COMPUTATIONAL GENOMICS:

MAPPING, COMPARISON, AND ANNOTATION OF GENOMES

by

Serafim Batzoglou

B.S. Mathematics; B.S. Computer Science;M.Eng. Electrical Engineering and Computer Science Massachusetts Institute of Technology, 1996

4

Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

at the Massachusetts Institute of Technology June 2000

© 2000 Massachusetts Institute of Technology All rights reserved

Signature of Author	Department of Electri	ical Engineering and Computer Science March 27, 2000
Certified by	amuel A. Goldblith Assoc	Bonnie Berger Eiate Professor of Applied Mathematics Thesis Supervisor
Accepted by	Chair Department of Electri	Arthur C. Smith man, Committee on Graduate Students ical Engineering and Computer Science
MASSACHUSETTS OF TECHNOL JAN 16	INSTITUTE OGY 1 2002 ENG	MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LIBRARIES

Computational Genomics: Mapping, Comparison, and Annotation of Genomes

by

Serafim Batzoglou

Submitted to the Department of Electrical Engineering and Computer Science on March 27, 2000 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science

ABSTRACT

The field of genomics provides many challenges to computer scientists and mathematicians. The area of computational genomics has been expanding recently, and the timely application of computer science in this field is proving to be an essential component of the large international effort in genomics. In this thesis we address key issues in the different stages of genome research: planning of a genome sequencing project, obtaining and assembling sequence information, and ultimately study, cross-species comparison, and annotation of finished genomic sequence. We present applications of computational techniques to the above areas: (1) In relation to the early stages of a genome project, we address physical mapping, and we present results on the theoretical problem of finding minimum superstrings of hypergraphs, a combinatorial problem motivated by physical mapping. We also present a statistical and simulation study of "walking with clone-end sequences", an important method for sequencing a large genome. (2) Turning to the problem of obtaining the finished genomic sequence, we present ARACHNE, a prototype software system for assembling sequence data that are derived from sequencing a genome with the "shotgun" method. (3) Finally, we turn to the computational analysis of finished genomic sequence. We present GLASS, a software system for obtaining global pairwise alignments of orthologous finished sequences. We finally use GLASS to perform a comparative structure and sequence analysis of orthologous human and mouse genomic regions, and develop ROSETTA, the first cross-species comparison-based system for the prediction of protein coding regions in genomic sequences.

Thesis Supervisor: Bonnie Berger Title: Samuel A. Goldblith Associate Professor of Applied Mathematics

TABLE OF CONTENTS

LIST OF FIGURES	6
LIST OF TABLES	9
ACKNOWLEDGEMENTS	11
OVERVIEW	13
BACKGROUND	16
Genomes and the Genetic Code	16
Mapping and Sequencing a Genome	19
Genome Annotation	30
Comparative Genomics	34
Chapter 1: Physical Mapping with Repeated Probes	39
Introduction	39
Background	42
Physical mapping	42
The Lander-Waterman Model	43
The Hypergraph Superstring Problem	43
Computational Complexity Results	45
Approximation Algorithms	48
The Merge Operation on Simple Q-nodes	50
Description	50
Correctness of MERGE	52
The GREEDY-MERGE-SPERNER Algorithm	55
Description of GREEDY-MERGE-SPERNER	55
Properties of GREEDY-MERGE-SPERNER	55
Examples	58
The GREEDY-MERGE Algorithm for General Hypergraphs	60
Description of GREEDY-MERGE	60
Proof that GREEDY-MERGE Retrieves the C1P	61
Approximation Guarantees	64
The Algorithm 2-PHASE-GREEDY	65

The Algorithm 2-LAYER-GREEDY	66
Simulation Results	70
Conclusion	72
C h a p t e r 2 : Sequencing a Genome by Walking with BAC-ends	73
Introduction	73
Basic Model	76
Mathematical Analysis and Results	78
Using one Library of Constant Size Clones	79
Using Smaller Clones to Close Gaps	85
Optimizing Clone Library Depth	89
Seeding the Genome	90
Simulations	
Conclusion	95
C h a p t e r 3: Whole Genome Shotgun Assembly	
Introduction	
Previous Work	
Problem Description	
Algorithms	101
Creation of Overlap Graph	101
Table of k-mer Occurrences	102
Pairwise Read Alignments	103
Processing of Overlap Graph and Creation of Supercontig	104
Definition of Read "Shifts"	107
Discarding Repetitive Links	108
Sparse Representation of Overlaps and Creation of Contigs	109
Assembly of Contigs into Supercontigs	111
Results	
Repetition of <i>k-mers</i> in the Test Sequences	
Generation of Shotgun Data	
Fragment Assembly Results	
Conclusions of Future Work	

C h a p t e r 4 : Cross Species Genomic Comparison, and Gene Recognition130
Introduction
Results132
Comparison of Human and Mouse Genomic Loci132
Global Sequence Alignment, GLASS
Gene Recognition, ROSETTA
Gene Recognition Results
Methods140
Database Construction140
Sequence Alignments and Comparative Analysis
Computational Prediction of Coding Exons142
Discussion
CONCLUSION146
Appendix A: The Genetic Code
Appendix B: Performance of ARACHNE
Appendix C: Comparative Analysis of Human and Mouse Loci
Appendix D: Combined Whole Genome Shotgun and Clone-by-Clone Assembly
BIBLIOGRAPHY

LIST OF FIGURES

Number	Page
BACKGROUND	
0.1. The Genetic Code	17
0.2. Ambiguous and Unambiguous Read Overlaps	20
0.3. A Repeat Flanked by Unique Regions	23
0.4. Physical Mapping	24
0.5. A Forward/Reverse Link	27
0.6. Forward/Reverse Links Used in Fragment Assembly	28
0.7. Splicing and Translation	32
0.8. Phylogeny Tree of Mammals	
Chapter 1: Physical Mapping with Repeated Probes	
1.1. Gadget for Truth Assignment	
Chapter 2: Sequencing a Genome by Walking with BAC-Ends	
2.1. Overlapping BACs in Library of Depth d=12	75
2.2. Serial Walking of the Genome from a Single Initial Seed Clone	77
2.3. Serial Walking of the Genome from a Collection of Seed Clones	78
2.4. Unidirectional Walking from a Seed Clone C ₀	79
2.5. Proportion of Excess Sequencing, One Library	82
2.6. Proportion of Ocean Excess Sequencing	83
2.7. Number of Walking Steps	84
2.8. Proportion of Excess Sequencing, Two Libraries	87
2.9. A Small Ocean Being Closed by Two Clones	87
2.10. Optimal Library Depth	88
2.11. Comparison of Parking and Exponential Distributions	91
2.12. Difference Between Parking and Exponential Distributions	93
2.13. Difference Between Formulas and Simulations	94
2.14. Difference Between Formulas and Simulations, ACO Assumption	

Chapter 3: Whole Genome Shotgun Assembly	
3.1. Ambiguity Created by the Presence of Repeats	
3.2. A Repeat with Three Copies	
3.3. A Sequence Contig	
3.4. Repetitive Links	
3.5. Merging of Supercontigs	
3.6. 24-mer Frequencies in H. influenzae	116
3.7. 24-mer Frequencies in A. fulgidus	116
3.8. 24-mer Frequencies in C. elegans Chromosome 1	117
3.9. 24-mer Frequencies in Human Chromosome 22	117
3.10. Repeat Lengths in H. influenzae	118
3.11. Repeat Lengths in A. fulgidus	
3.12. Repeat Lengths in C. elegans Chromosome 1	119
3.13. Repeat Lengths in Human Chromosome 22	119
3.14. A Supercontig	
3.15. Coverage of Genomes by Long Supercontigs	124
3.16. Quality of Shotgun Assembly on Human Chromosome 22	
3.17. Quality of Shotgun Assembly on C. elegans Chromosome 1	
3.18. Quality of Shotgun Assembly on H. influenzae	
3.19. Quality of Shotgun Assembly on A. fulgidus	

Chapter 4: Cross-Species Genomic Comparison and Gene Recognition
4.1. Correspondence of Regions on a Pair of Human/Mouse Homologous Loci136

Appendix B: Performance of ARACHNI	<u> </u>
------------------------------------	----------

B.1. Human Chromosome 22, 11x Coverage	154
B.2. Human Chromosome 22, 9x Coverage	154
B.3. Human Chromosome 22, 7x Coverage	155
B.4. Human Chromosome 22, 5x Coverage	155
B.5. Human Chromosome 22, 3x Coverage	156
B.6. C. elegans Chromosome 1, 11x Coverage	156
B.7. C. elegans Chromosome 1, 9x Coverage	157

B.8. H. influenzae, 11x Coverage	157
B.9. H. influenzae, 9x Coverage	
B.10. H. influenzae, 7x Coverage	158
B.11. H. influenzae, 5x Coverage	159
B.12. A. fulgidus, 7x Coverage	159

Appendix D: Whole Genome Assembly Using Combined Shotgun and Clone-by-Clone Sequencing (WGSCC Sequencing)

B.1. Coverage of the Genome with Shotgun and Clone-by-Clone Reads......154

LIST OF TABLES

Number	Page
BACKGROUND	
0.1. Genome Size and Number of Genes for Some Organisms	19
Chapter 1: Physical Mapping with Repeated Probes	
1.1. Performance of GREEDY-MERGE-SPERNER on Simulated Data	71
Chapter 3: Whole Genome Shotgun Assembly	
3.1. Example of a Sorted Hash Table	
3.2. Percentage of Genomic Sequence Covered by Unique <i>k-mers</i>	114
Chapter 4: Cross-Species Genomic Comparison and Gene Recognition	
4.1. Training Set of Human/Mouse Homologs	138
Appendix A: The Genetic Code	
A.1. The Genetic Code	149
Appendix B: Performance of ARACHNE	
B.1. Human Chromosome 22, 11x Coverage	
B.2. Human Chromosome 22, 9x Coverage	
B.3. Human Chromosome 22, 7x Coverage	151
B.4. Human Chromosome 22, 5x Coverage	151
B.5. Human Chromosome 22, 3x Coverage	
B.6. C. elegans Chromosome 1, 11x Coverage	151
B.7. C. elegans Chromosome 1, 9x Coverage	152
B.8. H. influenzae, 11x Coverage	
B.9. H. influenzae, 9x. Coverage	
B.10. H. influenzae, 7x Coverage	

B.11. H. influenzae, 5x Coverage	153
B.12. A. fulgidus, 7x Coverage	153

Appendix C: Comparative Analysis of Human and Mouse Loci	
C.1. Comparative Analysis of 117 Human and Mouse Genomic Loci	

ACKNOWLEDGEMENTS

My most special thanks to my advisor Bonnie Berger for her guidance, unwavering support, and collaboration on all the work described in this thesis. I gratefully acknowledge the guidance and collaboration of Sorin Istrail, Eric Lander, and Jill Mesirov. Sorin Istrail introduced me to physical mapping, and Chapter 1 is the result of our collaboration. I feel especially fortunate to have met and collaborated with Eric Lander, who deeply influenced my work, my knowledge of biology, and my devotion to genomics research. Eric Lander introduced me to the material of Chapters 2, 3, and 4. These chapters resulted from my collaboration with Bonnie Berger, Eric Lander, and Jill Mesirov. I especially thank my friend and colleague Lior Pachter, whose contributions directly enabled the completion of the comparative sequence analysis and gene recognition part of this work (Chapter 4).

I thank Bruce Birren, Ken Dewar, Daniel Kleitman, and Tomas Lozano-Perez, for helpful discussions. I thank Eric Banks, Wes Beebee, Valentin Spitkovsky, Ken Stanley, Tina Tyan, Brian Walenz, and Bill Wallis, for help and contributions to the research. I am grateful to Angelita Mireles, Amir Nashat, and Ken Stanley for their help in reading over and helping edit my thesis. I thank my family, and especially my sister Evi, for their support. Thank you all.

Για τον Συλβεστρο και τη Λαμπρινη

OVERVIEW

The discovery of the DNA double helix in 1953 by James Watson and Francis Crick (Watson and Crick, 1953a, 1953b) led the way to an understanding of biology in molecular terms. Subsequently, since the discovery of techniques to sequence DNA in the late 1970s (Maxam et al. 1977; Sanger et al. 1977) the characterization and study of the genetic material of organisms at the sequence level has become an increasingly important tool in biology. Today major genomic projects are being undertaken at an accelerating pace, with the aim of sequencing and ultimately studying the genetic material of humans, animals, plants, bacteria, and in general a vast variety of living organisms. The Human Genome Project, an international effort to produce the complete sequence of human DNA at very high accuracy, is scheduled to complete by 2003 (Science, vol. 284, p. 1439). The mouse genome is next in the pipeline (Science, vol. 287, p.1179). Organisms whose genome has already been sequenced include tens of unicellular organisms (see Hurowitz, 1999 for a list of 15 such organisms), yeast S. cerevisiae (Oliver et al. 1992; Dujon, 1996), C. elegans (The C. elegans sequencing consortium, 1998), and Drosophila (Nature, vol. 403, p. 817; Science, vol. 287, p. 1374). Many more organisms are either being sequenced, or will be sequenced in the near future. Finished sequences are being annotated with information about gene boundaries, regulatory elements, and other important biological units. Inter and intra-species comparative analyses of homologous regions are providing insight into the biology and evolution of organisms (O'Brien et al. 1999).

Since the first sequencing projects, computational tools have been essential in genomics. Shotgun sequencing for instance, the prevailing method for determining the sequence of a genomic region, involves obtaining a large number of short random pieces (a few hundred nucleotides long) of the region, sequencing those pieces with the existing sequencing technology, and then assembling them using computers into the complete sequence of the genomic region. As the pace of genomic research has been accelerating, the contribution of computer science is becoming both more essential and challenging. In this thesis we will present some contributions of a computational/mathematical nature applied to the different stages of a genomic project. These stages include: planning a genome sequencing project, assembling the sequencing data into a complete genomic sequence, and finally comparing and annotating genomic sequences.

First, we will present theoretical work on the problem of finding the minimum superstring of a hypergraph. This is an algorithmic problem motivated by the biological problem of physical mapping, *i.e.* obtaining a map of the locations of clones for the purpose of then selectively sequencing them. We will study the computational complexity of this problem, and present some algorithms that provide constant approximations under certain conditions. We test our main algorithm on simulated random data.

Second, we will present a study of the "walking" approach to whole genome sequencing. Walking with clone-end sequences (Venter et al. 1996) is an important approach to genome sequencing, providing an alternative to either physical mapping-based clone-by-clone sequencing, or whole genome shotgun sequencing. We will present a mathematical model and computer simulations predicting the performance of a sequencing project based on walking with clone-end sequences. The purpose of our modeling work is to clarify important tradeoffs in planning to sequence a genome by this method. We also present a method for cutting dramatically the inefficiency of redundant sequencing, by using a second library of shorter clones.

Third, we will present some tools for automated assembly of shotgun sequencing data. We will present a hashing system for efficiently obtaining the adjacency matrix of similarity of a large collection of sequencing reads. Building on this, we will describe *ARACHNE*, a system for assembling shotgun sequencing reads into long layouts that we call supercontigs. We test a prototype implementation on the human chromosome 22, as well as on other sequences, with encouraging results. We briefly describe future improvements to *ARACHNE*, with the ultimate goal of having a system that can comfortably assemble shotgun data of a complete mammalian genome.

Finally, we will develop tools for comparison and annotation of large genomic regions of homologous DNA from two species. The impeding availability of vast amounts of unannotated human and mouse genomic data motivate this part of the work. The whole human genome will be available by 2003 while large regions of the mouse genome are being sequenced (Science, v. 284, p. 1906-1909, 1999; Science, v. 286, p. 210, 1999; Science, vol. 287, p. 1179, 2000) and in not

too long the complete mouse sequence will undoubtedly be obtained. The study of the human genome can benefit tremendously from comprehensive comparisons with the highly homologous mouse genome. Moreover, thinking ahead on future medical therapies and technologies based on genomics, they will likely be tested first on the mouse before being applied to the human. We will present *GLASS* (GLobal Alignment SyStem), a tool for aligning long orthologous genomic regions from related species. Using this, we will provide a comparative analysis of a number of orthologous genetic loci of human and mouse. Finally, we will present *ROSETTA*, a gene recognition program based on cross-species human and mouse genomic comparisons.

BACKGROUND

In the pages that follow we give a brief introduction to genomics, and outline the context of the contributions that we describe in the following chapters. We give basic biological background intended mainly for readers with expertise in computer science or related disciplines. Such readers may find it useful to also refer to more general texts such as (Lewin, 1996; Stryer, 1996; Lodish et al. 1998; Griffiths et al. 1993), and an introductory chapter on biology written for mathematicians (Lander and Waterman, 1995). For background more specific to the material in this thesis, we suggest the following selective reading: As general reading that is related to several parts of this thesis we would suggest Dujon, 1996; The C. elegans Sequencing Consortium, 1998; Lander, 1997; Lander and Waterman, 1988; Smit, 1995. For Chapter 1 on Physical Mapping, we would suggest Alizadeh et al. 1995; Booth and Lueker, 1976; Collins et al. 1996; Coulson et al. 1986; Greenberg and Istrail, 1995; Koop, 1995; Nelson and Speed, 1994. For Chapter 2, Venter et al. 1996; Lander and Waterman, 1988. For Chapter 3, Fleischmann, 1995; Green, 1997; Weber and Myers, 1997. For Chapter 4 we would suggest Altschul et al. 1990; Altschul et al. 1997; Batzoglou et al. 1998; Boguski et al. 1996; Burge, 1997; Burset and Guigo, 1996; Koop, 1995; O'Brien et al. 1999.

1. Genomes and the Genetic Code

DNA is a very long macromolecule composed of *deoxyribonucleotides*, which are small molecules containing a *base*, a *sugar*, and a *phosphate group*. The sugar contained in a deoxyribonucleotide is *deoxyribose*, indicating that it lacks an oxygen atom (*deoxy-*) that is present in a *ribose*. The base is a *purine* (*adenine* (A) or *guanine* (G)), or a *pyrimidine* (*thymine* (T) or *cytosine* (C)). Therefore DNA can also be thought of as a long string written in an alphabet of four letters, namely A, C, G, and T. DNA is actually a *double-stranded* molecule, where each nucleotide is bonded to its Watson/Crick complementary nucleotide (A to T, and C to G). Locally DNA assumes a helical shape, and therefore is called a *double helix*. James Watson and Francis Crick discovered the three-dimensional structure of DNA in 1953 (Watson and Crick, 1953a,b), and the mechanism of DNA replication was soon inferred. The complementary nucleotide chains

of DNA act as templates for each other during DNA replication. Therefore DNA is a large molecule containing information written in the alphabet $\{A, C, G, T\}$, capable of preserving and replicating this information. It is believed to contain (almost) all the information inherited by an organism from its parent(s).

The DNA of an organism is referred to as its genome. Genomes are stored inside cells. Organisms are broadly divided into prokaryotic organisms (or prokaryotes), and eukaryotic organisms (or eukaryotes). The major difference is that the genome of eukaryotes is sequestered in a nucleus, where it is protected by a nuclear membrane from the cytoplasm of a cell. The structure of the genome differs greatly between prokaryotes and eukaryotes, with eukaryotes usually having much longer genomes, exhibiting much higher repeat rates, and divided into a variable number of chromosomes. Multicellular organisms, *i.e.* organisms that have more than one cell, are usually eukaryotic. In multicellular eukaryotic organisms each cell has a nucleus with a copy of the DNA.

Figure 0.1. The Genetic Dogma

The precise sequence of bases in the genome carries the genetic information of the organism. *Genotype* is the genetic constitution of an organism. *Phenotype* is the expression of this genetic constitution, *i.e.* the physical characteristics of the organism, and depends on the genotype and on the environment. Different organisms have genomes that are very different in size and structure. Viruses in general have the shortest DNA genomes¹ ranging from 5kb (kilo-bases) up to 200kb. Bacteria genomes are longer, ranging from 500kb to 5Mb (mega-bases) and circular.

¹ In some viruses genetic material comes in the form of RNA instead of DNA.

The genome of yeast (a simple eukaryote) is 13.5Mb *long* (Sherman, 1997), contained in 16 pairs of chromosomes each ranging from 200kb to 2200kb in size.¹ The genome of the worm *Caenorhabditis elegans* (or *C. elegans*) is 97.3Mb long and is contained in 6 chromosomes (The C. elegans Sequencing Consortium, 1998). The genome of the fly *Drosophila melanogaster* is 165Mb long and is contained in 6 chromosomes (Rubin, 1996). The genome of a mammal such as human, or mouse, is believed to be around 3.5Gb (giga-bases) long. In some phyla, such as reptiles, birds, and mammals, genome sizes are similar within the phylum. But in the case of insects, amphibians, and plants, genome sizes, ranging from smaller than 100Mb, to greater than 100Gb (Lewin, 1996).

Cells make proteins, which are the building blocks of a living organism. Proteins are synthesized according to the information encoded in genes, which lie in the genome. The expression of the information in a genome thus takes the following steps: genes are initially transcribed into messenger RNA (mRNA), which is an information-carrying intermediate in the protein synthesis mechanism. Messenger RNA in turn is translated into protein. A schematic is shown in Figure 0.0.1. RNA molecules are usually single-stranded, and are composed of adenine (A), cytosine (C), guanine (G), and uracil (U) instead of thymine (T). An mRNA transcript contains a single gene in eukaryotes, but in prokaryotes it usually contains multiple genes. Translation to protein takes place according to the genetic code, whereby three nucleotides are translated to one amino acid, which is a unit in a protein sequence, just like nucleotides are units in DNA and RNA sequences. There are 20 amino acids. Therefore the genetic code is redundant, as there exist 64 combinations of triplets of nucleotides. Three such combinations actually stand for the special terminator signals of translation, the stop codons: UAA (ochre), UAG (amber), and UGA (opal). One triplet (AUG) stands for the initiation of translation signal, as well as for the amino acid Methionine (Met). The full genetic code appears in Appendix A. Later in this section we give more details on the structure of the gene and on the processes of transcription and translation.

¹ We omit from this simple picture the fact that some of the DNA of an organism, and specifically yeast, is contained in mitochondria, plasmids, and even some double-stranded RNA viruses.

The human genome is believed to contain up to 100,000 genes. Probably by the end of the year this estimate will be more accurate, as human genome projects approach their conclusion. Other mammalian genomes are believed to contain a similar number of genes. Genes in other organisms vary. Table 0.1 shows estimated lengths of genomes and number of genes for a number of organisms (Meinke et al. 1998; O'Brien et al. 1999; Rubin, 1996; Lewin, 1996; The C. elegans Sequencing Consortium, 1998, Lin et al. 1999, Adams et al. 2000).

Organism	Length (Mbp)	Number of Genes
Human (and other mammals)	3,500	70,000-100,000
Drosophila (fruit fly)	120	13,600
Caenorhabditis Elegans (nematode)	97	19,000
Saccharomyces Cerevisiae (yeast)	13.5	5,800
Haemophilus Influenzae (bacterium)	1.83	1,738
Escherichia Coli (bacterium)	4.2	2,350
Arabidopsis Thaliana (plant)	120	27,000

Table 0.1. Estimated genome size and number of genes for some organisms.

2. Mapping and Sequencing a Genome

The complete DNA sequence of a genome is a powerful tool for studying an organism. Biological research in the 21st century will surely require obtaining the sequence of large numbers of important organisms, including many higher animals and plants with large genomes. Obtaining the genome sequences of living organisms is widely considered to be the first step towards a deeper understanding of genetics and biology in general. There is no simple biological experiment that can sequence an entire genome. There are several experiments though, that combined give much of the desired answer.

The first procedures that were able to determine the nucleotide sequence of small fragments of DNA emerged in the late 1970s (Maxam et al. 1977; Sanger et al. 1977). These procedures involved *gel electrophoresis*, an important biological experimental method. We refer the reader to standard introductory biology and biochemistry books (eg. Lodish et al. 1996). This is still the predominant method for sequencing DNA fragments. It can produce the sequence of a

500-1000 nucleotide *long* region off the end of a DNA fragment. The gel electrophoresis reaction is error prone, yielding around 1% incorrect nucleotides in the first 500 positions, and somewhat higher error rates in the subsequent positions. In addition, it is not possible to tell which of the two complementary strands of DNA is given by the reaction. The output of the experiment is called a *read*, and as we said is a 500-1000 long sequence on {A, C, G, T} of unknown orientation, and with ~1% errors.

Figure 0.0.2. Ambiguous and unambiguous read overlaps. For the value of k, A. Reads 1 and 2 overlap by less than k, and therefore the overlap is ambiguous; B. Reads 3 and 4 overlap by more than k, and therefore are very likely to truly overlap in the genome.

The predominant method for characterizing longer regions is called *shotgun sequencing*, and was developed by Sanger's lab in 1982 (Sanger et al. 1982). The method involves (1) breaking several replicas of the DNA region of interest into many smaller pieces, at random; (2) obtaining reads using gel electrophoresis for a large number of those pieces; (3) finally detecting overlaps between the reads, and assembling them together using computers (*in silico*). In order for this approach to work, during step 2 a sufficient number of reads should be obtained. The

coverage with reads of a region of length L is defined to be C, where $C \times L$ is the sum of lengths of reads obtained in step 2. In such sequencing experiments, typical coverage values are 5-10, with coverage 10 being considered the "golden" quality standard.

Sanger's lab first applied shotgun sequencing to the genome of *bacteriophage* λ (Sanger et al. 1980, 1982). Subsequently genomes of large recombinant plasmids, large viruses, mitochondria, chloroplasts and bacteria were sequenced by this technique (Goebel et al. 1990; Oda et al. 1992; Ohyama et al. 1986; Fleischmann et al. 1995).

Fragment assembly is the computational problem of figuring out the source genomic sequence, given a collection of reads obtained by shotgun sequencing. In the absence of sequencing errors and repeats, fragment assembly is a trivial computational task, given a sufficiently large number of sufficiently long reads. Some back-of-the-envelope analysis demonstrates this claim. Let G be the genome length, N the number of reads, and assume for simplicity a constant read length l. Assume that the genome is a random string on $\{A, C, G, T\}$, with each letter occurring with probability 4^{-1} at each position independently of other positions. The probability that a given substring of length k (call it a *k-mer*) occurs in the genome is $\leq 4^{-1}$ ^k×G. The probability it occurs twice is $\leq 4^{-2k} \times G^2$. There are 4^k k-mers, therefore the probability that any occurs twice in the genome is $\leq 4^{-k} \times G^2$. Letting $k = \lceil \log_4 G^2 + \log_4 10^3 \rceil$ the probability that there is a repeated k-mer is $\leq 10^{-3}$, which is very small. For G = 3.5×10^{9} , roughly the length of the human genome, it would suffice for k to be ≥ 37 in order to virtually ensure that two reads containing the same k-mer correspond to overlapping subsequences in the genome. This is shown in Figure 0.0.2. Then a simple algorithm would suffice to produce in linear time an assembly of the reads into large contigs: (1) create a hash table of all k-mers occurring in the reads, indexing the reads; (2) perform in any order, all possible pairwise "merges" of reads that contain a common k-mer. Step 1 above is linear in C×G, while step 2 is linear in C×N.

Factors that make fragment assembly considerably more challenging are (1) sequencing errors that result in reads with slightly different sequences in the region of overlap, and (2) the repetitive structure of genomes, especially for higher organisms and longer genomes. Currently *PHRAP* (PHragment Assembly Program, or Phil's Assembly Program after Phil Green, http://www.*PHRAP*.com) is the only generally available software system for the assembly of

shotgun data. It has been used successfully in most sequencing efforts in academia. It can handle routinely shotgun data of Bacterial Artificial Chromosome (BAC)¹ clones, which are usually 100-300Kbp long. It is believed to be capable of handling shotgun data of sequences that are at most a few million base pairs long, such as bacterial genomes (Lander, personal communication).

The major challenge when assembling shotgun data from large genomic regions is the presence of repeats in the genome. Different genomes exhibit different amounts and kinds of repetition. Bacterial genomes usually have very few repeats. Eukaryotic genomes usually exhibit a considerable amount of repetition. Low complexity repeats are regions of DNA that are extremely high in purines (A and T), or pyrimidines (C and G), or A and C, or G and T, or regions that contain *microsatellite* repeats,² or simply regions that are extremely rich in a particular nucleotide. Such regions clearly deviate considerably from a random sequence on {A, C. G. T. In addition, there are common families of repeats. One example, Alu, are small repeats of length around 300 that tend to cluster, and are around 10% different between copies (Schmid, 1996; Batzer et al. 1996). LINEs (Long Interspersed Nucleotide Elements) are another family of repeats, of length between 500 and several thousand nucleotides (Smit and Riggs, 1995). The human genome contains roughly 1,000,000 Alu occurrences, and 200,000 LINE occurrences. Many other repeat families have been identified, including MIR and LTR/Retroviral (for a comprehensive review see Smit, 1995). Finally, possibly 25% of the genes in the human genome are repeated twice or three times within the genome, and there are also 43kb long tandem clusters of RNA pseudogene arrays, and 50-150kb long genome duplications (Myers, 1999). Such repetitions exhibit different degrees of fidelity between copies.

¹ Bacterial Artificial Chromosomes are a vector mechanism that can accommodate contiguous pieces of DNA that are fairly long (up to 300,000 *long* in general). Other vector mechanisms include plasmids, cosmids, Phage artificial chromosomes (PACs), and Yeast Artificial Chromosomes. Cloning of DNA is based on two key types of enzymes: *restriction enzymes* that are capable of cutting the DNA from any genome at occurrences of specific short subsequences of nucleotides, generating a well-defined set of fragments; and *DNA ligases*, capable of inserting the DNA fragments produced by restriction enzymes into replicating DNA molecules. Such replicating DNA molecules (vectors) include *plasmids* (often E-Coli plasmids) that can incorporate fairly short DNA sequences, on the order of 2,000-12,000 nucleotides long, *cosmids* that can incorporate longer sequences, on the order of ~40,000 long, *Bacterial Artificial Chromosomes (BACs)* that incorporate longer sequences of around 150kb long, and Yeast Artificial Chromosomes, that incorporate longer sequences of around 150kb long, and Yeast Artificial Chromosomes, that incorporate longer sequences of the genome that tend to be incorporated more frequently, or less frequently. The reason is restriction enzymes cut DNA in the occurrences of specific short sequences. This process is not entirely random, as DNA sequence does not obey much of the properties of a random string on four characters.

² Repeats of the form $(a_1...a_k)^n$ where $3 \le k \le 6$ and n is a very large number. The subsequence $a_1...a_k$ is repeated n times with a certain variation between repetitions.

In the presence of repeats, overlaps between pairs of reads do not unambiguously imply that the reads truly overlap in the genome. Figure 0.0.3 demonstrates how a repetition in the genome makes it hard to assemble the corresponding regions.

Figure 0.0.3. (Above) Repeat region R is flanked by unique regions A, B ($R_{(1)}$ occurrence) and C, D ($R_{(2)}$ occurrence). Reads x, y are completely inside the repeat occurrences, while reads a, b, c, and d are partially in the repeat, and partially in the unique regions. (Below) Correct assembly of the reads is a-x-b and c-y-d. However, wrong assemblies c-x-y-b, c-x-b, c-x-d, a-x-y-d, etc. are all consistent with the overlap picture.

Largely because of the presence of repeats, until recently it was widely believed that sequencing a large, repeat-rich genome with the shotgun approach and then accurately assembling the sequence is not feasible. For this reason, *clone-by-clone* approaches to sequencing a genome have been employed. According to these approaches, subsequences of the genome are inserted into vectors that can accommodate them, creating clones that can be reliably replicated. Enough clones are created to cover the whole genome with redundancy. Shotgun sequencing is

then applied to a subset of clones that has been selected so as to cover the entire genome with minimal redundancy. These approaches overcome the challenges of sequencing an entire repeatrich genome using the shotgun method. Applying shotgun sequencing to each individual clone is much easier because (1) the subsequence is much shorter and consequently the computerized assembly of reads much smaller, and (2) a clone has a much simpler repetitive structure than the whole genome.

Minimal tiling path: Sequencing

Figure 0.0.4. Clones, possibly from different kinds of vectors and of different sizes cover the chromosome. The clones are mapped so that their layout on the chromosome is known accurately enough to construct a tiling path. The clones in the tiling path are selected so as to minimize overlaps, while not allowing any gaps. These clones are eventually sequenced, providing the sequence of the chromosome.

Physical mapping is the predominant clone-by-clone approach to-date. (Other approaches have been proposed, see for instance Hudson et al. 1995; Venter et al. 1996; Batzoglou et al. 1999, and Chapter 2). According to this approach, as a first stage of a sequencing project, a large

library of clones is constructed covering the entire genome. The clones are mapped on the genome, *i.e.* their layout is known. Subsequently, a minimal *tiling path* of the clones is selected for the sequencing pipeline. Figure 0.0.4 shows an example of a mapped set of clones and a tiling path, for one contiguous piece of DNA (e.g. a chromosome). Note that in reality the DNA of a chromosome cannot be conveniently isolated. Therefore one cannot select and clone a random fragment off a specific chromosome. In order to sequence clones from a specific chromosome, the clones need to be mapped first to the chromosome.

The physical mapping techniques can be divided in two categories: *digestion* experiments, and *hybridization* experiments.

In digestion experiments a collection of clones is cut (*digested*) using one or more restriction enzymes, that each split the inserts at every occurrence of a characteristic substring of 4-8 nucleotides. Then the lengths of the resulting insert fragments are determined (usually using gel electrophoresis). Pairs of clones that exhibit similarities in the pattern of resulting fragment lengths are considered likely to overlap in the genome. Variations in the digestion technique include (1) single digests, in which one restriction enzyme is used; (2) double digests, in which two restriction enzymes are used, each cutting the inserts at occurrences of a different substring; (3) partial digests, where the target DNA is cut by one enzyme, but the experiment is performed multiple times, varying the duration of enzyme activity on each copy of the inserts. By varying the time the enzyme acts on DNA, larger or smaller sets of sites are recognized and cut by the enzyme.

In hybridization experiments, the presence or absence of a set of *oligonucleotide probes* is used to determine overlaps between insert clones. Oligonucleotide probes are small sequences of DNA that bind (*hybridize*) to their Watson/Crick complementary subsequences on a singlestranded insert clone. Probes detect overlap because when a set of probes hybridizes to the same pair of clones, the corresponding set of subsequences occurs in both clones. Hybridization experiments can be performed with simple oligonucleotide probes, or with STS probes. The STS probes are pairs of 18 *long* substrings that are between 200 and 1,000 nucleotides apart in the insert. A region containing such a pair is called a *Sequence Tagged Site* (STS).¹

Several kinds of experimental errors may occur with any of the above physical mapping techniques. In digestion experiments, typical errors include uncertainty in length measurements, multiplicity errors where the number of fragments of same lengths is miscounted, spurious or missing fragments, and other. Gel electrophoresis data on the lengths has typical error rates of 3% (Fasulo et al. 1997). In hybridization experiments, typical errors include *repeated probes*, *chimeric clones*, *false positives*, and *false negatives* (Greenberg and Istrail, 1995, Batzoglou and Istrail, 1999, Myers, 1999, *see also* Chapter 1). A false positive is the hybridization of a probe to a clone where it does not occur. A false negative is the absence of hybridization of a probe to a clone where it occurs. A chimeric clone is a piece of DNA coming from two different parts of the genome glued and appearing contiguous. A repeated probe is a probe that occurs at least twice on the mapped region, wrongly implying overlap between clones covering two different occurrences of the probe.

A fundamental question when constructing physical maps is to determine the number of clones needed to cover a genome. Lander and Waterman (1988) introduced a statistical model for answering this and related questions. Clones in the *Lander-Waterman model* are intervals of length L, each uniformly distributed along the genome which is a large interval [0,N] of length N. Clones cover the genome to depth (coverage) d = nL/N where n is the number of clones. The expected number of gaps in the genome (subregions not covered by any clone) is found to be ne^{-d} + O(1), and the expected total gap length² is found to be Ne^{-d}.

Whole-genome shotgun sequencing is an alternative to the clone-by-clone approaches. An important variation of the technique, that considerably facilitates fragment assembly, is shotgun sequencing with *forward-reverse links* (Edwards and Caskey, 1991). According to this technique, reads are obtained from *both* ends of an insert (Figure 0.0.5). Moreover, inserts are size-selected so that the approximate distance of the pair of reads obtained from the ends of a fragment is

¹ STS probes are currently more popular because they are a more reliable and efficient means of obtaining the overlap information between clones (Myers, 1999).

² For the Human Genome, letting N = 3,500Mb, and given a library of n = 175,000 BAC clones of length around 200,000 each, so that the coverage d is 10, one would expect to get around 8 gaps, with total gap length 159Mb.

known. Plasmid inserts for instance, can be size selected to be approximately L *long*, with 2,000 < L < 12,000. One of the reads is always obtained by reading the forward strand of the fragment, and the other by reading the reverse complement strand. This is why the link between the reads is called a forward-reverse link. Because of imperfection in the experimental methods, forward-reverse links are inaccurate in two ways: (1) some links, typically 10% (Myers, 1999) are false with the respective reads coming from unrelated places in the genome; (2) distances between the reads are only approximate, with typical mean deviations in the 5-10% range. For simplicity we will also refer to forward-reverse links as *earmuff links*, or *earmuffs*.

Figure 0.0.5. A forward/reverse link is obtained by reading off both ends of an insert.

Forward/reverse links can provide crucial information that aids in resolving repeats in the genome. Recall Figure 0.0.4, where regions A and B flank occurrence 1 of repeat R, and regions C, D flank occurrence 2 of R. Without any forward/reverse link information, it may not be

possible to deduce that A-R-B, C-R-D is the correct sequence, as opposed to A-R-D, C-R-B. Figure 0.0.6 shows how forward/reverse links can resolve the ambiguity.

Figure 0.0.6. Forward reverse links between regions A,B, and C,D, resolve the ambiguity in the assembly. It is clear using the link information that regions A and B flank one copy of R, while regions C and D flank another copy of R.

Shortly after sequencing of an entire mammal genome became a realistic possibility, the US National Institute of Health, and the Department of Energy in collaboration with UK's Sanger center and other labs in Europe and Japan, announced the launch of the Human Genome Project (HGP) in 1990. A timetable was set for initially mapping, and subsequently sequencing the human genome with an objective to complete the project by 2005 (Collins and Galas, 1993). Subsequently, new goals were set for the HGP to complete by 2003, while also providing 90% of

the genome in a working draft by the end of 2001 (Collins et al. 1998). The HGP set a quality standard for finished sequence, of 99.99% — less than one error per 10,000 bases.

The Human Genome Project has been following the clone-by-clone approach. Weber and Myers (1996) proposed that the approach be shifted, to whole-genome shotgun sequencing. They provided a computer simulation demonstrating the feasibility of this approach. Their arguments in favor of shotgun sequencing included (1) better speed and cost; (2) detection of DNA polymorphisms;¹(3) more complete coverage of the genome. Most notably they argued that pure shotgun sequencing could be performed in a centralized, efficient way, cutting the costs of the key procedures in a large factory setting. It would also avoid various steps needed in the cloneby-clone approaches, such as generation, storage, and tracking of large insert clones and smaller subclones. Finally it would avoid inefficient overlaps between clones that are being sent to the sequencing pipeline. On the other hand, Green (1996) advised against whole genome shotgun sequencing. The main argument against the shotgun method was the risk involved with performing all the costly sequencing work at once, and afterwards trying to assemble everything on a computer. Green (1996) argued that this approach may not yield a correct result, or a verifiable result, it may yield large-scale misassemblies of the sequence that are hard to detect and correct, and the finishing phase may prove more costly than the savings from previous phases.

In the past few years there has been a debate as to the strengths and weaknesses of each sequencing approach, mostly in view of the impending completion of the Human Genome Project. A privately owned company, *Celera*, in collaboration with academic partners, has been able to sequence the Drosophila genome by the shotgun approach combined with sequence obtained in the more traditional ways (Science, vol. 287, p. 767). Celera will partially sequence the human genome with shotgun, and combine the data with those of the Human Genome Project (Science, vol. 287, p. 1179). The few coming years will settle the debate regarding the efficiency and reliability of the various approaches for sequencing a large genome. Perhaps the optimal approach will prove to be a hybrid method of whole-genome shotgun sequencing using various vectors (yielding forward/reverse links of different lengths) and light shotgun sequencing. The idea of

¹ Single-base differences between the DNA of two individuals of the same organism.

this approach would be to provide much of the needed sequencing through the whole-genome shotgun method, while using the light sequencing of random large clones as powerful additional linking information. The Drosophila genome was obtained with a hybrid method and Celera plans to obtain the Human Genome with a hybrid method. Finally, the mouse genome is in the pipeline to be sequenced by the academic sequencing community using a hybrid shotgun/clone-by-clone method (Science, vol. 287, p. 1179). The optimal combination of shotgun/hybrid for a large mammal genome is a very important open question (Lander, personal communication).

3. Genome Annotation

DNA is encoded into proteins according to the processes of transcription and translation (the Genetic Dogma). Not all of the DNA sequence is coding. In fact in mammals only a small percentage of the genome is coding. Segments of the genome that are translated comprise 75% of the yeast genome; they represent only about 3% of the human genome. One of the first steps in studying a genomic sequence is to identify the coding regions, and predict the encoded proteins. Given that transcription and translation are highly regulated processes, it is also useful to detect the precise locations of regulatory elements and other relevant subsequences that affect the processes of transcription and translation.

Before we discuss genomic annotation, we need to give a brief description of the processes of *transcription* and *splicing*. In the discussion that follows we will focus on eukaryotic organisms, and more specifically on mammals. In general bacteria do not have splicing, while the lower eukaryotes exhibit splicing to a lesser extent than higher ones.

RNA polymerase performs transcription by copying the DNA strand into an RNA strand that grows from 5' to 3'.¹ The copying is accomplished according to the rules of Watson-Crick base pairing. The source DNA is said to act as a *template* for copying into the newly formed RNA strand. The resulting RNA strand has the reverse complement sequence of the template. The RNA polymerase interacts with specific *promoter* sequences that are upstream of the

¹ DNA and RNA single stranded molecule ends are named 5' or 3' after the orientation of the 5' and 3' carbon atoms of the sugar ring. All known RNA polymerases synthesize chains directionally from 5' to 3'.

template and indicate the location where transcription should start. There are several kinds of promoter consensus sequences but in general there is no satisfactory computational method of recognizing promoters. Transcription is a most essential biological process, and its regulation is extremely important. Different organisms have various methods of regulating transcription. In addition to the promoter sequences, *enhancer* sequences can also regulate transcription. Enhancer sites are located at various distances from the transcription start; proteins bind at these sites and contribute to the regulation of RNA polymerase activity. Identification and annotation of these regulatory sequences by computational methods is a very important open problem. It would be a first step in understanding the mechanisms of regulation of specific genes.

Splicing occurs in RNA after transcription, and before translation. RNA before splicing is called *pre-mRNA*, while after splicing it is called *mRNA*. During splicing, certain enzymes (the spliceosomes) act upon pre-mRNA to delete certain segments called introns and connect together the remaining segments, called exons. The resulting sequence is used in translation, while the introns are thrown away.¹ Translation is executed by the *ribosome*, a large RNA/protein complex, and starts at an occurrence of the triplet AUG.² The translation start is usually surrounded by a weak consensus sequence, known as the Kozak consensus.³ Translation proceeds directionally $5' \rightarrow 3'$. Each triplet of nucleotides (called a *codon*) after the translation start is translated into an amino acid, according to the genetic code (Appendix A). This defines the coding frame of the gene. Translation stops at the first occurrence of a stop codon in the coding frame, which is as UAA, UAG, or UGA. Therefore, the translated part of the sequence contains no triplets UAA. UAG, or UGA in the coding frame. The leftmost untranslated part of the sequence, before the initiating AUG, is called the 5' untranslated region (5'-UTR), and the rightmost untranslated part, after the stop codon, is called the 3' untranslated region (3'-UTR). Abusing terminology, we will call the post-spliced segments coding exons or noncoding exons, depending on whether they are translated, or untranslated. Thus an exon may be fully coding, fully noncoding, or it may consist of a coding exon and a noncoding exon. A schematic is given in Figure 0.0.7. Three introns are

¹ Virtually all mRNA in vertebrate and insects are derived by splicing of pre-mRNA as described above. However, in some protozoans as well as in around 10-15% of the genes of the worm *Caenorhabditis Elegans*, a process of *trans-splicing* takes place whereby mRNA is produced by splicing together different RNA molecules (*see* Lodish, 1998).

² In humans the codons AUA and AUU also appear as initiation codons, while in mice AUC is also used. These occurrences are extremely rare and are usually ignored in computational recognition of genes.

³ The Kozak consensus is the sequence CCRCCAATGG, where R stands for A or G.

spliced, generating 4 exons. In our terminology we have two 5' noncoding exons, three coding exons, and one 3' noncoding exon. The 5'-UTR for example, consists of the first exon and part of the second exon. In our terminology it consists of the first two noncoding exons.

Splicing of introns is controlled by the consensus sequence around the *splice sites*, which are the boundaries between introns and exons. The splice site at the 5' end of an intron is called the *donor* splice site, and the splice site at the 3' of an intron is called the *acceptor* splice site.

Figure 0.7. Splicing and translation. The pre-mRNA transcript undergoes splicing, where long segments (introns) are removed and the rest (exons) are glued together into the mRNA transcript. This in turn undergoes translation, where each triplet of codons after the first AUG is translated into an amino acid according to the genetic code, resulting in a protein sequence $(X_1...X_n)$. This in turn is folded into a functional three-dimensional structure.

The donor splice site is generally characterized by a strong consensus of GGURAGU where R stands for either A or G. The above consensus runs from the last position of the upstream exon, up to the 6th position of the intron. Less than half the splice sites obey the above consensus. However, the first two positions of an intron are GU in the vast majority of the introns.¹ Even though the few nucleotides adjacent to the GU start of an intron seem to be the most important in determining the splicing reaction, the region up to 20 base pairs into the intron seems to also play an important role. In certain introns, occurrences of GGG in that region play an important role in splicing (McCullough and Berget, 1997).

The acceptor splice site exhibits a weaker consensus of CAGR, where AG is always the 3' end of the intron.² Usually inside the intron and upstream of the acceptor splice site, lies a pyrimidine-rich region of length around 20, known as the *pyrimidine tract*. Further upstream often lies a *branch site*, which has the biological role of attaching to the 5'-end of the intron during splicing. The branch site lies usually immediately upstream of the pyrimidine tract. In yeast the branch site has a strong consensus of UACUAAC where the highlighted A is the point where the 5' end of the intron attaches, called the *branch point*. In human DNA there is a much weaker consensus of YNYURAY (Y stands for C or T, and N stands for any nucleotide).

Splicing is in general deterministic: for the majority of the genes, it is believed that the same genomic region always produces the same mRNA and protein products. However several genes can be spliced into a number of different variants depending on the environment or on the developmental stage of the organism. Those are called *alternatively spliced genes*, and the different splice sites that are used are called *alternative splice sites*.

