y* = (0, ... , 1, aq) we have ([Y], [Y*]) E

J q+l(X/P) id*

(8.9) Let A be a K-point of S. The K-points of

Jq+1  A q+1 (XA +1

have a nice geometric interpretation. From (8.4,iii) and (8.8,ii) it

follows that ([Y], [Y*]) is a K-point of Jq 1 (XA / pn+ 1) if and only if

[Y] is a fixed point of the map

b XA -XA

defined in (8.4,iii).

The next theorem, essentially due to Hasse [1936] (Satz 10, 11),

for which we offer a geometric proof,.will imply that the map b (or

any of its iterated) has finitely many fixed points.

(8.10) Theorem (Hasse [1936]) Let K be an algebraically closed field

of characteristic p > 0. For every B E GL(N+l, K) and f6r every

positive power q of p, there exists T E GL(N+l, K) such that
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T BT Id

Proof. Set S = GL(N+l, K), and let

W = {(B,[Y]) E S x FN / 2 Y (Bq = 0} c S x ]pN

It is clear that the projection T: W -+ S is proper. Let U. 'be
N1

the open set in S x P1N defined by Y. $ 0. It is clear that on U. n W
(q) 1we have that (Y B)$ 0. If P is a point of W, we may assume that

P e W n U , so W is defined around P by the vanishing of

g. = (Y ( B) y -- (Y ( B) , i = 1, ... , N

Y.
where y. = , i = 1, ... , N, and Y (1, y 1, ... yN '

Since0

dg.(P) = (P(q B) dy., i = 1, ... , N

and (P (qB) 0 0, it follows that the dg.(P), i = 1, ... , N, form a

basis for 0 ]N (P) over k(P). Hence from the Jacobian criterion

(SGA I, Expos6 II, Thm. 4.10) we have that W/S is smooth at P of

relative dimension zero. It follows that T : W -+ S is stale. In

particular, 7T is quasi-finite, and since it is proper, by Chevalley's

theorem (cf. EGAIII, 4.4.2), it follows that 7r is finite. So Tr is an

etale covering.

Since 7T is an stale covering, all its geometric fibers have

the same number of elements s (cf. EGAIV Cor. 18.2.9). Therefore

for any B E GL(N+1, K), the equation [Y (B] = [Y] has s solutions
N N+1

in P . Since trivially the number r of solutions in /AK of

(8.10.1)Y ()B = Y
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is related to s by the formula

r = s(q-1) + 1

it follows that r is independent from B. Now, by taking B = Id in

(8.10.1), we find that

N+1r = q (8.10.2)

Let u , ... , u be a maximal set of (linearly) independent

solutions in A of (8.10.1). Hence all solutions of (8.10.1) are

the form

of

u = X u + ... + X u ,

with X. E K such that - X= , i = 1, ... , 9. Therefore (8.10.1) admits
1 11

q solutions, and from (8.10.2) it follows that Z = N+l.

Now, let T E GL(N+1, K) be such that

u. = e.T ,1 1
i = 1, ..., N+l ,

where el = (1, 0, ... , 0), e2 = (0, 1' ... ' 0), ... I eNl = (0, 0 ... I).

So

(e.T) ()B = e.T ,
1 1

i = 1, ..., N+l ,

therefore

T (BT~1 = Id.

(8.11) Corollary. Keep the hypotheses of (8.10). If D E A , then

the equation
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Y (B = Y + D

has exactly q solutions in /AK 

Proof. Let T be such that T BT~B = Id and put Y = ZT.

So far, J q+1(X/P) is only defined for positive integers n. We

will define Jq+1 (X/P) for n = 0 by equations (a), (b) and (c) of

(8.8,ii). The proof of (8.8,ii) shows that also when n = 0, we have

that J q+(X/P) 0

(8.12) Corollary. For every K-point A of S, Jq+1 XA n+1 ) is at most

finite.

Proof. Obviously we may assume that K is algebraically closed. Put

B = tA q)A-1 and D = 0 in Corollary (8.11). Then the equation

Y (2 tA A- ) = Y (8.12.1)

has exactly q2(n+2) solutions in /An+2 Therefore the equation (8.12.1)

viewed in IPN+1 has finitely many solutions. This implies the result
K

by (8.8,ii).
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9. CLASSIFICATION PROBLEM FOR A CLASS OF HYPERSURFACES

(9.1) Keep the hypotheses and notations of section 8.

points mean closed points (hence rational)

integer.

