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Abstract

In this thesis efficient techniques to solve complex 3-D electromechanical problems
are developed. Finite element discretization of complex structures such as the mi-
cromirror lead to thousands of internal degrees of freedom. Their mostly rigid motion
is exploited leading to a mixed rigid-elastic formulation. This formulation's advan-
tage is apparent when it is incorporated in an efficient coupled domain simulation
technique and examples are presented exploring geometry effects on device behavior.
Then for system level simulation where full device simulation costs add up we need
models with much reduced order with little degradation in accuracy. We describe
a model reduction formulation for the electromechanical problem based on implicit
techniques which accurately capture the original model behavior.
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Chapter 1

Introduction

Design of MicroElectroMechanical Systems (MEMS) is often a challenging problem

because of the multi-physics involved. This should typically mean that designers

would be making extensive use of existing design tools. However this is not the case

because the tools take an enormous amount of time to simulate and optimize struc-

tures with relatively simple geometry. The aim of this thesis is explore efficient and

judicious ways of simulating a specific (and common) multi-physics - electromechani-

cal - device and then efficiently reducing the computational cost of solving the device,

making it suitable for system level simulation.

1.1 Outline

In the next section we motivate the study of efficient algorithms by presenting widely

used examples. In Chapter 2 we present background material on the GMRES,

Newton-Krylov methods, the mechanical and electrostatic solvers which will be used

while developing coupled domain algorithms and model order reduction methods.

Chapter 3 describes the multi-level Newton algorithm for structural domains treated

as being fully elastic. Chapter 4 describes the mixed rigid-elastic formulation for struc-

tures with mostly rigid behavior thereby greatly reducing the computation. Chapter

5 extends the rigid-elastic and coupled domain formulations to the dynamics case.

Chapter 6 describes model order reduction for our coupled system with fully elastic

11
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Figure 1-1: Scanning mirror

structures. Here we show how to capture the quadratic dependency of the electrostatic

force on the voltage using implicit methods only. Chapter 7 extends the reduction

technique of Chapter 6 to rigid-elastic systems to generate rigid-elastic models. Fi-

nally we conclude in Chapter 8 by summarizing the main results and implications

reached in this thesis. Appendix A relates the reachability space of the ordinary dif-

ferential equation to the expansion-around-zero based model reduction. Appendix B

explores a hypothesis as to why block Arnoldi based reduction performs better than

individual Arnoldi reduction.

1.2 Motivation

Some examples of common electromechanical systems are the comb-drive accelerome-

ter, resonator, mirror (Figures 1-1,1-2, 1-3) and angular-rate sensors. But electrome-

chanical systems are a small fraction of an entire array of MEMS devices 1. For

instance there are microfluidic systems such as micromixers,micropippetes and cap-

illary electrophoresis, protein analysis and particle analysis chips, microarrays used

as biosensors useful in diagnostics, wireless patient monitoring and genetic testing

2 20

2numerous chemical engineering applications such as microreactors where there are

advantages such as increased power efficiency, to be had in scaling down the system

'see for eg. http://mems.isi.edu for current happenings in the MEMS industry
2ee for eg. http://www.lab-on-a-chip.com
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Figure 1-3: Accelerometer
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and optical applications (besides the aforementioned mirror) such as variable optical

attenuators and tunable optical filters, to name but a few.

The focus of this thesis, however, is on electromechanical systems and the driving

force in these devices is the electrostatic pressure generated by keeping the distinct

surfaces of the device at different voltages. The accelerometer has applications in car

airbags, car and personal navigation, computer peripherals and earthquake detection

'to name a few. The accelerometer schematic of Figure 1-4 shows a movable proof

mass, and drive fingers component which is anchored with the help of tethers. The

sense fingers (shown in a lighter color) are also anchored but the fingers can flex. V

is the input voltage applied to the proof mass system and Vo is the output of interest.

The inter-finger gap between the sense and the drive fingers results in a differential

capacitor with capacitance C(u) where u is the geometric perturbation (during sudden

acceleration) of drive fingers and the movable proof mass system. The capacitance

and the position information can be obtained through further processing of VO and a

force feedback achievable through varying V can also prevent the fingers from contact

(besides standard advantages such as increased bandwidth etc) (for details, see [1] for

eg.).

The resonator has potential applications in areas such as wireless systems in the

form of filters and oscillators for example, replacing quartz crystals. In Figure 1-5,

the central proof mass and tether system will rock back and forth sideways with

significant displacement when the frequency of the drive signal Vd is the resonance

frequency of the structure and then the sense fingers pick up the motion (see [2] for

an introductory treatment).

The mirror in Figure 1-1 will twist because the mirror is kept at 0 v and the pair of

thin drive electrodes below it are kept at different voltages. By altering the voltages

the mirror can be made to twist to different angles. Micromirrors are simple devices

which have proved useful in projection displays and switches for optical networks

(Figure 1-6). In the projection display , a display pixel can be lighted up or not

depending on the voltage that is applied to the mirror. Similarly the switch can allow

3http://www.analogdevices.com/industry/iMEMS
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Figure 1-6: Micromirror applications examples - schematics

light to go onto the next fiber or not depending on the applied voltage.

1.3 Self-consistent Solution

In the mirror case for example, one can calculate the forces on the mirror just once

when the mirror is in rest position and then use that initial force to calculate the

twist of the mirror (either quasistatic or in time). However the problem is that while

the electrostatics is a linear problem and the structure could perhaps be approxi-

mated as being linear, when one puts them "together" the system is nonlinear. This

is illustrated in Figure 1-7 where the forces developed in the original configuration

deform the mirror to a position where the external electrostatic forces balance the

internal material stress generated forces. But in the deformed position a new set

of electrostatic forces are developed which will not balance the internal forces. The

problem therefore is of self consistency and therefore may be stated in words as fol-

lows - determine the geometry of the structure such that the forces generated for that

geometry exactly balance the internal structural forces.

16
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Chapter 2

Background

2.1 Introduction

In subsequent chapters the multi-level Newton algorithm will be described. The

method uses two key sub-algorithms namely, GMRES and Newton-GMRES to solve

the coupled domain problem. Therefore we give a brief description of these methods

below. Then we describe the mechanical and electrostatic solvers and present model

order reduction techniques.

2.2 GMRES

The Generalized Minimal Residual Solver (GMRES) [3] along with the Multigrid

based methods is one of the algorithms of choice for iteratively solving large sparse

linear systems. To solve the system

Ax = b

at each iteration k, GMRES minimizes w.r.t. y the residual

(2.1)

rk = ||b - AQkYkHj

18
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where Qk is an orthogonal basis of the Krylov subspace

Kk =< b, Ab, A2 b, A3b, ... , Ak-lb > (2.3)

Additionally we have the relation AQk = Qk+1H where H is a (k + 1) x k upper

Hessenberg matrix and H = QTAQk where H is a k x k upper Hessenberg matrix

(truncation of H). When rk = 0, Kk is invariant i.e. K = Kk+ = Kk+2 etc. Note

that although we have I|roll ||rj|H > ||r 2 || ... > |HrkI', in general we do not have

(with Xk = QkYk) HX - xk_ 1j KX - XkI or in other words

? 7

||x - XOI |X - Xi| |X - X211 ... |X - XkII (2.4)

i.e. convergence to the true solution is not necessarily monotonic.

For GMRES to be computationally attractive the cost per iteration step should be

small and the number of iteration steps before I Irk II falls below a tolerance should be

small. The cost per step depends on the product of A with some vector in the Krylov

subspace. Therefore if A is sparse or if the product can be evaluated using efficient

techniques then the cost can be smaller than O(N 2 ) where N is the dimension of A.

The number of iteration steps can be significantly reduced by preconditioning A to

have a condition number close to unity. A good preconditioner usually approximates

A- 1 and is cheap to compute and apply. Applying A- 1 itself as a preconditioner is

of course redundant as we can then get the solution directly.

2.3 Newton-Krylov

Consider a nonlinear system of equations f(x) : RN - RN. To determine a solution

x* : f(x*) = 0 we can use Newton iteration defined as

Xk+1 = Xk - Df(xk)-f(xk) (2.5)

where D is the differentiation operator. Df (xk)-,f (X,) can be computed by

19



direct factorization of Df(xk) or can be computed iteratively using for example a

Krylov subspace based method. In that case the method is called a Newton-Krylov

method [5]. We state a standard result from [4] regarding the convergence of Newton's

method.

Theorem : Let closure{So} C S where S is an open set and So is a convex set.

Let f(x) : S -+ RN be differentiable Vx E So and continuous Vx E S. Additionally

we define the neighborhood of a point xO E So as

nbd,(xo) = x s.t.l|x - xo|I < r C So

and the iteration is defined by (2.5). Then if

IDf (x) - Df (y)H -y x - y I (Lipschitz continuity)

IDf (x)~'I < # V x,y E Co

I IDf (xo) -f(o)II < e (2.6)

h = a E < 1

r = a/(li - h)

then Vk > 0,
S h2k- 1

||xk -- x~y & 1  - h2k

Xk E nbdr (XO), Xk converges to x, and since h < 1 the convergence is at least

quadratic. In other words the iteration defined by (2.5) results in quadratic local

convergence if the initial guess xO is "close enough" to x,.

However in the case of Newton-Krylov Xk+1 is not computed exactly as the linear

solution iteration is terminated in i << N steps. Therefore the residual(typically

#0) is

rk = f(xk) - Df(Xk)(xk+1 - Xk) (2.7)

The actual expression for Xk+1 is now

Xk+1 = Xk - Df(xk> 1 (f (xk) - rk) (2.8)

20



The Newton-Krylov method falls into a more general class of modified inexact

Newton methods (see for eg. [6], [8]). The problem is then to determine a stopping

criterion for the linear solution (inner) iteration so as to preserve superlinear conver-

gence as much as possible. [8] shows that linear convergence can be achieved with the

stopping criterion for the inner iterative scheme defined as IrkI < tolerance < 1I If (Xk) II

(provided certain conditions are satisfied). Without being rigorous Newton-Krylov

convergence can be explained as follows (see [4], [8] for details).

First we rewrite the third inequality of (2.6) to get the conditions,

Df (x) - Df (y)| I

I|IDf (x)-1| I

yI x - y (Lipschitz continuity)

/ V x,y E Co

Ii Djxo) [fJxo) - ro II <_ E

Based on these conditions it can be shown [4]

If(x) - f (y) - Df(y)(x - y)1| < ||x - y|| 2

From (2.10) and if the inner iteration is stopped when

Ifk)12< a <
||f (xk)||l

If (Xk+1) - f(xk) - Df(Xk)(Xk+1 - Xk) I

If(xk+1) -rk||

If(xk+1H - ||rkH

If (Xk+1|

If (xk+1 II

If (xk+1l

K

K

K

K

=K

21Ixk+1 - Xk12 or

2||Df(xk)-1 (f(xk) - rk)||2 from (2.8)

21f(xk) - rkI 1

i|rkII + 21 f(xk)II + IIrkI )2

(1+ 1 (1 + allf(xk)1I) 2) f(Xk) 2

(1 + 12(1 + al IfIImax) 2 ) If(Xk)I1 2

61f(Xk)112 where 6 = 1 + 2= (1 + a|lfrax)2

(2.12)

where IfIrmax is the maximum value of IIf(x)II Vx E So.
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While we will not show whether Xk converges quadratically to x, (2.12) shows

that the function value, if it decreases, decreases at least quadratically. [7] describes

an inexact Newton solver which has better global convergence properties because of

backtracking i.e. a step is taken in the Newton direction such that residual decreases

w.r.t. a certain tolerance to ensure convergence. Also note that (2.11) is practically

overly restrictive and leads to over-solution (Chapter 3 provides an example) at each

step and [7] describes methods to get the proper tolerances to get an adequate solution

of (2.5).