The above discussion focused on the splicing of the vast majority of introns in pre-mRNA of insects and vertebrate. A different kind of splicing is exhibited in *group I* and *group II introns*. Group I introns are prevalent in nuclear *ribosomal RNA (rRNA)* genes of protozoans. Group II introns are found in organelles such as mitochondria and chloroplasts from plants and fungi. Group I and II introns exhibit self-splicing mechanisms where a spliceosome is not employed, and the RNA product catalyzes its own splicing reaction. The consensus sequences at the ends of

¹ GC is also observed in some cases.

² UAGR is also relatively common, while AAG is the most infrequent ending of an intron.

introns are vastly different for these groups of introns. We refer the reader to (Cech, 1990; Phizicky and Greer, 1993; Lodishet al. 1998) for further discussion on the splicing of group I, II introns, as well as to (Sharp and Burge, 1997) for splicing of some introns using a different spliceosome. A theory is that spliceosome-based splicing evolved from self-splicing reactions (Lodish et al. 1998).

Annotation of genomic sequence involves identification of the genes encoded in the sequence, including the boundaries of the regions that act as templates for transcription, the initiator and terminator of translation, splice sites, promoter and regulatory regions, and perhaps several other biologically important elements. Experimental methods exist for the accurate identification of most of the above elements, but it is generally understood that these methods are expensive, and too slow for the accelerating speed with which genomic sequence is being produced. For this reason computational methods play an essential part in genomic annotation. The identification of boundaries of coding exons, usually referred to as *exon prediction*, or *gene recognition*, is one of the most active areas of research in computational genomic annotation. Unfortunately computational methods are usually not as accurate as experimental methods, and computer-derived annotations often need to be experimentally verified.

Following annotation of sequence, a very important step in the study of a genome is functional annotation. Functional annotation is the process of assigning function to the genes that are expressed in the genome, discovering the mechanisms of regulation associated with different regulatory sites, and more generally assigning function to structural elements annotated in the genome. This step is very challenging and currently lags behind the sequencing and structural annotation steps (O'Brien et al. 1999).

4. Comparative Genomics

Genomes of different organisms exhibit similarities largely because of evolution from a common genome. For instance, the first mammal lived around 165 million years (*Myr*) ago. All modern mammals have a common ancestor that is dated between 65 Myr ago and 100-120 Myr ago. A common primate ancestor is believed to have lived around 60 Myr ago (O'Brien et al. 1999). Figure 0.8 shows the phylogeny tree for different well-known mammal orders (the more complete tree can be found in <u>http://Ag.Arizona.Edu/tree/</u>).

Figure 0.8. Part of the evolutionary tree for mammals. Refer to <u>http://Ag.Arizona.Edu/tree/</u> for a fuller version of the tree of life.

Genomes change from generation to generation, by many different processes. The most local process is the random introduction of isolated mutations in the genome sequence that involve either base substitutions (change of a base pair among {AT, CG, GC, TA} to another), or insertions/deletions of a particular base pair (*indels*). Such mutations can be *silent* if they have no expressed effect (no effect in the phenotype) such as when a mutation occurs in an intron whose precise sequence presumably does not have any effect on the characteristics of the organism, or when a mutation occurs in the third position of a codon in an exon and does not change the encoded amino acid (refer to Appendix A). Other mutations change one amino acid but do not have any effect in the resulting protein activity (*neutral substitutions*). *Point mutations* are base

substitutions, and change only one amino acid in the protein. *Frameshift mutations* delete or insert a base pair, and that changes the frame of translation downstream from the mutation, resulting in a change in several amino acids. Frameshift mutations usually have a pronounced effect in the protein activity, often rendering the protein inactive or even deleterious.

More dramatic heritable genotypic changes include changes in the chromosome structure. These occur during meiosis where homologous regions in the genome have the opportunity to form Watson/Crick pairing, with subsequent large-scale exchanges of genomic regions. These changes broadly fall into four categories: inversions, deletions, duplications, and translocations. Inversions are 180-degree rotations of a usually large segment of a chromosome. They do not involve loss of genetic material, and therefore usually do not result in any phenotypic abnormality. They are found in around 2% of humans (Griffiths et al. 1993). Deletions are losses of part of a chromosome. In humans they usually cause syndromes of phenotypic abnormalities (eg. "cri du chat" syndrome¹). Duplications can generate two copies of a region next to each other, or one in its normal location and the other in some other part of the same chromosome, or on a different chromosome. Duplications are important in genome evolution, because they supply additional genomic material that is capable of evolving new functions. Translocations are exchanges of parts between two different chromosomes. In the most common kind of translocation, reciprocal translocations, a segment from one chromosome is exchanged with a segment by another, resulting in two translocations (Griffiths et al. 1993). The most dramatic genotypic changes are changes in the number of chromosomes whereby chromosomes can be duplicated, lost, or even the whole genome can be duplicated. In mammals, chromosomal mutations that are kept by the species and propagated to later generations are extremely rare, so that only very few differences are apparent between the genomes of humans and different primates (O'Brien et al. 1988, Marshal Graves, 1998, O'Brien et al. 1999). The hypothetical primate ancestor's genome may have evolved into the human genome undergoing just seven translocations steps, while the cat's genome can be reorganized roughly into the human genome using only thirteen translocation steps. Comparative genomic analysis should eventually be able to resolve the full phylogeny tree among mammal orders (O'Brien et al. 1999).

¹ The "cri du chat" syndrome is a human genetic disease caused by a deletion at the end of the short arm of chromosome 5. The most characteristic phenotypic manifestation of the syndrome is the distinctive cries made by infants with this abnormality. Other manifestations include abnormally small head (microencephaly), a moonlike face, and mental retardation (Griffiths et al., 1993).
As we already mentioned single base mutations are generally silent when they occur in introns, or much of the intergenic regions. On the other hand, the effects of single based mutations can range from relatively minor to quite dramatic, if they occur within exons, region boundaries, and important structural elements such as promoters and regulatory elements. Most mutations do not have a beneficial effect on the phenotype, and the most dramatic ones are often deleterious. Such mutations do not tend to get propagated across generations because they are selected against during evolution. Thus, few of the mutations that occur in the most important regions of the genome get propagated to the next generations, while there is much less selective pressure against mutations occurring in less important regions such as introns or intergenic sequence. Mutations thus tend to accumulate over time in such regions at much higher rate than in the protein-coding and regulatory regions.

Because of selective pressure to preserve function, proteins and protein-coding DNA regions have remarkable sequence similarities across species. This is also true for regulatory regions such as promoters and for important signals such as consensus sequences in intron/exon boundaries. Within a particular species, genes frequently have inexact copies of themselves, often a few kilobases apart on the genome. Such gene similarities are believed to have arisen by duplications of an ancestral gene. Roughly half the genes in vertebrate are duplicated (Lodish et al. 1998), and form *gene families*. The resulting encoded proteins form *protein families*, often containing hundreds of members. The *immunoglobins* are a family of 500 proteins in several vertebrate species, while the *visual pigment proteins* are a family of 4 proteins in humans. *Pseudogenes* are copies of duplicated genes that have ceased to be expressed. Possibly silencing genetic events such as mutations on important transcription-control regions resulted in making such copies nonfunctional. The above facts point to the importance of sequence comparisons in numerous scientific problems. These include cross-species comparisons between close and distant relatives, and self-similarity comparisons within a single genome.

The mouse has been perhaps the most widely used model organism for understanding human biology, and for applications to medicine and drug discovery. Therefore there is already an abundance of data on the genetics, biology, and disease of the mouse. Moreover comparative analyses between mouse and human *orthologous* regions (regions that are hypothesized to have evolved from the same ancestral region) reveal very high sequence similarity (often above 80%)

in coding exons and regulatory regions (Lamerdin et al. 1994; Makalowski et al. 1996; Oeltjen et al. 1997; Makalowski and Boguski, 1998a,b, *see also* Chapter 4).

Hardison et al. (1997) argue in favor of sequencing the mouse genome for the purpose of detecting in the human genome the majority of the exons, and a significant number of regulatory elements that would not be detectable by computational methods in the absence of mouse homologous sequence. Both the academic sequencing community and private companies have shown interest in sequencing the mouse genome shortly upon completion of the human genome sequencing projects. The mouse genome is thus already in the sequencing pipeline of academic sequencing centers (Science, vol. 287, p. 1179, 2000), and a private sequencing company Celera (Science, v. 284, p. 1906-1909, 1999).

Similar efforts are taking place at a somewhat slower pace in plant genomics. Arabidopsis thaliana is the first plant whose genome will be sequenced by the target date 2003 (Gale and Devos, 1998). Sequencing of chromosomes 2 and 4 of Arabidopsis has recently been completed (Lin et al. 1999, Schuller et al. 1999). Comparative analysis of plant genomes will play an important role in the future for planning sequencing projects, and interpretation of genomic data for economically important grains such as wheat and maize, which both have genomes considerably longer than the human genome (Gale and Devos, 1998).

Chapter I

PHYSICAL MAPPING WITH REPEATED PROBES

1. Introduction

The topic of this chapter is Physical Mapping, the most broadly used method for generating clones for the sequencing pipeline of a clone-by-clone sequencing project. We describe results on computational problems motivated by Physical Mapping. Our results are interesting mainly from a theoretical computer science perspective, but also have some potential applications to real Physical mapping experiments.

Physical mapping using hybridization data involves the construction of genomic maps based on the information contained in the clone-probe hybridization matrix. The mapping technique has to cope with computational difficulties that are specific to the hybridization data. There are errors that arise from the limitations in experimental accuracy. These include chimerism, false negatives and false negatives. Errors introduce specific combinatorial problems whose solutions could provide good mapping hypotheses. Usually these optimization problems are NP-hard and various heuristics – based on generalizations of the *Consecutive Ones Property* (C1P) (Booth and Lueker, 1976)– have been designed to cope with them e.g., (Alizadeh et al., 1995; Greenberg and Istrail, 1995). Another important combinatorial dimension of the mapping problem arises from the the fact that probes have multiple occurrences on the genomic region to be mapped. The literature dealing with algorithms for mapping in the presence of repeated probes is quite limited. In this chapter we study physical mapping with repeated probes, we identify some computational bottlenecks, and we propose algorithms that exhibit various degrees of measurable success.

The fundamental modeling paper of the area is the paper by Lander and Waterman (Lander and Waterman, 1988) in which the widely accepted Lander-Waterman model is introduced and analyzed; (*see also* Arratia et al., 1991; Green and Green, 1991; Nelson and Speed, 1994) for

further mathematical and statistical analyses. According to the Lander-Waterman model, clones are distributed uniformly along the genomic region, and probes are distributed according to a Poisson distribution.

The only published algorithmic work focussing on mapping with repeated probes is (Alizadeh et al., 1995), although further work devoted to the problem is in progress (Waterman, 1997; Shamir, 1997). In (Alizadeh et al., 1995) algorithmic strategies are proposed, based on the Lander-Waterman model by attempting to approximate the likelihood function, leading to NP-complete optimization problems that are reasonably tractable in practice. The algorithmic strategy proposed there uses local search 3-opt Lin-Kernigan type heuristics. Unfortunately approximation algorithms with a provable guarantee were not obtained. Based on this work, Karp (Karp, 1993) proposed the problem of designing approximation algorithms with guaranteed error bounds for the shortest superstring of a set collection. A superstring of a set collection is also called a *Hypergraph Superstring*. Each set in a set collection is a *hypernode*. The elements of each set are *hyperedges*. An element (*hyperedge*) then, connects two or more sets (*hypernodes*) if and only if the sets contain the element. The combinatorial problem of characterizing the superstrings of a hypergraph was introduced before (Ghosh, 1975; Lipski, 1976; Lipski, 1978) and it is notoriously difficult (Lipski, 1978; Erdos, 1993).

Kou proves in a paper devoted to information retrieval and file organization (Kou, 1977) that a variant of the C1P – modeling multiple storage of records – is NP-complete. In our terminology the result is that the Hypergraph Superstring Problem for strict Sperner hypergraphs is NP-complete. In (Lipski, 1978), non-tight upper and lower bounds were obtained for the hypergraph superstring length for the special case of the hypergraph being the power set of a finite set. Waterman (1995) gives a comprehensive overview of the problem.

A clone-probe hybridization matrix is a 0/1 matrix with rows representing clones, columns representing probes, and a 1 in position (i, j) if and only if probe j is incident to clone i. Any permutation of the columns of such a matrix results in the same clone/probe incidence relationship. A collection of clones has the Consecutive Ones Property (C1P) (Booth and Lueker, 1976) if there is a permutation of the columns of the hybridization matrix that allows each row (clone) to be of the form $0 \cdots 01 \cdots 10 \cdots 0$ - in a consecutive ones form. The obvious biological relevance of the C1P is that each clone spans a connected region of the genome. A clone-probe hybridization matrix containing "perfect" data, i.e., containing no errors and only unique probes, is a matrix that obeys the C1P. An important property for a heuristic mapping algorithm is to re-trieve the C1P in the absence of errors (Greenberg and Istrail, 1995). This is one of the properties that our mapping algorithms achieve.

A meaningful simplifying assumption of the model is the *Sperner* property of a set collection: no set is included in the other. Indeed as the number of probes increases, the set of clones of the Lander-Waterman model has the Sperner property with high probability. The PQ-tree algorithm (Booth and Lueker, 1976) that retrieves the C1P uses a framework that hierarchically decomposes the initial collection of sets into subcollections that avoid sets included in unions of other sets.

The C1P property of a hybridization matrix ensures that there are no repeated probes. The *Sperner decomposition* of a set collection satisfying the C1P, and the optimal merging of sets in such a collection to obtain a PQ-tree are relatively easy computational tasks. Both tasks become computationally intractable for very sparse instances of data with repeated probes. Consider for example the intersection graph IG of a set collection. The vertices are the sets of the collection, and an edge exists between two vertices when the corresponding sets intersect. In the C1P case, the strict Sperner collections are sets of disjoint paths (SDP) in IG, while if probe repetition is allowed, these collections correspond to general graphs. These facts point out the importance of strict Sperner collections as building blocks in the hierarchical decomposition of the Hypergraph Superstring Problem. As we will see, both the Sperner decomposition as well as the optimal merging of the sets in a strict Sperner collection are MAXSNP-/NP-complete tasks.

In the above discussion the implicit assumption has been that a probe never appears more than once in a particular clone. This is a simplifying assumption that is justifiable probabilistically by the Lander-Waterman model, as the mean probe arrival time increases (probe repetition decreases). However, this property is not necessarily guaranteed. In fact the genome deviates from the Lander-Waterman model because of the repeat content of (particularly eukaryotic) genomes (Smit, 1995). An alternative model therefore, is to seek the minimal explanation of the hybridization data in the form of a *multiset superstring* that allows for possible repetition of probes in a single clone. We prove that this problem is also MAXSNP-complete.

We present and test the *GREEDY-MERGE* algorithm that is based on Sperner decomposition of hypergraphs, with the following provable performance: (1) it retrieves the PQ-tree of all optimal zero-repetition superstrings; (2) on strict Sperner hypergraphs it is provably a 1.5625approximation algorithm; (3) it provides a 2-approximation for hypergraphs with a restricted Sperner decomposition. The algorithm has cubic worst-case time complexity, and is much faster on sparse, data. When tested on simulated random data the algorithm approximated the length of the initial (correct) superstring within a factor of 1.1 in most problems involving 100-200 clones, 200-400 probes, and 1.5 to 4.9 average probe repetition. Please note that we did not compare the actual mapping of the clones predicted by the algorithm, with the original "true" map of the simulated data. We only report the ratio of the lengths of probe strings that the two maps provide. Moreover, the length of the initial superstring is not necessarily the minimum length. Therefore we cannot make any specific claims about how close our algorithm approximates the optimal superstring length in these experiments.

2. Background

2.1 Physical Mapping

DNA molecules are very long sequences over an alphabet of four letters, or nucleotides: $\{A, C, G, T\}$. Due to the large size of DNA molecules, the study of a genomic region involves breaking it into smaller pieces that can be sequenced by present technologies. *Physical Mapping* involves determining the true arrangement of the pieces on the initial genomic region, and then sequencing the smallest subset of pieces that cover the region. The *cloning* procedure incorporates the pieces of DNA into biological hosts. Each such copy is a *clone*. Through self-replication, a large number of copies of each clone are obtained. The result is a clone library containing many copies of pieces of the initial genomic region. The reconstruction process is based on data indicating "overlap" between clones. One method of detecting overlaps is through the hybridization of short sequences, called *probes*. Hybridization occurs when a probe sequence is complementary to a subsequence of a clone. If the probe has a unique occurrence on the initial genomic region and if

two clones are hybridized by the same probe then they overlap. This assumes ideal experimental conditions, i.e., no errors. So, unique probes detect overlap. However, in general probes are complementary to multiple places on the genomic region, so detecting overlap is ambiguous.

The information contained in the hybridization data can be summarized as follows. Let the clones be $\{C_1, \ldots, C_n\}$ and the probes be $\{P_1, \ldots, P_m\}$. Let the matrix H be defined by H[i, j] = 1 if probe P_j hybridizes to clone C_i , and H[i, j] = 0 otherwise. The problem we study is that of using hybridization data given in the matrix H to reassemble the clones such as to reconstruct the initial genomic region. Let us note that the process of breaking the DNA into pieces and selecting probes, even in a perfect cloning and hybridization experimental scenario, might result in loss of information. Therefore, we may not be able to obtain the exact reconstruction. To well-define the problem, we aim at obtaining the maximal mapping information consistent with H.

2.2 The Lander-Waterman Model

We will first define the Lander-Waterman model and then formulate a combinatorial problem in terms of hypergraphs, an appropriate framework for clone/probe hybridization data. Then superstrings are introduced in order to search for the minimum repetition of probes needed to explain the hybridization data.

The Lander-Waterman Model

- 1. A *clone* is an interval of length 1 contained in the interval [0, N]. The left endpoints of the clones are independent random variables, uniformly distributed over [0, N 1].
- Probes 1,..., m are distributed along the interval [0, N] according to independent Poisson processes of rate λ. That is, a probe occurs at a short interval of length dx with probability λdx, and disjoint intervals are independent.

2.3 The Hypergraph Superstring Problem

Hypergraphs. A hypergraph is a pair H = (X, S), where X is a finite set, and $S = \{S_1, \dots, S_m\}$ is a family of subsets of X. The sets S_i are called hyperedges. The following definitions apply to

hypergraphs as well to families of sets. A hypergraph is *B*-bounded if all of its hyperedges have at most *B* elements. A hypergraph is a *chain* if $S = \{S_1, \ldots, S_m\}$ and $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_m$. A hypergraph is an *antichain*, or Sperner, if no S_i is included in S_j , for every $i, \neq j, 1 \leq i, j \leq m$. A hypergraph is *strict Sperner* if no hyperedge is included in the union of the other hyperedges, or equivalently if every hyperedge has a *characteristic* element.

A Sperner decomposition of a hypergraph H = (X, S) is a decomposition of S into subfamilies of sets called *levels* or *layers* S_1, \ldots, S_t such that: (1) the levels partition S, i.e. $S = S_1 \cup \cdots \cup S_m$ and $S_i \cap S_j = \emptyset$, $1 \le i \ne j \le t$; (2) S_i is a strict Sperner family of sets for every $i, 1 \le i \le t$ and (3) $\bigcup S_1 \subseteq \bigcup S_2 \subseteq \cdots \subseteq \bigcup S_t$.

Consider the clone-probe hybridization matrix of a Lander-Waterman process. Let P be the set of probes, and let $C = \{C_1, \ldots, C_m\}$ be the clones viewed as sets of probes. Then $H_{LW} = (P, C)$ is the associated hypergraph. According to the Lander-Waterman model, the arrivals of the left endpoints of the clones are distributed according to a Poisson process of rate $\frac{m}{N-1}$. If |P| is large enough, with high probability no clone is a subclone of any other clone. Then H_{LW} is a Sperner hypergraph. The average number of probes per clone is $\lambda |P|$.

Multiset Superstrings. A string $\sigma = \sigma_1 \cdots \sigma_r$, is a multiset superstring of any subset of $U(\sigma) = \{S : 1 \le \beta \le \eta \le r : S = \{\sigma_{\beta}, \sigma_{\beta+1}, \dots, \sigma_{\eta}\}\}.$

Set Superstrings. A string σ is a set superstring (or simply, superstring) of any subset of $V(\sigma) = \{S : \forall \beta \le i < j \le \eta \quad \sigma_i \ne \sigma_j, S = \{\sigma_\beta, \dots, \sigma_\eta\}\}$

For $S \in U(\sigma)$ or $S \in V(\sigma)$ we define $\beta_{\sigma}(S), \eta_{\sigma}(S)$ so that $S = \{\sigma_{\beta_{\sigma}(S)}, \ldots, \sigma_{\eta(S)}\}$. We say that σ expresses S if $S \in U(\sigma)$ ($S \in V(\sigma)$, also denoted by $S \in \sigma$. A multiset (set) superstring σ is *non-repeating* if no letter in σ occurs more than once.

Now we are ready to define our main computational problems:

The Hypergraph Set Superstring Problem: Given a Hypergraph H = (X, S) find a superstring $\sigma = \sigma_1 \dots \sigma_n$ for H of minimal length n.

The Hypergraph Multiset Superstring Problem: Given a Hypergraph H = (X, S)find a multiset superstring $\sigma = \sigma_1 \dots \sigma_n$ for H of minimal length n.

Remark. Let us remark that the corresponding Graph Superstring Problem, where the

hyperedges have exactly two elements can be solved in time linear in the number of edges in the graph. The minimum superstring coincides with the Eulerian path if the graph has such a path. In the general case, it coincides with the minimum size collection of Eulerian paths that cover all the edges. Our problem, the Hypergraph Superstring problem, is therefore a hypergraph generalization of the Eulerian path problem in graphs.

The Sperner Decomposition of a Hypergraph Problem: Given a Hypergraph H = (X, S) and an integer k > 0, decide whether there exists a Sperner decomposition into k levels.

3. Computational Complexity Results

We show that the hypergraph set superstring, and the hypergraph multiset superstring problems are MAXSNP-hard. We prove these results with an *L*-reduction from TSP(1,2) on bounded degree undirected graphs. The same reduction proves both problems to be MAXSNP-hard. We are thus strengthening Kou's NP-completeness result (1977) by showing that the same problem is MAXSNP-hard, which implies that it is computationally intractable to approximate within better than a multiplicative constant of optimal. We also show that computing a minimal Sperner Decomposition of a hypergraph is a hard computational task: it is NP-complete to decide whether a two-level decomposition exists.

Theorem 1. The Hypergraph Set Superstring Problem and the Hypergraph Multiset Superstring Problem are MAXSNP-hard even for 5-bounded strict Sperner hypergraphs.

Proof. We use an *L*-reduction (intuitively a linear reduction, refer to (Papadimitriou, 1994)) from TSP(1,2) on undirected graphs, on instances where the graph formed by length-one edges has bounded degree. TSP(1,2) is the traveling salesman problem with distances 1, 2. That is, given a complete graph *G* with edges of distance 1 and 2, find the shortest Hamiltonian path on the graph.¹ This problem has been shown to be *MAXSNP*-complete even if restricted to instances where the graph formed by the length-one edges has bounded degree (Papadimitriou and Yannakakis, 1993).

¹That is, the shortest path that visits each node exactly once.

Let $H_G = (V, E)$ be a graph of bounded degree D specifying an instance of TSP(1,2). That is, H_G contains the edges of cost 1 in the corresponding TSP(1,2) graph G. For every $v \in V = \{1, ..., n\}$, with associated edges $(v, u_1), ..., (v, u_d)$ where $d \leq D$, define hyperedge $S_v = \{v, \{v, u_1\}, ..., \{v, u_d\}\}$. The hypergraph H is then (X, S) where $X = \bigcup_{v \in V} S_v$ and $S = \{S_v | v \in V\}$. Clearly the above reduction can be performed in logarithmic space. Notice that the resulting set collection is Sperner because every set S_v has a distinguishing element $v \in S_v$. Moreover, $\forall v : |S_v| \leq D + 1$.

We will show that there is a Hamiltonian path on the graph G of TSP(1,2) of $\cos n - 1 + k$ if and only if there is a (multiset, or set) superstring σ for S of length m + k + 1 where m = |E|. Since H_G is a graph of degree bounded by $D, m \leq D \times n$ is linear in n. This will establish that the above reduction is an L-reduction.

Say there is a Hamiltonian path of $\cos t n - 1 + k$. Since all edges have $\cos t 1$ or 2, we know the path uses n - 1 - k edges from H and k edges of $\cos t 2$. Construct σ of $\cos t m + k + 1$ as follows: σ arranges the sets S_v in the order the nodes v are arranged on the path. Whenever an edge (u, v) in H_G is used on the path, S_u and S_v overlap in one element in σ . Then,

$$|\sigma| = \sum_{v=1}^{s} |S_v| - (n-1-k) = m+k+1$$

Conversely, say that σ is a superstring of length $m + k + 1 = \sum_{v=1}^{n} |S_v| - (n - k - 1)$. Construct a path by reading in σ each vertex in the order it appears. Since σ is shorter than $\sum_{v=1}^{n} |S_v|$ by (n - 1 - k) there is a total overlap of (n - 1 - k) between the sets on the superstring. Since no two sets contain more than one common element, there are (n - 1 - k) sets that overlap. These sets have a common edge. This establishes a total of (n - 1 - k) edges from H_G used in the path, and hence a path of cost (n - 1 + k).

Theorem 2. Finding the minimum Sperner Decomposition of a Hypergraph is NPcomplete. In particular, distinguishing between 2 and 3 levels for the minimum Sperner decomposition of a hypergraph is NP-complete, even for 3-bounded hypergraphs with size ≤ 1 hyperedge intersections. **Proof.** Given a hypergraph H = (X, S) and a partition of S into S_1, S_2 , we can check efficiently the properties for a Sperner decomposition. Therefore, the Sperner Decomposition in k levels problem is in NP. We will show NP-hardness by a reduction from 3SAT.

Figure 1: Gadget for truth assignment.

Let $\phi = \psi_1 \bigvee \ldots \bigvee \psi_m$ be a 3-CNF formula, with variables x_1, \ldots, x_n . We construct a hypergraph S_{ϕ} . Figure 1 shows the main part of the construction.

Two or three boxes connected by a line network correspond to one hyperedge. Any "o" contained in a box is a unique element in X. An "o" or "s" contained only in one box is contained only in one set. Such a set has to be in layer 1, because the union of layer 1 contains the union of layer 2. A set containing elements all belonging to sets in layer 1, has to be in a layer $\neq 1$.

Associate layer 1 with *TRUE* and layer 2 with *FALSE*. Then the top part of Figure 1 containing the three sets labeled *TRUE*, *TRUE*, and *FALSE*, should be self-explanatory. It follows that any two sets labeled x and \bar{x} in Figure 1 are in different layers, in any 2-layer Sperner

decomposition.

Assign either all the x-sets, or all the \bar{x} -sets to layer 1 for each variable x, thereby constructing a truth assignment. Among the x-sets and the \bar{x} -sets, notice in Figure 1 that there are some containing an s-element. These sets are meant to correspond to literals in the clauses of ϕ .

For each variable x with k_x occurrences of literal x and k'_x occurrences of literal \bar{x} construct k_x x-sets with an s-element, and $k'_x \bar{x}$ -sets with an s-element. Finally, three s-elements collapse to one if and only if the corresponding literals are in the same clause ψ_i . Therefore there is one s-element for each clause.

Clearly a truth assignment satisfying every clause translates to a 2-level Sperner decomposition. Conversely, a 2-level Sperner decomposition correctly assigns truth value: $\forall x$ all the *x*-sets are in the same level, complement to the one with the \bar{x} -sets. Moreover, every *s*-element belongs to three sets at least one of which in level 1, thereby satisfying the corresponding clause.

4. Approximation Algorithms

We describe a family of algorithms that repeatedly merge sequences of sets with the largest overlap, to produce a final solution that represents a collection of valid superstrings. The representation used is a PQ-tree that produces a family of superstrings of the same length. From this representation, any member can be extracted efficiently. We assume that the reader is familiar with the PQ-tree data structure. Below we outline the definition of a PQ-tree, as a representation for a collection of superstrings:

PQ-trees that produce superstrings: A PQ-tree is a tree made of P-nodes and Q-nodes. A P-node is either a finite set of symbols, or a parent node with a finite number of child PQ-nodes. A Q-node is a parent node with an ordered finite list of child PQ-nodes. A string σ is produced by a PQ-tree with top node P, a P-node, if (i) P is a finite set of symbols and σ lists those symbols once each in any order, or (ii) P is parent to PQ-trees $\{t_1, \ldots, t_k\}$ and $\sigma = \sigma_{\pi(1)} \cdots \sigma_{\pi(k)}$ where σ_i is produced by t_i , and π is a permutation on $\{1, \ldots, k\}$. A string σ

is produced by a PQ-tree with top node Q, a Q-node, if Q is parent to an ordered list of PQ-trees $[t_1, \ldots, t_k]$ and $\sigma = \sigma_1 \cdots \sigma_k$ or $\sigma = \sigma_k \cdots \sigma_1$ where σ_i is produced by t_i . We call a PQ-tree proper if all the strings it produces have the same length. For a proper PQ-tree rooted at node R, we define the length of R, L(R) to be the length of any produced string. We call a proper PQ-tree non-repeating if all the superstrings it produces are non-repeating. We call a PQ-tree a superstring collection for a hypergraph $H = (X, S = \{S_1, \ldots, S_s\})$ if all produced strings are superstrings of H.

Lemma 1. Let $S = \{S_1, \ldots, S_s\}$ be a Sperner system. Then

$$\forall S_i, S_j \in \mathcal{S} \qquad (i \neq j) \implies \left(\left(\beta_{\sigma_{OPT}}(S_i) > \beta_{\sigma_{OPT}}(S_j) \right) \bigwedge \left(\eta_{\sigma_{OPT}}(S_i) > \eta_{\sigma_{OPT}}(S_j) \right) \right) \bigvee \\ \left(\left(\left(\beta_{\sigma_{OPT}}(S_i) < \beta_{\sigma_{OPT}}(S_j) \right) \bigwedge \left(\eta_{\sigma_{OPT}}(S_i) < \eta_{\sigma_{OPT}}(S_j) \right) \right) \right)$$

Proof. Notice that if $\beta_{\sigma}(S_i) \leq \beta_{\sigma}(S_j)$ and $\eta_{\sigma}(S_i) \geq \eta_{\sigma}(S_j)$ then $S_j \subseteq S_i$ which is never the case in Sperner systems. The assertion of the lemma follows.

The above lemma enables us to define an order \prec_{σ} on the elements of a Sperner system S:

Definition. Given a string σ , and any two sets C, D expressed in σ , we say that $C \prec_{\sigma} D$ iff $\beta_{\sigma}(C) < \beta_{\sigma}(D)$. For sets C, D of a hypergraph H = X, S, we say that C is before D in σ , denoted by $C \triangleleft_{\sigma} D$, whenever $C \prec_{\sigma} D$ and $A \in S(C \prec_{\sigma} E \prec_{\sigma} D)$. We say that C is next to D in σ , denoted by $C \bowtie_{\sigma} D$, whenever $C \triangleleft_{\sigma} D \lor D \triangleleft_{\sigma} C$.

Say that $S_1 \triangleleft_{\sigma} \cdots \triangleleft_{\sigma} S_s$. Denote by $\sigma_{[i,j]}, 1 \leq i \leq j \leq s$ the substring $\sigma_{\beta_{\sigma}(S_i)} \cdots \sigma_{\eta_{\sigma}(S_j)}$, which is clearly a superstring for $\{S_i, \ldots, S_j\}$.

For sets C, D expressed in σ we say that $C \simeq D$, when $\beta_{\sigma}(D) = \eta_{\sigma}(C) + 1$ or $\beta_{\sigma}(C) = \eta_{\sigma}(D) + 1$.

A particular kind of Q-node that we will be using a lot is a sequence of sets. That is, a Q-node whose children are leaf P-nodes: P-nodes that are finite sets of symbols. We will call such Q-nodes simple Q-nodes, and name them with letters \mathcal{A} , \mathcal{B} , and \mathcal{D} . As Q-nodes, a set sequence and its reverse are equivalent.

Clearly a sequence of sets $\mathcal{A} = [A_1, \dots, A_r]$ is a superstring collection for a hypergraph $H = (X, \mathcal{S} = \{S_1, \dots, S_s\})$ if for each $i, 1 \leq i \leq s$ there are $j_i, k_i, 1 \leq j_i \leq k_i \leq n$ such that $S_i = \bigcup_{j_i \leq l \leq k_i} A_l$, and A_l, A_m are disjoint for all $j_i \leq l < m \leq k_i$. Given the hypergraph node S_i , we will denote by $J_{\mathcal{A}}(S_i), \mathsf{K}_{\mathcal{A}}(S_i)$ the endpoints of S_i in \mathcal{A}, j_i, k_i respectively.

Denote a superstring of H, expressed by \mathcal{A} , by $\sigma(\mathcal{A})$. The size of \mathcal{A} is defined to be the number of sets r, and denoted by $|\mathcal{A}|$. Denote by $\prec_{\mathcal{A}}$, $\triangleleft_{\mathcal{A}}$, and $\bowtie_{\mathcal{A}}$ the relations $\prec_{\sigma(\mathcal{A})}$, $\triangleleft_{\sigma(\mathcal{A})}$, and $\bowtie_{\sigma(\mathcal{A})}$, respectively. It follows that these relations are well-defined. Denote by $\overleftarrow{\mathcal{A}}$ the reverse sequence $[A_r, \ldots, A_1]$. Clearly $\overleftarrow{\mathcal{A}}$ is a superstring collection for S whenever \mathcal{A} is, because \mathcal{A} and $\overleftarrow{\mathcal{A}}$ are the two possible directions of the same Q-node. We will denote by $\mathcal{A}_{i,j}$ where $i \leq j$ the set $A_i \cup \cdots \cup A_j$. We will denote by $\mathcal{A}_{[i,j]}$ the subsequence $[A_i, \ldots, A_j]$.

4.1 The Merge Operation on Simple Q-nodes

We want to define the operation *merge*, $\mathbb{M}(\cdot, \cdot)$ between two simple Q-nodes. Intuitively $\mathbb{M}(\cdot, \cdot)$ should take as an input two set sequences \mathcal{A}, \mathcal{B} that are superstring collections of the disjoint set collections \mathcal{S}, \mathcal{T} , respectively, and produce a superstring collection \mathcal{D} for $\mathcal{S} \cup \mathcal{T}$. We want \mathcal{D} to be as short as possible, therefore $\mathbb{M}(\cdot, \cdot)$ should find any "obvious" overlap between the sequences \mathcal{A}, \mathcal{B} . We will assume that $\mathcal{S} \cup \mathcal{T}$ is always a Sperner system, and that $\mathcal{S} \cap \mathcal{T} = \emptyset$. If \mathcal{A}, \mathcal{B} are sequences of one element \mathcal{A}, \mathcal{B} respectively, it is easy to compute the "best" \mathcal{D} : $\mathcal{D} = [\mathcal{A} \setminus \mathcal{B}, \mathcal{A} \cap \mathcal{B}, \mathcal{B} \setminus \mathcal{A}]$. The size of the overlap is then $|\mathcal{A} \cap \mathcal{B}|$. How about if $\mathcal{A} = [\mathcal{A}]$ is a singleton sequence but $\mathcal{B} = [B_1, B_2, \dots, B_k], k > 1$? Now the direction of the merge matters. We find the largest l such that $\mathcal{B}_{1,l} \subseteq \mathcal{A}$ and $\mathcal{B}_1, \dots, \mathcal{B}_l$ are pairwise disjoint. We can achieve overlap $|\mathcal{B}_{1,l}| + |(\mathcal{A} \setminus \mathcal{B}_{1,l}) \cap \mathcal{B}_{l+1}|$. We do the same with $\mathcal{A}, \overleftarrow{\mathcal{B}}$. Say w.l.o.g. that the largest overlap of the two is between \mathcal{A}, \mathcal{B} . Then $\mathcal{D} = [\mathcal{A} \setminus \mathcal{B}_{1,l+1}, \mathcal{B}_1, \dots, \mathcal{B}_l, \mathcal{A} \cap \mathcal{B}_{l+1}, \mathcal{B}_{l+1} \setminus \mathcal{A}, \mathcal{B}_{l+2}, \dots, \mathcal{B}_k]$. It is technical, but not deep, to see how all this generalizes when $|\mathcal{A}| > 1$ and $|\mathcal{B}| > 1$:

4.1.1 Description

Algorithm MERGE: Given two set sequences $\mathcal{A} = [A_1, \dots, A_p]$, $\mathcal{B} = [B_1, \dots, B_q]$ that are superstring collections $\mathcal{A} = [A_1, \dots, A_p]$, $\mathcal{B} = [B_1, \dots, B_q]$ of disjoint set collections $\mathcal{S} = \{S_1^{\mathcal{A}}, \dots, S_s^{\mathcal{A}}\}$ and $\mathcal{T} = \{T_1^{\mathcal{B}}, \dots, T_t^{\mathcal{B}}\}$ respectively, do the following:²

- 1. For possible overlap size l = 1 upto $|S_s^{\mathcal{A}} \cap T_1^{\mathcal{B}}|$.
- 2. Find $l_{\mathcal{A}}, l_{\mathcal{B}}$ such that $|\mathcal{A}_{p-l_{\mathcal{A}}-1,p}| \geq l > |\mathcal{A}_{p-(l_{\mathcal{A}}),p}|$ and $|\mathcal{B}_{1,l_{\mathcal{B}}}| < l \leq |\mathcal{B}_{1,l_{\mathcal{B}}+1}|$. If $l \leq |A_p|$ then let $l_{\mathcal{A}} = -1$, and similarly if $l \leq |B_1|$ then let $l_{\mathcal{B}} = -1$.
- 3. Consider the two sequences of set sizes:

$$l_{\mathcal{A}} \ge 0 \implies \mathsf{A} = [l - |\mathcal{A}_{p-l_{\mathcal{A}},p}|, |A_{p-l_{\mathcal{A}}}|, \dots, |A_{p}|] =_{def} [a_{1}, \dots, a_{l_{\mathcal{A}}+2}]$$

$$l_{\mathcal{A}} = -1 \implies \mathsf{A} = [l]$$

$$l_{\mathcal{B}} \ge 0 \implies \mathsf{B} = [|B_{1}|, \dots, |B_{l_{\mathcal{B}}}|, l - |B_{1,l_{\mathcal{B}}}|] =_{def} [b_{1}, \dots, b_{l_{\mathcal{B}}+1}]$$

$$l_{\mathcal{B}} = -1 \implies \mathsf{B} = [l]$$

Clearly $\sum_{i=1}^{l_A+2} a_i = \sum_{i=1}^{l_B+1} b_i = l$. Let $\mathsf{E} = [e_1, \dots, e_\alpha], \alpha \leq l_A + l_B + 1$ be the "merging" of A, B. That is, cut the interval $[1, \dots, l]$ on all places where A and B cut it, i.e. on $a_1, a_1 + a_2, \dots, a_1 + \dots + a_{p-1}, b_1, b_1 + b_2, \dots, b_1 + \dots + b_{q-1}$, resulting in a partition of $\{1, \dots, l\}, \mathsf{E} = [e_1, \dots, e_r], r \leq p + q - 1, \sum_{i=1}^r e_i = l$.

- 4. Each e_i in E corresponds to some a_{j'} in A and b_{k'} in B. a_{j'} in A and b_{k'} in B in turn, correspond to some A_j in A and B_k in B. For all such triplets (i, j, k) check that |E_i = A_j ∩ B_k| = e_i.
- 5. Announce failure for overlap l, and repeat (2)-(5) with $l \leftarrow l 1$, if for any triplet (i, j, k) the above condition fails.

²Assume that S and T are ordered by \prec_{A} and \prec_{B} , respectively.

6. Else \mathcal{A}, B can be merged with overlap l. The resulting sequence is

$$\mathcal{D} = [D_1, \dots, D_r] = [A_1, \dots, A_{p-l_{\mathcal{A}}-2}, A_{p-l_{\mathcal{A}}-1} \setminus \mathcal{B}_{1,l_{\mathcal{B}}+1}] \circ [E_1, \dots, E_{\alpha}] \circ$$
$$[B_{l_{\mathcal{B}}+1} \setminus \mathcal{A}_{p-l_{\mathcal{A}}-1,p}, B_{l_{\mathcal{B}}+2}, \dots, B_q]$$

Repeat (1)-(6) for the pairs (A, B), (A, B), (A, B). Return the set sequence D resulting from the merging with the greatest overlap l, together with the overlap magnitude l.

Notice that we do not merge superstring collections with 0 overlap. We will denote by $\mathbb{O}(\mathcal{A}, \mathcal{B})$ the overlap associated with the merge $\mathbb{M}(\mathcal{A}, \mathcal{B})$. Notice that $\mathbb{O}(\cdot, \cdot)$ is symmetric. When merging \mathcal{A}, \mathcal{B} in that order, with associated set collections $S_1^{\mathcal{A}} \bowtie_{\mathcal{A}} \cdots \bowtie_{\mathcal{A}} S_s^{\mathcal{A}}$, and $S_1^{\mathcal{B}} \bowtie_{\mathcal{B}} \cdots \bowtie_{\mathcal{B}} S_t^{\mathcal{B}}$ respectively, we say that the merge *introduces* $S_s^{\mathcal{A}} \bowtie S_1^{\mathcal{B}}$.

4.1.2 Correctness of MERGE

Theorem 3. (Correctness of MERGE): Let $\mathcal{A} = [A_1, \ldots, A_p]$, $\mathcal{B} = [B_1, \ldots, B_q]$, be superstring collections of $\mathcal{S} = \{S_1^{\mathcal{A}}, \ldots, S_s^{\mathcal{A}}\}$ and $\mathcal{T} = \{T_1^{\mathcal{B}}, \ldots, T_t^{\mathcal{B}}\}$ respectively. Let $\mathcal{S} \cup \mathcal{T}$ be a Sperner system and $\mathcal{S} \cap \mathcal{T} = \emptyset$. Then $\mathcal{D} = [D_1, \ldots, D_r] = \mathbb{M}(\mathcal{A}, \mathcal{B})$ is a superstring collection for $\mathcal{S} \cup \mathcal{T}$.

Proof. There are three ways to merge \mathcal{A}, \mathcal{B} depending on their sizes:

- Case 1: $|\mathcal{A}| = |\mathcal{B}| = 1$, $\mathcal{D} = [A_1 \setminus B_1, A_1 \cap B_1, B_1 \setminus A_1]$. Then w.l.o.g. $\mathcal{S} = \{S_1^{\mathcal{A}}\}$ and $\mathcal{T} = \{T_1^{\mathcal{B}}\}$. Clearly \mathcal{D} is a superstring collection for $\mathcal{S} \cup \mathcal{T}$. For instance $S_1^{\mathcal{A}} = A_1 = (A_1 \setminus B_1) \cup (A_1 \cap B_1) = D_1 \cup D_2$.
- Case 2: $|\mathcal{A}| = 1$, $|\mathcal{B}| > 1$. Assume w.l.o.g. that \mathcal{B} is not reversed before merging. Then for some $l, B_1 \cup \cdots \cup B_l \subset A_1, B_1, \ldots, B_l$ are pairwise disjoint, and $\mathcal{D} = [A \setminus \mathcal{B}_{1,l+1}, B_1, \ldots, B_l, A \cap B_{l+1}, B_{l+1} \setminus A, B_{l+2}, \ldots, B_k]$. Clearly $A = (A \setminus \mathcal{B}_{1,l+1}) \cup B_1 \cup \ldots \cup B_l \cup (A \cap B_{l+1})$, disjoint union. Therefore $S_1^{\mathcal{A}} = D_1 \cup \cdots \cup D_{l+2}$. Now for an arbitrary $T_i^{\mathcal{B}}$, let $j = J_{\mathcal{B}}(T_i^{\mathcal{B}}), k = K_{\mathcal{B}}(T_i^{\mathcal{B}})$. If $k \leq l$ then $T_i^{\mathcal{B}} = \mathcal{D}_{j+1,k+1}$. If $j \geq l+2$ then $T_i^{\mathcal{B}} = \mathcal{D}_{j+2,k+2}$. If $j \leq l+1 \leq k$ then $S_i^{\mathcal{B}} = \mathcal{D}_{j+1,k+2}$. Clearly the above are disjoint unions.

• Case 3: $|\mathcal{A}| > 1, |\mathcal{B}| > 1$. Assume w.l.o.g. that \mathcal{A}, \mathcal{B} are not reversed before merging. By symmetry, we only need to consider a set $S_i^{\mathcal{A}}$ expressed in \mathcal{A} . Let $j = J_{\mathcal{A}}(S_i), k = K_{\mathcal{A}}(S_i)$. Let $l_{\mathcal{A}}, l_{\mathcal{B}}$ and $\mathcal{D} = [D_1, \ldots, D_r]$ be as in the algorithm description. If $k \leq p - l_{\mathcal{A}} - 2$ then $S_i^{\mathcal{A}} = D_j \cup \cdots \cup D_k$. The case of sets $S_i^{\mathcal{A}}$ composed using some subsets from $A_{p-l_{\mathcal{A}}-1}, \ldots, A_p \subseteq S_j^{\mathcal{A}}$ are part of the expression of $S_s^{\mathcal{A}}$ and therefore pairwise disjoint. Similarly the subsets $B_1, \ldots, B_{l_{\mathcal{B}}+1} \subseteq T_1^{\mathcal{B}}$ are pairwise disjoint. It follows then that $D_{p-l_{\mathcal{A}}-1}, \ldots, D_{p-l_{\mathcal{A}}+\alpha-1} = (A_{p-l_{\mathcal{A}}-1} \setminus B_{1,l_{\mathcal{B}}}), E_1, \ldots, E_{\alpha}$, are pairwise disjoint. Then we can express $S_i^{\mathcal{A}}$ as follows: let k' be the largest index among $1, \ldots, \alpha$ for the sets E_1, \ldots, E_{α} , such that A_k appears on an intersection $E_{k'} = A_k \cap B_w$ for some $1 \leq w \leq \alpha$. If $j \leq p - l_{\mathcal{A}} - 2$ let j' = j. Else let j' be the smallest index among $1, \ldots, \alpha$ such that $E_{j'} = A_j \cap B_w$ for some $1 \leq w \leq \alpha$. Then $S_i^{\mathcal{A}} = D_{p-l_{\mathcal{A}}-1+j'} \cup \cdots \cup D_{p-l_{\mathcal{A}}-1+k'}$.

In all the above cases, the sets of A and B are expressed as disjoint unions of consecutive sets in D. Therefore D is a superstring collection for $S \cap T$.

