
COMPUTATIONAL GENOMICS:

MAPPING, COMPARISON, AND ANNOTATION OF GENOMES

by

Serafim Batzoglou

B.S. Mathematics; B.S. Computer Science;
M.Eng. Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 1996

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

at the
Massachusetts Institute of Technology

June 2000

0 2000 Massachusetts Institute of Technology
All rights reserved

Signature of A uthor..................
Depatmet olElectrical Engineering and Computer Science

March 27, 2000

Certified by.....

Accepted by................

...
Bonnie Berger

Samuel A. Goldblith Associate Professor of Applied Mathematics
Thesis Supervisor

.-.----..............
Arthur C. Smith

Chairman, Committee on Graduate Students
Department of Electrical Engineering and Computer Science

MA SSACHUSETTS INSTITUY-7
OF TECHNOLOGY

JAN 16 2002

LIBRARIES

NSTIT UTF

LBI3R A R IES

I

Computational Genomics:

Mapping, Comparison, and Annotation of Genomes

by

Serafim Batzoglou

Submitted to the Department of Electrical Engineering and Computer Science
on March 27, 2000 in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

ABSTRACT

The field of genomics provides many challenges to computer scientists and mathematicians.
The area of computational genomics has been expanding recently, and the timely application of
computer science in this field is proving to be an essential component of the large international
effort in genomics. In this thesis we address key issues in the different stages of genome
research: planning of a genome sequencing project, obtaining and assembling sequence
information, and ultimately study, cross-species comparison, and annotation of finished
genomic sequence. We present applications of computational techniques to the above areas: (1)
In relation to the early stages of a genome project, we address physical mapping, and we
present results on the theoretical problem of finding minimum superstrings of hypergraphs, a
combinatorial problem motivated by physical mapping. We also present a statistical and
simulation study of "walking with clone-end sequences", an important method for sequencing a
large genome. (2) Turning to the problem of obtaining the finished genomic sequence, we
present ARACHNE, a prototype software system for assembling sequence data that are derived
from sequencing a genome with the "shotgun" method. (3) Finally, we turn to the
computational analysis of finished genomic sequence. We present GLASS, a software system
for obtaining global pairwise alignments of orthologous finished sequences. We finally use
GLASS to perform a comparative structure and sequence analysis of orthologous human and
mouse genomic regions, and develop ROSETTA, the first cross-species comparison-based
system for the prediction of protein coding regions in genomic sequences.

Thesis Supervisor: Bonnie Berger
Title: Samuel A. Goldblith Associate Professor of Applied Mathematics

2

TABLE OF CONTENTS

LIST OF FIG URES .. 6

LIST OF TABLES .. 9

ACKN O W LEDG EM EN TS... I 1

OVERVIEW ... 13

BACKG ROUN D .. 16

Genom es and the G enetic Code .. 16

M apping and Sequencing a Genom e .. 19

G enom e Annotation .. 30

Com parative G enom ics ... 34

C h a p t e r 1 : Physical Mapping with Repeated Probes..39

Introduction .. 39

Background .. 42

Physical m apping.. 42

The Lander-W aterm an M odel.. 43

The Hypergraph Superstring Problem ... 43

Com putational Com plexity Results.. 45

Approxim ation A lgorithm s... 48

The M erge O peration on Simple Q-nodes... 50

D escription.. 50

Correctness of M ERGE ... 52

The GREEDY-MERGE-SPERNER Algorithm.. 55

Description of GREEDY-MERGE-SPERNERNER..................... 55

Properties of GREEDY-MERGE-SPERNER .. 55

Exam ples.. 58

The GREEDY-MERGE Algorithm for General Hypergraphs 60

Description of GREED Y-M ERGE ... 60

Proof that GREEDY-MERGE Retrieves the CIP 61

Approxim ation Guarantees.. 64

The A lgorithm 2-PH ASE-GREED Y ... 65

3

The Algorithm 2-LAYER-GREEDY...66

Sim ulation Results .. 70

Conclusion..-...... ---..-.. - - - --... 72

C h a p t e r 2 : Sequencing a Genome by Walking with BAC-ends 73

Introduction .. 73

Basic M odel..76

M athem atical Analysis and Results.. 78

Using one Library of Constant Size Clones .. 79

Using Sm aller Clones to Close Gaps... 85

Optim izing Clone Library Depth ... 89

Seeding the Genom e ... 90

Sim ulations...93

Conclusion..95

C h a p t e r 3: W hole Genom e Shotgun Assem bly .. 99

Introduction 99

Previous W ork... 99

Problem Description ... 100

Algorithm s..101

Creation of Overlap Graph .. 101

Table of k-m er Occurrences .. 102

Pairwise Read Alignm ents .. 103

Processing of Overlap Graph and Creation of Supercontig................................104

Definition of Read "Shifts"...107

D iscarding Repetitive Links .. 108

Sparse Representation of Overlaps and Creation of Contigs........................109

Assem bly of Contigs into Supercontigs ... Ill

Results.. 113

Repetition of k-m ers in the Test Sequences .. 114

Generation of Shotgun Data .. 120

Fragm ent Assembly Results .. 121

Conclusions of Future W ork..128

4

C h a p t e r 4 : Cross Species Genomic Comparison, and Gene Recognition.............130

Introduction .. 130

Results.. 132

Com parison of Hum an and M ouse G enom ic Loci .. 132

Global Sequence Alignm ent, GLASS ... 134

Gene Recognition, ROSETTA .. 137

Gene Recognition Results ... 139

M ethods..140

Database Construction... 140

Sequence Alignm ents and Com parative Analysis ... 141

Com putational Prediction of Coding Exons.. 142

D iscussion .. 143

CON CLU SION ... 146

Appendix A : The G enetic Code ... 151

Appendix B: Perform ance of ARACHNE.. 152

Appendix C: Comparative Analysis of Human and Mouse Loci....................................162

Appendix D: Combined Whole Genome Shotgun and Clone-by-Clone Assembly..........176

BIBLIOGRAPH Y ... 180

5

LIST OF FIGURES

Number Page

BACKGROUND

0.1. T he G enetic C ode ... 17

0.2. Ambiguous and Unambiguous Read Overlaps...20

0.3. A Repeat Flanked by Unique Regions..23

0.4. Physical M apping ... 24

0.5. A Forw ard/R everse Link ... 27

0.6. Forward/Reverse Links Used in Fragment Assembly..28

0.7. Splicing and Translation... 32

0.8. Phylogeny Tree of M am mals... 35

Chapter 1: Physical Mapping with Repeated Probes

1.1. Gadget for Truth Assignm ent .. 47

Chapter 2: Sequencing a Genome by Walking with BAC-Ends

2.1. Overlapping BACs in Library of Depth d=12.. 75

2.2. Serial Walking of the Genome from a Single Initial Seed Clone............................77

2.3. Serial Walking of the Genome from a Collection of Seed Clones 78

2.4. Unidirectional Walking from a Seed Clone Co............................ 79

2.5. Proportion of Excess Sequencing, One Library ... 82

2.6. Proportion of Ocean Excess Sequencing ... 83

2.7. N um ber of W alking Steps .. 84

2.8. Proportion of Excess Sequencing, Two Libraries..87

2.9. A Small Ocean Being Closed by Two Clones.. 87

2.10. O ptim al Library D epth ... 88

2.11. Comparison of Parking and Exponential Distributions 91

2.12. Difference Between Parking and Exponential Distributions 93

2.13. Difference Between Formulas and Simulations ... 94

2.14. Difference Between Formulas and Simulations, ACO Assumption......................95

6

Chapter 3: Whole Genome Shotgun Assembly

3.1. Ambiguity Created by the Presence of Repeats...104

3.2. A R epeat w ith Three C opies.. 105

3.3. A Sequence C ontig ... 106

3.4. Repetitive Links.. 107

3.5. M erging of Supercontigs ... 113

3.6. 24-m er Frequencies in H. influenzae.. 116

3.7. 24-m er Frequencies in A. fulgidus.. 116

3.8. 24-mer Frequencies in C. elegans Chromosome 1 .. 117

3.9. 24-mer Frequencies in Human Chromosome 22...117

3.10. Repeat Lengths in H . influenzae... 118

3.11. R epeat Lengths in A .fulgidus .. 118

3.12. Repeat Lengths in C. elegans Chromosome I...119

3.13. Repeat Lengths in Human Chromosome 22.. 119

3.14. A Supercontig ... 122

3.15. Coverage of Genomes by Long Supercontigs ... 124

3.16. Quality of Shotgun Assembly on Human Chromosome 22....................................125

3.17. Quality of Shotgun Assembly on C. elegans Chromosome I.................................126

3.18. Quality of Shotgun Assembly on H. influenzae... 127

3.19. Quality of Shotgun Assembly on A. fulgidus .. 128

Chapter 4: Cross-Species Genomic Comparison and Gene Recognition

4.1. Correspondence of Regions on a Pair of Human/Mouse Homologous Loci 136

Appendix B: Performance of ARACHNE

B. 1. Human Chromosome 22, 1x Coverage .. 154

B.2. Human Chromosome 22, 9x Coverage .. 154

B.3. Human Chromosome 22, 7x Coverage .. 155

B.4. Human Chromosome 22, 5x Coverage .. 155

B.5. Human Chromosome 22, 3x Coverage .. 156

B.6. C. elegans Chromosome 1, 11x Coverage ... 156

B.7. C. elegans Chromosome 1, 9x Coverage ... 157

7

B .8. H . influenzae, I1x Coverage ... 157

B .9. H . influenzae, 9x C overage ... 158

B. 10. H influenzae, 7x Coverage ... 158

B .11. H influenzae, 5x C overage ... 159

B .12. A .fulgidus, 7x C overage...159

Appendix D: Whole Genome Assembly Using Combined Shotgun and Clone-by-Clone

Sequencing (WGSCC Sequencing)

B. 1. Coverage of the Genome with Shotgun and Clone-by-Clone Reads........................154

8

LIST OF TABLES

Number Page

BACKGROUND

0.1. Genome Size and Number of Genes for Some Organisms.....................................19

Chapter 1: Physical Mapping with Repeated Probes

1.1. Performance of GREED Y-MERGE-SPERNER on Simulated Data........................71

Chapter 3: Whole Genome Shotgun Assembly

3.1. Exam ple of a Sorted H ash Table ... 102

3.2. Percentage of Genomic Sequence Covered by Unique k-mers.................................114

Chapter 4: Cross-Species Genomic Comparison and Gene Recognition

4.1. Training Set of Human/M ouse Homologs .. 138

Appendix A: The Genetic Code

A .l. T he G enetic C ode 149

Appendix B: Performance of ARACHNE

B. 1. Human Chromosom e 22, 11x Coverage .. 150

B.2. Human Chromosome 22, 9x Coverage .. 150

B.3. Human Chromosome 22, 7x Coverage .. 151

B.4. Human Chromosome 22, 5x Coverage .. 151

B.5. Human Chromosome 22, 3x Coverage .. 151

B.6. C. elegans Chromosome 1, 11x Coverage ... 151

B.7. C. elegans Chromosome 1, 9x Coverage ... 152

B .8. H . influenzae, IIx C overage ... 152

B .9. H . influenzae, 9x. C overage .. 152

B.10. H . influenzae, 7x C overage ... 152

9

B .11. H . influenzae, 5x C overage ... 153

B .12. A . fulgidus, 7x C overage...153

Appendix C: Comparative Analysis of Human and Mouse Loci

C. 1. Comparative Analysis of 117 Human and Mouse Genomic Loci............................ 162

10

ACKNOWLEDGEMENTS

My most special thanks to my advisor Bonnie Berger for her guidance, unwavering support, and

collaboration on all the work described in this thesis. I gratefully acknowledge the guidance and

collaboration of Sorin Istrail, Eric Lander, and Jill Mesirov. Sorin Istrail introduced me to

physical mapping, and Chapter 1 is the result of our collaboration. I feel especially fortunate to

have met and collaborated with Eric Lander, who deeply influenced my work, my knowledge of

biology, and my devotion to genomics research. Eric Lander introduced me to the material of

Chapters 2, 3, and 4. These chapters resulted from my collaboration with Bonnie Berger, Eric

Lander, and Jill Mesirov. I especially thank my friend and colleague Lior Pachter, whose

contributions directly enabled the completion of the comparative sequence analysis and gene

recognition part of this work (Chapter 4).

I thank Bruce Birren, Ken Dewar, Daniel Kleitman, and Tomas Lozano-Perez, for helpful

discussions. I thank Eric Banks, Wes Beebee, Valentin Spitkovsky, Ken Stanley, Tina Tyan,

Brian Walenz, and Bill Wallis, for help and contributions to the research. I am grateful to

Angelita Mireles, Amir Nashat, and Ken Stanley for their help in reading over and helping edit

my thesis. I thank my family, and especially my sister Evi, for their support. Thank you all.

11

Ic~ tov Zukpstpo ractfl Aa unptvi

12

OVERVIEW

The discovery of the DNA double helix in 1953 by James Watson and Francis Crick

(Watson and Crick, 1953a, 1953b) led the way to an understanding of biology in molecular

terms. Subsequently, since the discovery of techniques to sequence DNA in the late 1970s

(Maxam et al. 1977; Sanger et al. 1977) the characterization and study of the genetic material of

organisms at the sequence level has become an increasingly important tool in biology. Today

major genomic projects are being undertaken at an accelerating pace, with the aim of sequencing

and ultimately studying the genetic material of humans, animals, plants, bacteria, and in general a

vast variety of living organisms. The Human Genome Project, an international effort to produce

the complete sequence of human DNA at very high accuracy, is scheduled to complete by 2003

(Science, vol. 284, p. 1439). The mouse genome is next in the pipeline (Science, vol. 287,

p. 1179). Organisms whose genome has already been sequenced include tens of unicellular

organisms (see Hurowitz, 1999 for a list of 15 such organisms), yeast S. cerevisiae (Oliver et al.

1992; Dujon, 1996), C. elegans (The C. elegans sequencing consortium, 1998), and Drosophila

(Nature, vol. 403, p. 817; Science, vol. 287, p. 1374). Many more organisms are either being

sequenced, or will be sequenced in the near future. Finished sequences are being annotated with

information about gene boundaries, regulatory elements, and other important biological units.

Inter and intra-species comparative analyses of homologous regions are providing insight into the

biology and evolution of organisms (O'Brien et al. 1999).

Since the first sequencing projects, computational tools have been essential in genomics.

Shotgun sequencing for instance, the prevailing method for determining the sequence of a

genomic region, involves obtaining a large number of short random pieces (a few hundred

nucleotides long) of the region, sequencing those pieces with the existing sequencing technology,

and then assembling them using computers into the complete sequence of the genomic region. As

the pace of genomic research has been accelerating, the contribution of computer science is

becoming both more essential and challenging.

13

In this thesis we will present some contributions of a computational/mathematical nature

applied to the different stages of a genomic project. These stages include: planning a genome

sequencing project, assembling the sequencing data into a complete genomic sequence, and

finally comparing and annotating genomic sequences.

First, we will present theoretical work on the problem of finding the minimum superstring

of a hypergraph. This is an algorithmic problem motivated by the biological problem of physical

mapping, i.e. obtaining a map of the locations of clones for the purpose of then selectively

sequencing them. We will study the computational complexity of this problem, and present some

algorithms that provide constant approximations under certain conditions. We test our main

algorithm on simulated random data.

Second, we will present a study of the "walking" approach to whole genome sequencing.

Walking with clone-end sequences (Venter et al. 1996) is an important approach to genome

sequencing, providing an alternative to either physical mapping-based clone-by-clone

sequencing, or whole genome shotgun sequencing. We will present a mathematical model and

computer simulations predicting the performance of a sequencing project based on walking with

clone-end sequences. The purpose of our modeling work is to clarify important tradeoffs in

planning to sequence a genome by this method. We also present a method for cutting

dramatically the inefficiency of redundant sequencing, by using a second library of shorter

clones.

Third, we will present some tools for automated assembly of shotgun sequencing data. We

will present a hashing system for efficiently obtaining the adjacency matrix of similarity of a

large collection of sequencing reads. Building on this, we will describe ARACHNE, a system for

assembling shotgun sequencing reads into long layouts that we call supercontigs. We test a

prototype implementation on the human chromosome 22, as well as on other sequences, with

encouraging results. We briefly describe future improvements to ARACHNE, with the ultimate

goal of having a system that can comfortably assemble shotgun data of a complete mammalian

genome.

Finally, we will develop tools for comparison and annotation of large genomic regions of

homologous DNA from two species. The impeding availability of vast amounts of unannotated

human and mouse genomic data motivate this part of the work. The whole human genome will be

available by 2003 while large regions of the mouse genome are being sequenced (Science, v. 284,

p. 1906-1909, 1999; Science, v. 286, p. 210, 1999; Science, vol. 287, p. 1179, 2000) and in not

14

too long the complete mouse sequence will undoubtedly be obtained. The study of the human

genome can benefit tremendously from comprehensive comparisons with the highly homologous

mouse genome. Moreover, thinking ahead on future medical therapies and technologies based on

genomics, they will likely be tested first on the mouse before being applied to the human. We

will present GLASS (GLobal Alignment SyStem), a tool for aligning long orthologous genomic

regions from related species. Using this, we will provide a comparative analysis of a number of

orthologous genetic loci of human and mouse. Finally, we will present ROSETTA, a gene

recognition program based on cross-species human and mouse genomic comparisons.

15

BACKGROUND

In the pages that follow we give a brief introduction to genomics, and outline the context of the

contributions that we describe in the following chapters. We give basic biological background

intended mainly for readers with expertise in computer science or related disciplines. Such

readers may find it useful to also refer to more general texts such as (Lewin, 1996; Stryer, 1996;

Lodish et al. 1998; Griffiths et al. 1993), and an introductory chapter on biology written for

mathematicians (Lander and Waterman, 1995). For background more specific to the material in

this thesis, we suggest the following selective reading: As general reading that is related to

several parts of this thesis we would suggest Dujon, 1996; The C. elegans Sequencing

Consortium, 1998; Lander, 1997; Lander and Waterman, 1988; Smit, 1995. For Chapter 1 on

Physical Mapping, we would suggest Alizadeh et al. 1995; Booth and Lueker, 1976; Collins et al.

1995; Coulson et al. 1986; Greenberg and Istrail, 1995; Koop, 1995; Nelson and Speed, 1994.

For Chapter 2, Venter et al. 1996; Lander and Waterman, 1988. For Chapter 3, Fleischmann,

1995; Green, 1997; Weber and Myers, 1997. For Chapter 4 we would suggest Altschul et al.

1990; Altschul et al. 1997; Batzoglou et al. 1998; Boguski et al. 1996; Burge, 1997; Burset and

Guigo, 1996; Koop, 1995; O'Brien et al. 1999.

1. Genomes and the Genetic Code

DNA is a very long macromolecule composed of deoxyribonucleotides, which are small

molecules containing a base, a sugar, and a phosphate group. The sugar contained in a

deoxyribonucleotide is deoxyribose, indicating that it lacks an oxygen atom (deoxy-) that is

present in a ribose. The base is a purine (adenine (A) or guanine (G)), or a pyrimidine (thymine

(T) or cytosine (C)). Therefore DNA can also be thought of as a long string written in an alphabet

of four letters, namely A, C, G, and T. DNA is actually a double-stranded molecule, where each

nucleotide is bonded to its Watson/Crick complementary nucleotide (A to T, and C to G). Locally

DNA assumes a helical shape, and therefore is called a double helix. James Watson and Francis

Crick discovered the three-dimensional structure of DNA in 1953 (Watson and Crick, 1953a,b),

and the mechanism of DNA replication was soon inferred. The complementary nucleotide chains

16

of DNA act as templates for each other during DNA replication. Therefore DNA is a large

molecule containing information written in the alphabet {A, C, G, T}, capable of preserving and

replicating this information. It is believed to contain (almost) all the information inherited by an

organism from its parent(s).

The DNA of an organism is referred to as its genome. Genomes are stored inside cells.

Organisms are broadly divided into prokaryotic organisms (or prokaryotes), and eukaryotic

organisms (or eukaryotes). The major difference is that the genome of eukaryotes is sequestered

in a nucleus, where it is protected by a nuclear membrane from the cytoplasm of a cell. The

structure of the genome differs greatly between prokaryotes and eukaryotes, with eukaryotes

usually having much longer genomes, exhibiting much higher repeat rates, and divided into a

variable number of chromosomes. Multicellular organisms, i.e. organisms that have more than

one cell, are usually eukaryotic. In multicellular eukaryotic organisms each cell has a nucleus

with a copy of the DNA.

transcription translation

DNA - * mRNA p protein

Figure 0.1. The Genetic Dogma

The precise sequence of bases in the genome carries the genetic information of the

organism. Genotype is the genetic constitution of an organism. Phenotype is the expression of this

genetic constitution, i.e. the physical characteristics of the organism, and depends on the genotype

and on the environment. Different organisms have genomes that are very different in size and

structure. Viruses in general have the shortest DNA genomes' ranging from 5kb (kilo-bases) up

to 200kb. Bacteria genomes are longer, ranging from 500kb to 5Mb (mega-bases) and circular.

In some viruses genetic material comes in the form of RNA instead of DNA.

17

The genome of yeast (a simple eukaryote) is 13.5Mb long (Sherman, 1997), contained in 16 pairs

of chromosomes each ranging from 200kb to 2200kb in size.' The genome of the worm

Caenorhabditis elegans (or C. elegans) is 97.3Mb long and is contained in 6 chromosomes (The

C. elegans Sequencing Consortium, 1998). The genome of the fly Drosophila melanogaster is

165Mb long and is contained in 6 chromosomes (Rubin, 1996). The genome of a mammal such

as human, or mouse, is believed to be around 3.5Gb (giga-bases) long. In some phyla, such as

reptiles, birds, and mammals, genome sizes are similar within the phylum. But in the case of

insects, amphibians, and plants, genomes vary widely in size within a phylum. Flowering plants

have the greatest variation in genome sizes, ranging from smaller than 100Mb, to greater than

100Gb (Lewin, 1996).

Cells make proteins, which are the building blocks of a living organism. Proteins are

synthesized according to the information encoded in genes, which lie in the genome. The

expression of the information in a genome thus takes the following steps: genes are initially

transcribed into messenger RNA (mRNA), which is an information-carrying intermediate in the

protein synthesis mechanism. Messenger RNA in turn is translated into protein. A schematic is

shown in Figure 0.0.1. RNA molecules are usually single-stranded, and are composed of adenine

(A), cytosine (C), guanine (G), and uracil (U) instead of thymine (T). An mRNA transcript

contains a single gene in eukaryotes, but in prokaryotes it usually contains multiple genes.

Translation to protein takes place according to the genetic code, whereby three nucleotides are

translated to one amino acid, which is a unit in a protein sequence, just like nucleotides are units

in DNA and RNA sequences. There are 20 amino acids. Therefore the genetic code is redundant,

as there exist 64 combinations of triplets of nucleotides. Three such combinations actually stand

for the special terminator signals of translation, the stop codons: UAA (ochre), UAG (amber),

and UGA (opal). One triplet (AUG) stands for the initiation of translation signal, as well as for

the amino acid Methionine (Met). The full genetic code appears in Appendix A. Later in this

section we give more details on the structure of the gene and on the processes of transcription and

translation.

We omit from this simple picture the fact that some of the DNA of an organism, and specifically yeast. is contained in

mitochondria, plasmids, and even some double-stranded RNA viruses.

18

The human genome is believed to contain up to 100,000 genes. Probably by the end of the

year this estimate will be more accurate, as human genome projects approach their conclusion.

Other mammalian genomes are believed to contain a similar number of genes. Genes in other

organisms vary. Table 0.1 shows estimated lengths of genomes and number of genes for a

number of organisms (Meinke et al. 1998; O'Brien et al. 1999; Rubin, 1996; Lewin, 1996; The C.

elegans Sequencing Consortium, 1998, Lin et al. 1999, Adams et al. 2000).

Organism Length (Mbp) Number of Genes

Human (and other mammals) 3,500 70,000-100,000

Drosophila (fruit fly) 120 13,600

Caenorhabditis Elegans (nematode) 97 19,000

Saccharomyces Cerevisiae (yeast) 13.5 5,800

Haemophilus Influenzae (bacterium) 1.83 1,738

Escherichia Coli (bacterium) 4.2 2,350

Arabidopsis Thaliana (plant) 120 27,000

Table 0.1. Estimated genome size and number of genes for some organisms.

2. Mapping and Sequencing a Genome

The complete DNA sequence of a genome is a powerful tool for studying an organism.

Biological research in the 21st century will surely require obtaining the sequence of large

numbers of important organisms, including many higher animals and plants with large genomes.

Obtaining the genome sequences of living organisms is widely considered to be the first step

towards a deeper understanding of genetics and biology in general. There is no simple biological

experiment that can sequence an entire genome. There are several experiments though, that

combined give much of the desired answer.

The first procedures that were able to determine the nucleotide sequence of small

fragments of DNA emerged in the late 1970s (Maxam et al. 1977; Sanger et al. 1977). These

procedures involved gel electrophoresis, an important biological experimental method. We refer

the reader to standard introductory biology and biochemistry books (eg. Lodish et al. 1996). This

is still the predominant method for sequencing DNA fragments. It can produce the sequence of a

19

500-1000 nucleotide long region off the end of a DNA fragment. The gel electrophoresis reaction

is error prone, yielding around 1% incorrect nucleotides in the first 500 positions, and somewhat

higher error rates in the subsequent positions. In addition, it is not possible to tell which of the

two complementary strands of DNA is given by the reaction. The output of the experiment is

called a read, and as we said is a 500-1000 long sequence on {A, C, G, T} of unknown

orientation, and with -% errors.

A. A<k

read 2

read 1

A>k

B.

read 4
OK

read 3

Figure 0.0.2. Ambiguous and unambiguous read overlaps. For the value of k, A. Reads 1 and 2 overlap by

less than k, and therefore the overlap is ambiguous; B. Reads 3 and 4 overlap by more than k, and therefore

are very likely to truly overlap in the genome.

The predominant method for characterizing longer regions is called shotgun sequencing,

and was developed by Sanger's lab in 1982 (Sanger et al. 1982). The method involves (1)

breaking several replicas of the DNA region of interest into many smaller pieces, at random; (2)

obtaining reads using gel electrophoresis for a large number of those pieces; (3) finally detecting

overlaps between the reads, and assembling them together using computers (in silico). In order

for this approach to work, during step 2 a sufficient number of reads should be obtained. The

20

coverage with reads of a region of length L is defined to be C, where CxL is the sum of lengths

of reads obtained in step 2. In such sequencing experiments, typical coverage values are 5-10,

with coverage 10 being considered the "golden" quality standard.

Sanger's lab first applied shotgun sequencing to the genome of bacteriophage A (Sanger et

al. 1980, 1982). Subsequently genomes of large recombinant plasmids, large viruses,

mitochondria, chloroplasts and bacteria were sequenced by this technique (Goebel et al. 1990;

Oda et al. 1992; Ohyama et al. 1986; Fleischmann et al. 1995).