2.4 Linear elasticity based FEM

We will assume linear elasticity for the mechanical system formulation. For geomet-

rically nonlinear structures the nonlinear finite element method is the technique of

choice. For now we assume the material is completely elastic and the finite element

method is applied to the quasistatic linear elasticity p.d.e.

div o-(u) + f = 0 (2.13)

where f is the body force and

E Oui Ou E OUk0j(U i -)(- +± Z ) +
2(1+v) Ox3  Oxi (1 + v)(1 -2v) ' ax,

is the Cauchy stress tensor where E is the Young's modulus, v the Poisson ratio,
6ij the Kronecker delta symbol with all repeated indices are summed, x is a point

in the undeformed configuration, u is that point's displacement, and incorporating

the stress(Neumann) and displacement(Dirichlet) boundary conditions leading to a

set of non-linear force equilibrium equations (Total Lagrangian formulation [9]). As-

suming homogeneous boundary conditions for simplicity, let u, v E H1 (Q) = {w Iw E

L2 (Q), Vw C (L2(Q))3}, L2 W 2dV < oo}. Then applying the finite ele-

22



ment method to the above p.d.e. results in the weak statement

a(v, u) = f(v) (2.14)

where

a(v, u) = 1 Ii u-i3(u) dV (2.15)

f(v) = Jfivi dV (2.16)

From the form of a(v, u), we see that the displacements u obtained by solving the

above system in turn change the domain of integration Q . Therefore the problem is

geometrically nonlinear. For further details on the Jacobian of the weak form (2.14),

see [9]. The discretization breaks up the structure into elements with nodes and

through a set of equations relate the node forces (surface and volume forces projected

onto nodes) to the nodal displacements which are interpolated to get a displacement

solution over the entire domain. The resulting discretized system

F(u) = P(u, f, external force)1  (2.17)

is sparse. Here u is a discrete vector defined only for the nodes and not continuous.

2.4.1 Dynamics

Over and above the elastostatic case we have the mass matrix contribution as

2U
p L p7 dV * K pooioj dV) ij = Miji2 (2.18)

where p, po are the densities in the current and reference configurations, w the

finite element test vector, u the actual solution (u will here on mean fully elastic),

#ij the test basis vectors and uj is the basis (nodal) component.

'If as in (2.13)
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Mii + F(u) = P(u, q)

Note that the mass matrix is constant because the integral in (2.18) involves

the original configuration quantities namely w, and po and qi,, here depends on the

original configuration.

2.5 Fast Electrostatic Solver

The electrostatic solver is based on the precorrected FFT accelerated boundary ele-

ment solver [10]. This solver discretizes

(x) = 1 1 q(x') ds' (2.20)
surface II

The discretized version of (2.20) is

0 = A(u)q (2.21)

where in discretization by collocation A E RNXN, 0, q E RN and

Ai = I ds'
fpaneij A7re|xi - x'II

where xi is the ith collocation point. Here the surface of the structure is broken

up into panels and the system of equations for the N panel charges is obtained by

setting the sum of the potentials due to these charges equal to the given potential at

N test or collocation points.

The Dirichlet condition of q(oo) = 0 is implicit in this equation. However this tells

us that it that the sum of charges on the surfaces of objects located at finite distances

will not equal zero and that the force between surfaces depends on the absolute value

of the potentials. To have this zero net charge and to have the force depend only

the relative potentials (meaning that a zero differential voltage implies zero force),

we would need to have Vq(oo) = 0 (the Neumann condition). We modify the above
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Impose constraint

Q1 + Q2 =0

Solve for

{qi,i = to No. of Panels, V/

Q1 +Q2 = =Xq

oo surface Surfaces discretized into panels
each with charge q,

Figure 2-1: Maintaining Charge Conservation

equation to enforce both conditions at infinity to be true. An extra potential b is

added to the conductors and an additional charge conservation equation is invoked

as shown in Figure 2-1.

A(u) is a dense N x N matrix and is therefore not only expensive to solve via

direct factorization but also not suitable for a Krylov-subspace based iterative method

without an effective replacement computation of the matrix vector product.

2.5.1 Pre-corrected FFT

The pre-corrected FFT method as described in [10] essentially consists of approximat-

ing the "potential coefficient matrix x charge" i.e. (2.21) product by the following

steps (Figure 2-2).

Projection Step

j=Wq

where 4 is the grid point charges and q is the panel charge vector. A uniform

3-D grid is overlayed on the problem domain and the charges q are projected

onto the grid points with the W operator which is defined as follows. For a grid

cell k, the corner grid point charges,4(k) are required to match potentials at
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test points with the potential due to the charges,q(k) inside the grid cell. The

test points typically lie on a sphere encompassing the grid cell (Figure 2-3),

A0t4(k) - AP'q(k) leading to the definition W = [At']tAPt 2 (to be computed

only once) Here A,= (or inverse of distance between grid point i and

test point j) and A = f , ds'

Convolution Step

q = Hq

Grid point potentials due to the grid point charges are computed with FFT's.

The potential at grid point j due to an unit charge at point i is proportional

to . The H matrix contains this interaction between grid points and is

a block circulant matrix whose product with a vector can be exactly computed

with FFT's as below. H below is the discrete Fourier transform of H (to be

computed only once).
Q = FFT(d)

= FFT-1(T)

This is the stage where the pre-corrected FFT algorithm gets it's computational

speed over the direct computation with it's O(nlog n) complexity where n is

the size of the FFT grid.

Interpolation Step

In the collocation scheme, the matrix entries V(k, j)T for grid points of cell k

and a point charge j correspond to V(k, j) which projects the point charge j

onto the grid points. For Galerkin based methods, V = W is used.
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Grid computation

A'
IP

14_6

~- Local direct

Local grid computation

6_4L _I computation

Figure 2-2: Pictorial representation of pre-corrected FFT

Nearby Interactions

=k,f -- k,l + (Ak,f - V1k"Hk,lW)q

Here Ok,f is the potential contribution of cell f to cell k, Ak,f represents the part

of A which is computed directly, VkT represents the interpolation of potential

contributions from the grid points of k on to the panels of k, W is the part of the

W matrix representing the projection of panel charges of f on to the grid points

of f and H(k, t) is simply that part of the H matrix representing the interactions

between grid points of f and the grid points of k. Additionally f is a "neighbor"

of k. The grid approximation works well for panels which are located at a

relatively large distance w.r.t. each other. However the approximation does

not work well for panels in cells which are neighbors. To counter this, the

neighboring cell interactions, Ak,f, are computed directly and the nearby cells

grid projections, VTHk,1We are removed.
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Neighboring cell
(considered in direct
computation)

FFT grid
cell

Match grid charge '*
potential with panel
potential on test point .. -

Test point
on circle

Figure 2-3: Pictorial representation of Pre-corrected FFT matching potentials at test
points

Two additional notes are that the accuracy of the scheme (or the order of the

method) can be controlled by varying the test sphere radius and choosing the test

points (in the projection step above) to be quadrature points of a variable order

integration method (see [10] for details) and as the FFT grid is made finer while

the FFT cost increases monotonically, the direct panel computation cost decreases

monotonically. To find the optimum grid size, while one can attempt to minimize

the cost function, from a standard result of the "parameter balancing technique" (see

Appendix C), at the grid size for which the cost of the FFTs match the cost of the

direct interactions, the overall cost will not be more than a factor of 2 times the

minimum cost, so this also might be acceptable.

While solving for problems with a ground plane we use a modified Green's func-

tion for (2.20) to avoid having to discretize the ground plane, saving us significant

computation.

2.6 Model Reduction Techniques

If we have a model representation of a system which takes an input(s) and returns an

output(s), many a time, in higher level system simulation/optimization applications
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the computational complexity of getting an output for a given input from the model

is simply too high. Thus model order reduction involves reducing the computational

complexity of the model by reducing the number of parameters in the original model.

If the original model is nonlinear, we can aim to obtain either nonlinear or linear

reduced models. If the original model is described by linear ordinary differential

equations then a typical approach is to write down the algebraic relation between

the input and output for the O.D.E. in the frequency domain and then somehow

approximate this relation leading to significantly less computation. Additionally if the

original model is stable then we would like to have a stable reduced order model. Then

there might also be additional properties we would like to preserve like maintaining

passivity in electrical circuits.

If the O.D.E. is given by

± = Ax +b

y = cTX (2.22)

Y(s) = cT(sI - A)-bX(s)

G(s)

where A E RNxN, b, c C RN and y is the output. The model is stable if and only

if all the eigenvalues of A reside in the left half complex plane. There are several

approaches for model order reduction described in the literature.

2.6.1 Pad6 Approximation

One can approximate G(s) by a rational function G(s) as

0 dis'
$(s) = 'is- Ei assz

The coefficients ai and di are obtained by matching the first (p + q - 1) 3 Taylor

series coefficients of G(s) ( cTAib - also called moments) and $(s). Directly com-

3Typically q = p - 1 since one can see from the eigen representation that the denominator of
G(s) has an extra power of s
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puting the moments is numerically unstable and [14] demonstrates a stable method

using biorthogonal Lanczos.

2.6.2 Eigen Analysis

It has been a traditional approach to perform eigenanalysis to generate the the re-

duced model i.e. to determine a reduced model of dimension r (instead of N), one

determines the set of eigenvectors corresponding to the r smallest absolute eigenval-

ues, Vr. Then

X = Vz (2.23)

= VAVz + Vb (2.24)

represents the reduced model. As a simple example, let

0.5 0 0
A = ,b =

0 2 o b 1

and we are interested in generating a reduced model of order one. Now assuming

x(O) = 0 the solution to (2.22) is

x(t) = e(-T)^- A bv(r)dT
0

from which we infer that the reachability space (for x) for the example here is

simply a span of

0

However eigenreduction chooses V to correspond to the smallest eigenvector of A

i.e. 0.5 and therefore

V r
0

V, is in fact orthogonal to the reachability space and hence (2.23) and (2.24) can
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never capture the original model behavior. This example has also indirectly shown

us the importance of the "right hand side" b and will be incorporated shortly.

2.6.3 Arnoldi based Methods

[13, 15] are examples of the several publications that have used and developed Arnoldi

based model reduction methods. Here we specifically use the approach described by

[13].

No Damping Case

The structural dynamics can be described by the O.D.E.

Mi + Ku = bv

y = cTu

Y(s) = CT(s 2M + K)- 1 b

H(s)

(2.25)
U(s)

where M E RNxN is

the input force direction

the Taylor series around

the mass matrix, K E RNxN the stiffness matrix, b E RN

and v E C is the input. Expanding the transfer function in

s = 0, the coefficients of the powers of s are

cT(K-1M)i-1Klb, i = 0 ... o0

Defining a transformation matrix V containing the Krylov subspace as

V D < K-1 b, (K-M)K-1 b ... (K-1 M)" 1K-b >

and the transformation as

U=Vz, I =VTMV, K=VTKV,
I=Vb, a=Vc

The reduced O.D.E. is
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Mi+Kz = by (2.28)
y = cTz

If V is defined as above, the reduced system is guaranteed to match i nonzero

moments of the original system (see [13] for proof).