Lemma 2. (Optimality of MERGE) Let H = (X, S) be a hypergraph that has a nonrepeating superstring. Let $\mathcal{A} = [A_1, \ldots, A_p], \mathcal{B} = [B_1, \ldots, B_q]$ be set sequences, let A_1, \ldots, A_p be pairwise disjoint, and similarly let B_1, \ldots, B_q be pairwise disjoint. Let \mathcal{A}, \mathcal{B} be superstring collections for disjoint subsets of S. Let $\mathbb{M}(\mathcal{A}, \mathcal{B}) = \mathcal{D} = [D_1, \ldots, D_r]$. For any non-repeating superstring σ of H, if (1) $\forall 1 \leq i \leq p, A_i$ is expressed by σ , and $\forall 1 \leq i \leq q-1, B_i$ is expressed by σ ; (2) $\forall 1 \leq i \leq p-1, A_i \approx_{\sigma} A_{i+1}$, and $\forall 1 \leq i \leq q-1, B_i \approx_{\sigma} B_{i+1}$, then it is true that:

- 1. $\forall 1 \leq i \leq r-1, D_i \in \sigma$
- 2. $\forall 1 \leq i \leq r-1, D_i \asymp_{\sigma} D_{i+1}$
- **Proof.** 1. Take an arbitrary D_i , in the sequence \mathcal{D} . If $D_i = A_j$ or $D_i = B_j$ for some j, it is immediate that $D_i \in \sigma$. If $D_i = A_j \cap B_k$ for some j, k, then since $A_j \in \sigma, B_k \in \sigma$, and σ is non-repeating, it follows that $A_j \cap B_k \in \sigma$.
 - 2. Take arbitrary D_i, D_{i+1} in \mathcal{D} .

- (a) If D_i = A_j and D_{i+1} = A_{j+1}, or D_i = B_j and D_{i+1} = B_{j+1} for some j, then it is immediate that D_i ≍_σ D_{i+1}.
- (b) If $D_i = A_{p-l_A-1} \setminus \mathcal{B}_{1,l_B+1}$ then $D_{i+1} = A_{p-l_A-1} \cap B_1$. Clearly σ expresses \mathcal{B}_{1,l_B+1} and since (1) σ expresses A_{p-l_A-1} , (2) σ is non-repeating, and (3) $\mathcal{B}_{1,l_B+1} \not\subseteq A_{p-l_A-1}$, it follows that $A_{p-l_A-1} \setminus \mathcal{B}_{1,l_B+1} \asymp_{\sigma} A_{p-l_A-1} \cap \mathcal{B}_{1,l_B+1} \asymp_{\sigma} \mathcal{B}_{1,l_B+1} \setminus A_{p-l_A-1}$. Clearly then $D_i = A_{p-l_A-1} \setminus \mathcal{B}_{1,l_B+1} \asymp_{\sigma} A_{p-l_A-1} \cap B_1 = D_{i+1}$.
- (c) Having proven cases (a) and (b) let $D_{i-1} \asymp_{\sigma} D_i$ and let $D_i = A_j \cap B_k$. Consider the following cases:
 - i. D_{i+1} = A_j ∩ B_{k+1}. We assume that i > 1 and D_{i'} ≍ D_{i'+1} for any i' < i. Then A_j ∩ B_k ≍_σ A_j ∩ B_{k+1} follows from A_j ∈ σ, B_k ≍_σ B_{k+1}, and the fact that σ is non-repeating.
 - ii. $D_{i+1} = A_{j+1} \cap B_k$. Similarly, since $B_k \in \sigma$ and $A_j \asymp_{\sigma} A_{j+1}$, it follows that $A_j \cap B_k \asymp_{\sigma} A_{j+1} \cap B_k$.
 - iii. $D_{i+1} = A_{j+1} \cap B_{k+1}$. Clearly either $A_{j+1} \subseteq B_{k+1}$ or $B_{k+1} \subseteq A_{j+1}$. Assume the former case, i.e. $A_{j+1} \subseteq B_{k+1}$ whereby $D_{i+1} = A_{j+1}$. Knowing that $D_{i'} \asymp_{\sigma} D_{i'+1}$ for $i' < i, A_j \cap B_k \asymp_{\sigma} A_{j+1}$ follows from the fact that $A_j \asymp_{\sigma} A_{j+1}$ and σ is non-repeating. Similarly in the latter case.

Lemma 3. Given two proper simple Q-nodes $\mathcal{A} = [A_1, \dots, A_p]$ and $\mathcal{B} = [B_1 \dots B_q]$, $\mathbb{M}(\mathcal{A}, \mathcal{B})$ is proper.

Proof. This is clear. In fact, referring to the description of MERGE, $L(\mathbb{M}(\mathcal{A}, \mathcal{B})) = \sum_{i=1}^{r} |D_i|$.

We give an example of applying Merge-Sequence-Pair to two simple set sequences:

Example 1: Let

•
$$S = \{S_1, S_2, S_3, S_4\}$$

•
$$S_1 = \{a, b, c\}; S_2 = \{b, c, d, e\}; S_3 = \{a, c, d, e\}; S_4 = \{a, b, e\}$$

•
$$\mathcal{A} = [A_1, A_2, A_3] = [\{a\}, \{b, c\}, \{d, e\}]; \mathcal{B} = [B_1, B_2, B_3] = [\{c, d\}, \{a, e\}, \{b\}]$$

Therefore,

$$S_1 = A_1 \cup A_2, S_2 = A_2 \cup A_3, S_3 = B_1 \cup B_2, S_4 = B_2 \cup B_3$$

Then it is tedious to check that following the steps of the above algorithm results in

$$\mathbb{M}(\mathcal{A},\mathcal{B}) = [\{a\},\{b\},\{c\},\{d\},\{e\},\{a\},\{b\}]$$

with overlap = 3.

4.2 The GREEDY-MERGE-SPERNER Algorithm for Sperner Hypergraphs

Below we describe a greedy algorithm based on MERGE, restricted to Sperner hypergraphs (*GREEDY-MERGE-SPERNER*). The general algorithm will be shown in the next section*.

4.2.1 Description of GREEDY-MERGE-SPERNER

Algorithm *GREEDY-MERGE-SPERNER*: Let $H = (X, S = \{S_1, \ldots, S_s\})$ be a Sperner hypergraph. A *PQ*-tree is built by incrementally constructing a *P*-node $P_t = \{A_1, \ldots, A_{r_t}\}$ where A_1, \ldots, A_{r_t} are simple *Q*-nodes.

- For initialization set $t = 1, P_1 = \{[S_1], ..., [S_s]\}$.
- Do until $|P_t| = 1$ or for all pairs of sequences $\mathcal{A}, \mathcal{B} \in \mathcal{S}_t, \mathbb{O}(\mathcal{A}_t, \mathcal{B}_t) = 0$:
 - 1. Find A_t, B_t in S_t such that $\mathbb{O}(A_t, B_t) > 0$ is maximum.
 - 2. Let $P_{t+1} = (P_t \setminus \{\mathcal{A}_t, \mathcal{B}_t\}) \cup \{\mathbb{M}(\mathcal{A}_t, \mathcal{B}_t)\}.$
 - 3. Set $t \leftarrow t + 1$.

Let $P_{GM/S} = \{A_1, \dots, A_F\}$. Then A_i are Q-nodes and the set of solutions is the set of superstrings produced by the PQ-tree rooted at $P_{GM/S}$.

4.2.2 Properties of GREEDY-MERGE-SPERNER

Lemma 4. $P_{GM/S}$ is proper.

Proof. Immediate from the corresponding lemma for MERGE. \Box

Theorem 4. (Correctness of *GREEDY-MERGE-SPERNER*) Given a Sperner hypergraph H, the strings that $P_{GM/S}$ produces are superstrings for H.

Proof. The correctness of the above algorithm follows inductively from the correctness of MERGE. $\hfill \Box$

Theorem 5. Let H be a Sperner hypergraph that has non-repeating superstrings. Then *GREEDY-MERGE-SPERNER* produces a PQ-tree expressing all the shortest superstrings.

Proof. We first introduce a few concepts:

Definition. A non-repeating superstring σ for a Sperner hypergraph $H = (X, S = \{S_1, \ldots, S_s\})$ such that $S_i \bowtie_{\sigma} S_j \implies S_i \cap S_j \neq \emptyset$ is called a *ladder*. We say that H is *flat* if there exists a ladder σ for H.

Any subcollection of sets of a Sperner hypergraph is a Sperner hypergraph. However, a subcollection H' of a flat Sperner hypergraph H need not be flat. If H' is flat, it is not hard to prove that a ladder σ for H contains a substring that is a ladder for H'. Intuitively a ladder corresponds to a simple Q-node that expresses the necessary and sufficient conditions for a superstring to be optimal. The following lemma expresses the above intuition:

Lemma 5. If σ is a ladder for the hypergraph H then the relation \bowtie_{σ} restricted to elements of S, is common to all optimal superstrings.

Proof. Assume w.l.o.g. $S_1 \triangleleft_{\sigma} S_2 \triangleleft_{\sigma} \ldots \triangleleft_{\sigma} S_s$. Since σ is non-repeating, for any $S_i, S_j \in S$ with $i < j, |S_i \cap S_j| = max(0, \eta_{\sigma}(S_i) - \beta_{\sigma}(S_j))$. Since S is Sperner and for any $i |S_i \cap S_{i+1}| > 0$, it follows $|S_i \cap S_{i-1}| > |S_i \cap S_j|$ for any j < i - 1, and $|S_i \cap S_{i+1}| > |S_i \cap S_j|$ for any j > i + 1. Say for contradiction that in some optimal superstring $\sigma' S_i \bowtie S_x$ where $x \neq i - 1, i + 1$. Say

w.l.o.g. that x > i. From $|S_i \cap S_{i+1}| > |S_i \cap S_x|$ it follows that $S_x \bowtie_{\sigma'} S_i \bowtie_{\sigma'} S_{i+1}$. Say w.l.o.g. that $S_x \triangleleft_{\sigma'} S_i \triangleleft_{\sigma'} S_{i+1}$. Since $S_i \triangleleft_{\sigma} S_{i+1} \prec_{\sigma} S_x$ it follows that $|S_{i+1} \cap S_x| > |S_i \cap S_x|$, therefore $S_{i+1} \cap S_x \not\subseteq S_i \cap S_x$ and therefore σ' repeats symbols, contradicting its optimality. \Box

Lemma 6. Let σ be a ladder for $H = (X, S = \{S_1 \bowtie_{\sigma} \cdots \bowtie_{\sigma} S_s\}), s \geq 2$. Let $\mathcal{A} = [A_1, \ldots, A_p] = \mathcal{A}(\sigma_{[1,i]}), \mathcal{B} = [B_1, \ldots, B_q] = \mathcal{A}(\sigma_{[i+1,s]}), 1 \leq i < s$ be the associated superstring collections for $\{S_1, \ldots, S_i\}, \{S_{i+1}, \ldots, S_s\}$ respectively. Then $\mathbb{M}(\mathcal{A}, \mathcal{B})$ produces only non-repeating superstrings, including σ .

Proof. The algorithm will try the largest possible overlap $l = |S_i \cap S_{i+1}|$. It is not hard to see that, by virtue of the existence of σ yielding overlap l, condition 4 of the merging algorithm is satisfied for overlap l.

Lemma 7. Let H be a flat Sperner hypergraph. Then every superstring produced by $P_{GM/S}$ is a ladder.

Proof. Let σ be a ladder for S. Assume w.l.o.g. that $S_1 \bowtie_{\sigma} \ldots \bowtie_{\sigma} S_s$. It suffices to show inductively that at each step of *GREEDY-MERGE-SPERNER*, two simple Q-nodes $\mathcal{A}_t = [S_{\alpha_1}, \ldots, S_{\alpha_p}], \mathcal{B}_t = [S_{\beta_1}, \ldots, S_{\beta_q}]$ are merged in that order, to produce a non-repeating simple Q-node \mathcal{D}_t , and to introduce $S_{\alpha_p} \bowtie_{\sigma} S_{\beta_1}$. Say this is true up to step t. Since σ is a ladder and at step t the available simple Q-nodes are segments of σ by inductive assumption, there are merges of overlap > 0. Therefore $\mathbb{O}(\mathcal{A}_{t+1}, \mathcal{B}_{t+1}) > 0$. Then $S_{\alpha_p} \cap S_{\beta_1} \neq \emptyset$. Since σ is non-repeating, S_{α_p} has a neighbor $\neq S_{\alpha_{p-1}}$, in σ . Call this S_{γ} . Say w.l.o.g. that $S_{\alpha_{p-1}} \triangleleft_{\sigma} S_{\alpha_p} \triangleleft_{\sigma} S_{\gamma}$. By inductive assumption S_{γ} has at most one neighbor in \mathcal{S}_t . Say \mathcal{S}_{γ} lies on \mathcal{B}' in \mathcal{S}_t . Clearly $\mathbb{M}(\mathcal{A}_t, \mathcal{B}')$ can be performed to yield overlap $\mathbb{O}(\mathcal{A}_t, \mathcal{B}') = |S_{\alpha_p} \cap S_{\gamma}| > |S_{\alpha_p} \cap S_x|$ for any $S_{\alpha_p} \prec_{\sigma} S_x$. Therefore it must be that $S_{\beta_1} \prec_{\sigma} S_{\alpha_1} \triangleleft_{\sigma} \cdots \triangleleft_{\sigma} S_{\alpha_p}$. Since σ is non-repetitive $|S_{\beta_1} \cap S_{\alpha_1}| > |S_{\beta_1} \cap S_{\alpha_p}|$. Therefore $\mathbb{O}(\overleftarrow{A}, \mathcal{B}) > \mathbb{O}(\mathcal{A}, \mathcal{B})$, a contradiction.

A ladder σ for $S = \{S_1, \ldots, S_s\}$ corresponds to a simple Q-node that is a non-repeating superstring collection for S. To describe this Q-node, assume without loss of generality that $S_1 \triangleleft_{\sigma} \cdots \triangleleft_{\sigma} S_s$. Let $a_i = |S_i \setminus S_{i+1}|$ for $1 \le i \le s - 1$. It can be readily seen that $\beta_i = \beta_{\sigma}(S_i) =$ $1 + \sum_{j=1}^{i-1} a_j$ and $\eta_i = \eta_{\sigma}(S_i) = -1 + |S_i| + \beta_{\sigma}(S_i)$. Any minimal string that satisfies these conditions, or the reverse of such a string, is a ladder for S. All such superstrings are produced by the simple Q-node $\mathcal{A}(\sigma) = [\{\sigma_1, \ldots, \sigma_{e_1-1}\}, \ldots, \{\sigma_{e_t}, \ldots, \sigma_{|\sigma|}\}]$ where $[e_1, \ldots, e_t]$ is the ordered sequence of all numbers in the set $\{\beta_2, \ldots, \beta_s, \eta_1 + 1, \ldots, \eta_{s-1} + 1\}$ each distinct number occuring only once in $[e_1, \ldots, e_t]$.

If an arbitrary Sperner hypergraph H = (X, S) has non-repeating solutions, these solutions are permutations of a finite number of ladders. This is true because an arbitrary Sperner hypergraph can be partitioned in the obvious way into disjoint flat Sperner hypergraphs. That is $S = S_1 \cup \cdots \cup S_k$, where each S_i is flat, with associated ladder σ_i . Then any $\sigma = v_1(\sigma_{\pi(1)}) \cdots v_k(\sigma_{\pi(k)})$ where π is a permutation on $\{1, \ldots, k\}$ and v_i is either the identity or the reversing operation, is an optimal, non-repeating superstring for H. These superstrings can be represented by a PQ-tree consisting of one P node on top, leading to k simple Q-nodes. Finally, it is clear that GREEDY-MERGE-SPERNER produces all such non-repeating superstrings and that $P_{GM/S}$ is a PQ-tree representation of the set of optimal solutions.

4.3 Examples

In the following examples we demonstrate how merges selected and used to produce superstrings.

Example 2: Non-repeating solutions.

• $S = \{S_1, S_2, S_3, S_4, S_5\}$

•
$$S_1 = \{a, b, c, d, e\}; S_2 = \{c, d, e, f\}; S_3 = \{f, g, h\}; S_4 = \{i, j\}; S_5 = \{j, k\}$$

1.
$$P_1 = \{[S_1], \ldots, [S_5]\}$$

- 2. First merge is between sets of maximum intersection, in our case S_1, S_2 . After that $P_2 = \{[\{\{a,b\}, \{c,d,e\}, \{f\}], [S_3], [S_4], [S_5]\}\}$
- 3. There are now two merges of overlap 1. Say the one between S_4 and S_5 is performed first. Then $P_3 = \{[\{\{a,b\}, \{c,d,e\}, \{f\}\}, [S_3], [\{i\}, \{j\}, \{k\}]\}\}.$

- 4. There is now one merge of overlap 1, namely between $[\{\{a, b\}, \{c, d, e\}, \{f\}\}]$ and $[S_3]$. After that is performed $P_4 = \{[\{\{a, b\}, \{c, d, e\}, \{f\}, \{g, h\}], [\{i\}, \{j\}, \{k\}]\}.$
- 5. Now there is no more merge of nonzero overlap. The algorithm stops and returns the following solutions: let $A_1 = [A_1, A_2, A_3, A_4] = [\{\{a, b\}, \{c, d, e\}, \{f\}, \{g, h\}], A_2 = [A_5, A_6, A_7] = [\{i\}, \{j\}, \{k\}]$. Then $\sigma(A_1) = \sigma(A_1) \dots \sigma(A_4)$ where $\sigma(A_i)$ is a string listing the elements of A_i in any order. Similarly for $\sigma(A_2)$. Furthermore, $\tau(A_1)$ can be $\sigma(A_1)$ or its reverse, and similarly for $\tau(A_2)$. The algorithm returns any solution of the form $\tau(A_1)\tau(A_2)$ or $\tau(A_2)\tau(A_1)$. Equivalently, the algorithm returns the PQ-tree rooted at P_{FINAL} where P_{FINAL} has children the simple Q-nodes A_1, A_2 .

In the following example there are many routes that *GREEDY-MERGE-SPERNER* can take. We just show one of them.

Example 3: Solutions with repeated probes.

- $\mathcal{S} = \{S_1, \ldots, S_6\}$
- $S_1 = \{a, b, c, d, e\}; S_2 = \{b, c, d, e, f\}; S_3 = \{a, c, d, f, g\}; S_4 = \{b, c, d, g, h\}; S_5 = \{a, b, f, g, h\}; S_6 = \{e, g\}.$
- 1. $P_1 = \{[S_1], \dots, [S_7]\}.$
- 2. First merge is between S_1 and S_2 : $P_2 = \{A = [\{a\}, \{b, c, d, e\}, \{f\}], [S_2], \dots, [S_6]\}$.
- 3. Second merge is between S_4 and S_5 : $P_3 = \{A, [S_3], B = [\{a, f\}, \{b, g, h\}, \{c, d\}], [S_6]\}$.
- 4. Third merge is between S_2 and $B: P_4 = \{A, D = [\{a, f\}, \{b, h\}, \{g\}, \{c, d\}, \{a, f\}], [S_6]\}$.
- 5. Fourth merge is between A and D:

$$P_5 = \{[\{a, f\}, \{b, h\}, \{g\}, \{c, d\}, \{f\}, \{a\}, \{b, c, d, e\}, \{f\}], [S_6]\}$$

6. There are no more merges to be performed. An example of a superstring returned is σ = af bh g cd f a b cde f ge. Another example is σ' = eg fa hb g cd f a b dec f. Spaces in these strings are just added to make clear the separation into sets in the set sequences. Notice that S₆ is in the "leftmost" place on σ' and in the "rightmost" place on σ.

4.4 The GREEDY-MERGE Algorithm for General Hypergraphs

Below we describe an extension of *GREEDY-MERGE-SPERNER*, the *GREEDY-MERGE* algorithm that retrieves the *C1P* (Booth and Lueker, 1976) in general hypergraphs. In particular *GREEDY-MERGE* will retrieve all optimal solutions whenever those are non-repeating.

4.4.1 Description of GREEDY-MERGE

Definition. A set B can be c-inserted in a simple Q-node $\mathcal{A} = [A_1, \ldots, A_k]$, where \mathcal{A} is a superstring collection of hyperedge collection $\mathcal{S} = \{S_1, \ldots, S_s\}$ if (a) $B \subset S_i$ for some *i*, and (b) c is the smallest integer > 0 such that $B = (A_i \cap B) \cup A_{i+1} \cup \cdots \cup A_{i+c-1} \cup (A_{i+c} \cap B)$, or $B \subseteq A_i$ and c = 0. The resulting Q-node is $\mathcal{A}' = [A_1, \ldots, A_i \setminus B, A_i \cap B, A_{i+1}, \ldots, A_{i+c} \cap B, A_{i+c} \setminus B, A_{i+c+1}, \ldots, A_k]$.

The lemma below follows easily from the above definition:

Lemma 8. Let $\mathcal{A} = [A_1, \ldots, A_k]$ be a superstring collection for $H = (X, S = \{S_1, \ldots, S_s\})$ and let B be c-inserted in \mathcal{A} to yield \mathcal{A}' , with c > 0. Then \mathcal{A}' is a superstring collection for $H' = (X, S \cup \{B\}).$

It is trivial to prove an optimality lemma for c-insertions, similar to the one for the MERGE operation:

Lemma 9. Let H = (X, S) be a hypergraph that has a non-repeating superstring. Let $\mathcal{A} = [A_1, \ldots, A_p]$ be a simple Q-node and let $\mathcal{A}' = [A'_1, \ldots, A'_{p'}] = [A_1, \ldots, A_i \setminus B, A_i \cap B, A_{i+1}, \ldots, A_{i+c-1}, A_{i+c} \cap B, A_{i+c} \setminus B, A_{i+c+1}, \ldots, A_p]$ be the result of c-inserting a set $B \in S$ with c > 0 in \mathcal{A} . For any non-repeating superstring σ of H, if (1) $\forall 1 \leq i \leq p, A_i \in \sigma$; (2) $\forall 1 \leq i \leq p - 1, A_i \asymp \sigma A_{i+1}$, then it is true that:

- 1. $\forall 1 \leq i \leq r-1, A'_i \in \sigma$.
- 2. $\forall 1 \leq i \leq r-1, A'_i \asymp_{\sigma} A'_{i+1}$

Algorithm *GREEDY-MERGE*: Let $H = (X, S = \{S_1, \dots, S_s\})$ be a hypergraph. Define $\mathcal{L} = \{S_i \in S | \forall l \neq i (S_l \in S \implies S_i \notin S_l)\}$, a Sperner subgraph.

- 1. Construct top *P*-node $P_{GM}(H)$, initially *empty*.
- 2. Apply *GREEDY-MERGE-SPERNER* on \mathcal{L} to create a *PQ*-tree for \mathcal{L} , $P_{GM/S}(\mathcal{L}) = \{\mathcal{A}_1, \dots, \mathcal{A}_m\}$. Let all \mathcal{A}_i be children to P_{GM} . Those may be modified in the subsequent steps.
- 3. Let S' be initialized to $S \setminus \mathcal{L}$. Do:
 - Find a set B ∈ S' that can be c-inserted in some A_i with c > 0 and c-insert it.
 Remove B from S'.

until no set can be c-inserted with c > 0 in any \mathcal{A}_i . Call the resulting PQ-tree $P'_{GM/S}(\mathcal{L}) = \{\mathcal{B}_1, \ldots, \mathcal{B}_m\}.$

- 4. For each \mathcal{B}_i , for each $B_{ij} \in \mathcal{B}_i$, do:
 - (a) Let $S_{ij} = \{S_{\alpha} \in S' | S_{\alpha} \subseteq B_{ij}\}$. Update S' to $S' \setminus S_{ij}$.
 - (b) Run *GREEDY-MERGE* recursively on $H_{ij} = (\bigcup S_{ij}, S_{ij})$ to produce *PQ*-trees with *P*-nodes on top, $P_{GM}^{ij} = \{P_1^{ij}, \ldots, P_{m_{ij}}^{ij}\}$, where P_k^{ij} are *P*-nodes.
 - (c) If all the resulting PQ-trees $P_1^{ij}, \ldots, P_{m_{ij}}^{ij}$ are non-repeating, then replace the P-node B_{ij} with the P-node $P_{GM}(B_{ij}) = \{P_1^{ij}, \ldots, P_{m_{ij}}^{ij}, elts(B_{ij} \setminus (\bigcup S_{ij}))\}$ where $elts(B_{ij} \setminus (\bigcup S_{ij}))$ are all the elements of $B_{ij} \setminus (\bigcup S_{ij})$.
 - (d) Else let all childern of P_{GM}^{ij} be children of $P_{GM}(H)$.
- 5. If S' is not empty, run *GREEDY-MERGE* on S' and let the children of the resulting P-node be children of $P_{GM}(H)$.

4.4.2 Proof that GREEDY-MERGE Retrieves the Consecutive Ones Property

Theorem 6. $P_{GM}(H)$ is a superstring collection for H.

Proof. The proof is straight-forward. Here is a sketch:

• By correctness of *GREEDY-MERGE-SPERNER*, and by Lemma 9 follows that all the sets in \mathcal{L} are expressed in any string produced by P_{GM} .

- The sets in $S \setminus \mathcal{L}$ are of three categories:
 - 1. Sets that are c-inserted in step 3. It follows that these sets are expressed string produced by P_{GM} .
 - 2. Sets that are in S_{ij} of step 4. For those sets use the inductive assumption that P_{GM}^{ij} is a superstring collection for S_{ij} . It easily follows that $P_{GM}(H)$ also expresses all sets in S_{ij} for any i, j.
 - 3. Sets that are dealt with in step 5 are expressed by superstrings of $P_{GM}(H)$ by inductive assumption.

Therefore all the sets in S are expressed in any superstring produced by P_{GM} .

Theorem 7. If there exists a non-repeating superstring for H, $P_{GM}(H)$ produces all the optimal solutions.

Proof. Assume that hypergraph H has a non-repeating solution. It suffices to show that the tree rooted at $P_{GM}(H)$ returned by *GREEDY-MERGE* is proper, and produces all the non-repeating solutions.

First of all we argue that if H has non-repeating superstrings, then after step 4 of the algorithm S' is empty. Say that $S \in S'$ after step 4. Clearly S has at least two elements. Since $S \notin \mathcal{L}, S \subseteq \bigcup \mathcal{B}_i$ for some i. Since S was not c-inserted, and $S \notin B_{ij}$ for any j, it follows S has two elements x, y s.t. $x \in B_{ij}, y \in B_{i(j+d)}$ with d > 1 and $S \neq (B_{ij} \cap S) \cup B_{i(j+1)} \cup \cdots \cup B_{i(j+d-1)} \cup (B_{i(j+d)} \cap S))$. It follows that under these conditions, any superstring σ that respects $B_{ij} \asymp_{\sigma} B_{i(j+1)}$ and expresses S, has to repeat either x or y.

Consider any set S_{ij} , defined in 4.(a) in the description of the algorithm. S_{ij} has nonrepeating solutions, because H does. Inductively assume that P_{GM}^{ij} produces all non-repeating superstrings of S_{ij} . Then it it follows that $P_{GM}(B_{ij})$ produces all and only the non-repeating superstrings of $S_{ij} \cup \{B_{ij}\}$. Assuming that in a non-repeating superstring of S it is true that $B_{ij} \in \sigma$, $P_{GM}(B_{ij})$ produces all substrings expressing B_{ij} , that appear in any non-repeating superstring for S. Consider step 2 of *GREEDY-MERGE*. The nodes A_i are non-repeating superstring collections of the flat set collections \mathcal{L}_i that partition \mathcal{L} . For any $A_i = [A_{i1}, \ldots, A_{ir_i}]$ it follows by the optimality of MERGE, and by induction on the number of MERGE steps needed to construct A_i that any non-repeating superstring σ for S expresses $A_{ij}, 1 \leq j \leq r_i$. It similarly follows that for any non-repeating σ , $A_{ij} \asymp \sigma A_{i(j+1)}$.

Consider now step 3 of *GREEDY-MERGE*. Each \mathcal{B}_i is obtained from \mathcal{A}_i by a series of *c*-insertions with c > 0. It follows by induction on the number of *c*-insertions that in any non-repeating superstring σ for $\mathcal{S}, B_{ij} \in \sigma$ and $B_{ij} \asymp_{\sigma} B_{i(j+1)}$.

Since *H* has non-repeating superstrings, \mathcal{L} also has non-repeating superstrings. Therefore from the properties of *GREEDY-MERGE-SPERNER* step 2 of *GREEDY-MERGE* will return a proper tree rooted at $P_{GM/S}(\mathcal{L})$ producing all non-repeating superstrings of \mathcal{L} . Those are a superset of all the non-repeating superstrings of *H*. Step 3 of *GREEDY-MERGE* will update the tree to $P'_{GM/S}$ which produces all superstrings σ of $P_{GM/S}(\mathcal{L})$ that express all B_{ij} and satisfy all conditions $B_{ij} \approx_{\sigma} B_{i(j+1)}$. Since those conditions are satisfied by any non-repeating superstring of *H*, $P'_{GM/S}$ also produces all such superstrings. Finally, step 4 of the algorithm updates each *P*-node B_{ij} to $P_{GM}(B_{ij})$ which as we showed by inductive assumption, produces all substrings expressing $S_{ij} \cup \{B_{ij}\}$ of non-repeating superstrings of *H*. Therefore the algorithm will stop after step 4, and the final root P_{GM} produces all non-repeating superstrings of *H*.

It is clear that P_{GM} is proper. Therefore P_{GM} produces exactly the non-repeating superstrings of H, when at least one such superstring exists.

Therefore *GREEDY-MERGE-SPERNER* and *GREEDY-MERGE* retrieve the optimal solution when this solution is non-repeating. This case corresponds to a physical mapping problem where there are no repeated probes. It also follows that the above algorithms retrieve the consecutive ones property. Therefore, *GREEDY-MERGE* is a generalization of algorithms that retrieve the *CIP* for general hypergraphs.

4.5 Approximation Guarantees

The *MAXSNP*-completeness theorem above shows that the problem is hard to approximate even when restricted to strict Sperner hypergraphs. We show below a version of *GREEDY-MERGE-SPERNER* that has a good approximation guarantee on strict Sperner hypergraphs.

4.5.1 The Algorithm 2-PHASE-GREEDY for Strict Sperner Hypergraphs

Let $H = (X, S = \{S_1, \ldots, S_s\})$ be a strict Sperner hypergraph. Let π be an optimal ordering of the hyperedges derived from the optimal superstring σ_{OPT} . Then let $S_{\pi(1)}, \ldots, S_{\pi(s)}$ be the sets ordered optimaly, and let $q_i = \eta_{\sigma_{OPT}}(S_{\pi(i)}) - \beta_{\sigma_{OPT}}(S_{\pi(i+1)})$ be the optimal overlap between sets $S_{\pi(i)}$ and $S_{\pi(i+1)}$ according to σ_{OPT} . Then we can calculate the total optimal overlap, $Q = \sum_{i=1}^{s-1} q_i$ and notice that $|\sigma_{OPT}| = -Q + \sum_{i=1}^{s} |S_i| = -Q + C$.

Consider the following algorithm: First perform $\lceil \frac{(s-1)}{4} \rceil$ merges of maximal overlap between pairs of single sets in S. Denote by o_i the overlap associated with the *i*th MERGE performed on H. It is trivial to see that $o_1 \ge q_i$ for any $1 \le i \le s - 1$. Say that the two hyperedges merged in this first step to yield o_1 are $S_{\pi(\alpha_1)}, S_{\pi(\alpha_2)}$. Then consider o_2 . Clearly $o_2 \ge q_i$ for any $1 \le i \le s, i \notin \{\alpha_1 - 1, \alpha_1, \alpha_2 - 1, \alpha_2\}$. The reason is that all q_i overlaps except at most the four overlaps $\{q_{\alpha_1-1}, q_{\alpha_1}, q_{\alpha_2-1}, q_{\alpha_2}\}$ associated with the hyperedges merged in step 1, are "available" at step 2, therefore a MERGE with at least that much overlap is performed. Similarly for o_i for any $1 \le i \le \lceil \frac{(s-1)}{4} \rceil$. It follows that $O_{\alpha} = \sum_{i=1}^{\lceil \frac{(s-1)}{4} \rceil} o_i \ge \lceil \frac{Q}{4} \rceil$.

Denote by σ_1 a superstring produced by applying the above procedure on S. Since S is a strict Sperner hypergraph, $|\sigma_1| \leq -O_{\alpha} + C$. It is easy to see that $Q \leq \lfloor \frac{1}{2} \times (C-s) \rfloor \leq \frac{1}{2} \times (C-s)$. It follows that the worst possible approximation ratio $\frac{|\sigma_1|}{|\sigma_{OPT}|}$ is given when $O_{\alpha} = \frac{Q}{4}$:

$$\frac{|\sigma_1|}{|\sigma_{OPT}|} \le \frac{\mathsf{C} - \frac{\mathsf{C} - s}{2}}{\mathsf{C} - \frac{\mathsf{C} - s}{2}} = \frac{7\mathsf{C} + s}{4\mathsf{C} + 4s}$$

This in turn is $\leq \frac{7}{4} = 1.75$.

After the merges between pairs are performed to yield overlap O_{α} , we allow the algorithm to perform merges between single hyperedges, or between pairs of hyperedges merged

previously, but never between any set sequence that "contains" more than two hyperedges from S. Consider now two adjacent sets $S_{\pi(i)}, S_{\pi(i+1)}$ in the optimal solution, with overlap q_i . If these hyperedges were not merged together in the first phase of the algorithm, they can still be merged now even if one or both of them have been merged already to another set. Call then q'_i the new maximal overlap between such two hyperedges. Clearly $Q' = \sum_{i=1}^{s-1} q'_i \ge Q - O_{\alpha}$. Likewise as before using the best $\lceil \frac{(s-1)}{4} \rceil$ merging operations between pairs of hyperedges in S or set sequences that resulted from the first phase, we can retrieve an overlap $O_{\beta} \ge \lceil \frac{Q'}{4} \rceil$.

Including this second phase of the algorithm, let again σ_2 a superstring produced on H = (X, S). It follows now that $|\sigma_2| \leq -O_\beta - O_\alpha + C$. The worst possible approximation ratio is given when $O_\alpha = \frac{Q}{4}$ and $O_\beta = \frac{(Q-O_\alpha)}{4} = \frac{3Q}{4}$:

$$\frac{|\sigma_2|}{|\sigma_{OPT}|} \le \frac{\mathsf{C} - \frac{\frac{\mathsf{C} - s}{2}}{4} - \frac{3(\frac{\mathsf{C} - s}{2})}{16}}{\mathsf{C} - \frac{\mathsf{C} - s}{2}} = \frac{50\mathsf{C} + 7s}{32\mathsf{C} + 32s}$$

Now the approximation ratio is $\leq \frac{50}{32} = 1.5625$. Call this algorithm 2-PHASE-GREEDY. Algorithm 2-PHASE-GREEDY: Let $H = (X, S = \{S_1, \dots, S_s\})$ be a strict Sperner hypergraph.

- Perform in a greedy fashion [^(s-1)/₄] MERGE operations between pairs of single hyperedges in S. These merges result in a PQ-tree rooted at the P-node P_α containing (i) hyperedges in S, and (ii) Q-nodes resulting from the above merges between pairs of hyperedges.
- 2. Perform in a greedy fashion $\lceil \frac{(s-1)}{4} \rceil$ MERGE operations between children of P_{α} . These merges result in a PQ-tree rooted at the P-node P_{β} .
- 3. Set $t = 1, P_1 = P_\beta$.
- 4. Do until $|P_t| = 1$ or for all pairs of sequences $\mathcal{A}, \mathcal{B} \in \mathcal{S}_t, \mathbb{O}(\mathcal{A}_t, \mathcal{B}_t) = 0$:
 - (a) Find A_t, B_t in S_t such that $\mathbb{O}(A_t, B_t) > 0$ is maximum.
 - (b) Let $P_{t+1} = (P_t \setminus \{\mathcal{A}_t, \mathcal{B}_t\}) \cup \{\mathbb{M}(\mathcal{A}_t, \mathcal{B}_t)\}.$

(c) Set $t \leftarrow t + 1$.

Claim 1 2-PHASE-GREEDY has an approximation ratio ≤ 1.5625 .

Claim 2 2-PHASE-GREEDY has the following approximation ratios on set systems of sets with size bounded by K:

- $\leq \frac{157}{128} \approx 1.227$ when K = 3;
- $\leq \frac{207}{160} \approx 1.294$ when K = 4;
- $\leq \frac{257}{192} \approx 1.339$ when K = 5;
- $\leq \frac{307}{224} \approx 1.371$ when K = 6;
- $\leq \frac{357}{256} \approx 1.395$ when K = 7;
- $\leq \frac{407}{288} \approx 1.413$ when K = 8;
- $\leq \frac{457}{320} \approx 1.428$ when K = 9;
- $\leq \frac{507}{352} \approx 1.440$ when K = 10.

In particular we have proved that *MIN-HYPERGRAPH-SUPERSTRING* is *MAXSNP* - complete for sets of size bounded by $K \ge 5$. For K = 5 the best approximation ratio of *MIN-HYPERGRAPH-SUPERSTRING* is therefore $1 < c^* \le 1.339$. Notice that the case K = 2 is trivial and *GREEDY-MERGE-SPERNER* solves it optimally.

In fact, 2-PHASE-GREEDY preserves the optimality property of GREEDY-MERGE-SPERN-ER and consequently can be used instead of GREEDY-MERGE-SPERNER as part of GREEDY-MERGE to retrieve the C1p in arbitrary hypergraphs.

4.5.2 The Algorithm 2-LAYER-GREEDY

Consider a set system $S = \{S_1, \ldots, S_s\}$, and a superstring $\sigma = \sigma_1 \cdots \sigma_n$ for S. We say that σ_i is *part of* S_j if σ_i lies in the part of the superstring where the first occurrence of C_j is found. We say that there is a *transition* at place (i, i + 1) of σ if σ_i is part of a different collection of sets

than σ_{i+1} . We can divide σ into substrings, or regions ρ_j so that $\sigma = \rho_1 \cdots \rho_k$ so that for each $\rho_j = \sigma_{j_1} \cdots \sigma_{j_{i_j}}$ it is true that there is no transition at (i, i + 1) if $j_1 \le i \le i + 1 \le j_{i_j}$, but there is always transition at (i, i + 1) if for some j, σ_i is the last character of ρ_j and σ_{i+1} is the first character of ρ_{j+1} . Define the *weight* of a region ρ_j , denoted by $w(\rho_j)$ or briefly w_j , to be the number of sets in S the characters in ρ_j are part of. Then, the following equation clearly holds:

$$\sum_{i=1}^{s} |S_i| = \sum_{j=1}^{k} w(\rho_j) \times |\rho_j|$$
(1)

Restricted 2-Layer Hypergraphs: From now on we will be considering only Sperner collections $S = S_C \cup S_D$ that satisfy the following properties:

- 1. $S_{\mathcal{C}} = \{C_1, \ldots, C_s\}$ and $S_{\mathcal{D}} = \{D_1, \ldots, D_t\}$ are disjoint strict Sperner collections.
- 2. For any $C \in S_{\mathcal{C}}$, and for any $D, D' \in S_{\mathcal{D}}, C \cap D \cap D' = \emptyset$.
- 3. For any $C, C' \in \mathcal{S}_{\mathcal{C}}$ and $D \in \mathcal{S}_{\mathcal{D}}$, if C' is 2-included in C, D then $C \cap C' \cap D = \emptyset$.
- 4. For any $D \in S_{\mathcal{D}}$, D is 2-included in at most one pair $C, C' \in S_{\mathcal{C}}$ so that $D \cap C \cap C' \neq \emptyset$.

We will call this a *restricted 2-layer hypergraph* (R2LH). Consider any superstring σ for the R2LH $S = S_C \cup S_D$. Divide σ into regions so that $\sigma = \rho_1 \cdots \rho_k$ (such partitioning into regions is clearly unique). We claim that for any region ρ_i , $w(\rho_i) = w_i \leq 3$. To see this, notice that since S_C is a Sperner system, ρ_i can be part of at most two sets from S_C . Similarly ρ_i can be part of at most two sets from S_D . So, $w_i \leq 4$ and $w_i = 4$ if ρ_i is part of C, C', D, D' for some $C, C' \in S_C$ and $D, D' \in S_D$. This is not possible because for any $C \in S_C$ and $D, D' \in S_D$ we know that $C \cap D \cap D' = \emptyset$. Similarly it follows that if $w_i = 3$ then ρ_i is part of some $C, C' \in S_C$ and $D \in S_D$ such that D is 2-included in C, C' and $D \cap C \cap C' \neq \emptyset$. The above hold for the optimal superstring σ_{OPT} .

Below is a 2-approximation algorithm on hypergraphs that are R2LH.

Algorithm: Let G = (V, E, W) be the following graph:

(a) $V = \{v_1, \ldots, v_s\}$, where v_i corresponds to C_i in $\mathcal{S}_{\mathcal{C}}$.

(b)
$$E = \{\{v_i, v_j\} | \exists D \in \mathcal{S}_{\mathcal{D}} : D \text{ is 2-included in } C_i, C_j\}.$$

(c) $w_{i,j} = W(\{i, j\}) = |C_i \cap C_j \cap D|$ where D is the set in \mathcal{S}_D , 2-included in C_i, C_j , that maximizes $|C_i \cap C_j \cap D|$.

It follows that the above weighted graph is well-defined. We extend it with 0-weight edges to obtain a complete graph.

Now we can find the maximum cycle cover of the above graph in polynomial time. This is true because we can find the minimum cycle cover of a graph in polynomial time and therefore we can reverse the sign of the weight of the edges and find the maximum cycle cover of the graph in polynomial time. Another way to see this is the following: let $w_{max} = max\{w_{i,j} | \{i, j\} \in E\}$, and let $w'_{i,j} = W'(\{i, j\}) = 1 + w_{max} - w_{i,j}$. Clearly the new weigth (under W') of any cycle cover C of the graph G is $n \times w_{max} - \sum_{\{i,j\} \in C} w_{i,j}$. Therefore minimizing the weight of a cycle cover under W' corresponds to maximizing the weight of a cycle cover under W.

The maximum cycle cover C consists of cycles C_1, \ldots, C_l . To obtain a superstring σ_C from C, the algorithm will "open" each cycle in the minimum weight edge. Say that a cycle contains nodes i_i, \ldots, i_c , corresponding to sets $C_{i_1}, \ldots, C_{i_c} \in S_C$. Say that D_{j_1}, \ldots, D_{j_c} are 2included in $(C_{i_1}, C_{i_2}), (C_{i_2}, C_{i_3}), \ldots, (C_{i_c}, C_{i_1})$ respectively, and therefore the intersection sizes $|D_{j_q} \cap C_{i_q} \cap C_{i_{q+1}}|$ correspond to the weights of the edges in C. The cycle can contain some 0-weight edges, corresponding to pairs of sets C, C' that have no associated set D. We say in such cases that the associated set D is the empty set. Assume without loss of generality that the minimum such intersection is the one involving D_{j_c} and therefore the cycle is opened at C_{i_c}, C_{i_1} . Consider the set sequence $A = [C_{i_1} \setminus D_{j_1}, (C_{i_1} \cap D_{j_1}) \setminus C_{i_2}, C_{i_1} \cap D_{j_1} \cap C_{i_2}, (D_{j_1} \cap C_{i_2}) \setminus C_{i_1}, C_{i_2} \setminus (D_{j_1} \cup D_{j_2}), (C_{i_2} \cap D_{j_2}) \setminus C_{i_3}, \ldots, C_{i_c} \setminus (D_{i_{c-1}} \cup D_{i_c}), C_{i_c} \cap D_{i_c}, D_{i_c}]$, where the empty sets are omitted. A is a superstring collection for the subset $\{C_{i_1}, \ldots, C_{i_c}, D_{j_1}, \ldots, D_{j_c}\}$ of S. To see this, just observe that each of the sets in the subset is expressed by a consecutive run of sets in A, and that consecutive run consists of pairwise disjoint sets. To see this last point just recall that for any $C \in S_C$ and $D, D' \in S_D, C \cap D \cap D' = \emptyset$. We can open all the cycles likewise, and merge the resulting set sequences to obtain a superstring for S_c and for a subset of $\mathcal{S}_{\mathcal{D}}$. We extend it in a trivial way to obtain a superstring for \mathcal{S} .

For a superstring $\sigma = \rho_1, \dots, \rho_k$, define the sets Π_1, Π_2, Π_3 as follows: $\Pi_i = \{\rho_j | w_j = i\}$. Denote by $|\bigcup \Pi_i|$ the quantity $\sum_{\rho_j \in \Pi_i} |\rho_j|$.³ Then from Equation (1), we get:

$$\sum_{i=1}^{s} |C_i| = \sum_{i=1}^{3} i \times |\bigcup \Pi_i|$$
(2)

Also, if we denote by Π_3^{C} the particular set Π_3 induced by the superstring constructed by "opening" the cycle cover as described above, notice the following: the weight of the maximum-weight cycle cover is an upper bound on $|\bigcup \Pi_3|$ for any superstring with associated Π_3 . It follows then that $|\bigcup \Pi_3^{\mathsf{C}}| \geq \frac{1}{2} \times |\bigcup \Pi_3^{OPT}|$, where Π_3^{OPT} is the set Π_3 associated with the optimal superstring.

From the equations:

$$\left|\bigcup\Pi_{3}^{\mathsf{C}}\right| \ge \frac{1}{2} \times \left|\bigcup\Pi_{3}^{OPT}\right| \tag{3}$$

and

$$|\sigma_{OPT}| = |\bigcup \Pi_1^{OPT}| + |\bigcup \Pi_2^{OPT}| + |\bigcup \Pi_3^{OPT}|$$
(4)

and

$$|\sigma_{\mathsf{C}}| = |\bigcup \Pi_{1}^{\mathsf{C}}| + |\bigcup \Pi_{2}^{\mathsf{C}}| + |\bigcup \Pi_{3}^{\mathsf{C}}|$$
(5)

and

$$|\bigcup \Pi_{1}^{\mathsf{C}}| + 2|\bigcup \Pi_{2}^{\mathsf{C}}| + 3|\bigcup \Pi_{3}^{\mathsf{C}}| = \sum_{i=1}^{s} |C_{i}| = |\bigcup \Pi_{1}^{OPT}| + 2|\bigcup \Pi_{2}^{OPT}| + 3|\bigcup \Pi_{3}^{OPT}|$$
(6)

 $^{|\}rho_j|$ is the number of symbols σ_i that are in ρ_j , i.e. the length of ρ_j .

it follows that $|\sigma_{\mathsf{C}}| \leq 2|\sigma_{OPT}|$.

5. Experimental Results

We implemented the *GREEDY-MERGE-SPERNER* algorithm and ran it on randomly generated data. The data were generated according to the Lander-Waterman model, where clones are intervals of length 1 distributed uniformly along the interval [0, N].⁴ The interval [0, N] was divided in 1000N discrete positions and probes were distributed along [0, N] according to a Poisson process, except that for each clone C, a probe p was allowed to occur only once. Any occurrences of p in C after the first, were discarded. This distribution is very similar to a pure Poisson distribution if, as in our case, the mean arriving time of a probe is much greater than the length of a clone, which is 1 in our case. The hypergraph that was given as input to *GREEDY-MERGE-SPERNER* consisted of all the maximal generated clones.

Table 1 displays some results of running the algorithm while varying N, the length of the interval where the clones are distributed; n, the number of clones used for generating the data; m, the number of probes used for generating the data; and λ for exponential distribution of the arriving time of probes. p is the average number of probes after generating the data, r_{avg} is the actual average number of repetitions of probes, approximately $= \lambda N$, and r_{max} is the average over all generated sequences, maximum number of repetitions of a single probe. L_0 is the average length of the generated sequences, and L_{GM} is the average length of the sequences or sequence fragments produced by *SPERNER-GREEDY-MERGE*. To facilitate presentation, the performance is presented in percentage of optimal that correspond to the ratio L_0/L_{GM} . That is, when we say that the performance is 95.9% like on the table below in the experiment running with N = 20 and 300 probes, we mean that *SPERNER-GREEDY-MERGE* produces on average a superstring collection of total length 1.0428 × [length of the initial sequence].