The action of PGL(n+1, k)

coordinates,

on Pn+ 1on

PGL(n+l, k) x ]Pn+
k

([T] , [Y] ) [YT*]

In this section

. Let n be a non negative

by linear change of

n+l
*Ik

where T* is the cofactor matrix

a natural action on P (n+2)2 _1

dence in pn+1 X n+1 , given by

PGL (n+1, *k) x P n+2) 2

([T] , ([A], [Y] , [Y*]))

of T (i.e., T* = (det T) T ), induces

x kI, where I is the incidence correspon-

Xk I -* n +2) 2 k

[YT*], [Y*T])

9.1.1)

Notice that

([T], [Y], [Y*]) ([YT*],

is a transitive action of PGL(n+l, k) on I.

(9.2) Remarks.

W = {([A], [Y],

(i) Let W C P (n+2) -1
Iik

[Y*])/YA tY) (q)

and let Tr1. W + n+2)-1

(8.8,ii) we have that Tr1 (S)

Xk I be defined by

= 0, A2 Y tA = 0, A2 Y ( A)

and T2 : W -+ I be the projections.

= J q+(X/P), hence J q+1(X/P) isq+1 qa

(q)

From

n open

[Y*T]) (9.1.2)

I=0

) (t TAT ],) 1
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subset of W.

(ii) The fibers of fr2 are not irreducible. For example, if Y =

(1, 0, ... , 0) and Y* = (0, ... , 0, 1), then we have

7T ([Y];[Y*]) ={[A]/A0 =0, i=0, ... , n+1} U {[A]/A =A =0, i,j=O,...,n}
1 0 1

(iii) It can be shown that the action in (9.1.1) restricts to an action

on W and that this action is compatible with 7T 2 and with the action in

(9.1.2).

(9.3) The action in (9.1.1) restricts clearly to an action on J (X/S)

and this action is clearly compatible with 2 : Jq+(X/P) - I and with

the action in (9.1.2). More precisely, if ([Z], [Z*]) = ([YT*], [Y*T]),

then

-1 = t -1([Y], [Y*]))T (9.3.1)
'2 (Z,[]) TV 2 (YL)

(9.4) Proposition. J q+1(X/P) is irreducible and of the same dimension

as S.

Proof. Let P = (1; 0; ... ; 0J and P* = (0; ... , 0; 1). From (8.8,ii)0 0
we have that

F = 7T (P ; P*) = {[A] E S/A0 =A = ... =A = A = ... =A 0
2 0 0 0 1 n 0 0

F is an open subset of a linear subspace of FP n+2)2 of codimension

2n+1.

We will show that every point of I has a neighborhood U such that

72 (U) is irreducible and is of the same dimension as S. This is

sufficient to prove the proposition.

Let ([Y], [Y*]) be an arbitrary point of I. Fix a point

( n+l' Q+ 1 ) in I such that
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[Y] § (Q+1) ' and [Y*] 9 QA+1

Fix n lines in IPn+1 , through Qn+1 , such that they generate (Q '

Let

U n+l*U = I\((Q +1)? 
1~k

Now, to every ([Z], [Z*]) in U, we may associate the points

Qo = , Q = 91 n Z],.. Qn = n n [Z*]', Q+1

which form a reference frame of 1Pn+l , hence there is a unique lineark
n+1

transformation T (Z, Z*) o k

(Z,Z*) k i,

such that

i = 0, ... , n+1

P = (1; ... ; 0), P = (0; 1; ... ; 0), ... , P = (0; ... ; 0; 1)

It is clear that the induced transformation maps [Z*] into P*,
0

and that we have an isomorphism

Tr (U) U x Fr2

([A], [Z], [Z*]) > ([Z], [Z*], T (Z Z )(A))

Therefore Tr~2 (U) is irreducible and clearly of the same dimension as S.

(9.5) Remark. The proof of proposition (9.4) also shows that Jq+(X/P)

is smooth over k.

where

Up+ 1 X Q +13
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(9.6) Proposition. The projection J q+(X/P) -+ S is proper and surjective.