Damping Case

In the case of damping, the O.D.E. becomes

Mii + Dit + Ku = by

y = cTU (2.29)
Y(s) = cT(s 2M + sD + K)-lb U(s)

H(s)

where D is the damping matrix. In this case it is not straightforward to have

a similar Taylor expansion. Instead we can equivalently convert the system to first

order

I - 0 -I1 0M=[ M]K ,b=[o

M K D b (2.30)

MA+Kz = bv

If as before we define V as

V D < k-' 1 (k-iM)k-16 ... (k 1fM)*-lk - 16 >

although we can obtain reduced matrices they are not guaranteed to be stable 4

as in the no-damping case (if the original system is stable). Instead [13] has shown if

we take only the top half,

V

M d 2

4If M, K and D are all symmetric positive definite then the system is stable
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this matches exactly i nonzero moments of the unreduced damped system. But

the intuition is that if x = Vz, taking the time derivative , = V1i and therefore we

shouldn't really expect to have a separate relation i.e. ± = V2 i. In fact V - V2 -

and now the reduced matrices are defined as

I = Yu, M = (Vl)TMl, AK = (V)TK , (231)

b =(l)TD , b>=Y 1b, 6 =Y- 1c

and the reduced O.D.E. is

(2.32)

y = jii

Note that even though "K 1" appears twice in

K- 1D K-1

K- =

K- needs to applied only once to compute "k-lx a vector". One can also

alternatively expand around s = oc by making the substitution s - . The reduced
S

model obtained through this way will match (2.25) near t = 0 (or S = 0 5) as opposed

to the s = 0 reduced model described here which matches the steady state of (2.25)

(because the steady state corresponds to s = 0 or the first moments have to match).

'Recall the Laplace transform of t is =
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Chapter 3

Coupled Domain Simulation

3.1 Introduction

The coupled domain problem in this thesis consists of the electrostatic and mechanical

domains. After examining the relaxation and Newton based alternative techniques,

the multi-level Newton method for coupled domain problems (quasistatic case) will

be described along with its efficiency improvements and implementation, particularly,

the issue of tolerances. A cantilever beam is then simulated.

3.2 Self-Consistent Solution

Self-consistent electromechanical analysis of micromachined polysilicon devices typ-

ically involves determining mechanical displacements which balance elastic forces in

the polysilicon with electrostatic pressure forces on the polysilicon surface. Since the

surface force on the structure depends on the charge the discretized form of (2.14)

can be viewed as

F(u) - P(u, q) = 0. (3.1)

where u is a vector of finite-element node displacements, F relates node displacements

to stresses, and P is the force produced by the vector representing the discretized

surface charge q. Note that as the structure deforms, the pressure changes direction
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U Electrostatic Q = H E (U)

Solver

Coupled System

Mechanical Q
U = H M(Q) Solver

Figure 3-1: Solution by relaxation

and magnitude (since charge density depends on the geometry given a fixed amount

of charge for a surface, this will become clearer later), so P is also a function of u.

3.3 Coupled-Domain Techniques

One can view the mechanical analysis as a "black box" which takes an input, q, and

produces an output u as in

U = HM(q). (3.2)

Similarly the electrostatic analysis is viewed as a "black box" which takes, as

input, geometric displacements, u, and produces, as output, a vector of discretized

surface charges, q, as in

q=HE(u). (3.3)

Self-consistent analysis is then find u and q which satisfy both (3.2) and (3.3)

simultaneously.

3.3.1 Relaxation

One can imagine a simple relaxation approach to determine a self-consistent solution

to (3.2) and (3.3), by successively using (3.2) to update displacements and then using

(3.3) to update charge (Figure 3-1). Applying (3.2) implies solving the nonlinear

equation, (3.1), typically using Newton's method.
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Algorithm 1 - Nonlinear block Gauss - Seidel relaxation

k = 0, O = 0

repeat

compute qk = HE(Uk)

compute Uk+1 = Hm(qk)

k=k+i1

until IHuk - Uk_1I < 1 and Iqk - qk-II < 62

First we note that (3.3) is well-defined i.e. given a physically "reasonable" u,

getting q involves solving a linear system, then from [16](§ 10.3.4) and (3.1) we have

the statement that if O(F-P) and " Oq are continuous on an open neighborhood

So C D of a point u, E D where F(u,) - P(u,, HE(u*)) = 0 and I(FP) is nonsingular

and the spectral radius1 ,

[(F - P) 1 P iq) <
19U Oq Ou

then there is an open ball S C So containing x, such that the iteration,

Uk+1 = HM 0 HE [uk]

2 is well-defined for any uO E S and the iteration converges at least linearly to

'U. Also note that while solving Uk+1 = HM(qk), the initial guess while solving with

Newton's method is Uk.

Apart from the likely slow convergence, the problem with this method is that it

may not converge near pull-in [19] - one can imagine it "overshooting" near pull-in.

Figure 3-2 shows a spring-capacitor system where the plates come closer in response

to an applied voltage. If the applied voltage exceeds V then pull-in occurs. Figure 3-3

shows a typical linear looking convergence for the relaxation method and Figure 3-4

shows that even though the equilibrium position lies just inside the pull-in point the

36

'p,the maximum absolute eigenvalue
2 Note solving (3.2) is 4> to solving (3.1)



do
unstretched
length

Capacitor

d Pull-in
threshold

V

Figure 3-2: Parallel plate capacitor - spring system

plates can still get pulled in.

3.3.2 Explicit Newton

[17] described a technique for getting a self-consistent solution based on Newton's

method essentially applied to (3.1). The Newton step for (3.1) is

Uk+1 = Uk - O

where A(Uk) = qk from 2.21.

OP Oq
-9P-- k 1[F(Uk) - P(uk, qk)]
Oq Ou (3.4)

17] explicitly calculates 2 I equivalently aso9q au

described below. The electrostatic relation is equivalently cast as

G1(u) q$= G 2 (u) flux

system matrix system matrix

and in order to calculate , -I 'flux is needed. Thereforeaq au 9u

Of lux _ G 2 (u) (OG1(u)

au au
0G 2 (u) flux)

au

Now while [17] calculates (,9Gl) _ 9G2(U) f lux) in O(N) time (justifying by multi-

pole expansions and the fact that 9G (u) and aG2 (u) are sparse) where N is the number
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do

VP

V < V n

Iteration n-3 Iteration n-2 Iteration n-1 Iteration n
converged

Figure 3-3: Solution by relaxation

do

d

V 2 <V,, V2 >V

Iteration n-3 Iteration n-2

Equilibrium
position never
reached

Iteration n-I Iteration n
pull-in I

Figure 3-4: Solution by relaxation - pullin
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of the panels, applying G2 (U) 1 costs O(N 2 ) overall. which means that this operation

is very expensive as it costs at best O(N 2 ) to explicitly calculate ! 2 and the cost8q au

of calculating for each each Newton step adds up.

3.3.3 Surface-Newton Generalized-Conjugate Residual Algo-

rithm

In order to avoid solving for the large number of internal degrees of freedom at each

Newton step [18] proposed solving only for the surface degrees of freedom, US, as

us = H o HE [us] (3.5)

with Newton step

U (us - H o HE[Us]) ]E'l(u - H HEo H (3.6)
Uk+1 = iI - gs ]( -H HE[U-l)

where

HJ(q) = Surf [HM(q)]

with Surf extracting us from u 3. Then the GCR ' algorithm is used to solve the

linear system of (3.6). Only the matrix vector product is needed and "Hz o HE[us] x

a vector" is approximated using finite differences. Since HJ o HE [uS] is never explic-

itly formed this is called a matrix-implicit method. After the equilibrium surface

displacements, u' are found then the two solvers are decoupled and solved separately

to obtain q, and u, (this includes the internal degrees of freedom). [18] has shown

that this algorithm converges both faster and more robustly than the relaxation based

method. However, the major problem of this approach is that the solution is only

an approximation because in the final step when the internal displacements are also

computed, the force balance equations on the surface are not satisfied anymore(with

internal forces also included) and therefore this method works best when the surface

3 Also note that HE really depends only on the surface variables u'.
4Another Krylov subspace based method
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nodes are weakly coupled to the interior nodes such as in a very elastic structure.

3.3.4 Multi-level Newton

Instead of a direct solution (3.4) we would like to use the Newton-Krylov iterative

method to solve the coupled system. Therefore the inverse in (3.4) can be applied

iteratively or equivalently we can solve the larger system

q - A-'(u)#

F(u) - P(u, q)

-0

-0
(3.7)

with the Newton step

[ - (A-# Aq
- 8(F-P) Au

q - A-1 (u)1

F(u) - P(u, q)J

Note that after elimination of Aq from (3.8), the expression is reduced to

O( F - P) OP Og -1 P ( -()
Uk+1 = Uk qk [F(k) - P(uk, qk) + (q

Ou Oq ok FQk -B-q-A(uq

i.e. the RHS here has an extra term over the RHS of (3.4) and hence we can expect

different convergence characteristics despite having the same matrix-vector multiply

costs when solving (3.4) and (3.8) iteratively. The form of either equation, however,

is not very attractive as the condition number may be too large to apply iterative

methods. Instead we would like to apply the Newton-Krylov method to the system

formulated as black boxes (3.2) and (3.3).

-which c (3.9)
LU L Hm (q) J L0J

in which case the updates to charge and displacement are given by solving
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I -E Aq q - HE

L O m =M- (3 .10 )

The above method is referred to as a multi-level Newton method [19] because

forming the right-hand side in (3.10) involves using Newton's method to compute

HM. The (3.10) and (3.8) formulations will be compared later in section 3.5.

The Jacobian appears to be well conditioned because of the diagonal identity

blocks suggesting an iterative solution method. Here, the GMRES method is used. I

However, note that the magnitude scales of q and u in the usual units of Coulombs

and microns respectively are not only quite different but the black box natures could

also adversely affect the conditioning. In practice, however, the number of GMRES

iterations have rarely exceeded 20.

For an iterative solver, an explicit representation of the matrix is not required,

only the ability to perform matrix-vector products. From (3.10), it is clear that to

compute these products one need only compute OHMd 1 and arEd2 . These products

can be approximated by finite differences as in

HMd eHm(q+ d)-Hm(q) (3.11)
aq

where is a very small number. Therefore, this matrix-implicit multilevel-Newton

method can treat the individual solvers as black boxes. The black box solvers are

called once in the outer Newton loop to compute the right hand side in (3.10) and

then called once per each GMRES iteration. Computing HM(q + dj) means using an

inner loop Newton method to solve (3.1), which is expensive. Also varying affects

the overall algorithm convergence properties. Therefore a scheme is desirable which

is not a function of a user specific factor such as . An advantage of this method,

however, is that it is not necessary to modify either the mechanical or electrostatic

5The nomenclature is "Outer Newton" for the coupled Newton, "Outer GMRES" for the iterative
solution of linear system of the coupled Newton, "Inner Newton" for HM and "Inner GMRES" for
HE
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analysis programs.