⁴The clone beginnings are distributed along [0, N - 1] with uniform probability.

N	n	m	p	r_{avg}	r _{max}	L_0	L_{GM}	Performance
5	200	200	159.2	1.6	3.9	259.1	292.7	88.7%
10	100	200	118.3	1.4	3.8	165	163.2	100%
10	100	200	145	1.5	3.7	216.5	238.8	90.7%
10	100	200	159	1.7	4.7	268	319.5	84.2%
20	100	200	186.7	2.4	6.8	451.3	453.8	99.5%
20	100	200	192.8	3	7.1	555.3	585.5	94.9%
20	100	200	196.4	3.4	7.8	660.3	699	94.5%
20	100	300	275.5	2.4	6.5	638	665.5	95.9%
30	100	300	293	3.3	8.5	95 1	913	100%
30	150	300	293	3.3	8.5	969	1041	93.1%
40	200	400	397.5	4.9	12.5	1886.5	1937.5	97.4%

Table 1. Performance of GREEDY-MERGE-SPERNER on simulated data.

As can be seen, the major factor that seems to hurt the performance of the algorithm is the *coverage* of the gene, i.e. the average number of clones that cover each point in the interval [0, N]. This means that a hypergraph that is Sperner decomposable in a few layers is easier to handle than one that is decomposable in many layers. This experimental observation is consistent with our intuition that the *minimal Sperner decomposition* problem captures the essence of the difficulty of computing minimal superstrings. High probe repetition also hurts the performance of the algorithm, as expected. Finally, the performance of the algorithm increases with the number of probes, and seems unaffected as the number of clones increases. Occasionally the algorithm produces a shorter superstring than the initial superstring. This would correspond to experimental conditions where either too few clones, or too few probes are used, resulting in under-specified instances of the problem.

6. Conclusion

Physical mapping experimental techniques involve the collection of data that establish overlap relationships on a given set of clones. The aim is to find the most likely layout of the clones, under certain assumptions on the characteristics of the clones (eg. length, density of coverage of the genomic region), and under given kinds and rates of experimental errors. Physical mapping has been a very important method for obtaining genomic sequence. Recent achievements of the technique include the sequencing of the nematode *C. elegans* (The C. elegans Sequencing Consortium, 1998) and of the human Chromosome 22 (Collins et al., 1995, Hunt et al., 1999). In both projects physical mapping of the sequenced region was used first, and subsequently clones were sent to the sequencing pipeline.

The data from physical mapping experiments are of a combinatorial nature. Different physical mapping techniques, and the various assumptions on types of errors, translate beautifully into challenging combinatorial/computational problems. Algorithms usually optimize some parsimony criterion. In our case, the length of the superstrings is minimized. Studying such computational problems is interesting on its own, and has the additional motivation that some of the results may be applicable to a real physical mapping experiment. We believe that the problems studied in this chapter are interesting from a computation theory perspective. Moreover, our results may be applicable if further work is done towards the generalization of the algorithms to cope with all kinds of errors that occur in practice, and towards elaborate implementation and testing of the algorithms on real data.
Chapter 2

SEQUENCING A GENOME BY WALKING WITH BAC-ENDS

1. Introduction

Various approaches that have been proposed for sequencing large genomes broadly fall into two categories:

(i) <u>Whole-genome shotgun sequencing</u>. Shotgun sequencing involves breaking a target into random fragments, sequencing these fragments and reconstructing the full sequence from these pieces. Shotgun sequencing was invented by Sanger, who applied it to the genome of *bacteriophage* λ (Sanger et al. 1980, 1982). It was subsequently extended to genomes of large recombinant plasmids, large viruses, mitochondria, chloroplasts and bacteria (Goebel et al. 1990; Oda et al. 1992; Ohyama et al. 1986; Fleischmann et al. 1995). More recently, Weber and Myers (1997) proposed that the approach could be extended to very large genomes, such as the human genome, by making greater use of long-range linking information — for example, sequences at the opposite ends of large-insert clones. There are many potential pitfalls, such as the possibility that the huge number of repeats (for example, one million copies of the Alu repeat in the human genome) may result in many large-scale sequence misassemblies that are hard to detect and correct (Green, 1997).

(ii) <u>Clone-based shotgun sequencing</u>. This approach involves obtaining a collection of largeinsert clones covering a genome and performing shotgun sequencing on each clone. This approach was used for sequencing the genomes of the yeast *S. cerevisiae* (Oliver et al. 1992; Dujon, 1996) and *C. elegans* (The C. elegans Sequencing Consortium, 1998), and is being used for sequencing of mammalian genomes such as the human and mouse. Clone-based sequencing has the advantage that it eliminates the possibility of large-scale misassemblies, because each clone is assembled individually. But, it requires that one generate the collection of clones covering the genome. It also has the drawback that there is some redundant sequencing due to the overlap of adjacent clones. (There is no workable technique for shotgun sequencing only the nonoverlapping portion of a clone. Each clone must be subjected to full shotgun sequencing, with the overlapping portion therefore being shotgun-sequenced twice. Such duplication can be avoided in the directed finishing phase, in which gaps and ambiguities in the shotgun sequence are resolved. Such overlaps thus increase the cost for the region by somewhat less than two-fold.)

The current cloning system of choice for clone-based sequencing is the Bacterial Artificial Chromosome (BAC) with inserts of roughly 200 kilobases (kb). The discussion below will refer to BACs (rather than generic 'large-insert clones') but the results, of course, are completely general.

Two approaches have been proposed for generating the BAC clones to be sequenced:

(i) <u>Physical Mapping (or 'map first, sequence second')</u>. This approach involves constructing a complete physical map covering the genome before beginning sequencing ('map first, sequence second'). One 'fingerprints' a BAC library, using a technique such as restriction digestion to characterize each clone, and then attempts to use this information to infer the order of the clones. A 'path' of clones is then selected for sequencing. This approach was successfully used to generate physical maps of cosmids used to sequence the *S. cerevisiae* and *C. elegans* genomes (Olson et al. 1986; Coulson et al. 1986). It is being applied to the human genome, although the problem is more challenging due to the larger clones sizes (yielding more complex fingerprints), the larger genome size and the more complex repeat structure.

(ii) <u>Walking (or 'map as you go')</u>. This approach proceeds directly to sequencing without a prior physical map: One starts by sequencing an initial collection of random clones and then 'walks' the genome by iteratively selecting minimally overlapping clones. Venter et al. (1996) proposed an efficient method for selecting minimally overlapping clones, which is commonly referred to as 'BAC-end sequencing' or, more formally, as 'Sequence-Tagged Connectors' (STCs). A BAC library is characterized by sequencing the inserts of each clone at its two ends (using primers located in the two vector arms), and a database of the resulting BAC-end sequences is created. Given a fully sequenced BAC clone C, one can walk by searching the database to identify all overlapping BACs. The location and orientation of each overlapping BAC is immediately apparent from the position of its end-sequence within C (Figure 2.1). One can also tell whether an overlapping BAC closes a gap in the genomic sequence by whether its other end-sequence lies in another fully-sequenced BAC clone C'.

Figure 2.1. Overlapping BACs in library with depth d=12-fold. A typical BAC (shown in black) will tend to have 12 BACs overlapping its right end and 12 BACs overlapping its left end. Each overlapping clone can be identified because one of its end-sequences (shown by arrows) is contained within the sequence of the target BAC. The precise position of each overlapping clone is inferred by the location and orientation of the end-sequence within the sequence of the target BAC.

In this chapter we analyze the strategy of sequencing a genome by clone-based walking. Although the basic notion of walking is straightforward, key strategic questions have not been addressed: How many independent walks should be performed in parallel? With too few, one will need too many walking steps to cover the genome in a reasonable time. With too many, one may perform too much redundant sequencing as walks 'bump' into one another with random—and therefore suboptimal—overlap. How can one maximize the speed of covering the genome, while minimizing the amount of redundant sequencing?

We present a mathematical analysis that expresses the amount of redundant sequencing in terms of the initial density of walks and the depth of the BAC library. We also describe and analyze a variant strategy in which one employs a second BAC library with smaller-insert clones to close gaps efficiently; this strategy dramatically reduces the amount of redundant sequencing. The results provide direct guidance for planning a genome sequencing project.

2. Basic Model

We begin by describing the basic model to be analyzed.

<u>BAC Library</u>. We will initially consider the case of a single BAC library with the following properties:

- (i) The clones have constant size L. The clone size L will serve as our unit of distance, so that we may set L = 1. (Later, we will consider the use of a second BAC library with inserts of constant size L' < 1.)
- (ii) The clones are randomly segments of the genome. We thus ignore the possibility of cloning bias.
- (iii) The library covers the genome to depth d that is, the average number of clones covering a point in the genome is d.
- (iv) The clones in the library have all been sequenced at both ends, yielding sufficient unique sequence to reliably detect overlap. We thus ignore the possibility that some BAC ends may not have been sequenced due to technical errors or may contain repeat sequences that make it impossible to recognize overlap.

<u>Sequencing</u>. We assume that the procedure for genomic sequencing satisfies the following conditions:

- (i) The cost of sequencing a BAC is directly proportional to the length of its insert. This agrees with current practice in large-scale genomic sequencing centers, which perform a fixed number of shotgun sequences per kilobase of insert size. (A constant number of reads per kb may not be precisely optimal. On one hand, it has been suggested that smaller clones may require slightly fewer reads per kb to reach closure (Roach, 1995). On the other hand, smaller clones may require slightly larger proportion of the total clone length and thus of the reads from the shotgun library. In any case, these effects are small and offsetting.)
- (ii) The cost of producing a small-insert shotgun library from a BAC (which involves preparing, shearing and cloning DNA) is negligible compared to the cost of performing the shotgun reads needed to sequence the BAC. This reflects current practice, for which the former is only about 2% of the latter.

In principle, one can sequence the genome with minimal overlap by sequencing a single initial seed clone C_0 and then walking successively outward by sequencing minimally overlapping clones, C_{-i} and C_i , on each side until one covers the entire genome (Figure 2.2). The resulting sequence of clones is commonly called a minimal tiling path. (Strictly speaking, it should be referred to as a minimal tiling path for the given library and choice of starting clone.) At each step, minimally overlapping clone C_i is identified by comparing the database of BAC-end sequences to the completed sequence of C_{i-1} to find the BAC-end sequence that lies closest to the growing end and points outward (Figure 2.1). We assume that there is always at least one overlapping clone pointing outward. This is a reasonable assumption, provided that the depth d is sufficiently large. For example, a BAC library with 200 kb inserts covering a mammalian genome of 3 x 10⁹ bp to depth d=10 should yield only 6.8 gaps — ignoring chromosome ends (Lander and Waterman, 1988).

Figure 2.2. Serial walking of the genome from a single initial clone C₀.

It is straightforward to analyze the expected amount of redundant sequencing. On average, each successive clone overlaps the previous sequence by (1/d) of its length and provides (1-(1/d)) of new sequence. The ratio of redundant sequence to unique sequence is thus:

$$R = d^{-1}/(1-d^{-1}) = 1/(d-1).$$

A BAC library with depth d = 10 thus yields a minimal tiling path with redundant sequencing of 11.1%, while one with depth d= 20 entails redundant sequencing of 5.3%.

In reality, sequencing large genomes by serial walking is completely impractical owing to the cycle time to process each BAC clone: a mammalian genome would require 15,000 serial steps. Sequencing each BAC requires: growing the clone; preparing DNA; shearing the DNA; constructing a small-insert shotgun library; performing shotgun sequencing of clones from the small-insert library; assembling the reads by computer; and closing remaining gaps. Various quality assessment steps are performed along the way to ensure high yield. Although each individual step is straightforward, the overall elapsed time is currently on the order of 1-2 months. The obvious solution is to process many BACs in parallel—that is, to simultaneously walk from many seed clones (Figure 2.3). Ideally, the seed clones should be dense enough that one could cover the vast majority of the genome in a modest number of walking steps. A reasonable goal would be to cover a mammalian genome in roughly one year.

Figure 2.3. Serial walking of the genome from a collection of seed clones (shown in black). Bidirectional

walking steps are shown, with steps that close an ocean shown in gray. The oceans are closed with relatively little overlap in the first two cases, but with large overlap in the third case (marked with asterisk).

Parallel walking, however, introduces a problem: the various walks may join with large overlaps, substantially increasing the proportion of redundant sequencing. Figure 2.3, for example, shows three clones (shown in gray) that join walks. The first two instances involve walks that fortuitously meet with relatively little overlap, but the third instance (marked with an asterisk) involves a walk that meets with large overlap and thereby result in substantial redundant sequencing.

It is important to understand how the expected proportion of redundant sequencing depends on the density of seed clones and the depth of the library. Section 3 presents the mathematical analysis. The reader interested primarily in applications may wish to proceed directly to Section 4.

3. Mathematical Analysis and Results

Our goal is to derive simple formulas providing a good approximation for the proportion of excess sequencing. Toward this end, we will make certain simplifying assumptions. The reasonableness of the approximations will then be demonstrated by their close agreement with simulations in Section 8.

4.1 Using one Library of Constant Size Clones

We start with a collection of non-overlapping seed clones. Following the terminology of Lander-Waterman (1988), each clone is an "island" followed by an "ocean" to be walked. Walking proceeds outward from each clone in a bidirectional fashion, with overlapping clones recognized on the basis of their end-sequence. At each round, one identifies instances in which two islands can be joined by a single clone (readily apparent from the two end-sequences) and ensures that a walking step is taken from only one of the two islands (to avoid unnecessary excess sequencing).

Figure 2.4. Unidirectional walking from a seed clone C_0 . Each successive clone C_i extends the island, with the redundant sequence shown in gray. The last clone C_j closes the ocean, with redundant sequencing due to both overlap with C_{j-1} and with the next seed clone to the right. Each clone has size 1 and the ocean has size X. The number of clones sequenced is j+1, with each having length 1. The amount of unique sequence obtained (the initial island together with the ocean) is X+1.

Although walking proceeds bidirectionally in practice, it simplifies the discussion to suppose that walking proceeds unidirectionally to the right. Each bidirectional walking step is clearly equivalent to two unidirectional walking steps. Figure 2.4 shows a typical seed clone C_0 followed by consecutive walking steps C_1, C_2, \ldots, C_j , where C_j is the first clone that overlaps the seed clone to the right of C_0 (a fact that is readily apparent from its end sequence).

Suppose that the seeds cover proportion π of the genome in clones of length 1. The oceans therefore cover proportion $1-\pi$ and the mean ocean size must be $\omega = (1-\pi)/\pi$.

Our first simplifying assumption concerns ocean lengths:

Assumption of Exponential Oceans (AEO). Non-overlapping seed clones will be assumed to be chosen such that the resulting ocean lengths follow an exponential distribution (with mean ω).

What is the proportion of redundant sequencing entailed in sequencing the island C_0 together with the ocean on its right? Let the random variable J denote the sum of the lengths of C_1, C_2, \ldots, C_j . (Since the clones have unit length, J=j.) The amount of total sequencing is J+1, while the amount of unique sequence obtained is X+1 (see Figure 2.4). The expected proportion of redundant sequencing is thus:

$$R = \frac{(E(J)+1)}{(E(X)+1)} - 1,$$

where E() denotes the expected value. As noted above, the mean ocean size E(X) is $\omega = (1-\pi)/\pi$. Therefore, we simply need to calculate E(J).

Calculating E(J) precisely is complicated, but it is possible to make a good estimate by using a second simplifying assumption:

Assumption of Constant Overlap (ACO). Each clone C_i will be assumed to overlap the previous clone C_{i-1} by exactly the expected amount of overlap, 1/d, and thus to extend the sequence by exactly the expected amount, 1-(1/d).

ACO greatly simplifies the mathematical analysis, owing to an elegant property of exponential distributions: If each island is extended by a constant amount, then the lengths of the remaining oceans (that is, those that are not closed) follow the same exponential distribution as the initial oceans. This stability property allows the walking process to be analyzed by a simple recursion.

Proposition 1. Suppose that the genome is sequenced by seeding with non-overlapping clones to coverage π and then walking using a library with depth d. Let $\omega = (1-\pi)/\pi$. Assuming that the ocean sizes are exponentially distributed (AEO) and consecutive walking steps have constant overlap (ACO), we have:

(i) The expected proportion of redundant sequencing is

$$R(d, \omega) = \frac{E(J) + 1}{\omega + 1} - 1$$

(ii) $E(J) = 1/p_{d,\omega}$, where $p_{d,\omega} = 1 - e^{-(1-d^{-1})/\omega}$ is the probability that an ocean is closed with a single walking step.

(iii) The proportion of genome not sequenced after k unidirectional walking steps is $(1-\pi)$ $(1-p_{d,\omega})^k = (1-\pi) e^{-k(1-d^{-1})/\omega}$. The proportion thus decreases geometrically with each walking step.

Proof. Part (i) was noted above. A formal proof follows from a straightforward application of Wald's equation (see Ross, 1970). Part (ii) employs ACO. The total clone length J required to close an ocean can be calculated by considering a single walking step. With probability $p_{d,\omega}$, the step closes the ocean, resulting in a total clone length of 1. With probability $1-p_{d,\omega}$, the step fails to close the ocean and leaves a remaining ocean having the same exponential distribution. It follows by recursion that

$$E(J) = (p_{d,\omega}) 1 + (1 - p_{d,\omega}) (1 + E(J)).$$

The desired result follows by solving for E(J). Part (iii) follows by observing that the lengths of the remaining oceans after k walking steps continue follow the same exponential distribution. The total ocean length remaining after k steps is thus directly proportional to the proportion of oceans that remain unclosed after k steps. The proportion of the remaining oceans that are closed at each walking step is $p_{d,\omega}$ and thus the proportion remaining unclosed after k steps is $(1-p_{d,\omega})^k$. This completes the proof.

In fact, Proposition 1(i) can be generalized to any distribution of initial oceans sizes as follows.

Proposition 2. Suppose that the genome is seeded as in Proposition 1, but that the ocean sizes x have probability density f(x). Assuming ACO, the expected proportion of redundant sequencing is

$$\mathbf{R}(\mathbf{d},\,\boldsymbol{\omega})=\frac{E(J)+1}{\boldsymbol{\omega}+1}-1\,,$$

where

$$E(J) = \int_0^\infty \left\lceil x/(1-d^{-1}) \right\rceil f(x) dx$$

and $\lceil x \rceil$ denotes the ceiling function (that is, the smallest integer $\geq x$).

Proof. Under ACO, each walking step extends by distance $(1-d^{-1})$. The number J of walking steps needed to close an ocean of size x is thus $\lceil x/(1-d^{-1}) \rceil$. The result follows simply by taking the expectation of J over the distribution of ocean sizes.

We now apply the results to study the problem of sequencing a genome by walking. Figure 2.5 shows the proportion R of redundant sequencing, as a function of the initial mean ocean length ω and the BAC library depth d. If the genome is seeded to leave oceans of average length $\omega = 1$ (corresponding to initial coverage $\pi = 50\%$), the proportion of redundant sequencing ranges from 32% to 29% as the BAC library depth ranges from d=15 to d = ∞ . If the genome is seeded more sparsely so that $\omega = 2$ and $\pi = 33\%$, the redundant sequencing R ranges from 23% to 18% over the same range of BAC library depth. If the oceans are still larger ($\omega = 3$ and $\pi = 25\%$), the redundant sequencing R ranges from 19% to 13%.

Figure 2.5. Proportion of excess sequencing. Curves show the proportion of excess sequencing, $R(d,\omega)$ as a function of mean initial ocean size ω for various library depths d = 10, 15, 25, 50 and ∞ .

It is useful to compare the results to the situation of serially walking the entire genome with a minimal tiling path (which corresponds to ocean size $\omega = \infty$). As noted above, the proportion of redundant sequencing for a minimal tiling path is 1/(d-1). By subtracting this quantity from R, we find the additional redundant sequencing R* caused by inefficient closure of oceans. Figure 2.6 shows the corresponding graph for R*.

The graph shows that the redundant sequencing caused by inefficient closure of oceans depends primarily on the mean ocean size, but much less on the library depth d. This makes intuitive sense, because the inefficiency arises primarily from closing small oceans with clones of unit length. The availability of more clones in a deep library thus makes only a modest improvement. Indeed, the component R* is decreased by only a few percentage points by going from a library with d = 10 to $d = \infty$.

Figure 2.6. Curves show the proportion of excess sequencing attributable to inefficient ocean closure, R*(d, ω). This is obtained by subtracting the proportion of excess sequencing for an optimal tiling path in a library of depth d, which is 1/(d-1). That is, R*(d, ω) = R(d, ω) - (1/d-1).

Figure 2.7 shows the number of unidirectional walking steps required to cover 90% of the genome. The number of unidirectional steps is equal to slightly more than twice the mean ocean size. Since actual walking proceeds bidirectionally, it is thus useful to restate the observation in these terms: *The number of bidirectional walking steps to cover 90% of the genome is approximately equal to the mean ocean length*. (The precise correspondence depends on the library depth d. For example, the number of bidirectional walking steps is roughly 1.1 times the mean ocean length when d = 15.)

Figure 2.7. Walking Steps. The number of unidirectional walking steps required the cover 90% of the genome, as a function of mean initial ocean size ω for various library depths d = 10, 15, 25, 50 and ∞ . In actual practice, walking occurs in both directions. The number of bidirectional walking steps is thus half as many.

If the number of steps shown in the Figure 2.6 is doubled, the proportion of genome sequenced rises to 98-99%. (More precisely, the proportion remaining uncovered is $1\% \times (1-\pi)^{-1}$.)

Thus: The number of bidirectional walking steps to cover 98% of the genome is approximately equal to twice the mean ocean length.

From Figures 5, 6, and 7, one can readily assess the increase in redundant sequencing entailed in covering the vast majority of the genome in a given number of steps.

4.2 Using Smaller Clones to Close Gaps

The major inefficiency in walking arises from instances in which a clone of length L=1 must be sequenced to close a small ocean; most of the sequencing is redundant. This observation suggests a simple improvement: Use a second BAC library with smaller inserts to close small oceans.

Specifically, suppose that we have two BAC libraries in which the clones have been endsequenced: our original library B with insert size L = 1 and depth d, as well as a second library B' with insert size L' < 1 and depth d'. We will continue to assume that walking from each seed clone proceeds unidirectionally to the right (but see below concerning this point). At each walking step, we would first search our database to see if there is a clone from B' that spans the remaining ocean (based on its end sequences) and, if none is found, we would select the minimally overlapping clone from B (which either closes the ocean or extends the walk). In this manner, we would aim to select the smallest clone capable of closing the ocean.

We can adapt the mathematical analysis above to calculate the proportion of redundant sequencing. (To simplify the statement of the result, we will consider only the case in which clones from B typically extend the walk farther than clones from B'—that is, 1-(1/d) > L'-(1/d'). This will be true unless L' is close to 1, in which case the second library adds little anyway.)

Proposition 3. Let B and B' denote BAC libraries as above. Suppose that we initially seed the genome with non-overlapping clones from B to coverage π and then walk as above, using clones from B' to close oceans whenever possible. Let $\omega = (1-\pi)/\pi$. Under AEO and ACO, we have:

(i) Let the random variable J denote the sum of the lengths of the clones used to close an ocean. As before, the expected proportion of redundant sequencing is

$$R(d, \omega) = \frac{(E(J)+1)}{(\omega+1)} - 1$$

(ii) With $p_{d,\omega}$ defined as in Proposition 1, we have

$$\mathrm{E}(\mathrm{J}) = \frac{1 - p_{d',(\omega/L')}(1 - L')}{p_{d,\omega}}$$

The formula reduces to that in Proposition 1 if the smaller-insert library B' has no clones (d'=0), since $p_{0,\omega/L'} = 0$.

Proof. We proceed as in the proof of Proposition 1. Part (i) again follows by a simple application of Wald's equation. For part (ii), we calculate E(J) by considering a single walking step and applying recursion. With probability $p_{d,(\omega/L')}$, the ocean can be closed with clone from library B', resulting in a total clone length of L'. With probability $p_{d,(\omega/L')}$, the ocean can be closed with a clone from library B but not B', resulting in a total clone length of 1. With probability 1 - $p_{d,\omega}$, the walking step cannot close the ocean and remaining ocean having the same exponential distribution. It thus follows by recursion that:

$$E(J) = (p_{d',(\omega/L')}) L' + (p_{d,\omega} - p_{d',(\omega/L')}) 1 + (1 - p_{d,\omega}) (1 + E(J)).$$

The result follows by solving for E(J).

How much efficiency is gained by using a second library B' with smaller-insert clones? Figure 2.8 shows the proportion of redundant sequencing when an initial library B with depth d = 15 is supplemented with a second library B' with clones whose inserts are half as long $(L' = \frac{1}{2})$ at various depths d'.

The savings are substantial—for example, decreasing the proportion of redundant sequencing from about 23% to 14% for mean ocean length 2 and from about 18% to 12% for mean ocean length 3. The redundant sequencing is considerably closer to the best possible level obtained with a minimal tiling path, roughly 7.1% for a library with d=15 (indicated by the dashed line in Figure 2.8). Indeed, using a library with half-size clones roughly halves the redundant sequencing R' caused by inefficient closure of oceans.

Notably, the second library B' does not need to have high depth to have a major impact. A library with depth d = 5 is only slightly less effective than a library with infinite depth. This makes intuitive sense, since even relatively low depth assures the existence of clones suitable for covering very small oceans.

Figure 2.8. Proportion of excess sequencing, for walking with two BAC libraries. The first library B has clones of insert size L = 1 and fixed depth d =15, while the second library B' has clones of insert size L' = $\frac{1}{2}$ and various depths d'. Walking is performed as described in the text. The curves show the proportion of excess sequencing, as a function of mean initial ocean size ω and for various library depths (d = 10, 15, 25, 50 and ∞) for the second library B'.

Figure 2.9. Schematic illustration of the situation of an ocean being closed by two large clones (B and B'), when one large and one small clone (B and B'') would suffice.

The results above concern a second library B' with insert size $L' = \frac{1}{2}$. In fact, this choice of insert size L' is nearly optimal for minimizing the amount of redundant sequencing R.

Specifically, one can show by straightforward calculus that the value of L' that minimizes R only changes from 0.55 to 0.50 as the mean ocean size ω goes from 1 to ∞ .

Figure 2.10. Optimal library depth to minimize total cost, assuming that the ratio of the cost of obtaining the complete sequence of a BAC to the cost of sequencing both ends of a BAC is $\rho = 1000:1$. The top curve (marked d*) shows the optimal depth when using a single library. The two lower curves show the optimal depths d and d' when using two library B and B', as described in the text. The optimal depths depend on the mean initial ocean size ω . The depth d' of the small insert library was constrained to be at least 5, to ensure that the existence of a properly situated, small-insert clone at the end of the vast majority of islands, consistent with the assumption ACO, described in the text).

The analysis above assumes that walking from each seed clone proceeds unidirectionally to the right. The fact that walking is actually bidirectional slightly complicates the situation: If the clones for a given round of walking were all sequenced simultaneously, we would sometimes cover oceans inefficiently by walking with large clones at both ends, when using one large and one small clone would suffice (Figure 2.10). The additional excess sequencing that would result from such occurrences can be shown to be:

$$\rho = (1 - L') \left[\sum_{i=0}^{\infty} p_{d', \omega/L'} (1 - p_{d, \omega})^{2i+1} \right] / (\omega + 1) = (1 - L') \left[\frac{(1 - p_{d, \omega})}{(2 - p_{d, \omega})} \frac{p_{d, \omega/L'}}{p_{d, w}} \right] / (\omega + 1)$$

(Briefly, the first term is the excess contribution to J from sequencing a large clone instead of a short clone, the second term is the proportion of oceans that should properly be closed with one large and one small clone (these are precisely the oceans which would be closed by unidirectional walking with an odd number of large clones followed by a small clone), and the denominator $(\omega+1)$ occurs as in the calculation of R in 2(i) above.) For typical values of interest (for example, $d\geq 15$, $d\geq 5$, $L=\frac{1}{2}$, and $\omega = 1-5$), the additional excess sequencing would be in the range of 3%.

It is possible to do much better than this by exploiting the fact that the BAC clones will not all be sequenced simultaneously. As shotgun-sequence is obtained for each large clone B, one can automatically check the sequence to see whether any subsequent large clone B' can be replaced by an ocean-closing small clone B" (as in Figure 2.9). Provided that B' did not pass through shotgun sequencing simultaneously with B, one can thereby avoid the cost of sequencing a larger clone when a smaller clone will suffice. (One may have incurred the cost of preparing a small-insert library from B', but this is small relative to the cost of sequencing.) The additional excess sequencing is therefore only $\alpha \rho$, where $\alpha < 1$ is the proportion of clones in a given walking step that are processed in parallel through shotgun sequencing. The proportion α depends on the workflow of the sequencing operation-specifically, on the amount of work-in-process (WIP) in the shotgun sequencing phase. Since the shotgun sequencing phase is relatively rapid (the elapsed time for picking, growing, preparing and sequencing the small-insert clones is typically on the order of a week), the WIP tends to be relatively small. Even if the proportion of clones simultaneously passing through shotgun sequencing is as high as $\alpha = 10\%$, the additional excess sequencing owing to the occasional failure to use a small clone is only $\alpha \rho = 0.3\%$. In short, the cost is small and does not substantially impact the advantage of using a smaller library. The results derived under the assumption of unidirectional walking are thus not far off.

4.3 Optimizing Clone Library Depth

What is the optimal depth of a BAC library to be used for sequencing a genome by walking? One can decrease the cost of redundant sequencing by using deeper BAC libraries, but one incurs the cost of end-sequencing a larger number of BAC clones. Beyond some point, there are diminishing returns to increasing the depth of the BAC library.

The optimal library depth depends on the relative costs of sequencing entire BAC clones versus sequencing BAC ends. With current laboratory procedures and economics, this ratio is in the neighborhood of $\rho = 1000/1$. (Roughly 4000 shotgun sequencing reactions are needed to

sequence a 200 kb BAC. Two sequencing reactions are required to sequence its ends, although these reactions are considerably more expensive because sequencing directly from a BAC template requires higher concentrations of reagents.) Given the cost ratio ρ , the optimal library depth is the value d that minimizes the sum of the costs of BAC-end sequencing (proportional to d) and redundant BAC sequence (proportional to R(d, ω)).

Figure 2.10 shows the optimal library depth when using a single BAC library (curve denoted d*). The optimal depth increases with the initial mean ocean length ω , or equivalently decreases with the initial proportion π of the genome covered. The optimal depth d ranges from 22.5 to 30.8 as ω increases from 1 to 8, approaching an asymptotic limit of 32.8 as $\omega \to \infty$. (One can show that the optimal library density approaches $\sqrt{\rho}+1$ as $\omega \to \infty$, by using straightforward calculus to minimize the asymptotic total cost.) The fact that the optimal d is smaller for small ω makes intuitive sense, since a dense library offers more limited advantage when most oceans are fairly small.

Figure 2.10 also shows the optimal library depths d and d' when using a two BAC libraries with respective inserts sizes of 1 and $\frac{1}{2}$. The optimal value of d of the large insert library is only slightly lower than in the previous case, while the optimal value of d' is in the neighborhood of 6-7 for relevant values of ω .

In fact, the optima are relatively broad. Overall, it seems reasonable to use libraries B and B' with respective depths of d = 20 - 25 and d' = 6 - 7.

4.4 Seeding the Genome

We next turn to the issue of generating a collection of non-overlapping seed clones. The analysis above assumes that seed clones are chosen such that initial ocean sizes are exponentially distributed (AEO). How close can one come to this in practice?

The most straightforward experimental approach is to select seeds sequentially from a list of random clones. Each clone is selected and sequenced, subject only to the condition that it does not overlap (as seen from its end sequences) with a previously selected seed clone. In this fashion, one can progressively seed the genome with random, non-overlapping clones.

This stochastic process is known in the literature as the 'parking process' because it is equivalent to cars of constant size (clones) sequentially choosing random parking spots along a long street (genome). Each car is permitted to park in its chosen parking spot provided that a previously parked car does not block it; otherwise, it must drive away.

The resulting 'parking distribution' is relevant to many physical processes and has been well studied (Krapivsky, 1992). Suppose that one has processed a list of random clones comprising a sub-library covering the genome to depth t. The expected proportion of genome covered with seed clones will be $\pi(t)$ and the distribution of oceans sizes will be $\omega(x,t)$, where:

$$\pi(t)=\int_0 F(\tau)d\tau \;\;,$$

$$\Omega(x,t) = \begin{cases} [t^2 F(t) \exp(-(x-1)t)]/\pi(t), & x > 1\\ [2\int_0^t \tau F(\tau) \exp(-x\tau)d\tau]/\pi(t), & x \le 1 \end{cases}$$
$$F(t) = \exp[-2\int_0^t \frac{1-\exp(-\tau)}{\tau}d\tau]$$

Figure 11. Comparison of Parking and Exponential Distributions. (A) Probability density and (B) Cumulative probability distribution, for $\pi = 0.3$ and $\pi = 0.5$. The kinked curves are the parking distribution; the smooth curves are the exponential distribution with the same mean.

The parking distribution of ocean sizes is very close to the exponential distribution for low coverage $\pi(t)$ and is still reasonably close for coverage $\pi(t) = 50\%$ (Figures 11 a,b).

The expected proportion of excess sequencing under the parking distribution can be calculated as in Proposition 2. The difference Δ between the excess sequencing expected under the exponential distribution and the parking distributions is shown in Figure 2.12. The parking distribution entails slightly less excess sequencing than the exponential distribution (i.e., $\Delta > 0$), because it has fewer extremely small intervals (as see from Figure 2.10a). The difference Δ is quite small over the range of interest, being about 0.6% for $\omega = 1$ and decreasing as ω increases.

It should be noted that the parking process cannot fully cover the genome: As the coverage increases, the remaining spaces become smaller and the proportion of cars turned away increases. When the remaining spaces are all smaller than a car length, no more cars can park. This happens at the so-called 'jamming limit', which occurs at π = 0.747597.... Sequential selection of strictly non-overlapping clones thus cannot provide seed coverage beyond this point.

Fortunately, we are not interested in seeding to more than 50% because the cost of excess sequencing begins to sky-rocket for $\pi > 50\%$. Seeding the genome to 50% requires starting with a random list of clones covering the genome to depth 1.15 (because $\pi(1.15) \sim 0.5$).

We briefly mention some other approaches to seeding the genome, but do not analyze them in detail.

(i) <u>Simultaneous seeding</u>. One could start with a collection of random clones, prepare small-insert shotgun library from each, and perform a small amount of sequencing from each shotgun library (for example, covering the clone to an average depth of 0.5-fold). Such 'sample sequencing' should be sufficient to detect any significant overlap between clones. One could then select a maximal set of non-overlapping clones. If the collection of random clones covers the genome to depth t, a maximal non-overlapping set will cover a proportion $\pi \sim t/(t+1)$ of the genome and the oceans will be very nearly exponentially distributed with mean size 1/t. The approach allows the genome to be seeded to higher initial coverage, but the sample sequencing is more expensive than end-sequencing and it must all be performed in advance. Still, there may be situations in which such an approach may be desirable.

(ii) <u>Contig-based seeding</u>. One could initially fingerprint the entire BAC library to construct nonoverlapping contigs, which could be used as the seeds for subsequent walking. Assuming that the contigs were separated by roughly exponentially distributed oceans, the situation could be analyzed in the same manner as above.

Figure 2.12. Difference between exponential and parking distributions. Graph shows difference Δ between R_{exp} , the proportion of excess sequencing under exponential distribution, and $R_{parking}$, the proportion of excess sequencing under parking distribution. That is, $\Delta = R_{exp} - R_{parking}$. Two curves are shown, corresponding to d = 15 and d =50. The difference Δ is seen to be largely insensitive to d.

5. Simulations

The simple formulas above are premised on two simplifying assumptions (AEO and ACO). We tested whether the formulas provided reasonable approximations by performing extensive simulations.

The simulations were performed as follows. Libraries were generated by randomly selecting starting points for BAC clones (L = 2×10^5 bp, L' = 1×10^5 bp) from a mammalian genome (3×10^9 bp) using a uniform distribution to achieve the desired depths d and d'. An initial selection of seed clones was generated as in the parking problem, by considering the clones in a random order and accepting successive non-overlapping clones until the desired proportion π of the genome was reached. (We confirmed that the simulation yielded oceans sizes closely fit the parking distribution (not shown).) Walking was then performed by selecting minimally overlapping BACs as described above. For each choice of parameters, a total of 40 simulations

were performed and the results were averaged. Simulations were performed for parameters throughout the range of interest, at the parameters $d \in \{10, 15, 25, 50, \infty\}$ and $\omega = \{1.0, 1.5, 2.0, 2.5, \ldots, 7.0\}$. We calculated $R_{sim}(d,\omega)$, the average proportion of redundant sequencing over the simulations.

We also performed simulations mimicking the ACO assumption, in which the seed clones were selected as above but walking steps then occurred under the assumption that the minimally overlapping clone overlapped by exactly 1/d. We calculated $R_{sim,ACO}(d,\omega)$, the average proportion of redundant sequencing over these simulations.

We compared the simulation results to $R_{parking}(d,\omega)$, the excess sequence under the parking distribution predicted by the formula in Proposition 2. The difference $\Delta(d,\omega) = R_{parking}(d,\omega)$ - $R_{sim}(d,\omega)$ is shown in Figure 2.13. The difference is negligible (on the order of the standard error of the mean from the simulations), except for small d and small ω . The discrepancy for small d and ω is readily seen to be due to ACO, by examining the difference $\Delta'(d,w) = R_{parking}(d,\omega)$ - $R_{sim,ACO}(d,\omega)$ shown in Figure 2.14. This difference is negligible over the entire range.

Figure 2.14. Difference between formulas and simulations. Plots show the differences Δ between the proportion of excess sequencing predicted under the parking distribution ($R_{parking}$) and the proportion of excess sequencing observed in simulations in which seed clones are chosen from a randomly distributed library, but walking steps are then made under the ACO assumption ($R_{sim,ACO}$). Results are shown for various values of d and ω .

We also studied the proportion of genome covered after k steps (k = 1, 2, ..., 10), comparing the prediction under the exponential distribution (Proposition 1(iii)) to the results seen in the simulations above. In the range of interest, the predicted proportion of genome covered at each stage was within 0.5% of the results from the simulations (not shown). Finally, we simulated the situation of two libraries, where d and ω were as above and the smaller library has depth d' = 5. Again, the difference ω was extremely small (not shown).

In summary, the simple formulas derived under the assumption of AEO and ACO are sufficiently close for practical purposes. The differences are quite small and have no impact on the key conclusions.

6. Conclusion

Sequencing a genome by walking is an inherently serial process. One seeds the genome to an initial coverage π and then engages in sequential rounds of walking.

Completing the task in a reasonable amount of time requires a high degree of parallelism that is, a high density of seed clones from which walks proceed outward in both directions. The number of such walking steps to cover 90% of the genome is roughly equal to the initial mean ocean size ($\omega = (1-\pi)/\pi$), while the number of steps to cover 98% is roughly twice as large.

There is a clear tradeoff between the number of walking steps and the cost of redundant sequencing. As the mean ocean size ω grows from 1 to 2 to 3, the proportion of redundant sequencing decreases from 32% to 23% to 19%. (These values correspond to a library with depth d=15; they are about two percentage points lower for libraries with d=25.)

One solution is to decrease the cycle time required for each walking step, making it feasible to take more serial walking steps within the desired time frame. Since the time required to prepare and validate high-quality shotgun libraries represents a significant component of the cycle time, one might develop efficient and inexpensive methods to prepare shotgun libraries from all clones in the BAC library in advance of sequencing. (The storage requirements are modest, since each shotgun library is stored as a ligation mixture in a single test tube until required.) One could then rapidly initiate each consecutive walking step. Implementing such an approach would require significant streamlining or automation of existing procedures for preparation of shotgun libraries, but may be feasible.

A complementary solution is to employ a second BAC library with smaller clones, with roughly half the insert size. This approach dramatically improves efficiency. For the cases involving a 15-fold library above, the proportion of redundant sequencing is 18%, 14% and 12%. This is much closer to the best possible result obtainable with a 15-fold library of roughly 7.1% (=1/14). Importantly, the vast majority of the efficiency is obtained using a second BAC library having relatively modest depth — for example, d' = 5.

We should note that our analysis ignores certain biological and experimental issues.

(i). <u>Variable insert size</u>. We have assumed that the BAC libraries have inserts of constant size. A BAC library with variable insert size may be more efficient than one with constant size, because one has the potential to optimize the size of the BACs used to close oceans. Indeed, our strategy of using of two BAC libraries with constant inserts of size L and L' is formally equivalent to using a single BAC library with variable insert size equal to either L or L'. In principle, BAC libraries with variable insert size can be extremely efficient: a BAC library with highly variable insert size and infinite depth would allow one to close gaps with essentially no wasted sequencing.

In practice, however, current BAC libraries have a fairly tight size distribution and thus the effect is rather modest. The human RPCI-11 library, for example, has insert size that is roughly normally distributed with mean 160 kb and coefficient of variation (CV, defined as ratio of standard deviation to the mean) of somewhat less than 10%.

We performed simulations to compare the proportion of redundant sequencing in two situations cases: (i) a single library having mean insert size 1 with the insert size either being constant or normally distributed with CV=10%, and (ii) two libraries having mean insert sizes 1 and 0.5 with the insert sizes either being constant or normally distributed with CV=10%. As expected, the variable libraries were slightly more efficient than the constant library. For $\omega = 1$, the absolute difference was roughly 4% in the case of a single library (d=15) and 2% in the case of a two libraries (d=15, d'=5). For larger ocean sizes ω , the absolute differences are even smaller. In short, the effects are thus fairly small and the key conclusions concerning the value of a library containing smaller clones remain valid.

An interesting open question is to find the optimal distribution of insert sizes for a BAC library of a given depth.

(ii) <u>Cloning bias</u>. We have assumed that there is no cloning bias in the genomic library. Cloning bias is known to occur in many cloning systems, but the nature and distribution of cloning bias is poorly understood and therefore difficult to model. Severe cloning bias against some regions would clearly lead to larger initial oceans, as well as lower effective library depth, in these regions. One could conceivably model the genome as composed of large blocks with different cloning bias.

(*iii*) <u>Missing end sequences</u>. We have assumed that each BAC has been sequenced at both ends. Current BAC-end sequencing projects sometimes fail to generate one of the end-sequences owing to technical failures. Such 'single-ended' BACs are less inefficient because one might select two such clones to walk from each side of an ocean and be unaware (because of the lack of the opposite sequence) that each clone suffices to close the ocean on its own. The impact of the problem can be assessed through either mathematical analysis or simulation. The problem itself can be overcome simply by sequencing additional BAC clones to achieve the desired depth d in 'double-ended' clones.

(iv) <u>Repeat sequences at BAC ends</u>. We have assumed that each BAC has unique sequence at both ends to permit unambiguous recognition of overlap. However, a clone end may consist entirely of a repeat sequence, which cannot be used for walking. If the repeats are relatively small and fairly uniformly distributed across the genome, the problem can be overcome simply by endsequencing a larger number of BACs to obtain enough clones with unique sequence at both ends (as in the case of 'single-ended' BACs due to technical failure). If repeats are unevenly distributed across the genome, the problem will lead to under-representation of clones in the repeat-rich regions (as in the case of cloning bias). If very long repeats occur, they will prevent the initiation of walks from within the repeat and may necessitate larger overlap. In general, the most practical solution is to increase the depth of the library used for end-sequencing. (See also, Siegel et al. 1998).

We have focused on developing simple models to provide insight into the problem of sequencing a genome by walking. In actual application, one will confront complications such as those above. The best solution is to perform specialized simulations. Our results however, help define the key issues and tradeoffs and should be helpful in conceptualizing how to design a clone-based genomic sequencing project.

Chapter 3

WHOLE GENOME SHOTGUN ASSEMBLY

1. Introduction

In the previous two chapters we talked about two important variations in the clone-by-clone approach to sequencing a genome, namely physical mapping, and clone-end walking. The topic of this chapter is the alternative approach to clone-by-clone sequencing — whole genome shotgun sequencing. We describe an approach for assembling in the computer the data produced by shotgun sequencing; we demonstrate the performance of this approach by developing and testing *ARACHNE*, a prototype system for shotgun assembly.

1.1 Previous Work

Previous work on whole-genome shotgun assembly is limited. *PHRAP* (http://www.*PHRAP*.com) is virtually the only program available, and it is mainly targeted to the assembly of relatively short genome segments such as a BAC clone (roughly 200,000 nucleotides long). The algorithm uses a greedy scheme for connecting reads into contigs based on the quality of alignment between two reads, and on the relative likelihood that the two reads truly overlaps, as opposed to lying in a repeat with 95% fidelity between the two copies. These likelihoods are calculated using the quality scores associated with each read position whereby low quality score positions are more likely to be wrong, and therefore reads that truly overlap are more likely to differ in the positions where at least one of them has low quality bases. On the other hand reads that do not truly overlap, but instead come from two copies of the same repeat, may differ in positions of high, as well as low, quality. *PHRAP* does not make use of forward/reverse linking information between pairs of reads that come from two ends of the same insert (*earmuff* links, as we defined them in the Background section). It is generally considered to solve with great quality

the problem of assembling BAC clones, but it gets too slow, and inappropriate to use, for genomes or genomic segments of length more than a few megabases.

Anson and Myers (1999) describe an algorithm for whole genome assembly, focusing on creating the assembly of a region of DNA between two reads that are linked with an earmuff. Their algorithms strive to minimize the number of queries to the database of reads, where each query asks for the set of reads that overlap with a particular read. They test their algorithm on a simulated model of the genome.

The most important breakthrough to date in shotgun assembly is the recent successful whole genome assembly of Drosophila melanogaster (Myers et al. 2000). This assembly was achieved by a software system that shares ideas with the system described in this chapter, and was developed independently. We note that the assembly of Drosophila took around one week on an 8-node ES40 platform (Myers et al. 2000), which was due to an $O(n^2)$ number of pairwise read alignments, a step that our system avoids by a hashing mechanism that we describe below.

1.2 Problem Description

The general problem can be stated as follows: the goal is to reconstruct an unknown source sequence (the *genome*) on $\{A, C, G, T\}$ given many random short segments from the sequence, the *shotgun reads*.

A *read* is a subsequence of nucleotides of length around 500, taken from a random place in the genome. The *orientation* of the read is either *forward*, in which case the read is taken from the forward strand of the genome, or *reverse complement*, in which case the read is taken from the reverse complement strand. Recall that the reverse complement strand is essentially the same as the forward strand, except each nucleotide is substituted with its Watson-Crick complement: A \leftrightarrow T, and C \leftrightarrow G.¹ The direction of a read is not known — reads are *unoriented*.