Proof. The map is proper because the projection Tr 1  W + P(n+2) 21

(see (9.2,i)) is proper and 7r (S) = J (X/P). Since the map is closed1 q+l
and it has a zero dimensional fiber (cf. (8.8,iii) and (8.12)), and since

S and J q+(X/P) are irreducible (cf. (9.4)), it follows that the map is

surjective.

(9.7) Remark. It is possible to prove that the projection J q+(X/P) -+ S

is an 6tale covering. We will not prove this result here since we will

not need it in the sequel.

(9.8) Lemma. Let k be an algebraically closed field of characteristic p,

and let n be a non negative integer. If A E GL(n+2, k), then there exist

T E GL(n+2, k) and B E GL(n,k) such that

0 0 ... 0 1
0 0

TAT - . B

0 0
1 0 ... 0 0

Proof. For every closed point [A] of S we have from (9.6) that there

exists a closed point ([Z], [Z*]) in J (X A/ ]Pn+1 ). By the transitivity

of the action of PGL(n+l,k) on I, there exists a closed point [T] in

PGL(n+l,k) such that

([ZT*], [Z*T]) = (P, P*)

where P = (0; ...; 0; 1) and P* = (l; 0; ... ; 0). Now, from the equa-

tions (a), (b) and (c) of (8.8,ii) which define J (X/P), we have thatq+ 1



tT AT (q)= C =
1 1

Cn
0n

... Cn1

0 0

n+l 0
with Cn+1. C n 0.

W n+
We write C in blocks as follows:

C 0

C = C 0

C 0
n+1

where C = (C , ... , Cn),
0 0 0

Let

T=

C C n+1-
o 0
B 0

0 0

C 0

. 0
C 0

x
tU

w

0

Id

V

-'C C . n1 n

, B = E GL(n,k)

n n

0.

0

P

where U = (u , ... , un), V = (v1, ... , vn), with X, P, w, u, ... , n

v ,... v indeterminates.

Now, by computing the product, we have

d 0
0

n+l

D pqXCn+ 1,
o 0

B 0

0 0

d0 = xCn+1 q + XqCo w + Xq(XCo + UC 0  + (XC + UB) tU
0 0 n+l 0 C

(9.8.1)
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0 0
C0 C1

1 1

Cn+l1

0

0' 
1

n+1

where

------------
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D = Xq(C0 + C0  tV) + B tU q) (9.8.2)
n+1

D = XC + UB + XC 0+ . (9.8.3)

First of all observe that the equations

1C 0 = y191 Cn+l = 1 (9.8.4)n+l 0

can be solved for X and p in k*. Fix such a solution pair.

The system of equations

D = 0

D =0

is equivalent to the system

q Co V + U (q).tB + Xq tCo = 0
n+1

{C n+1 V(q) + U.B + XC =0

which in view of (9.8.4) is equivalent to the following system:

V= - (q). B + ,q tCo (9.8.5)

2 2
U ).tB .q). - U + (XC - 2 (t C) ( ) B~ . (9.8.6)

Equation (9.8.6) has solutions in view of (8.11). Hence the system

has a solution in U and V. Fix one such solution. Finally from (9.8.1)

it is clear that d 0 = 0 has always a solution in w. Now the proof of
0

the lemma is complete.

(9.9) Remark. The result stated in lemma (9.8) is equivalent to the
following geometric statement: For every AC GL(n+2, k), J ( /n+l

q+l A k
has two rational points (P, P*) and (Q, Q*) such that Q ( (P*)' and
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P 7 (Q*)'. Unfortunately, we do not have.a geometric proof for this.

(9.10) Theorem. Let k be an algebraically closed field of characteristic

p, and let n be a non-negative integer. Given any A E GL(n+2, k) and

any positive power q of p, there exists T E GL(n+2, k) such that

0 0 ... 0 1
0 0

t ~(q)
tTAT =. l

0 .' 0
1 0 0 0

Proof. The proof is by induction separately on n even and n odd. The

case n=0 follows immediately from (9.8). The case n=1 also follows from

(9.8) by first putting A in the form

0 0 1

A' =0 b 0

1 0 01

and then by taking TA'T where

1 0 0

T= 0 X 0j

10 0 1

with X such that Xq = 1.