Fragment assembly is the computational problem of figuring out the source genomic

sequence, given a collection of reads obtained by shotgun sequencing. In the absence of

sequencing errors and repeats, fragment assembly is a trivial computational task, given a

sufficiently large number of sufficiently long reads. Some back-of-the-envelope analysis

demonstrates this claim. Let G be the genome length, N the number of reads, and assume for

simplicity a constant read length 1. Assume that the genome is a random string on {A, C, G, T},

with each letter occurring with probability 4- at each position independently of other positions.

The probability that a given substring of length k (call it a k-mer) occurs in the genome is 4-

kxG. The probability it occurs twice is 4-2kxG 2 . There are 4 k k-mers, therefore the probability

that any occurs twice in the genome is 4-xG2 . Letting k= Flog4G2 + log 4 103] the probability

that there is a repeated k-mer is 10-3, which is very small. For G = 3.5x 109, roughly the length

of the human genome, it would suffice for k to be > 37 in order to virtually ensure that two reads

containing the same k-mer correspond to overlapping subsequences in the genome. This is shown

in Figure 0.0.2. Then a simple algorithm would suffice to produce in linear time an assembly of

the reads into large contigs: (1) create a hash table of all k-mers occurring in the reads, indexing

the reads; (2) perform in any order, all possible pairwise "merges" of reads that contain a

common k-mer. Step 1 above is linear in CxG, while step 2 is linear in CxN.

Factors that make fragment assembly considerably more challenging are (1) sequencing

errors that result in reads with slightly different sequences in the region of overlap, and (2) the

repetitive structure of genomes, especially for higher organisms and longer genomes. Currently

PHRAP (PHragment Assembly Program, or Phil's Assembly Program after Phil Green,

http:///ww.PHRJJ com) is the only generally available software system for the assembly of

21

shotgun data. It has been used successfully in most sequencing efforts in academia. It can handle

routinely shotgun data of Bacterial Artificial Chromosome (BAC)' clones, which are usually 100-

300Kbp long. It is believed to be capable of handling shotgun data of sequences that are at most a

few million base pairs long, such as bacterial genomes (Lander, personal communication).

The major challenge when assembling shotgun data from large genomic regions is the

presence of repeats in the genome. Different genomes exhibit different amounts and kinds of

repetition. Bacterial genomes usually have very few repeats. Eukaryotic genomes usually exhibit

a considerable amount of repetition. Low complexity repeats are regions of DNA that are

extremely high in purines (A and T), or pyrimidines (C and G), or A and C, or G and T, or

regions that contain microsatellite repeats,2 or simply regions that are extremely rich in a

particular nucleotide. Such regions clearly deviate considerably from a random sequence on {A,

C, G, T}. In addition, there are common families of repeats. One example, Alu, are small repeats

of length around 300 that tend to cluster, and are around 10% different between copies (Schmid,

1996; Batzer et al. 1996). LINEs (Long Interspersed Nucleotide Elements) are another family of

repeats, of length between 500 and several thousand nucleotides (Smit and Riggs, 1995). The

human genome contains roughly 1,000,000 Alu occurrences, and 200,000 LINE occurrences.

Many other repeat families have been identified, including MIR and LTR/Retroviral (for a

comprehensive review see Smit, 1995). Finally, possibly 25% of the genes in the human genome

are repeated twice or three times within the genome, and there are also 43kb long tandem clusters

of RNA pseudogene arrays, and 50-150kb long genome duplications (Myers, 1999). Such

repetitions exhibit different degrees of fidelity between copies.

'Bacterial Artificial Chromosomes are a vector mechanism that can accommodate contiguous pieces of DNA
that are fairly long (up to 300,000 long in general). Other vector mechanisms include plasmids, cosmids, Phage artificial
chromosomes (PACs), and Yeast Artificial Chromosomes. Cloning of DNA is based on two key types of enzymes:
restriction enzymes that are capable of cutting the DNA from any genome at occurrences of specific short subsequences

of nucleotides, generating a well-defined set of fragments; and DNA ligases, capable of inserting the DNA fragments
produced by restriction enzymes into replicating DNA molecules. Such replicating DNA molecules (vectors) include
plasmids (often E-Coli plasmids) that can incorporate fairly short DNA sequences, on the order of 2,000-12,000
nucleotides long, cosmids that can incorporate longer sequences, on the order of ~40,000 long, Bacterial Artificial
Chromosomes (BA Cs) that incorporate longer sequences of around 150kb long, and Yeast Artificial Chromosomes, that

incorporate much longer sequences, on the order of 1Mb long. Different vector clone mechanisms exhibit various "hot"
and "cold" spots in the genome, i.e. subregions of the genome that tend to be incorporated more frequently, or less
frequently. The reason is restriction enzymes cut DNA in the occurrences of specific short sequences. This process is
not entirely random, as DNA sequence does not obey much of the properties of a random string on four characters.

2 Repeats of the form (al.. .ak) where 3 k 6 and n is a very large number. The subsequence al.. .ak is repeated n

times with a certain variation between repetitions.

22

In the presence of repeats, overlaps between pairs of reads do not unambiguously imply

that the reads truly overlap in the genome. Figure 0.0.3 demonstrates how a repetition in the

genome makes it hard to assemble the corresponding regions.

A R B C R(2)

x

a b

D

c d

a

A x

y
C

C

R b

B

d

D

Figure 0.0.3. (Above) Repeat region R is flanked by unique regions A, B (R 1) occurrence) and C, D (R2)

occurrence). Reads x, y are completely inside the repeat occurrences, while reads a, b, c, and d are partially

in the repeat, and partially in the unique regions. (Below) Correct assembly of the reads is a-x-b and c-y-d.

However, wrong assemblies c-x-y-b, c-x-b, c-x-d, a-x-y-d, etc. are all consistent with the overlap picture.

Largely because of the presence of repeats, until recently it was widely believed that

sequencing a large, repeat-rich genome with the shotgun approach and then accurately

assembling the sequence is not feasible. For this reason, clone-by-clone approaches to sequencing

a genome have been employed. According to these approaches, subsequences of the genome are

inserted into vectors that can accommodate them, creating clones that can be reliably replicated.

Enough clones are created to cover the whole genome with redundancy. Shotgun sequencing is

23

ON ME 0 __

then applied to a subset of clones that has been selected so as to cover the entire genome with

minimal redundancy. These approaches overcome the challenges of sequencing an entire repeat-

rich genome using the shotgun method. Applying shotgun sequencing to each individual clone is

much easier because (1) the subsequence is much shorter and consequently the computerized

assembly of reads much smaller, and (2) a clone has a much simpler repetitive structure than the

whole genome.

A chromosome

Physical Mapping

Minimal tiling path: Sequencing

Figure 0.0.4. Clones, possibly from different kinds of vectors and of different sizes cover the chromosome.

The clones are mapped so that their layout on the chromosome is known accurately enough to construct a

tiling path. The clones in the tiling path are selected so as to minimize overlaps, while not allowing any

gaps. These clones are eventually sequenced, providing the sequence of the chromosome.

Physical mapping is the predominant clone-by-clone approach to-date. (Other approaches

have been proposed, see for instance Hudson et al. 1995; Venter et al. 1996; Batzoglou et al.

1999, and Chapter 2). According to this approach, as a first stage of a sequencing project, a large

24

library of clones is constructed covering the entire genome. The clones are mapped on the

genome, i.e. their layout is known. Subsequently, a minimal tiling path of the clones is selected

for the sequencing pipeline. Figure 0.0.4 shows an example of a mapped set of clones and a tiling

path, for one contiguous piece of DNA (e.g. a chromosome). Note that in reality the DNA of a

chromosome cannot be conveniently isolated. Therefore one cannot select and clone a random

fragment off a specific chromosome. In order to sequence clones from a specific chromosome,

the clones need to be mapped first to the chromosome.

The physical mapping techniques can be divided in two categories: digestion experiments,

and hybridization experiments.

In digestion experiments a collection of clones is cut (digested) using one or more

restriction enzymes, that each split the inserts at every occurrence of a characteristic substring of

4-8 nucleotides. Then the lengths of the resulting insert fragments are determined (usually using

gel electrophoresis). Pairs of clones that exhibit similarities in the pattern of resulting fragment

lengths are considered likely to overlap in the genome. Variations in the digestion technique

include (1) single digests, in which one restriction enzyme is used; (2) double digests, in which

two restriction enzymes are used, each cutting the inserts at occurrences of a different substring;

(3) partial digests, where the target DNA is cut by one enzyme, but the experiment is performed

multiple times, varying the duration of enzyme activity on each copy of the inserts. By varying

the time the enzyme acts on DNA, larger or smaller sets of sites are recognized and cut by the

enzyme.

In hybridization experiments, the presence or absence of a set of oligonucleotide probes is

used to determine overlaps between insert clones. Oligonucleotide probes are small sequences of

DNA that bind (hybridize) to their Watson/Crick complementary subsequences on a single-

stranded insert clone. Probes detect overlap because when a set of probes hybridizes to the same

pair of clones, the corresponding set of subsequences occurs in both clones. Hybridization

experiments can be performed with simple oligonucleotide probes, or with STS probes. The STS

25

probes are pairs of 18 long substrings that are between 200 and 1,000 nucleotides apart in the

insert. A region containing such a pair is called a Sequence Tagged Site (STS).'

Several kinds of experimental errors may occur with any of the above physical mapping

techniques. In digestion experiments, typical errors include uncertainty in length measurements,

multiplicity errors where the number of fragments of same lengths is miscounted, spurious or

missing fragments, and other. Gel electrophoresis data on the lengths has typical error rates of 3%

(Fasulo et al. 1997). In hybridization experiments, typical errors include repeated probes,

chimeric clones, false positives, andfalse negatives (Greenberg and Istrail, 1995, Batzoglou and

Istrail, 1999, Myers, 1999, see also Chapter 1). A false positive is the hybridization of a probe to

a clone where it does not occur. A false negative is the absence of hybridization of a probe to a

clone where it occurs. A chimeric clone is a piece of DNA coming from two different parts of the

genome glued and appearing contiguous. A repeated probe is a probe that occurs at least twice on

the mapped region, wrongly implying overlap between clones covering two different occurrences

of the probe.

A fundamental question when constructing physical maps is to determine the number of

clones needed to cover a genome. Lander and Waterman (1988) introduced a statistical model for

answering this and related questions. Clones in the Lander-Waterman model are intervals of

length L, each uniformly distributed along the genome which is a large interval [0,N] of length N.

Clones cover the genome to depth (coverage) d = nL/N where n is the number of clones. The

expected number of gaps in the genome (subregions not covered by any clone) is found to be ne"

+ 0(1), and the expected total gap length2 is found to be Ne-d.

Whole-genome shotgun sequencing is an alternative to the clone-by-clone approaches. An

important variation of the technique, that considerably facilitates fragment assembly, is shotgun

sequencing with forward-reverse links (Edwards and Caskey, 1991). According to this technique,

reads are obtained from both ends of an insert (Figure 0.0.5). Moreover, inserts are size-selected

so that the approximate distance of the pair of reads obtained from the ends of a fragment is

'STS probes are currently more popular because they are a more reliable and efficient means of obtaining the overlap
information between clones (Myers, 1999).

2 For the Human Genome, letting N = 3,500Mb, and given a library of n = 175,000 BAC clones of length around
200,000 each, so that the coverage d is 10, one would expect to get around 8 gaps, with total gap length 159Mb.

26

known. Plasmid inserts for instance, can be size selected to be approximately L long, with 2,000

< L < 12,000. One of the reads is always obtained by reading the forward strand of the fragment,

and the other by reading the reverse complement strand. This is why the link between the reads is

called a forward-reverse link. Because of imperfection in the experimental methods, forward-

reverse links are inaccurate in two ways: (1) some links, typically 10% (Myers, 1999) are false

with the respective reads coming from unrelated places in the genome; (2) distances between the

reads are only approximate, with typical mean deviations in the 5-10% range. For simplicity we

will also refer to forward-reverse links as earmuff links, or earmuffs.

Approximate distance L ± 10%L

read I read 2

Insert, size selected for length L

vector

....... Insert -- Reads

Q _") Vector Forward/Reverse link

Figure 0.0.5. A forward/reverse link is obtained by reading off both ends of an insert.

Forward/reverse links can provide crucial information that aids in resolving repeats in the

genome. Recall Figure 0.0.4, where regions A and B flank occurrence I of repeat R, and regions

C, D flank occurrence 2 of R. Without any forward/reverse link information, it may not be

27

possible to deduce that A-R-B, C-R-D is the correct sequence, as opposed to A-R-D, C-R-B.

Figure 0.0.6 shows how forward/reverse links can resolve the ambiguity.

A R1 B C R(2) D

A B

Ro

C D

Figure 0.0.6. Forward reverse links between regions A,B, and C,D, resolve the ambiguity in the assembly.

It is clear using the link information that regions A and B flank one copy of R, while regions C and D flank

another copy of R.

Shortly after sequencing of an entire mammal genome became a realistic possibility, the

US National Institute of Health, and the Department of Energy in collaboration with UK's Sanger

center and other labs in Europe and Japan, announced the launch of the Human Genome Project

(HGP) in 1990. A timetable was set for initially mapping, and subsequently sequencing the

human genome with an objective to complete the project by 2005 (Collins and Galas, 1993).

Subsequently, new goals were set for the HGP to complete by 2003, while also providing 90% of

28

the genome in a working draft by the end of 2001 (Collins et al. 1998). The HGP set a quality

standard for finished sequence, of 99.99% - less than one error per 10,000 bases.

The Human Genome Project has been following the clone-by-clone approach. Weber and

Myers (1996) proposed that the approach be shifted, to whole-genome shotgun sequencing. They

provided a computer simulation demonstrating the feasibility of this approach. Their arguments

in favor of shotgun sequencing included (1) better speed and cost; (2) detection of DNA

polymorphisms;' (3) more complete coverage of the genome. Most notably they argued that pure

shotgun sequencing could be performed in a centralized, efficient way, cutting the costs of the

key procedures in a large factory setting. It would also avoid various steps needed in the clone-

by-clone approaches, such as generation, storage, and tracking of large insert clones and smaller

subclones. Finally it would avoid inefficient overlaps between clones that are being sent to the

sequencing pipeline. On the other hand, Green (1996) advised against whole genome shotgun

sequencing. The main argument against the shotgun method was the risk involved with

performing all the costly sequencing work at once, and afterwards trying to assemble everything

on a computer. Green (1996) argued that this approach may not yield a correct result, or a

verifiable result, it may yield large-scale misassemblies of the sequence that are hard to detect

and correct, and the finishing phase may prove more costly than the savings from previous

phases.

In the past few years there has been a debate as to the strengths and weaknesses of each

sequencing approach, mostly in view of the impending completion of the Human Genome

Project. A privately owned company, Celera, in collaboration with academic partners, has been

able to sequence the Drosophila genome by the shotgun approach combined with sequence

obtained in the more traditional ways (Science, vol. 287, p. 767). Celera will partially sequence

the human genome with shotgun, and combine the data with those of the Human Genome Project

(Science, vol. 287, p. 1179). The few coming years will settle the debate regarding the efficiency

and reliability of the various approaches for sequencing a large genome. Perhaps the optimal

approach will prove to be a hybrid method of whole-genome shotgun sequencing using various

vectors (yielding forward/reverse links of different lengths) and light shotgun sequencing of large

inserts that cover the genome to some low depth (Lander, personal communication). The idea of

1Single-base differences between the DNA of two individuals of the same organism.

29

this approach would be to provide much of the needed sequencing through the whole-genome

shotgun method, while using the light sequencing of random large clones as powerful additional

linking information. The Drosophila genome was obtained with a hybrid method and Celera

plans to obtain the Human Genome with a hybrid method. Finally, the mouse genome is in the

pipeline to be sequenced by the academic sequencing community using a hybrid shotgun/clone-

by-clone method (Science, vol. 287, p. 1179). The optimal combination of shotgun/hybrid for a

large mammal genome is a very important open question (Lander, personal communication).

3. Genome Annotation

DNA is encoded into proteins according to the processes of transcription and translation (the

Genetic Dogma). Not all of the DNA sequence is coding. In fact in mammals only a small

percentage of the genome is coding. Segments of the genome that are translated comprise 75%

of the yeast genome; they represent only about 3% of the human genome. One of the first steps

in studying a genomic sequence is to identify the coding regions, and predict the encoded

proteins. Given that transcription and translation are highly regulated processes, it is also useful

to detect the precise locations of regulatory elements and other relevant subsequences that

affect the processes of transcription and translation.

Before we discuss genomic annotation, we need to give a brief description of the

processes of transcription and splicing. In the discussion that follows we will focus on

eukaryotic organisms, and more specifically on mammals. In general bacteria do not have

splicing, while the lower eukaryotes exhibit splicing to a lesser extent than higher ones.

RNA polymerase performs transcription by copying the DNA strand into an RNA strand

that grows from 5' to 3'.' The copying is accomplished according to the rules of Watson-Crick

base pairing. The source DNA is said to act as a template for copying into the newly formed

RNA strand. The resulting RNA strand has the reverse complement sequence of the template.

The RNA polymerase interacts with specific promoter sequences that are upstream of the

DNA and RNA single stranded molecule ends are named 5' or 3' after the orientation of the 5' and 3' carbon atoms of
the sugar ring. All known RNA polymerases synthesize chains directionally from 5' to 3'.

30

template and indicate the location where transcription should start. There are several kinds of

promoter consensus sequences but in general there is no satisfactory computational method of

recognizing promoters. Transcription is a most essential biological process, and its regulation is

extremely important. Different organisms have various methods of regulating transcription. In

addition to the promoter sequences, enhancer sequences can also regulate transcription. Enhancer

sites are located at various distances from the transcription start; proteins bind at these sites and

contribute to the regulation of RNA polymerase activity. Identification and annotation of these

regulatory sequences by computational methods is a very important open problem. It would be a

first step in understanding the mechanisms of regulation of specific genes.

Splicing occurs in RNA after transcription, and before translation. RNA before splicing is

called pre-mRNA, while after splicing it is called mRNA. During splicing, certain enzymes (the

spliceosomes) act upon pre-mRNA to delete certain segments called introns and connect together

the remaining segments, called exons. The resulting sequence is used in translation, while the

introns are thrown away.' Translation is executed by the ribosome, a large RNA/protein complex,

and starts at an occurrence of the triplet AUG.2 The translation start is usually surrounded by a

weak consensus sequence, known as the Kozak consensus.3 Translation proceeds directionally

5'-> 3'. Each triplet of nucleotides (called a codon) after the translation start is translated into an

amino acid, according to the genetic code (Appendix A). This defines the coding frame of the

gene. Translation stops at the first occurrence of a stop codon in the coding frame, which is as

UAA, UAG, or UGA. Therefore, the translated part of the sequence contains no triplets UAA,

UAG, or UGA in the coding frame. The leftmost untranslated part of the sequence, before the

initiating AUG, is called the 5' untranslated region (5'-UTR), and the rightmost untranslated part,

after the stop codon, is called the 3' untranslated region (3'-UTR). Abusing terminology, we will

call the post-spliced segments coding exons or noncoding exons, depending on whether they are

translated, or untranslated. Thus an exon may be fully coding, fully noncoding, or it may consist

of a coding exon and a noncoding exon. A schematic is given in Figure 0.0.7. Three introns are

' Virtually all mRNA in vertebrate and insects are derived by splicing of pre-mRNA as described above. However, in
some protozoans as well as in around 10-15% of the genes of the worm Caenorhabditis Elegans, a process of trans-
splicing takes place whereby mRNA is produced by splicing together different RNA molecules (see Lodish, 1998).

2 In humans the codons AUA and AUU also appear as initiation codons, while in mice AUC is also used. These
occurrences are extremely rare and are usually ignored in computational recognition of genes.

3 The Kozak consensus is the sequence CCRCCAATGG, where R stands for A or G.

31

spliced, generating 4 exons. In our terminology we have two 5' noncoding exons, three coding

exons, and one 3' noncoding exon. The 5'-UTR for example, consists of the first exon and part of

the second exon. In our terminology it consists of the first two noncoding exons.

Splicing of introns is controlled by the consensus sequence around the splice sites, which

are the boundaries between introns and exons. The splice site at the 5' end of an intron is called

the donor splice site, and the splice site at the 3' of an intron is called the acceptor splice site.

Exon 1 Exon 2 Exon 3 Exon 4

Intron Intron 2 Intron 3A
pre-mRNA

3'

Splicin

mKNA

Translation

Introns

--ME Noncoding Exons

Coding Exons

AUG - E1.X STOP

protein sequence protein 3D structure

Figure 0.7. Splicing and translation. The pre-mRNA transcript undergoes splicing, where long segments

(introns) are removed and the rest (exons) are glued together into the mRNA transcript. This in turn

undergoes translation, where each triplet of codons after the first AUG is translated into an amino acid

according to the genetic code, resulting in a protein sequence (XI.. .Xn). This in turn is folded into a

functional three-dimensional structure.

32

...

g\

The donor splice site is generally characterized by a strong consensus of GGURAGU

where R stands for either A or G. The above consensus runs from the last position of the

upstream exon, up to the 6 th position of the intron. Less than half the splice sites obey the above

consensus. However, the first two positions of an intron are GU in the vast majority of the

introns.' Even though the few nucleotides adjacent to the GU start of an intron seem to be the

most important in determining the splicing reaction, the region up to 20 base pairs into the intron

seems to also play an important role. In certain introns, occurrences of GGG in that region play

an important role in splicing (McCullough and Berget, 1997).

The acceptor splice site exhibits a weaker consensus of CAGR, where AG is always the 3'

end of the intron.2 Usually inside the intron and upstream of the acceptor splice site, lies a

pyrimidine-rich region of length around 20, known as the pyrimidine tract. Further upstream

often lies a branch site, which has the biological role of attaching to the 5'-end of the intron

during splicing. The branch site lies usually immediately upstream of the pyrimidine tract. In

yeast the branch site has a strong consensus of UACUAAC where the highlighted A is the point

where the 5' end of the intron attaches, called the branch point. In human DNA there is a much

weaker consensus of YNYURAY (Y stands for C or T, and N stands for any nucleotide).

Splicing is in general deterministic: for the majority of the genes, it is believed that the

same genomic region always produces the same mRNA and protein products. However several

genes can be spliced into a number of different variants depending on the environment or on the

developmental stage of the organism. Those are called alternatively spliced genes, and the

different splice sites that are used are called alternative splice sites.

The above discussion focused on the splicing of the vast majority of introns in pre-mRNA

of insects and vertebrate. A different kind of splicing is exhibited in group I and group II introns.

Group I introns are prevalent in nuclear ribosomal RNA (rRNA) genes of protozoans. Group II

introns are found in organelles such as mitochondria and chloroplasts from plants and fungi.

Group I and II introns exhibit self-splicing mechanisms where a spliceosome is not employed,

and the RNA product catalyzes its own splicing reaction. The consensus sequences at the ends of

GC is also observed in some cases.

2 UAGR is also relatively common, while AAG is the most infrequent ending of an intron.

33

introns are vastly different for these groups of introns. We refer the reader to (Cech, 1990;

Phizicky and Greer, 1993; Lodishet al. 1998) for further discussion on the splicing of group I, II

introns, as well as to (Sharp and Burge, 1997) for splicing of some introns using a different

spliceosome. A theory is that spliceosome-based splicing evolved from self-splicing reactions

(Lodish et al. 1998).

Annotation of genomic sequence involves identification of the genes encoded in the

sequence, including the boundaries of the regions that act as templates for transcription, the

initiator and terminator of translation, splice sites, promoter and regulatory regions, and perhaps

several other biologically important elements. Experimental methods exist for the accurate

identification of most of the above elements, but it is generally understood that these methods are

expensive, and too slow for the accelerating speed with which genomic sequence is being

produced. For this reason computational methods play an essential part in genomic annotation.

The identification of boundaries of coding exons, usually referred to as exon prediction, or gene

recognition, is one of the most active areas of research in computational genomic annotation.

Unfortunately computational methods are usually not as accurate as experimental methods, and

computer-derived annotations often need to be experimentally verified.

Following annotation of sequence, a very important step in the study of a genome is

functional annotation. Functional annotation is the process of assigning function to the genes that

are expressed in the genome, discovering the mechanisms of regulation associated with different

regulatory sites, and more generally assigning function to structural elements annotated in the

genome. This step is very challenging and currently lags behind the sequencing and structural

annotation steps (O'Brien et al. 1999).

4. Comparative Genomics

Genomes of different organisms exhibit similarities largely because of evolution from a

common genome. For instance, the first mammal lived around 165 million years (Myr) ago. All

modern mammals have a common ancestor that is dated between 65 Myr ago and 100-120 Myr

ago. A common primate ancestor is believed to have lived around 60 Myr ago (O'Brien et al.

1999). Figure 0.8 shows the phylogeny tree for different well-known mammal orders (the more

complete tree can be found in http://Ag.Arizona.Edu/tree/).

34

Edentata
(anteaters, sloths,

armadillos)

New World monkeys

Old World monkeys
Lagomorpha

(rabbits) humans, gorilla,

Triconodonts Rodentia (mice, bhimpanzee,

rats, squirrels)

Mammals Multitubereulata Primnates gibbons

Monotremata Tree shrews

(platypus,
eehidnas) Bats lemurs,

galagos,
Eutheria lorises
(plaeental Colugos

animals)

Artiodactyla (pigs, deer, eattle,

Marsupialia goats, sheep, hippopotaunuses,
camels, etc.)

(opossinns, Cetacea (whales, dolphins, porpoises)kangaroos)

Perissodactyla (horses,
tapirs, rhinoceroses)

Proboseidea (elephants, amnmoths)

Carnivora (dogs, eats,
bears, raccons, weasels,

mongooses, hyenas)

Figure 0.8. Part of the evolutionary tree for mammals. Refer to http://Ag.Ariziona.Edu/tree/ for a fuller

version of the tree of life.

Genomes change from generation to generation, by many different processes. The most

local process is the random introduction of isolated mutations in the genome sequence that

involve either base substitutions (change of a base pair among {AT, CG, GC, TA} to another), or

insertions/deletions of a particular base pair (indels). Such mutations can be silent if they have no

expressed effect (no effect in the phenotype) such as when a mutation occurs in an intron whose

precise sequence presumably does not have any effect on the characteristics of the organism, or

when a mutation occurs in the third position of a codon in an exon and does not change the

encoded amino acid (refer to Appendix A). Other mutations change one amino acid but do not

have any effect in the resulting protein activity (neutral substitutions). Point mutations are base

35

substitutions, and change only one amino acid in the protein. Frameshift mutations delete or

insert a base pair, and that changes the frame of translation downstream from the mutation,

resulting in a change in several amino acids. Frameshift mutations usually have a pronounced

effect in the protein activity, often rendering the protein inactive or even deleterious.

More dramatic heritable genotypic changes include changes in the chromosome structure.

These occur during meiosis where homologous regions in the genome have the opportunity to

form Watson/Crick pairing, with subsequent large-scale exchanges of genomic regions. These

changes broadly fall into four categories: inversions, deletions, duplications, and translocations.