¹ We call that strand the *reverse* complement because chemically it runs $5' \rightarrow 3'$ instead of $3' \rightarrow 5'$. Also it is important to note that genes (and presumably other elements) lie either in the forward, or reverse complement direction. That is, RNA polymerase works only $3' \rightarrow 5'$ and therefore grows a pre-mRNA strand during transcription, in the $5' \rightarrow 3'$ direction. The pre-mRNA in turn, is always "interpreted" in the direction $5' \rightarrow 3'$ during splicing and translation.

The read is not an exact subsequence of the genome. It contains errors of two kinds: *base substitutions*, and *indels*. Base substitutions occur with a certain moderate average frequency, typically 0.5-2%.¹ The number of them on each read is Poisson distributed and the occurrences are uniformly distributed along the read.² Indels are either insertions, or deletions of nucleotides. They occur with the same distribution, but roughly an order of magnitude less frequently, than base substitutions.

Some reads come with additional linking information. Recall the description of an *earmuff* link in the Background section. A pair of reads can be taken from the two ends of the same size-selected insert. Therefore the relative orientations, and approximate distances between pairs of reads, are known. Depending on the vector system and size-selection, we can have read pairs coming from short plasmid inserts, of length 2,000-3,000 up to 10,000-12,000. Or they can come from cosmids, of length around 40,000. Finally they can come from BACs, which are around 150kb *long*. A combination of all these kinds of linked reads is probably more powerful than any one kind of links by itself.

2. Algorithms

ARACHNE consists of two parts: (i) the creation of a graph G of overlaps between pairs of reads of the shotgun data, and (ii) processing of G for the purpose of constructing supercontigs of mapped reads.

2.1 Creation of Overlap Graph

The input to *ARACHNE* is a list of reads taken from the genome. We will denote this list by $R = (r_1, ..., r_N)$ where N is the number of reads. Each read r_i has an associated length l_i that is typically < 1000. It may also have a link to another read r_j at specified distance d_{ij} and known relative orientation, in case both reads were taken from the endpoints of the same clone (*earmuff* link). Finally, each position of a read may have an associated confidence score (*PHRED* score (Ewing

¹ A read is typically longer than 500, but the nucleotides beyond around 500 are of poor quality. These nucleotides have a higher rate of base substitutions and indels. The associate *PHRED* scores indicate the quality of each nucleotide.

² But note again that typically *PHRED* scores give some information on the likelihood of error, for each specific read position.

and Green, 1998) that characterizes the probability that the nucleotide is correct. For the moment we will ignore this additional information and simply view the input as a list R of reads.

The first goal of *ARACHNE* is to create a graph G of overlaps (edges) between pairs of reads (nodes). In order to create G, pairs of reads in R need to be aligned to detect overlaps. However R can be very long, making N^2 alignments infeasible to perform. For that reason we first create a table of occurrences of k-mers (k *long* strings) in the reads, and count the number of k-mer matches for each pair of reads. Subsequently, we perform pairwise alignments between pairs of reads that contain more than a cutoff number of common k-mers.

2.1.1 Table of k-mer Occurrences

The goal of this algorithm is to find the number of k-mer matches in the forward or reverse complement direction, between each pair of reads in R. One way to do that is to (1) obtain all triplets (r, t, v) where r is a read in R, t is the index of a k-mer occurring in r, and v is the direction of occurrence (forward or reverse complement); (2) sort the set of pairs according to k-mer indices t; (3) using the sorted list create a table T of quadruplets (r_i , r_j , f, v) where r_i and r_j are reads that contain at least one common k-mer, v is a direction, and f is the number of k-mers in common between r_i and r_j in direction v.

<u>Reads</u>		<u>3-mers</u>	
$\mathbf{r}_1 = \mathbf{A}\mathbf{C}\mathbf{T}\mathbf{A}\mathbf{G}$	\rightarrow	{(ACT,0), (CTA,0), (TAG,0),	
		(CTA,1), (TAG, 1), (AGT, 1)	
$\mathbf{r}_2 = \mathbf{A}\mathbf{G}\mathbf{C}\mathbf{T}\mathbf{A}$	\rightarrow	{(AGC,0), (GCT,0), (CTA,0),	
		(TAG,1), (AGC,1), (GCT,1)}	

Sorted Table

Sorted 3-mers	Sorted Directions	Read ID	Read ID
ACT	0	1	
AGC	0	2	
AGC	1	2	
AGT	1	1	
СТА	0	1	2
СТА	1	1	
GCT	0	2	
GCT	1	2	
TAG	0	1	
TAG	1	1	2

Table 1. Example of a sorted hash table of k-mer occurrences in reads.

If a k-mer occurs "too often" it is likely to be part of a repeat sequence and we should not use it for detecting overlap. ("Too often" depends on the depth d. The number of times that a kmer occurs should be roughly Poisson distributed with mean d. We can use this observation to set a threshold to "exclude" those n-mers that occur "too often.)

This is implemented as follows:

1. The k-mer occurrences (r, t, v) are found and sorted initially into 64 files according to the first three nucleotides of each k-mer (the first six bits of t).

2. Each of the 64 files is short enough to be loaded in memory as a table of k-mer occurrences (r, t, v).¹ A radix sort is performed according to t, and the sorted occurrences are saved in a file. The original file of unsorted occurrences is erased.

3. The 64 sorted files are loaded in memory sequentially, and the table T is incrementally created.

2.1.2 Pairwise Read Alignments

¹ More than 64 files could be used if less memory is available.

Pairwise alignments are performed between reads that contain more than a cutoff number of common k-mers. If k-mers that are more common than a certain cutoff are excluded from being used in the table T, as explained above, then it is guaranteed that only an O(N) number of pairwise alignments will be performed.

Only a small number of base substitutions and insertions/deletions is allowed in an overlapping region of two aligned reads, reflecting the low expected error rates of sequencing for reads. This allows for an efficient alignment algorithm, where a shift is initially guessed between a pair of reads, and subsequently a dynamic programming alignment is performed, that disallows deviations of more than a few characters, from the guessed shift. The output of the alignment algorithm is a quadruplet of positions (b_1 , e_1 , b_2 , e_2) of beginning b_1 , b_2 , and end e_1 , e_2 , positions of the detected overlap region, for reads r_i , r_j . If a significant overlap region is detected, (r_i , r_j , v, b_1 , e_1 , b_2 , e_2) becomes a link in the overlap graph G.

2.2 Processing of Overlap Graph and Creation of Supercontigs

The remaining algorithm strive to map the reads as accurately as possible, so that eventually the genome sequence can be retrieved, or at least the mapped reads can be passed to a local assembly program that can routinely retrieve the sequence (for instance *PHRAP*, <u>http://www.*PHRAP*.com</u>). The information available at this stage is the graph G, and the forward/reverse linking of pairs of reads that come from two ends of the same insert clone.

In the absence of sequencing errors and repeats it would be a simple task to retrieve all retrievable pairwise distances of reads: it is easy to see that G would then be an interval graph.¹ In the presence of repeats, a link between two reads in G does not necessarily imply true overlap. A "repeat link" thus is a link in G between two reads that come from different regions in the genome, and overlap in a repeated segment. The ambiguity created by repeats can be seen in the depiction of paths of overlapping reads in Figure 3.1. Region R is repetitive, flanked by regions A and B on the "left", and C, D on the "right. It is not possible a priori to know whether the path of

¹ An undirected graph $G = (V = \{1, ..., n), E)$ is an *interval graph* if there is intervals $(a_1, b_1), ..., (a_n, b_n)$ on the real line such that $(i,j) \in E$ if and only if (a_i, b_i) intersects (a_j, b_j) . It can be checked in linear time whether a graph is an interval graph (Fishburn, 1985).

reads corresponding to region A, and "entering" into region R, needs to "exit" towards region B or region C.

Figure 3.2. A repeat with three copies translates into one contig, with borders to three other contigs on the left, and three on the right.

Some of the repetition in the genome is effectively masked before the creation of G, by throwing away k-mers of high frequency when building the table T. In the algorithms that follow some additional repetitive links are detected and deleted using heuristic rules.

Reads of a Sequence Contig

A Sequence Contig

Figure 3.3. A sequence contig is a structure holding an oriented set of reads, each holding a specific position on the sequence contig. It is represented as an interval RED/BLACK tree.

Sequence contigs are formed by merging together pairs of reads that can be merged without ambiguity. This is illustrated in Figure 3.2, where we show a situation created by a repeat that is copied three times. Figure 3.3 shows how a sequence contig looks like. The contigs are finally linked using the forward/reverse linking information between pairs of reads. We should note that in practice the situation is much less neat than the one depicted in Figure 3.2. Repeats are not preserved 100% between copies, and therefore they are not guaranteed to form unambiguous contigs. Certain parts of them that are preserved much less than the cutoff for considering two reads overlapping may form independent contigs. What is worse, in the situation of reads covering repeats (or parts of repeats) that are on that borderline of fidelity (around 95%) between copies, reads from two different copies may be considered overlapping or nonoverlapping depending on the sequencing errors.

2.2.1 Definition of Read "Shifts"

G consists of links of the form $(r_i, r_j, v, b_1, e_1, b_2, e_2)$ where r_i, r_j are reads, $v \in \{0, 1\}$ denoting *forward* and *reverse complement* respectively, and (b_1, e_1) , (b_2, e_2) are the intervals of alignment of r_i , and r_j , respectively. Abusing notation sometimes we will omit b_1 , e_1 , b_2 , e_2 and/or v when referring to a link. These links are directed in the sense that $(r_1, r_2) \in G$ does not imply $(r_2, r_1) \in G$.

Figure 3.4. Rules for removing repetitive links.

Notice that in the absence of repeats and sequencing errors, $|b_1-e_1| = |b_2-e_2|$. Moreover, in that case we can distinguish cases of the possible relationship between r_i , and r_j :

- 1. r_j is a subsequence of r_i , and $b_2 = 1$, $e_2 = l_j$.
- 2. r_j extends r_i to the "right", whereupon $e_1 = l_i$ and $b_2 = 1$.
- 3. r_j extends r_i to the "left", whereupon $b_1 = 0$ and $e_2 = l_j$.
4. r_i is a subsequence of r_j , and $b_1 = 1$, $e_1 = l_j$.

In case 1 r_i is called a superread of r_i and r_i a subread of r_i . Similarly for case 4.

In the presence of sequencing errors, the above conditions are no longer guaranteed to hold for a pair of reads that truly overlap in the genome. In case 1 above for instance, a few base substitutions and/or insertions/deletions in r_i or r_j near the beginning of r_j can cause b_2 to b > 0. In any overlapping pair of reads, where one of the above three conditions (and the corresponding ones for v = 1) does not hold, we say that we detect a *nonaligning end*. The amounts of deviation from the values specified in conditions 1, 2, or 3 for the values b_1 , e_1 , b_2 , e_2 are called the *nonalign values* $q_1(r_i, r_j, v)$, $q_2(r_i, r_j, v)$. In condition 1, $q_1(r_i, r_j, v) = 0$, $q_2(r_i, r_j, v) = b_2 + e_2 - 1$. In condition 2, $q_1(r_i, r_j, v) = l_1 - e_1$, $q_2(r_i, r_j, v) = b_2 - 1$. In condition 2, $q_1(r_i, r_j, v) = b_1$, $q_2(r_i, r_j, v) = l_2 - e_2$. We define $Q(r_i, r_j, v) = \max(q_1, q_2)$. The values q, Q will be important heuristically for the algorithm to decide whether a particular link should be "trusted" as a true link, or taken as a false link resulting from a repetitive segment in the genome. A heuristic constant C_{rep} will usually determine whether a link should be considered true (if $Q < C_{rep}$) or false ($Q \ge C_{rep}$). This applies to definitions of subreads and superreads.

Shifts. In case 2 above, we define the shift to the right $s_t(r_i r_j) = (l_2 - b_2) - (l_1 - b_1)$, of r_i by r_j . In case 3 above, we define the shift to the left $s_i(r_i r_j) = b_2 - b_1$, of r_i by r_j .

2.2.2 Discarding Repetitive Links

At this stage certain links of the graph are discarded by the application of heuristic rules. The idea is to remove from G some repetitive links, while at the same time preserving enough of them so as not to "hide" the boundaries between unique sequence and long repetitive regions. Thus mostly short repeats are targeted.

The following rules are used for discarding links from G:

- 1. Rule 1. If $\min(q_1(r_i, r_j, v), q_2(r_i, r_j, v)) \ge C_{rep}$, remove link (r_i, r_j, v) .
- 2. Rule 2. If link (r_i , r_j , v=0) is marked, remove any link (r_i , r_k , v=0) where Q(r_j , r_k , v=0) < C_{rep}.

3. Rule 3. If link (r_j , r_i , v=0) is marked, remove any link (r_i , r_j , v=0) where Q(r_j , r_k , v=0) < C_{rep} and Q(r_i , r_j , v=0) \ge C_{rep}.

Rules 2 and 3 above are applied recursively until no more applications are possible.

2.2.3 Sparse Representation of Overlaps and Creation of Contigs

The first main step of the assembly algorithm is the detection of subgraphs of G that have the interval graph property. Such subgraphs are then assembled into sequence contigs. As an initial step, all links (r_i, r_j, v) of G such that $Q(r_i, r_j, v) \ge C_{rep}$ will be marked and not considered when constructing the interval subgraphs. Also, any link (r_i, r_j, v) that involves an overlap between the reads r_i , r_j , of less than a heuristic constant C_{ovl} will be marked.¹ This ensures that all links used will have a statistically significant associated overlap. Finally, any link involving a subread is marked.

Next a sparse representation of the subgraph of unmarked links of G, is created. Specifically, a graph H is created as follows: given an unmarked link $(r_i, r_j, v = 0)$ of G, $(r_i, r_j, v = 0) \in H$ if there is no r_k such that $(r_i, r_k, v = 0) \in G$ and $(r_k, r_j, v = 0) \in G$, or $(r_i, r_k, v = 1) \in G$ and $(r_k, r_j, v = 1) \in G$. Similarly for the case $(r_i, r_j, v = 1)$. That is, an unmarked link (r_i, r_j) of G is in H whenever there is no read r_k lying "in-between" r_i , r_i with respect to the unmarked subgraph of G.

It is easy to see that in the absence of repeats and sequencing errors, and given enough coverage of the genome by reads, H would simply be a path from the leftmost to the rightmost read in the genome. In particular nodes that have more than two neighbors in H are caused either by repetition, or by sequencing errors.

We define the merge operation on pairs of reads. Reads r_i and r_j can be merged if one of the following conditions holds:

1. $(r_i, r_j, v = 0) \in H$, r_j is the only read extending r_i to the right, and r_i is the only read extending r_i to the left, with respect to H (or vice versa). We say that r_i can be

¹ More precisely, the overlap associated with link $(r_i, r_j, v, b_1, e_1, b_2, e_2)$ is defined to be max (e_1-b_1+1, e_2-b_2+1) .

merged to the right with r_j and r_j can be merged to the left with r_i (or vice versa), and with merge bit = 0 (forward).

(r_i, r_j, v = 1) ∈ H, r_j is the only read extending r_i to the right, and r_i is the only read extending r_j to the right, with respect to H (or both extend each other to the left). We say that r_i and r_j can be merged to the left (to the right) with each other, and with *merge bit* = 1 (reverse complement).

Finally sequence contigs are created by merging pairs of reads, by the algorithm below, ensuring that the resulting merged structures are interval graphs in the unmarked subgraph of G. The data structure used to implement sequence contigs is an interval RED-BLACK tree (Cormen/Leiserson/Rivest, 1990).

Create a list of reads L.

Do until all reads in L either can be merged to the left and right, or not at all.

Starting from a read r that can be merged in exactly one direction (left without loss of generality).

Create new sequence contig S with one element, r.

Set current direction to left.

Do until r cannot be merged towards the current direction.

Find the neighbor r' of r in H, towards the current direction.

Insert r' in S, and erase it from the list of reads.

If r, r' can be merged with merge bit = 1, flip current direction (left/right).

Let $\mathbf{r} = \mathbf{r}'$.

It is tedious but simple to prove that (1) the above algorithm terminates, and (2) the set of reads in any sequence contig defines a subgraph of the unmarked portion of G, that has the interval graph property.

2.2.4 Assembly of Contigs into Supercontigs

The last stage of *ARACHNE* involves building supercontigs by making use of the forward/reverse linking information between reads that come from the same insert.

As a first step towards this goal, the graph G_C of contig/contig links is computed. A contig f is linked to a contig g if (1) one of the extreme reads of f (leftmost or rightmost) overlaps with Q < C_{rep} one of the extreme reads of g, or (2) at least one read in f is linked to at least one read in g by an earmuff link. If case (1) above holds, we say that f and g are linked with an *overlap* (in addition possibly to being linked by earmuffs). Each link in G_C then has the following associated fields:

- 1. A bit ovl(f,g) 0/1 indicating the existence of an overlap link.
- 2. A weight $w(f,g) \ge 0$ indicating the number of earmuff links.
- A distance d(f,g) between the endpoints of f and g that overlap, taken as the average of estimated distances coming from the earmuff links, and the overlap link if there is one. The distance can be negative, indicating overlap (ovl(f,g) does not necessarily imply d(f,g) < 0).
- 4. An orientation $v(f,g) \in (0, 1, void)$ indicating whether the earmuff and overlap links unambiguously determine a relative orientation forward (0), reverse complement (0), or if different links disagree (*void*) about the relative orientation between f and g.
- 5. A conflict count confl(f, v), which will be defined below.

We define the *conflict count* between a pair of linked sequence contigs f, g. Recall from above that d(f,g) indicates the estimated distance between f and g, *i.e.* the estimated gap (if d>0) or overlap (if d<0) between f and g. Say now f is also linked (towards the same direction) with another sequence contig h, with distance d(f,h). Denote by |f| the estimated length of f, and likewise |g| for g, h. Say for the purpose of exposition, that d(f,g) < d(f,h) and d(f,g) + |g| > d(f,h). If these estimates were accurate, then g, h overlap by an amount equal to l = d(f,g) + |g| - d(f,h). Unless l is less than the length of the extreme reads of g, h, and g is linked to h by an overlap link, this overlap between g and h is inconsistent. We count in such cases a conflict for the edge (f,g), and one for the edge (f,h).

Unfortunately the estimates of lengths of sequence contigs, and more notably of distances between contigs, are not necessarily accurate. For that reason a tolerance is necessary when determining the conflict count of intercontig links. We define a heuristic tolerance function $\tau(d, d', w, w') \ge 0$, in our example above $\tau(d(f,g), d(f,h), w(f,g), w(f,h))$. In general longer distances and smaller weights of links increase the tolerance τ . For brevity, we will also denote $\tau(d(f,g), d(f,h), w(f,g), w(f,h))$ by τ_{fgh} .

Formally we define a *conflict* for a link (f,g) to be a link (f,h) such that $d(f,g) + |g| > d(f,h) + \tau_{figh}$, and $d(f,h) + |h| > d(f,g) + \tau_{fhg}$, or a link (g,h) such that $|f| + d(f,h) > d(g,h) + \tau_{hfg}$ and $|g| + d(g,h) > d(f,h) + \tau_{hgf}$. The *conflict count* confl(f,g) is the sum of all the conflicts for link (f,g).

We define a supercontig to be a linked list of contigs, where links have an associated estimated distance, which can be negative if the two linked contigs overlap.

The algorithm for creating the supercontigs simply involves defining a priority for links between sequence contigs, and then executing *merge* operations between sequence contigs, or the supercontigs they belong to, according to the defined link priority. A formal definition of the *merge* operation would be somewhat technical and is omitted. Briefly, two supercontigs S, T (each consisting of one, or more sequence contigs) are merged according to link (f,g) between sequence contigs f in S and g in T, only if the result can be a linked list (supercontig) preserving the exact distances within S and T, and the distance d(f,g) of link (f,g) within some tolerance. Figure 3.5 shows two possible merges, and one impossible merge.

Figure 3.5. Demonstration of three supercontig merges. Sequence contigs 2 and 3 are linked, inducing Merge 1. This merge is possible because contig 3 can be placed to the "right" of contig 2, without overlapping any existing contig to the right of contig 2. Merge 2 is induced by a link between contig 2 and 5. Notice that contigs 2 and 5 are not the rightmost/leftmost contigs of their respective supercontigs. Still, the distance between 2 and 5 is large enough for contig 3 to fit between them, and likewise contig 4 can be placed between contigs 1 and 2 preserving all distances. Merge 3 is induced by a link between contigs 3 and 7. This time the distance associated with the link is not consistent with the presence of contig 6 to the left of contig 3. Merge 3 is not performed.

3. Results

We tested a prototype version of *ARACHNE* on simulated shotgun data that we generated from (1) the complete *Haemophilus influenzae* genome (Fleischmann et al. 1995); (2) the complete *Archaeoglobus fulgidus* genome (Klenk et al. 1997); (3) chromosome I of the *Caenorhabditis elegans* genome (The C. elegans Sequencing Consortium, 1998); (4) chromosome 22 of the

Human genome (Hunt et al. 1999). In this section we report a study on the repeat structure of these genomes as it relates to our hashing scheme for finding read-pair overlaps, and then we report results on the quality of assembly produced by our preliminary implementation.

3.1 Repetition of k-mers in the Test Sequences

Repeats render fragment assembly harder. The most problematic repeats are long, highly preserved segments that are repeated two or more times in the genome. Segments a bit shorter than a typical read length are not a problem, because each particular occurrence is likely to be included in some read, which extends to the flanking unique regions. Such a read virtually resolves the repeat occurrence by making it obvious that the flanking unique regions are next to each other. The rules for discarding repetitive links above target precisely such cases. For instance Alu repeats are shorter than the length of a typical read and they should not pose a major difficulty in the assembly of shotgun reads from human DNA, even though there are around one million occurrences of Alu in the human genome. Repeats that exhibit low sequence similarity among copies are also not a problem, because two reads from the same location on the repeat, but from different repeat occurrences, will not be considered overlapping by the pairwise read alignment procedure.

Sequence	Percent of sequence covered by unique k-mers			
	k = 16	k = 18	k = 20	k = 24
Human chromosome 22	67.8	76.3	79.2	83.8
C. elegans chromosome I	74.5	83.9	87.5	89.6
H. influenzae	94.6	96.0	96.3	96.5
A. fulgidus	96.8	97.9	98.1	98.3

Table 2. Percentage of genomic sequence covered by unique k-mers. This is a measure of the rate ofrepetition in the sequence. Human sequence is the most repetitive; C. elegans sequence is not much lessrepetitive. H. influenzae and A. fulgidus are dramatically less repetitive.

We compiled statistics on the composition of the four test sequences. We are specifically looking at k-mers in the sequences, and computing: (1) the distribution of k-mer frequencies in the sequence, and (2) the distribution of *k*-repeat-segment lengths, where a k-repeat-segment is a

maximal contiguous stretch of repeated k-mers. For example k-repeat-segments of length 0 correspond to unique k-mers, while k-repeat segments of length 1 correspond to 1 consecutive repeated k-mers flanked by two unique k-mers.

A k-mer is *unique* if it appears exactly one in the sequence in both forward and reverse complement direction. It is interesting to compare the number of unique k-mers for the different test sequences. Table 2 makes this comparison, for k = 16, 18, 20, and 24. It is clear from this table that Human chromosome 22 exhibits the highest rate of repetition of k-mers, C. elegans has slightly lower repetition, while H. influenzae and A. fulgidus have dramatically lower rates of repetition.

Figures 6, 7, 8, and 9 show the distribution of k-mer frequencies in the four test sequences. The xaxis corresponds to frequency, and the y-axis corresponds to $\log_{10}(F(x)+1)$ where F(x) is the number of distinct 24-mers that occur exactly x times each in the sequence, in the forward or reverse complement direction.

Figure 3.6. Number of distinct 24-mers that occur in the H. influenzae genome at specific frequencies.

Figure 3.7. Number of distinct 24-mers that occur in the A. fulgidus genome at specific frequencies.

Figure 3.8. Number of distinct 24-mers that occur in C. elegans chromosome I at specific frequencies.

Figure 3.9. Number of distinct 24-mers that occur in human chromosome 22 at specific frequencies.

- -- -

Figure 3.10. Lengths of repeat 24-mer regions in the H. influenzae genome.

Figure 3.11. Lengths of repeat 24-mer regions in the A. fulgidus genome.

Figure 3.12. Lengths of repeat 24-mer regions in chromosome 1 of C. elegans

Figure 3.13. Lengths of repeat 24-mer regions in chromosome 22 of the Human genome.

Figures 10, 11, 12, and 13 show the distribution of lengths of uninterrupted stretches of repeated 24-mers. The x-axis corresponds to number of consecutive repeated 24-mers. The y-axis corresponds to $\log_{10}(G(x)+1)$ where G(x) is the number of distinct regions that consist of x consecutive repeated 24-mers flanked by two unique 24-mers.

The distributions of repeat frequencies of H. influenzae and A. fulgidus look very similar. In both genomes, most repetitive 24-mers are repeated very few times, generally less than 10 times. A few 24-mers are repeated up to 100 times. In H. influenzae one can observe a peak of 24-mer occurrences at 6. The reason is a repeat of length around 6,000 that occurs 6 times. This can be observed by looking at the repeat lengths distribution.

The distributions for the human and C. elegans chromosomes are very different from the ones above. One interesting observation is that although the human chromosome is more repetitive (it has a smaller percentage of unique k-mers as we saw above), the C. elegans genome seems to have better preserved repeats. There are several regions of length above 5000 that consist of only repeated 24-mers in the C. elegans chromosome I. The picture in the human chromosome 22 is considerably different, with much fewer long regions of repeated 24-mers. This observation may be significant for shotgun assembly. If two repeat occurrences are dissimilar enough, the pairwise alignment algorithm will not connect two reads that come from different occurrences. Therefore if repeats are better preserved in C. elegans than in human, then shotgun assembly on the human genome may actually be easier than in C. elegans.

3.2 Generation of Shotgun Data

There were very few unknown nucleotides, and a few gaps in the test sequences. We removed all those by gluing the flanking regions together. We believe this step affects minimally the sequences for the purpose of testing the *ARACHNE* prototype implementation. In real data there should not be any unknown nucleotides. Instead, real data have confidence scores (*PHRED* scores) for each nucleotide.

In all test cases we used the shotgun assembly conditions below:

- 1. All reads come in earmuff links.
- 2. A third of the earmuff links are 10,000 long, and the rest are 3,000 long.
- 3. Earmuff link distances have an average error of 5%, under Poisson distribution.
- 4. Reads come from either orientation, forward or reverse complement, with equal probability. Two linked reads come always from the same orientation.
- 5. Sequencing errors are distributed according to Poisson processes in each read. The average error rate is 0.5% for mutations, 0.05% for insertions, and 0.05% for deletions.

The above error rates are in the lowest range of the realistic spectrum. Tuning of the algorithms and parameters depends on the error rates. For example, if there are no errors in sequencing, then two overlapping reads should be required to agree perfectly on the area of overlap. As sequencing error rates increase, the pairwise alignments procedure needs to be tuned accordingly. As *ARACHNE* is in a prototype phase, and because of limited disk space/CPU time we did not perform additional tests with different error rates, and/or different parameters.

3.3 Fragment Assembly Results

We report performance in terms of how much of the genomic sequence is covered with long supercontigs, and how "correctly" those supercontigs are assembled.

Thus we look at all supercontigs above a cutoff *estimated length*. Estimated length of the supercontig is the length in nucleotides that the algorithm estimates for the supercontig. This measure includes the sum of lengths of all contigs plus the sum of estimated lengths of gaps in between the contigs of the supercontig.

We define the true position of a contig by taking a majority vote among all reads of the contig. Each read has one "vote" for the leftmost and rightmost positions of the contig on the genome, depending on the true location of the read on the genome (which we know). If a majority of the reads agrees within a few nucleotides to a certain position, then these reads are

considered *good*, and the rest are considered *misplaced*. If there is no majority agreement, the whole contig is considered *misassembled*, and the reads of it misplaced.

Figure 3.14. A supercontig consisting of three contigs. Gaps and residual gaps between the contigs are illustrated.

We similarly define the true position of a supercontig by a majority vote among the contigs. We consider a contig *good* if it agrees with the majority vote within a slack factor of 1% of the supercontig length, otherwise we consider the contig *misplaced*.

We measure the following quantities:

1. *Genome covered*. This quantity measures how many positions as a fraction of total genome positions, are covered by all supercontigs above the cutoff length. A position is

covered if it lies within the range of a good contig, or within the gap range between two neighboring good contigs in the same supercontig.

- 2. *Percentage of contigs that are misplaced*. Percentage of contigs that are misplaced within the supercontigs above the cutoff length.
- 3. *Percentage of all reads that are misplaced*. Percentage of reads that are misplaced within any contig belonging to a supercontig above the cutoff length.
- 4. Percentage of reads misplaced inside good contigs. Percentage of reads that are misplaced within only the good contigs belonging to a supercontig above the cutoff length.
- 5. *Percentage of gap length*. Percentage of the length of supercontigs that is in gaps between neighboring contigs (Refer to Figure 3.14).
- 6. *Percentage of residual gap length.* Percentage of the length of supercontigs that is in gaps between neighboring contigs, and is not covered by reads linked with an earmuff to any good read assigned to a contig inside the supercontig (Refer to Figure 3.14).
- 7. *Percentage of unassigned reads*. Percentage of reads completely included within the true boundaries of contigs (excluding misassembled contigs) inside the long supercontigs, not actually placed within those contigs.

We report statistics for supercontigs longer than 1Mb, 250kb, 100kb, 25kb, 10kb, 5kb, 2kb, and 1kb.

Figure 3.15 shows the percentage of genome covered by contigs above the cutoff lengths, on the following test runs: (1) human chromosome 22, 9x coverage (HUM 9x); (2) C. elegans chromosome 1, 9x coverage (CEL 9x); (3) H. influenzae, 9x coverage (HIN 7x); (4) A. fulgidus, 7x coverage (AFL 7x).¹ We observe that the A. fulgidus genome is virtually perfectly covered

¹ We provide data on tests with lower coverage on the small genomes, because in general these genomes are considered easier to sequence, and thus it may be optimal to use lower coverage with shotgun reads for such genomes.

with a single supercontig (99.96%), while the H. influenzae genome is similarly covered to 99.6% with one supercontig > 1Mb and another > 200K long. The C. elegans genome is covered to a good extent (97.5%) with supercontigs > 25K long, while the human genome is covered 95% with supercontigs > 10K.

Figure 3.15. Coverage of genomes by long supercontigs.

For each of the above tests we plotted statistics 2-7 in order to measure the quality of the assembled supercontigs. Figure 3.16 shows the results for the human chromosome 22, 9x coverage.

CERR is the percentage of contigs that are misplaced; RERR is the percentage of all reads that are misplaced; RERR2 is the percentage of reads that are misplaced inside good contigs; GAP is the percentage of gap length; RGAP is the percentage of residual gap length; ROUT is the percentage of unassigned reads.

Figure 3.16. Quality of shotgun assembly on the human chromosome 22, 9x coverage with shotgun reads.

Considering GAP and RGAP, we see that gaps inside supercontigs are fairly short, and almost all of them are covered with reads that are linked with earmuffs to the proximal contigs. This fact should make the assembly of sequence that lies in gaps between contigs a fairly easy task in a subsequent version of *ARACHNE*.

Considering ROUT, this quantity can be thought of as reads that are "wasted" because they are not assigned to the place in the assembly where they belong. Since it is below 2% of the total reads, we believe it is a fairly small wastage.

Finally the most difficult statistics to evaluate are CERR, RERR, and RERR2, relating to misassembled data. For the long supercontigs, these rates are extremely low, while for smaller supercontigs the rates get fairly high. In general these rates reflect regions of low copy repetition, where reads from two virtually identical places in the genome are connected into a single contig. Therefore the sequence that the assembled reads represent should for the most part be correct. Moreover there is the possibility of correcting some of these errors by use of earmuff link information to verify assembly inside contigs, and with *PHRED* scores that will increase the specificity of detected overlaps between reads.

Figure 3.17. Quality of shotgun assembly on C. elegans chromosome I, 9x coverage with shotgun reads.

Figure 3.17 shows the same data for C. elegans chromosome I, 9x coverage. The results are for the most part fairly similar to those for the human chromosome, with one notable exception: the rate of CERR for very long supercontigs is considerably high. This comes from a long supercontig in the assembly, where a highly repetitive region is assembled with most contigs having reads from two places in the genome. It reflects the fact that C. elegans has extremely long, very well conserved low-copy repeats. Incidentally an 11x coverage test on the same chromosome does not have this problem: the CERR rate increases from 0.4% for supercontigs > 1,000,000 upto 2.3% for all supercontigs. No other test run we did has any close to the CERR rate observed in the C. elegans chromosome I, 9x coverage test run.

Figure 3.18. Quality of shotgun assembly on the H. influenzae genome, 7x coverage with shotgun reads.

Figure 3.18 shows the same data for the H. influenzae genome, 7x coverage. Note that virtually all of the genome is covered with supercontigs > 100K long. For these supercontigs, the error rates CERR, RERR, and RERR2 are fairly low. Also, RGAP is extremely low and ROUT is fairly low. We believe that the produced assembly for this genome is of very high quality.

Finally, Figure 3.19 shows the data for A. fulgidus, 7x coverage. In this case all the relevant statistics are extremely good, and we believe that this particular genome is assembled fairly easily by our system. Moreover we observe that 7x coverage may be sufficient to assemble genomes that are expected to look similar to H. influenzae and A. fulgidus in terms of size and repetition.

Overall we believe that using techniques similar to *PHRAP* one should be able to provide good consensus sequence of the assembled supercontigs, with fairly low shotgun sequencing wastage. Once these supercontigs are assembled, longer earmuff links (for example coming from BAC clones) should enable mapping the supercontigs with respect to each other resulting in the complete source sequence.

Figure 3.19. Quality of shotgun assembly on the A. fulgidus genome, 7x coverage with shotgun reads.

In Appendix B we provide the tables of statistics, and figures, for all the test runs we performed on the four test sequences.

4 Conclusions and Future Work

We designed, implemented, and tested *ARACHNE*, a system for assembling shotgun sequencing data. To our knowledge the description above is the first published description of such a system, working on real data. We demonstrated good performance of our prototype version of *ARACHNE* on real data coming from the human and C. elegans genomes, indicating that shotgun sequencing assembly is feasible on the challenging human genome. Our results are encouraging that a full finished implementation of *ARACHNE* will succeed in providing good quality assemblies of mammalian genomes.

There is a substantial amount of additional algorithmic and software development needed before we can provide a finished system ready for application on real data. Below we outline some of the steps that need to be taken to reach that goal:

- 1. Our system as is does not accept real data because of the integration of *ARACHNE* with the procedures generating the simulation data, and the lack of sufficient input/output modules.
- 2. The implementation was done on a single Alpha processor machine with 2Gb memory and 50Gb storage. Currently this implementation can comfortably handle genomes of size up to 50Mbases with 10x shotgun coverage. The system needs to be redesigned/optimized for a much larger architecture, in order to be applied to a full shotgun sequencing assembly of a mammalian genome.
- 3. Several parts of the program may not be optimally written, since the development and design were performed concurrently. Thus the system needs to be looked at carefully, re-implementing and optimizing certain parts.
- 4. *PHRED* scores should be taken into account in the final version, in order to take advantage of the additional information and possibly distinguish much better between true read/read overlaps, and overlaps induced by repeats.
- 5. Closing gaps between contigs inside a supercontig, by using shortest paths in the graph of read overlaps, between the leftmost/rightmost reads in the contigs, and by making use of earmuffs that connect reads in the gap with reads in the flanking contigs.
- 6. Backtracking. Earmuff links and *PHRED* scores may be helpful in detecting and correcting the few reads and contigs that are misplaced in the current implementation.
- 7. Integration with *PHRAP*, or implementation of much of *PHRAP*'s techniques so that the final output is consensus sequence, rather than a layout of reads.

Development towards the above directions is currently under way.

Chapter 4

CROSS-SPECIES GENOMIC COMPARISON AND GENE RECOGNITION

1. Introduction

A fundamental task in analyzing genomes is to identify the genes. This is relatively straightforward for organisms with compact genomes (such as bacteria, yeast, flies and worms), because exons tend to be large and the introns are either non-existent or tend to be short. The challenge is much greater for large genomes (such as those of mammals and higher plants), because the exonic 'signal' is scattered in a vast sea of non-genic 'noise'. Whereas coding sequences comprise 75% of the yeast genome, they represent only about 3% of the human genome.

Computational approaches have been developed for gene recognition in large genomes, with most employing various statistical tools to identify likely splice sites and to detect telltale differences in sequence composition between coding and non-coding DNA (Burset and Guigo, 1996). Some programs perform "de novo" recognition, in that they directly use only information about the input sequence itself. One of the best programs of this sort is GENSCAN (Burge 1997), which employs a Hidden Markov Model approach to scan large genomic sequences. Other programs employ "homology" approaches, in which exons are identified by comparing conceptual translation of DNA sequence to databases of known protein sequences (see, e.g., Pachter et al. 1999). An example is the Procrustes program (Gelfand et al. 1996).

In this chapter, we explore a powerful, new approach to gene recognition by using cross-species sequence comparison — that is, by simultaneously analyzing homologous loci from two related species. Specifically, we focus on the ability to accurately identify coding exons by comparison of syntenic human and mouse genomic sequence.

It is well known that cross-species sequence comparison can help highlight important functional elements such as exons, because such elements tend to be more strongly conserved by evolution than random genomic sequence. If a protein encoded by a gene is already known in one organism, it is relatively simple to search genomic DNA from another organism to identify genes encoding a similar protein (using such computer packages such as Wise2, http://www.sanger.ac.uk/Software/Wise2/). A more challenging problem is to identify exons directly from cross-species comparison of genomic DNA. Computer programs are available that identify regions of sequence conservation (Jang et al. 1999), which can then be individually analyzed in an ad hoc fashion to see whether they may contain such features as exons or regulatory elements. Preliminary work on human gene recognition using comparison with the tetraodondiform fugu rubripes genome has been reported (H. Roest Crollius et al. 1999). In that work, 13 homologous genes from fugu and human with > 40% sequence similarity were selected out of a set of 17 human/fugu homologs. These genes were used in implement based TBLASTX order to and test a procedure on (http://www.ncbi.nlm.nih.gov/BLAST/) sequence comparisons on the amino acid level, detecting exons in human DNA. The procedure was further tested on sequence data from another tetraodon organism, tetraodon nigroviridis. Preliminary results suggested that human exons may be detectable with >95% specificity (H. Roest Crollius et al. 1999). However, there has been no systematic reported approach to employing cross-species comparison for gene recognition.

We developed an automatic approach to exon recognition, by using cross-species sequence comparison to identify and align relevant regions and then searching for the presence of exonic features at corresponding positions in both species. We began by undertaking a systematic comparison of the genomic structure of 117 orthologous gene pairs from human and mouse, to understand the extent of conservation of the number, length and sequence of exons and introns. We then used these results to develop algorithms for cross-species gene recognition, consisting of *GLASS*, a new alignment program to provide good global alignments of large genomic regions by using a hierarchical alignment approach, and *ROSETTA*, a program to identify coding exons in both species based on coincidence of

genomic structure (splice sites, exon number, exon length, coding frame, and sequence similarity).

ROSETTA performed extremely well in identifying coding exons, showing 95% sensitivity and 97% specificity at the nucleotide level. The performance was superior to programs that use much more sophisticated signals and statistical analysis but analyze only a single genome (Burset and Guigo 1996, Burge 1997). To our knowledge, *ROSETTA* is the first program for gene recognition based on cross-species comparison. The approach can be readily generalized to other pairs of organisms, as well as to the study of three or more organisms simultaneously.

With the current explosion of human and mouse genomic sequence, cross-species comparison is likely to provide one of the most powerful approaches for extracting the information in mammalian genomes.

2. Results

2.1 Comparison of Human and Mouse Genomic Loci

Comparison of mRNA sequences of 1196 orthologous human and mouse gene pairs were recently reported (Makalowski et al. 1996), showing that coding regions tend to show roughly 85% identity at the nucleotide and protein levels. We sought to extend this analysis by comparing genomic structure, where known. The mRNA sequences from the orthologous gene pairs were searched against GenBank Release 109 (October 1998), to identify those for which genomic sequence was available in both species. Entries were required to contain the complete genomic sequence encompassing all coding exons, although not necessarily including the introns between non-coding exons.

A total of 117 orthologous gene pairs were identified and studied (Appendix C, Table C.1). For the purpose of comparing the genomic structure of the gene pairs, we used dynamic programming algorithms (employing both nucleotide similarity and codon similarity using the PAM20 matrix (Dayhoff et al. 1978) to align the sequences and carefully inspected the alignments to ensure that they correctly aligned the exons.

The comparison defined the striking extent of evolutionary conservation:

(i) <u>Exon number</u>. The number of exons was identical for 95% of the genes studied. There were six instances in which the number of exons differed.

In two cases, a single internal coding exon in mouse is reported to correspond to two internal coding exons in human. In the spermidine synthase gene (Appendix C, Table C.1, gene 30), mouse exon 5 corresponds to human exons 5 and 6, with the total exonic lengths agreeing perfectly. In the lymphotoxin beta gene (Appendix C, Table C.1, gene 85), mouse exon 2 corresponds to human exons 2 and 3. Interestingly, the mouse exon 2 is 316 bp while the sum of the lengths of human exon 2, intron 2 and exon 3 is only 301 bp.

In the next three cases, the correspondence broke down for terminal exons. In the keratin 13 gene (Appendix C, Table C.1, gene 40) and the adenosine deaminase gene (Appendix C, Table C.1, gene 66), the coding sequences show substantial sequence divergence at the 3'-end and one of the organisms has an extra exon. In the proteosome LMP2 gene (Appendix C, Table C.1, gene 46), the extra human exon shows striking sequence similarity to a portion of the 3'-UTR in the mouse.

The final case was also in the LMP2 gene, in which the first two coding exons in the human correspond to one exon in the mouse. There is no apparent relationship between their lengths (even including the intron).

It is possible that some of the apparent differences are due to error in annotation in the databases.

(ii) <u>Exon Length</u>. The length of corresponding exons was strongly conserved. The lengths were identical in 73% of cases. Those differences that did occur were quite small: the mean ratio of the larger to smaller length was 1.05.

Moreover, the differences were nearly always a multiple of three. The length difference was a multiple of three for 95% of all exons and 99% of all internal coding exons. This is readily understood in terms of the effects of evolutionary selection: length differences divisible by three alter an integral number of codons, while other length differences would require a second compensatory change in a succeeding exon to restore the translational reading frame and would thus be less likely.

Only three instances were found in which corresponding internal exons had lengths differing by other than a multiple of three.

In the skeletal muscle specific myogenic gene (Appendix C, Table C.1, gene 49), the respective lengths of exons 2 and 3 are 81 bp and 123 bp in the human and 82 and 122 in the mouse. Remarkably, two instances occur in the gene encoding the Flt3 ligand (Appendix C, Table C.1, gene 100). The respective lengths of exons 2 and 3 are 111 bp and 54 bp in the human and 122 bp and 46 bp in the mouse, while the respective lengths of exons 5 and 6 are 139 bp and 179 bp in the human and 144 bp and 189 bp in the mouse.

(iii) <u>Intron Lengths</u>. Whereas exon lengths tended to be well preserved, intron lengths varied considerably. The mean ratio of the larger to the small length was 1.5. As would be expected, there was no tendency for intron lengths to differ by a multiple of three. Human introns tended to be larger than mouse introns (68% of cases), but this could represent a selection bias reflecting the fact that the less extensive sequencing of the mouse genome may lead to an underrepresentation of instances in which the mouse genomic locus is larger. This question will need to be revisited in the presence of larger amounts of genomic sequence.

(iv) <u>Sequence Similarity</u>. Coding regions showed strong sequence similarity, with roughly 85% identity as previously reported (Makalowski et al. 1996, 1998). In contrast, introns showed only weak sequence similarity with roughly 35% sequence identity — which is not much higher than the background rate of sequence identity in gapped alignment of random sequence.

The degree of conservation varied considerably among genes. For example, the gene encoding the ribosomal protein S24 (Appendix C, Table C.1, gene 4) showed 88% identity at the DNA level and 100% identity at the amino acid level in coding exons, but only 27% identity at the DNA level in introns. The perfect identity at the amino acid level is consistent with the protein being highly constrained, as might be expected for a component of the ribosome. In contrast, some introns exhibited a striking degree of similarity. In the tumor necrosis factor-beta gene (Appendix C, Table 1, gene 93), the first intron has 75% nucleotide identity and nearly perfect agreement in length (86 bp in human, 83 bp in mouse). Interestingly, the flanking exons are less well conserved, showing only 70% nucleotide identity and 60% amino acid identity.

2.2 Global Sequence Alignment, GLASS

To recognize genes based on the coincidence of biological signals in two organisms, it is important to start with an accurate global alignment of the genomic sequences. Existing global alignment techniques were not well suited for our purposes:

- 1. Standard dynamic programming methods (based on the Needleman and Wunch (1970) or Smith and Waterman (1981) algorithms) were unsuitable for two reasons. First of all, these methods are too slow because they involve computing an O(NM)-size dynamic programming matrix of alignment between the two input sequences of lengths N and M. For our purposes N and M can be quite large. In our database the largest entries are longer than 30kb. Moreover we would like our programs to be usable on sequences that are much longer such as large-insert BAC and YAC clones, or larger contigs, that can range from 150k to several megabases. Secondly, these standard methods are not sensitive to finding short regions of good alignment, flanked by much longer regions of good alignment (exons) that can be as short as 30-50 bases, flanked in the human and mouse sequences by much longer regions (introns) that are poorly conserved and have vastly different lengths.
- 2. Faster local alignment methods such as *BLAST* (<u>http://www.ncbi.nlm.nih.gov/BLAST/</u>) are better suited for our purposes, but still insufficient. One reason is that *BLAST* does not provide a global map of the two input sequences. Instead it provides a set of local alignments, ranked by quality. One approach then would be to try to use *BLAST* in order to detect these local alignments, and then arrange the best ones into an ordered set of local maps that can be extended to a global alignment. But another problem with *BLAST* is that it uses perfect matches between k-long words of a fixed size k in order to detect local alignments between the two sequences. The default value for k is 11, and this value is very large for the purpose of detecting short exons that may not have an 11-long

matching word between the human and mouse. On the other hand using a smaller value for k leads to detecting too many local alignments.

Accordingly, we designed a new alignment system called *GLASS* (GLobal Alignment SyStem), suitable for aligning hundreds of kilobases of genomic sequence. *GLASS* works by iteratively aligning matching segments (Figure 4.1). First, a rough alignment map is constructed by finding long segments that match exactly, and whose flanking regions have high similarity. The procedure is repeated on the intervening regions using successive smaller matching segments. Finally, the remaining short unaligned regions are aligned using standard alignment techniques.