Assume now that the result is true for matrices in GL(n,k). Let

A E GL(n+2, k), then by (9.8) A can be put in the form

-0 0 ... 0 1
0 0

A' = . B

0 0
1 0 ... 0 0-
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with B E GL(n,k), so by the inductive hypothesis there exists

R E GL(n,k) such that

0
0

0
1

0 0

1

0 0

1
0

0
0

so the matrix

1
0

T1

0

0

0
0

R

... 1-

does the job for A', and the proof is complete.

(9.11) Corollary. Let k be an algebraically closed field of

characteristic p, and let q be a fixed positive power of p. Then all

non-singular hypersurfaces of type

Y L (Y . . q ) + + Y L (Y q Yq 0
0 0 0 n+l n+l n+l o n+

with L0 , ... , L n+ linear polynomials with coefficients in k are

projectively equivalent.

(9.12) Corollary. Let k be an algebraically closed field of

characteristic p > 2. Then all non-singular hypersurfaces of degree p+l

with rank zero local Hessians are projectively equivalent to

XP+ 1 + + Xp+l =0
o n+l

(9.13) Remark. This corollary for n = 1 was first proved by Pardini

[1983].
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10. DUALITY FOR PROJECTIVE CURVES

In this section we will illustrate our methods and results in the

particular case of projective curves, and will obtain further results

for these varieties.

(10.1) Hasse Differential Operators, Taylor Expansions. Let X be a

reduced and irreducible curve over our algebraically closed field k.

Let t be a section of 0X over an open smooth subset U, such that dt
1X

generates QX/k/U. Consider the Hasse Differential Operators on U (cf.
X/ko 1 2

EGAIV4 16.11), these are the differential operators Dt' Dt' Dt '

on OU, uniquely determined by the formulas

D tm = n tm-n (10.1.1)
tn

These differential operators verify the relations:

Dm ODn D n Dm (m+n)! Dn+m .10.1.2)
t t t t n! m! t

Let f be a section of 0U. Then to f there are associated the

sections D f, D f, ... , of OU, which allow us to expand f in power series
t' t U

at any closed point of U. Indeed we have in 0 P

1 2 2
f = f(P) + D f(P)(t - t(P)) + Dtf(P)(t - t(P)) + ... (10.1.3)

t

If chark = 0, then the operators Dn for n > 1, are determined, in
t 1

view of formulas (10.1.2) by the single operator D t, in fact we have for

all n > 1,

D n (D )n
t n! t

1
If chark = p > 0, then Dt no longer determine all the higher order

differential operators, but some of them do, as we will see soon.
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We had the occasion to use the Hasse Differential Operators and

their properties in general, in (3.5), (7.10) and throughout section 8.

However, we want to be more explicit in the case of curves because this

could give an insight on the methods and results we described so far.

(10.2) Proposition (Dieudonne [1950]) Let chark = p > 0, and let

2 s
n = n0 + n + + + ns

where the n are integers such that 0 < n < p, i = 0, ... , s, be the

p-adic expansion of n. Then we have

1 s n n n0Dn n!n!.ns (DP ) s o .. (DP) 0 (D) .t a 1 s t t

Proof. Use (10.1.2) and induction on s.

It follows by (10.2) that the family D = (Dn) is determined by

the operators D, D, ... , DP . .
tY t.1 t.....

(10.3) Proposition. Let f be a regular function on U.

(i) If D~ f = 0 on U, then we have identically on U:
t

DP f = DP +f= ... =DP ~" f = 0
t t t

2
(ii) If p $ 2 and D f = 0 on U, then for all k > 0, we have identically

t
on U:

D~p+2 . .Z. = DZp+p-lf = 0
t t

s+1 s 5
Proof. (i) Let 0 < n < p - p . Write n = n0 + nlp + ... + ns

with 0 < n < p, i = 0, ... , s. Since ns s < n < p s+- p s, it follows

that ns < p-1, therefore
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p +n = no + nip1 + ... +(ns + 1)ps

with 0 < n0, n , ... , s-1, (ns+1) < p. Hence by (10.2) we have

S

Dp +n
t n n 1  (D )n 0 0

n 0! n 1 ! ... (n s+ !
(D )

S S n=
So if DP f = 0 on U, then DP+nf =0 on U fot t
(ii) Let 2 < n < p and suppose that Z=