Once the mechanical solver is called q is "fixed" till the solver returns u. As the

structure deforms while the solver computes u the charge pressure varies in magnitude

and direction since the surface varies (more on the map between charges and pressures

in "Implementation").

3.4 Modified Multi-level Newton

In order to improve the efficiency of the multilevel-Newton method, one would like to

avoid solving (3.1) on every GMRES call. Instead, it is possible to modify the finite-

element mechanical solver so that perturbations in displacements due to perturbations

in charge can be directly computed. To see this, note that

{(u, q) : u = HM(q)} = (u, q) : F(u) = P(u, q)} (3.12)

The black box equation is an implicit form and (3.1) is explicit. Then

aHm (F - P)) (P
q ( u (3.13)

That the black box form exists and (3.13) is true is confirmed with the Implicit

Function theorem which states that given (9(F-P)) is full rank, this implies that

locally a unique map from q to u exists (similar argument as in section 3.3.1).

Given equation (3.13), if the charge is perturbed by 6q, and the corresponding

perturbation to the displacements 6u is given by

u 6q (3.14)
i&q

O - u = 6q (3.15)
(9u aq

Using (3.15) to compute OHm6q is very efficient because a(FP) will have already8q Ou

been constructed and factored when computing the Newton right side. This reduces

the cost per GMRES iteration from a nonlinear solve to a single backsolve and a mul-
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input otu

Figure 3-5: Ideal Black Box

tiplication by (. The multiplication by ! is inexpensive because 2 is very sparse,

only local pressures are effected by local charges ( a projected pressure at a node of

a rectilinear structure for example is affected by a maximum of 40 charges only) as

determined by the map from q to P (more about this map in "Implementation").

The semi-matrix implicit GMRES described above eliminates the nonlinear me-

chanical black box calls from inside GMRES and leads to better overall outer Newton

performance and as much as an order of magnitude in savings in CPU time6 . We

note that the bottleneck inside GMRES has shifted to the electrostatic black box

call per GMRES iteration. Therefore an efficient and accurate computation of the

electrostatic sensitivity to the geometry needs to be implemented [22].

This brings us to a different paradigm for solving black box systems. In addition

to returning an output for an input, the black box should now return a perturbation in

output for a perturbation in input (Figure 3-5) to make multilevel Newton competitive

with custom coupled solvers. The multi-level Newton algorithm is summarized as

shown below

Algorithm 2 - Multi-level Newton

k = 0, uo = 0

qo = HE (uo)

repeat

solve with GMRES the linear system below for Aqk, AUk

6 Henceforth, "Multi-level Newton will refer to "Modified Multi-level Newton"
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[ I 6~~alE Iqu 1?qk ] [qk - HE(Uk)
_(a(F-P) ) _ 9PK tjILUk] LU HM(qk)

(here aE d HE(u±Cd1)-HE(U) where ( is a very small number)

Uk+1 = Uk + /AUk, qk+1 = qk + Aqk

k=k+1

until I uk - Uk_11 < 1 and IIqk - qk-1II < 2

3.5 Direct Newton and "Black-Box" Newton com-

pared

If we left precondition the linear system of (3.8) with

[
then (3.8) becomes

I

(O( P) )-1 a

- -

I 0

0 (a8(FP))1j

Aq q - A-(u)#

Au J [ (t 9 F-P ) 1(F(u) - P(u,
(3.16)

q))

Note that the left hand side matrix of (3.16) is exactly the same as the Jacobian in

(3.10) taking (3.13) into account. However the RHS's are obviously different and the

LHS matrix of (3.16) is clearly not the Jacobian of the RHS of (3.16). While their con-

vergence behaviors will indeed be different, in some sense (3.10) is a "preconditioned"

version of (3.16).

3.6 Preconditioning

The bottleneck is mostly the electrostatic solver while simulating the coupled system

which gets called several times during the outer iterative solve. For an alternative to

a fast sensitivity calculation [22], to compute q more rapidly we can think of for ex-
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Stage Number of Iterations
Before applying Q 68
After applying Q 72

Table 3.1: Effect of Arnoldi Preconditioner

ample inverting the direct interactions to give us a preconditioner for the electrostatic

GMRES. Specifically a matrix is constructed by just considering the direct interac-

tions and then inverted. Then the matrix entries with rows corresponding to each

cell k and columns corresponding to cells which are not neighbors of k are zeroed out

to give a local inverse based preconditioner. Another approach would be to recycle

the Krylov-subspace from a GMRES solve. During the outer iteration loop several

black box calls are made with slightly perturbed geometries

HE(u + 6u1 ), HE (u + 6U2 ), HE(u + U3), ... (3.17)

So when the RHS is computed HE(u) is computed and A can thought to be

approximated as

A= QHQ T + I - QQ T  (3.18)

where H and Q are the truncated Hessenberg and Arnoldi matrices from the

HE(u) call (Note : H = QTAQ) . A-' is easy to compute as

A = QH-lQT + I - QQT (3.19)

The term I - QQT is needed because without it A is singular and this term repre-

sents the orthogonal projector onto the orthogonal complement of Q hence removing

the singularity. This idea was previously used in the context of restarted GMRES

[23]. Unfortunately in practice this preconditioner has shown little or even negative

impact - Table 3.1 - on the number of iterations (and may become expensive to apply

overall if the dimension of H is large in the first place).
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This probably happens because when dim(Q, 1) >> dim(Q, 2), QT is a poor

approximation of the inverse of Q. This suggests having two stages of preconditioners

with the Arnoldi based preconditioner described here following the first stage. The

first preconditioner could bring down the number of iterations to a small number and

then the Arnoldi preconditioner preconditioning this preconditioned system could

bring down the number of iterations even more.

3.7 Implementation

The electrostatic domain is discretized into surface panels and the mechanical do-

main into 20 noded brick elements fitted with parabolic basis functions - Each node

has a parabolic basis function in each direction (X direction for instance) which is

unity valued at that node and zero valued at all other nodes with different X coordi-

nates(two of them). The product of these individual direction specific parabolic basis

functions (set to zero beyond the element domain) constitutes the basis function for

the node. In this thesis the linearized system was solved using a sparse Gauss elim-

ination based solver since the finite element basis has a support of only a maximum

of 20 nodes over each contributing element leading to a typically sparse system. A

face of a elastic/rigid brick element is typically broken up into 8 panels, each panel

sharing a common central node whose coordinates are the averages of the 8 edge

coordinates. The surface pressure on a face is calculated by taking the average of the

8 panel pressures (Figure 3-6).

10-6 E

Pf = 1 Ai (3.20)
2 * EO EA

where i = 1...8, Ai is the area of the ith panel.

To determine a for a face, the face equivalent nodal pressures are calculated for

a unit pressure on the face and are then individually scaled by each of the 8 charge

factors of (3.20). Note that an alternative definition of Pf in terms of the pressure
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Net force

Figure 3-6: Charge panels on brick surface. Individual pressures collected into a net
force and turned into an uniform pressure

force due to average charge is also possible but leads to a slight implementation incon-

venience (because of extra cross-terms such as qiq2 etc.) in the context of generating

reduced order models (See Chapter 6).

3.7.1 Tolerances

In Chapter 2 we noted that in the Newton-Krylov method if the iterative method is

stopped when the residual norm is roughly equal to a tolerance times the RHS norm

squared then the Newton method can converge quadratically locally under certain

assumptions. The issue is more complicated here because to compute the matrix-

vector product and RHS we call the Krylov subspace based iterative electrostatic

black box for which a tolerance needs to be set and the Newton method based me-

chanical solver which also requires a tolerance setting. Yet another user input as

mentioned before is the finite difference factor associated with calculating the charge

sensitivity. Note that if the mechanical solution is not computed accurately then the

displacement sensitivity calculation is not exact and will affect the outer GMRES

computation. Following the notation of Chapter 2 f(xk) is not computed exactly.

Let the approximation be

f(xk) - f(xk) - gXk (3.21)

where gXk is the error in when Xk is the current state.
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Also

Df (xk) xk+1 - Xk) f (xk + (Xk+1 - Xk)) - f(xk) _ 9Xk+ (Xk+1-Xk) - 9Xk (3.22)

Here we assume that Df(Xk)xk+1 -- Xk) = f(Xk±*(Xk+1-Xk))-f(Xk) i.e. the finite

difference approximation would equal the actual Jacobian x a vector if f(Xk) was

computed accurately. gXk+a(Xk+1-Xk) corresponds to the residual of computing the

last matrix vector product after which we stop the iteration. From (2.8), (3.21) and

(3.22)

Df(xk)(xk+1 - Xk) + f(xk) - 9Xk +(Xk+1-Xk) - 9Xk - g-k - rk = 0 (3.23)

Wk

Wk is the new residual and the analysis of Chapter 2 holds as before. If we

guarantee

IIrkIIf(xk)I2 1 a (3.24)

31 1
/xI6(k+1Sk k1 2 

- 3 (3.25)

21 (326
11 - IgX 1/f (xk)12 a (3.26)3

then IIkII/IIf(xk)1 2 < a. However instead of If(xk)II only If(xk) - gXkHI is

known. This and the fact that for the electrostatic solver (2.4) will not hold in general

makes it difficult to obtain a convergence criterion to satisfy (3.26) since "f(x)" is

equal to (3.9) for our problem here.

Instead we simply present numerical results. All tolerances are relative.

In Table 3.2 for the lower tolerance case the convergence moves away from be-

ing quadratic, and takes an extra Newton Step with slightly more average GMRES

iterations per Newton step.

From Table 3.3 and the upper part of Table 3.2 representing the same stages of the

computation, it appears that despite a slight loss of superlinear convergence a GMRES
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Elec. tolerance No. Outer GMRES iters. Outer Newton Outer Newton
= Mech. tol (tol. = le-5) iterates RHS
le-5 8 1.163701e+00 1.652927e-01

9 8.201623e-02 2.069343e-02
7 4.181924e-04 6.191509e-04
9 3.240167e-07 3.211859e-07

le-3 8 1.159801e--00 1.646205e-01
9 8.197650e-02 2.044600e-02
9 1.446459e-03 7.406916e-04
9 6.711714e-05 3.701086e-05
7 7.456214e-07 6.361503e-07

Table 3.2: Effect of varying tolerances for inner GMRES and inner Newton

Elec. tolerance No. Outer GMRES iters. Outer Newton Outer Newton
= Mech. tol (tol. = le-3) iterates RHS
le-5 4 1.163775e+00 1.652927e-01

5 8.192913e-02 2.068255e-02
5 4.081401e-04 6.194835e-04
5 1.719611e-06 8.905395e-07

Table 3.3: Effect of outer GMRES tolerance

tolerance of 10-3 is actually significantly better than a tolerance of 10-5 because of

the total number of matrix-vector products i.e. 19 compared to 33, provided of course

the iteration converges to the right solution.