More precisely, *GLASS* works as follows. The program takes as input two genomic segments and returns a global alignment for the segments. The global alignment is computed recursively. The basic steps are as follows:

- 1. For an initial value of k, find all matching k-mers in the pair of sequences, i.e. all k-mers that appear in both sequences.
- Treating each matching k-mer as a unique "character", convert both the human and mouse sequences into sequences of such characters, corresponding to occurrences of the matching k-mers, temporarily leaving out unmatched k-mers.
- 3. Align these two strings using standard dynamic programming with the following caveat. Matching k-mers receive a score equal to the sums of the alignment scores obtained by standard dynamic programming on the short regions flanking the occurrence of the k-mer in the human and mouse sequence (specifically the 12 bases to the left and 12 bases to the right). On the short flanking regions, the standard dynamic programming is run with scores for match, mismatch, gap open, and gap extension of 1, -1, -3, and -2 respectively. Henceforth, these will be the default parameters when we run standard dynamic programming on nucleotides. Mismatches and gaps in the k-mer alignment receive a score of 0.

- 4. In the above alignment, identify those pairs of matching k-mers that lie within regions of good local alignment between the human and mouse sequences that is, that have a score exceeding a threshold T (typically 0<T<6).
- 5. From this list of pairs of matching k-mers, remove those that are inconsistent with the underlying human and mouse genomic sequences. Specifically, two k-mers are inconsistent if they correspond to positions that overlap by i>0 bases in the one species but not in the other species.
- 6. Using the remaining list of matching k-mers, fix the alignment between the nucleotides in the underlying human and mouse sequences contained in these k-mers.
- Recursively align the regions between aligned nucleotides, by repeating steps 1-6 using a smaller value of k. As currently implemented, *GLASS* recursively employs k-mers with k = 20, 15, 12, 9, 8, 7, 6 and 5.
- 8. Once the last recursive alignment is performed, extend all pairs of aligned segments by short (of length 12) local alignments to the left and right by SDP.
- 9. Finally, align the remaining (usually short) unaligned regions using SDP.

Various parameters used in the *GLASS* program were adjusted on the basis of a test set consisting of 12 orthologous gene pairs (Table 4.1). An example of an alignment between two orthologous genomic loci is shown in Figure 4.1.

Once the genomic sequences are aligned, the sequences are processed to mask repeat elements (using the RepeatMasker program) and poorly aligned regions (defined as those containing too many gaps or too many mismatches). The remaining, well-aligned sequence was then used for gene recognition.

MUMmer is another system that provides global alignment of similar sequences, which was developed independently of GLASS (Delcher et al. 1999). *MUMmer* however does not provide the entire alignment map between regions of good alignment, and moreover it uses more relaxed criteria than steps 3-5 of our algorithm above for fixing parts of the global alignment based on long matching k-mers. However *MUMmer*'s implementation runs faster than our implementation of *GLASS*.

2.3 Gene Recognition, ROSETTA

To perform gene recognition, we began by specifying the 'gene model' to be recognized in a genomic region.

A "coding exon" was defined to be the translated portion of an exon, together with a designated strand and reading frame. Coding exons can be "initial" (consisting of the region from the start of translation to either a splice site or the in-frame stop codon), "internal" (consisting of the region between two splice sites), or "terminal" (consisting of the region from either a splice site or a start of translation to the in-frame stop codon). Coding exons thus differ from actual exons in that they exclude the nucleotides in the 5'- and 3'-UTRs.

Figure 4.1: Regions of the human and mouse homologous genes: Coding Exons (*white*), Noncoding Exons (*gray*), Introns (*dark gray*), and intergenic regions (*black*). Corresponding strong (*white*) and weak (*gray*) alignment regions of GLASS are shown connected with arrows. *Dark lines* connecting the alignment regions denote very weak, or no alignment. The predicted coding regions of ROSETTA in human, and the corresponding regions in mouse, are shown (*white*) between the genes and the alignment regions. A "parse" of a genomic region is a sequence $((a_1, b_1, t_1, s_1, f_1), ((a_2, b_2, t_2, s_2, f_2), ... ((a_n, b_n, t_n, s_n, f_n))$ where $e_i = (a_i, b_i, t_i, s_i, f_i)$ denote consecutive exons with starting and stopping points (a_i, b_i) , type $t_i \in \{$ initial, internal, terminal $\}$, designated strand $s_i \in \{+, -\}$ and reading frame $f_i \in \{0, 1, 2\}$. The parse is "valid" provided that the following properties hold for each pair of consecutive coding exons e_i and e_{i+1} : (i) If e_i is terminal, then e_{i+1} is initial, and vice versa, and (ii) if e_i is not terminal, then e_i and e_{i+1} have consistent strands and reading frames and are both open in the designated reading frame.

Currently strands are handled separately, and parses in the two strands are merged in a post-processing step.

For details we refer to our website (http://theory.lcs.mit.edu/crosspecies/).

Our automatic procedure involved using a dynamic programming approach to find the optimal valid parse with respect to a given scoring procedure. Each parse $((a_1, b_1, t_1, s_1, f_1), ((a_2, b_2, t_2, s_2, f_2), ... ((a_n, b_n, t_n, s_n, f_n)) of the human genomic sequence corresponds to a parse <math>((a'_1, b'_1, t'_1, s'_1, f'_1), ((a'_2, b'_2, t'_2, s'_2, f_2), ... ((a'_n, b'_n, t'_n, s'_n, f_n)) of the mouse genomic sequence, by means of the cross-species sequence alignment. Each parse is assigned a score consisting of the sum of scores for the individual coding exons. The score for each coding exon consisted of several components, reflecting the presence of appropriate splice sites, codon usage, amino acid alignment and length.$

(i) <u>Splice Sites.</u> Splice site scores were calculated by using a hybrid method that combines the GENSCAN splice site detector (Burge, 1997) and a directionality effect (Pachter, 1999, Pachter et al. 1999). The splice site scores for the splice acceptor and splice donor sites in both the human and mouse sequence were summed to obtain an overall score for each putative coding exon. (For initial or terminal exons, splice site scores were only computed at the appropriate end.)

(ii) <u>Codon Usage</u>. Codon usage score was computed for both the human and mouse exons, and the two scores were added together. Each score was calculated by summing the log odds ratio for each codon, based on published codon frequencies for the organism (Delphin, M., et al. 1999).

(iii) <u>Amino Acid Similarity</u>. An amino acid similarity score was calculated by comparing corresponding codons in the two exons and using the PAM20 matrix to score

matches, mismatches and gaps. This score reflected the tendency of particular amino acid substitutions to occur between human and mouse (Dayhoff et al. 1978).

1. (HUMIL5A, MMIL5G)	7. (HUMAPEXN, MUSAPEX)		
2. (HUMCAPG, MUSCATHG)	8. (HUMERPA, MUSERPA)		
3. (HUMSMPD1G, MMASM1G)	9. (HUMVPNP, MUSVASNEU)		
4. (HSHOX3D, MMU28071)	10. (HUMIL9A, MUSP40M)		
5. (HUMTRPY1B, MUSPROT6A)	11. (HSFAU1, MUSFAUA)		
6. (D67013, MMAJ2146)	12. (HUMTHY1A, MUSTHY1GC)		

Table 4.1. Training set of human/mouse homologs.

(iv) Exon Length. An exon length score was calculated, consisting of two components. The first component reflected agreement with the known length distribution of initial, internal and terminal exons. The second component penalized exons pairs that differed in length, particularly when the difference was not a multiple of 3.

Various parameters were optimized, based on analysis of the test set of 12 orthologous genes (Table 4.1). The precise definitions of the scores are available on our web site (<u>http://theory.lcs.mit.edu/crosspecies/</u>).

2.4 Gene Recognition Results

ROSETTA was then applied to our collection of 117 orthologous gene pairs. The program performed extremely well at identifying internal coding exons. Of internal coding exons, 94% were predicted perfectly at both ends and another 4% at one of the two ends. When one end is incorrectly predicted, the error typically involves only a few bases and typically is due to an alternative choice of splice site that more closely matches the expected pattern.

Only six of the internal coding exons (3%) were completely missed, and the reasons for the failures are instructive. (i) Three of these were in the galactose-1-phosphate uridyl transferase gene (Appendix C, Table C.1, gene 37). They resulted from the failure to mouse intron 4, because 5'-splice site has a GC rather than the canonical GT. As a result, the gene is predicted to end at a downstream stop codon and a new gene is predicted to begin at an ATG codon upstream of exon 8. Exons 5, 6, and 7 are thus missed. (ii) Another exon is missed in the 21-hydroxylase gene (Appendix C, Table 1, gene 95), because the 5'-splice site is regarded as unlikely by our splice site detector: G-GTGCCTC in human, and T-GTTACCC in mouse. (iii) The two other internal coding exons that were missed are the instances in which two exons in one species correspond to a single exon in the other (in the Flt3 ligand (Appendix C, Table 1, gene 100) and lymphotoxin beta (Appendix C, Table 1, gene 85) genes, as noted above). The program's rules do not currently handle this special case.

The program was somewhat less accurate for initial and terminal coding exons. A total of 71% of such exons were correctly predicted at both ends. An additional 19% were correctly predicted at one end, with the incorrect end almost always being the initiation codon of an initial exon or the stop codon of a terminal exon. The errors typically involve predicting a splice site rather than the initiation or stop codon. In 17 cases, these splice sites are in fact annotated splice sites of the 5' and 3' UTRs.

A total of 2 initial and 9 terminal coding exons were completely missed. The initial coding exons were missed because they had length 3, consisting only of the ATG, which gave too weak a signal to detect. The terminal coding exons were missed because the coding exon was extremely short in one case (3 bp in human, 6 bp in mouse) or because the sequences were highly divergent between human and mouse.

Overall, the exon predictions were very accurate at the nucleotide level: 95% of nucleotides lying within coding exons were correctly predicted as such, and 97% of nucleotides predicted to lie within coding exons in fact did so. *ROSETTA* thus had 95% sensitivity and 97% specificity at the nucleotide level. *ROSETTA* predicted 26 coding exons that failed to overlap with any known exon.

We also compared our results with the performance of GENSCAN (Burge 1997). On our dataset, GENSCAN had similar nucleotide sensitivity (98%) but considerably lower nucleotide specificity (89%). Moreover, GENSCAN predicted 68 regions not overlapping any known coding exon, whereas *ROSETTA* predicted only 26 such instances.

3. Methods

3.1 Database Construction

A database of 1196 corresponding human/mouse mRNA pairs that had been previously compiled (Makolowski et al. 1996) was used to compile a database of 117 orthologous and annotated (with respect to gene structure) human and mouse genes. This was done by matching the human and mouse mRNA entries of the database to all human and mouse DNA entries in GenBank Release 109 (October 1998). Genes in the human or mouse that did not have a corresponding entry in the other organism were rejected. Entries were accepted only if they contained all the coding part of the gene, as well as the introns that lie between coding exons. Therefore, entries were accepted even if they did not constitute a complete gene, provided that they contained the coding part of the gene. In some cases, this caused us to accept genes without annotations or sequence for non-coding exons. Even though structural comparative information in non-coding regions could not be compiled for these entries, they were very useful for evaluating the quality of the *ROSETTA* coding region prediction method.

Our training set consisted of twelve pairs of human and mouse homologous genes, shown in Table 4.1. Training involved several steps. (1) Tuning parameters of *GLASS* in order to perfect the construction of global alignments of homologous genomic loci. (2) Choosing a PAM matrix for the protein alignments of pairs of potential exons. (3) Defining appropriate likelihood penalties for exons that were not preserved as is typical (for example exons whose length difference was not a multiple of 3).

3.2 Sequence Alignments and Comparative Analysis

When two corresponding regions in the human and mouse are not very similar, *GLASS* does not necessarily produce the exact map between the regions. For that reason, the corresponding introns, coding, and non-coding exon fragments in human and mouse sequences were further realigned using the standard dynamic programming alignment algorithm in order to compute more accurate local alignments for the purpose of compiling nucleotide similarity statistics.

Furthermore, the corresponding coding fragments were translated into protein and aligned using a PAM20 matrix obtained from the NCBI website (<u>http://www.ncbi.nlm.nih.gov/</u>) for the purpose of compiling protein similarity statistics.

Nucleotide similarity statistics in Appendix C, Table 1 for corresponding regions were computed using our *similarity count* SC(*,*) function. SC is a non-symmetric function that given two sequences s_1 , s_2 (in our case in human and mouse, respectively) and an alignment between s_1 and s_2 , returns the number of *valid matching positions* of s_1 into s_2 . The number of valid matching positions is the number of positions j in s_1 that are mapped with a match to s_2 and such that either (1) j is the first or last position in s_1 , or (2) j – 1 and j + 1 are not mapped to gaps in s_2 . Thus, spurious matches in predominantly gapped regions do not add to the similarity count. This way the similarity count is not higher in the cases where the region s_2 , in our case the mouse region, is much longer than s_1 and therefore s_1 can be aligned with many gaps and a large number of spurious matches. The similarity counts were divided by the lengths of the human regions.

Amino acid similarity statistics for corresponding coding regions were computed by counting the number of matching positions in the amino acid alignment of the regions, and dividing it by the length of the human exon.

Total sequence nucleotide similarity statistics were computed using the global alignment of the sequences derived by GLASS. A window of good alignment was defined to be a window of size 51 containing at least 20 matches. Any matches not contained inside a window of good alignment were discarded, and the number of remaining matches was divided by the length of the human locus.

3.3 Computational Prediction of Coding Regions

(i) <u>Masked Regions</u>. Before finding the optimal valid parse, the human and mouse sequences were preprocessed to mask repeats using the Repeatmasker program (available in <u>http://ftp.genome.washington.edu/RM/RepeatMasker.html</u>) and regions of weak alignment. A position was defined to be in a region of weak alignment if it was either (1) situated in a gap
of length at least 30, or (2) in the middle of a window of size 37 that contained fewer than 10 matches. Nucleotides in masked regions were disqualified from being predicted as coding.

(ii) <u>Splice Site Scores</u>. Splice site scores were computed using the directional rule modification to the GENSCAN splice site detector, as explained in (Pachter, 1999, Pachter et al. 1999). Donor splice site scores were multiplied by 0.5 and acceptor splice site scores were multiplied by 3.5. These values were obtained by requiring that the mean scores for donor and acceptor splice sites be equal in our training set (Pachter et al. 1999). Potential exons with a combined score of less than -10 for flanking splice sites were discarded in the dynamic programming algorithm (that is, they were given a score of $-\infty$).

(iii) <u>Coding Exon Length</u>. Corresponding potential coding exons with different lengths in the human and mouse sequence, were penalized as follows: initial and terminal exons with different length were given a penalty of -3 if lengths were equal mod 3, and -9 otherwise. For internal coding exons, the corresponding penalties were -9 and -27. These values were chosen heuristically, and were found to combine well with the other components of the scoring, most importantly the PAM20 matrix and the splice site scores. For instance, a PAM20 gap penalty is -19, while a PAM20 base substitution "penalty" ranges from +1 to -17, with typical values in the -8 range.

(iv) <u>Merging Forward and Reverse Complement Strand Parses</u>. Currently ROSETTA handles forward and reverse complement strands separately. Parses in the two strands are subsequently merged in a post-processing step. For each predicted exon e, a window extending 2000 positions in each direction from the endpoints of e, is used to count the forward and reverse complement coverage of the genomic region. That is, the number of predicted coding positions in each direction, included in the window, is calculated. If the direction of e is the direction with the highest count, e is accepted. Otherwise e is rejected. Future versions of ROSETTA may include a sophisticated genomic region model, where parses in both strands are simultaneously optimized.

For further details on the parameter selection for *ROSETTA* and *GLASS* we refer to our website (<u>http://theory.lcs.mit.edu/crosspecies/</u>).

3. Discussion

Analysis of large genomes is challenging because the important functional elements comprise only a small minority of the sequence: the problem is to extract signal from noise. Feature detectors that perform well enough in small genomes may become overwhelmed by large genomes and yield too many false positives.

A powerful solution is to first increase the signal-to-noise ratio by using evolutionary conservation among species. One can thereby focus attention on the portion of the sequence that is conserved (thereby decreasing noise) and search for features that are present in both species (thereby increasing the specificity of the signal).

Such strategies, of course, require that the elements to be found are indeed conserved by evolution. This certainly is the case for coding exons in human and mouse. Our study of the genomic structure of 117 orthologous gene pairs provides a quantitative description of the high degree of conservation in the number, length and sequence of coding exons.

The basic notion of using cross-species sequence comparison to identify important functional elements is well known, and has been used to study particular human and mouse regions (Hardison et al. 1997; Oeltjen et al. 1997; Jang et al. 1999). Gene recognition, however, does not emerge by simple inspection from the pattern of conservation: many non-genic elements are also well conserved, sometimes more so than genic elements. On average, the coding exons represented only a subset of the total well-aligned sequence.

We sought to develop an automatic method for gene recognition given cross-species sequence. The approach involves aligning the genomic sequences and then parsing the sequences to find a gene model in which the proposed exons are supported by features (splice sites, codon usage, etc.) present in both species. Alignment is performed with the *GLASS* program and gene recognition with the *ROSETTA* program. Both programs are available for use on a public web server (http://theory.lcs.mit.edu/crosspecies/).

The resulting program identifies the location of coding exons with high specificity and sensitivity. The vast majority of coding exons are identified perfectly. The overall results were robust across genes, including instances such as the tumor necrosis factor beta gene in which the first intron shows higher conservation than the flanking exons. The remaining errors largely result from highly unusual features — such as rare splice signals or fused exons.

ROSETTA represents only a first attempt at systematically using cross-species information for gene recognition. It should be possible to refine the program by incorporating feature detectors used in single-species gene recognition programs (such as those for promoters, poly-adenylation sites, etc, as well as more sophisticated statistical tests), by refining the way in which the existing detectors are combined and by incorporating rules to detect special cases (such as fused exons or non-canonical splice sites). The program is designed to recognize a single optimal gene model; a further challenge would be to recognize conserved patterns of alternative splicing by exploiting backtracking features of dynamic programming.

Our list of 117 orthologous pairs studied is necessarily biased toward genes with smaller genomic loci, owing to the fact that genomic sequence from such loci is over represented in current databases. Such a bias towards shorter genes could potentially enhance *ROSETTA*'s performance because of a higher signal-to-noise ratio in such genes. Nonetheless, the list contains many larger genomic loci and *ROSETTA* performs as well on the larger loci as on the smaller ones. It will be important to continue to test the program on large loci, as they become available.

An interesting question is whether the mouse is a suitable organism to select for exon prediction in human genes. Organisms whose sequence has not drifted sufficiently far from the human will not increase the signal-to-noise ratio sufficiently, while organisms that are too distant may make it difficult to recognize important signals. Interestingly, *ROSETTA* produced roughly equal amounts of over-prediction and under-prediction, which may suggest that the human and mouse are at a felicitous distance for the purpose of coding exon prediction.

With the explosion in the sequencing of the human and mouse genomes, cross-species sequence comparison should become an increasingly important technique for extracting information from the mammalian genome. We demonstrate here a systematic technique for extracting the vast majority of the information about coding exons. The next challenge will be to create similar systematic techniques to extract information about non-coding exons, promoters, regulatory elements and other important functional features of the genome.

CONCLUSION

In this thesis we discussed the steps involved in the planning and execution of a large sequencing project, and the subsequent steps of first-order annotation and global sequence comparison of the finished genomic sequence.

We presented contributions in all the above steps of a genome project:

In the steps of planning and sequencing a genome, we presented contributions in the major alternative methods for whole-genome sequencing. (1) We first studied the Hypergraph Superstring problem, a mathematical problem motivated by physical mapping, the main cloneby-clone approach for sequencing a genome. Our complexity results on the *MIN-Hypergraph-Superstring* and on the *MIN-Sperner-Decomposition* problems, and our approximation algorithms, may be interesting from a theoretical computing perspective irrespective of their application to physical mapping. (2) We studied an important method for sequencing a large genome: walking with BAC-ends. Our statistical analysis and simulations provide predictions of performance, and suggest optimal tradeoffs between sizes of clone libraries used, number of walking phases, and resulting sequencing quality and efficiency. (3) We studied the computational problem of assembling shotgun sequencing data. Our prototype system *ARACHNE* shows considerable success in obtaining a rough assembly of the data using computational resources that are within the means of current high-end computers. *ARACHNE* may be a starting point for building an elaborate assembly system to be used by academic sequencing efforts to assemble a mammalian genome such as the mouse genome.

We then turned to the important problem of studying the finished genomic sequence, using computational techniques. (1) We first presented *GLASS*, a system for obtaining the global alignment of pairs of long homologous DNA stretches. We demonstrated that the system succeeds extremely well in aligning human and mouse homologous genomic loci that are similar around 60-95% in the short exon regions, but almost unrelated in the much longer intron regions between the exons. *GLASS* should also be appropriate for obtaining the global alignment of homologous pairs of sequences that are more similar than human and mouse orthologous loci. It may prove useful in whole-genome self-similarity studies and we may use it for this purpose on the human genome draft that will soon be available. However, *GLASS*

may be inappropriate to use for aligning more distant homologs, as it relies in the presence of several matching *k-mers* between the two input sequences. (2) We used *GLASS* to perform a study of 117 homologous human and mouse genomic loci. We provided structural similarity statistics for human and mouse genes, and suggested the use of them in genomic annotation using sequence comparisons. (3) Finally, we built *ROSETTA*, the first cross-species comparison-based gene recognition system. We demonstrated that a very simple implementation of such a system compares favorably to sophisticated gene recognition programs that use information from one species alone.

We would like to conclude with some remarks on future work.

We believe that the main interesting open questions on Chapter 1 are theoretical: to completely determine the approximation complexity of the *MIN-Hypergraph-Superstring* and *MIN-Sperner-Decomposition* problems. We have shown that the problems are at least *MAXSNP*-hard, but it is still open to either give constant approximation algorithms, or prove stronger inapproximability results.

We have barely touched the expanding field of global sequence comparisons, and comparison-based genome annotation. There are several possible avenues of future work. Here we will mention only a few: (1) Refinement of *GLASS* and application to many different pairs of organisms, and also to self-similarity studies of genomes. Such studies could reveal important evolutionary facts, and/or evidence for large-scale genome duplications and rearrangements. (2) Expansion of the gene recognition methods into recognition of other evolutionarily preserved signals such as promoters and regulatory elements. (3) Development and application of similar annotation methods for different pairs of organisms (4) Development of similar methods for the simultaneous comparison and annotation of three, or more organisms.

Several parts of this thesis are motivated by the search for better methods for whole genome sequencing. We would like to conclude with a description of what we believe may be a powerful method of sequencing and assembling large genomes in the future. In particular we believe that while whole genome shotgun assembly may be possible for a large genome such as a mammalian genome, the fragment assembly problem may become much easier, and result in better sequence fidelity, if combined with clone-by-clone data. The academic sequencing community may believe the same, since the mouse genome will be obtained by a combination of whole genome shotgun and clone-by-clone sequencing (Science, vol. 287, p. 1179, 2000). However what has not been systematically addressed yet is the exact method with which the data will be used to assemble the mouse sequence. Hence neither the optimal ratio of shotgun vs. clone-by-clone sequencing, nor the optimal combination of insert sizes for shotgun (to get the forward/reverse linking information), are known.

We would like to sketch here a plausible procedure by which a large genome could be sequenced and assembled using a specific combination of Whole Genome Shotgun and Cloneby-Clone (*WGSCC*) data. (Appendix D contains a more detailed description.)

First we would like to describe a plausible mix of data that could be obtained, aiming at a total amount of sequencing equal to the current standards, of 10x coverage of the genome with reads:

- The majority of this sequence, say Kx where K is a constant < 10, is in the form of whole genome shotgun data, consisting of mostly short plasmid paired reads while possibly using some cosmid paired reads, or unpaired reads.
- 2. A random collection of BAC clones covers the genome to Lx, each clone being sequenced to a small Mx coverage.
- 3. A deep library of end-sequenced BAC clones is formed. If the library is 20-deep, if sequencing a read off the end of a BAC clone is twice as expensive as sequencing a regular plasmid or cosmid read, and if BAC clones are on average 150kb-long, this costs 0.25x of whole genome sequencing.

Typical values for K, L, and M would be 7, 2, and 0.5, respectively. Then, a majority of the genome would be covered with BAC clones that are obtained in step 2 above, and are each sequenced to 0.5x. This would correspond to having roughly 150 reads per clone, or one read per 1,000 bases. Assume for the moment that the full sequence of most of these clones can be reliably obtained using these local reads, in combination with the 7x coverage of the whole

genome with shotgun reads.¹ Then, the genome would be covered with islands of fully assembled sequence, separated with oceans of unassembled genome. The library of endsequenced BACs could then be employed to walk from these islands similarly to the way described in Chapter 2. In this case though, it would not be as important to obtain a minimal overlapping clone from the library. The library clones selected for walking would only be sequenced to 0.5x depth resulting in virtually no wastage due to overlaps with already assembled islands. The whole scheme as described above involves performing a total sequencing of around 8.5x. This is lower than the "allowable" 10x total sequencing, and therefore there is considerable slack that can be devoted to sequence the most "difficult" regions of DNA. Specific regions can receive special attention because they are "captured" in BAC clones that have been endsequenced or lightly shotgun sequenced. For instance, the hardest 5% of the genome consisting of repeats that are hard to resolve and assemble with 99.99% accuracy with whole genome shotgun could be sequenced clone-by-clone to depth ~5x. The total additional sequencing this step would involve is only 0.25x, well within the allowable slack. Then, the 5x sequencing of these clones together with the 7x whole genome shotgun should enable to yield the best possible quality of assembly in these regions, similar to 10x clone-by-clone sequencing. One can see that the WGSCC approach allows for considerable control over the quality of the final sequence, exactly because a clone-by-clone map of the genome is obtained in parallel with the consensus sequence.

We plan to develop the prototype system *ARACHNE* into a finished software package that is capable of performing fragment assembly in the presence, or absence, of clone-byclone data as described above. That would first of all involve implementing an algorithm as the one described in Appendix D, which is capable of utilizing WGSCC data. It would also involve several important refinements of our existing software: using *PHRED* scores in pairwise read alignments; producing finished sequence instead of a rough assembly of reads into supercontigs; refinement and speedup of the algorithms; development and parallelization in a suitable platform; and possibly several other crucial steps.

¹ In fact assembling the sequence of such a clone ought to be considerably easier using the 150 reads from the clone, than it would be if the only data available were 7.5x shotgun sequence of the whole genome.

Appendix A

The Genetic Code

The ribosome converts mRNA into protein according to the genetic code. Three nucleotides are converted to one amino acid. Protein synthesis starts from an occurrence of the initiation codon (ATG) and ends with the first occurrence of a termination codon (TAA, TAG, or TGA) in the translating frame.

	Т	С	A	G
Т	TTT Phe (F)	TCT Ser (S)	TAT Tyr (Y)	TGT Cys (C)
	TTC *	TCC *	TAC *	TGC *
	TTA Leu (L)	TCA *	TAA Stop	TGA Stop
	TTG *	TCG *	TAG Stop	TGG Trp (W)
с	CTT Leu (L)	CCT Pro (P)	CAT His (H)	CGT Arg (R)
	CTC *	CCC *	CAC *	CGC *
	CTA *	CCA *	CAA Gln (Q)	CGA *
	CTG *	CCG *	CAG *	CGG *
A	ATT Ile (I)	ACT Thr (T)	AAT Asn (N)	AGT Ser (S)
	ATC *	ACC *	AAC *	AGC *
	ATA *	ACA *	AAA Lys (K)	AGA Arg (R)
	ATG Met (M)	ACG *	AAG *	AGG *
G	GTT Val (V)	GCT Ala (A)	GAT Asp (D)	GGT Gly (G)
	GTC *	GCC *	GAC *	GGC *
	GTA *	GCA *	GAA Glu (E)	GGA *
	GTG *	GCG *	GAG *	GGG *

Table A.1. The Genetic Code.

Appendix B

Performance of ARACHNE

In the tables below we provide the results on the performance of *ARACHNE* on all our test runs. Please refer to the main text (Chapter 3) for the meanings of Coverage, CERR, RERR, RERR2, GAP, RGAP, and ROUT. #SCON is the number of supercontigs above SC Length, and #CON is total the number of contigs in these long supercontigs.

	Human, 11x						+ u zy pan		
Sc Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT
1000000	11	1869	51.6575	0.267523	0.121643	0.104435	0.951052	0.009267	2.07779
250000	30	3117	81.8569	0.737889	0.296759	0.182583	1.44267	0.012559	2.03651
100000	46	3506	90.1023	1.79692	0.325442	0.190764	1.66472	0.022858	2.02364
25000	82	3879	94.6051	2.83578	0.776246	0.448309	2.44104	0.117326	2.03509
10000	108	4017	95.8134	2.96241	0.91559	0.552387	2.71454	0.203166	2.04511
5000	141	4101	96.2259	3.02365	0.986972	0.611251	2.95164	0.374266	2.05136
2000	211	4220	96.5669	3.34123	1.11745	0.693346	3.25165	0.670593	2.0638

Table 1. Performance of ARACHNE on human chromosome 22, 11x coverage.

	Human, 9x	STRANG R							
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT
1000000	9	1859	51.0186	0.053792	0.03538	0.029433	0.993216	0.013933	1.80048
250000	28	2989	81.1249	0.16728	0.097715	0.084798	1.35776	0.010587	1.78148
100000	44	3323	88.9773	0.150466	0.106079	0.094278	1.5358	0.019265	1.78906
25000	78	3684	93.9008	1.00434	0.510291	0.255239	2.21059	0.096817	1.7857
10000	102	3812	94.9333	1.60021	0.790593	0.428751	2.49243	0.186535	1.78851
5000	134	3890	95.3919	1.79949	0.889088	0.495323	2.69901	0.351437	1.79182
2000	193	3990	95.775	2.10526	1.01624	0.569789	2.9524	0.59603	1.79655

Table 2. Performance of ARACHNE on human chromosome 22, 9x coverage.

	Human, 7x								
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT
1000000	8	1971	46.1732	0	0	0	1.3558	0.014499	1.46109
250000	30	3452	80.1969	0.057937	0.037863	0.024349	1.64758	0.020045	1.48063
100000	46	3824	87.4488	0.156904	0.11998	0.099143	1.93451	0.035474	1.46937
25000	77	4125	92.3115	0.606061	0.433768	0.273264	2.28699	0.068087	1.47533
10000	109	4268	93.9096	0.937207	0.652197	0.424052	2.57763	0.165069	1.4793
5000	150	4367	94.5611	1.14495	0.809359	0.556805	2.76095	0.301605	1.47879
2000	223	4461	95.0031	1.18807	0.912839	0.638131	2.87392	0.419139	1.48756

Table 3. Performance of ARACHNE on human chromosome 22, 7x coverage.

	Human, 5)	r		and the second				and a grant of the start day	
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT
250000	16	1003	16.7055	0	0.012878	0.012878	5.17857	0.236511	1.01796
100000	109	3640	59.1112	0.192308	0.175004	0.070327	6.07925	0.346571	1.04065
25000	277	5489	85.6575	0.564766	0.513473	0.245193	6.3743	0.368636	1.05154
10000	373	5886	90.1071	0.696568	0.725086	0.391209	6.69131	0.474651	1.06078
5000	462	6081	91.4638	0.74001	0.844548	0.512033	6.87023	0.68757	1.06279
2000	671	6318	92.6469	0.79139	1.02212	0.64133	6.84246	0.769325	1.07202

Table 4. Performance of ARACHNE on human chromosome 22, 5x coverage.

Human, 3x											
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT		
25000	50	329	4.72639	0	0.366415	0.366415	18.4532	3.16608	0.582848		
10000	496	1895	24.4016	0.686016	1.24275	0.892227	19.3543	5.82302	0.64801		
5000	1396	3801	42.1679	0.552486	1.41661	1.11506	15.935	6.55698	0.714661		
2000	3481	5979	58.3367	0.401405	1.53955	1.28717	11.769	5.04107	0.699569		

Table 5. Performance of ARACHNE on human chromosome 22, 3x coverage.

	C.elegans	, 11x							
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT
1000000	3	484	37.8117	0.413223	0.593201	0.482119	2.11728	0.00389	1.83739
250000	15	1268	79.2325	0.630915	0.643322	0.520089	2.74224	0.015964	1.95141
100000	29	1702	96.1433	1.64512	1.21876	0.812193	3.46796	0.014012	1.99304
25000	33	1759	97.841	1.59181	1.25085	0.851715	3.48182	0.013765	1.99171
10000	37	1781	98.2516	2.02134	1.38385	0.923465	3.70871	0.138385	1.99164
5000	42	1795	98.5143	2.22841	1.48353	1.00047	3.80176	0.203332	1.99229
2000	49	1810	98.5938	2.26519	1.53518	1.05018	3.85746	0.26253	1.99449

Table 6. Performance of ARACHNE on C. elegans chromosome 1, 11x coverage.

C.elegans, 9x											
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT		
1000000	2	399	36.0866	8.5213	0.59539	0.576362	2.04595	0.008161	1.44865		
250000	14	1307	80.9604	3.36649	0.709746	0.584082	3.19038	0.015718	1.46863		
100000	26	1639	94.8184	3.17267	1.07257	0.837145	3.76298	0.019756	1.51286		
25000	33	1732	97.499	3.52194	1.18568	0.914727	4.02217	0.07801	1.50727		
10000	37	1750	97.7769	3.71429	1.28042	0.990229	4.14704	0.147317	1.50858		
5000	47	1776	98.1206	3.71622	1.36847	1.08131	4.2263	0.215473	1.51782		
2000	57	1791	98.1938	3.74093	1.42934	1.13924	4.27348	0.266396	1.51923		

Table 7. Performance of ARACHNE on C. elegans chromosome 1, 9x coverage.

	H. influenzae, 11x													
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT					
1000000	1	67	86.4665	0	0.357992	0.357992	2.12391	0.010928	1.36494					
100000	2	78	99.711	0	0.311869	0.311869	2.1178	0.009477	1.35722					
5000	3	80	99.711	0	1.22267	1.22267	2.15926	0.031893	1.3644					

Table 8. Performance of ARACHNE on the H. influenzae genome, 11x coverage.

Series in a	H.influenzae, 9x												
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT				
1000000	1	78	86.3928	1.28205	0.391347	0.330261	2.04927	0.00076	1.14271				
100000	2	91	99.6368	1.0989	0.339633	0.28656	2.07378	0.000659	1.1471				
5000	3	93	99.9196	1.07527	1.47565	1.42485	2.07958	0.002189	1.16129				

Table 9. Performance of ARACHNE on the H. influenzae genome, 9x coverage.

	H.influenzae, 7x													
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT					
1000000	1	76	86.3722	1.31579	0.392627	0.331343	2.32361	0.018239	1.13575					
100000	2	88	99.6019	1.13636	0.340737	0.287492	2.3432	0.021527	1.10452					
5000	3	91	99.912	1.0989	1.48024	1.42928	2.33619	0.021459	1.14056					

Table 10. Performance of ARACHNE on the H. influenzae genome, 7x coverage.

	H. influenzae, 5x													
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT					
250000	2	130	51.4554	0	0.042932	0.042932	4.70981	0.257302	0.777423					
100000	5	203	78.0981	0	0.057954	0.057954	5.26323	0.337643	0.647762					
25000	10	258	97.1	0.387597	0.431085	0.431135	5.19668	0.32288	0.688458					
5000	11	260	97.1	0.384615	1.67383	1.67402	5.18229	0.321847	0.700137					
2000	19	268	97.4689	0.373134	1.75329	1.75349	5.12246	0.318131	0.704265					

Table 11. Performance of ARACHNE on the H. influenzae genome, 5x coverage.

	A.fulgidus	, 7x							
SC Length	#SCON	#CON	Coverage	CERR	RERR	RERR2	GAP	RGAP	ROUT
1000000	1	215	99.9589	0	0.023263	0.023263	0.909781	0.01539	1.28596
5000	2	216	99.9589	0	0.069652	0.069652	0.907585	0.015353	1.28348

Table 12. Performance of ARACHNE on the A. fulgidus genome, 7x coverage.

Below we provide the figures of statistics of the assembly quality, for each of the above tests. These are in exactly the same format as the corresponding figures in Chapter 3. The figures in Chapter 3 are duplicated here in order to provide a complete reference to all our tests.

Figure 1. Quality of shotgun assembly on human chromosome 22, 11x coverage with shotgun reads.

Figure 2. Quality of shotgun assembly on human chromosome 22, 9x coverage with shotgun reads.

Figure 3. Quality of shotgun assembly on human chromosome 22, 7x coverage with shotgun reads.

Figure 4. Quality of shotgun assembly on human chromosome 22, 5x coverage with shotgun reads.

Figure 5. Quality of shotgun assembly on human chromosome 22, 3x coverage with shotgun reads.

Figure 6. Quality of shotgun assembly on C. elegans chromosome I, 11x coverage with shotgun reads.

Figure 7. Quality of shotgun assembly on C. elegans chromosome I, 9x coverage with shotgun reads.

Figure 9. Quality of shotgun assembly on the H. influenzae genome, 9x coverage with shotgun reads.

Figure 10. Quality of shotgun assembly on the H. influenzae genome, 7x coverage with shotgun reads.

Figure 11. Quality of shotgun assembly on the H. influenzae genome, 5x coverage with shotgun reads.

Figure 12. Quality of shotgun assembly on the A. fulgidus genome, 7x coverage with shotgun reads.

Appendix C

Comparative Analysis of Human and Mouse Loci

In the table below (Table C.1) we report a structural comparison of 117 orthologous human and mouse genomic loci. We also report the exon prediction performance of ROSETTA on each of these loci.

Each entry in the table, numbered 1-117, is a pair of orthologous loci. In the first column, the Genbank LOCUS of the human entry, followed by the Genbank LOCUS of the mouse entry, followed by short descriptions of the genes, are given. The following columns have the following meanings, depending on the rows:

- 1. First row corresponds to the human entry.
- 2. Second row corresponds to the mouse entry.
- 3. Third row corresponds to nucleotide sequence similarity.
- 4. Fourth row, when applicable, corresponds to amino acid similarity.
- 5. Fifth row, when applicable, corresponds to ROSETTA predictions.

Thus the columns have the following meaning:

- 1. Third column, colored dark, corresponds to the total size for human and mouse, and the total sequence similarity using the GLASS alignment.
- 2. Fourth column corresponds to the sizes, and nucleotide similarity of the 5'-UTRs.
- 3. Fifth column corresponds to the sizes, nucleotide, and protein similarity of the translated regions.
- 4. Sixth column corresponds to the sizes, and nucleotide similarity of the 3'-UTRs.
- 5. Seventh column corresponds to the sizes, and nucleotide similarity of the introns.
- 6. The rest of the columns correspond to the sizes, nucleotide similarity, and protein similarity plus ROSETTA predictions whenever applicable. The color shading the regions indicates the type of the regions: coding exons (white), noncoding exons (light gray), and introns (medium dark gray).

The ROSETTA predictions are indicated as follows:

++: Coding exon predicted correct on both ends.

+-: Coding exon predicted correct only on the 5'-end.

- -+: Coding exon predicted correct only on the 3'-end.
- --: Coding exon was not missed totally, but both 3'- and 5'- boundaries were wrongly predicted.
- X: Coding exon was missed altogether.

Structurally unusual cases, such as when two coding exons in human correspond to one in mouse, can readily be seen in the table. For instance entry 30 has such a situation. Coding exons 5 and 6 in human can be seen to correspond to coding exon 5 in mouse.

	Т	Total	5' NC	C.ex	3'NC	Intron									Alian	men	ts of	Regi	ons							
1	HSCKIIBE MMGMCK2B Casein kinase II subunit beta gene	5917 7874 57.51	340 332 66.07	648 648 93.06 98.61	140 140 77.14	3065 4129 40.89	329 321 66.15	611 593 56.31	11 11 63.64	72 72 94.44 100 -+	966 588 31.79	103 103 95.15 99.03 ++	569 1180 36.13	116 116 89.66 98.28 ++	446 387 50.9	76 76 92.11 98.68 ++	146 110 54.69	190 190 93.16 97.89 ++	327 1271 27.41	91 91 94.51 98.9 ++	140 140 77.14					
2	HUMSAACT MUSACASA Skeletal alpha- actin gene	3778 4007 59.53	103 70 41.34	1134 1134 90.3 99.21	253 242 53.7	1345 1498 31.75	91 58 33.6	869 961 26.12	12 12 100	129 129 89.15 100 -+	106 98 44.12	325 325 88.92 99.69 ++	127 140 36.7	162 162 89.51 98.15 ++	79 93 45.35	192 192 90.1 98.44 ++	86 132 51.38	182 182 92.31 98.9 ++	78 74 34.21	144 144 93.06 100 ++	253 242 53.7	1		:	Coding Exon: Noncoding E	s xons
3	HSH4EHIS MMHIS412 Histone H4 gene	859 637 57.61	NA NA NA	312 312 89.42 100	NA NA NA	NA NA NA	312 312 89.42 100 ++																	3	Introns	
4	HSU12202 MMMRPS24 Ribosomal protein S24 gene	4942 5499 34.42	36 46 41.46	393 396 88.55 100	81 200 4.539	3921 4587 16.9829	36 46 41.46	3 3 100 100 X	1443 990 23.76	66 66 84.85 100 ++	93 91 43.48	210 210 89.05 100 ++	1380 1265 16.64	111 111 90.99 100 ++	405 558 25.75	3 6 66.7 100 X	19 12 19.35	600 1358 29.72	62 20 0	325 0	- 84 0					
5	HUMHIS4 MUSHIST4 Histone H4 gene	1098 968 48.86	NA NA NA	312 312 87.18 100	NA NA NA	NA NA NA	312 312 87.18 100 -+																			
6	HSHISH3 MMHIST31 Histone H3 gene	698 592 72.13	NA NA NA	411 411 85.89 100	NA NA NA	NA NA NA	411 411 85.89 100 ++																			
7	HSHSC70 MMU73744 Hsc70 gene for heat shock cognate protein	5408 4270 61.62	83 65 52.47	1941 1941 88.97 99.23	NA 85 NA	2380 1840 30.23	78 60 50.7	730 566 26.1	5 5 80	205 205 86.34 99.51 -+	322 308 22.86	206 206 89.32 99.03 ++	324 115 13.67	153 153 90.2 100 ++	87 84 47.95	556 556 89.57 99.82 ++	211 212 43.5	203 203 92.12 97.54 ++	228 222 52.44	199 199 84.92 99.5 ++	147 95 14.05	233 233 89.7 97.85 ++	331 238 41.48	186 186 88.71 100 ++	NA 85 NA	
8	HUMNOCT MUSPOUDOMB POU domain transcription factor	4878 3864 71.58	NA NA NA	1332 1338 93.84 99.1	NA NA NA	NA NA NA	1332 1338 93.63 99.1 ++																			
9	HUMTROC MUSCTNC Slow twitch skeletal nuscle cardiac troponin	4567 4194 54.41	27 44 62	486 486 89.92 96.91	173 173 59	2244 2687 48.90	27 44 62	24 24 91.67 100 ++	1466 1418 54.09	31 31 83.87 96.77 ++	230 226 47.37	147 147 91.16 97.96 ++	248 354 32.23	115 115 92.17 96.52 ++	216 602 35.7	137 137 86.86 96.35 ++	84 87 45.61	32 32 93.75 93.75 ++	173 173 59							
10	HSINT1G MUSINT1A Int-1 mammary oncogene	4522 5607 65.33	NA NA NA	1113 1113 91.11 98.38	NA NA NA	1877 1599 46.21	104 104 90.38 89.42	713 569 41.97	254 254 88.98 98.03	702 573 49.57	266 266 91.35 99.25	462 457 47.66	489 489 92.23 100													

11	HUMSRI1A	1634	NA	1176	NA	NA	1176																				
	MUSSRI1A	1265	NA	1176	NA	NA	1176																				
	Comptostatio	97.50	NIA	00.10	NIA	NIA	00 12																				
	Somalosialin	01.58	INA	09.12	MA	INA	09.12																				
	receptor isoform		5-15-216	98.72	States		98.72																				
	1 gene		See.			Realized Law	++																				
12	HSMIMAR	2100	NA	1383	NA	NA	1383																				
	MUSACHRM1	1574	NA	1383	NA	NA	1383																				
	WOOACHINWIT	1074		1000	INA	INA	1000																				
	M1 gene for	86.59	NA	90.31	INA	NA	90.31																				
	muscarinic			98.05		APPENDED TOP	98.05																				
	acetylcholine						-+																				
13	HSFAU1	2016	105	402	NA	998	97	269	8	75	94	145	461	56	174	126	NA										
10	MUSEALIA		61	402	450	1066	52	244	•	75	102	145	570	56	151	126	450										
	MUSFAUA	2000	01	402	450	1000	55	241	•	15	102	140	JIZ	50	151	120	450										
		63.19	51.81	90.8	NA	42.69	49.33	51.76	75	94.67	37.76	88.28	34.08	89.29	54.15	92.06	NA										
	Fan 1 gene			97.01	ALE MARK		Section 1		200	96	LAND R.	95.17		96.43	S. S. State	100											
					E.E.S.	and the second	and the second second	- The second	S. S. (22)	-+	Status and	++	Non-Section	++	B. Hugh	++	出版出版										
14		1206	50	528	NIA	27/26	50	201	1074	123	1357	204	NA	-				5 C									
14	HUNCKIADA	4200	00	520	INA	2451	00	201	1014	120	1007	204	100														
	MUSALPBCRY	4181	45	528	138	2705	45	201	1048	123	1657	204	138														
	Alpha-B-crystallin	62.86	73.7	90.72	NA	47.65	73.7	92.04	53.1	83.74	43.33	93.63	NA														
	Alpha-D-crystainn		The start	97.73	South Com	P. E. Ring		95.52	ALC: NO	100	ALC: NO	98.53															
	gene		C. B. M.			LUTTON GET	123/15 JA	-+		++	13.20	++	S. Stenson														
15	LISENO2	7104	109	1205	20	215310	106	602	2	95	976	06	160	50	164	70	260	134	1924	223	110	109	227	202	128	100	140
15	HSENUS	7194	100	1305	00	4012	100	003	4	00	010	90	100	59	101	70	309	134	1201	223	110	190	331	202	420	109	149
	MMENO3G	5472	66	1305	79	3856	64	602	2	85	206	96	128	59	14/	70	360	134	1499	223	114	198	194	202	372	109	144
	ENO3 gene for	59.5	51.72	89.04	71.7	38.91	51.76	48.8	50	94.12	20.15	88.54	47.22	86.44	56.49	91.43	43.62	85.82	32.97	94.17	65.18	85.35	41.43	89.11	51.25	88.99	50.51
	muscle specific			96.09	La Galle					98.82	ALC: NOT	93.75		81.36	THE REAL	98.57		96.27	STALL STALL	99.55		93.94		96.53		99.08	
	enolase				从 是当的想	E Barris				-+		++	UDENER	++	In section of the	++	Saussaus	++		++	Luss Mar	++	MERIAN	++	ALC: AND A	++	11 27 3 40 2
40		1000	COLUMN TWO IS NOT	650	COLUMN TAXABLE	Internet V V. Server			and the second second	-	and the second				and the second second		And Address of the Ad		OTHER DOCUMENTS	100 A				50	0.0	70	80
16	HUMPPIB	1083	NA	558	NA	NA	558																	59	00	70	80
	MUSPPIA	576	NA	558	NA	NA	558																	59	90	70	79
	21kDa (human),	91.15	NA	92.83	NA	NA	92.83																	86.44	51.69	85.71	71.7
	19kDa (mouse)			97.31		And the second	97.31																	96.61		94.29	
	protein gene						++																	++		++	
47	protoin gono	0007		4570	STREET, STREET, STREET, ST		4570																	-			
17	HUMIKCHIN	2397	NA	15/2	INA	INA	15/2																				
	MUSMK3A	1994	NA	1587	NA	NA	1587																				
	Voltage-gated	83.25	NA	90.59	NA	NA	90.16																				
	potassium			97.14	Not H		97.14																				
	channel gene				13575103	Contraction of	++																				
10	HUMPONIA	6240	150	796	200	2742	150	221	7/09	09	06	60	020	105	1005	124	86	80	286								
18	HUMPUNA	0340	109	/80	200	3/13	109	221	708	90	90	00	938	195	1005	124	00	80	200								
	MMPCNAG	4970	144	786	331	2629	144	221	815	98	139	68	252	195	1345	124	78	80	331								
	Proliferating cell	42.64	39.6	87.79	59.3	24.91	39.6	88.24	39.4	84.69	34.04	88.24	9.412	88.72	24.95	87.9	63.41	87.5	59.3								
	nuclear antigene			95.8		AVE B	101-22	95.02		97.96		97.06	1.122 233	96.92	1000	94.35		93.75	1991								
	(PCNA) gene				AN SET	12 And	THE STATE	++		++	Statistical International	++	10.1	++	WAREHOUSE	++		++	((Westers)))								
40	(1 0117) gene	ECCE	00	1440	COMPACTOR OF THE OWNER.	100050000	0059-1-000	60	1440	NIA	and the second second	-		_	(Sectore and sectore and se	-		-	CONTRACTOR OF STREET								
19	HSU/3304	5005	03	1419	INA	>56	>58	03	1419	INA																	
	MMU22948	1654	62	1422	50	0	1.	62	1422	50																	
	CB1 cannabinoid	84.46	76.8	90.42	NA	0	0	76.8	90.32	NA																	
	receptor (CNR1)		and the	97.25	A. C. STREET	Seat Carlos	The Carrie		97.25																		
	gene					NY SALA	-	Sim Walk	++	PROFESSION	1																
20	4 5007070	7004	600	072	1064	2700	600	140	0000	100	1007	105	100	206	270	67	044	00	105	165	1054						
20	AF00/8/6	7894	529	8/3	1854	3790	529	112	2030	129	331	105	108	200	3/1	57	041	99	105	105	1854						
	MMATPB2	7179	584	873	NA	3274	584	112	1737	129	314	105	101	206	210	57	800	99	112	165	NA						
	Na/K-ATPase	57.96	71.34	90.26	NA	51.78	71.34	96.43	47.46	90.7	58.68	92.38	62.8	87.86	46.47	89.47	60.09	85.86	54.38	90.3	NA						
	beta 2 subunit		1 2 4	96.22	1.11		1002151	99.11		95.35		91.43		96.12	and a	94.74	Strend Strends	93.94		100	and sold						
	gene		EV STAR		- E ALLE		1000	++	1212 3 2	++	1000	++	States NZ	++	115 A. A.	++	NHO BRO	++		++							
				- '	the second se	the second se	the second s				The local division in which the local division in which the local division is not the local division of the local division in the lo		and the second s		and the second se		and the second se				Concession of the local division of the loca	-					