Inversions are 180-degree rotations of a usually large segment of a chromosome. They do not

involve loss of genetic material, and therefore usually do not result in any phenotypic

abnormality. They are found in around 2% of humans (Griffiths et al. 1993). Deletions are losses

of part of a chromosome. In humans they usually cause syndromes of phenotypic abnormalities

(eg. "cri du chat" syndrome). Duplications can generate two copies of a region next to each

other, or one in its normal location and the other in some other part of the same chromosome, or

on a different chromosome. Duplications are important in genome evolution, because they supply

additional genomic material that is capable of evolving new functions. Translocations are

exchanges of parts between two different chromosomes. In the most common kind of

translocation, reciprocal translocations, a segment from one chromosome is exchanged with a

segment by another, resulting in two translocations (Griffiths et al. 1993). The most dramatic

genotypic changes are changes in the number of chromosomes whereby chromosomes can be

duplicated, lost, or even the whole genome can be duplicated. In mammals, chromosomal

mutations that are kept by the species and propagated to later generations are extremely rare, so

that only very few differences are apparent between the genomes of humans and different

primates (O'Brien et al. 1988, Marshal Graves, 1998, O'Brien et al. 1999). The hypothetical

primate ancestor's genome may have evolved into the human genome undergoing just seven

translocations steps, while the cat's genome can be reorganized roughly into the human genome

using only thirteen translocation steps. Comparative genomic analysis should eventually be able

to resolve the full phylogeny tree among mammal orders (O'Brien et al. 1999).

The "cri du chat" syndrome is a human genetic disease caused by a deletion at the end of the short arm of

chromosome 5. The most characteristic phenotypic manifestation of the syndrome is the distinctive cries made by
infants with this abnormality. Other manifestations include abnormally small head (microencephaly), a moonlike

face, and mental retardation (Griffiths et al., 1993).

36

As we already mentioned single base mutations are generally silent when they occur in

introns, or much of the intergenic regions. On the other hand, the effects of single based

mutations can range from relatively minor to quite dramatic, if they occur within exons, region

boundaries, and important structural elements such as promoters and regulatory elements. Most

mutations do not have a beneficial effect on the phenotype, and the most dramatic ones are often

deleterious. Such mutations do not tend to get propagated across generations because they are

selected against during evolution. Thus, few of the mutations that occur in the most important

regions of the genome get propagated to the next generations, while there is much less selective

pressure against mutations occurring in less important regions such as introns or intergenic

sequence. Mutations thus tend to accumulate over time in such regions at much higher rate than

in the protein-coding and regulatory regions.

Because of selective pressure to preserve function, proteins and protein-coding DNA

regions have remarkable sequence similarities across species. This is also true for regulatory

regions such as promoters and for important signals such as consensus sequences in intron/exon

boundaries. Within a particular species, genes frequently have inexact copies of themselves, often

a few kilobases apart on the genome. Such gene similarities are believed to have arisen by

duplications of an ancestral gene. Roughly half the genes in vertebrate are duplicated (Lodish et

al. 1998), and form gene families. The resulting encoded proteins form protein families, often

containing hundreds of members. The immunoglobins are a family of 500 proteins in several

vertebrate species, while the visual pigment proteins are a family of 4 proteins in humans.

Pseudogenes are copies of duplicated genes that have ceased to be expressed. Possibly silencing

genetic events such as mutations on important transcription-control regions resulted in making

such copies nonfunctional. The above facts point to the importance of sequence comparisons in

numerous scientific problems. These include cross-species comparisons between close and

distant relatives, and self-similarity comparisons within a single genome.

The mouse has been perhaps the most widely used model organism for understanding

human biology, and for applications to medicine and drug discovery. Therefore there is already

an abundance of data on the genetics, biology, and disease of the mouse. Moreover comparative

analyses between mouse and human orthologous regions (regions that are hypothesized to have

evolved from the same ancestral region) reveal very high sequence similarity (often above 80%)

37

in coding exons and regulatory regions (Lamerdin et al. 1994; Makalowski et al. 1996; Oeltjen et

al. 1997; Makalowski and Boguski, 1998a,b, see also Chapter 4).

Hardison et al. (1997) argue in favor of sequencing the mouse genome for the purpose of

detecting in the human genome the majority of the exons, and a significant number of regulatory

elements that would not be detectable by computational methods in the absence of mouse

homologous sequence. Both the academic sequencing community and private companies have

shown interest in sequencing the mouse genome shortly upon completion of the human genome

sequencing projects. The mouse genome is thus already in the sequencing pipeline of academic

sequencing centers (Science, vol. 287, p. 1179, 2000), and a private sequencing company Celera

(Science, v. 284, p. 1906-1909, 1999).

Similar efforts are taking place at a somewhat slower pace in plant genomics. Arabidopsis

thaliana is the first plant whose genome will be sequenced by the target date 2003 (Gale and

Devos, 1998). Sequencing of chromosomes 2 and 4 of Arabidopsis has recently been completed

(Lin et al. 1999, Schuller et al. 1999). Comparative analysis of plant genomes will play an

important role in the future for planning sequencing projects, and interpretation of genomic data

for economically important grains such as wheat and maize, which both have genomes

considerably longer than the human genome (Gale and Devos, 1998).

38

Chapter 1

PHYSICAL MAPPING WITH REPEATED PROBES

1. Introduction

The topic of this chapter is Physical Mapping, the most broadly used method for generating

clones for the sequencing pipeline of a clone-by-clone sequencing project. We describe results

on computational problems motivated by Physical Mapping. Our results are interesting mainly

from a theoretical computer science perspective, but also have some potential applications to real

Physical mapping experiments.

Physical mapping using hybridization data involves the construction of genomic maps

based on the information contained in the clone-probe hybridization matrix. The mapping tech-

nique has to cope with computational difficulties that are specific to the hybridization data. There

are errors that arise from the limitations in experimental accuracy. These include chimerism, false

negatives and false negatives. Errors introduce specific combinatorial problems whose solutions

could provide good mapping hypotheses. Usually these optimization problems are NP-hard and

various heuristics - based on generalizations of the Consecutive Ones Property (CIP) (Booth

and Lueker, 1976)- have been designed to cope with them e.g., (Alizadeh et al., 1995; Greenberg

and Istrail, 1995). Another important combinatorial dimension of the mapping problem arises

from the the fact that probes have multiple occurrences on the genomic region to be mapped. The

literature dealing with algorithms for mapping in the presence of repeated probes is quite limited.

In this chapter we study physical mapping with repeated probes, we identify some computational

bottlenecks, and we propose algorithms that exhibit various degrees of measurable success.

The fundamental modeling paper of the area is the paper by Lander and Waterman (Lan-

der and Waterman, 1988) in which the widely accepted Lander-Waterman model is introduced

and analyzed; (see also Arratia et al., 1991; Green and Green, 1991; Nelson and Speed, 1994) for

39

further mathematical and statistical analyses. According to the Lander-Waterman model, clones

are distributed uniformly along the genomic region, and probes are distributed according to a

Poisson distribution.

The only published algorithmic work focussing on mapping with repeated probes is (Al-

izadeh et al., 1995), although further work devoted to the problem is in progress (Waterman,

1997; Shamir, 1997). In (Alizadeh et al., 1995) algorithmic strategies are proposed, based on

the Lander-Waterman model by attempting to approximate the likelihood function, leading to

NP-complete optimization problems that are reasonably tractable in practice. The algorithmic

strategy proposed there uses local search 3-opt Lin-Kernigan type heuristics. Unfortunately ap-

proximation algorithms with a provable guarantee were not obtained. Based on this work, Karp

(Karp, 1993) proposed the problem of designing approximation algorithms with guaranteed error

bounds for the shortest superstring of a set collection. A superstring of a set collection is also

called a Hypergraph Superstring. Each set in a set collection is a hypernode. The elements of

each set are hyperedges. An element (hyperedge) then, connects two or more sets (hypernodes)

if and only if the sets contain the element. The combinatorial problem of characterizing the su-

perstrings of a hypergraph was introduced before (Ghosh, 1975; Lipski, 1976; Lipski, 1978) and

it is notoriously difficult (Lipski, 1978; Erdos, 1993).

Kou proves in a paper devoted to information retrieval and file organization (Kou, 1977)

that a variant of the CIP - modeling multiple storage of records - is NP-complete. In our ter-

minology the result is that the Hypergraph Superstring Problem for strict Sperner hypergraphs is

NP-complete. In (Lipski, 1978), non-tight upper and lower bounds were obtained for the hyper-

graph superstring length for the special case of the hypergraph being the power set of a finite set.

Waterman (1995) gives a comprehensive overview of the problem.

A clone-probe hybridization matrix is a 0/1 matrix with rows representing clones, column-

s representing probes, and a 1 in position (i, j) if and only if probe j is incident to clone i. Any

permutation of the columns of such a matrix results in the same clone/probe incidence relation-

ship. A collection of clones has the Consecutive Ones Property (C1P) (Booth and Lueker, 1976)

if there is a permutation of the columns of the hybridization matrix that allows each row (clone)

to be of the form 0 ... 01 ... 10 ... 0 - in a consecutive ones form. The obvious biological rel-

40

evance of the CIP is that each clone spans a connected region of the genome. A clone-probe

hybridization matrix containing "perfect" data, i.e., containing no errors and only unique probes,

is a matrix that obeys the CIP. An important property for a heuristic mapping algorithm is to re-

trieve the C IP in the absence of errors (Greenberg and Istrail, 1995). This is one of the properties

that our mapping algorithms achieve.

A meaningful simplifying assumption of the model is the Sperner property of a set collec-

tion: no set is included in the other. Indeed as the number of probes increases, the set of clones

of the Lander-Waterman model has the Sperner property with high probability. The PQ-tree

algorithm (Booth and Lueker, 1976) that retrieves the CIP uses a framework that hierarchically

decomposes the initial collection of sets into subcollections that avoid sets included in unions of

other sets.

The C IP property of a hybridization matrix ensures that there are no repeated probes. The

Sperner decomposition of a set collection satisfying the CIP, and the optimal merging of sets in

such a collection to obtain a PQ-tree are relatively easy computational tasks. Both tasks become

computationally intractable for very sparse instances of data with repeated probes. Consider for

example the intersection graph IG of a set collection. The vertices are the sets of the collection,

and an edge exists between two vertices when the corresponding sets intersect. In the CIP case,

the strict Sperner collections are sets of disjoint paths (SDP) in IG, while if probe repetition is

allowed, these collections correspond to general graphs. These facts point out the importance of

strict Sperner collections as building blocks in the hierarchical decomposition of the Hypergraph

Superstring Problem. As we will see, both the Sperner decomposition as well as the optimal

merging of the sets in a strict Sperner collection are MAXSNP- /NP-complete tasks.

In the above discussion the implicit assumption has been that a probe never appears more

than once in a particular clone. This is a simplifying assumption that is justifiable probabilistical-

ly by the Lander-Waterman model, as the mean probe arrival time increases (probe repetition de-

creases). However, this property is not necessarily guaranteed. In fact the genome deviates from

the Lander-Waterman model because of the repeat content of (particularly eukaryotic) genomes

(Smit, 1995). An alternative model therefore, is to seek the minimal explanation of the hybridiza-

tion data in the form of a multiset superstring that allows for possible repetition of probes in a

41

single clone. We prove that this problem is also MAXSNP-complete.

We present and test the GREEDY-MERGE algorithm that is based on Sperner decompo-

sition of hypergraphs, with the following provable performance: (1) it retrieves the PQ-tree of all

optimal zero-repetition superstrings; (2) on strict Sperner hypergraphs it is provably a 1.5625-

approximation algorithm; (3) it provides a 2-approximation for hypergraphs with a restricted

Sperner decomposition. The algorithm has cubic worst-case time complexity, and is much faster

on sparse, data. When tested on simulated random data the algorithm approximated the length of

the initial (correct) superstring within a factor of 1.1 in most problems involving 100-200 clones,

200-400 probes, and 1.5 to 4.9 average probe repetition. Please note that we did not compare

the actual mapping of the clones predicted by the algorithm, with the original "true" map of the

simulated data. We only report the ratio of the lengths of probe strings that the two maps provide.

Moreover, the length of the initial superstring is not necessarily the minimum length. Therefore

we cannot make any specific claims about how close our algorithm approximates the optimal

superstring length in these experiments.

2. Background

2.1 Physical Mapping

DNA molecules are very long sequences over an alphabet of four letters, or nucleotides: {A, C,

G, T}. Due to the large size of DNA molecules, the study of a genomic region involves breaking

it into smaller pieces that can be sequenced by present technologies. Physical Mapping involves

determining the true arrangement of the pieces on the initial genomic region, and then sequencing

the smallest subset of pieces that cover the region. The cloning procedure incorporates the pieces

of DNA into biological hosts. Each such copy is a clone. Through self-replication, a large

number of copies of each clone are obtained. The result is a clone library containing many copies

of pieces of the initial genomic region. The reconstruction process is based on data indicating

"overlap" between clones. One method of detecting overlaps is through the hybridization of short

sequences, called probes. Hybridization occurs when a probe sequence is complementary to a

subsequence of a clone. If the probe has a unique occurrence on the initial genomic region and if

42

two clones are hybridized by the same probe then they overlap. This assumes ideal experimental

conditions, i.e., no errors. So, unique probes detect overlap. However, in general probes are

complementary to multiple places on the genomic region, so detecting overlap is ambiguous.

The information contained in the hybridization data can be summarized as follows. Let

the clones be {CI,..., C} and the probes be {Pi,..., Pm}. Let the matrix H be defined by

H[i, j] = 1 if probe P hybridizes to clone C;, and H[i, j] = 0 otherwise. The problem we study

is that of using hybridization data given in the matrix H to reassemble the clones such as to re-

construct the initial genomic region. Let us note that the process of breaking the DNA into pieces

and selecting probes, even in a perfect cloning and hybridization experimental scenario, might

result in loss of information. Therefore, we may not be able to obtain the exact reconstruction.

To well-define the problem, we aim at obtaining the maximal mapping information consistent

with H.

2.2 The Lander-Waterman Model

We will first define the Lander-Waterman model and then formulate a combinatorial problem

in terms of hypergraphs, an appropriate framework for clone/probe hybridization data. Then

superstrings are introduced in order to search for the minimum repetition of probes needed to

explain the hybridization data.

The Lander-Waterman Model

1. A clone is an interval of length 1 contained in the interval [0, N]. The left endpoints of the

clones are independent random variables, uniformly distributed over [0, N - 1].

2. Probes 1, . . . , m are distributed along the interval [0, N] according to independent Poisson

processes of rate A. That is, a probe occurs at a short interval of length dx with probability

Adx, and disjoint intervals are independent.

2.3 The Hypergraph Superstring Problem

Hypergraphs. A hypergraph is a pair H = (X, S), where X is a finite set, and S = {Si, ... , Sm}I

is a family of subsets of X. The sets Si are called hyperedges. The following definitions apply to

43

hypergraphs as well to families of sets. A hypergraph is B-bounded if all of its hyperedges have

at most B elements. A hypergraph is a chain if S ={, ... , Sm} and S1 g S 2 C C - Sm. A

hypergraph is an antichain, or Sperner, if no Si is included in Sj, for every i, 5 j, 1 < i, j 5 m.

A hypergraph is strict Sperner if no hyperedge is included in the union of the other hyperedges,

or equivalently if every hyperedge has a characteristic element.

A Sperner decomposition of a hypergraph H = (X, S) is a decomposition of S into

subfamilies of sets called levels or layers Si, . . . , St such that: (1) the levels partition S, i.e.

S = Si U -.. U Sm and Si n Si = 0, 1 < i j 5 t; (2) Si is a strict Sperner family of sets for

every i, 1 i < t and (3) US1 C US2 ... C USt.

Consider the clone-probe hybridization matrix of a Lander-Waterman process. Let P

be the set of probes, and let C = {C1,... Cm} be the clones viewed as sets of probes. Then

HLw = (P, C) is the associated hypergraph. According to the Lander-Waterman model, the

arrivals of the left endpoints of the clones are distributed according to a Poisson process of rate

N 1~If |P is large enough, with high probability no clone is a subclone of any other clone.

Then HLW is a Sperner hypergraph. The average number of probes per clone is AlPl.

Multiset Superstrings. A string a = oi ... o,, is a multiset superstring of any subset of

U(o-) = {S : 1 <, # 7j < r : S = {oo, OrO+1, - - - , 0r}}-

Set Superstrings. A string a is a set superstring (or simply, superstring) of any subset of

V(a) ={S : V# K i < j < r a / a, S ={ .

For S E U(a) or S E V(a) we define 8,8(S),% (S) so that S = {o,(S), , o'(S)}-

We say that o expresses S if S E U(o-) (S E V(o), also denoted by S E a. A multiset (set)

superstring a is non-repeating if no letter in a occurs more than once.

Now we are ready to define our main computational problems:

The Hypergraph Set Superstring Problem: Given a Hypergraph H = (X, S) find a

superstring a = o-1 ... o for H of minimal length n.

The Hypergraph Multiset Superstring Problem: Given a Hypergraph H = (X, S)

find a multiset superstring a = a1 ... or for H of minimal length n.

Remark. Let us remark that the corresponding Graph Superstring Problem, where the

44

hyperedges have exactly two elements can be solved in time linear in the number of edges in

the graph. The minimum superstring coincides with the Eulerian path if the graph has such a

path. In the general case, it coincides with the minimum size collection of Eulerian paths that

cover all the edges. Our problem, the Hypergraph Superstring problem, is therefore a hypergraph

generalization of the Eulerian path problem in graphs.

The Sperner Decomposition of a Hypergraph Problem: Given a Hypergraph H =

(X, S) and an integer k > 0, decide whether there exists a Sperner decomposition into k levels.

3. Computational Complexity Results

We show that the hypergraph set superstring, and the hypergraph multiset superstring problems

are MAXSNP-hard. We prove these results with an L-reduction from TSP(1,2) on bounded

degree undirected graphs. The same reduction proves both problems to be MAXSNP-hard. We

are thus strengthening Kou's NP-completeness result (1977) by showing that the same problem

is MAXSNP-hard, which implies that it is computationally intractable to approximate within

better than a multiplicative constant of optimal. We also show that computing a minimal Sperner

Decomposition of a hypergraph is a hard computational task: it is NP-complete to decide whether

a two-level decomposition exists.

Theorem 1. The Hypergraph Set Superstring Problem and the Hypergraph Multiset Su-

perstring Problem are MAXSNP-hard even for 5-bounded strict Sperner hypergraphs.

Proof. We use an L-reduction (intuitively a linear reduction, refer to (Papadimitriou, 1994))

from TSP(1,2) on undirected graphs, on instances where the graph formed by length-one edges

has bounded degree. TSP(1,2) is the traveling salesman problem with distances 1, 2. That is,

given a complete graph G with edges of distance 1 and 2, find the shortest Hamiltonian path

on the graph.' This problem has been shown to be MAXSNP-complete even if restricted to

instances where the graph formed by the length-one edges has bounded degree (Papadimitriou

and Yannakakis, 1993).

'That is, the shortest path that visits each node exactly once.

45

Let HG = (V, E) be a graph of bounded degree D specifying an instance of TSP(1,2).

That is, HG contains the edges of cost 1 in the corresponding TSP(1,2) graph G. For every

v E V = {1, ... , n}, with associated edges (V, ui), ... , (V, Ud) where d < D, define hyperedge

SV {v, {v, U1 ,... , {v, ud}}. The hypergraph H is then (X, S) where X = UVEV SV and

S ={Svlv E V}. Clearly the above reduction can be performed in logarithmic space. Notice

that the resulting set collection is Sperner because every set S, has a distinguishing element

v e Sv. Moreover, Vv : ISvI < D + 1.

We will show that there is a Hamiltonian path on the graph G of TSP(1,2) of cost n -1 + k

if and only if there is a (multiset, or set) superstring a for S of length m + k + 1 where m = |E.

Since HG is a graph of degree bounded by D, m K D x n is linear in n. This will establish that

the above reduction is an L-reduction.

Say there is a Hamiltonian path of cost n - 1 + k. Since all edges have costs 1 or 2, we

know the path uses n - 1 - k edges from H and k edges of cost 2. Construct a of cost m + k +1

as follows: o arranges the sets Sv in the order the nodes v are arranged on the path. Whenever

an edge (u, v) in HG is used on the path, Su and Sv overlap in one element in a. Then,

S

|al = |SvI - (n - 1 - k) = m + k + 1
V=1

Conversely, say that a is a superstring of length m+k+ 1 = Eni |Sol - (n- k-i). Construct

a path by reading in a each vertex in the order it appears. Since a is shorter than E7j 1 IS I by

(n - 1 - k) there is a total overlap of (n - 1 - k) between the sets on the superstring. Since no

two sets contain more than one common element, there are (n - 1 - k) sets that overlap. These

sets have a common edge. This establishes a total of (n - 1 - k) edges from HG used in the

path, and hence a path of cost (n - 1+ k). l

Theorem 2. Finding the minimum Sperner Decomposition of a Hypergraph is NP-

complete. In particular, distinguishing between 2 and 3 levels for the minimum Sperner de-

composition of a hypergraph is NP-complete, even for 3-bounded hypergraphs with size < 1

hyperedge intersections.

46

Proof Given a hypergraph H = (X, S) and a partition of S into S1, S2, we can check efficient-

ly the properties for a Sperner decomposition. Therefore, the Sperner Decomposition in k levels

problem is in NP. We will show NP-hardness by a reduction from 3SAT.

Figure 1: Gadget for truth assignment.

Let # = 0i V ... V im be a 3-CNF formula, with variables Xi,...,xz. We construct a

hypergraph SO. Figure 1 shows the main part of the construction.

Two or three boxes connected by a line network correspond to one hyperedge. Any "o"

contained in a box is a unique element in X. An "o" or "8" contained only in one box is contained

only in one set. Such a set has to be in layer 1, because the union of layer 1 contains the union of

layer 2. A set containing elements all belonging to sets in layer 1, has to be in a layer : 1.

Associate layer 1 with TRUE and layer 2 with FALSE. Then the top part of Figure 1

containing the three sets labeled TRUE, TRUE, and FALSE, should be self-explanatory. It follows

that any two sets labeled x and 2 in Figure 1 are in different layers, in any 2-layer Sperner

47

decomposition.

Assign either all the x-sets, or all the t-sets to layer 1 for each variable x, thereby con-

structing a truth assignment. Among the x-sets and the z-sets, notice in Figure 1 that there are

some containing an s-element. These sets are meant to correspond to literals in the clauses of #.

For each variable x with kx occurrences of literal x and k' occurrences of literal z con-

struct kx x-sets with an s-element, and k' z-sets with an s-element. Finally, three s-elements

collapse to one if and only if the corresponding literals are in the same clause i,. Therefore there

is one s-element for each clause.

Clearly a truth assignment satisfying every clause translates to a 2-level Sperner decom-

position. Conversely, a 2-level Sperner decomposition correctly assigns truth value: Vx all the

x-sets are in the same level, complement to the one with the t-sets. Moreover, every s-element

belongs to three sets at least one of which in level 1, thereby satisfying the corresponding clause.

4. Approximation Algorithms

We describe a family of algorithms that repeatedly merge sequences of sets with the largest

overlap, to produce a final solution that represents a collection of valid superstrings. The repre-

sentation used is a PQ-tree that produces a family of superstrings of the same length. From this

representation, any member can be extracted efficiently. We assume that the reader is familiar

with the PQ-tree data structure. Below we outline the definition of a PQ-tree, as a representation

for a collection of superstrings:

PQ-trees that produce superstrings: A PQ-tree is a tree made of P-nodes and Q-
nodes. A P-node is either a finite set of symbols, or a parent node with a finite number of child

PQ-nodes. A Q-node is a parent node with an ordered finite list of child PQ-nodes. A string

or is produced by a PQ-tree with top node P, a P-node, if (i) P is a finite set of symbols and

a lists those symbols once each in any order, or (ii) P is parent to PQ-trees {ti,... , tk } and

0 -- Orr(1) . . . Ur(k) where a1 is produced by ti, and 7r is a permutation on {1, ... , k}. A string a

48

is produced by a PQ-tree with top node Q, a Q-node, if Q is parent to an ordered list of PQ-trees

[ti, ... , tk] and or = -1 ... Uk o r = =k ... Ui where oj is produced by ti. We call a PQ-tree

proper if all the strings it produces have the same length. For a proper PQ-tree rooted at node

R, we define the length of R, L(R) to be the length of any produced string. We call a proper

PQ-tree non-repeating if all the superstrings it produces are non-repeating. We call a PQ-tree a

superstring collection for a hypergraph H = (X, S = {S1, ... , S,}) if all produced strings are

superstrings of H.

Lemma 1. Let S ={1, ... , S} be a Sperner system. Then

VSi,Sj E S (i J) == ((#PT(Si) > #,.P(Sj)) A(,OPT(Si) > 7700T (S))) V
((#o6PT (Si) < #,0 0PT(Sj)) A(7eor T (Si) < e (OPTS))))

Proof. Notice that if #,(Si) 5 #.(S) and 7, (Si) ;> Yy(S) then S, C Si which is never the

case in Sperner systems. The assertion of the lemma follows. l

The above lemma enables us to define an order -, on the elements of a Sperner system

S:

Definition. Given a string a, and any two sets C, D expressed in a, we say that C -M,- D

iff 3,3(C) < #,(D). For sets C, D of a hypergraph H = X, S, we say that C is before D in a,

denoted by C i, D, whenever C -4, D and AE E S(C -4,. E -<, D). We say that C is next to

D in o, denoted by C rx, D, whenever C <i, D V D <, C.

Say that S1, i,- -- <, S,. Denote by a jj, 1 < i < j < s the substring oU,(S,) - - - (s,),
which is clearly a superstring for {Si, ... , S3}.

For sets C, D expressed in a we say that C := D, when #,3 (D) = qo, (C) +1 or #,83(C)
i7 (D) + 1.

A particular kind of Q-node that we will be using a lot is a sequence of sets. That is,

a Q-node whose children are leaf P-nodes: P-nodes that are finite sets of symbols. We will

49

call such Q-nodes simple Q-nodes, and name them with letters A, B, and D. As Q-nodes, a set

sequence and its reverse are equivalent.

Clearly a sequence of sets A = [A1 ,..., A,] is a superstring collection for a hypergraph

H = (X, S = {S1, , }) if for each i, 1 K i K s there are ji, ki, 1 ji < ki 5 n such that

Si= Ug<l<, A, and A, Am are disjoint for all ji < 1 < m K ki. Given the hypergraph node

Si, we will denote by JA(Si), KA(Si) the endpoints of Si in A, ji, ki respectively.

Denote a superstring of H, expressed by A, by o-(A). The size of A is defined to be the

number of sets r, and denoted by JAI. Denote by -A, <A, and NA the relations -a(A), < %(A),

and m,(A), respectively. It follows that these relations are well-defined. Denote by A the reverse

sequence [Ar, ... A1]. Clearly A[is a superstring collection for S whenever A is, because A

and A are the two possible directions of the same Q-node. We will denote by Aij where i < j
the set Ai U ... U A,. We will denote by A[;,j] the subsequence [A, ... , A,].