Finally it should be pointed out that due to finite precision round off errors at

various stages of the computation, unfortunately the tolerances cannot be set too

low and a small absolute tolerance (varying between 10-8 to 10 0 for this thesis 7) is

incorporated as a result. The overall effective relative tolerances have been found to be

10-5 for HE, HM and inner GMRES and 10-4 for outer Newton. Also the parameter

cannot be set either large or too small to avoid approximation inaccuracy and finite

precision roundoff errors respectively.
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Structure -Matrix free CPU time
Semi-matrix free

100 elements 3.81
cantilever
100 elements
simply supported beam
196 elements
accelerometer

7.77

3.48

Table 3.4: Matrix-implicit and Semi-matrix-implicit methods compared

6

40

15

-10

Figure 3-7: Beam over ground

3.8 Results

In this section we present results from our multilevel-Newton coupled electromechan-

ical code. First we compare the matrix-implicit method and the semi-matrix-implicit

method in Table 3.4.

The semi-matrix-implicit method is faster not only because the charge sensitiv-

ity is calculated faster but also because this accurate computation leads to fewer

outer GMRES calls than the matrix-implicit method which calculates the sensitivity

approximately.

Figure 3-7 shows a cantilever beam over a ground plane and Figure 3-8 is the

self-consistent solution.
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Figure 3-8: Deflected beam
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Chapter 4

Mixed Regime Simulation -

Quasistatics

4.1 Introduction

In the previous section we developed the coupled method which was based on a linear

elasticity based mechanical solver. However, if we were to adopt this solver for devices

such as the accelerometer or resonator (See Chapter 1) then it would take a long time

to simulate because of the large number of internal degrees of freedom generated (In

3-D the cost of factoring the Jacobian roughly goes as m 2 where m is the number of

elements). Instead we would like to exploit the fact that in these structures (Figure 4-

1) much of the structure behaves like a rigid body and that these internal degrees

of freedom behave as if they were constrained. Hence we describe the mixed regime

or rigid-elastic formulation (still quasistatic) in the next section followed by a brief

implementation description.

4.2 Rigid-Elastic Formulation

As pointed out in the previous section many finite-element degrees of freedom can

be eliminated and replaced with a rigid body with only 6 degrees of freedom urigid =

{11, 02, 03, xR, yR, zR}. The u in (3.1) is then Uelastic U Urigid.
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Figure 4-1: Comb drive accelerometer
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Rotate about B, 02

Figure 4-2: Tait-Bryan angles

The current configuration y of a rigid body under displacement is expressed as

y = Qx + z (4.1)

where x is a point on undisplaced body, Q is a rotation tensor and z a translation

vector.

4.2.1 Tait-Bryan Angles Formulation

In terms of Tait-Bryan angles [25] (Figure 4-2)
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Figure 4-3: Finite Element-Rigid Interface

c92c03  c01s03 + s01s02c93  s01s03 - cA1 s02 cC

Q = -C2803 CO1c03 - 801802s03 s01c03 + c01s02803 (4.2)

s0 2  -s01c0 2  c01c02

where c = cos and s = sin.

The equations of equilibrium for a rigid body are

F = F = F =MR = MR = MR = 0; (4.3)

where FR is vector of net forces on the body and MR is the vector of net moments

of the body about a selected equilibrium point.

The Jacobian JF of the F in (3.1) has four distinct parts

JF [KEE KER

KRE KRR j

KEE , the elastic - elastic interaction, is the standard linear elasticity finite-element

stiffness matrix, excluding the entries due to the rigid-elastic interface nodes.

KER is the elastic - rigid interaction. The following relation exists for the equiva-

lent nodal forces at the non constrained nodes i = I..T (Figure 4-3) in terms of the
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interface nodes i = A..H. For E Urigid

OF _ OF OXA OF OXB OF axH (45)
O9 OXA O9 ± XB OXH Oa

Also we know

Xi = Xi(Urigid) (4.6)

from (4.1).

KRE, the rigid - elastic term, represents the dependence of the forces of the inter-

face on nodes I..T of the elastic element as noted earlier and these forces contribute

in the equilibrium of the rigid body. For example the moment M of the rigid body is

M = L(F) (4.7)

where L is an operator linear in FI, a interface nodal force component. Then

(9M aFP
= L( ' ) (4.8)

Ox (x

but % is directly obtained from KEE-ax

Apart from the external force projections, the only other forces at the interface

are the equivalent nodal forces and it is important to realize that these elastic force

projections are such that the virtual work on the element due to them equals the vir-

tual work due to element internal stresses and are therefore not an exactly equivalent

force system to the interface surface pressure exerted by the elastic element on the

rigid element. In other words the rigid body simply mimics the elastic element by

imposing element and nodal force equilibrium.

KRR is the pure rigid-rigid interaction term. This exists because external surface

forces (eg. charge pressure) on the rigid body vary with Urigid and because the force

at an interface node depends on other interface nodes too.

It should be noted that JF is not symmetric (it is however still structurally sym-

metric implying benefits for the sparse solver).

55



Original position Rotate about C (
C C

B

A A

CB
B

A A

Rotate about C / Rotate about A 9

Figure 4-4: Euler angles

4.2.2 Alternative Formulation - Tait-Bryan plus Euler An-

gles

Another disadvantage is that the TB formulation has a singularity at 92 = 900 (with

an infinite number of 91 and 93 values for the same state). Another choice, an Euler

angles based formulation (Figure 4-4) (0, #, 4') has a singularity for 9 = 0 . At

02 = 90 ,

QTB =Q1

0

0

1

sin (01 + 3)

COS (01 + 93)

0

- cos (91 + 03)

sin (01 +3)

0

For Euler angles formulation, 9 = 0 gives

Q E = Q2 =

cos

- sin

(0+ +)

(q$+ )
0

sin (q$+ 4)

Cos (# + 0)

0

Comparing Qi and Q2 we see that they can never represent the same rotation.

Both represent rotations in terms of 3 angles and therefore lead to the same Jaco-

bian structure. Therefore a scheme is possible which can alternate between these

formulations (without reordering the matrix) to avoid singularities.
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xXk - xk_111 Ixk - xo|| 1/Inf. norm condition num. IIRHSI|I
1.659364e+02 0.000000e+00 4.579519e-16 1.692242e-04
7.522189e-01 1.659364e+02 2.025080e-15 4.310216e+02
2.117688e+00 1.663536e+02 2.068672e-15 5.192372e+01
6.830594e-01 1.643107e+02 3.023109e-16 7.325284e+00
1.330566e+00 1.649917e+02 5.517946e-16 2.449945e+00
3.149908e-01 1.656975e+02 5.953437e-16 2.561492e+00
1.723040e-01 1.659556e+02 7.218865e-16 9.303514e-01
1.823979e-02 1.658402e+02 1.105089e-15 4.158300e-01
2.510152e-04 1.658378e+02 5.126626e-16 8.560872e-03
4.910356e-07 1.658376e+02 5.126242e-16 6.785718e-04

Table 4.1: Quaternion Formulation Simulation

Ixk - xk-11 IIXk - xo|| 1/Inf. norm condition num. |IRHSI
1.659566e+02 0.000000e+00 1.155994e-15 1.740751e-04
1.396486e-01 1.659566e+02 6.319913e-15 3.601776e+1O
1.052388e-02 1.660733e+02 4.520098e-15 7.480708e+00
2.276828e-01 1.660834e+02 1.212690e-15 5.041451e-03
1.786507e-02 1.658558e+02 1.145242e-15 4.812036e-05
2.666699e-04 1.658379e+02 1.129685e-15 2.969424e-07
2.324695e-08 1.658376e+02 1.129597e-15 1.514945e-09

Table 4.2: Tait-Bryan Formulation Simulation

4.2.3 Alternative Formulation - Quaternion

Alternatively a quaternion (qi, q2, q3, q4) (a generalization of complex numbers [25])

formulation which is singularity free describing the rotation as

2 -2 _2 +2

qI q- q3  q4

Qquat = 2(qiq 2 - q3 q4 )

2(qiq3 + q2q4 )

2(qiq 2 + q3 q4 )

q2 _2 _ q2 _ q 2
2 1 3 ± q4

q2q3 - q, q4

q1 q3 - q2q4

q2 q3 + qiq 4

q3q3 - -2 _ q2 + 24

with an additional constraint of

q + q2 + q32 + q - 12 (4.12)

was used. However it was noticed when this formulation was applied to the scan-

ning mirror problem (Tables 4.1 and 4.2) that the Jacobian while not singular, was
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Figure 4-5: Rigid-Elastic matrix reduction

less well conditioned and took more Newton steps than the Tait-Bryan angles scheme

in general and hence this scheme was abandoned.

It should also be pointed out the rigid constraints cannot be imposed as a boundary

condition on the elastic parts in keeping with the standard finite element formulation.

This is because the space of orthogonal tensors is not linear.

The rigid/elastic mechanical solver greatly reduces the size of the stiffness matrix

with the bulk shrinking to a dense 6x6 block (Figure 4-5). The surface of the rigid

body still has to be discretized finely to properly resolve the electrostatic forces. The

rigid/elastic interface should be intruded into the rigid block for a small area (Figure 4-

6) around the tether-block mass interface in order to avoid sharp singularities in

stress across the interface. Finally since the geometry input to HE is through the

Cartesian coordinates of the surface nodes and not through the rigid body rotation

and translation, the coordinates of the rigid body surface are calculated using (4.1)

before calling HE.

4.3 Implementation

An implementation issue is the integration of individual rigid bodies into a single

rigid body whenever they behave as a single unit. A necessary input to this process

is knowing which elements behave as rigid. For the results in this thesis, the criterion

for checking the rigidity is the Young's modulus of the element which is set to a very

large value if the element is to be tagged as rigid. Connection to a rigid body in 3-D

requires at least three non-collinear common nodes between the rigid body and the
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Figure 4-6: Extending elastic domain into rigid body
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Figure 4-7: 2-D Rigid body assembly
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element. Searching for potential rigid elements to be assembled in a rigid body is

done using a depth first search process. If K denotes the number of elements and the

R denotes the set of the rigid elements then the assembly algorithm is written as

V i E K check unexplored

Vi=1toK

if material (i) = oo and i V R

1z=RUi

V j E R and j is unexplored

check explored for j

V k E neighbors (j)

if material (k) = oo and k R

RZ= RUk

end

end

end

end

end

The 2-D view of the rigid body assembling process starting from element 1 is

shown in Figure 4-7. Summation of forces on the rigid body surface is done by

1. finding the centroid of each polygonal surface of a brick exposed to the exterior

(the centroid of the polygon is simply the area weighted average of the centroids

of the exclusive component triangles).

2. summing the pressure into a force at the centroid (no moment here).

3. shifting the force from the centroid of these individual surface components to

the center of mass (with uniform density) of the rigid structure creating the

same force plus a moment there.
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Figure 4-8: Scanning mirror (coarse mesh)

4.4 Results

In this section we present results from our multilevel-Newton coupled electromechan-

ical code.

4.4.1 Scanning Mirror

The solver was tested against the experimental data of a scanning mirror [28] (Fig-

ure 4-8) with 12x50x1.1 microns SiN hinges (Young's Modulus = 243.2 GPa, Poisson's

Ratio = 0.28) and 500x600x25 microns SiN on Si central plate kept at 0 v. The ground

electrodes are kept at 37.5 ± v volts (Figure 4-9). The mirror bulk was discretized into

30 x 30 x 3 blocks (length,width,height) and the hinges were discretized into 3 x 4 x 3

blocks.