0 < k < p, i = 1, ... , r+1, so

Zp+n = n + t p + . + Zr+iP

ni s n +1
1 ... o (D s

t

0 < < s+1 s

+ P2p + . .. + l r , with

r+1

hence

D Zp+n = n1 D 1. ! (D ) r+1o ... o(D") £
1. r+1

(D )n
t

2 ____pr_+1 ) Zr+l
= n Z 1 ... 1 ( ) S... (D)

t
1 n-2 2

o(Dt) *Dt

So if D f = 0 on U, it follows that DZp+nf = 0 on U for 2 < n < p.
t t

(10.4) Corollary (Taylor expansion). Let f be a regular function on U.

If chark = p = 2 or D f = 0 on X, then there exists a positive power q

of p such that for every closed point P in U we have

f=f(P) +D f(P) (t - t(P)) +D f(P) (t -t(P))q + Dq+lf(P)(t - t(t(P))q+1 +

D 2f(P)(t - t(P))2q + D 2q+f(P)(t - t(P))2q+l
t t

+ ..

(10.5) Duality for plane curves. The tangent cone of the dual of a

projective curve at a point. Let Y be another curve over k, and let

5 : X -- + Y be a rational dominating map. Let $* k(Y) -+ k(X) be the

induced non-trivial homomorphism.

To every parameterization h : k(X) -+ k((T)), we get a

parameterization ho$* on Y. Let P be the place corresponding to h and
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Q be the place corresponding to ho$*. Let eP be the ramification index

of $ at P, so the order of imprimitivity of ho$* is equal to e P times

the order of imprimitivity of h. Hence if h is primitive, then the order

of imprimitivity of ho$* is equal to ep.
If X is complete, then it is well known that

I e = degt,
$(P) =Q

and moreover, if Q is general, then there are precisely [k(X) k(Y)]s
places P in the counterimage of Q and these are such that e =
[k(X) : k(Y)]i. So if P is general, we have

ep = [k(X) : k(Y)]i (10.5.1)

Suppose now that X is a non-linear plane projective curve, that

Y = X' is the dual of X and that is the composite map

X - CX +X

Suppose now that coordinates X0 , X, X have been chosen for IP
0 1 ' JX 1

such that the set U on which dx, where x = X, generates 0 X/k/U,

is non empty.

If P = [X (t); X1 (t); X2 (t)] is any place of X in any coordinate

system, then the equation of the tangent line of P is given by

0 X 2

X0 (t) X =(t) X2(t) 0

_k 0(t) i (t) 12(t)l

hence, Q = $(P) is given by

Q= [X (t) 2 (t) - X (t) k (t) ; X(t) X (t) - 1 2 (t) X (t); X (t) X (t) - X (t) X1 (t)]
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If the center of the place P is [1; a0 ; b0] E U, then we may write

p = [1; a + t; b + b t + bt + .. ,

hence we have

Q = [X(t)i2(t) - X2(t); - X2 (t); 1] (10.5.2)

= [a b - b0 + 2a0b2t + (3a b3 + b2)t

If P is general, then Q = (P)

X', hence

ep = min{ord(2ab 2t + 3aob3 + b2)t 2

2 + 4aob4+ 2b3)t 3+ ;-b -2b2 t

2_
- 3b3t

is centered at a simple point of

+ ... ), ord(2b 2t +3b 3 2

(10.5.3)

(10.6) Remarks. (i) If chark = 2, then from (10.5.3) it follows that

for a general P we have ep > 1. Therefore it follows from (10.5.1)

that $ is not separable, consequently no non-linear reduced and irreduc-

ible plane curve is reflexive. Since the dual of such a curve is also

a plane curve, it follows that no such curve is ordinary. This is a

particular case of (3.4).

(ii) Generic order of contact. Let

m = min{n/n > 2 and D (t)J 0 on U}
n ta (~

So for a general point P of X we have

m = mP(X.T X)

A point P will be called a flex (resp. a simple flex) of X, if

mP(X.T X) > m+l (resp. m (X.T X) = m+1).

I

U
I
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From (10.5.2), it follows that eP = 1 (i.e., X is reflexive) if

and only if m=2 and chark $ 2.