4.1 The Merge Operation on Simple Q-nodes

We want to define the operation merge, M(-, -) between two simple Q-nodes. Intuitively M(-,-)

should take as an input two set sequences A, B that are superstring collections of the disjoint

set collections S, T, respectively, and produce a superstring collection D for S U T. We want

D to be as short as possible, therefore M(-, -) should find any "obvious" overlap between the

sequences A, B. We will assume that S U T- is always a Sperner system, and that S n T = 0.

If A, B are sequences of one element A, B respectively, it is easy to compute the "best" D:

D = [A\B, A n B, B\A]. The size of the overlap is then IA n Bj. How about if A = [A] is a

singleton sequence but B = [BI, B 2 , ... , Bk], k > 1 ? Now the direction of the merge matters.

We find the largest I such that B1,1 C A and B 1,... , B, are pairwise disjoint. We can achieve

overlap |Bi,1 I+| (A\B1,)nBl+ 1|. We do the same with A, B9. Say w.l.o.g. that the largest overlap

of the two is between A, B. Then D = [A\B1,1+1, B1, ... , B1, AnB+ 1 , B1+ 1\A, B 1+2 , ... , BkI].

It is technical, but not deep, to see how all this generalizes when |Al > 1 and |BI > 1:

50

4.1.] Description

Algorithm MERGE: Given two set sequences A = [A1,..., Ap), B = [B1, ... , Bq] that are

superstring collections A = [A1, ... , A,], B = [B1, ... Bq] of disjoint set collections S

SA, S} and T = {T1,... , T} respectively, do the following:2

1. For possible overlap size 1 1 upto I S n Tf I.

2. Find IA, 15 such that Ap_A_1,pl ;> 1 > IA,_(;I),,| and IB1,, < I < |B1,IB+1|. If

1 < IApl then let lA = -1, and similarly ifl <Bi I then letlB -1.

3. Consider the two sequences of set sizes:

1A > 0 -- A =[I - |ApIA _I, IAPA I, ... , IAI =def [a1, ... , alA+2]

IA = -1-> A =[l]

4B > 0 - B ={|Bi,..., BIB|,l - IBi,1I1] =def [bi,b..., b1+1]

B6 = -1 - B=[l]

Clearly EJA+ 2 ai = E1i.+ bi = 1. Let E = [ei, ... e], a IA + lB +1 be the "merging"

of A, B. That is, cut the interval [1, ... 1l] on all places where A and B cut it, i.e. on

ai, ai + a2,..., al + -.- +aP-,bl,bl + b2, ... bi + - - -+ bg_1 , resulting in a partition

of {1, ..., }1, E = [ei,.... , er,, r < p + g - 1, DE e =l

4. Each ei in E corresponds to some aj, in A and bk, in B. a3 , in A and bk, in B in turn,

correspond to some Aj in A and Bk in B. For all such triplets (i, j, k) check that |Ei

A, n BkI = ei.

5. Announce failure for overlap 1, and repeat (2)-(5) with l +- 1 - 1, if for any triplet (i, j, k)

the above condition fails.

2Assume that S and T are ordered by -<A and -<B, respectively.

51

6. Else A, B can be merged with overlap 1. The resulting sequence is

D = [Di, ... , D] =[A, ... , Ap_1A _2, Ap1_A _1\B1,B+1] 0 [E1, ... , Ea] 0

[BlB+1\Ap-1Al1,P, BlB+2 ... , Bq]

7. Repeat (1)-(6) for the pairs (A, B), (A, B), (A , B). Return the set sequence D resulting

from the merging with the greatest overlap 1, together with the overlap magnitude 1.

Notice that we do not merge superstring collections with 0 overlap. We will denote by

O(A, B) the overlap associated with the merge M(A, B). Notice that O(-, -) is symmetric. When

merging A, B in that order, with associated set collections S NA - - A S 4 , and SfI N

-.. - Sf respectively, we say that the merge introduces S m SL.

4.1.2 Correctness of MERGE

Theorem 3. (Correctness of MERGE): Let A = [A1, ... , A,], B = [B1, ... , Bq], be superstring

collections of S = {SA ... , SA} and T = {T1, ... Tt} respectively. Let S U T be a Sperner

system and S n T = 0. Then D = [D1,..., D,] = M(A, B) is a superstring collection for

S U T.

Proof. There are three ways to merge A, B depending on their sizes:

e Case 1: IAI = |B| = 1, D = [Ai\B1 , Ai n B1, BI\A1]. Then w.l.o.g. S = {SA} and

T = {T1 }. Clearly D is a superstring collection for S U T. For instance S' = A 1 =

(A 1 \B 1) U (Ai n B1) = Di U D 2 .

* Case 2: |AI = 1, |B| > 1. Assume w.l.o.g. that B is not reversed before merging.

Then for some 1, B 1 U ... U B, C A1 , B 1 ,... , B, are pairwise disjoint, and D =

[A\B 1,+ 1, B 1,... I., B, A n B1+1, Bl+1 \A, B 1+2 ,... , Bk]. Clearly A = (A\B1 ,+1) U

B 1 U ... U BI U (A n B1+1), disjoint union. Therefore SA = D1 U ... U D1+ 2 . Now for

an arbitrary T, let j = J(T'), k = Kg(T). If k < l then T" = Dj+1 ,k+l- If J 1 +2

then Tf Dj+2,k2.fJ l+1<kthenS- = j+1,k+2. Clearly the above are disjoint

unions.

52

* Case 3: |Al > 1, JBI > 1. Assume w.l.o.g. that A, B are not reversed before merging.

By symmetry, we only need to consider a set S 4 expressed in A. Let j = JA(Si), k =

KA(Si). Let 1A, L3 and D = [D,..., D,] be as in the algorithm description. If k <

p - 'A - 2 then S-A= D- U ... U Dk. The case of sets SA composed using some subsets

from Ap__1, . .. , A, is a little trickier. Notice that the subsets Ap,, ... , Ap S8

are part of the expression of S and therefore pairwise disjoint. Similarly the subsets

B 1 , ... , Bll+1 C Ti6 are pairwise disjoint. It follows then that Dp_A_1, ... , D,-IA+a-1

= (A,_A_\ B1 ,18), E 1 , ... , Ea, are pairwise disjoint. Then we can express S4 as fol-

lows: let k' be the largest index among 1,... , a for the sets Ei,..., E,, such that Ak

appears on an intersection Ek, = Ak n B, for some 1 < w < a. If j < p - 'A - 2 let

j' = j. Else let j' be the smallest index among 1, . . . , a such that Ej = A, n B, for some

1 K w K a. Then SA = D,-A1+f U ... U DpA1+k'-

In all the above cases, the sets of A and B are expressed as disjoint unions of consecutive sets in

D. Therefore D is a superstring collection for S n T.

Lemma 2. (Optimality of MERGE) Let H = (X, S) be a hypergraph that has a non-

repeating superstring. Let A = [Ai, . . . , A,], B = [B1 , . . . , B.] be set sequences, let A 1, . . , A,

be pairwise disjoint, and similarly let B 1, ... , B. be pairwise disjoint. Let A, B be superstring

collections for disjoint subsets of S. Let M(A, B) = D = [D1, ... , DJ. For any non-repeating

superstring a of H, if (1) V1 < i < p, Ai is expressed by o, and V1 < i < q - 1, Bi is expressed

by a; (2) V1 < i < p - 1, Ai x, Ai+1, and V1 < i < q - 1, Bi x, Bi+1, then it is true that:

1. V1 < i < r - 1,Di E o

2. VI K i < r - 1, Di x, Di+1

Proof. 1. Take an arbitrary Di, in the sequence D. If Di = A, or Di = B for some j, it is

immediate that Di E a. If Di = A3 n Bk for some j, k, then since A3 E a, Bk E a, and a

is non-repeating, it follows that A. n Bk E a.

2. Take arbitrary Di, Di+1 in D.

53

(a) If Di = A3 and Di+1 = Aj+ 1 , or Di Bj and Di+1 = Bj+1 for some j, then it is

immediate that Di x-, Di+1.

(b) If Di = Ap1A_1\B1,B+1 then Di+= ApA fi B1 . Clearly a expresses B 1,l,+1

and since (1) o expresses ApI. _1, (2) o is non-repeating, and (3) B1,B1+1 9 Ap-IA-,

it follows that Ap_A_1 \ B1,to+1 _O AP-1A1 n B1,3+1 -o B1,LB+1 \ Ap-A1a.

Clearly then Di = Ap1A1\B1,B+1 _O Ap1A-fli B1 = Di+1-

(c) Having proven cases (a) and (b) let Dj_1 x, Di and let Di = Ag f Bk. Consider

the following cases:

i. Di+1 = A nfBk+1. We assume that i > 1 and Di x Di+ 1 for any i' < i.

Then Aj n Bk x, A fn Bk+1 follows from Aj E a, Bk x-, Bk+1, and the fact

that a is non-repeating.

ii. Di+1 = Aj+ 1 n Bk. Similarly, since Bk E a and Aj x-, Aj+ 1 , it follows that

Aj nBk x-,, Aj+1 nBk.

iii. Di+1 = Aj+i n Bk+1- Clearly either Aj+ 1 C Bk+1 or Bk+1 g Aj+1. Assume

the former case, i.e. Aj+ 1 C Bk+1 whereby Di+1 = Aj+1. Knowing that

Dg' x, Di,+1 for i' < i, Aj n Bk x, Aj+ 1 follows from the fact that Aj x,

Aj+1 and a is non-repeating. Similarly in the latter case.

LI

Lemma 3. Given two proper simple Q-nodes A = [A1, ... , A,] and B = [B1 ... Bq],

M(A, B) is proper.

Proof. This is clear. In fact, referring to the description of MERGE, L(M(A, B)) = Z 1|Dil.

We give an example of applying Merge-Sequence-Pair to two simple set sequences:

Example 1: Let

S = {S 1, S2, S 3, S 4}

54

" S1 = {a, b, c}; S2 {b, c, d, e}; S3 = {a, c, d, e}; S4 = {a, b, e}

" A= [A1 , A2, A3] = [{a}, {b, c}, {d, e}]; B = [BI, B 2, B31= [{c, d}, {a, e}, {b}]

Therefore,

S1 =A 1 uA 2, S2 = A2 U A,S 3 =B 1 UB2 , S4 = B2 U B3

Then it is tedious to check that following the steps of the above algorithm results in

M(A, B) = [{a}, {b}, {c}, {d}, {e}, {a}, {b}]

with overlap = 3.

4.2 The GREEDY-MERGE-SPERNER Algorithmfor Sperner Hypergraphs

Below we describe a greedy algorithm based on MERGE, restricted to Sperner hypergraphs

(GREEDY-MERGE-SPERNER). The general algorithm will be shown in the next section*.

4.2.1 Description of GREEDY-MERGE-SPERNER

Algorithm GREEDY-MERGE-SPERNER: Let H = (X,S = {S,..., S,}) be a Sperner

hypergraph. A PQ-tree is built by incrementally constructing a P-node Pt = {AI,... , Ar}

where A 1 , ... , A, are simple Q-nodes.

" For initialization set t = 1, P = {[Si], ... , [S3]}.

* Do until |Pt = 1 or for all pairs of sequences A, B E St, O(At, Bt) = 0:

1. Find At, Bt in St such that O(At, Bt) > 0 is maximum.

2. Let Pt+1 = (Pt\{At, Bt}) U {M(At, Bt)}.

3. Set t +- t + L.

Let PGM/S = {AI ... , AF}. Then A are Q-nodes and the set of solutions is the set of

superstrings produced by the PQ-tree rooted at PGM/S.

55

4.2.2 Properties of GREEDY-MERGE-SPERNER

Lemma 4. PGM/S is proper.

Proof. Immediate from the corresponding lemma for MERGE. l

Theorem 4. (Correctness of GREEDY-MERGE-SPERNER) Given a Sperner hypergraph

H, the strings that PGM/S produces are superstrings for H.

Proof. The correctness of the above algorithm follows inductively from the correctness of

MERGE. l

Theorem 5. Let H be a Sperner hypergraph that has non-repeating superstrings. Then

GREEDY-MERGE-SPERNER produces a PQ-tree expressing all the shortest superstrings.

Proof. We first introduce a few concepts:

Definition. A non-repeating superstring a for a Sperner hypergraph H = (X, S =

{S,..., S,}) such that Si m, Sj > Sin Sj ,4 0 is called a ladder. We say that H is

flat if there exists a ladder a for H.

Any subcollection of sets of a Sperner hypergraph is a Sperner hypergraph. However, a

subcollection H' of a flat Sperner hypergraph H need not be flat. If H' is flat, it is not hard to

prove that a ladder a for H contains a substring that is a ladder for H'. Intuitively a ladder corre-

sponds to a simple Q-node that expresses the necessary and sufficient conditions for a superstring

to be optimal. The following lemma expresses the above intuition:

Lemma 5. If a is a ladder for the hypergraph H then the relation m, restricted to elements

of S, is common to all optimal superstrings.

Proof. Assume w.l.o.g. Si <, S2<4,-. -, 3. S. Since a is non-repeating, for any Si, Sj E S with

i < j, Si n Syl = maxz(0,,r,(Si) -#,(35)). Since S is Sperner and for any i S n Si+1i > o, it

follows |Si n Si_1| > |Si n Sj I for any j < i - 1, and|Si n Si+1 I> ISi n Sj| for any j > i +1.

Say for contradiction that in some optimal superstring o' Si txi So where x :L i - 1, i + 1. Say

56

w.l.o.g. that x > i. From ISi n Si+11 > ISi n Sol it follows that Sx m', Si m,' Si+1. Say

w.l.o.g. that Sx 4,' Si ', Si+1- Since Si <i, Si+1 -, Sx it follows that iSi+ n SxI > ISi n sxl,

therefore Si+ 1 n sx ! Si n Sx and therefore a' repeats symbols, contradicting its optimality. O

Lemma 6. Let a be a ladder for H = (X, S = {Si , - --., S5}), s > 2. Let

A = [A 1 , ... , A,] = A(o[1,i), B = [BI, ... , B] = A(a[j+l,s]), 1 < i < s be the associated

superstring collections for {S, . . . , Si}, {Si+ 1 ,... -, Id respectively. Then M(A, B) produces

only non-repeating superstrings, including a.

Proof. The algorithm will try the largest possible overlap 1 =Si n Si 1. It is not hard to see

that, by virtue of the existence of a yielding overlap 1, condition 4 of the merging algorithm is

satisfied for overlap 1. 0

Lemma 7. Let H be a flat Sperner hypergraph. Then every superstring produced by

PGM/S is a ladder.

Proof. Let a be a ladder for S. Assume w.l.o.g. that Si ... m, S,. It suffices to

show inductively that at each step of GREEDY-MERGE-SPERNER , two simple Q-nodes At =

[Sa, --- , Sa,], B = [Spi, ... , Sp] are merged in that order, to produce a non-repeating simple

Q-node Dt, and to introduce Sap , Spi. Say this is true up to step t. Since o is a ladder and at

step t the available simple Q-nodes are segments of a by inductive assumption, there are merges

of overlap > 0. Therefore O(At+1, Bt+1) > 0. Then Sp n So, 7 0. Since o is non-repeating,

Sp has a neighbor : Sa,_1, in a. Call this S.. Say w.l.o.g. that SaPi <,Sap<,Sy. By inductive

assumption S. has at most one neighbor in St. Say S. lies on B' in St. Clearly M(At, B') can be

performed to yield overlap O(At, B') = |Sap S. I > |Sap n SI for any Sa, -, Sx. Therefore

it must be that So, -a Sali4<a - -- <o- Sa,. Since a is non-repetitive ISp, n Sai I > ISOi n S apI

Therefore O(+A, B) > O(A, B), a contradiction. E

A ladder a for S = {S1, .. ., S,} corresponds to a simple Q-node that is a non-repeating

superstring collection for S. To describe this Q-node, assume without loss of generality that

Si i, - - - <, S,. Let ai = |Si\Si+1| for 1 < i < s - 1. It can be readily seen that #i = #, (Si) =

57

1 + E'_i a3 and qi = (Si) = -1 + |SiI + #,3(Si). Any minimal string that satisfies these

conditions, or the reverse of such a string, is a ladder for S. All such superstrings are produced

by the simple Q-node A(a) = [{i,..., e, _i},... I{uet, ... , 1 }} where [ei,..., et] is the

ordered sequence of all numbers in the set {#2,- , A3, 21+1, . . . , -1 + 1} each distinct number

occuring only once in [ei, ... , et].

If an arbitrary Sperner hypergraph H (X, S) has non-repeating solutions, these solu-

tions are permutations of a finite number of ladders. This is true because an arbitrary Spern-

er hypergraph can be partitioned in the obvious way into disjoint flat Sperner hypergraphs.

That is S S U ... U Sk, where each Si is flat, with associated ladder oa. Then any o =

vl(or(l)) - Vk(Orr(k)) where ir is a permutation on {1, ... , k} and vi is either the identity or the

reversing operation, is an optimal, non-repeating superstring for H. These superstrings can be

represented by a PQ-tree consisting of one P node on top, leading to k simple Q-nodes. Finally,

it is clear that GREEDY-MERGE-SPERNER produces all such non-repeating superstrings and

that PGM/S is a PQ-tree representation of the set of optimal solutions. El

4.3 Examples

In the following examples we demonstrate how merges selected and used to produce superstrings.

Example 2: Non-repeating solutions.

S= {SI, S2,S 3, S4, S5}

* S1 = {a, b, c, d, e}; S2 = {c, d, e, f}; S3 = {f, g, h}; S4 = {i, j}; S5 = {j, k}

1. P = {[1], ... [5]}.

2. First merge is between sets of maximum intersection, in our case Si, S2. After that P2 =

{[{{a, b}, {c, d, e}, {f}], [S3], [S4], [S5]}

3. There are now two merges of overlap 1. Say the one between S4 and S5 is performed first.

Then P3 = {[{{a, b}, {c, d, e}, {f}], [S3], [{i}, {J}, {k}]}.

58

4. There is now one merge of overlap 1, namely between {{a, b}, {c, d, e}, {f}] and [S3].

After that is performed P4 = {[{{a, b}, {c, d, e}, {f}, {g, h}], [{i}, {J}, {k}]}.

5. Now there is no more merge of nonzero overlap. The algorithm stops and returns the

following solutions: let A 1 = [A1, A 2 , A 3 , A 4] = [{{a, b}, {c, d, e}, {f}, {g, h}], A2 =

[A5 , A6 , A 7] = [{i}, {J}, {k}]. Then o(A1) = o(A1) ... c(A 4) where o(Ai) is a string

listing the elements of Ai in any order. Similarly for o(A 2). Furthermore, r(A1) can be

o,(A1) or its reverse, and similarly for r(A2). The algorithm returns any solution of the

form r(A1)r(A2) or r(A 2)T(A 1). Equivalently, the algorithm returns the PQ-tree rooted

at PFINAL where PFINAL has children the simple Q-nodes A1 , A 2 .

In the following example there are many routes that GREEDY-MERGE-SPERNER can

take. We just show one of them.

Example 3: Solutions with repeated probes.

" S = {S 1, ... , S6}

* Si {a, b, c, d, e}; S 2 = {b, c, d, e, f}; S3 = {a, c, d, f, g}; S4 = {b, c, d, g, h}; 5=

{a, b, f, g, h}; S6 {e, g}.

1. Pi = {[S1], . .. , [S7]}.

2. First merge is between Si and S2: P2 = {A = [{a}, {b, c, d, e}, {f}], [S2], ... , [S6]}.

3. Second merge is between S4 and S5: P3 = {A, [S3], B = [{a, f}, {b, g, h}, {c, d}], [S6]}.

4. Third merge is between S2 and B: P4 {A, D = [{a, f}, {b, h}, {g}, {c, d}, {a, f}], [S6]}.

5. Fourth merge is between A and D:

P5 = {[{a, f}, {b, h}, {9}, {c, d}, {f }, {a}, {b, c, d, e}, {f}], [S6]}

6. There are no more merges to be performed. An example of a superstring returned is a =

af bh g cdf a b cdefge. Another example is o' = eg fa hb g cdf a b decf. Spaces in these

strings are just added to make clear the separation into sets in the set sequences. Notice

that S6 is in the "leftmost" place on o' and in the "rightmost" place on a.

59

4.4 The GREEDY-MERGE Algorithmfor General Hypergraphs

Below we describe an extension of GREEDY-MERGE-SPERNER, the GREEDY-MERGE algo-

rithm that retrieves the C1P (Booth and Lueker, 1976) in general hypergraphs. In particular

GREEDY-MERGE will retrieve all optimal solutions whenever those are non-repeating.

4.4.1 Description of GREEDY-MERGE

Definition. A set B can be c-inserted in a simple Q-node A = [A1,..., A], where A is a

superstring collection of hyperedge collection S {S1, ... , S, } if (a) B C Si for some i, and

(b) c is the smallest integer > 0 such that B = (Ai n B) U A+ 1 U ... U Ai+c-I U (Ai+c n B),

or B C Ai and c = 0. The resulting Q-node is A' = [A1, ... ,Aj\B, Ai n B, Ai+1, ... , Ai+c n

B, Ai+c\B, Ai+c+ 1 , ... , Ad.

The lemma below follows easily from the above definition:

Lemma 8. Let A = [A1, ... , Ak] be a superstring collection for H = (X, S = {s, ... , S9})

and let B be c-inserted in A to yield A', with c > 0. Then A' is a superstring collection for

H' = (X, S U {B}).

It is trivial to prove an optimality lemma for c-insertions, similar to the one for the

MERGE operation:

Lemma 9. Let H = (X, S) be a hypergraph that has a non-repeating superstring. Let

A = [A1..., A,] be a simple Q-node and let A' = [A',..., A] = [Al, ... , Ai\B, Ai n B,

Ai+1, ... , Ai+c-1, Ai+c n B, Ai+c\B, Ai+c+ 1, ... , A,] be the result of c-inserting a set B E S

with c > 0 in A. For any non-repeating superstring o- of H, if (1) V1 < i < p, As E a; (2)

V1 < i < p - 1, Ai x-, Ai+ 1, then it is true that:

1. Vl5i 5r - 1,XAsE o-.

2. V1 < i < r - 1,A'4 x-, A'i+

Algorithm GREEDY-MERGE: Let H = (X, S = {S,..., S,}) be a hypergraph.

Define L = {Si E S|Vl 5 i(S E S ==> Si SI)}, a Sperner subgraph.

60

1. Construct top P-node PGM(H), initially empty.

2. Apply GREEDY-MERGE-SPERNER on L to create a PQ-tree for L, PGM/S(L) - {A1,

... , Am}. Let all A be children to PGM. Those may be modified in the subsequent steps.

3. Let S' be initialized to S\L. Do:

* Find a set B E S' that can be c-inserted in some A with c > 0 and c-insert it.

Remove B from S'.

until no set can be c-inserted with c > 0 in any Ai. Call the resulting PQ-tree PGM/S (L)

{Bi, ... , Bm}.

4. For each Bi, for each Big E Bi, do:

(a) Let Sij = {Sa E S' Sa g Bij}. Update S' to S'\Sij.

(b) Run GREEDY-MERGE recursively on Hij = (U Sij, Sij) to produce PQ-trees with

P-nodes on top, P'J - {Pi ... , P2 }, where Pi are P-nodes.

(c) If all the resulting PQ-trees Pi,..., PM, are non-repeating, then replace the P-

node Bij with the P-node PGM(Bij) = {PT',..., Pm,3 , elts(Bij\(U Sij))} where

elts(Bij\(U Sf)) are all the elements of Bij\(U SO.

(d) Else let all childern of P&j be children of PGM(H).

5. If S' is not empty, run GREEDY-MERGE on S' and let the children of the resulting P-node

be childern of PGM(H).

4.4.2 Proof that GREEDY-MERGE Retrieves the Consecutive Ones Property

Theorem 6. PGM(H) is a superstring collection for H.

Proof. The proof is straight-forward. Here is a sketch:

e By correctness of GREEDY-MERGE-SPERNER, and by Lemma 9 follows that all the sets

in L are expressed in any string produced by PGM.

61

* The sets in S\L are of three categories:

1. Sets that are c-inserted in step 3. It follows that these sets are expressed string pro-

duced by PGM.

2. Sets that are in Sij of step 4. For those sets use the inductive assumption that PGM

is a superstring collection for Si. It easily follows that PGM(H) also expresses all

sets in Sij for any i, j.

3. Sets that are dealt with in step 5 are expressed by superstrings of PGM(H) by induc-

tive assumption.

Therefore all the sets in S are expressed in any superstring produced by PGM.

Theorem 7. If there exists a non-repeating superstring for H, PGM(H) produces all the

optimal solutions.

Proof. Assume that hypergraph H has a non-repeating solution. It suffices to show that the tree

rooted at PGM (H) returned by GREEDY-MERGE is proper, and produces all the non-repeating

solutions.

First of all we argue that if H has non-repeating superstrings, then after step 4 of the

algorithm S' is empty. Say that S E S' after step 4. Clearly S has at least two elements. Since

S V L, S C U Bi for some i. Since S was not c-inserted, and S V Big for any j, it follows S

has two elements xz, y s.t. x E Big, y E Bi(j+d) with d > 1 and S # (Big n s) U Bi(j+1) U ... U

Bi(j+d-1) U (Bi(g+d) n s). It follows that under these conditions, any superstring a that respects

Big -. Bi(j+1) and expresses S, has to repeat either x or y.

Consider any set Sij, defined in 4.(a) in the description of the algorithm. Sij has non-

repeating solutions, because H does. Inductively assume that PGM produces all non-repeating

superstrings of Sig. Then it it follows that PGM(Bij) produces all and only the non-repeating

superstrings of Sig U {Big}. Assuming that in a non-repeating superstring of S it is true that

Big E a, PGM(Bi2) produces all substrings expressing Big, that appear in any non-repeating

superstring for S.

62

Consider step 2 of GREEDY-MERGE. The nodes A are non-repeating superstring col-

lections of the flat set collections Li that partition L. For any A, = [Asi, ... , Airi it follows by

the optimality of MERGE, and by induction on the number of MERGE steps needed to construct

A, that any non-repeating superstring a for S expresses Aij, 1 < j < ri. It similarly follows that

for any non-repeating a, Aij x, Ai(j+1)-

Consider now step 3 of GREEDY-MERGE. Each Bi is obtained from Ai by a series

of c-insertions with c > 0. It follows by induction on the number of c-insertions that in any

non-repeating superstring a for S, Big E a and Big x, Bi(j+1).