The plot (Figure 4-10) shows a close match of the simulation in the linear regime

and convergence failure corresponding to pull-in is obtained at 12.13 v (for a side-wall

slope of 56 deg) as opposed to 13.4 v (slope was unknown) of the experimental data.

Increasing the slope reduces the pull-in voltage but regardless of slope the simulation

and experiment match well in the linear regime. On an average each load step took

80 minutes (Digital Alpha 433 MHz). For a coarse mesh the elastic/rigid simulation

is compared with the fully elastic simulation (Figure 4-11) to show a close match.

The CPU time on a 500MHz Alpha 264DP-2000 for 10 load steps for the fully elastic

case was 27.25 hrs as opposed to 34 minutes for the rigid/elastic case.
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Figure 4-9: Cross-section of scanning mirror
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Figure 4-10: Mirror tilt with differential voltage v
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* Rigid/elastic ; fully elastic (8x1 0x2 block 2x2x3 hinges)
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0
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differential voltage in volts

Figure 4-11: Fully elastic and rigid/elastic comparison for coarse mesh block 8x10x2
hinges 2x2x3

4.4.2 Comb Drive Resonator

A 18 finger PolySi resonator [29] (YM = 150 GPa, PR = 0.3) (Figure 4-12) is sus-

pended with 400 microns beams with a uniform depth of 1.94 microns and finger

dimensions 13.8x4.6 microns. The movable structure and the ground plane are kept

at 0 v and a non zero voltage is applied to the driving electrodes which interdigitate

with the movable fingers at the sides. Therefore two sets of same signed charges are

created on the resonator and the ground plane which result in a levitating force. Ex-

cept for the suspension beams everything else is treated as rigid. Varying the width

of the suspension beam had almost no effect on the levitation (Figure 4-13) . Each

load step in the simulation took about 70 minutes of CPU time (Sun Ultra 30).

The effect of varying the cross-section of the fingers of the resonator and the side

supports is shown in Figure 4-17. However before this we must adopt a mesh that

is reasonably fine. A convergence study shown in Figure 4-15 is done by varying the

number of elements along the fingers (Figure 4-14). Since there is little difference

between the cases n = 12 and n = 17, the n = 12 mesh is adopted (the finger corners

and edges actually have smaller elements for better accuracy because charge tends
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Figure 4-12: Comb drive resonator
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Figure 4-14: Electrostatic Mesh
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Figure 4-15: Convergence Study

Figure 4-16: Charge distribution - lighter colors represent higher concentration

to accumulate at the corners and edges - Figure 4-16). The curve for n = 12 took

33 hrs to simulate on a Sun Ultra 30. The reason why the cross-section might be

important is explained by the fact that the electrostatic force always acts outwards

(i.e. a pull) and on the walls of the fingers there are vertical components of this

force which can either aid or resist levitation depending on the slope. Therefore

as the slope changes levitation will range from positive to even negative levitation.

This suggests that under-etching might even be a desirable feature since it helps

us achieve zero levitation (which is desirable since in-plane horizontal motion is the

design requirement).
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Figure 4-17: Finger cross-section effects on levitation - 36 fingers
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Chapter 5

Coupled Domain Simulation -

Dynamics

5.1 Introduction

In this chapter we extend the mixed regime solver from the previous chapter and

coupled domain simulation from Chapter 3 to the more interesting dynamic structural

analysis case and then present results.

5.2 Rigid-elastic Dynamics

The rigid body dynamics in the convected' basis [24] is written as

Mass XR

Mass PR +f =0 (5.1)

Mass ZR

for the translation equation where Mass is the rigid body mass and f is the

external force(surface force plus internal elastic force) on the rigid body and for the

rotation equation

1"convected" means the rotated basis which is attached to the rigid body and therefore moves
with it
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JW+Wx JW+Q TM=0 (5.2)

where W is the vector of angular velocity, J the inertia tensor, Q the rotation

tensor from spatial to body coordinates and m the external moment vector. The

convected basis is chosen because J remains constant in this system. In terms of

Tait-Bryan angles,

C0 2 C6 3  803 0 01

W -c6 2s0 3 c0 3 0 d2 (5.3)

802 0 1 j3

5.2.1 Mass Matrix Displacement Dependent

At the rigid-elastic interface
U 2 a= o2 + (5.4)a02 ao

Lets assume that we have an elastic element with 2 elastic nodes (1&2) and 2

rigidly constrained nodes (3&4). Then the inertial force is given by

i 1 1  M 1 2  i 1 3  M 1 4  Ii

M2 1 M2 2 M2 3 M 2 4  ? 2

in 3 1 M3 2 i 3 3 M 3 4  16

M4 1 M4 2 M4 3 M4 4  U 4

But u3 = u3 (0) and u 4 = U4 (O) where 0 represents the vector of rigid body dofs 2.

Therefore the above equation becomes

M 1 1 M 1 2 M 1 3 M 1 4  Ii

M 2 1 i 2 2 M 2 3 M2 4  I2

i 3 1  M 3 2  i 3 3  i 3 4  902

M 4 1 i 4 2 M4 3 i 4 4 42 + 9
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or for the equilibrium at the elastic nodes,

M 12 (Mi13 a + m 14 -a)-

(722 (in 2 3 %9' + M 2 4 -u) I
. -i

.0
11:2 +

. 0
L. .

0

0

M 1 3 M 1 4

M 2 3 M 2 4

and for

body

the force contribution to f (and also m) for the equilibrium of the rigid

m 3 1iM 3 2

M 4 1 M 4 2

Therefore the

in contrast to M

is a new velocity

(iM3 3 a + M14 )

(in 43 -%,a + m24-9 j) L i.I 0

0

0

0

M 3 3 M3 4

M 4 3 M4 4

0

0
a

2 up 62
a02

002

mass matrix of the elastic rows coupled to the interface gets altered

in the elastic formulation of (2.19) which is constant and also there

term (not damping). Note that

OU3 62 2 U3 - -j

00 ij 00

Additionally when calculating the Jacobian, the derivatives of this term would need

to be computed. This certainly complicates the programming. However if the number

of internal dofs are much larger than the interface dofs (as is to be expected when

using the rigid-elastic formulation) then the cost is negligible. Moreover the Jacobian

computation is made easier by the fact that some terms reappear because of the

nature of the sines and cosines 3 and more importantly because -a3 is the sameprirtjpxk

operator for different permutations of a fixed set of (i, j, k).

3i.e. sin" = -sin etc.
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We can write all the equations in standard form

Me(f) + Fe(u) = Pe(u, q) (5.5)

Mer(, Xi, ,) + Fe(u, X, 9) = Pe(u, X, 6, q) (5.6)

Mr(0,) + Fr(, X, i, 0) = Pr(X, 0, q) (5.7)

where Me represents the elastic dof - elastic dof mass vector, Mer the elastic - rigid

dofs mass vector, M. the rigid body mass vector, and X and 0 the translation and

rotation parameters of the rigid body. Fe and Pe represent internal and external forces

at an elastic node respectively. F. and P. represents non-charge force and charge-

force for the rigid body respectively. Me and Me, are linear in u and X but Me, is

nonlinearly dependent on 0 and its derivatives because of the previous equation. The

equations corresponding to the rigid body have a nonlinear mass matrix and also a F.

which depends on the acceleration of the surrounding nodes of the interface because

their force contribution is needed for the balance of the rigid body.

J is calculated using the algorithm for polyhedrons described in [27] where the

volume integrals are computed by converting them to line integrals.

5.3 Coupled System Dynamics

Most of the interesting performance characteristics in MEMS devices are dynamic.

The multilevel scheme in the quasistatic case easily extends over to the dynamics.

Charges are still returned by the electrostatic solver as we realistically assume that

the structure does not vibrate at a high enough frequency to take into account the

current generated due this motion.

Putting wt = (Ut, X, 0), the electrical system can be written as

A(wt)qt = 4 (5.8)

where A(wt) is the potential coefficient matrix and 4 is the potential vector. Using

the trapezoidal rule discretization for the mechanical system
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M(wt, vt)(( (t - t-1) - acct-1) = (P - F)(wt, qt) (5.9)

2/h(wt - Wti1) = Vt + Vt_1 (5.10)

where acct = (vt - vt1) - acct-1 = M'(wt, vt)(P - F)(wt, qt) and h is the time

step.

Generally writing

M(wt) + F(wt) = P(wt, qt) (5.11)

Therefore we have in the discretized form

Wt = Hm(qt) (5.12)

qt = HE(wt) (5.13)

where HM and HE describe the relation between q and u at time t.

It should be noted that the Trapezoidal rule is guaranteed to conserve energy

and momentum for linear Hamilton's equations only [26] but not for the nonlinear

equations here. However the Trapezoidal rule has worked very well in all numerical

experiments performed under this thesis.

5.4 Results

Figure 5-1 is a time simulation for the mirror where pull-in occurs for a high enough

differential voltage. In Figure 5-2 the vertical levitation (ZR) is most significant

reaching as high 1 pm.
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Figure 5-1: Time simulation of mirror. Observe that pull-in occurs for the 20-53 v
case
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Figure 5-2: Time simulation of resonator kept at 0 v (with a ground) with both side
combs at 50 v. Translation parameters - XR, YR, ZR
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combs at 50 v. Rotation parameters - 01, 02, 63
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Chapter 6

Model Order Reduction for Fully

Elastic Coupled Systems

6.1 Introduction

In the previous chapters we explored efficiency improvements to the coupled domain

solver. However when we wish to perform system level simulation or optimization,

calling the coupled solver at every iteration will be very expensive. Instead we would

like to generate low order models for device simulation which will accurately represent

input-output behavior while at the same time are cheap to simulate because of their

low order therefore giving us a quick and accurate first stab at system design. We

adapt the Arnoldi based model order reduction technique for our coupled problem

and then in the results we present several examples.

6.2 Coupled Domain Reduction

Here we adapt the Arnoldi based approach used by [13] and described in Chapter 2

to our coupled domain problem by implicit techniques. In contrast, the approach in

[4] produced small-signal models with extremely accurate frequency responses, but

exploited the fact that system matrices were explicitly available. In addition we will

develop an approach that incorporates both the linear and quadratic dependencies of
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the electrostatic forces on the input i.e. voltage.

The basic equations of coupled domain system (without damping) are

M i + F(x) = P(x,q) (6.1)

A(x)q = q0 +Aqv

where x is the state space, F the force due to internal stresses, P the external

surface force which depends on the charge q, A 1 is the potential coefficient matrix, #0

is the bias potential vector which can undergo a perturbation v in the direction AO.

A0 consists of non-zero entries corresponding to surfaces on which #0 is perturbed

and zeroes otherwise. Let us the assume that the original fully nonlinear model is

completely elastic and that we would like to generate a completely elastic reduced

model. To apply the model reduction technique described in section 2.6.3, the strategy

here will be to linearize the above equations about the bias point (X0 , q0).

. +OF OP OP Oq OP aq
Mii+(-- -u = v

Ox Ox iq Ox Og qv
K RHS 1

(6.2)
1 a raP aqg 2

2 onv I q av

RHS 2

Observe that the right hand side is strictly not a linearization. However the

quadratic term is very important as it reflects the essential "squaring" property of

electrostatic force.