Suppose now that m$2 or chark = 2, then from corollary (10.4) it

follows that a place P with general center P on X is such that

P = [1; a +t; b +b 1 t + b t + b qtq1 + ... ] (10.6.1)o o1 q q+l

where q = pr for some r > 1, and since X is not linear, b q 0. Hence

$(P) = [a0b - b0+ (a b -b )tq+ (aob2q+1 - b2q)t2q -

ol~~~ o 2qqq_~~l 2

-b1 bq+1 - b2q+lt ..

(10.6.2)

and therefore ep = q. From (10.5.1), it follows that q = [k(X) : k(X')] .

From (10.6.1), it is clear that m = q, so we may conclude that

m = [k(X) : k(X')].

From the above discussion we have that X is not reflexive if and

only if m = [k(X) : k(X')].. This is a particular case of theorem (3.5).

(iii) If X is a non-reflexive curve and P is a smooth point of X which

is not a flex or it is a simple flex, then it is clear from (10.6.1)

and (10.6.2) that the branch of X' corresponding to the place P of X

centered at P, is non singular. Note that this is a peculiar property

of non-reflexive curves, since for reflexive curves X, flexes on X

always produce singular points on '

The next proposition will describe the tangent cone at most points

of the dual of a projective curve.

(10.7) Proposition. Let X C pn be a reduced irreducible non-linear

reflexive curve. Let H be a hyperplane not containing X and meeting it

at simple points. Then the tangent cone to X' at H' is given as a cycle

by
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TC (X ) r PP
PEXHH

where

F mP(X.H) - 1 , if ptmP(X.H)

rp =

m P(X.H) , if P/mP(X.H)

Proof. Suppose n = 2.

Let Q be a branch of X' centered at H'. Q comes by duality from

a branch P of X centered at some point P E X n H and with tangent line

H. Since X is reflexive, the tangent line of Q is P'. The contribution

of the point P E X n H to the tangent cone of X' at H' is then P'

counted with the multiplicity rp = ord Q.
2

Choose homogeneous coordinates of ]P such that P is given by

P = [1; t; t + ... ]

with > 1. So m = m (X.H). Now,

$(P) = [(-1)t +.... ; 5t + ... ; 1 ]

and since X is reflexive, hence $ X --- + X' is birational, it follows

that $(P) is primitive, hence

if pf

ord 
p

Since m = mp(X.H), the result follows for n = 2.

Suppose now that n > 3.

Let P be any point of X n H, and let r C IPn* be a general plane

through the point H'. The dual of Tr, TT' C IPn , is a linear space of

dimension n-3 contained in the hyperplane H and not containing P.
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Let f : Pn 2 denote the linear projection with center r'.

By the principle of section and projection we have, in the duality of

IP , that

(f(X))' = X' n Tr and (f(P))' = P' n (10.7.1)

Now, since X is not contained in H and i'I is general in H, it is

easy to prove that f is a morphism on X which is' birational onto its

image (see for example Hefez-Sacchiero [1983] Lemma 1), and the proof

proceeds exactly as in Hefez-Sacchiero [1983] Proposition 1. We repro-

duce it here for the convenience of the reader.

- From the birationality of f and the fact that no tangent to X at P

meets a general T', it follows that, for the branch P of X centered

at P, we have that f(P) is non singular.

By a projection formula, which can be easily verified directly, we

have

ord H = ordf() f(H) . (10.7.2)

From (10.7.1), the case n=2, and the fact that r' do not meet

any secant of X lying on H, we have

TC (X' rr) = r (P' r Tr) (=( rP') r) (10.7.3)
H' PEXnH PEXnH

where

ord f(= (f(H)) 1 if p 7 ordf(P) f(H)

r Iord f()f(H) 
if p / ord f()f(H)

From (10.7.2) it follows that
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ordp(H) - I

rpr(

ordp(H)

if p 7 ordp(H)

if p / ordp(H)

(10.7.4)

(10.7.5)

Since Tr is general we also have as a cycle

TCH, (X' n T) = TCH' (X') n Tr

From (10.7.3) and (10.7.5) we get

TC(H (X,) n T = ( I
PEXrlH

rP ') n T .

Now if one looks at the forms defining TCH, (X') and I r P',
PEXnH

it follows easily that

TC H(X') = rp P'
PEXOH

This equation together with (10.7.4) completes the proof.
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