21	HUMNT3A MMNT3 Neurotrophin-3 gene	1029 1284 90.28	NA NA NA	774 777 89.53 96.12	NA NA NA	NA NA NA	774 777 89.36 96.12																
22	HSCKBG MUSCRKNB Creatine kinase B gene	4200 4521 60.38	80 92 58.14	1146 1146 89.62 95.55	297 198 64.65	1745 1503 33.90	-+ 68 77 55.17	260 256 31.01	12 15 74.07	193 193 87.05 91.71	123 186 44.66	155 155 88.39 90.97	72 77 61.74	133 133 91.73 99.25 ++	384 169 27.85	172 172 88.37 95.93	670 585 32.99	124 124 93.55 96.77	157 147 40.13	190 190 92.63 96.32 ++	79 83 25.93	179 179 87.15 98.88 ++	297 198 64.65
23	HUMACHRM4 MMM4ACHR Muscarinic acetylcholine m4 receptor gene	2595 1707 79.96	29 NA NA	1437 1440 89.14 95.2	NA NA NA	>771 NA NA	>771 NA NA	29 NA NA	1437 1440 89.05 95.2 ++														
24	HUMMHHSP2 MUSHSP7A2 MHC heat shock protein (HSP70- 2) gene	2876 3518 80.88	NA NA NA	1926 1929 91.28 95.33	NA NA NA	NA NA NA	1926 1929 91.21 95.33 ++																
25	HUMAPEXN MUSAPEX APEX nuclease gene	3730 4042 49.71	332 129 32.54	957 954 86.1 94.04	258 165 36.41	1089 962 36.87	264 72 20.83	183 183 38.8	68 57 64	58 55 70.8 62.07 ++	210 217 44.5	188 188 88.83 89.36 ++	566 460 30.6	193 193 86.53 97.93 ++	130 102 49.14	518 518 86.87 97.88 ++	258 165 36.41						
26	HUMGAD45A MUSGAD45 gadd45 gene	5378 3100 64.23	2327 NA NA	498 498 89.76 93.37	547 NA NA	1782 1087 38.50	2327 NA NA	44 44 95.45 88.64 ++	486 89 17.04	102 102 87.25 91.18 ++	223 94 27.13	238 238 87.82 92.02 ++	1073 904 50.58	114 114 93.86 100 ++	547 NA NA								
27	HUMMHHSPHO MUSHSC70T Heat shock protein 70-HOM gene	3330 2295 81.39	NA NA NA	1926 1926 84.99 94.39	NA NA NA	NA NA NA	1926 1926 84.99 94.39 ++									•							
28	HSHOX51 MMU77364 HOX 5.1 (human), HOXD4 (mouse) gene	6305 7627 46.77	1243 1140 69.9	768 753 88.15 92.19	3126 572 23.9	541 558 72.79	1243 1140 69.9	433 427 87.91 90.76 -+	541 558 72.79	335 326 90.47 94.03 ++	3126 572 23.9												
29	HUMHISAC MUSH1EH2B Histone H1F4 (human), H1e (mouse) gene	1978 3605 75 38	NA NA NA	660 660 85.91 94.09	NA NA NA	NA NA NA	660 660 85.91 94.09 ++																
30	HUMSPERSYN MMSPERSYN Spermidine synthase gene	7623 3915 49.48	82 75 71.34	909 909 87.79 93.73	658 277 31.02	4169 1787 23.09	82 75 71.34	167 167 92.81 97.01 ++	431 257 42.73	121 121 89.26 99.17 ++	332 317 27.12	93 93 88.17 100 ++	2043 720 19.76	154 154 87.01 93.51 ++	509 327 32.06	84 46.5 92.86 ++	84 230 0	146 68.62 90.41 -+	694 85 10.53	123 123 82.93 85.37 -+	76 81 63.69	21 21 71.43 85.71 ++	658 277 31.02

31	HSHIS10G MMU18295	2530 2893	NA NA	585 585	NA NA	NA NA	585 585																				
	Histone H1(0) gene	66.84	NA	90.94 94.87	NA	NA	90.94 94.87 ++																				
32	HSCFOS MMCFOS	3565 3967	153 152	1143 1143	786 846	1298 1276	153 152	141 141	753 754	252 252	431 405	108 108	114 117	642 642	786 846												
	Cellular oncogene c-fos	81.68	/4./5	93.7	86.27	67.11	(4./5	97.87 ++	73.39	83.73 86.9 ++	55.94	90.74 100 ++	64.07	94.39 +-	86.27												
33	HUMHGCR MUS5HT1B	2635 2348	NA NA	1173 1161	NA NA	NA NA	1173 1161																				
	Serotonin 1B receptor gene	69.25	NA	88.41 92.07	NA	NA	88.86 92.07 ++																				
34	HSODCG MUSODCC	9043 7100	334 425	1386 1386	342 750	5884 3948	207 196	2856 1813	110 213	105 89	17 16	102 102	283 232	174 174	206 143	173 173	258 186	135 135	130 101	82 82	176 160	84 84	1055 544	163 163	82 81	113 113	93 82
	decarboxylase aene	51.94	60.54	85.71 89.61	51.8	41.19	70	51.55	42.72	51.5	60.61	85.29 82.35 ++	44.66	94.83 ++	40.11	90.17 ++	29.73	93.33 ++	42.42	84.15 87.8 ++	50	86.9 89.29 ++	28.27	86.5 92.02 ++	39.26	83.19 92.92 ++	36.57
35	HUMUDPCNA MUSGLCNACT	4705 1894	126 NA	1338 1344	1073 NA	NA NA	126 NA	1338 1344	1073 NA															215 215	640 517	145 145	342 750
	Alpha-1, N- acetylglycosamin	75.34	NA	84.6 90.36	NA	NA	NA	84.41 90.36	NA															87.91 93.49	16.25	77.93 74.48	51.8
36	HSU29185 MUSPRNPA	35522 38418	243 155	738 765	1606 1233	12597 19923	134 47	2622 2190	99 98	9975 17733	10 10	738 765	1606 1233											**		**	
	Prion protein Prp (human), Prnpa	30.68	45.23	86.45 83.74	43.47	34.68	13.26	21.95	71.07	38.03	80	84.9 83.74	43.47														
37	HUMGALTB MMU41282	4286 4023	27 129	1140 1083	125 97	2620 1871	27 129	82 25	308 308	170 170	232 216	76 76	95 90	49 49	125 119	130 130	153 127	57 57	162 160	123 123	305 180	133 133	103 102	84 84	327 305		
	Galactose-1- phosphate uridyl	60.08	16.67	81.67 85.79	54.05	46.24	16.67	35.51 25.61	51.3	88.24 97.06	53.12	82.89 86.84	63,78	75.51 73.47	69.67	94.62 96.92	61.43	92.98 100 X	67.7	80.49 85.37 X	33.4	90.23 90.23	63.41	92.86 96.43	53.48		
38	HSU01212 MMU01213	3718 3279	NA NA	492 492	NA NA	NA NA	492 492											~				155 155	810 264	81 81	125 97		
	Olfactory marker protein gene		NA	88.41 89.63	NA	NA	88.41 89.63 ++															81.94 87.1 ++	29.24	76.54 81.48 X	54.05		
39	HUMMIF MMU20156	2167 920	97 92	348 348	116 120	284 344	97 92	108 108	189 201	173 173	95 143	67 67	116 120								1						
	Macrophage migration		38.1	87.64 88.79	36.44	37.10	38.1	88.89 94.44	35.9	86.71 83.24	39.5	88.06 94.03	36.44														
40	AF049259	5698	47	1263	363	2938	47	495	1324	83	199	157	190	162	124	126	92	221	1009	19	363	-	-				
	MMU13921	4678 65.93	67 54.4	1314 85.74	249 0	2581 41.71	67 54.4	471 82.19	968 47.99	83 85.54	194 43.26	157 90.45	177 61.58	162 88.27	111 46.81	126 89.68	90 51.65	221 89.59	726 27.9	23 47.62	315 0	71 0	249 0				
	Keratin 13 gene			86.46			The second	80.61		79.52		93.63		92.59		92.86	1000-00-00 1000-00-00-00-00-00-00-00-00-00-00-00-00	96.38		0 X							

41		1301	NA	642	NA	NAME	642															
2.1	MUSHISTA	1977	NA	630	NA	NIA	630															
	Histone H1 2	60.03	NA	80.69	NA	NA	80.87															
	(human) H1 1		INA	84 11	INA		84.11															
	(maniari), TTT.T			04.11	S. Lander		-+															
40	(Incuse) gene	1050	NIA	904	NIA		804															
42	MUSACTUR	1000	NA	901	NA	NA	801															
	Adappenetication	75 72	NA	091	NA	NA	091															
	Adrenoconicotrop	10.10	INA	00.09	INA	INA	04.03															
				00.20	12,3016	Section 1	00.20															
42	A E O O 7 1 4 9	10005	170	062	600	762	470	620	490	70	074	254	600	í i								
43	AF02/146	12020	1/2	903	DZZ	703	100	630	409	79	214	254	022							18		
	MMMYODT	2027	102	957	INA	10/	102	021	439	79	320	201	INA									
	Myogenic	62.30	58.1	84.74	NA	48.05	58.1	89.1	41.03	/9./5	48.84	76.44	NA									
	determining		1.1.1.1	87.85	All all a	St. In St.	an beise	94.76		68.35		/6.//	10.00									
	factor 3 (MYOD1)		and the second					++		++		**		105	0.0	100	0.000	001	0500	101	0.0	
44	HUMKER18	6520	47	1293	68	2376	4/	417	741	83	337	157	5/2	165	85	126	262	224	3/9	121	68	
	MUSENDOBA	7879	58	1272	43	2412	58	396	792	83	2/4	157	639	165	111	126	275	224	321	121	43	
	Keratin 18	50.95	55.2	82.6	43.2	43.30	55.2	80.44	37.31	87.95	48.45	87.9	35.33	87.27	48.98	80.16	50.65	83.93	54.57	80.17	43.2	
	(numan),			86.54	Sant		112.00	81.29		93.98		95.54		89.09		80.95		88.39		86.78		
	cytokeratin					the particular		++		++		+-	and the	++		++		++	and sectors	++		
45	HUMADRA	1521	NA	1353	NA	NA	1353															
	MUSALP2ADB	1454	NA	1353	NA	NA	1353															
	Alpha-2	85.21	NA	87.14	NA	NA	87.14															
	adrenergic			88.25		A.F. S.	88.25															
0.22	receptor gene			_	C. S. C. S.		++					_	_				_					
46	HSMHCPU15	5833	46	660	18	3747	1	No.	46	60	1853	68	1055	132	610	130	229	14	42	838	146	18
	MUSLMP2A	6101	356	642	297	3581	59	943	297		281		1310	132	213	130	382	99	44	733	253	3
	Histocompatibility	41.66	16.6	62.12	5.079	15.8671	0	0	16.6	51.718	0	88.28	35.8	84.85	18.96	80	44.19	64.73	?	30	80.21	60.98
	comples			58.18	A STATES		5.5			61.9	2.47.0	87.5	STATISTICS.	88.64	Alexand Co.	90		19.01		Participation in the	NA	
	(human),		and the		6.000		n-n-after	1971 MA	1 the second	X		++		++	1	++	1.1.1.1	++	Sec. 1	(TECONSU)	++	
47	HSU72648	4850	NA	1386	NA	NA	1386															
	MUSADRA	2409	NA	1377	NA	NA	1377	2														
	Alpha-2 -C4-	78.83	NA	85.93	NA	NA	86.21															
	adrenergic			88.1	Re- F		88.1															
	receptor gene				No.	and the face	++							_								
48	HUMMK	4638	46	432	130	1295	45	296	1	76	160	168	122	162	717	26	130					
	MUSMKPG	2929	46	423	262	1417	45	481	1	76	117	159	116	162	703	26	262					
		54.39	73.88	86.34	44.4	23.12	73.3	18	100	82.89	40.43	86.24	34.45	90.12	19.44	88.46	44.4					
	Midkine gene		BASA	84.72					1	82.89	R all	82.14		87.04	LO ME	92.31	State of the second					
			1			-		1		-+	BIR SAL	++	1.00	++	142	++	1000					
49	HSMYF4G	2804	NA	675	NA	258	NA	471	132	81	126	123	NA									
	MUSMYOGEN	4145	49	675	681	1041	49	471	514	82	527	122	681									
	Skeletal muscle-	78.42	NA	90.07	NA	26.49	NA	90.66	26.63	87.12	26.34	89.8	NA									
	specific,			94.67	a la la	En alterate		96.82		85.19	a series and	92.68	and a start of									
	myogenic gene		USA				Carlo and	-+	ALL ALL	++	The second second	++	and the second second									
50	HUMHISAB		NA	666	NA	NA	666															
	MMHISTH1	1943	NA	666	NA	NA	666															
	Histone H1 gene	78.61	NA	79.28	NA	NA	79.28															
	(H1F3, human)			87.84	2 States		87.84															
			Sector Production		A support from	Constant of the local division of the	++															

51	HUMOTNPI	1338	36	375	102	384	36	120	300	199	84	56	102														
	MUSOXYNEUI	2003	41	3/8	119	344	41	120	261	202	83	56	119														
	Prepro-oxytocin-	07.79	51.95	97.2	30.91	34.25	51.95	00.07	32.44	00.70	40.72	64.20	30.91														
	gene			07.2		1. 15. 2		++		++		++															
52		13500	60	705	650	REFERENCE OF	60	66	110	32	1622	111	2374	04	6062	90	267	120	00	102	650						
52	MUSTKA	2020	172	705	425	1476	172	66	81	32	1032	111	2014	94	0902	90	151	120	305	192	425						
	MOSTRIM	2000	28.2	82 08	18.8	5 55	28.2	87.88	45.03	90.62	15.07	88.20	7.08	85 11	1 503	82.22	12.6	80.83	27 72	78.22	18.8						
	Thymidine kinase		20.2	86 38	10.0	0.00	20.2	90.91	40.00	93.75	10.07	91.89	1.00	89.36	1.000	86.67	12.0	92.5	21.12	75	10.0						
	gene		1 100	00.00			Constant of the	++		++		++		++	Report of the	++		++		++	1000						
53		3458	NIA	1242	NA	NA	1242				And the Party of the		and the second		100000000000000000000000000000000000000	1.1					1.84/14						
	MMB2ARG	4928	NA	1257	NA	NA	1257																				
	WIWDZARO	72 79	NA	85.02	NA	NA	84 51																				
	Beta-2-adrenergic	12.10	INCA	87.2	INA		87.2																				
	receptor gene			07.2		not stars	++																				
54	HUMMETII	2167	NA	207	NA	1152	NA	31	248	66	904	110	NA														
	MUSMETIII	2649	56	207	138	1004	56	31	194	66	810	110	138														
		50.99	NA	86.96	NA	41.26	NA	90.32	47.06	83.33	39.67	88.18	NA														
	Metallothionein-III			84.06				87.1		77.27	No.	87.27															
	gene		A COST			T. TRUE	1.1	++	14216	++		++	they want to														
55	HUMXRCC1G	37785	NA	1902	NA	30026	51	405	93	13889	111	6105	159	962	75	96	112	309	110	73	112	521	259	329	117	4453	94
	MUSXRCC1G	37349	NA	1890	NA	#REF!	51	431	93	11853	117	5681	159	524	75	95	112	357	110	77	100	169	259	237	117	2289	94
	VROCA DNA	26.55	NA	82.6	NA	#REF!	94.12	34.21	91.4	23.19	85.09	27.61	89.31	31.22	78.67	78.53	87.5	38.44	80	60	64.15	24.93	79.15	38.52	90.6	5.251	79.79
	ARCCI DINA			84.7			94.12		100		100		98.11		88		91.07	TAK -	79.09	1	61.61		81.08		94.87	2	70.21
	repair gene		1			La telling	-+	LE EPICE	++	(Australiante	++		++	1000	++		-+		++		++	-10-10	++		++		++
56	HUMG0S24B	3889	58	981	706	810	58	24	810	957	706					156	133	488	55	94	140	1584	91	456	76	106	114
	MUSZPF36G	7493	59	960	770	677	59	24	677	936	770					139	130	293	55	88	137	1057	91	754	76	95	114
	GOS24 (human),	51.84	59.83	82.06	52.71	46.67	59.83	87.5	46.67	82.83	52.71					43.39	79.85	37.13	89.09	56.04	77.26	23.7	81.32	37.52	84.21	54.73	88.6
	Tristetraprolin zpf-			84.4		and the		87.5		84.33							63.16	Meney.	87.27		72.86	- Lose	89.01	in dusie	86.84		97.37
00001	36 (mouse) gene				and an and	We E B		++	122	++	A. States						++	S Julian	++	100	++		++	11.00	++	ALC: NO	++
57	HSAGL1	1138	37	429	109	257	37	95	117	205	140	129	109														
	MUSHBA	1441	32	429	102	256	32	95	122	205	134	129	102														
	Alpha-globin	59.23	27	79.72	51.2	22.96	27	72.63	25.1	79.02	21.17	86.05	51.2														
	germ line gene			85.31	A Providence	1 6. 2010		72.63	Sale of the last	86.34	020	93.02	Street Barry														
50	HODOKAO	4044		1054	NIA		1054	++	Callenty	++	1.5%																
58	HSPGK2G	1911	NA	1254	NA	NA	1254																				
	MUSPGRZ	69.71	NA	84 03	NA	NA	1204																				
	Testis-specific	00.71	INA	86 12	INA	INA	86 12																				
	PGK-2 gene			00.12		121	++																				
59	HSU57623	9170	31	402	230	6712	31	73	3386	173	1889	102	1437	54	230	1											
00	MMU02884	8765	41	402	238	6047	41	73	3441	173	1490	102	1116	54	238	1											
	Faty acid binding	43.83	44.4	82.34	62	39.71	44.4	89.04	38.85	84.97	39.83	76.47	41.6	75.93	62												
	protein (human).			85.07			- Elifeire	90.41		84.97		82.35		83.33													
	MDGI (mouse)					1	E. Contractor	++		++	Super-	++	Section 1	++	1000	1											
60	HSARYLA	3637	374	1524	99	1104	374	218	149	241	114	219	74	170	312	125	90	128	250	103	115	320	99				
	MMDNAASFA	4342	639	1521	NA	965	639	215	145	241	116	219	77	170	187	125	94	128	235	103	111	320	NA				
1	Andeulahatasa	62.41	45.21	82.15	NA	39.38	45.21	79.91	35.37	85.89	40	81.74	74.17	84.71	24.05	78.4	69.57	87.5	46.19	87.38	24.78	77.81	NA				
1	Aryisuiphatase A		The second	84.65	all south	1 State	- Alter	83.94		92.12		87.67		88.24		84		91.41	and the second	81.55	And the second	74.06					
1	gene		A STATES		A STATES	- Carlestan	Contraction of	++		++	10000000	++	Section 1988	++	222 31 43	++		++	STREET, STREET	++	100112-51	++					

61	S63168	1594	NA	810	NA	NA	810																				
	MUSCRP3A	1146	NA	804	NA	NA	804																				
	CCAAT/enhancer	81.5	NA	85.06	NA	NA	85.38																				
	binding protein		COLUMN.	85.19			85.19																				
60	(numan), C/EBP-	0400		600	120		T-	264	700	64	440	170	420														
62	MUSHSP25A	2490	41	630	139	723	41 50	304	506	66	110	1/2	139														
	HSP 27 (human)	50.44	11	83	427	31 71	11	82.81	27 29	87.69	58 78	74 79	427														
	HSP25 (mouse)			83.5		G1.11		84.89		93.75	00.70	76.74															
	gene		1. 1 1.		10.200		5.9 × 10	++	HIR	++	2,30022	++	Contents														
63	HUMROD1X	2841	15	1056	277	503	15	590	387	247	116	219	277														
	MUSROM1X	2787	15	1056	278	449	15	590	359	247	90	219	278														
	Rod outer		93.33	84.85	61.26	40.56	93.33	84.24	37	85.43	52.43	85.84	61.26														
	segment			84.38			1	83.39	15 Inde	88.66		82.19															
1942	membrane					12000				++	all and	++	C. C.														
64	HUMSSTR3X	1413	NA	1257	NA	NA	1257																				
	MUSSSTR3A	1797	NA	1287	NA	NA	1287																				
	Somatostatin	81.03	NA	82.42	NA	NA	81.45																				
	3 gene			00.2			+-																				
66	HUMADAG	36741	95	1092	311	#REE!	95	33	15166	62	7052	123	2441	144	771	116	1237	128	1121	72	76	102	176	65	1438	130	616
	MMU73107	29807	92	1059	248	#REF!	92	33	11833	62	2689	123	2359	144	481	116	1024	128	552	72	81	102	221	65	1764	130	471
	Adenosine	34.05	48.1	78.39	35.7	#REF!	48.1	84.85	19.36	83.87	1.643	81.3	33.83	86.11	34.82	82.76	36.62	78.91	27.5	70.83	48.41	78.43	46.85	78.46	38.41	83.08	24.1
	deaminase (ADA)			80.22	1001.10	I MARTINE	R. C. M.	90.91	- the second	87.1		75.61	- ALANA	91.67		77.59		75		83.33	E	85.29		73.85	W-HANNER	92.31	2-14
	gene .					and the second		++		++		++		++	Sig-all	++		++		++		++		++		++	
65	HSPNMTB		23	849	83	1065	23	202	951	208	114	439	83										10	03	448	14	311
	MUSPNMT	3144	NA	888	NA	578	NA	235	470	208	108	445	NA										84	16	105	23	2
	Phenylethanolam	55 12	NA	82 1	NA	23.44	NA	70.02	21.82	83 17	36.94	83.94	NA										60.96	0	32	71	35.7
	ine N-methylase			84.45		20.44		75.74	LINE	86.54	00.04	87.47											58.25			NA	00.1
	gene				11.12	Frank Card	10-10-10	-+		++	12 2011	++	(ENCONC)										X		110000	X	
67	HUMSMPD1G	5588	86	1890	369	2113	86	312	465	773	1061	172	229	77	202	146	156	410	369								
	MMASM1G	4775	NA	1884	NA	1617	NA	306	383	773	512	172	240	77	354	146	128	410	NA								
	Acid	61.09	NA	81.27	NA	41.98	NA	65.05	49,29	83.31	36.24	90.7	44.78	87.01	36.69	85.62	61.97	83.66	NA								
	sphingomyelinas		and the second	82.06			-	54.81		87.32	-	92.44		89.61		90.41	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	84.15									
60	e gene (SMPD1,	0027	- NIA	204	NIA		NIA	-+	NIA	++	NA	TT NIA	NIA	TT	NIA	77	6	457		1701	-	027	NIA	í.			
00	MMU71085	27874	2605	543	3044	12842	223	1855	234	5657	020	1430	1110	882	QA	1566	6	157	1205	149	247	237	3044				
	Insulin-like	54.65	NA	83.76	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	27.11	66.67	86.62	NA	NA	NA	81.86	NA				
	growth factor II			45.69														85.99		NA		18.99	Caral.				
	gene							SS. SU		WINCH			(HOLATION)		423072			-+		NA		++	90 (B) (B) (B)				
69	HUMNUCLEO	10942	111	2124	283	6912	111	18	960	117	1163	478	670	198	104	87	184	142	1005	125	605	124	459	158	514	124	236
	MMNUCLEO	11478	148	2124	NA	6480	148	18	982	117	656	496	215	186	98	87	177	142	907	125	1163	124	450	155	492	124	190
		43.68	55.6	84.42	NA	28.79	55.6	88.89	32.34	82.05	18.8	80.7	18.31	80.73	54.46	87.36	50.42	80.28	17.05	89.6	32.58	83.06	24.64	84.98	25.84	91.13	41.31
	Nocleonin gene		a de la composition de la comp	82.34	1. 2.2	and the	-	100		87.18		/5.31		66.67		86.21		69.72	1000	96		//.42		79.75	4	84.68	
70	HUMCOX5P	2503	NA	300	83	1628		103	876	74	200	100	552	112	83	TT		**		134	403	127	386	215	133	77	283
10	MUSCYTCOVB	2540	49	387	76	1336	49	100	521	74	166	100	649	113	76					122	704	127	331	224	115	77	NA
	Cytochrome c	47.64	0	84.36	69,18	40.04	0	82.76	29.63	87.84	48.63	87	53.46	82.3	69.18					85.94	45.45	88.98	52.16	86.56	38.71	89.61	NA
	oxidase Vb			80.77				75.73	19-11-1	89.19	C. Carlos	87	A CONTRACTOR	74.34						82.84		94.49		99.07	S. G.S.S	93.51	
	subunit gene				5-2-4-2-1	TAPE IN	Carlos and	++	1.100-53	++		++		++	NE SERVE				0	++	No.	++	and the second	++	Mar all	++	

71	S45332 MMERYPR Erythroproietin	8647 6561 45.21	NA 45 NA	1527 1524 81.6 80.75	NA 163 NA	4686 2852 26.98	NA 45 NA	115 115 81.74 78.26	856 977 36.55	136 133 84.76 79.41	987 333 15.61	176 176 77.27 80.11	80 85 44.85	158 158 77.22 75.95	483 606 28.65	154 154 86.36 89.61	84 78 66.67	88 88 79.55 85.23	2101 679 24.17	88 88 93.18 92.05	95 94 62.43	612 612 80.88 78.43	NA 163 NA				
72	HUMINSPR MMINSIIG Alpha-type insulin (human),	3943 2408 29.9	59 63 33.1	333 333 81.68 81.08	NA >39 NA	966 606 20.95	42 46 22.7	++ 179 118 29.6	17 17 58.8	++ 187 186 79.36 80.21	787 488 18.98	++ 146 147 84.64 82.19	73 >39 NA	++		++		++		++		++					
73	preproinsulin HUMHST MMKFGF transforming protein (hst,	6616 3989 57.28	238 117 26.48	621 609 80.35 79.23	1855 2301 46.78	1155 828 34.06	238 117 26.48	340 328 78.14 70.59	617 399 33.46	++ 104 104 85.58 86.54	538 429 34.75	++ 177 177 84.18 91.53	1855 2301 46.78														
74	human), HUMPLPSPC MUSPSPC Pulmonary surfactant protein	3409 3633 55.12	25 27 26.92	594 582 78.28 78.79	428 185 0.326	>1600 2329 NA	25 27 26.92	++ 42 42 83.33 85.71	698 1229 40.69	++ 159 159 83.65 90.57	345 334 53.31	+- 123 123 79.67 78.05	223 237 46.52	111 111 84.68 78.38	334 328 48.04	159 147 68.63 66.04	428 9 NA	NA 201 NA	NA 176 NA								
75	(SP-C) gene HSCOSEG MUSVASNEU Vasopressin- neurophysin	3521 3494 42.93	NA 32 NA	495 507 84.44 81.21	60 52 30.36	1550 1349 36.40	NA 32 NA	++ 120 132 80.16 82.5	1376 1145 34.91	++ 202 202 91.58 93.56	174 204 48.15	++ 173 173 76.3 65.9	60 52 30.36	+-		++											
76	precursor gene HSB3A MMB3A Beta-3-adrenergic	3683 3438 62.71	197 182 54.88	1227 1203 78 80.2	636 708 NA	>1025 809 NA	197 182 54.88	-+ 1205 1163 80.41 81.41	1025 463 22.72	++ 22 40 16.13 13.64	636 28 NA	++ 346 NA	NA 680 NA														
77	HUMLORI MMU09189	3321 6530 63.26	62 70 63.64	951 1446 76.13 79.18	236 235 68.37	1188 1091 53.18	39 47 65.12	+- 1188 1091 53.18	23 23 60.87	X 951 1446 60.41 79.18	236 235 68.37			I													
78	HSU37055 MUSHEPGFA Hepatocyte growth factor-like	9980 6751 65.87	76 94 75.29	2136 2151 79.78 78.51	80 65 46.9	2474 2303 49.80	76 94 75.29	52 52 76.92 69.23	697 613 47.48	148 148 83.78 81.08	80 92 60.47	113 113 76.11 76.99	77 84 65.84	115 115 80.87 78.26	77 84 59.63	137 137 83.21 83.21	79 81 52.5	121 121 76.03 76.86	144 81 35.56	119 119 79.83 83.19	202 143 42.9	169 196 71.23 71.01	120 159 52.33	131 131 75.57 75.57	97 78 38.86	103 103 83.5 84.47	127 122 32.13
79	protein gene HSH11 MUSH1X H1.1 (human), H1 (mouse) gene	1034 1781 72.34	NA NA NA	648 642 71.76 79.17	NA NA NA	NA NA NA	648 642 72.09 79.17	++		++		++		++		++ 137 137 75.91 76.64	89 88 66.67	++ 36 36 86.11 91.67	88 79 50.3	++ 121 109 71.3 76.86	175 161 48.81	++ 78 78 85.9 84.62	127 119 43.9	++ 147 147 80.95 81.63	81 80 68.32	++ 107 107 85.05 78.5	95 98 67.36
80	HSU66875 MMU63716 COX6AH (human), coxVlaH (mouse)	1569 2324 55.77	75 NA NA	294 294 79.25 77.55	28 NA NA	269 263 30.96	75 NA NA	73 73 82.19 73.97 ++	101 186 39.02	137 137 75.91 72.26 ++	168 77 26.12	84 84 82.14 89.29 ++	28 NA NA			**		**		++		**		140 140 82.14 68.57 ++	119 141 60	++ 162 162 83.95 83.33 ++	80 65 46.9

81	HSINT2	11608	NA	720	337	7937	NA	220	2289	104	5648	396	337												
	MMINT2	8283	864	738	1454	3543	864	220	1743	104	1800	414	1454												
	Int-2 proto-	52.21	INA	82.5	22	0.29	INA	94.09	21.40	92.31	0.557	73.48	44												
	oncogene							++	1022.5	++		+-	The second												
82	HSBGL3	2052	50	444	132	980	50	92	130	223	850	129	132												
	MUSHBBMAJ	6532	52	444	2135	769	52	92	116	223	653	129	2135												
	Beta-globin major	49.9	/8.4	81.76 79.73	8	30.18	18.4	78 26	50.1	82.51	33.13	79.07	0												
	gene					1 Card		++		++	Hur-Lat	++													
83	HUMALIFA	7614	64	609	3073	2424	64	19	1731	179	693	411	3073												
	MUSALIFA	8757	171	612	>5086	2117	171	19	1560	182	557	411	>5067												
	Leukemia	55.79	47.66	80.79	NA	NA	47.66	89.47	NA	86.98	42.88	77.37	NA												
	(LIF) gene			/9.0				94.74		90.5	1000 AU	++													
84	HUMFABP	5204	NA	399	NA	2661	67	1194	173	1023	108	444	51												
	MUSFABPI		NA	606	NA	3467	103	1256	173	1792	108	419	222												
	Intestinal fatty	43.86	NA	80.2	NA	34.10	64.71	34.53	81.5	35.31	81.48	30.13	26.37												
	acid binding			60.15	a the		13.43		/9.//		66.67	al carlos da	41.18												
85	HUMLYTOXBB	6305	8	735	151	974	8	162	396	46	183	72	395	455	151										
	MMU16984	6914	10	921	155	704	10	162	366		316		338	443	155										
	l vmphotoxin-beta	39.52	66.67	78.21	5.9	########	66.67	85.8	50.13	54.3	?	76.4	31.4	80.4	5.9										
	gene			82.43			Statistics of the	85.19		76.5	1 Tables	80	The state	74.5											
86		1569	403	804	201	2107	345	1307	58	206	87	-+	803	416	201										
00	MMLYL1	3678	372	837	-	1458	348	652	24	333	91	90	715	414	-										
	I XI -1 protein		53.16	78.23	0	29.72	58.87	25.42	4.878	70.27	73.03	87.91	32.02	79.04	0										
	gene			76.87	The Part of the Pa				STATE.	73.99		88.04	1	76.44											
97		2710	NIA	456	NA	1215	123	100	327	1003	6	++		++	And and a second										
0,	MUSANF	1983	NA	459	NA	490	120	103	327	387	12														
	Atrial natriuretic	63.94	NA	79.82	NA	24.41	74.9	54.22	82.57	21.08	50														
	factor gene			78.95		HES HE	63.41	-	84.4		50														
		1102	82	270	112	1109	++	73	++	115	A20	01	112												
00	MMSCIMIP	1988	80	279	410	719	80	76	490	112	229	91	400												
	MIP1/SCI murine	55.84	69.9	77.42	56.1	33.27	69.9	79.19	38.71	77.53	24.35	75.82	56.1												
	gene and human			75.27				82.19	No a Call	75.65		69.23													
	homolog	5001	-	1507				++		++		++	-	170	20	170	0.10	105	00	70	100	105		100	
89	HUMALPI	5291	50 NA	1587	886	1360	50 NA	67	82	117	114	116	203	1/5	78	1/3	242	135	95	73	130	135	73	192	223
	Intestinal alkaline	50.95	NA	78.45	NA	38.55	NA	88.06	50.6	84.62	50.43	82.76	34.38	85.14	55.84	80.92	34.99	79.26	30.68	67.12	33.2	77.78	30.57	80.73	46.34
	phosphatase			78.07		1 1 1	TAKE D	94.03	Selle .	84.62	-	85.34	a diala	82.29	Sale and	86.71		82.22		57.53	1 the ale	68.89	and the	84.38	
	(ALP1, human),				45,47			-+		++	· Manuel	++	1423	++		++	To and the	++	and Carpent	++	the second second	++	123	++	
90	HUMFPR1A	6931	136	1053	166	4766	74	1559	51	3207	11	1053	166									117	111	287	886
	MUSNFORREC	1524	NA	77 78	NA	NA	NA	NA	NA	NA	NA	76 26	NA									67.53	24.37	383 62.09	NA
	N-formyl peptide		104	77.49			-		101			77.49										64.1		70.03	
	receptor gene					and the second second					1.00	++										++		+-	- Contraction

91	HSSPRO MMVITRO S-protein (human),	5296 5004 56.83	NA NA NA	1437 1437 76.83 73.9	NA NA NA	1390 1460 45.94	64 64 89.06 79.69	92 89 53.04	120 120 82.5 75	75 78 71.9	345 342 61.72 54.78	78 79 58.6	140 140 90 94.29	256 167 31.68	157 157 85.99 87.9	197 109 33.33	153 153 86.27 86.27	459 725 44.09	345 351 73.28 69.57	233 213 60.54	113 110 78.92 79.65				
92	vitronectin HSGCSFG	2960	35	624	853	862	++	40	++	164	++	108	++	147	++	165	++		++		++				
	MMGCSFG Granulocyte colony-	3054 53.89	36 53.5	627 75.64 72.12	NA NA	953 32.93	36 53.5	40 75 52.5	84 24.62	173 70.03 64.02	348 32.78	108 86.11 86.11	246 38.97	147 76.19 83.67	275 36.9	159 73.46 65.45	NA NA								
93	stimulating factor HUMTNFBA MMTNFBG	2140 3219	170 116	618 609	NA 574	621 644	162 107	++ 288 337	8 9	+- 99 96	86 83	++ 106 100	247 224	++ 413 413	NA 574	X									
	Tumor necrosis factor-beta gene	54.02	48.25	77.99 71.84	NA	55.00	46.84	54.08	70.59	69.74 57.58 -+	74.56	69.9 56.6 ++	49.26	82.81 79.18 ++	NA										
94	HSU16720 MUSIL10Z	8868 7207 48.37	NA 65 NA	537 537 80.07	1034 702 58.1	3241 3820 42.31	NA 65 NA	165 165 73.33	866 887 38.22	60 60 76.67	290 305 45.04	153 153 84.97	1010 1007 48.69	66 66 89.39	1075 1621 38.87	93 93 79.57	1034 702 58.1								
	(IL10) gene			73.18				61.82 ++		70 ++		82.35		90.91 ++		67.74 ++									
95	HUMCP21OH MUS210HA1 21-hydroxylase B (human), 21-	4042 3307 59.69	NA NA NA	1488 1464 73.92 70.56	NA NA NA	1224 1159 33.48	202 202 78.71 78.71	97 68 27.88	90 90 73.33 70	282 352 31.86	155 143 75.17 73.55	107 105 21.7	102 96 74.75 76.47	88 86 65.52	102 102 68.63 47.06	101 88 62.43	87 87 75.86 68.97	169 110 29.39	201 201 73.63 71.64	200 198 12.06	179 170 73.93 70.39	83 68 59.6	104 104 78.85 72.12	97 84 26.52	266 269 72.52 68.8
06	hydroxylase A	2100	10	1692	100	040	++	440	++	112	++	100	X	100	++	950	++		++		++		++		++
90	MMAMH Anti-Mullerian hormone gene	2870 56.52	8 50	1668 1668 72.96 71.48	NA NA	942 735 25.14	8 50	412 403 65.52 56.8	372 15.56	143 143 72.03 67.13	177 36.68	109 109 76.15 74.31	87 54.86	160 160 70.62 65.62	99 37.04	859 853 77.34 79.98	NA NA								
97	HUMAPOE4 MUSAPE	5515	67	954	1/12		1222 11.15	11	ALC: A THE		Contraction of the local division of the loc														
		4856	65 68 18	936 76.62	109	2431 1675 27.32	44 42 65 12	757 759 27.97	23 23 73.91	43 43 81.4	1093 539 23.53	193 169 74.03	581 377 33.61	718 724 77 95	142 109 33.47										
	Apolipoprotein gene	4856 37.75	65 68.18	936 76.62 71.07	142 109 33.47	2431 1675 27.32	44 42 65.12	757 759 27.97	23 23 73.91	43 43 81.4 69.77 -+	1093 539 23.53	193 169 74.03 65.28 ++	581 377 33.61	718 724 77.95 72.7 ++	142 109 33.47										
98	Apolipoprotein gene HUMREGB MUSREGI	4856 37.75 4251 3756 38.79	65 68.18 74 71 71.59	936 76.62 71.07 501 498 76.85	193 200 37	2431 1675 27.32 2153 1915 36.36	44 42 65.12 28 25 64.2	757 759 27.97 301 277 43.25	23 23 73.91 46 46 76.09	43 43 81.4 69.77 -+ 64 61 73.6	1093 539 23.53 635 521 37.89	193 169 74.03 65.28 ++ 119 119 74.79	581 377 33.61 307 293 51	718 724 77.95 72.7 ++ 138 138 82.61	142 109 33.47 715 651 22.55	112 112 75.89	195 173 48.37	68 68 75	193 200 37						
98	Apolipoprotein gene HUMREGB MUSREGI Regenerating protein gene	4856 37.75 4251 3756 38.79	65 68.18 74 71 71.59	936 76.62 71.07 501 498 76.85 71.86	193 33.47 193 200 37	2431 1675 27.32 2153 1915 36.36	44 42 65.12 28 25 64.2	757 759 27.97 301 277 43.25	23 23 73.91 46 46 76.09	43 43 81.4 69.77 -+ 64 61 73.6 56.25 ++	1093 539 23.53 635 521 37.89	193 169 74.03 65.28 ++ 119 119 74.79 75.63 ++	581 377 33.61 307 293 51	718 724 77.95 72.7 ++ 138 138 82.61 80.43 ++	142 109 33.47 715 651 22.55	112 112 75.89 75 ++	195 173 48.37	68 68 75 57.35 ++	193 200 37						
98 99	Apolipoprotein gene HUMREGB MUSREGI Regenerating protein gene HUMPROLA MUSPROL	4856 37.75 4251 3756 38.79 1404 1413 67.88	65 68.18 74 71 71.59 NA NA NA	936 76.62 71.07 501 498 76.85 71.86 1002 1005 76.45 71.56	109 33.47 193 200 37 NA NA NA	2431 1675 27.32 2153 1915 36.36 NA NA NA	44 42 65.12 28 25 64.2 1002 1005 76.33 71.56	757 759 27.97 301 277 43.25	23 23 73.91 46 46 76.09	43 43 81.4 69.77 -+ 64 61 73.6 56.25 ++	1093 539 23.53 635 521 37.89	193 169 74.03 65.28 ++ 119 119 74.79 75.63 ++	581 377 33.61 307 293 51	718 724 77.95 72.7 ++ 138 138 82.61 80.43 ++	142 109 33.47 715 651 22.55	112 112 75.89 75 ++	195 173 48.37	68 68 75 57.35 ++	193 200 37						
98 99 100	Apolipoprotein gene HUMREGB MUSREGI Regenerating protein gene HUMPROLA MUSPROL Cathepsin L gene HSU29874	4856 37.75 4251 3756 38.79 1404 1413 67.88 6155	65 68.18 74 71 71.59 NA NA NA	936 76.62 71.07 501 498 76.85 71.86 1002 1005 76.45 71.56	193 200 37 NA NA NA NA	2431 1675 27.32 2153 1915 36.36 NA NA NA NA	44 42 65.12 28 25 64.2 1002 1005 76.33 71.56 ++	757 759 27.97 301 277 43.25	23 23 73.91 46 46 76.09	43 43 81.4 69.77 -+ 64 61 73.6 56.25 ++	1093 539 23.53 635 521 37.89	193 169 74.03 65.28 ++ 119 119 74.79 75.63 ++	581 377 33.61 307 293 51	718 724 77.95 72.7 ++ 138 82.61 80.43 ++	142 109 33.47 715 651 22.55	112 112 75.89 75 ++	195 173 48.37	68 68 75 57.35 ++	193 200 37 75	48	21	>1401			
98 99 100	Apolipoprotein gene HUMREGB MUSREGI Regenerating protein gene HUMPROLA MUSPROL Cathepsin L gene HSU29874 MMU44024 Elt3 ligand gene	4855 37.75 4251 3756 38.79 1404 1413 67.88 6155 4799 30.4	65 68.18 74 71 71.59 NA NA NA NA 80 63 NA	936 76.62 71.07 501 498 76.85 71.86 1002 1005 76.45 71.56 708 699 68.64 67.37	109 33.47 193 200 37 NA NA NA NA NA	2431 1675 27.32 2153 1915 36.36 NA NA NA NA NA NA NA	44 42 65.12 28 25 64.2 1002 1005 76.33 71.56 ++ >80 63 NA	757 759 27.97 301 277 43.25 33 93.94 90.91	23 23 73.91 46 46 76.09 1018 240 19.71	43 43 81.4 69.77 -+ 64 61 73.6 56.25 ++ 111 122 64.38 70.27	1093 539 23,53 635 521 37,89 344 432 37,89	193 169 74.03 65.28 ++ 119 74.79 75.63 ++ 5.63 ++	581 377 33.61 307 293 51 51 224 605 36.43	718 724 77.95 72.7 ++ 138 82.61 80.43 ++ 144 144 75.69 75	142 109 33.47 715 651 22.55 2297 344 7.8	112 112 75.89 75 ++ 139 144 77.03 73.38	195 173 48.37 48.37 1249 1470 29.86	68 68 75 57.35 ++ 179 189 61.41 62.01	193 200 37 37 75 90 46.06	48 21 28.99 18.75	21 NA NA	>140 NA NA			