At the bias point #0 the charge qo is given as

q0 = A- 1(xo)#o

Perturbing 00 by v, the change in q2 is given by

? = OTA 1 (i, :)TA1(i, :)#o

Aq? = 20TA- 1(i, :)TA-1(i, :)LA#v + A#TA-1(i, :)T A-1(i, :)A# v 2
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We know from Chapter 3 that the force linearly depends on q,.

This tells us that if the bias 0 is 0, just collecting the linear term will not give us

any force and the quadratic term must be included. As a result we can expect that if

the input is a sine wave of frequency w the response has frequencies w and 2w. Note

the computation is straightforward. A 1 (i,:)O is simply qo(i) and A- 1(i,:)AZ is ith

coordinate of the charge computed with AO as the voltage. Therefore computing

the right hand side force term just involves an extra electrostatic black box call over

the equilibrium charge calculation. Also note that prior to model order reduction we

must have already explicitly computed - (which is needed for solution of the outer

Newton loop) at the equilibrium point. For convenience we now calculate "'-". Also

while 2E - O is known explicitly P is computed using finite differences as in (3.11).

In implementation calculating the corresponding Krylov basis for the above equa-

tion is very slow because the inverse of the K matrix has to be applied using an

iterative procedure such as GMRES because of its implicit component and this pro-

cedure takes a lot of iterations because of the wide range of eigenvalues (or mode

shapes) of the stiffness matrix. Therefore since (F - !) is already known explicitly

we factor it and use it as a preconditioner for finding K-. As a consequence the

number of iterations for our examples rarely ever exceed four. Although V is orthog-

onalized while calculating the Arnoldi basis ( and this also avoids ill-conditioning of

the reduced matrices), in the damping case V is not orthonormal and is therefore

orthogonalized.

Also note that with a non-symmetric K, there is no known way to diagonalize

both M and K simultaneously. Since we have two right sides we can generate two

sets of matrices

(AD1 , 1 K1 , b1 , 1 , ui) , W 2 ,D 2 )IK2,b 27 a2 , U2)

i.e. one for each right hand side and the actual solution is u = U1+U 2 (by linearity).

Block Arnoldi which can be used when multiple right hand sides are present is not

implemented here but is described in a different multiple right hand sides context in
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the rigid-elastic case [Chapter 7].

6.2.1 Stopping criterion

From the user's point of view, the inputs required are the bias direction <o and the

order of the reduced model. If the order of the reduced model can be variable we

need to determine a stopping criterion for fixing the order of the model at the smallest

possible number. One way is to stop when the "residual"1 of the Arnoldi process is

small. To gain some insight as to why this might be useful lets assume that we reach

an invariant subspace after the ith iteration in the Arnoldi process for the no-damping

case i.e.

(K-M)K-b =

< K- 1 b, (K- 1M)K- 1b,... , (K- 1M)i-1K-1b > (6.3)

Vj > i

or the "residual" is zero.

First note that i moments have matched. The (i + 1) moment is given by

cT (K-1 M)2K-1 b (6.4)

For the reduced order model the (i + 1) moment is given by

cTV((VT KV) -'(VTMV))i(VT KV) -1VT b (6.5)

where V (spanning the columns of the subspace in (6.3) )is taken to be orthonor-

mal. But

V((VT KV)- 1(VTMV))i- 1(VT KV)-VTb =

(K- 1M)'- 1K- 1b

from the moment matching property (Note that c really doesn't have to be present

'The GMRES residual i.e. r = (K-b - K-MVy) where y s.t. IIr| is minimized
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for such types of proofs). Therefore (6.5) is also equal to

cTV(VT KV)l- VT M(K-lM)il-K-lb (6.6)

A unique solution 4 to

(VT KV) = VTM(K--M)iK-b

exists if

KV' = M(K-M)'-1K-1 b (6.7)

There is such a 0 because (K 1 M)iK-lb C V from (6.3). Therefore V4' =

(K-1 M)iK-lb and

CTv((VT KV)- 1 (VTMV))i(VT KV -vTb =

c T( K-i M)iK-1b

This procedure extends for moments (i + 2), ... , oo. Therefore all moments match

when we reach an invariant subspace. This subspace is the same as the invariant

subspace which is reached in an expansion-around-oo Arnoldi process. It follows by

a simple manipulation of (6.3) that the subspace

< M-1 b, (M- 1K)M- 1b, ... , (M-1 K)i- 1M-1 b> =

< K-1 b, (K-1 M)K-1 b, ... , (K-1 M)i- 1K-1 b >

and is also invariant. This analysis also holds true for the damping case with K

etc. replaced by ki etc. In practice however, we stop the Arnoldi process much before

the "residual" becomes very small and because of the error, the above analysis may

not be a good indicator. But it has been observed to be a good stopping criterion.
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Figure 6-1: 3-D Model of Micromirror has thousands of degrees of freedom. Expensive
to Simulate.

6.3 Results

Most MEMS devices are not packaged in vacuum and so we can expect to see fluid(air)

damping. But we will not incorporate air damping here. Instead we introduce a

fictitious positive definite damping matrix D to test our model reduction. First we

reduce a "plain" linearized (i.e. no quadratic term of voltage) cantilever beam to a

1 5t" order model and compare it with the full simulation by taking it to steady state

shown in Figure 6-3. The steady state error is large. For a lightly damped model we

compare the transient responses of the fully nonlinear model, the 1 5th reduced models

of the "plain" linearized and linearized systems in Figure 6-4. The reduced model of

the linearized system matches very well with the full model.

In the micromirror in Figure 6-1, the device input is a differential voltage applied

to a pair of plates beneath the mirror, and the output is the micromirror's angular

deflection. As shown in Figure 6-2 the quasistatic simulation results are in close

agreement with experimental data [28]. The nearly 7000 degrees of freedom mirror

is reduced into two 15th order reduced models (one each for the linear and quadratic

right hand sides (6.2)) without any damping and we see again that the fully elastic

reduced model simulation matches well (Figure 6-5) with the simulation of the full

model (rigid-elastic) [20].

Next we examine the frequency responses of the reduced model at different bias

points. In the recipe to determine a linear reduced order model the first step is
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Figure 6-2: Micromirror displacement versus voltage.
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Figure 6-4: Cantilever beam voltage transient responses (lightly damped case) using
numerical simulation and two generated macromodels.
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Figure 6-5: Comparing micromirror differential voltage step responses computing
using numerical simulation and 15th order macromodels.

Figure 6-6: Cantilever beam over 0 v plane

to determine the regime in which the original system behaves more or less linearly.

The following results were obtained by a modification of the CFD-ACE code of the

Computational Fluid Dynamics Corporation, done by the author. The test case is

a simple 954 dofs cantilever beam as before (Figure 6-6) and we linearize about the

bias points shown in Figure 6-7. Fictitious damping is introduced in the form of

Rayleigh damping (D is a linear combination of K and M). From Figure 6-8 we see

that the frequency response of both the Arnoldi and Eigen reduced (eigenmodes from

K and M only) models (ten Arnoldi vectors and ten Eigen vectors) match well with

the full model near the first eigenvalue of the undamped system. This should not

be surprising because in an expansion-around-0 reduction we expect the models to

match better at lower frequencies.

Figure 6-9 plots the frequency responses for the bias at 100 v and 300 v. The
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Frequency Response at bias = 100 & 300 V
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Figure 6-9: Frequency responses for linear and nonlinear inputs (bottom curve) at
100 v and 300 v

response contribution by the nonlinear input is a couple of orders magnitude less

than the linear input contribution. Also the Arnoldi and Eigen reduced model plots

are not distinguished since they match very well. It is interesting to point out that the

second eigenvalue of the original system corresponds to a horizontal mode which is not

represented by any of the peaks of the response (since the vertical response that we

measure is not affected by horizontal modes. However it does tell us that we needn't

have collected the second eigenmode when we collected the 10 smallest eigenmodes

for eigenreduction. In fact the Arnoldi method's advantage lies precisely here i.e.

efficient capturing of the modes in the response direction. One can see this clearly by

noting that the expansion-around-oo subspace is the same as the reachability space

of (2.25)). Figure 6-10 shows the differences between the peak frequencies and values

of the biases.

However if the number of mechanical degrees of freedom is large as in the case

of the micromirror the reduction process becomes expensive because of the cost of

finding a static solution first/cost of factoring. In such cases it is possible to derive a

reduced rigid-elastic model directly from the full rigid-elastic model which is explored
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Linear input Bias = 300 v Bias = 100 v
only
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Figure 6-10: Peak comparison for bias = 100 v and 300 v

in the next chapter.

6.4 Conclusion

We have successfully demonstrated a fully automatic technique to take a partly im-

plicit system and reduce it to a much smaller explicit system that accurately captures

the small signal behavior of the original system.
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Chapter 7

Generation of Rigid-Elastic Models

7.1 Introduction

In the last chapter we remarked that it is expensive to generate reduced order models

of devices such as the resonator with many degrees of freedom. This and because we

treat these devices as rigid-elastic anyway when simulating them in "full" leads to the

idea that we can reduce their models in such a way so as to preserve the rigid-elastic

behavior.

7.2 Rigid-Elastic Reduction

As in the elastic case one can think of linearizing the nonlinear models in terms of the

elastic degrees of freedom and the rigid degrees of freedom namely the three transla-

tion variables and the three degrees of rotation. Then we can perform Arnoldi based

reduction as before. The problem with this approach is that after linearization(and

reduction) the nonlinear behavior of the rigid body is lost i.e. (5.2). The end result

will be of the form (2.25) with no guarantee of stability. If the full model is an an-

gles based model, the reduced model although angle based will not contain sines and

cosines(as in the full model) and therefore the structure is lost. Instead we would like

to retain the nonlinearity of the rigid body motion.

The idea is to retain the six rigid degrees of freedom while reducing the elastic
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F(QXR IR)

Change
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Figure 7-1: Reduction of degrees of freedom of tether

degrees of freedom which still slow down the solver. This reduction of the elastic part

of the structure is done using block Arnoldi (see Appendix B).

Any point on the rigid-elastic interface can be expressed as (4.1) and (4.2) or

X q1 q4 q7 X XR

y = q2 q5 q8  Y + YR

z q3 q6 q9 Z ZR

Here [XRYRZR] T or (X, Y, Z)R are the translation parameters of the rigid body

and [XYZ]T or (X, Y, Z) are the relative coordinates of an interface point w.r.t. the

center of translation and rotation. We can think of (x, y, z) as a linear combination

of qi's and (X, Y, Z)R which total to 12 in number. Then the linearized system of

equations for the elastic part of the structure is written as

M elastic + K Xelastic = - I iinterface- K Xinterface
9

M eiastic + KXeiastic = - E (Mzdj + Kzqz)

-M10XR - M11YR - M12 ZR

-KOXR - Kl1YR - K12ZR

Note that for any node on the interface the qi's and (X, Y, Z)R are the same. Only

(X, Y, Z) changes from node to node. Now the qi's,(X, Y, Z)R, 4i's and(X, Y, Z)R 1
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can be thought of as inputs to the left hand side of (7.1). (7.1) is therefore reduced

w.r.t. these inputs and we obtain the transformation

x = Vz (7.2)

We use (7.2) again for reducing the elastic degrees of freedom in the equilibrium

equation for the rigid body. Applying the transformation to the full linearized mass

matrix for example looks like2

VT 0 MEE MER V o

L0 I MRE MRR JL0 1

(7.3)

VT MEEV VTMER

MREV MRR

following the notation of Chapter 4. Note that the rigid part is unaffected and

that we get a desired reduction in the elastic degrees of freedom. The equation for

the elastic part linearized about qj0 and (X0 , Y0 , Z 0 )R respectively is

9

MEE Z +KEEZ = - (MA +Ki(qz - )

-ROR - MllYR - 2R (7.4)

-R 10 (XR - XR) - k 11 (YR - YR)

-K 1 2 (ZR - ZR)

where MEE is VT MEEV etc.