Since H has non-repeating superstrings, L also has non-repeating superstrings. Therefore

from the properties of GREEDY-MERGE-SPERNER step 2 of GREEDY-MERGE will return a

proper tree rooted at PGM/s(L) producing all non-repeating superstrings of L. Those are a

superset of all the non-repeating superstrings of H. Step 3 of GREEDY-MERGE will update the

tree to PNM/s which produces all superstrings o of PGM/S (L) that express all Bi3 and satisfy all

conditions Big x, Bi(j+1). Since those conditions are satisfied by any non-repeating superstring

of H, PG M also produces all such superstrings. Finally, step 4 of the algorithm updates each

P-node Big to PGM(Bij) which as we showed by inductive assumption, produces all substrings

expressing Sig U {Bij} of non-repeating superstrings of H. Therefore the algorithm will stop

after step 4, and the final root PGM produces all non-repeating superstrings of H.

It is clear that PGM is proper. Therefore PGM produces exactly the non-repeating super-

strings of H, when at least one such superstring exists.

Therefore GREEDY-MERGE-SPERNER and GREEDY-MERGE retrieve the optimal so-

lution when this solution is non-repeating. This case corresponds to a physical mapping problem

where there are no repeated probes. It also follows that the above algorithms retrieve the consec-

utive ones property. Therefore, GREEDY-MERGE is a generalization of algorithms that retrieve

the CJP for general hypergraphs.

63

4.5 Approximation Guarantees

The MAXSNP-completeness theorem above shows that the problem is hard to approximate even

when restricted to strict Sperner hypergraphs. We show below a version of GREEDY-MERGE-

SPERNER that has a good approximation guarantee on strict Sperner hypergraphs.

4.5.1 The Algorithm 2-PHASE-GREEDYfor Strict Sperner Hypergraphv

Let H = (X, S = {S 1 , ... , S,}) be a strict Sperner hypergraph. Let ir be an optimal ordering of

the hyperedges derived from the optimal superstring uOpT. Then let S .(), .. . , Sr(,) be the sets

ordered optimaly, and let qi =r0'OPT (SW(i)) - ,oPT(S,(i+1)) be the optimal overlap between

sets Sr(i) and S~r(i+1) according to uOpT. Then we can calculate the total optimal overlap,

Q = E7_i qi and notice that lUOPTI = -Q + |l ISil = -Q + C.

Consider the following algorithm: First perform [(] merges of maximal overlap be-

tween pairs of single sets in S. Denote by oi the overlap associated with the ith MERGE per-

formed on H. It is trivial to see that 01 > qi for any 1 < i < s - 1. Say that the two hyperedges

merged in this first step to yield 01 are Sir(ai), S,(a2). Then consider 02. Clearly 02 > qi for

any 1 < i < s, i § {aI - 1, ai, a 2 - 1, a2 }. The reason is that all qi overlaps except at most

the four overlaps {qa,-1, qa1, qa 2 -1, qa2 } associated with the hyperedges merged in step 1, are

"available" at step 2, therefore a MERGE with at least that much overlap is performed. Similarly
[(S1)1

for oi for any 1 < i < []. It follows thatOn = E r oi > |[l.

Denote by o-1 a superstring produced by applying the above procedure on S. Since S is a

strict Sperner hypergraph, loil -0,+C. It is easy to see that Q <[x (C -s)J : 1 x (C -s).

QIt follows that the worst possible approximation ratio l is given when Oa

C-8

o-il C- 2 7C+s
lOOPT C - - 4C + 4s

This in turn is < = 1.75.

After the merges between pairs are performed to yield overlap O, we allow the algo-

rithm to perform merges between single hyperedges, or between pairs of hyperedges merged

64

previously, but never between any set sequence that "contains" more than two hyperedges from

S. Consider now two adjacent sets Si), S(i+1) in the optimal solution, with overlap qi. If

these hyperedges were not merged together in the first phase of the algorithm, they can still be

merged now even if one or both of them have been merged already to another set. Call then q

the new maximal overlap between such two hyperedges. Clearly Q' = E' q > Q - Oa.

Likewise as before using the best [(7 1)1 merging operations between pairs of hyperedges in S

or set sequences that resulted from the first phase, we can retrieve an overlap O ; [>-$.

Including this second phase of the algorithm, let again U2 a superstring produced on

H = (X, S). It follows now that |2I 5 -Op6 - Oa + C. The worst possible approximation ratio

is given when O = and O = (4 - 34.

C 2 3(c-)
l2| 4----< 50C+7s

lOPT C _ c- 32C + 32s

Now the approximation ratio is = 1.5625. Call this algorithm 2-PHASE-GREEDY.

Algorithm 2-PHASE-GREEDY: Let H = (X, S = { 1, ... , 3}) be a strict Sperner

hypergraph.

1. Perform in a greedy fashion [(81) 1 MERGE operations between pairs of single hyper-

edges in S. These merges result in a PQ-tree rooted at the P-node Pa containing (i)

hyperedges in S, and (ii) Q-nodes resulting from the above merges between pairs of hy-

peredges.

2. Perform in a greedy fashion [(MERGE operations between children of Pa. These

merges result in a PQ-tree rooted at the P-node P5 .

3. Sett=1, Pi = PO.

4. Do until IPtI = 1 or for all pairs of sequences A, B E St, O(At, Bt) = 0:

(a) Find At, Bt in St such that O(At, Bt) > 0 is maximum.

(b) Let Pt+1 = (P\{At, t}) U {M(At, Bt)}.

65

(c) Set t +- t + 1.

Claim 1 2-PHASE-GREEDY has an approximation ratio < 1.5625.

Claim 2 2-PHASE-GREEDY has the following approximation ratios on set systems of

sets with size bounded by K:

e < 1--7 1.227 when K = 3;

e < 1 - 1.294 when K = 4;

e < 5- 1.339 when K = 5;
-192

e < 1.371 when K = 6;

e < 357 1.395 when K = 7;

e < 40 1.413 when K = 8;

* < 15-7 1.428 when K = 9;

e < 507 1.440 when K = 10.

In particular we have proved that MIN-HYPERGRAPH-SUPERSTRING is MAXSNP -

complete for sets of size bounded by K > 5. For K = 5 the best approximation ratio of

MIN-HYPERGRAPH-SUPERSTRING is therefore 1 < c* < 1.339. Notice that the case K = 2

is trivial and GREEDY-MERGE-SPERNER solves it optimally.

In fact, 2-PHASE-GREEDY preserves the optimality property of GREEDY-MERGE- SPERN-

ER and consequently can be used instead of GREEDY-MERGE-SPERNER as part of GREEDY-

MERGE to retrieve the C lp in arbitrary hypergraphs.

4.5.2 The Algorithm 2-LAYER-GREEDY

Consider a set system S = {s, ... , S}, and a superstring a = o- .- o for S. We say that ao

is part of Sj if aj lies in the part of the superstring where the first occurrence of Cj is found. We

say that there is a transition at place (i, i + 1) of a if o-i is part of a different collection of sets

66

than ui+1 . We can divide a into substrings, or regions pj so that a = pi ... pk so that for each

pi = o'i - *' - it is true that there is no transition at (i, i + 1) if ji < i < i + 1 < jij, but there

is always transition at (i, i + 1) if for some j, oi is the last character of pj and ai+1 is the first

character of pj+1. Define the weight of a region pj, denoted by w(pj) or briefly wj, to be the

number of sets in S the characters in p3 are part of. Then, the following equation clearly holds:

S Ik

S1= W(pj) x p| (1)
i=i j=1

Restricted 2-Layer Hypergraphs: From now on we will be considering only Sperner

collections S = Sc U Sp that satisfy the following properties:

1. Sc = {C 1 , ... , C,} and Sp {Di, ... , Dt} are disjoint strict Sperner collections.

2. For any C E Sc, and for any D, D' E SD,CnDnD' = 0.

3. For any C, C' E Sc and D E SD, if C' is 2-included in C, D thenCnC'nD 0.

4. For any D E So,, D is 2-included in at most one pair C, C' E Sc so that D n C n C' # 0.

We will call this a restricted 2-layer hypergraph (R2LH). Consider any superstring a for

the R2LH S = Sc U SD. Divide a into regions so that - = PI ... Pk (such partitioning into

regions is clearly unique). We claim that for any region pi, w(pi) = wi < 3. To see this, notice

that since Sc is a Sperner system, pi can be part of at most two sets from Sc. Similarly pi can be

part of at most two sets from SV. So, wi < 4 and wi = 4 if pi is part of C, C', D, D' for some

C, C' E Sc and D, D' E S. This is not possible because for any C E Sc and D, D' E SE) we

know that C n D f D' = 0. Similarly it follows that if wi = 3 then pi is part of some C, C' E Sc

and D E SEo such that D is 2-included in C, C' and D n C n C' 4 0. The above hold for the

optimal superstring COpT.

Below is a 2-approximation algorithm on hypergraphs that are R2LH.

Algorithm: Let G = (V, E, W) be the following graph:

67

(a) V = {vi, ... , v.}, where vi corresponds to Ci in Sc.

(b) E = {{vi, vo}13D E S-, : D is 2-included in Cs, C3 }.

(c) wij = W({i,j}) = C C, n D| where D is the set in SoD, 2-included in Ci, C,

that maximizes iCi n Cjf DI.

It follows that the above weighted graph is well-defined. We extend it with 0-weight

edges to obtain a complete graph.

Now we can find the maximum cycle cover of the above graph in polynomial time. This

is true because we can find the minimum cycle cover of a graph in polynomial time and therefore

we can reverse the sign of the weight of the edges and find the maximum cycle cover of the graph

in polynomial time. Another way to see this is the following: let Wmax max{wi,j I {i, j} E E},

and let wZ = W' ({i, J}) = 1+ Wmax - wij. Clearly the new weigth (under W') of any cycle

cover C of the graph G is n X Wmax - E{i,j}EC Wi,. Therefore minimizing the weight of a cycle

cover under W' corresponds to maximizing the weight of a cycle cover under W.

The maximum cycle cover C consists of cycles C1 ,..., C1. To obtain a superstring oc

from C, the algorithm will "open" each cycle in the minimum weight edge. Say that a cycle

contains nodes ii, ... , ic, corresponding to sets C, ... , C E Sc. Say that Dj ,..., Dj, are 2-

included in (COi, Ci2), (Ci2, Ci 3), ... , (Ci,, Ci) respectively, and therefore the intersection sizes

JDj, n c f, n Ciil correspond to the weights of the edges in C. The cycle can contain some

0-weight edges, corresponding to pairs of sets C, C' that have no associated set D. We say in

such cases that the associated set D is the empty set. Assume without loss of generality that the

minimum such intersection is the one involving Dj, and therefore the cycle is opened at Cia, C,.

Consider the set sequence A = [Ci, \ Dj,, (Ci, f Dj,) \ Ci2, C n Dj, n Ci2 , (Dj, n Ci2) \

Cij, Ci2 \ (D, UDJ2), (Ci2 n Dj2)\ Ci3 , ... , C \ (Di,_I U Die), Cic nDi, Di \ CiJ, where the

empty sets are omitted. A is a superstring collection for the subset {Ci1 , .. ., Cic, Dj, ... , Dj, }

of S. To see this, just observe that each of the sets in the subset is expressed by a consecutive

run of sets in A, and that consecutive run consists of pairwise disjoint sets. To see this last point

just recall that for any C E Sc and D, D' E So, C n D n D' = 0. We can open all the cycles

likewise, and merge the resulting set sequences to obtain a superstring for Sc and for a subset of

68

Sp. We extend it in a trivial way to obtain a superstring for S.

For a superstring a = pi,..., pk, define the sets 111, H2, 113 as follows: Hi = {p lwj =

i}. Denote by I U lI the quantity E CI IPj1 .3 Then from Equation (1), we get:

(2)Zlcil =Zi x I ild
i=1 i=1

Also, if we denote by n§ the particular set 13 induced by the superstring constructed by "open-

ing" the cycle cover as described above, notice the following: the weight of the maximum-weight

cycle cover is an upper bound on I U 1131 for any superstring with associated 113. It follows then

that I U HI > I x U 1 1 PTI, where HIOPT is the set H3 associated with the optimal superstring.

From the equations:

UIU xln TI

and

OPTI= I U 1 1 OPTI +I U 1 1OPTI +I U IOPTI

(3)

(4)

and

ocl= U I +IUHIl+1U13i (5)

and

IUnI +21U Il +31U11c= E cil Uf" + 21IUHl +31Ui

(6)

3 |pgI is the number of symbols o- that are in py, i.e. the length of pj.

69

it follows that loc| < 2|orpTI.

5. Experimental Results

We implemented the GREEDY-MERGE-SPERNER algorithm and ran it on randomly generated

data. The data were generated according to the Lander-Waterman model, where clones are inter-

vals of length 1 distributed uniformly along the interval [0, N].4 The interval [0, N] was divided

in 1000N discrete positions and probes were distributed along [0, N] according to a Poisson pro-

cess, except that for each clone C, a probe p was allowed to occur only once. Any occurrences of

p in C after the first, were discarded. This distribution is very similar to a pure Poisson distribu-

tion if, as in our case, the mean arriving time of a probe is much greater than the length of a clone,

which is 1 in our case. The hypergraph that was given as input to GREEDY-MERGE-SPERNER

consisted of all the maximal generated clones.

Table 1 displays some results of running the algorithm while varying N, the length of

the interval where the clones are distributed; n, the number of clones used for generating the

data; m, the number of probes used for generating the data; and A for exponential distribution

of the arriving time of probes. p is the average number of probes after generating the data, ravg

is the actual average number of repetitions of probes, approximately = AN, and rmax is the

average over all generated sequences, maximum number of repetitions of a single probe. LO is

the average length of the generated sequences, and LGM is the average length of the sequences

or sequence fragments produced by SPERNER-GREEDY-MERGE. To facilitate presentation, the

performance is presented in percentage of optimal that correspond to the ratio Lo/LGM. That

is, when we say that the performance is 95.9% like on the table below in the experiment running

with N = 20 and 300 probes, we mean that SPERNER-GREEDY-MERGE produces on average

a superstring collection of total length 1.0428 x [length of the initial sequence].

4The clone beginnings are distributed along [0, N - 1] with uniform probability.

70

Table 1. Performance of GREEDY-MERGE-SPERNER on simulated data.

As can be seen, the major factor that seems to hurt the performance of the algorithm is

the coverage of the gene, i.e. the average number of clones that cover each point in the interval

[0, N]. This means that a hypergraph that is Sperner decomposable in a few layers is easier to

handle than one that is decomposable in many layers. This experimental observation is consistent

with our intuition that the minimal Sperner decomposition problem captures the essence of the

difficulty of computing minimal superstrings. High probe repetition also hurts the performance of

the algorithm, as expected. Finally, the performance of the algorithm increases with the number

of probes, and seems unaffected as the number of clones increases. Occasionally the algorithm

produces a shorter superstring than the initial superstring. This would correspond to experimental

conditions where either too few clones, or too few probes are used, resulting in under-specified

instances of the problem.

71

N n m p ravg rmax LO LGM Performance

5 200 200 159.2 1.6 3.9 259.1 292.7 88.7%

10 100 200 118.3 1.4 3.8 165 163.2 100%

10 100 200 145 1.5 3.7 216.5 238.8 90.7%

10 100 200 159 1.7 4.7 268 319.5 84.2%

20 100 200 186.7 2.4 6.8 451.3 453.8 99.5%

20 100 200 192.8 3 7.1 555.3 585.5 94.9%

20 100 200 196.4 3.4 7.8 660.3 699 94.5%

20 100 300 275.5 2.4 6.5 638 665.5 95.9%

30 100 300 293 3.3 8.5 951 913 100%

30 150 300 293 3.3 8.5 969 1041 93.1%

40 200 400 397.5 4.9 12.5 1886.5 1937.5 97.4%

6. Conclusion

Physical mapping experimental techniques involve the collection of data that establish overlap

relationships on a given set of clones. The aim is to find the most likely layout of the clones,

under certain assumptions on the characteristics of the clones (eg. length, density of coverage of

the genomic region), and under given kinds and rates of experimental errors. Physical mapping

has been a very important method for obtaining genomic sequence. Recent achievements of

the technique include the sequencing of the nematode C. elegans (The C. elegans Sequencing

Consortium, 1998) and of the human Chromosome 22 (Collins et al., 1995, Hunt et al., 1999). In

both projects physical mapping of the sequenced region was used first, and subsequently clones

were sent to the sequencing pipeline.

The data from physical mapping experiments are of a combinatorial nature. Different

physical mapping techniques, and the various assumptions on types of errors, translate beautiful-

ly into challenging combinatorial/computational problems. Algorithms usually optimize some

parsimony criterion. In our case, the length of the superstrings is minimized. Studying such

computational problems is interesting on its own, and has the additional motivation that some of

the results may be applicable to a real physical mapping experiment. We believe that the prob-

lems studied in this chapter are interesting from a computation theory perspective. Moreover,

our results may be applicable if further work is done towards the generalization of the algorithms

to cope with all kinds of errors that occur in practice, and towards elaborate implementation and

testing of the algorithms on real data.

72

Chapter 2

SEQUENCING A GENOME BY WALKING WITH BAC-ENDS

1. Introduction

Various approaches that have been proposed for sequencing large genomes broadly fall into two

categories:

(i) Whole-genome shotgun sequencing. Shotgun sequencing involves breaking a target into

random fragments, sequencing these fragments and reconstructing the full sequence from these

pieces. Shotgun sequencing was invented by Sanger, who applied it to the genome of

bacteriophage A (Sanger et al. 1980, 1982). It was subsequently extended to genomes of large

recombinant plasmids, large viruses, mitochondria, chloroplasts and bacteria (Goebel et al. 1990;

Oda et al. 1992; Ohyama et al. 1986; Fleischmann et al. 1995). More recently, Weber and Myers

(1997) proposed that the approach could be extended to very large genomes, such as the human

genome, by making greater use of long-range linking information - for example, sequences at

the opposite ends of large-insert clones. There are many potential pitfalls, such as the possibility

that the huge number of repeats (for example, one million copies of the Alu repeat in the human

genome) may result in many large-scale sequence misassemblies that are hard to detect and

correct (Green, 1997).

(ii) Clone-based shotgun sequencing. This approach involves obtaining a collection of large-

insert clones covering a genome and performing shotgun sequencing on each clone. This

approach was used for sequencing the genomes of the yeast S. cerevisiae (Oliver et al. 1992;

Dujon, 1996) and C. elegans (The C. elegans Sequencing Consortium, 1998), and is being used

for sequencing of mammalian genomes such as the human and mouse. Clone-based sequencing

has the advantage that it eliminates the possibility of large-scale misassemblies, because each

clone is assembled individually. But, it requires that one generate the collection of clones

covering the genome. It also has the drawback that there is some redundant sequencing due to the

overlap of adjacent clones. (There is no workable technique for shotgun sequencing only the non-

73

overlapping portion of a clone. Each clone must be subjected to full shotgun sequencing, with the

overlapping portion therefore being shotgun-sequenced twice. Such duplication can be avoided in

the directed finishing phase, in which gaps and ambiguities in the shotgun sequence are resolved.

Such overlaps thus increase the cost for the region by somewhat less than two-fold.)

The current cloning system of choice for clone-based sequencing is the Bacterial Artificial

Chromosome (BAC) with inserts of roughly 200 kilobases (kb). The discussion below will refer to

BACs (rather than generic 'large-insert clones') but the results, of course, are completely general.

Two approaches have been proposed for generating the BAC clones to be sequenced:

(i) Physical Mapping (or 'map first, sequence second'). This approach involves constructing a

complete physical map covering the genome before beginning sequencing ('map first, sequence

second'). One 'fingerprints' a BAC library, using a technique such as restriction digestion to

characterize each clone, and then attempts to use this information to infer the order of the clones.

A 'path' of clones is then selected for sequencing. This approach was successfully used to

generate physical maps of cosmids used to sequence the S. cerevisiae and C. elegans genomes

(Olson et al. 1986; Coulson et al. 1986). It is being applied to the human genome, although the

problem is more challenging due to the larger clones sizes (yielding more complex fingerprints),

the larger genome size and the more complex repeat structure.

(ii) Walking (or 'map as you go'). This approach proceeds directly to sequencing without a prior

physical map: One starts by sequencing an initial collection of random clones and then 'walks' the

genome by iteratively selecting minimally overlapping clones. Venter et al. (1996) proposed an

efficient method for selecting minimally overlapping clones, which is commonly referred to as

'BAC-end sequencing' or, more formally, as 'Sequence-Tagged Connectors' (STCs). A BAC

library is characterized by sequencing the inserts of each clone at its two ends (using primers

located in the two vector arms), and a database of the resulting BAC-end sequences is created.

Given a fully sequenced BAC clone C, one can walk by searching the database to identify all

overlapping BACs. The location and orientation of each overlapping BAC is immediately

apparent from the position of its end-sequence within C (Figure 2.1). One can also tell whether an

overlapping BAC closes a gap in the genomic sequence by whether its other end-sequence lies in

another fully-sequenced BAC clone C'.

74

Figure 2.1. Overlapping BACs in library with depth d=12-fold. A typical BAC (shown in black) will tend

to have 12 BACs overlapping its right end and 12 BACs overlapping its left end. Each overlapping clone

can be identified because one of its end-sequences (shown by arrows) is contained within the sequence of

the target BAC. The precise position of each overlapping clone is inferred by the location and orientation of

the end-sequence within the sequence of the target BAC.

In this chapter we analyze the strategy of sequencing a genome by clone-based walking.

Although the basic notion of walking is straightforward, key strategic questions have not been

addressed: How many independent walks should be performed in parallel? With too few, one will

need too many walking steps to cover the genome in a reasonable time. With too many, one may

perform too much redundant sequencing as walks 'bump' into one another with random-and

therefore suboptimal-overlap. How can one maximize the speed of covering the genome, while

minimizing the amount of redundant sequencing?

We present a mathematical analysis that expresses the amount of redundant sequencing in

terms of the initial density of walks and the depth of the BAC library. We also describe and analyze

a variant strategy in which one employs a second BAC library with smaller-insert clones to close

gaps efficiently; this strategy dramatically reduces the amount of redundant sequencing. The results

provide direct guidance for planning a genome sequencing project.

75

2. Basic Model

We begin by describing the basic model to be analyzed.

BAC Library. We will initially consider the case of a single BAC library with the following

properties:

(i) The clones have constant size L. The clone size L will serve as our unit of distance,

so that we may set L = 1. (Later, we will consider the use of a second BAC library

with inserts of constant size L' < 1.)

(ii) The clones are randomly segments of the genome. We thus ignore the possibility of

cloning bias.

(iii) The library covers the genome to depth d - that is, the average number of clones

covering a point in the genome is d.

(iv) The clones in the library have all been sequenced at both ends, yielding sufficient

unique sequence to reliably detect overlap. We thus ignore the possibility that some

BAC ends may not have been sequenced due to technical errors or may contain

repeat sequences that make it impossible to recognize overlap.

Sequencing.

conditions:

We assume that the procedure for genomic sequencing satisfies the following

(i) The cost of sequencing a BAC is directly proportional to the length of its insert. This

agrees with current practice in large-scale genomic sequencing centers, which

perform a fixed number of shotgun sequences per kilobase of insert size. (A constant

number of reads per kb may not be precisely optimal. On one hand, it has been

suggested that smaller clones may require slightly fewer reads per kb to reach closure

(Roach, 1995). On the other hand, smaller clones may require slightly more reads per

kb of insert, because the cloning vector comprises a slightly larger proportion of the

total clone length and thus of the reads from the shotgun library. In any case, these

effects are small and offsetting.)

(ii) The cost of producing a small-insert shotgun library from a BAC (which involves

preparing, shearing and cloning DNA) is negligible compared to the cost of

performing the shotgun reads needed to sequence the BAC. This reflects current

practice, for which the former is only about 2% of the latter.

76

In principle, one can sequence the genome with minimal overlap by sequencing a single

initial seed clone Co and then walking successively outward by sequencing minimally

overlapping clones, C., and C,, on each side until one covers the entire genome (Figure 2.2). The

resulting sequence of clones is commonly called a minimal tiling path. (Strictly speaking, it

should be referred to as a minimal tiling path for the given library and choice of starting clone.)

At each step, minimally overlapping clone Ci is identified by comparing the database of BAC-end

sequences to the completed sequence of C1 to find the BAC-end sequence that lies closest to the

growing end and points outward (Figure 2.1). We assume that there is always at least one

overlapping clone pointing outward. This is a reasonable assumption, provided that the depth d is

sufficiently large. For example, a BAC library with 200 kb inserts covering a mammalian genome

of 3 x 109 bp to depth d=10 should yield only 6.8 gaps - ignoring chromosome ends (Lander and

Waterman, 1988).

Ci Ci
CA

C C

Figure 2.2. Serial walking of the genome from a single initial clone Co.

It is straightforward to analyze the expected amount of redundant sequencing. On average,

each successive clone overlaps the previous sequence by (1/d) of its length and provides (1 -(l/d)) of

new sequence. The ratio of redundant sequence to unique sequence is thus:

R = d/(1-d") = 1/(d-1).

A BAC library with depth d = 10 thus yields a minimal tiling path with redundant sequencing of

11.1%, while one with depth d= 20 entails redundant sequencing of 5.3%.

In reality, sequencing large genomes by serial walking is completely impractical owing to

the cycle time to process each BAC clone: a mammalian genome would require 15,000 serial

steps. Sequencing each BAC requires: growing the clone; preparing DNA; shearing the DNA;

constructing a small-insert shotgun library; performing shotgun sequencing of clones from the

small-insert library; assembling the reads by computer; and closing remaining gaps. Various

quality assessment steps are performed along the way to ensure high yield. Although each

individual step is straightforward, the overall elapsed time is currently on the order of 1-2 months.

77

The obvious solution is to process many BACs in parallel-that is, to simultaneously walk

from many seed clones (Figure 2.3). Ideally, the seed clones should be dense enough that one

could cover the vast majority of the genome in a modest number of walking steps. A reasonable

goal would be to cover a mammalian genome in roughly one year.

Figure 2.3. Serial walking of the genome from a collection of seed clones (shown in black). Bidirectional

walking steps are shown, with steps that close an ocean shown in gray. The oceans are closed with

relatively little overlap in the first two cases, but with large overlap in the third case (marked with asterisk).

Parallel walking, however, introduces a problem: the various walks may join with large

overlaps, substantially increasing the proportion of redundant sequencing. Figure 2.3, for

example, shows three clones (shown in gray) that join walks. The first two instances involve

walks that fortuitously meet with relatively little overlap, but the third instance (marked with an

asterisk) involves a walk that meets with large overlap and thereby result in substantial redundant

sequencing.

It is important to understand how the expected proportion of redundant sequencing depends

on the density of seed clones and the depth of the library. Section 3 presents the mathematical

analysis. The reader interested primarily in applications may wish to proceed directly to Section

4.

3. Mathematical Analysis and Results

Our goal is to derive simple formulas providing a good approximation for the proportion of

excess sequencing. Toward this end, we will make certain simplifying assumptions. The

reasonableness of the approximations will then be demonstrated by their close agreement with

simulations in Section 8.

78

4.1 Using one Library of Constant Size Clones

We start with a collection of non-overlapping seed clones. Following the terminology of

Lander-Waterman (1988), each clone is an "island" followed by an "ocean" to be walked.