101	HSA6693 MUSSER1 Ultra high sulfur protein gene	3448 3366 28.55	NA NA NA	510 693 79.02 59.41	NA NA NA	NA NA NA	510 693 67 59.41																		
102	HUMIL2RGA MMU21795 IL2RG (human), common cytokine receptor gamma	4038 5267 57.36	14 24 63.2	1110 1110 79.73 69.73	145 729 21.3	2696 2210 51.03	14 24 63.2	115 115 70.43 44.35 -+	378 190 40.14	154 154 81.82 74.03 ++	208 216 60.38	185 185 78.92 71.35 ++	208 190 72.86	140 143 74.91 64.29 ++	763 636 36.45	163 163 80.37 64.42 ++	532 454 57.4	97 97 81.44 71.13 ++	252 187 46.47	70 67 83.21 77.14 ++	355 337 69.36	186 186 85.48 85.48 ++	145 729 21.3		
103	HUMCRPGA MMCRPG CRP gene for C- reactive protein	2480 2140 45.75	NA 84 NA	675 678 75.7 69.78	NA 921 NA	278 213 41.55	NA 84 NA	61 64 67.2 54.1 ++	278 213 41.55	614 614 76.38 71.34 ++	NA 921 NA														
104	HSBCDIFFI MMIL5G B cell diff. Factor I (human), eosinophil diff.	3230 6727 53 13	NA 43 NA	405 402 75.31 70.37	NA 1089 NA	1259 2783 34.01	NA 43 NA	144 141 68.07 60.42 -+	208 829 23.53	33 33 75.76 72.73 ++	945 1875 36.74	129 129 84.5 74.42 ++	106 79 30.27	99 99 74.75 78.79 ++	NA 1089 NA										
105	HUMTHY1A MUSTHY1GC Thy-1 (human), Thy-1.2 (mouse) gene	2806 3257 55.49	NA NA NA	486 489 75.51 69.14	NA NA NA	1010 976 36.92	37 37 83.78 72.97 ++	483 590 38.96	336 339 71.11 63.39	527 386 35.05	113 113 84.96 84.96 ++					I									
106	HSUPA MUSUPAA Urokinase-type plasminogen activator protein	7258 9950 56.03	119 101 47.03	1296 1302 76.39 68.06	929 909 59.6	4043 4382 43,65	88 71 42.8	306 318 44.6	31 30 59.02	57 57 71.93 52.63	417 484 43.51	28 31 47.46 21.43	146 137 58.66	108 108 78.7 66.67	603 626 25.71	175 175 81.71 70.29	193 396 41.77	92 92 84.78 71.74	157 143 59.33	220 223 74.04 69.55	221 220 58.5	149 149 71.14 62.42	665 574 55.37	141 141 76.6 65.96	346 306 47.24
107	HUMSAP01 MUSSAPRB Serum anyloid P component gene	1394 1350 61.48	96 152 31.5	672 675 74.11 68.75	156 141 39.1	115 110 66.67	96 152 31.5	64 67 79.39 65.62 ++	115 110 66.67	608 608 73.36 69.08 ++	156 141 39.1											149 149 79.87 74.5 ++	989 1178 37.56	177 177 74.58 76.27	929 909 59.6
108	HUMPAP D63360 PAP (human), regillbeta/PAP (mouse) gene	4497 4292 43.08	60 31 19.78	528 528 73.67 68.75	219 200 43.44	1939 1823 38.19	26 26 30.77	288 289 33.97	34 5 5.128	76 76 73.68 78.95 -+	560 518 37.29	119 119 75.63 60.5 ++	187 170 34.73	138 138 78.99 73.91 ++	626 586 36.63	127 127 66.93 66.14 ++	278 260 50.19	68 68 72.06 66.18 ++	219 200 43.44						
109	HUMIL1B MMIL1BG Interleukin 1-beta gene	7824 7100 53.52	87 87 72.45	810 810 77.04 67.78	598 431 46.8	5512 5211 43.1002	72 72 68.1	463 721 45.61	15 15 93.33	47 47 68.09 51.06	565 533 57.01	52 49 77.23 63.46 ++	1988 1540 41.95	202 202 73.27 56.44 ++	545 547 51.47	165 171 69.64 60 ++	1235 1150 39.16	131 131 83.21 84.73 ++	716 720 34.12	213 210 84.63 78.87 ++	598 431 46.8				
110	HUMCAPG MUSCATHG Cathepsin G gene	3734 3438 51.92	28 28 NA	768 786 72.27 66.41	84 57 12.8	1819 1688 41.64	28 28 75	55 55 76.36 70.91 ++	756 633 42.19	148 148 83.11 79.05 ++	454 487 38.47	136 136 77.94 75 ++	175 176 31.91	255 255 66.67 61.18 ++	434 392 47.94	174 192 62.3 55.17 X	84 57 12.8								

111	HUMCTLA1	4505	33 NA	744	113 NA	2346	33 NA	55 55	1043	148 148	455	136 136	205	261 261	643 614	144 144	113 NA				
	CTLA1 (human), CCPI (mouse)	54.67	NA	75 66.94	NA	48.10	NA	63.64 43.64	49.45	79.05 72.97	41.7	80.15 77.21	40.12	71.26 57.47	52.98	77.08 77.08	NA				
	gene				21 12 P	Page 11 And	. TELY	++	BH FILL	++		++		++	Cherry Car	++					
112	HSLACTG MUSALCALB	3310 3045	26 35	429 432	272 289	1635 1549	26 35	133 136	647 301	159 159	489 468	76 76	499 780	61 61	272 289						
	Alpha-	54.25	52.46	74.13	61.32	39.22	52.46	70.63 60.9	32.7	72.96 69.81	53.08	81.58 71.05	34.09	73.77 63.93	61.32						
	lactalbumin gene		EX.SET		Treastle		and the second	++	ALM ST	++		++	10/4 30	++	and the second						
113	HUMOSTP	10881	104	945	424	6129 3354	90 NA	1083 NA	14	54 54	109 98	39 36	2941	81 81	265 496	42 42	1039 998	324 282	692 687	405 390	424 431
1	MINOESTEOF	54.77	7.333	66.98	66.43	28.29	NA	NA	10.48	75.93	54.11	69.33	24.45	81.48	44.15	88.1	52.53	60.73	42.35	70.19	66.43
1	Osteopontin gene			64.44	-					66.67	25 20	76.92	100 100 100 100 100 100 100 100 100 100	77.78		85.71		60.19 -+		61.48	
114	HSCD14G	1570	105	1128	123	88	105	3	88	1125	123								CONTRACTOR OF		
114	MMCD14	2404	113	1101	NA	95	113	3	95	1098	NA										
	DCD14	68.34	55.96	70.21	NA	65.57	55.96	66.67	65.57	71.08	NA										
	differentiation		a start of	65.16	Electron and			100		65.07	A A										
	antigen gene				and the second			X	1	++											
115	HSGAPIGNA	2609	6	348	215	1459	6	75	1027	208	432	65	215								
	MMU60528	5416	36	351	200	1172	36	75	774	211	398	65	200								
	gap-I (human),	47.6	19.05	74.14	29.88	40.34	19.05	77.33	39.87	69.21	41.45	84.62	29.88								
	guanylin			65.52			-	68		59.13		63.06	Carlos and	1							
110	precursor	4075	NIA	207	NIA	624	NIA	64	257	33	176	70	201	130	NA	1					
116	MUSOCC	040	INA 18	297	122	491	48	64	144	33	141	58	206	133	122						
	Bone gla protein	41 41	NA	68 69	NA	23.65	NA	68.75	22.44	72.73	42.9	68.75	8.354	69.96	NA						
	(human).			61.62	1.04 C			60.94		72.73	The state	55.71		62.31							
	osteocalcin		- Editoria		1		The sealers	++	a street as	++		++	No. W. S.	++		1					
117	HSAPOAIA		39	804	56	972.0	18	197	21	43	187	157	588	604	56	1					
	MUSAICIIIA		NA	798	NA	NA	NA	NA	NA	43	116	157	545	598	NA						
	Apolipoprotein		NA	74.7	NA	NA	NA	NA	NA	81.4	46.2	81.7	24.7	72.4	NA						
	gene			63.39		al and a star		E-Stand		56.3		72.2		61.6		1					
	a stille				200 2000	St. Ale Water	See The	100 - Ch.	Sert Star	++	E STATE	++	and the second second	++	3772 220/						

Appendix D

Whole Genome Assembly Using Combined Shotgun and Clone-by-Clone Sequencing (WGSCC Sequencing)

Below we describe a procedure by which a large genome could be sequenced and assembled using a specific combination of whole genome shotgun and clone-by-clone data (WGSCC data).

Figure D.1. a. Whole genome shotgun reads covering the genome; b. Clone-by-clone light shotgun; c. deep library of end-sequenced BACs.

The procedure assumes the existence of the following data:

- 1. Plasmid whole genome shotgun paired reads (WGS reads) covering the genome at depth Kx where K is a constant < 10 (Figure D.1a).
- 2. A random collection of BAC clones covering the genome to Lx, each clone being sequenced to a small Mx coverage (Figure D.1b).

3. A deep library of end-sequenced BAC clones (of depth at least 15, Figure D.1c).

Typical values for K, L, and M would be 7, 2, and 0.5, respectively. The depth of the BAC library could be around 20 deep. For these values, the total cost measured in equivalent whole genome shotgun coverage depth, would be:

- 1. 7x, because we have a depth K = 7 of shotgun reads.
- 2. LMx = 1x.
- Assuming that end-sequencing a BAC is equally expensive as twice the end-sequencing of a plasmid insert, we get 2 times 20 (depth) times 4 reads / 150kb. Letting each read be roughly 500 long, this gives a total of 0.25x cost.

Therefore the total cost of obtaining this initial data is 8.25x.

Then, a majority of the genome would be covered with BAC clones that are obtained in step 2 above, and are each sequenced to 0.5x. This would correspond to having roughly 150 reads per clone, or one read per 1,000 bases. This data can be used to assemble each of the light-sequenced BAC clones. Below we describe the algorithm:

- Algorithm: assembling a BAC clone using a set of reads $r_1, ..., r_n$ from the clone and a Kx (K roughly = 7) coverage of the genome with random shotgun.
 - 1. Form adjacency graph of reads for the above reads, plus the WGS reads (refer to the first steps of the *ARACHNE* algorithm, Chapter 3).
 - 2. Find in this graph the pairwise shortest paths for reads $r_1, ..., r_n$ where distance is measured by the overlap shifts (refer to Chapter 3).
 - Order and orient r₁, ..., r_n using these shortest paths. Report the existense of ambiguities, if any.
 - 4. The above steps result in one or more contigs covering the entire clone. If any ambiguities exist in step 3, there is possibly more than one contig. Order and orient these contigs using the plasmid paired reads of WGS.
 - 5. If more than one contig, fill in the regions between contigs using shortest paths in the overlap graph.
 - 6. For the resulting assembly of the clone, determine if any regions exist that are the result of overcollapsing WGS reads from two or more copies of a repeat. Do that heuristically by

measuring the density of reads covering specific subregions (high density means higher probability of overcollapsing (Myers et al. 2000)).

We conjecture that the full sequence of most of these clones can be reliably obtained using the above procedure. Moreover, whenever there is ambiguity, or high probability of obtaining lower quality consensus sequence due to the presence of repeats, the algorithm reports this in steps 3 and 6. We conjecture that the majority of the clones will be assembled with virtually no ambiguities, and with reliable resulting consensus sequence. Some clones will be assembled with lower accuracy guarantees, reported in step 6. And few clones will not be assembled successfully.

The assembled clones can form islands of fully sequenced genome, separated with *oceans* of unassembled genome. The library of end-sequenced BACs could then be employed to walk from these islands similarly to the way described in chapter 2. In this case though, it would no longer be as important to obtain a minimal overlapping clone from the library. The library clones selected for walking would only be sequenced to 0.5x depth resulting in negligible wastage due to overlaps with already assembled islands.

The whole scheme as described above involves performing a total sequencing of around 8.5x. Therefore there is considerable slack up to the total maximum of 10x, to devote additional sequencing of specific clones in "difficult" regions of DNA. For instance, the hardest 5% of the genome consisting of repeats that are hard to resolve and assemble with 99.99% accuracy with whole genome shotgun could be sequenced clone-by-clone (after failure to assemble) to depth 5x. The total additional sequencing this step would involve is only 0.25x, well within the allowable slack. Then, the 5x sequencing of these clones together with the 7x whole genome shotgun should enable to yield the best possible quality of assembly in these regions, similar to 10x clone-by-clone sequencing.

To summarize, the procedure runs as follows. (1) Obtain WGS reads, random BAC clone-byclone reads, and deep BAC library. (2) Assemble the lightly sequenced clones as described above, resulting in islands of sequenced genome. After this step most of the islands should be assembled with high-fidelity sequence, with some marked regions of lower fidelity. (3) Walk using the endsequenced clone library, covering the entire genome and potentially increasing the fidelity of some regions. After this step, roughly 8.5x sequencing has been used. The result is a full genome sequence, with some parts marked as lower fidelity. The remaining 1.5x sequencing that we are allowed to perform can be used to "finish" these parts. This should be easy given that virtually all parts of poor quality should be "captured" by lightly sequenced clones, and by library clones.

The above procedure can be varied considerably. For instance, it is not clear which is the optimal combination of WGS data (unpaired reads, plasmid paired reads, cosmid paired reads). A
variation of the above method could use a higher depth of coverage of the genome with lightly shotgun sequenced BAC clones, with each clone sequenced to lower depth. For instance at an extreme a 15x coverage of the genome could be obtained with BACs, each being sequenced to depth 0.1x (around one read per 5kb, or ~30 reads total) for a total sequencing of 1.5x. The same clones could also be end-sequenced. That would result in minimizing the need for walking in order to close gaps of unassembled genome, and thus may be done more in parallel. Or, a library of shorter BACs and/or cosmids could be also employed, in order to do more targeted finishing by going into very deep sequencing in small highly problematic regions.

BIBLIOGRAPHY

- Adams, M.D., S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, P.G. Amanatides, S.E. Scherer, P.W. Li, R.A. Hoskins, R.F. Galle, R.A. George, S.E. Lewis, S. Richards, M. Ashburner, S.N. Henderson, G.G. Sutton, J.R. Wortman, M.D. Yandell, Q. Zhang, L.X. Chen, R.C. Brandon, Y.-H.C. Rogers, R.G. Blazej, M. Champe, B.D. Pfeiffer, K.H. Wan, C. Doyle, E.G. Baxter, G. Helt, C.R. Nelson, G.L. Gabor Miklos, J.F. Abril, A. Agbayani, H.-J. An, C. Andrews-Pfannkoch, D. Baldwin, R.M. Ballew, A. Basu, J. Baxendale, L. Bayraktaroglu, E.M. Beasley, K.Y. Beeson, P.V. Benos, B.P. Berman, D. Bhandari, S. Bolshakov, D. Borkova, M.R. Botchan, J. Bouck, P. Brokstein, P. Brottier, K.C. Burtis, D.A. Busam, H. Butler, E. Cadieu, A. Center, I. Chandra, J.M. Cherry, S. Cawley, C. Dahlke, L.B. Davenport, P. Davies, B. de Pablos, A. Delcher, Z. Deng, A. Deslattes Mays, I. Dew, S.M. Dietz, K. Dodson, L.E. Doup, M. Downes, S. Dugan-Rocha, B.C. Dunkov, P. Dunn, K.J. Durbin, C.C. Evangelista, C. Ferraz, S. Ferriera, W. Fleischmann, C. Fosler, A.E. Gabrielian, N.S. Garg, W.M. Gelbart, K. Glasser, A. Glodek, F. Gong, J.H. Gorrell, Z. Gu, P. Guan, M. Harris, N.L. Harris, D. Harvey, T.J. Heiman, J.R. Hernandez, J. Houck, D. Hostin, K.A. Houston, T.J. Howland, M.-H. Wei, C. Ibegwam, M. Jalali, F. Kalush, G.H. Karpen, Z. Ke, J.A. Kennison, K.A. Ketchum, B.E. Kimmel, C.D. Kodira, C. Kraft, S. Kravitz, D. Kulp, Z. Lai, P. Lasko, Y. Lei, A.A. Levitsky, J. Li, Z. Li, Y. Liang, X. Lin, X. Liu, B. Mattei, T.C. McIntosh, M.P. McLeod, D. McPherson, G. Merkulov, N.V. Milshina, C. Mobarry, J. Morris, A. Moshrefi, S.M. Mount, M. Moy, B. Murphy, L. Murphy, D.M. Muzny, D.L. Nelson, D.R. Nelson, K.A. Nelson, K. Nixon, D.R. Nusskern, J.M. Pacleb, M. Palazzolo, G.S. Pittman, S. Pan, J. Pollard, V. Puri, M.G. Reese, K. Reinert, K. Remington, R.D.C. Saunders, F. Scheeler, H. Shen, B. C. Shue, I. Sidén-Kiamos, M. Simpson, M.P. Skupski, T. Smith, E. Spier, A.C. Spradling, M. Stapleton, R. Strong, E. Sun, R. Svirskas, C. Tector, R. Turner, E. Venter, A.H. Wang, X. Wang, Z.-Y. Wang, D.A. Wassarman, G.M. Weinstock, J. Weissenbach, S.M. Williams, T. Woodage, K.C. Worley, D. Wu, S. Yang, Q. Alison Yao, J. Ye, R.-F. Yeh, J.S. Zaveri, M. Zhan, G. Zhang, Q. Zhao, L. Zheng, X.H. Zheng, F.N. Zhong, W. Zhong, X. Zhou, S. Zhu, X. Zhu, H.O. Smith, R.A. Gibbs, E.W. Myers, G.M. Rubin, and J.C. Venter. 2000. The Genome Sequence of Drosophila melanogaster. Science 287(5461): 2185-2195.
- Alizadeh, F., Karp, R.M., Weisser, D.K., and G. Zweig. 1995. Physical mapping of chromosomes using unique probes. *Algorithmica* 13(1/2): 52-76.
- Allard, W. J., I. S. Sigal, and R. A. F. Dixon. 1987. Sequence of the gene encoding the human M1 muscarinic acetylcholine receptor. *Nucleic Acids Research* 15(24): 10604.
- Altschul, S.F., Miller, W., Myers, E.W., and D.J. Lipman. 1990. Basic Local Alignment Search Tool. *Journal of Molecular Biology* **215**: 403-410.

- Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research* 25: 3389-3402.
- Antequera, R. and A. Bird. 1993. Number of CpG islands and genes in human and mouse. Genetics 90: 11995-11999.
- Arratia, R., Lander E. S., Tavare S. and M.S. Waterman. 1991. Genomic mapping by anchoring random clones: a mathematical analysis. *Genomics* 11: 806-827.
- Batzer, M.A., Deininger, P.L., Hellmann Blumberg, U., Jurka, J., Labuda, D., Rubin, C.M., Schmid, C.W., Zietkiewicz, E., and Zuckerkandl, E. 1996. Standardized nomenclature for Alu repeats. *Journal of Molecular Evolution* 42: 3-6.
- Bassett, D. E., M. S. Boguski, F. Spencer, R. Reeves, S. H. Kim, T. Weaver, and P. Hieter. 1997. Genome Cross-Referencing and XREFDB – Implications for the identification and analysis of genes mutated in Human Disease. *Nature Genetics* **15(4)**: 339-344.
- Batzoglou, S., Berger, B., Kleitman, D.J., Lander, E.S., and L. Pachter. Recent developments in computational gene recognition. 1998. *Documenta Mathematica, Extra Volume ICM* 1998 1: 649-658.
- Batzoglou, S., Berger, B., Mesirov, J., and E.S. Lander. 1999. Sequencing a Genome by Walking with Clone-end Sequences: A Mathematical Analysis. Genome Research 9(12): 1163-1174. Abstract in Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, RECOMB 2000 p.45.
- Batzoglou, S. and S. Istrail. 1999. Physical Mapping with Repeated Probes: The Hypergraph Superstring Problem. Lecture Notes in Computer Science, vol. 164. Special issue on CPM '99.
- Batzoglou, S., Pachter, L., Mesirov, J.P., Berger, B., and E.S. Lander. 2000. Human and Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction. Genome Research, In Press. Abstract in Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, RECOMB 2000 p.46-53.
- Benson, G. 1997. Sequence alignment with tandem duplication. *Journal of Computational Biology* **4(3)**: 351-367.
- Boguski, M. S., D. R. Cox, and R. M. Myers. 1996. Genomes and evolution Overview. Current Opinion in Genetics & Development 6(6): 683-685.
- Booth K. S. and Lueker G. S. 1976. Testing for the consecutive ones property, interval graphs and planarity using PQ-tree algorithms. *Journal of Computer Systems Science* 13: 335-379.

- Burge, C. 1997. Identification of genes in human genomic DNA. Ph.D. dissertation, Stanford University, Department of Mathematics.
- Burge, C. and S. Karlin. 1997. Prediction of complete gene structures in human genomic DNA. *Journal of Molecular Bioogy* **268**: 78-94.
- Burset, M. and R. Guigo. 1996. Evaluation of gene structure prediction programs. *Genomics* **34(3)**: 353-367.
- Cech, T.R. 1993. Catalytic RNA: structure and mechanism. Biochemical Society Transaction 21: 229-234.
- The C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. *Science* **282**: 2012-2018.
- Celeste, A. J., V. Rosen, J. L. Buecker, R. Kriz, E. A. Wang, and J. M. Wozney. 1986. Isolation of the human gene for bone gla protein utilizing mouse and rat cDNA clones. *The EMBO Journal*. 5(8): 1885-1890.
- Collins, F., and D. Galas. 1993. A new five-year plan for the U.S. Human Genome Project. Science 262(5): 43-46.
- Collins, J.E., Cole, C.G., Smink, L.J., Garrett, C.L., Leversha, M.A., Soderlund, C.A., Maslen, G.L., Everett, L.A., Rice, C.M., Coffey, A.J., Gregory, S. G., Gwilliam, R., Dunham, A., Davies, A.F., Hassock, S., Todd, C.M., Lehrach, H, Hulsebos, T.J.M., Weissenbach, J., Morrow, B., Kucherlapati, R.S., Wadey. R., Scambler, P.J., Kim, U-J., Simon, M.I., Carter, N.P., Durbin, R, Dumanski, J.P., Bentley, D.R., and I. Dunham. 1995. A High Resolution Integrated Yeast Artificial Chromosome Clone Map of Human Chromosome 22. *Nature* 377: 367-379.
- Collins, F.S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L., and the members of the DOE and NIH planning groups. 1998. New goals for the U.S. Human Genome Project. *Science* 282(23): 682-689.

Cormen, T., Leiserson, C.E., Rivest, R.L. 1990. Introduction to Algorithms. MIT Press.

- Coulson, A., Sulston, J., Brenner, S., and J. Karn. 1986. Towards a physical map of the genome of the nematode Caenorhabditis elegans. *Proceedings of the National Academy* of Science. 83: 7821-7825.
- Dayhoff, M., R. M. Schwartz, and B. C. Orcutt. 1978. A model of evolutionary change in proteins. *Atlas of Protein Sequence and Structure* **5:** 345-352.

- Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O., and S.L. Salzberg. 1999. Alignment of whole genomes. *Nucleic Acids Research* 27(11): 2369-2376.
- Delphin, M. E., P. A. Stockwell, W. P. Tate, and C. M. Brown. 1999. Transterm, the translational signal database, extended to include full coding sequence and untranslated regions. *Nucleic Acids Research* 27: 293-294.
- Dujon, B. 1996. The yeast genome project: what did we learn? Trends in Genetics 12: 263-270.
- Edwards, A., and C.T. Caskey. Closure strategies for random DNA sequencing. 1991. Methods: a Companion to Methods Enzymology 3: 41-47, Academic Press, New York.
- Erdos, P. 1993. Personal communication.
- Ewing, B. and P. Green. 1998. Genome Research 8: 186-194.
- Fasulo, D., Jiang, T., Karp, R.M., Settergren, R.J., and E. Thayer. 1999. Algorithmic Approach to Multiple Complete Digest Mapping. *Journal of Computational Biology* **6(2)**.

Fishburn, P. 1985. Interval orders and interval graphs. Wiley, New York.

- Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., McKenny, K., Sutton, G., FitzHugh, W., Fields, C., Gocayne, J.D., Scott, J., Shirley, R., Liu, L.I., Glodek, A., Kelly, J.M., Weidman, J.F., Phillips, C.A., Spriggs, T., Hedblom, E., Cotton, M.D., Utterback, T.R., Hanna, M.C., Nguyen, D.T., Saudek, D.M., Brandon, R.C., Fine, L.D., Fritchman, J.L., Fuhmann, J.L., Geoghagen, N.S.M., Gnehm, C.L., McDonald, L.A., Small, K.V., Fraser, C.M., Smith, H.O., and J.C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496-511.
- Foote, S., Vollrath, D., Hilton, A., and D. Page. 1992. The human Y chromosome: Overlapping DNA clones spanning the euchromatic region. *Science* 258: 60-66.
- Gale, M.D. and K.M. Devos. 1998. Plant comparative genetics after 10 years. Science **282(23):** 656-659.
- Gelfand, M. S., A. A. Mironov and P. A. Pevzner. 1996. Gene recognition via spliced sequence alignment. *Proceedings of the National Academy of Science* **93**: 9061-9066.
- Ghosh, S.P. 1975.Consecutive storage of relevant records with high redundancy. *Communications of the ACM* **18:** 464-471.

- Goebel, S.J., Johnson, G.P., Perkus, M.E., Davis, S.W., Winslow, J.P., and E. Paoletti. 1990. The complete DNA sequence of Vaccinia virus. *Virology* **179**: 247-266.
- Green E. D. and P. Green. 1991. Sequence-tagged site (STS) content mapping of human chromosomes: theoretical considerations and early experiences. *PCR Methods and Applications* 1: 78-90.
- Green, P. 1997. Against a whole-genome shotgun. Genome Research 7: 410-417.
- Greenberg, D.S., and S. Istrail. 1995. Physical mapping by STS hybridization: algorithmic strategies and the challenge of software evaluation. *Journal of Computational Biology* **2(2)**: 219-274.
- Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C., and W.M. Gelbart. 1993. An Introduction to Genetic Analysis. *Fifth Edition, W.H.Freeman and Company, New York.*
- Hardison, R. C., J. Oeltjen, and Webb Miller. 1997. Long Human-Mouse Sequence Alignments Reveal Novel Regulatory Elements: A Reason to Sequence the Mouse Genome. *Genome Research* 7: 959-966.
- Heusel, J. W., E. M. Scarpati, N. A. Enkins, D. J. Gilbert, N. G. Copeland, S. D. Shapiro, and T. J. Ley. 1993. Molecular cloning, chromosomal location, and tissue-specific expression of the murine cathepsin G gene. *Blood.* 81(6): 1614-1623.
- Hodgkin, J., Horvitz, H.R., Jasny, B.R., and J. Kimble. C.elegans: sequence to biology. 1998. Science (11282): 2011.
- Hudson, T. J., L. D. Stein, S. S. Gerety, J. Ma, A. B. Castle, J. Silva, D. K. Slonim, R. Baptista, L. Kruglyak, S.H. Xu, X. Hu, A. M. E. Colbert, C. Rosenberg, M. P. Reeve-Daly, S. Rozen, L. Hui, X. Wu, C. Vestergaard, K. M. Wilson, J. S. Bae, S. Maitra, S. Ganiatsas, C. A. Evans, M. M. DeAngelis, and K. A. Ingalls. 1995. An STC-based map of the human genome. *Science* 270(5): 1945-1954.
- Hunt, A.R.; J. E. Collins; R. Bruskiewich; D. M. Beare; M. Clamp; L. J. Smink; R. Ainscough;
 J. P. Almeida; A. Babbage; C. Bagguley; J. Bailey; K. Barlow; K. N. Bates; O. Beasley; C.
 P. Bird; S. Blakey; A. M. Bridgeman; D. Buck; J. Burgess; W. D. Burrill; J. Burton; C.
 Carder; N. P. Carter; Y. Chen; G. Clark; S. M. Clegg; V. Cobley; C. G. Cole; R. E. Collier;
 R. E. Connor; D. Conroy; N. Corby; G. J. Coville; A. V. Cox; J. Davis; E. Dawson; P. D.
 Dhami; C. Dockree; S. J. Dodsworth; R. M. Durbin; A. Ellington; K. L. Evans; J. M. Fey;
 K. Fleming; L. French; A. A. Garner; J. G. R. Gilbert; M. E. Goward; D. Grafham; M. N.
 Griffiths; C. Hall; R. Hall; G. Hall-Tamlyn; R. W. Heathcott; S. Ho; S. Holmes; S. E. Hunt;
 M. C. Jones; J. Kershaw; A. Kimberley; A. King; G. K. Laird; C. F. Langford; M. A.
 Leversha; C. Lloyd; D. M. Lloyd; I. D. Martyn; M. Mashreghi-Mohammadi; L. Matthews;
 O. T. McCann; J. McClay; S. McLaren; A. A. McMurray; S. A. Milne; B. J. Mortimore; C.
 N. Odell; R. Pavitt; A. V. Pearce; D. Pearson; B. J. Phillimore; S. H. Phillips; R. W. Plumb;

H. Ramsay; Y. Ramsey; L. Rogers; M. T. Ross; C. E. Scott; H. K. Sehra; C. D. Skuce; S. Smalley; M. L. Smith; C. Soderlund; L. Spragon; C. A. Steward; J. E. Sulston; R. M. Swann; M. Vaudin; M. Wall; J. M. Wallis; M. N. Whiteley; D. Willey; L. Williams; S. Williams; H. Williamson; T. E. Wilmer; L. Wilming; C. L. Wright; T. Hubbard; D. R. Bentley; S. Beck; J. Rogers; N. Shimizu; S. Minoshima; K. Kawasaki; T. Sasaki; S. Asakawa; J. Kudoh; A. Shintani; K. Shibuya; Y. Yoshizaki; N. Aoki; S. Mitsuyama; B. A. Roe; F. Chen; L. Chu; J. Crabtree; S. Deschamps; A. Do; T. Do; A. Dorman; F. Fang; Y. Fu; P. Hu; A. Hua; S. Kenton; H. Lai; H. I. Lao; J. Lewis; S. Lewis; S.-P. Lin; P. Loh; E. Malaj; T. Nguyen; H. Pan; S. Phan; S. Qi; Y. Qian; L. Ray; Q. Ren; S. Shaull; D. Sloan; L. Song; Q. Wang; Y. Wang; Z. Wang; J. White; D. Willingham; H. Wu; Z. Yao; M. Zhan; G. Zhang; S. Chissoe; J. Murray; N. Miller; P. Minx; R. Fulton; D. Johnson; G. Bemis; D. Bentley; H. Bradshaw; S. Bourne; M. Cordes; Z. Du; L. Fulton; D. Goela; T. Graves; J. Hawkins; K. Hinds; K. Kemp; P. Latreille; D. Layman; P. Ozersky; T. Rohlfing; P. Scheet; C. Walker; A. Wamsley; P. Wohldmann; K. Pepin; J. Nelson; I. Korf; J. A. Bedell; L. Hillier; E. Mardis; R. Waterston; R. Wilson; B. S. Emanuel; T. Shaikh; H. Kurahashi; S. Saitta; M. L. Budarf; H. E. McDermid; A. Johnson; A. C. C. Wong; B. E. Morrow; L. Edelmann; U. J. Kim; H. Shizuya; M. I. Simon; J. P. Dumanski; M. Peyrard; D. Kedra; E. Seroussi; I. Fransson; I. Tapia; C. E. Bruder; K. P. Of@squo]Brien; I. Dunham. 1999. The DNA sequence of human chromosome 22. Nature 402(6761): 489-495.

Hurowitz, E. 1999. http://cmgm.stanford.edu/~hurowitz/chemotaxis/chemol.html.

- Jang, W., A. Hua, S. V. Spilson, W. Miller, B. A. Roe, and M. H. Meisler. 1999. Comparative Sequence of Human and Mouse BAC Clones from the mnd2 Region of Chromosome 2p13. Genome Research 9: 53-61
- Karp, R. M. 1993. Mapping the genome: some combinatorial problems arising in molecular biology. SODA 1993 278-285.
- Klenk, H.P., Clayton, R.A., Tomb, J., White, O., Nelson, K.E., Ketchum, K.A., Dodson, R.J., Gwinn, M., Hickey, E.K., Peterson, J.D., Richardson, D.L., Kerlavage, A.R., Graham, D.E., Kyrpides, N.C., Fleischmann, R.D., Quackenbush, J., Lee, N.H., Sutton, G.G., Gill, S., Kirkness, E.F., Dougherty, B.A., McKenney, K., Adams, M.D., Loftus, B., Peterson, S., Reich, C.I., McNeil, L.K., Badger, J.H., Glodek, A., Zhou, L., Overbeek, R., Gocayne, J.D., Weidman, J.F., McDonald, L., Utterback, T., Cotton, M.D., Spriggs, T., Artiach, P., Kaine, B.P., Sykes, S.M., Sadow, P.W., D'Andrea, K.P., Bowman, C., Fujii, C., Garland, S.A., Mason, T.M., Olsen, G.J., Fraser, C.M., Smith, H.O., Woese, C.R. and J.C. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. *Nature* 390(6658): 364-370.
- Koop, B. F. 1995. Human and rodent DNA sequence comparisons: a mosaic model of human evolution. *TIG* **11(9)**: 369-379.
- Koop, B. F. and L. Hood. 1994. Striking sequence similarity over almost 100 kilobases of human and mouse T-cell receptor DNA. *Nature Genetics* 7: 48-53.

- Kou, A.T. 1977. Polynomial complete consecutive information retrieval problems. SIAM Journal of Computing 6(1): 67-75.
- Krapivsky, P.L. 1992. Kinetics of Random Sequential Parking on a Line. *Journal of Statistical Physics* 69: 135-150.
- Kumar, A., A. Toscani, S. Rane, and E. P. Reddy. 1996. Structural organization and chromosomal mapping of JAK3 locus. *Oncogene* 13(9): 2009-2014.
- Lander, E. S. 1997. The new genomics- global views of biology. Science 274(5287): 536-539.
- Lander, E.S. and M.S. Waterman. 1988. Genomic mapping by fingerprinting random clones: a mathematical analysis. *Genomics* **2:** 231-239.
- Lander, E.S. and R.A. Weinberg. 2000. Genomics: journey to the center of biology. 2000. Science **287(5459):** 1777-1782.
- Lamerdin, J. E., M. A. Montgomery, S. A. Stilwagen, L. K. Scheidecker, R. S. Tebbs, K. W. Brookman, L. H. Thompson, and A. V. Carrano. 1995. Genomic Sequence Comparison of the Human and Mouse XRCC1 DNA Repair Gene Regions. *Genomics* 25: 547-554.
- Leslie, N. D., E. B. Immerman, J. E. Flach, M. Florez, J. L. Fridovich-Keil, and L. Elsas. 1992. The human galactose-1 phosphate uridyltransferase gene. *Genomics* 14: 474-480.
- Lewin, B. 1996. Genes VI. Oxford University Press.
- Lin, X, Samir Kaul; S. Rounsley; T.P. Shea; M.-I. Benito; C.D. Town; C.Y. Fujii; T. Mason;
 C.L. Bowman; M. Barnstead; T.V. Feldblyum; C.R. Buell; K.A. Ketchum; J. Lee; C.M.
 Ronning; H.L. Koo; K.S. Moffat; L.A. Cronin; M. Shen; G. Pai; S. Van Aken; L.
 Umayam; L.J. Tallon; J.E. Gill; M.D. Adams; A.J. Carrera; T.H. Creasy; H.M.
 Goodman; C.R. Somerville; G.P. Copenhaver; D. Preuss; W.C. Nierman; O. White; J.A.
 Eisen; S.L. Salzberg; C.M. Fraser; J.C. Venter. 1999. Sequence and analysis of
 chromosome 2 of the plant Arabidopsis thaliana. *Nature* 402(6763): 761-768.
- Lipski, W.Jr. 1976. Information storage and retrieval mathematical foundations II. *Theoretical Computer Science* **3**: 183-212.
- Lipski, W.Jr. 1978. On strings containing all subsets as substrings. *Discrete Mathematics* 21: 253-259.
- Lodish, H., Baltimore, D., Berk, A., Zipursky, S.L., Matsudaira, P., and J. Darnell. 1998. Molecular Cell Biology. Fifth Edidion. Scientific American Books, New York.

- Lukashin A. V. and M. Borodovsky. 1998. GENEMARK.HMM: new solutions for gene finding. Nucleic Acids Research 26(4): 1107-1115.
- Makalowski, W. and M. S. Boguski. 1998a. Synonymous and Nonsynonymous Substitution Distances are Correlated in Mouse and Rat Genes. *Journal of Molecular Evolution* 47(2): 119-121.
- Makalowski, W. and M. S. Boguski. 1998b. Evolutionary parameters of the transcribed mammalian genome: An analysis of 2,820 orthologous rodent and human sequences. *Proceedings of the National Academy of Science* **95**: 9407-9412.
- Makalowski, W., J. Zhang, and M. S. Boguski. 1996. Comparative analysis of 1196 orthologous mouse and human full-length mRNA and protein sequences. *Genome Research* 6: 8456-857.
- Marshall Graves, J.A. 1998. ILAR Journal 39: 48.
- Maxam, A.M., and W. Gilbert. 1977. A new method for sequencing DNA. *Proceedings of the National Academy of Science* 74: 560-564.
- McCullough, A.J., and S.M. Berget. 1997. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. *Molecular and Cellular Biology* **17(8):** 4562-4571.
- Meinke, D.W., Cherry, M.J., Dean, C., Rounsley, S.D., and M. Koornneef. 1998. Arabidopsis thaliana: a model plant for genome analysis. *Science* 282(5389): 662-882.
- Myers, E.W. 1999. Whole-Genome DNA Sequencing. *Computing in Science and Engineering* **1(3):** 33-43.
- Myers, E.W., G.G. Sutton, A.L. Delcher, I.M. Dew, D.P. Fasulo, M.J. Flanigan, S.A. Kravitz, C.M. Mobarry, K.H.J. Reinert, K.A. Remington, E.L. Anson, R.A. Bolanos, H.-H. Chou, C.M. Jordan, A.L. Halpern, S. Lonardi, E.M. Beasley, R.C. Brandon, L. Chen, P.J. Dunn, Z. Lai, Y. Liang, D.R. Nusskern, M. Zhan, Q. Zhang, X. Zheng, G.M. Rubin, M.D. Adams, and J.C. Venter. 2000. A Whole-Genome Assembly of *Drosophila. Science* 287(5461): 2196-2204.
- Nagata, S., M. Tsuchiya, S. Asano, O. Yamamoto, Y. Hirata, N. Kubota, M. Oheda, H. Nomura, and T. Yamazaki. 1986. The chromosomal gene structure and the mRNAs for human granulocyte colony-stimulating factor. *The EMBO Journal* 5(3): 575-581.
- Needleman, S.B. and C.D. Wunch. 1970. A general method applicable to the search for similarities in the amino acid sequences of two proteins. *Journal of Molecular Biology* 48:443-453.

- Nelson D.O. and T.P. Speed. 1994. Statistical issues in constructing high-resolution physical maps. *Statistical Science* 9(3): 334-354.
- O'Brien, S.J., Menotti-Raymond, M., Murphy, W.J., Nash, W.G., Wienberg, J., Stanyon, R., Copeland, N.G., Jenkins, N.A., Womack, J.E., and J.A. Marshall Graves. 1999. The promise of comparative genomics in mammals. *Science* **286(5439)**: 458-481.
- O'Brien, S.J., Seuanez, H.N., and J.C. Womack. 1988. Annual Reviews of Genetics 22: 323.
- Oda, K., Katsuyuki, Y., Ohta, E., Nakamura, Y., Takemura, M., Nozato, N., Akashi, K., Kanegae, T., Ogura, Y., Kohchi, T., and K. Ohyama. 1992. Gene organization deduced from the complete sequence of Liverwort Marchantia polymorpha mitochondrial DNA. *Journal of Molecular Biology* 223: 1-7.
- Oeltjen, J. C., T. Malley, D. M. Muzny, W. Miller, R. A. Gibbs, and J. W. Belmont. 1997. Large Scale Comparative Sequence Analysis of the Human and Murine Bruton's Tyrosine Kinase Loci Reveals Conserved Regulatory Domains. *Genome Research* 7: 315-329.
- Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., and H. Ozeki. 1986. Chloroplast gene organization deduced from complete sequence of livewort Marchantia polymorpha chloroplast DNA. *Nature* **322**: 572-574.
- Oliver, S.G., et al. 1992. The complete DNA sequence of yeast chromosome III. Nature 357: 38-46.
- Olson, M.V., Dutchik, J.E., Graham, M.Y., Brodeur, G.M., Helms, C., Frank, M., MacCollin, M., Scheinman, R., and T. Frank. 1986. Random-clone strategy for genomic restriction mapping in yeast. *Proceedings of the National Academy of Science* 83: 7826-7830.
- Pachter, L.S. 1999. Domino tiling, gene recognition, and mice. *Ph.D. dissertation MIT Department of Mathematics.*
- Pachter, L., Batzoglou, S., Spitkovsky, V.I., Beebee, W., Lander, E.S., Kleitman, D.J., and B. Berger 1999. A dictionary based approach for gene annotation. *Journal of Computational Biology* (6) 3-4: 419-430. Abstract in *Proceedings of the Third Annual International Conference in Computational Molecular Biology, RECOMB '99.*

Papadimitriou, C.H. 1994. Computational Complexity. Addison-Wesley Publishing Company.

Papadimitriou, C.H. and M. Yannakakis. 1993. The traveling salesman problem with distances one and two. *Mathematics of Operations Research* 18: 1-11.

- Phizicky, E.M., and C.L. Greer. 1993. Pre-tRNA splicing: variation on a theme or exception to the rule? *Trends in Biochemical Science* 18: 31-34.
- Riedy, M. C., A. S. Dutra, T. B. Blake, W. Modi, B. L. Lal, J. Davis, A. Bosse, J. J. O'Shea, and J. A. Johnston. 1996. Genomic sequence, organization, and chromosomal localization of human JAK3. *Genomics* 37: 57-61.
- Roach, J. 1995. Random subcloning. Genome Research 5: 464-473.
- Roest Crollius, H., Jaillon, O., Dasilva, D., Bouneau, L., Fizames, C., Billault, A., Bernot, A., Quetier, F., Weissenbach, J., and W. Saurin. 1999. Exon Detection by Comparison Between Two Distant Vertebrate Genome Sequences. *The Second Georgia Tech International Conference in Bioinformatics, Poster.*
- Ross, S.M. 1970. "Applied probability models with optimization applications". Holden-Day, San Fransisco.
- Rubin, G.M. 1996. The Drosophila Genome Project. Genome Research 6: 71-79.
- Rubin, G.M., M.D. Yandell, J.R. Wortman, G.L. G. Miklos, C.R. Nelson, I.K. Hariharan,
 M.E. Fortini, P.W. Li, R. Apweiler, W. Fleischmann, J.M. Cherry, S. Henikoff, M.P.
 Skupski, S. Misra, M. Ashburner, E. Birney, M.S. Boguski, T. Brody, P. Brokstein, S.E.
 Celniker, S.A. Chervitz, D. Coates, A. Cravchik, A. Gabrielian, R.F. Galle, W.M.
 Gelbart, R.A. George, L.S.B. Goldstein, F. Gong, P. Guan, N.L. Harris, B.A. Hay, R.A.
 Hoskins, J. Li, Z. Li, R.O. Hynes, S.J.M. Jones, P.M. Kuehl, B. Lemaitre, J.T. Littleton,
 D.K. Morrison, C. Mungall, P.H. O'Farrell, O.K. Pickeral, C. Shue, L.B. Vosshall, J.
 Zhang, Q. Zhao, X.H. Zheng, F. Zhong, W. Zhong, R. Gibbs, J.C. Venter, M.D. Adams,
 and S. Lewis. 2000. Comparative Genomics of the Eukaryotes. *Science* 287(5461): 2204-2215.
- Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J.H., and B.A. Roe. 1980. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. *Journal of Molecular Biology* 143: 161-178.
- Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F., and G.B. Petersen. 1982. Nucleotide sequence of bacteriophage λ DNA. *Journal of Molecular Biology* 162: 729-773.
- Sanger, F., Nickolen, S., and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. *Proceedings of the National Academy of Science* 74: 5463-5467.
- Shamir, R. 1997. Personal communication.
- Sharp, P.A. and C.B. Burge. 1997. Classification of introns. U2-type or U12-type. *Cell* **91**: 875-879.

- Shehee, W. R., L. Loeb, N. B. Adey, F. H. Burton N. C. Casavant, P. Cole, C. J. Davies, R. A. McGraw, S. A. Schichman, D. M. Severynse, C. F. Voliva, F. W. Weyter, G. B. Wisely, M. H. Edgell, and C. A. Hutchison. 1989. Nucleotide Sequence of the BALB/c Mouse β-Globin Complex. *Journal of Molecular Biology* 205: 41-62.
- Sherman, F. 1997. Yeast genetics. The Encyclopedia of Molecular Biology and Molecular Medicine 6: 302-325. Edited by R. A. Meyers, VCH Pub. Weinheim, Germany, 1997. Also in http://www.urmc.rochester.edu/smd/biochem/yeast/.
- Schmid, C. W. 1996. Alu: structure, origin, evolution, significance, and function of one-tenth of human DNA. *Progress Nucleic Acids Research Molecular Biology* **53**: 283-319.
- Schuller, M.K., C., Wambutt, R., Murphy, G., Volckaert, G., Pohl, T., Dusterhoft A, Stiekema, W., Entian, K.D., Terryn, N., Harris, B., Ansorge, W., Brandt, P., Grivell, L., Rieger, M., Weichselgartner, M., de Simone, V., Obermaier, B., Mache, R., Muller, M., Kreis, M., Delseny, M., Puigdomenech, P., Watson, M., McCombie, W.R., et al. 1999. *Nature* 402(6763): 769-77.
- Siegel, A.F., Trask, B., Roach, J., Mahairas, G.G., Hood, L. and van der Engh, G. 1998. Analysis of sequence-tagged-connector strategies for DNA sequencing. *Genome Research* 9: 297-307.
- Smit, A.F.A. 1996. Origin of interspersed repeats in the human genome. Current Opinion Genetic Development 6(6): 743-749.
- Smit, A.F.A. 1995. Origin and evolution of mammalian interspersed repeats. *Ph.D.* dissertation, USC.
- Smit, A.F.A. and A.D. Riggs. 1995. MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. *Nucleic Acids Research* 23: 98-102.
- Smith, T.F. and M.S. Waterman. 1981. Identification of common molecular subsequences. Journal of Molecular Biology 147: 195-197.
- Stryer, L. 1996. Biochemistry. Fourth Edition, W.H. Freeman and Company, New York.
- Venter, J.C., Smith, H.O., and Hood, L. 1996. A new strategy for genome sequencing. *Nature* **381:** 364-366.
- Watson, J.D. and F.H.C. Crick. 1953a. Molecular structure of nucleic acid. A structure for deoxyribose nucleic acid. *Nature* 171: 737-738.
- Watson, J.D. and F.H.C. Crick. 1953b. Genetic implications of the structure of deoxyribonucleic acid. *Nature* 171: 964-967.

- Weber, J.L. and E.W. Myers. 1997. Human whole-genome shotgun sequencing. *Genome Research* 7: 401-409.
- Yoneda, K., D. Hohl, O. W. McBride, M. Wang, K. U. Cehrs, W. W. Idler, and p. M. Steinert. 1992. The human loricrin gene. *The Journal of Biological Chemistry* 267(25): 18060-18066.
- Zhang, J. and T. L. Madden. 1997. PowerBLAST: A New Network BLAST Application for Interactive or Automated Sequence Analysis and Annotation. *Genome Research* 7: 649-656.
- http://theory.lcs.mit.edu/crosspecies/. 2000. GLASS and ROSETTA webpage.

http://Ag.Arizona.Edu/tree/. 1999. Tree of Life webpage.

http://www.PHRAP.com. 1999. PHRAP system webpage.

http://www.sanger.ac.uk/Software/Wise2/. 1999. Wise2 webpage.

http://www.ncbi.nlm.nih.gov/. 1998. National Center for Biology Information webpage.

http://www.ncbi.nlm.nih.gov/BLAST/. 1999. BLAST program family webpage.

http://ftp.genome.washington.edu/RM/RepeatMasker.html. 1999. RepeatMasker webpage.