2J might seem as if the rigid body equations need to be linearized w.r.t. the rigid dofs but except
for the surface and internal force contribution, actually they are not and the discussion here serves
to illustrate the transformation to the Jacobian for both the stiffness and mass terms
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The "reduced" translation rigid body equations are

Mass

Mass

Mass

interface f orce
{X} +

= RHSorceV + RHS orceV2

XR

YR

2R

+ KRE force Z

Kinterface force + K surface force) zi -Xo}
RR RR ) {X - X O}R I

where 3 RHS f"" and RHSf "" represent the linear and quadratic contributions

of the electrostatic force 4 (not moment). Similarly the "reduced" rotation equation

is

JW(qi) + W(qi) x JW(qi) + QT(Finterface) = QT(RHSnomtv + RHSmomtv 2)

Finterface _ Mnmti + kRomtz + M &frface momK

(Knterface momt + Ksukface momt) [ ~ ]
{X - X 0 }R

(7.6)

Note that in (7.5) and (7.6) MintrRace momt,force represents the mass matrix contri-

bution of the interface or internal elastic forces and interface momt,force is the stiffness

matrix contribution of the internal forces and Ksurface momt,force is the surface force

contribution.

It should be pointed out that in this formulation we have not considered for

reduction purposes the surface forces on the elastic portion as inputs. It is assumed

that the surface forces on the elastic parts (tethers for eg.) are much smaller than the

internal forces which the rigid body exerts on them. The surface forces contribute to

the elastic stiffness matrix and therefore we need to implicitly apply Ki. If 2 vectors
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Figure 7-2: Step Response : Scanning mirror rigid body translation parameters com-
parison

are provided for each of the 24 inputs then this can become expensive as we would

need to call HE 48 times. Therefore this method works fastest when the surface force

effects are not included in KEE-

From the user's point of view the only inputs required are the order of the model

(> 24), the tagging of elements as rigid plus the tolerances required for the coupled

domain solver. After that the model is automatically reduced. The reduced model can

then be conveniently solved using a simple MATLAB (r) script which calls MAPLE

(r) for analytical computations. Note that while solving the reduced model we can

replace the qj's with the Tait-Bryan angles formulation for example (4.2).

7.3 Results

The scanning mirror example of Chapter 6 (Figure 6-2) is reduced with the technique

described in the previous section. KRu ace momt,force should be included otherwise the

time period and amplitude can be significantly different from the full simulation.

The device input is a differential voltage applied to a pair of plates beneath the

mirror each kept at 37.5 v with the mirror at 0 v, and the output of interest is the

micromirror's angular deflection. The first procedure as always in a strategy to

generate a reduced order model is to obtain the static angle displacement curve -

Figure 4-10. Then preferably we would like to operate in the linear regime. Here
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Figure 7-3: Step Response : Scanning mirror rigid body rotation parameters com-
parison

we choose a bias of 2 v. Figures 6-2 and 6-3 show the comparison between the 5 4th 5

order reduced and full models for a step input of 3 v. 02 is the tilt which reveals a close

match between the models (compare with Figure 6-5). For other parameters there is

at least a match in the frequencies. For 01 and 03, the mismatch in amplitudes are

not important as the amplitudes are very small. As the input is increased, nonlinear

effects become more prominent and the reduced model cannot capture them. The

reduction in complexity is quite significant as the the linearized Jacobian for the

reduced system is 54 x 54 in this example compared to 1476 x 1476 of the original

system without the computational costs of many 3-D coupled domain solves.

'6 for the rigid degrees of freedom, 48 for the elastic part in particular 2 for each of the 24 inputs
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Chapter 8

Conclusion

In the previous chapters we have described a multi-level Newton technique for coupled

domain problems which is most efficient when the black box solvers not only return

an output for a given input but also a corresponding perturbation in output for a

perturbation in input. One can see that if in the future more physics are involved or

better individual solvers are available then one can "plug" them into this architecture.

Then when the structure behaves rigidly we have shown that it pays to use a rigid-

elastic formulation which also matches the fully elastic formulation very well. However

it is the user's decision to tag the elements as rigid so automatic selection remains

an incomplete task. With this rigid-elastic formulation we have shown that it is easy

and insightful to study the effects of geometry on the structure thus helping us to

factor in geometry in design.

Since full 3-D models are expensive to run for system level simulation, accurate

and cheap reduced order models are needed and we described the reduction of the

electromechanical structure dealing with mostly implicit information based on the

popular Arnoldi based methods and in the end we had explicit matrices. This method

is extended to generating accurate rigid-elastic models which is more attractive for

models with rigid-elastic behavior by reducing only the elastic part of the structure.

However we have neglected the more realistic fluid damping and did not consider

damping at all for the rigid-elastic case. However for the rigid-elastic it is easily seen

that the reduction is independent of computing the damping effect. As a very simple
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example the linearized damping matrix can be incorporated by calling the recently

developed fast fluid solvers for perturbations in geometry for both the fully elastic

and rigid-elastic cases. Finally we have described the formulation for linear model

reduction only and research is still ongoing in the development of nonlinear models.
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Appendix A

Reachability Space

Converting the second order equation to first order we have

M r +kz = by

With initial condition z = 0 the solution at anytime t is given as

x(t) = Je -)P - v(r)dT
0

Expanding the exponential using the Cayley-Hamilton theorem the reachable

space is obtained as

< fl-lb, (i$-lk)M^-1b,, (I-1)2-1-igk )nl-Ib >

where n is the dimension of the system. This is the same as series obtained

by the expansion-around-oo Taylor series of H(s) (2.25). This would suggest that

perhaps we should use this expansion instead of expansion-around-0. However there

is no practical use of using this series unless we reach an invariant subspace with

dimension much smaller than n. However if an invariant subspace is reached we

saw in Chapter 6, it is identical to an equal dimension expansion-around-0 subspace

which is also invariant. This justifies using expansion-around-0 which also matches
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the steady state.
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Appendix B

Block Arnoldi

When multiple RHS inputs are present as in the first order system below with three

inputs v1 , v2 and v3

Ax + b1 v1 + b2v 2 + b3v 3

y = CT (B.1)

Y(s) = cT(s - A) 1 (biVi(s) + b2 V2 (s)+ b3V3 (s))

we can consider each input separately (superposition of solutions) and generate

three different reduced order models. Each reduced model will match a set of moments

with the original model for the corresponding input.

Y1(s) = cTQi(s -- QTAQ)~1QTbiV1(s)

Y2(s) = cTQ2(s - QjAQ 2) Qjb 2V2 (s)
2 2 (B.2)

Y3(s) = CTQ3(s - Q'AQ3)-Q'b3V3 (s)

Ya(s) = Y(s) + Y2 (s) + Y3(s)

For block Arnoldi Q1, Q2 and Q3 are combined together into a single matrix Q =

[Q1Q2Q3] and assuming Q is full rank the reduced model is

Yba(s) = cT Q(s - QTAQ)- 1 QT (b1 Vi(s) + b2 V2 (s) + b3V3 (s)) (B.3)
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Now both (B.2) and (B.3) match exactly the same moments but results have

appeared in the literature [30] which suggest that for the same point-wise accuracy

(B.3) requires lesser computation because of cheaper and fewer matrix-vector products

compared to individual Arnoldi and Pade'. Note that the combined cost of factoring

the individual matrices of (B.2) is 3i compared to the 27i3 cost of factoring the

reduced matrix of (B.3). It is tempting to think that for i = 1, 2, 3

IcITQ 2(s - QTAQi)- 1 Qibi - cT(s - A-c(b|| _|CQ(s - QT AQ)- 1 QT bi - cT(s - A)-i

Vs E [-joo,joo]

because Q has more vectors (spanningi either A- 1 or A) than Qi. A script is

written in MATLAB (r) to test whether this hypothesis is ever violated.

% To see if Block Arnoldi reduces the norm of the error in each

% component of the transfer function

function [] = testblkarnoldi(N,order)

A = randn(N);

eyeN = eye(N);

b = randn(N,1);

c = ones(N,1);

[L,U] = lu(A);

% Determine Arnoldi basis 10

[V] = MORgmres-krylov(L,U,eyeN, A\b(:,1), order- 1,norm(A\b(:,1)));

Ar = V'*A*V;

bri = *b;

cr1 = *c;

eyeNrl = eye(size(Arl,1));

% To include the effect of Block Arnoldi,

lexpansion around 0 or oo

96



% add some vectors spanning A {-1}. randn(N,3) like other right hand sides

V2 = orth([V A\randn(N,3)]);

Ar2 = V2'*A*V2; 20

br2 = V2'*b;

cr2 = V2'*c;

eyeNr2 = eye(size(Ar2,1));

counter = 0;

for s=0:0.01:10

counter = counter+1;

X(counter) = s;

% 'i' is really the imaginary number 'J'

w = i*s; 30

Yl(counter) = norm(c'*((w*eyeN-A)\b) - cr1'*((w*eyeNrl-Ar1)\brl));

Y2(counter) = norm(c'*((w*eyeN-A)\b) - cr2'*((w*eyeNr2-Ar2)\br2));

Y3(counter) = norm(c'*((w*eyeN-A)\b));

end

clf;

subplot(2,1,1);

%Individual Arnoldi

plot(X,Y1I, 'b');

hold on; 40

% "Block" Arnoldi

plot(XY2,'r-');

subplot(2,1,2);

%original IH(j omega)| - transfer function

plot(X,Y3);

From (B-1) we can see that the addition of vectors such as generated from ad-

ditional RHS vectors while decreasing the error for most of s , actually increase the
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error in this case near s = 0 (where the reduced and the full models match best).
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Appendix C

Parameter Balancing

The parameter balancing technique as described for example in [11] is useful in de-

termining an estimate of the minimum complexity when the cost function has mono-

tonically increasing and decreasing parts. Specifically let the cost function

c(n) = f (n) + g(n)

where f(n) is monotonically increasing in n and g(n) is monotonically decreasing

in n. Let c(nm) be the minimum value of c(n) at n = n,. Also let no be that value of

n at which g(n) equals f(n) i.e.

g(no) = f(no)

Now for n* > no

c(no) = g(no) + f(no) = 2f(no) < 2f(n*) 5 2c(n*) (C.1)

since f (n) is monotonically increasing and both f (n) and g(n) are positively valued

for n > 0.

Similarly for n, < no

c(no) = g(no) + f(no) = 2g(no) < 2g(n*) 2c(n*) (C.2)
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Therefore from (C.1) and (C.2) c(no) < 2c(n.). Now if it is much more simpler

to compute no than n,, then by selecting n = no we will not be off the minimum by

more than a constant.
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