Walking proceeds outward from each clone in a bidirectional fashion, with overlapping clones

recognized on the basis of their end-sequence. At each round, one identifies instances in which

two islands can be joined by a single clone (readily apparent from the two end-sequences) and

ensures that a walking step is taken from only one of the two islands (to avoid unnecessary excess

sequencing).

Co CC
CO C, C2 , C3~ 03

1 X

110x

Figure 2.4. Unidirectional walking from a seed clone Co. Each successive clone Ci extends the island, with

the redundant sequence shown in gray. The last clone Cj closes the ocean, with redundant sequencing due

to both overlap with Cj.1 and with the next seed clone to the right. Each clone has size 1 and the ocean has

size X. The number of clones sequenced is j+1, with each having length 1. The amount of unique sequence

obtained (the initial island together with the ocean) is X+1.

Although walking proceeds bidirectionally in practice, it simplifies the discussion to

suppose that walking proceeds unidirectionally to the right. Each bidirectional walking step is

clearly equivalent to two unidirectional walking steps. Figure 2.4 shows a typical seed clone Co

followed by consecutive walking steps C1, C2, . . . , Cj, where Cj is the first clone that overlaps the

seed clone to the right of Co (a fact that is readily apparent from its end sequence).

Suppose that the seeds cover proportion a of the genome in clones of length 1. The oceans

therefore cover proportion 1 -n and the mean ocean size must be o = (1 -R)/R.

Our first simplifying assumption concerns ocean lengths:

79

Assumption of Exponential Oceans (AEO). Non-overlapping seed clones will be assumed to

be chosen such that the resulting ocean lengths follow an exponential distribution (with mean o).

What is the proportion of redundant sequencing entailed in sequencing the island Co

together with the ocean on its right? Let the random variable J denote the sum of the lengths of

C 1, C2 , . . . , Cj. (Since the clones have unit length, J=j.) The amount of total sequencing is J+1,

while the amount of unique sequence obtained is X+1 (see Figure 2.4). The expected proportion

of redundant sequencing is thus:

(E(J)+1)
(E(X)+1)

where E() denotes the expected value. As noted above, the mean ocean size E(X) is o = (1 -)a.

Therefore, we simply need to calculate E(J).

Calculating E(J) precisely is complicated, but it is possible to make a good estimate by

using a second simplifying assumption:

Assumption of Constant Overlap (ACO). Each clone Ci will be assumed to overlap the

previous clone Ci1 by exactly the expected amount of overlap, l/d, and thus to extend the

sequence by exactly the expected amount, 1 -(1 /d).

ACO greatly simplifies the mathematical analysis, owing to an elegant property of

exponential distributions: If each island is extended by a constant amount, then the lengths of the

remaining oceans (that is, those that are not closed) follow the same exponential distribution as the

initial oceans. This stability property allows the walking process to be analyzed by a simple

recursion.

Proposition 1. Suppose that the genome is sequenced by seeding with non-overlapping

clones to coverage 7r and then walking using a library with depth d. Let o = (1 -2t)/1. Assuming

that the ocean sizes are exponentially distributed (AEO) and consecutive walking steps have

constant overlap (ACO), we have:

(i) The expected proportion of redundant sequencing is

R(d,w) E(J)+1 1
co +1

80

(ii) E(J) = 1/Pd,,), where Pd,- 1 - e- is the probability that an ocean is closed with

a single walking step.

(iii) The proportion of genome not sequenced after k unidirectional walking steps is (1-a)

(1 -pd(o)k (1-t) e- k .1d-' The proportion thus decreases geometrically with each walking

step.

Proof. Part (i) was noted above. A formal proof follows from a straightforward application

of Wald's equation (see Ross, 1970). Part (ii) employs ACO. The total clone length J required to

close an ocean can be calculated by considering a single walking step. With probability Pd,., the

step closes the ocean, resulting in a total clone length of 1. With probability 1-Pd,(m, the step fails

to close the ocean and leaves a remaining ocean having the same exponential distribution. It

follows by recursion that

E(J) = (pd,o) 1 + (1- Pd,o) (1 + E(J)).

The desired result follows by solving for E(J). Part (iii) follows by observing that the lengths of

the remaining oceans after k walking steps continue follow the same exponential distribution. The

total ocean length remaining after k steps is thus directly proportional to the proportion of oceans

that remain unclosed after k steps. The proportion of the remaining oceans that are closed at each

walking step is Pd,m and thus the proportion remaining unclosed after k steps is (1-pd,(.)k . This

completes the proof.

In fact, Proposition 1(i) can be generalized to any distribution of initial oceans sizes as

follows.

Proposition 2. Suppose that the genome is seeded as in Proposition 1, but that the ocean

sizes x have probability density f(x). Assuming ACO, the expected proportion of redundant

sequencing is

R(d,)= -+1 ,
co +1I

where

E(J)= Fx/(1-d ')]f(x)dx

and [x] denotes the ceiling function (that is, the smallest integer > x).

81

Proof. Under ACO, each walking step extends by distance (1 -d'). The number J of

walking steps needed to close an ocean of size x is thus Fx/(- d-')]. The result follows simply

by taking the expectation of J over the distribution of ocean sizes.

We now apply the results to study the problem of sequencing a genome by walking. Figure

2.5 shows the proportion R of redundant sequencing, as a function of the initial mean ocean length

o and the BAC library depth d. If the genome is seeded to leave oceans of average length o = I

(corresponding to initial coverage 71 = 50%), the proportion of redundant sequencing ranges from

32% to 29% as the BAC library depth ranges from d=15 to d = oo. If the genome is seeded more

sparsely so that o = 2 and 7 = 33%, the redundant sequencing R ranges from 23% to 18% over the

same range of BAC library depth. If the oceans are still larger (o = 3 and 21 25%), the redundant

sequencing R ranges from 19% to 13%.

0.30

W

I.-
0

0

0

0.
0.
0

0.25

0.20

0.15

0.10

0.05

0.00

Mean Ocean Size
(in units of clone length, L)

Figure 2.5. Proportion of excess sequencing. Curves show the proportion of excess sequencing, R(d,to) as a

function of mean initial ocean size o for various library depths d = 10, 15, 25, 50 and oc.

82

d=10

i i i i i i i i

It is useful to compare the results to the situation of serially walking the entire genome with

a minimal tiling path (which corresponds to ocean size (o = 00). As noted above, the proportion of

redundant sequencing for a minimal tiling path is 1/(d-1). By subtracting this quantity from R, we

find the additional redundant sequencing R* caused by inefficient closure of oceans. Figure 2.6

shows the corresponding graph for R*.

The graph shows that the redundant sequencing caused by inefficient closure of oceans

depends primarily on the mean ocean size, but much less on the library depth d. This makes

intuitive sense, because the inefficiency arises primarily from closing small oceans with clones of

unit length. The availability of more clones in a deep library thus makes only a modest

improvement. Indeed, the component R* is decreased by only a few percentage points by going

from a library with d = 10 to d = oo.

Z

CL

2
(L

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0

0

(D

0

d=10

d=oo

Mean Ocean Size
(in units of clone length, L)

Figure 2.6. Curves show the proportion of excess sequencing attributable to inefficient ocean closure,

R*(d, o). This is obtained by subtracting the proportion of excess sequencing for an optimal tiling path in a

library of depth d, which is I/(d-1). That is, R*(d, co) = R(d, (o) - (1/d-1).

83

Figure 2.7 shows the number of unidirectional walking steps required to cover 90% of the

genome. The number of unidirectional steps is equal to slightly more than twice the mean ocean

size. Since actual walking proceeds bidirectionally, it is thus useful to restate the observation in

these terms: The number of bidirectional walking steps to cover 90% of the genome is

approximately equal to the mean ocean length. (The precise correspondence depends on the

library depth d. For example, the number of bidirectional walking steps is roughly 1.1 times the

mean ocean length when d = 15.)

10

(D

Cl)

0

CD

20

19

18

17

16

15

14

13

12

11

10

0D
E
0

0
0W

8

7

6

5

4

3

2

0
r4 M e4 N - 0

Mean Ocean Size
(in units of clone length, L)

Figure 2.7. Walking Steps. The number of unidirectional walking steps required the cover 90% of the

genome, as a function of mean initial ocean size to for various library depths d = 10, 15, 25, 50 and oc. In

actual practice, walking occurs in both directions. The number of bidirectional walking steps is thus half as

many.

If the number of steps shown in the Figure 2.6 is doubled, the proportion of genome

sequenced rises to 98-99%. (More precisely, the proportion remaining uncovered is 1% x (1-7)-'.)

84

Thus: The number of bidirectional walking steps to cover 98% of the genome is approximately

equal to twice the mean ocean length.

From Figures 5, 6, and 7, one can readily assess the increase in redundant sequencing

entailed in covering the vast majority of the genome in a given number of steps.

4.2 Using Smaller Clones to Close Gaps

The major inefficiency in walking arises from instances in which a clone of length L=1

must be sequenced to close a small ocean; most of the sequencing is redundant. This observation

suggests a simple improvement: Use a second BAC library with smaller inserts to close small

oceans.

Specifically, suppose that we have two BAC libraries in which the clones have been end-

sequenced: our original library B with insert size L = I and depth d, as well as a second library B'

with insert size L' < I and depth d'. We will continue to assume that walking from each seed

clone proceeds unidirectionally to the right (but see below concerning this point). At each

walking step, we would first search our database to see if there is a clone from B' that spans the

remaining ocean (based on its end sequences) and, if none is found, we would select the

minimally overlapping clone from B (which either closes the ocean or extends the walk). In this

manner, we would aim to select the smallest clone capable of closing the ocean.

We can adapt the mathematical analysis above to calculate the proportion of redundant

sequencing. (To simplify the statement of the result, we will consider only the case in which

clones from B typically extend the walk farther than clones from B'-that is, 1-(1/d) > L'-(1/d').

This will be true unless L' is close to 1, in which case the second library adds little anyway.)

Proposition 3. Let B and B' denote BAC libraries as above. Suppose that we initially seed

the genome with non-overlapping clones from B to coverage a and then walk as above, using

clones from B' to close oceans whenever possible. Let o= (1-x)/L. Under AEO and ACO, we

have:

(i) Let the random variable J denote the sum of the lengths of the clones used to close an

ocean. As before, the expected proportion of redundant sequencing is

(E(J)+)1)R(d, o) = (+1)
(CO + 1)

85

(ii) With Pd,o defined as in Proposition 1, we have

E(J) = _ d',(w/L')))

Pd,,,

The formula reduces to that in Proposition I if the smaller-insert library B' has no clones

(d'=0), since po,/L, = 0.

Proof We proceed as in the proof of Proposition 1. Part (i) again follows by a simple

application of Wald's equation. For part (ii), we calculate E(J) by considering a single walking

step and applying recursion. With probability Pd',(/'), the ocean can be closed with clone from

library B', resulting in a total clone length of L'. With probability Pd,, - Pd',((9/L'), the ocean can be

closed with a clone from library B but not B', resulting in a total clone length of 1. With

probability I - Pd,, the walking step cannot close the ocean and remaining ocean having the same

exponential distribution. It thus follows by recursion that:

E(J) = (Pd',(o/,)) L' (Pd,) - Pd',(/L')) 1 - Pd, o) (1 + E(J)).

The result follows by solving for E(J).

How much efficiency is gained by using a second library B' with smaller-insert clones?

Figure 2.8 shows the proportion of redundant sequencing when an initial library B with depth d

15 is supplemented with a second library B' with clones whose inserts are half as long (L' =) at

various depths d'.

The savings are substantial-for example, decreasing the proportion of redundant

sequencing from about 23% to 14% for mean ocean length 2 and from about 18% to 12% for

mean ocean length 3. The redundant sequencing is considerably closer to the best possible level

obtained with a minimal tiling path, roughly 7.1% for a library with d=15 (indicated by the

dashed line in Figure 2.8). Indeed, using a library with half-size clones roughly halves the

redundant sequencing R' caused by inefficient closure of oceans.

Notably, the second library B' does not need to have high depth to have a major impact. A

library with depth d = 5 is only slightly less effective than a library with infinite depth. This makes

intuitive sense, since even relatively low depth assures the existence of clones suitable for covering

very small oceans.

86

Ck

C

(A

0~
C

0

C

0.30

0.25

0.20

0.15

0.10

0.05

0.00

d'=0

- ------------

R R I R I R I d'=

--- - -- - -- -- --.- --,--.a

Mean Ocean Size
(in units of clone length, L)

Figure 2.8. Proportion of excess sequencing, for walking with two BAC libraries. The first library B

has clones of insert size L = I and fixed depth d =15, while the second library B' has clones of insert size L'

= y and various depths d'. Walking is performed as described in the text. The curves show the proportion

of excess sequencing, as a function of mean initial ocean size co and for various library depths (d = 10, 15,

25, 50 and oo) for the second library B'.

B
I ~ B'

B"

Figure 2.9. Schematic illustration of the situation of an ocean being closed by two large clones (B and B'),

when one large and one small clone (B and B") would suffice.

The results above concern a second library B' with insert size L' = 2. In fact, this choice of

insert size L' is nearly optimal for minimizing the amount of redundant sequencing R.

87

Specifically, one can show by straightforward calculus that the value of L' that minimizes R only

changes from 0.55 to 0.50 as the mean ocean size o> goes from 1 to oo.

35.00

30.00

25.00

20.00

15.00

E

0

5.00

0.00

Mean Ocean Size
(in units of clone length, L)

Figure 2.10. Optimal library depth to minimize total cost, assuming that the ratio of the cost of obtaining

the complete sequence of a BAC to the cost of sequencing both ends of a BAC is p = 1000:1. The top curve

(marked d*) shows the optimal depth when using a single library. The two lower curves show the optimal

depths d and d' when using two library B and B', as described in the text. The optimal depths depend on the

mean initial ocean size o>. The depth d' of the small insert library was constrained to be at least 5, to ensure

that the existence of a properly situated, small-insert clone at the end of the vast majority of islands,

consistent with the assumption ACO, described in the text).

The analysis above assumes that walking from each seed clone proceeds unidirectionally to

the right. The fact that walking is actually bidirectional slightly complicates the situation: If the

clones for a given round of walking were all sequenced simultaneously, we would sometimes

cover oceans inefficiently by walking with large clones at both ends, when using one large and

one small clone would suffice (Figure 2.10). The additional excess sequencing that would result

from such occurrences can be shown to be:

p0= (1Pd) pd' , /L'(1 P dd L'+
-i=0 ._2- Pd, P, -

88

d*

d'

(Briefly, the first term is the excess contribution to J from sequencing a large clone instead of a

short clone, the second term is the proportion of oceans that should properly be closed with one

large and one small clone (these are precisely the oceans which would be closed by unidirectional

walking with an odd number of large clones followed by a small clone), and the denominator

(o+i1) occurs as in the calculation of R in 2(i) above.) For typical values of interest (for example,

d> 15, d > 5, L= , and o = 1-5), the additional excess sequencing would be in the range of 3%.

It is possible to do much better than this by exploiting the fact that the BAC clones will not all

be sequenced simultaneously. As shotgun-sequence is obtained for each large clone B, one can

automatically check the sequence to see whether any subsequent large clone B' can be replaced by

an ocean-closing small clone B" (as in Figure 2.9). Provided that B' did not pass through shotgun

sequencing simultaneously with B, one can thereby avoid the cost of sequencing a larger clone

when a smaller clone will suffice. (One may have incurred the cost of preparing a small-insert

library from B', but this is small relative to the cost of sequencing.) The additional excess

sequencing is therefore only ap, where c< . is the proportion of clones in a given walking step that

are processed in parallel through shotgun sequencing. The proportion a depends on the workflow of

the sequencing operation-specifically, on the amount of work-in-process (WIP) in the shotgun

sequencing phase. Since the shotgun sequencing phase is relatively rapid (the elapsed time for

picking, growing, preparing and sequencing the small-insert clones is typically on the order of a

week), the WIP tends to be relatively small. Even if the proportion of clones simultaneously passing

through shotgun sequencing is as high as c = 10%, the additional excess sequencing owing to the

occasional failure to use a small clone is only up = 0.3%. In short, the cost is small and does not

substantially impact the advantage of using a smaller library. The results derived under the

assumption of unidirectional walking are thus not far off.

4.3 Optimizing Clone Library Depth

What is the optimal depth of a BAC library to be used for sequencing a genome by

walking? One can decrease the cost of redundant sequencing by using deeper BAC libraries, but

one incurs the cost of end-sequencing a larger number of BAC clones. Beyond some point, there

are diminishing returns to increasing the depth of the BAC library.

The optimal library depth depends on the relative costs of sequencing entire BAC clones

versus sequencing BAC ends. With current laboratory procedures and economics, this ratio is in

the neighborhood of p = 1000/1. (Roughly 4000 shotgun sequencing reactions are needed to

89

sequence a 200 kb BAC. Two sequencing reactions are required to sequence its ends, although

these reactions are considerably more expensive because sequencing directly from a BAC

template requires higher concentrations of reagents.) Given the cost ratio p, the optimal library

depth is the value d that minimizes the sum of the costs of BAC-end sequencing (proportional to

d) and redundant BAC sequence (proportional to R(d,o)).

Figure 2.10 shows the optimal library depth when using a single BAC library (curve

denoted d*). The optimal depth increases with the initial mean ocean length o, or equivalently

decreases with the initial proportion a of the genome covered. The optimal depth d ranges from

22.5 to 30.8 as o increases from I to 8, approaching an asymptotic limit of 32.8 as o -> o. (One

can show that the optimal library density approaches 4fp+i as o - oo, by using straightforward

calculus to minimize the asymptotic total cost.) The fact that the optimal d is smaller for small o

makes intuitive sense, since a dense library offers more limited advantage when most oceans are

fairly small.

Figure 2.10 also shows the optimal library depths d and d' when using a two BAC libraries

with respective inserts sizes of 1 and L. The optimal value of d of the large insert library is only

slightly lower than in the previous case, while the optimal value of d' is in the neighborhood of 6-

7 for relevant values of (o.

In fact, the optima are relatively broad. Overall, it seems reasonable to use libraries B and

B' with respective depths of d = 20 - 25 and d'= 6 - 7.

4.4 Seeding the Genome

We next turn to the issue of generating a collection of non-overlapping seed clones. The

analysis above assumes that seed clones are chosen such that initial ocean sizes are exponentially

distributed (AEO). How close can one come to this in practice?

The most straightforward experimental approach is to select seeds sequentially from a list

of random clones. Each clone is selected and sequenced, subject only to the condition that it does

not overlap (as seen from its end sequences) with a previously selected seed clone. In this fashion,

one can progressively seed the genome with random, non-overlapping clones.

This stochastic process is known in the literature as the 'parking process' because it is

equivalent to cars of constant size (clones) sequentially choosing random parking spots along a

long street (genome). Each car is permitted to park in its chosen parking spot provided that a

previously parked car does not block it; otherwise, it must drive away.

90

The resulting 'parking distribution' is relevant to many physical processes and has been well

studied (Krapivsky, 1992). Suppose that one has processed a list of random clones comprising a

sub-library covering the genome to depth t. The expected proportion of genome covered with

seed clones will be n(t) and the distribution of oceans sizes will be w>(x,t), where:

;c(t) = f F(r)dr

[t2F(t)exp(-(x - 1)t)]/ r(t),
Q(x,t) = [2f -rF(r)exp(-xr)dr]/zr(t),

x> 1

xs 1

F(t)= exp[-2 exP(-,rT dr]
1r

.0

-E

Ocean Size

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Ocean Size

Figure 11. Comparison of Parking and Exponential Distributions. (A) Probability density and (B) Cumulative probability
distribution, for 7c = 0.3 and x = 0.5. The kinked curves are the parking distribution; the smooth curves are the exponential

distribution with the same mean.

91

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0:

The parking distribution of ocean sizes is very close to the exponential distribution for low

coverage t(t) and is still reasonably close for coverage 4(t)= 50% (Figures 11 a,b).

The expected proportion of excess sequencing under the parking distribution can be

calculated as in Proposition 2. The difference A between the excess sequencing expected under

the exponential distribution and the parking distributions is shown in Figure 2.12. The parking

distribution entails slightly less excess sequencing than the exponential distribution (i.e., A > 0),

because it has fewer extremely small intervals (as see from Figure 2.10a). The difference A is

quite small over the range of interest, being about 0.6% for o =1 and decreasing as (o increases.

It should be noted that the parking process cannot fully cover the genome: As the coverage

increases, the remaining spaces become smaller and the proportion of cars turned away increases.

When the remaining spaces are all smaller than a car length, no more cars can park. This happens at

the so-called 'jamming limit', which occurs at n= 0.747597.... Sequential selection of strictly non-

overlapping clones thus cannot provide seed coverage beyond this point.

Fortunately, we are not interested in seeding to more than 50% because the cost of excess

sequencing begins to sky-rocket for n > 50%. Seeding the genome to 50% requires starting with a

random list of clones covering the genome to depth 1.15 (because n(1 .15) 0.5).

We briefly mention some other approaches to seeding the genome, but do not analyze them in

detail.

(i) Simultaneous seeding. One could start with a collection of random clones, prepare small-insert

shotgun library from each, and perform a small amount of sequencing from each shotgun library

(for example, covering the clone to an average depth of 0.5-fold). Such 'sample sequencing'

should be sufficient to detect any significant overlap between clones. One could then select a

maximal set of non-overlapping clones. If the collection of random clones covers the genome to

depth t, a maximal non-overlapping set will cover a proportion n ~ t/(t+1) of the genome and the

oceans will be very nearly exponentially distributed with mean size 1/t. The approach allows the

genome to be seeded to higher initial coverage, but the sample sequencing is more expensive than

end-sequencing and it must all be performed in advance. Still, there may be situations in which

such an approach may be desirable.

(ii) Contig-based seeding. One could initially fingerprint the entire BAC library to construct non-

overlapping contigs, which could be used as the seeds for subsequent walking. Assuming that the

92

contigs were separated by roughly exponentially distributed oceans, the situation could be

analyzed in the same manner as above.

0.007

0.006

0.005

0.004 -

C 0.003 -

0.002 -

0.001

0.000

Ocean Size, o

Figure 2.12. Difference between exponential and parking distributions. Graph shows difference A between

Resp, the proportion of excess sequencing under exponential distribution, and Rp&kg, the proportion of

excess sequencing under parking distribution. That is, A = Re , - Rp&,g. Two curves are shown,

corresponding to d = 15 and d =50. The difference A is seen to be largely insensitive to d.

5. Simulations

The simple formulas above are premised on two simplifying assumptions (AEO and ACO). We

tested whether the formulas provided reasonable approximations by performing extensive

simulations.

The simulations were performed as follows. Libraries were generated by randomly

selecting starting points for BAC clones (L = 2 x 105 bp, L' = I x 105 bp) from a mammalian

genome (3x109 bp) using a uniform distribution to achieve the desired depths d and d'. An initial

selection of seed clones was generated as in the parking problem, by considering the clones in a

random order and accepting successive non-overlapping clones until the desired proportion 7t of

the genome was reached. (We confirmed that the simulation yielded oceans sizes closely fit the

parking distribution (not shown).) Walking was then performed by selecting minimally

overlapping BACs as described above. For each choice of parameters, a total of 40 simulations

93

were performed and the results were averaged. Simulations were performed for parameters

throughout the range of interest, at the parameters d e{10, 15, 25, 50, oo} and Co = {1.0, 1.5, 2.0,

2.5, . . . , 7.0}. We calculated Rsim(d,co), the average proportion of redundant sequencing over the

simulations.

0.004

0.003 -

0.002 - 0 d=10

.< 0.001 -o d=15

0-9 0 o d=25
U0
-000 - 8 0 E]=5G~-0.001 -d5

0I 0
-0.002 - V d=co

-0.003 -
0

-0.004 1

Ocean Size, o

Figure 2.13. Difference between formulas and simulations. Plots show the differences A between the

proportion of excess sequencing predicted under the parking distribution (Rpm,,) and the proportion of

excess sequencing observed in (A) simulations in which the seed clones and walking clones are chosen

from a randomly distributed library (Rsi). Results are shown for various values of d and o.

We also performed simulations mimicking the ACO assumption, in which the seed clones

were selected as above but walking steps then occurred under the assumption that the minimally

overlapping clone overlapped by exactly l/d. We calculated Rsi,,Aco(do), the average proportion

of redundant sequencing over these simulations.

We compared the simulation results to Rp, (d,o), the excess sequence under the parking

distribution predicted by the formula in Proposition 2. The difference A(dco) = Rpwngdco)-

Rsim(d,co) is shown in Figure 2.13. The difference is negligible (on the order of the standard error

of the mean from the simulations), except for small d and small co. The discrepancy for small d

and co is readily seen to be due to ACO, by examining the difference A'(d,w) = Rpaus4d,o)-

Rsin,Aco(d,co) shown in Figure 2.14. This difference is negligible over the entire range.

94

...

0.004 -

0.003 -

0.002 - 0 d=10

0.001 - 0 d=15

0; 0 d=25

-0.001 - I d=50

-0.002 - V d=co

-0.003 -

-0.004 -

,n C V C V ~ V ! R V! R ~ V R

Ocean Size, o

Figure 2.14. Difference between formulas and simulations. Plots show the differences A between the

proportion of excess sequencing predicted under the parking distribution (Rpjg and the proportion of

excess sequencing observed in simulations in which seed clones are chosen from a randomly distributed

library, but walking steps are then made under the ACO assumption (RsimAco). Results are shown for

various values of d and o.

We also studied the proportion of genome covered after k steps (k = 1, 2, . . ., 10),

comparing the prediction under the exponential distribution (Proposition 1 (iii)) to the results seen

in the simulations above. In the range of interest, the predicted proportion of genome covered at

each stage was within 0.5% of the results from the simulations (not shown). Finally, we simulated

the situation of two libraries, where d and o were as above and the smaller library has depth d' =

5. Again, the difference o was extremely small (not shown).

In summary, the simple formulas derived under the assumption of AEO and ACO are

sufficiently close for practical purposes. The differences are quite small and have no impact on the

key conclusions.

6. Conclusion

Sequencing a genome by walking is an inherently serial process. One seeds the genome to an

initial coverage n and then engages in sequential rounds of walking.

95

Completing the task in a reasonable amount of time requires a high degree of parallelism-

that is, a high density of seed clones from which walks proceed outward in both directions. The

number of such walking steps to cover 90% of the genome is roughly equal to the initial mean

ocean size (io = (1-)/n), while the number of steps to cover 98% is roughly twice as large.

There is a clear tradeoff between the number of walking steps and the cost of redundant

sequencing. As the mean ocean size to grows from I to 2 to 3, the proportion of redundant

sequencing decreases from 32% to 23% to 19%. (These values correspond to a library with depth

d= 15; they are about two percentage points lower for libraries with d=25.)

One solution is to decrease the cycle time required for each walking step, making it feasible

to take more serial walking steps within the desired time frame. Since the time required to prepare

and validate high-quality shotgun libraries represents a significant component of the cycle time,

one might develop efficient and inexpensive methods to prepare shotgun libraries from all clones

in the BAC library in advance of sequencing. (The storage requirements are modest, since each

shotgun library is stored as a ligation mixture in a single test tube until required.) One could then

rapidly initiate each consecutive walking step. Implementing such an approach would require

significant streamlining or automation of existing procedures for preparation of shotgun libraries,

but may be feasible.

A complementary solution is to employ a second BAC library with smaller clones, with

roughly half the insert size. This approach dramatically improves efficiency. For the cases

involving a 15-fold library above, the proportion of redundant sequencing is 18%, 14% and 12%.

This is much closer to the best possible result obtainable with a I 5-fold library of roughly 7.1%

(=1/14). Importantly, the vast majority of the efficiency is obtained using a second BAC library

having relatively modest depth - for example, d' = 5.

We should note that our analysis ignores certain biological and experimental issues.

(i). Variable insert size. We have assumed that the BAC libraries have inserts of constant

size. A BAC library with variable insert size may be more efficient than one with constant size,

because one has the potential to optimize the size of the BACs used to close oceans. Indeed, our

strategy of using of two BAC libraries with constant inserts of size L and L' is formally

equivalent to using a single BAC library with variable insert size equal to either L or L'. In

principle, BAC libraries with variable insert size can be extremely efficient: a BAC library with

highly variable insert size and infinite depth would allow one to close gaps with essentially no

wasted sequencing.

96

In practice, however, current BAC libraries have a fairly tight size distribution and thus the

effect is rather modest. The human RPCI-1 I library, for example, has insert size that is roughly

normally distributed with mean 160 kb and coefficient of variation (CV, defined as ratio of

standard deviation to the mean) of somewhat less than 10%.

We performed simulations to compare the proportion of redundant sequencing in two

situations cases: (i) a single library having mean insert size I with the insert size either being

constant or normally distributed with CV= 10%, and (ii) two libraries having mean insert sizes 1 and

0.5 with the insert sizes either being constant or normally distributed with CV=10%. As expected,

the variable libraries were slightly more efficient than the constant library. For co =1, the absolute

difference was roughly 4% in the case of a single library (d=15) and 2% in the case of a two

libraries (d=1 5, d'=5). For larger ocean sizes (o, the absolute differences are even smaller. In short,

the effects are thus fairly small and the key conclusions concerning the value of a library containing

smaller clones remain valid.

An interesting open question is to find the optimal distribution of insert sizes for a BAC

library of a given depth.

(ii) Cloning bias. We have assumed that there is no cloning bias in the genomic library.

Cloning bias is known to occur in many cloning systems, but the nature and distribution of

cloning bias is poorly understood and therefore difficult to model. Severe cloning bias against

some regions would clearly lead to larger initial oceans, as well as lower effective library depth,

in these regions. One could conceivably model the genome as composed of large blocks with

different cloning bias.

(iii) Missing end sequences. We have assumed that each BAC has been sequenced at both

ends. Current BAC-end sequencing projects sometimes fail to generate one of the end-sequences

owing to technical failures. Such 'single-ended' BACs are less inefficient because one might

select two such clones to walk from each side of an ocean and be unaware (because of the lack of

the opposite sequence) that each clone suffices to close the ocean on its own. The impact of the

problem can be assessed through either mathematical analysis or simulation. The problem itself

can be overcome simply by sequencing additional BAC clones to achieve the desired depth d in

'double-ended' clones.

(iv) Repeat sequences at BAC ends. We have assumed that each BAC has unique sequence

at both ends to permit unambiguous recognition of overlap. However, a clone end may consist

97

entirely of a repeat sequence, which cannot be used for walking. If the repeats are relatively small

and fairly uniformly distributed across the genome, the problem can be overcome simply by end-

sequencing a larger number of BACs to obtain enough clones with unique sequence at both ends

(as in the case of 'single-ended' BACs due to technical failure). If repeats are unevenly distributed

across the genome, the problem will lead to under-representation of clones in the repeat-rich

regions (as in the case of cloning bias). If very long repeats occur, they will prevent the initiation

of walks from within the repeat and may necessitate larger overlap. In general, the most practical

solution is to increase the depth of the library used for end-sequencing. (See also, Siegel et al.

1998).

We have focused on developing simple models to provide insight into the problem of

sequencing a genome by walking. In actual application, one will confront complications such as

those above. The best solution is to perform specialized simulations. Our results however, help

define the key issues and tradeoffs and should be helpful in conceptualizing how to design a

clone-based genomic sequencing project.

98

Chapter 3

WHOLE GENOME SHOTGUN ASSEMBLY

1. Introduction

In the previous two chapters we talked about two important variations in the clone-by-clone

approach to sequencing a genome, namely physical mapping, and clone-end walking. The topic

of this chapter is the alternative approach to clone-by-clone sequencing - whole genome

shotgun sequencing. We describe an approach for assembling in the computer the data produced

by shotgun sequencing; we demonstrate the performance of this approach by developing and

testing ARACHNE, a prototype system for shotgun assembly.

1.1 Previous Work

Previous work on whole-genome shotgun assembly is limited. PHRAP (http:

/!wwv._/1-1RAl.con) is virtually the only program available, and it is mainly targeted to the

assembly of relatively short genome segments such as a BAC clone (roughly 200,000 nucleotides

long). The algorithm uses a greedy scheme for connecting reads into contigs based on the quality

of alignment between two reads, and on the relative likelihood that the two reads truly overlaps,

as opposed to lying in a repeat with 95% fidelity between the two copies. These likelihoods are

calculated using the quality scores associated with each read position whereby low quality score

positions are more likely to be wrong, and therefore reads that truly overlap are more likely to

differ in the positions where at least one of them has low quality bases. On the other hand reads

that do not truly overlap, but instead come from two copies of the same repeat, may differ in

positions of high, as well as low, quality. PHRAP does not make use of forward/reverse linking

information between pairs of reads that come from two ends of the same insert (earmuff links, as

we defined them in the Background section). It is generally considered to solve with great quality

99

the problem of assembling BAC clones, but it gets too slow, and inappropriate to use, for

genomes or genomic segments of length more than a few megabases.

Anson and Myers (1999) describe an algorithm for whole genome assembly, focusing on

creating the assembly of a region of DNA between two reads that are linked with an earmuff.

Their algorithms strive to minimize the number of queries to the database of reads, where each

query asks for the set of reads that overlap with a particular read. They test their algorithm on a

simulated model of the genome.

The most important breakthrough to date in shotgun assembly is the recent successful

whole genome assembly of Drosophila melanogaster (Myers et al. 2000). This assembly was

achieved by a software system that shares ideas with the system described in this chapter, and

was developed independently. We note that the assembly of Drosophila took around one week on

an 8-node ES40 platform (Myers et al. 2000), which was due to an O(n 2) number of pairwise read

alignments, a step that our system avoids by a hashing mechanism that we describe below.

1.2 Problem Description

The general problem can be stated as follows: the goal is to reconstruct an unknown source

sequence (the genome) on {A, C, G, T} given many random short segments from the sequence,

the shotgun reads.

A read is a subsequence of nucleotides of length around 500, taken from a random place in

the genome. The orientation of the read is eitherforward, in which case the read is taken from the

forward strand of the genome, or reverse complement, in which case the read is taken from the

reverse complement strand. Recall that the reverse complement strand is essentially the same as

the forward strand, except each nucleotide is substituted with its Watson-Crick complement: A

<-> T, and C +-+ G.' The direction of a read is not known - reads are unoriented.

'We call that strand the reverse complement because chemically it runs 5' - 3' instead of 3' - 5'. Also it is important
to note that genes (and presumably other elements) lie either in the forward, or reverse complement direction. That is,
RNA polymerase works only 3' -> 5' and therefore grows a pre-mRNA strand during transcription, in the 5' -> 3'
direction. The pre-mRNA in turn, is always "interpreted" in the direction 5' -> 3' during splicing and translation.

100

The read is not an exact subsequence of the genome. It contains errors of two kinds: base

substitutions, and indels. Base substitutions occur with a certain moderate average frequency,

typically 0.5-2%.' The number of them on each read is Poisson distributed and the occurrences

are uniformly distributed along the read.2 Indels are either insertions, or deletions of nucleotides.

They occur with the same distribution, but roughly an order of magnitude less frequently, than

base substitutions.

Some reads come with additional linking information. Recall the description of an earmuff

link in the Background section. A pair of reads can be taken from the two ends of the same size-

selected insert. Therefore the relative orientations, and approximate distances between pairs of

reads, are known. Depending on the vector system and size-selection, we can have read pairs

coming from short plasmid inserts, of length 2,000-3,000 up to 10,000-12,000. Or they can come

from cosmids, of length around 40,000. Finally they can come from BACs, which are around

150kb long. A combination of all these kinds of linked reads is probably more powerful than any

one kind of links by itself.

2. Algorithms

ARACHNE consists of two parts: (i) the creation of a graph G of overlaps between pairs of reads

of the shotgun data, and (ii) processing of G for the purpose of constructing supercontigs of

mapped reads.

2.1 Creation of Overlap Graph

The input to ARACHNE is a list of reads taken from the genome. We will denote this list by R =

(ri,..., rN) where N is the number of reads. Each read ri has an associated length li that is typically

< 1000. It may also have a link to another read rj at specified distance dij and known relative

orientation, in case both reads were taken from the endpoints of the same clone (earmuff link).

Finally, each position of a read may have an associated confidence score (PHRED score (Ewing

A read is typically longer than 500, but the nucleotides beyond around 500 are of poor quality. These nucleotides have
a higher rate of base substitutions and indels. The associate PHRED scores indicate the quality of each nucleotide.

2 But note again that typically PHRED scores give some information on the likelihood of error, for each specific read
position.

101

and Green, 1998) that characterizes the probability that the nucleotide is correct. For the moment

we will ignore this additional information and simply view the input as a list R of reads.

The first goal of ARACHNE is to create a graph G of overlaps (edges) between pairs of reads

(nodes). In order to create G, pairs of reads in R need to be aligned to detect overlaps. However R

can be very long, making N 2 alignments infeasible to perform. For that reason we first create a

table of occurrences of k-mers (k long strings) in the reads, and count the number of k-mer

matches for each pair of reads. Subsequently, we perform pairwise alignments between pairs of

reads that contain more than a cutoff number of common k-mers.

2.1.] Table of k-mer Occurrences

The goal of this algorithm is to find the number of k-mer matches in the forward or reverse

complement direction, between each pair of reads in R. One way to do that is to (1) obtain all

triplets (r, t, v) where r is a read in R, t is the index of a k-mer occurring in r, and v is the direction

of occurrence (forward or reverse complement); (2) sort the set of pairs according to k-mer

indices t; (3) using the sorted list create a table T of quadruplets (ri, rj, f, v) where ri and rj are

reads that contain at least one common k-mer, v is a direction, and f is the number of k-mers in

common between ri and rj in direction v.

Reads 3-mers

= ACTAG - {(ACT,0), (CTA,O), (TAG,0),
(CTA,1), (TAG, 1), (AGT, 1)}

r2 AGCTA + {(AGC,0), (GCT,O), (CTA,0),
(TAG,1), (AGC,1), (GCT,1)}

Sorted Table

102

Sorted 3-mers Sorted Directions Read ID Read ID
ACT 0 1
AGC 0 2
AGC 1 2
AGT 1 1
CTA 0 1 2
CTA 1 1
GCT 0 2
GCT 1 2
TAG 0 1
TAG 1 1 2

Table 1. Example of a sorted hash table of k-mer occurrences in reads.

If a k-mer occurs "too often" it is likely to be part of a repeat sequence and we should not

use it for detecting overlap. ("Too often" depends on the depth d. The number of times that a k-

mer occurs should be roughly Poisson distributed with mean d. We can use this observation to

set a threshold to "exclude" those n-mers that occur "too often.)

This is implemented as follows:

1. The k-mer occurrences (r, t, v) are found and sorted initially into 64 files according to the

first three nucleotides of each k-mer (the first six bits of t).

2. Each of the 64 files is short enough to be loaded in memory as a table of k-mer

occurrences (r, t, v). 1 A radix sort is performed according to t, and the sorted occurrences are

saved in a file. The original file of unsorted occurrences is erased.

3.

created.

The 64 sorted files are loaded in memory sequentially, and the table T is incrementally

2.1.2 Pairwise Read Alignments

1 More than 64 files could be used if less memory is available.

103

Pairwise alignments are performed between reads that contain more than a cutoff number of

common k-mers. If k-mers that are more common than a certain cutoff are excluded from being

used in the table T, as explained above, then it is guaranteed that only an O(N) number of

pairwise alignments will be performed.

Only a small number of base substitutions and insertions/deletions is allowed in an

overlapping region of two aligned reads, reflecting the low expected error rates of sequencing for

reads. This allows for an efficient alignment algorithm, where a shift is initially guessed between

a pair of reads, and subsequently a dynamic programming alignment is performed, that disallows

deviations of more than a few characters, from the guessed shift. The output of the alignment

algorithm is a quadruplet of positions (bi, el, b2, e2) of beginning b1 , b2, and end el, e2 , positions

of the detected overlap region, for reads ri, rj. If a significant overlap region is detected, (ri, rj, v,

b1 , el, b2, e2) becomes a link in the overlap graph G.

2.2 Processing of Overlap Graph and Creation of Supercontigs

The remaining algorithm strive to map the reads as accurately as possible, so that eventually the

genome sequence can be retrieved, or at least the mapped reads can be passed to a local assembly

program that can routinely retrieve the sequence (for instance PHRAP, http//www.PHRA P.om).

The information available at this stage is the graph G, and the forward/reverse linking of pairs of

reads that come from two ends of the same insert clone.

104

....................... Solution 1

- -- - - -- - - - Solution 2

Region A

Region B

Region R

Region D

Region C

Figure 3.1. Ambiguity created by the presence of repeats. What is the correct assembly of reads? One

possibility (solution 1) is that regions C and D flank one copy of repetitive region R, while regions A, B

flank another copy. Another possibility (solution 2) is that regions C and B flank one copy, and regions A

and D flank the other copy of R.

In the absence of sequencing errors and repeats it would be a simple task to retrieve all

retrievable pairwise distances of reads: it is easy to see that G would then be an interval graph.' In

the presence of repeats, a link between two reads in G does not necessarily imply true overlap. A

"repeat link" thus is a link in G between two reads that come from different regions in the

genome, and overlap in a repeated segment. The ambiguity created by repeats can be seen in the

depiction of paths of overlapping reads in Figure 3.1. Region R is repetitive, flanked by regions A

and B on the "left", and C, D on the "right. It is not possible a priori to know whether the path of

An undirected graph G =(V = {1, ... , n),E) is an interval graph if there is intervals (a,, bi),..., (an, bn) onthe real line
such that (ij) e E if and only if (ai, bi) intersects (aj, bj). It can be checked in linear time whether a graph is an
interval graph (Fishburn, 1985).

105

reads corresponding to region A, and "entering" into region R, needs to "exit" towards region B

or region C.

Ambiguity

-Unambiguous paths

Ambiguity

Figure 3.2. A repeat with three copies translates into one contig, with borders to three other contigs on the

left, and three on the right.

Some of the repetition in the genome is effectively masked before the creation of G, by

throwing away k-mers of high frequency when building the table T. In the algorithms that follow

some additional repetitive links are detected and deleted using heuristic rules.

106

Reads of a Sequence Contig

A Sequence Contig

Figure 3.3. A sequence contig is a structure holding an oriented set of reads, each holding a specific

position on the sequence contig. It is represented as an interval RED/BLACK tree.

Sequence contigs are formed by merging together pairs of reads that can be merged

without ambiguity. This is illustrated in Figure 3.2, where we show a situation created by a repeat

that is copied three times. Figure 3.3 shows how a sequence contig looks like. The contigs are

finally linked using the forward/reverse linking information between pairs of reads. We should

note that in practice the situation is much less neat than the one depicted in Figure 3.2. Repeats

are not preserved 100% between copies, and therefore they are not guaranteed to form

unambiguous contigs. Certain parts of them that are preserved much less than the cutoff for

considering two reads overlapping may form independent contigs. What is worse, in the situation

of reads covering repeats (or parts of repeats) that are on that borderline of fidelity (around 95%)

between copies, reads from two different copies may be considered overlapping or

nonoverlapping depending on the sequencing errors.

2.2.1 Definition of Read "Shifts"

107

G consists of links of the form (ri, rj, v, bi, ei, b2, e2) where ri, rj are reads, v e {O, 1 } denoting

forward and reverse complement respectively, and (bi, el), (b2, e2) are the intervals of alignment

of ri, and rj, respectively. Abusing notation sometimes we will omit bl, ei, b2, e2 and/or v when

referring to a link. These links are directed in the sense that (ri, r2) C G does not imply (r2 , ri) e

G.

Rule I

ri r+->

q2(r , rj, v)

Rule 2

rr

rjr

Rule 3

\rk

ri

Figure 3.4. Rules for removing repetitive links.

Notice that in the absence of repeats and sequencing errors, |bi-eil = 1b2-e2 |. Moreover, in

that case we can distinguish cases of the possible relationship between ri, and rj:

1. rj is a subsequence of ri, and b2 = 1, e2 = Ij.

2. rj extends ri to the "right", whereupon ei = li and b2 1.

3. rj extends ri to the "left", whereupon bi = 0 and e2 = lj.

108

4. ri is a subsequence of rj, and b, = 1, el = lj.

In case I ri is called a superread of rj and rj a subread of ri. Similarly for case 4.

In the presence of sequencing errors, the above conditions are no longer guaranteed to hold

for a pair of reads that truly overlap in the genome. In case 1 above for instance, a few base

substitutions and/or insertions/deletions in ri or rj near the beginning of rj can cause b2 to be > 0.

In any overlapping pair of reads, where one of the above three conditions (and the corresponding

ones for v = 1) does not hold, we say that we detect a nonaligning end. The amounts of deviation

from the values specified in conditions 1, 2, or 3 for the values bi, el, b2, e2 are called the

nonalign values qi(ri, ri, v), q2(ri, rj, v). In condition 1, ql(ri, r1, v)= 0, q2(ri, r, v) = b2 + e2 - 1. In

condition 2, qi(ri, rj, v)= li - ei, q2(ri, rj, v)= b2 - 1. In condition 2, qi(ri, rj, v)= bI, q2(ri, rj, v) = 12 -

e2. We define Q(ri, rj, v) = max(q, q2). The values q, Q will be important heuristically for the

algorithm to decide whether a particular link should be "trusted" as a true link, or taken as a false

link resulting from a repetitive segment in the genome. A heuristic constant Crp will usually

determine whether a link should be considered true (if Q < Crep) or false (Q Crep). This applies

to definitions of subreads and superreads.

Shifts. In case 2 above, we define the shift to the right s(rj rj)= (12 - b2)-(li - bi), of ri by rj.

In case 3 above, we define the shift to the left s:(ri rj) = b2 - b1 , of ri by rj.

2.2.2 Discarding Repetitive Links

At this stage certain links of the graph are discarded by the application of heuristic rules. The idea

is to remove from G some repetitive links, while at the same time preserving enough of them so

as not to "hide" the boundaries between unique sequence and long repetitive regions. Thus

mostly short repeats are targeted.

The following rules are used for discarding links from G:

1. Rule 1. If min(q(ri, rj, v), q2(ri, rj, v)) Crep, remove link (ri, rj, v).

2. Rule 2. If link (ri, rj, v--0) is marked, remove any link (ri, rk, v=0) where Q(rj, rk, v-0) <

Crep.

109

3. Rule 3. If link (rj, ri, v=O) is marked, remove any link (ri, rj, v=O) where Q(rj, rk, v=O) <

Crep and Q(ri, rj, v=0) Crep

Rules 2 and 3 above are applied recursively until no more applications are possible.

2.2.3 Sparse Representation of Overlaps and Creation of Contigs

The first main step of the assembly algorithm is the detection of subgraphs of G that have the

interval graph property. Such subgraphs are then assembled into sequence contigs. As an initial

step, all links (ri, rj, v) of G such that Q(ri, rj, v) Crep will be marked and not considered when

constructing the interval subgraphs. Also, any link (ri, rj, v) that involves an overlap between the

reads ri, rj, of less than a heuristic constant Cov will be marked.' This ensures that all links used

will have a statistically significant associated overlap. Finally, any link involving a subread is

marked.

Next a sparse representation of the subgraph of unmarked links of G, is created.

Specifically, a graph H is created as follows: given an unmarked link (ri, rj, v = 0) of G, (ri, rj, v =

0) e H if there is no rksuch that (ri, r, V = 0) e G and (r, rj, V = 0) e G, or (ri, rk, V = 1) e G and

(rk, rj, v = 1) e G. Similarly for the case (ri, rj, v = 1). That is, an unmarked link (ri, rj) of G is in H

whenever there is no read rk lying "in-between" ri, rj with respect to the unmarked subgraph of G.

It is easy to see that in the absence of repeats and sequencing errors, and given enough

coverage of the genome by reads, H would simply be a path from the leftmost to the rightmost

read in the genome. In particular nodes that have more than two neighbors in H are caused either

by repetition, or by sequencing errors.

We define the merge operation on pairs of reads. Reads ri and rj can be merged if one of

the following conditions holds:

1. (ri, rj, v = 0) e H, rj is the only read extending ri to the right, and ri is the only read

extending rj to the left, with respect to H (or vice versa). We say that ri can be

More precisely, the overlap associated with link (ri, rj, v, bi, ei, b2, e2) is defined to be max(e,-bi+1, e2-b2+1).

110

merged to the right with rj and rj can be merged to the left with ri. (or vice versa),

and with merge bit = 0 (forward).

2. (ri, rj, v = I) e H, rj is the only read extending ri to the right, and ri is the only read

extending rj to the right, with respect to H (or both extend each other to the left).

We say that ri and r1 can be merged to the left (to the right) with each other, and

with merge bit = 1 (reverse complement).

Finally sequence contigs are created by merging pairs of reads, by the algorithm below,

ensuring that the resulting merged structures are interval graphs in the unmarked subgraph of G.

The data structure used to implement sequence contigs is an interval RED-BLACK tree

(Cormen/Leiserson/Rivest, 1990).

Create a list of reads L.

Do until all reads in L either can be merged to the left and right, or not at all.

Starting from a read r that can be merged in exactly one direction (left without loss of generality).

Create new sequence contig S with one element, r.

Set current direction to left.

Do until r cannot be merged towards the current direction.

Find the neighbor r' of r in H, towards the current direction.

Insert r in S, and erase it from the list of reads.

If r, r' can be merged with merge bit = 1, flip current direction (left/right).

Letr=r'.

It is tedious but simple to prove that (1) the above algorithm terminates, and (2) the set of

reads in any sequence contig defines a subgraph of the unmarked portion of G, that has the

interval graph property.

2.2.4 Assembly of Contigs into Supercontigs

111

The last stage of ARA CHNE involves building supercontigs by making use of the forward/reverse

linking information between reads that come from the same insert.

As a first step towards this goal, the graph Gc of contig/contig links is computed. A contig f

is linked to a contig g if (1) one of the extreme reads of f (leftmost or rightmost) overlaps with Q

< Crep one of the extreme reads of g, or (2) at least one read in f is linked to at least one read in g

by an earmuff link. If case (1) above holds, we say that f and g are linked with an overlap (in

addition possibly to being linked by earmuffs). Each link in Gc then has the following associated

fields:

1. A bit ovl(fg) 0/1 indicating the existence of an overlap link.

2. A weight w(fg) > 0 indicating the number of earmuff links.

3. A distance d(fg) between the endpoints of f and g that overlap, taken as the average of

estimated distances coming from the earmuff links, and the overlap link if there is one.

The distance can be negative, indicating overlap (ovl(fg) does not necessarily imply

d(f,g) <0).

4. An orientation v(fg) e (0, 1, void) indicating whether the earmuff and overlap links

unambiguously determine a relative orientation forward (0), reverse complement (0),

or if different links disagree (void) about the relative orientation between f and g.

5. A conflict count confl(f, v), which will be defined below.

We define the conflict count between a pair of linked sequence contigs f, g. Recall from above

that d(fg) indicates the estimated distance between f and g, i.e. the estimated gap (if d>0) or

overlap (if d<0) between f and g. Say now f is also linked (towards the same direction) with

another sequence contig h, with distance d(fh). Denote by Ifl the estimated length of f, and

likewise |g| for g, h. Say for the purpose of exposition, that d(fg) < d(fh) and d(fg) + Ig| > d(fh).

If these estimates were accurate, then g, h overlap by an amount equal to 1 = d(fg) + IgI - d(fh).

Unless 1 is less than the length of the extreme reads of g, h, and g is linked to h by an overlap link,

112

this overlap between g and h is inconsistent. We count in such cases a conflict for the edge (fg),

and one for the edge (fh).

Unfortunately the estimates of lengths of sequence contigs, and more notably of distances

between contigs, are not necessarily accurate. For that reason a tolerance is necessary when

determining the conflict count of intercontig links. We define a heuristic tolerance function T(d,

d', w, w') > 0, in our example above t(d(f,g), d(fh), w(fg), w(fh)). In general longer distances

and smaller weights of links increase the tolerance r. For brevity, we will also denote (d(f,g),

d(f,h), w(fg), w(fh)) by rfgh-

Formally we define a conflict for a link (fg) to be a link (fh) such that d(fg) + IgI > d(fh)

+ Tfg, and d(fh) + hi > d(fg) + Tag, or a link (g,h) such that If] + d(fh) > d(g,h) + -Chfg and gI +

d(g,h) > d(fh) + Thgf. The conflict count confl(fg) is the sum of all the conflicts for link (fg).

We define a supercontig to be a linked list of contigs, where links have an associated

estimated distance, which can be negative if the two linked contigs overlap.

The algorithm for creating the supercontigs simply involves defining a priority for links

between sequence contigs, and then executing merge operations between sequence contigs, or the

supercontigs they belong to, according to the defined link priority. A formal definition of the

merge operation would be somewhat technical and is omitted. Briefly, two supercontigs S, T

(each consisting of one, or more sequence contigs) are merged according to link (f,g) between

sequence contigs f in S and g in T, only if the result can be a linked list (supercontig) preserving

the exact distances within S and T, and the distance d(fg) of link (f,g) within some tolerance.

Figure 3.5 shows two possible merges, and one impossible merge.

113

Figure 3.5. Demonstration of three supercontig merges. Sequence contigs 2 and 3 are linked, inducing

Merge 1. This merge is possible because contig 3 can be placed to the "right" of contig 2, without

overlapping any existing contig to the right of contig 2. Merge 2 is induced by a link between contig 2 and

5. Notice that contigs 2 and 5 are not the rightmost/leftmost contigs of their respective supercontigs. Still,

the distance between 2 and 5 is large enough for contig 3 to fit between them, and likewise contig 4 can be

placed between contigs 1 and 2 preserving all distances. Merge 3 is induced by a link between contigs 3

and 7. This time the distance associated with the link is not consistent with the presence of contig 6 to the

left of contig 3. Merge 3 is not performed.

3. Results

We tested a prototype version of ARACHNE on simulated shotgun data that we generated from

(1) the complete Haemophilus influenzae genome (Fleischmann et al. 1995); (2) the complete

Archaeoglobus fulgidus genome (Klenk et al. 1997); (3) chromosome I of the Caenorhabditis

elegans genome (The C. elegans Sequencing Consortium, 1998); (4) chromosome 22 of the

114

1 2 3

Merge I

1 2 5 6
.. _ _ -.- - ------ ---I.......... -- - -

3 4

Merge 2

1 4 2 5 3 7 8

Merge 3

1 4 2 5 3

7 8

Human genome (Hunt et al. 1999). In this section we report a study on the repeat structure of

these genomes as it relates to our hashing scheme for finding read-pair overlaps, and then we

report results on the quality of assembly produced by our preliminary implementation.

3.1 Repetition of k-mers in the Test Sequences

Repeats render fragment assembly harder. The most problematic repeats are long, highly

preserved segments that are repeated two or more times in the genome. Segments a bit shorter

than a typical read length are not a problem, because each particular occurrence is likely to be

included in some read, which extends to the flanking unique regions. Such a read virtually

resolves the repeat occurrence by making it obvious that the flanking unique regions are next to

each other. The rules for discarding repetitive links above target precisely such cases. For

instance Alu repeats are shorter than the length of a typical read and they should not pose a major

difficulty in the assembly of shotgun reads from human DNA, even though there are around one

million occurrences of Alu in the human genome. Repeats that exhibit low sequence similarity

among copies are also not a problem, because two reads from the same location on the repeat, but

from different repeat occurrences, will not be considered overlapping by the pairwise read

alignment procedure.

Sequence Percent of sequence covered by unique k-mers

k=16 k=18 k=20 k=24

Human chromosome 22 67.8 76.3 79.2 83.8

C. elegans chromosome I 74.5 83.9 87.5 89.6

H. influenzae 94.6 96.0 96.3 96.5

A. fulgidus 96.8 97.9 98.1 98.3

Table 2. Percentage of genomic sequence covered by unique k-mers. This is a measure of the rate of

repetition in the sequence. Human sequence is the most repetitive; C. elegans sequence is not much less

repetitive. H. influenzae and A. fulgidus are dramatically less repetitive.

We compiled statistics on the composition of the four test sequences. We are specifically

looking at k-mers in the sequences, and computing: (1) the distribution of k-mer frequencies in

the sequence, and (2) the distribution of k-repeat-segment lengths, where a k-repeat-segment is a

115

maximal contiguous stretch of repeated k-mers. For example k-repeat-segments of length 0

correspond to unique k-mers, while k-repeat segments of length 1 correspond to I consecutive

repeated k-mers flanked by two unique k-mers.

A k-mer is unique if it appears exactly one in the sequence in both forward and reverse

complement direction. It is interesting to compare the number of unique k-mers for the different

test sequences. Table 2 makes this comparison, for k = 16, 18, 20, and 24. It is clear from this

table that Human chromosome 22 exhibits the highest rate of repetition of k-mers, C. elegans has

slightly lower repetition, while H. influenzae and A. fulgidus have dramatically lower rates of

repetition.

Figures 6, 7, 8, and 9 show the distribution of k-mer frequencies in the four test sequences. The x-

axis corresponds to frequency, and the y-axis corresponds to logio(F(x)+I) where F(x) is the

number of distinct 24-mers that occur exactly x times each in the sequence, in the forward or

reverse complement direction.

116

Figure 3.6. Number of distinct 24-mers that occur in the H. influenzae genome at specific frequencies.

A.fulgidus repeat freqs

I.
c,.J

C

5
4.5

4

3.5

3

2.5

2

1.5

1

0.5

0o

frequency of 24-mer

Figure 3.7. Number of distinct 24-mers that occur in the A. fulgidus genome at specific frequencies.

117

H.influenzae repeat freqs

5

4.5

4

3.5

3

2.5

2

1.5
1

0.5

0
I,- C) 0) Unfrq- c y 0) 4 - - C)

frequency of 24-mer

C.elegans chr. 1, repeat freqs

111
V- (N M 3

U, 0 U0~

frequency of 24-mer

Figure 3.8. Number of distinct 24-mers that occur in C. elegans chromosome I at specific frequencies.

Figure 3.9. Number of distinct 24-mers that occur in human chromosome 22 at specific frequencies.

118

6

5

4

3

2

I
(N

C
0
*0

1

I-OI

Human chr. 22, 24-mer freqs
6

5

4

0 t53

1

0 i

frequency of 24-mner

Figure 3.10. Lengths of repeat 24-mer regions in the H. influenzae genome.

A. fulgidus repeat lengths

1.8
1.6
1.4

1.2
1

t 0.8
0.6
0.4
0.2

0
V- N M C o 0 r-C r-Go co OM V- - c

N ~ ~ ~ ~ C CO t~ L L

length of repeated 24-mer region

Figure 3.11. Lengths of repeat 24-mer regions in the A. fulgidus genome.

119

I

C. elegans chr. 1, repeat lengths

]Ii I
r-, IN - 0 0 "0) CD M-
f-Co 0- 0O mot- C)

length of repeated 24-mer region

Figure 3.12. Lengths of repeat 24-mer regions in chromosome 1 of C. elegans

Human chr. 22, repeat lengths

4.5.

4.

3.5.

3
2.5

2

1.5

1
0.5

0
y-IDO)) 60)

' -N N CO) MV

I4 I
IV IV O Co - I-

length of repeat 24-mer regions

Figure 3.13. Lengths of repeat 24-mer regions in chromosome 22 of the Human genome.

120

3.5-

3-

+ 2.5-

S2

t5 1.5

0.5-

0

I

CD W4 (N O C LO
M~ It, wD C O

C

10
~0

I

- - -

I i

Figures 10, 11, 12, and 13 show the distribution of lengths of uninterrupted stretches of

repeated 24-mers. The x-axis corresponds to number of consecutive repeated 24-mers. The y-axis

corresponds to logio(G(x)+1) where G(x) is the number of distinct regions that consist of x

consecutive repeated 24-mers flanked by two unique 24-mers.

The distributions of repeat frequencies of H. influenzae and A. fulgidus look very similar.

In both genomes, most repetitive 24-mers are repeated very few times, generally less than 10

times. A few 24-mers are repeated up to 100 times. In H. influenzae one can observe a peak of

24-mer occurrences at 6. The reason is a repeat of length around 6,000 that occurs 6 times. This

can be observed by looking at the repeat lengths distribution.

The distributions for the human and C. elegans chromosomes are very different from the

ones above. One interesting observation is that although the human chromosome is more

repetitive (it has a smaller percentage of unique k-mers as we saw above), the C. elegans genome

seems to have better preserved repeats. There are several regions of length above 5000 that

consist of only repeated 24-mers in the C. elegans chromosome I. The picture in the human

chromosome 22 is considerably different, with much fewer long regions of repeated 24-mers.

This observation may be significant for shotgun assembly. If two repeat occurrences are

dissimilar enough, the pairwise alignment algorithm will not connect two reads that come from

different occurrences. Therefore if repeats are better preserved in C. elegans than in human, then

shotgun assembly on the human genome may actually be easier than in C. elegans.

3.2 Generation of Shotgun Data

There were very few unknown nucleotides, and a few gaps in the test sequences. We removed all

those by gluing the flanking regions together. We believe this step affects minimally the

sequences for the purpose of testing the ARACHNE prototype implementation. In real data there

should not be any unknown nucleotides. Instead, real data have confidence scores (PHRED

scores) for each nucleotide.

In all test cases we used the shotgun assembly conditions below:

121

1. All reads come in earmuff links.

2. A third of the earmuff links are 10,000 long, and the rest are 3,000 long.

3. Earmuff link distances have an average error of 5%, under Poisson distribution.

4. Reads come from either orientation, forward or reverse complement, with equal

probability. Two linked reads come always from the same orientation.

5. Sequencing errors are distributed according to Poisson processes in each read. The

average error rate is 0.5% for mutations, 0.05% for insertions, and 0.05% for deletions.

The above error rates are in the lowest range of the realistic spectrum. Tuning of the algorithms

and parameters depends on the error rates. For example, if there are no errors in sequencing, then

two overlapping reads should be required to agree perfectly on the area of overlap. As sequencing

error rates increase, the pairwise alignments procedure needs to be tuned accordingly. As

ARACHNE is in a prototype phase, and because of limited disk space/CPU time we did not

perform additional tests with different error rates, and/or different parameters.

3.3 Fragment Assembly Results

We report performance in terms of how much of the genomic sequence is covered with long

supercontigs, and how "correctly" those supercontigs are assembled.

Thus we look at all supercontigs above a cutoff estimated length. Estimated length of the

supercontig is the length in nucleotides that the algorithm estimates for the supercontig. This

measure includes the sum of lengths of all contigs plus the sum of estimated lengths of gaps in

between the contigs of the supercontig.

We define the true position of a contig by taking a majority vote among all reads of the

contig. Each read has one "vote" for the leftmost and rightmost positions of the contig on the

genome, depending on the true location of the read on the genome (which we know). If a

majority of the reads agrees within a few nucleotides to a certain position, then these reads are

122

considered good, and the rest are considered misplaced. If there is no majority agreement, the

whole contig is considered misassembled, and the reads of it misplaced.

Forward/Reverse Links connect contigs

A B C

Gaps

Residual Gaps

Figure 3.14. A supercontig consisting of three contigs. Gaps and residual gaps between the contigs are

illustrated.

We similarly define the true position of a supercontig by a majority vote among the

contigs. We consider a contig good if it agrees with the majority vote within a slack factor of 1%

of the supercontig length, otherwise we consider the contig misplaced.

We measure the following quantities:

1. Genome covered. This quantity measures how many positions as a fraction of total

genome positions, are covered by all supercontigs above the cutoff length. A position is

123

covered if it lies within the range of a good contig, or within the gap range between two

neighboring good contigs in the same supercontig.

2. Percentage ofcontigs that are misplaced. Percentage of contigs that are misplaced within

the supercontigs above the cutoff length.

3. Percentage of all reads that are misplaced. Percentage of reads that are misplaced within

any contig belonging to a supercontig above the cutoff length.

4. Percentage of reads misplaced inside good contigs. Percentage of reads that are

misplaced within only the good contigs belonging to a supercontig above the cutoff

length.

5. Percentage of gap length. Percentage of the length of supercontigs that is in gaps

between neighboring contigs (Refer to Figure 3.14).

6. Percentage of residual gap length. Percentage of the length of supercontigs that is in

gaps between neighboring contigs, and is not covered by reads linked with an earmuff to

any good read assigned to a contig inside the supercontig (Refer to Figure 3.14).

7. Percentage of unassigned reads. Percentage of reads completely included within the true

boundaries of contigs (excluding misassembled contigs) inside the long supercontigs, not

actually placed within those contigs.

We report statistics for supercontigs longer than 1Mb, 250kb, 100kb, 25kb, 10kb, 5kb, 2kb,

and 1kb.

Figure 3.15 shows the percentage of genome covered by contigs above the cutoff lengths,

on the following test runs: (1) human chromosome 22, 9x coverage (HUM 9x); (2) C. elegans

chromosome 1, 9x coverage (CEL 9x); (3) H. influenzae, 9x coverage (HIN 7x); (4) A. fulgidus,

7x coverage (AFL 7x).' We observe that the A. fulgidus genome is virtually perfectly covered

We provide data on tests with lower coverage on the small genomes, because in general these genomes are considered

easier to sequence, and thus it may be optimal to use lower coverage with shotgun reads for such genomes.

124

with a single supercontig (99.96%), while the H. influenzae genome is similarly covered to

99.6% with one supercontig > 1Mb and another > 200K long. The C. elegans genome is covered

to a good extent (97.5%) with supercontigs > 25K long, while the human genome is covered 95%

with supercontigs > 10K.

Figure 3.15. Coverage of genomes by long supercontigs.

For each of the above tests we plotted statistics 2-7 in order to measure the quality of the

assembled supercontigs. Figure 3.16 shows the results for the human chromosome 22, 9x

coverage.

CERR is the percentage of contigs that are misplaced; RERR is the percentage of all reads

that are misplaced; RERR2 is the percentage of reads that are misplaced inside good contigs;

GAP is the percentage of gap length; RGAP is the percentage of residual gap length; ROUT is

the percentage of unassigned reads.

125

100-- X

90 -IIIZ~

80

70

60 -+-HUM 9x
-- CEL 9x

50 , - HIN 7x
40 -X- AFL 7x

30

20

10

0,
1000000 250000 100000 25000 10000 5000 2000

- --- ------ ----------------------------------

3.5

Figure 3.16. Quality of shotgun assembly on the human chromosome 22, 9x coverage with shotgun reads.

Considering GAP and RGAP, we see that gaps inside supercontigs are fairly short, and

almost all of them are covered with reads that are linked with earmuffs to the proximal contigs.

This fact should make the assembly of sequence that lies in gaps between contigs a fairly easy

task in a subsequent version of ARACHNE.

Considering ROUT, this quantity can be thought of as reads that are "wasted" because they

are not assigned to the place in the assembly where they belong. Since it is below 2% of the total

reads, we believe it is a fairly small wastage.

Finally the most difficult statistics to evaluate are CERR, RERR, and RERR2, relating to

misassembled data. For the long supercontigs, these rates are extremely low, while for smaller

supercontigs the rates get fairly high. In general these rates reflect regions of low copy repetition,

where reads from two virtually identical places in the genome are connected into a single contig.

Therefore the sequence that the assembled reads represent should for the most part be correct.

Moreover there is the possibility of correcting some of these errors by use of earmuff link

information to verify assembly inside contigs, and with PHRED scores that will increase the

specificity of detected overlaps between reads.

126

3

2.5 - CERR
--- RERR

2 -hr- RERR2

1.-- - GAP
1.5 -1 - RGAP

1 -e- ROUT

0.5-

0 0
1000000 250000 100000 25000 10000 5000 2000

Figure 3.17. Quality of shotgun assembly on C. elegans chromosome I, 9x coverage with shotgun reads.

Figure 3.17 shows the same data for C. elegans chromosome I, 9x coverage. The results are

for the most part fairly similar to those for the human chromosome, with one notable exception:

the rate of CERR for very long supercontigs is considerably high. This comes from a long

supercontig in the assembly, where a highly repetitive region is assembled with most contigs

having reads from two places in the genome. It reflects the fact that C. elegans has extremely

long, very well conserved low-copy repeats. Incidentally an lIx coverage test on the same

chromosome does not have this problem: the CERR rate increases from 0.4% for supercontigs >

1,000,000 upto 2.3% for all supercontigs. No other test run we did has any close to the CERR rate

observed in the C. elegans chromosome I, 9x coverage test run.

127

- CERR

-+- RERR

-A- RERR2

-*- GAP

-*- RGAP

--- ROUT

1000000 250000 100000 25000 10000 5000 2000

Figure 3.18. Quality of shotgun assembly on the H. influenzae genome, 7x coverage with shotgun reads.

Figure 3.18 shows the same data for the H. influenzae genome, 7x coverage. Note that

virtually all of the genome is covered with supercontigs > 100K long. For these supercontigs, the

error rates CERR, RERR, and RERR2 are fairly low. Also, RGAP is extremely low and ROUT is

fairly low. We believe that the produced assembly for this genome is of very high quality.

Finally, Figure 3.19 shows the data for A. fulgidus, 7x coverage. In this case all the

relevant statistics are extremely good, and we believe that this particular genome is assembled

fairly easily by our system. Moreover we observe that 7x coverage may be sufficient to assemble

genomes that are expected to look similar to H. influenzae and A. fulgidus in terms of size and

repetition.

Overall we believe that using techniques similar to PHRAP one should be able to provide

good consensus sequence of the assembled supercontigs, with fairly low shotgun sequencing

wastage. Once these supercontigs are assembled, longer earmuff links (for example coming from

BAC clones) should enable mapping the supercontigs with respect to each other resulting in the

complete source sequence.

128

2.5 x

2
-+-CERR

1.5 + RERR
-RERR2

-*-GAP
1-*- RGAP

-+-ROUT
0.5

1000000 100000 5000

Figure 3.19. Quality of shotgun assembly on the A. flulgidus genome, 7x coverage with shotgun reads.

In Appendix B we provide the tables of statistics, and figures, for all the test runs we

performed on the four test sequences.

4 Conclusions and Future Work

We designed, implemented, and tested ARA CHNE, a system for assembling shotgun sequencing

data. To our knowledge the description above is the first published description of such a system,

working on real data. We demonstrated good performance of our prototype version of ARACHNE

on real data coming from the human and C. elegans genomes, indicating that shotgun sequencing

assembly is feasible on the challenging human genome. Our results are encouraging that a full

finished implementation of ARACHNE will succeed in providing good quality assemblies of

mammalian genomes.

There is a substantial amount of additional algorithmic and software development needed

before we can provide a finished system ready for application on real data. Below we outline

some of the steps that need to be taken to reach that goal:

129

1.4-

1.2p

1 -- CERR
- RERR

0.8 -A- RERR2

X)- GAP
0.6 - GAP

-*K- RGAP

0.4 -4- ROUT

0.2

0
1000000 5000

- ---- --- -------

1. Our system as is does not accept real data because of the integration of ARACHNE with

the procedures generating the simulation data, and the lack of sufficient input/output

modules.

2. The implementation was done on a single Alpha processor machine with 2Gb memory

and 50Gb storage. Currently this implementation can comfortably handle genomes of

size up to 50Mbases with lOx shotgun coverage. The system needs to be

redesigned/optimized for a much larger architecture, in order to be applied to a full

shotgun sequencing assembly of a mammalian genome.

3. Several parts of the program may not be optimally written, since the development and

design were performed concurrently. Thus the system needs to be looked at carefully, re-

implementing and optimizing certain parts.

4. PHRED scores should be taken into account in the final version, in order to take

advantage of the additional information and possibly distinguish much better between

true read/read overlaps, and overlaps induced by repeats.

5. Closing gaps between contigs inside a supercontig, by using shortest paths in the graph

of read overlaps, between the leftmost/rightmost reads in the contigs, and by making use

of earmuffs that connect reads in the gap with reads in the flanking contigs.

6. Backtracking. Earmuff links and PHRED scores may be helpful in detecting and

correcting the few reads and contigs that are misplaced in the current implementation.

7. Integration with PHRAP, or implementation of much of PHRAP's techniques so that the

final output is consensus sequence, rather than a layout of reads.

Development towards the above directions is currently under way.

130

Chapter 4

CROSS-SPECIES GENOMIC COMPARISON AND GENE

RECOGNITION

1. Introduction

A fundamental task in analyzing genomes is to identify the genes. This is relatively

straightforward for organisms with compact genomes (such as bacteria, yeast, flies and

worms), because exons tend to be large and the introns are either non-existent or tend to be

short. The challenge is much greater for large genomes (such as those of mammals and higher

plants), because the exonic 'signal' is scattered in a vast sea of non-genic 'noise'. Whereas

coding sequences comprise 75% of the yeast genome, they represent only about 3% of the

human genome.

Computational approaches have been developed for gene recognition in large genomes,

with most employing various statistical tools to identify likely splice sites and to detect tell-

tale differences in sequence composition between coding and non-coding DNA (Burset and

Guigo, 1996). Some programs perform "de novo" recognition, in that they directly use only

information about the input sequence itself. One of the best programs of this sort is

GENSCAN (Burge 1997), which employs a Hidden Markov Model approach to scan large

genomic sequences. Other programs employ "homology" approaches, in which exons are

identified by comparing conceptual translation of DNA sequence to databases of known

protein sequences (see, e.g., Pachter et al. 1999). An example is the Procrustes program

(Gelfand et al. 1996).

In this chapter, we explore a powerful, new approach to gene recognition by using

cross-species sequence comparison - that is, by simultaneously analyzing homologous loci

from two related species. Specifically, we focus on the ability to accurately identify coding

exons by comparison of syntenic human and mouse genomic sequence.

130

It is well known that cross-species sequence comparison can help highlight important

functional elements such as exons, because such elements tend to be more strongly conserved

by evolution than random genomic sequence. If a protein encoded by a gene is already known

in one organism, it is relatively simple to search genomic DNA from another organism to

identify genes encoding a similar protein (using such computer packages such as Wise2,

htt/_/wvwsanogerac uk/Software/Wise2/). A more challenging problem is to identify exons

directly from cross-species comparison of genomic DNA. Computer programs are available

that identify regions of sequence conservation (Jang et al. 1999), which can then be

individually analyzed in an ad hoc fashion to see whether they may contain such features as

exons or regulatory elements. Preliminary work on human gene recognition using comparison

with the tetraodondiform fugu rubripes genome has been reported (H. Roest Crollius et al.

1999). In that work, 13 homologous genes from fugu and human with > 40% sequence

similarity were selected out of a set of 17 human/fugu homologs. These genes were used in

order to implement and test a procedure based on TBLASTX

(http://www.ncbi.nLm.nih.gov/BLAST/) sequence comparisons on the amino acid level,

detecting exons in human DNA. The procedure was further tested on sequence data from

another tetraodon organism, tetraodon nigroviridis. Preliminary results suggested that human

exons may be detectable with >95% specificity (H. Roest Crollius et al. 1999). However, there

has been no systematic reported approach to employing cross-species comparison for gene

recognition.

We developed an automatic approach to exon recognition, by using cross-species

sequence comparison to identify and align relevant regions and then searching for the

presence of exonic features at corresponding positions in both species. We began by

undertaking a systematic comparison of the genomic structure of 117 orthologous gene pairs

from human and mouse, to understand the extent of conservation of the number, length and

sequence of exons and introns. We then used these results to develop algorithms for cross-

species gene recognition, consisting of GLASS, a new alignment program to provide good

global alignments of large genomic regions by using a hierarchical alignment approach, and

ROSETTA, a program to identify coding exons in both species based on coincidence of

131

genomic structure (splice sites, exon number, exon length, coding frame, and sequence

similarity).

ROSETTA performed extremely well in identifying coding exons, showing 95%

sensitivity and 97% specificity at the nucleotide level. The performance was superior to

programs that use much more sophisticated signals and statistical analysis but analyze only a

single genome (Burset and Guigo 1996, Burge 1997). To our knowledge, ROSETTA is the

first program for gene recognition based on cross-species comparison. The approach can be

readily generalized to other pairs of organisms, as well as to the study of three or more

organisms simultaneously.

With the current explosion of human and mouse genomic sequence, cross-species

comparison is likely to provide one of the most powerful approaches for extracting the

information in mammalian genomes.

2. Results

2.1 Comparison of Human and Mouse Genomic Loci

Comparison of mRNA sequences of 1196 orthologous human and mouse gene pairs were

recently reported (Makalowski et al. 1996), showing that coding regions tend to show roughly

85% identity at the nucleotide and protein levels. We sought to extend this analysis by

comparing genomic structure, where known. The mRNA sequences from the orthologous

gene pairs were searched against GenBank Release 109 (October 1998), to identify those for

which genomic sequence was available in both species. Entries were required to contain the

complete genomic sequence encompassing all coding exons, although not necessarily

including the introns between non-coding exons.

A total of 117 orthologous gene pairs were identified and studied (Appendix C, Table

C. 1). For the purpose of comparing the genomic structure of the gene pairs, we used dynamic

programming algorithms (employing both nucleotide similarity and codon similarity using the

PAM20 matrix (Dayhoff et al. 1978) to align the sequences and carefully inspected the

alignments to ensure that they correctly aligned the exons.

132

The comparison defined the striking extent of evolutionary conservation:

(i) Exon number. The number of exons was identical for 95% of the genes studied.

There were six instances in which the number of exons differed.

In two cases, a single internal coding exon in mouse is reported to correspond to two

internal coding exons in human. In the spermidine synthase gene (Appendix C, Table C.1, gene

30), mouse exon 5 corresponds to human exons 5 and 6, with the total exonic lengths agreeing

perfectly. In the lymphotoxin beta gene (Appendix C, Table C. 1, gene 85), mouse exon 2

corresponds to human exons 2 and 3. Interestingly, the mouse exon 2 is 316 bp while the sum of

the lengths of human exon 2, intron 2 and exon 3 is only 301 bp.

In the next three cases, the correspondence broke down for terminal exons. In the

keratin 13 gene (Appendix C, Table C. 1, gene 40) and the adenosine deaminase gene

(Appendix C, Table C. 1, gene 66), the coding sequences show substantial sequence

divergence at the 3'-end and one of the organisms has an extra exon. In the proteosome LMP2

gene (Appendix C, Table C. 1, gene 46), the extra human exon shows striking sequence

similarity to a portion of the 3'-UTR in the mouse.

The final case was also in the LMP2 gene, in which the first two coding exons in the

human correspond to one exon in the mouse. There is no apparent relationship between their

lengths (even including the intron).

It is possible that some of the apparent differences are due to error in annotation in the

databases.

(ii) Exon Length. The length of corresponding exons was strongly conserved. The

lengths were identical in 73% of cases. Those differences that did occur were quite small: the

mean ratio of the larger to smaller length was 1.05.

Moreover, the differences were nearly always a multiple of three. The length difference

was a multiple of three for 95% of all exons and 99% of all internal coding exons. This is readily

understood in terms of the effects of evolutionary selection: length differences divisible by three

alter an integral number of codons, while other length differences would require a second

compensatory change in a succeeding exon to restore the translational reading frame and would

thus be less likely.

133

Only three instances were found in which corresponding internal exons had lengths

differing by other than a multiple of three.

In the skeletal muscle specific myogenic gene (Appendix C, Table C. 1, gene 49), the

respective lengths of exons 2 and 3 are 81 bp and 123 bp in the human and 82 and 122 in the

mouse. Remarkably, two instances occur in the gene encoding the Flt3 ligand (Appendix C,

Table C. 1, gene 100). The respective lengths of exons 2 and 3 are 111 bp and 54 bp in the

human and 122 bp and 46 bp in the mouse, while the respective lengths of exons 5 and 6 are 139

bp and 179 bp in the human and 144 bp and 189 bp in the mouse.

(iii) Intron Lengths. Whereas exon lengths tended to be well preserved, intron lengths

varied considerably. The mean ratio of the larger to the small length was 1.5. As would be

expected, there was no tendency for intron lengths to differ by a multiple of three. Human

introns tended to be larger than mouse introns (68% of cases), but this could represent a

selection bias reflecting the fact that the less extensive sequencing of the mouse genome may

lead to an underrepresentation of instances in which the mouse genomic locus is larger. This

question will need to be revisited in the presence of larger amounts of genomic sequence.

(iv) Sequence Similaritv. Coding regions showed strong sequence similarity, with

roughly 85% identity as previously reported (Makalowski et al. 1996, 1998). In contrast,

introns showed only weak sequence similarity with roughly 35% sequence identity - which

is not much higher than the background rate of sequence identity in gapped alignment of

random sequence.

The degree of conservation varied considerably among genes. For example, the gene

encoding the ribosomal protein S24 (Appendix C, Table C. 1, gene 4) showed 88% identity at the

DNA level and 100% identity at the amino acid level in coding exons, but only 27% identity at

the DNA level in introns. The perfect identity at the amino acid level is consistent with the

protein being highly constrained, as might be expected for a component of the ribosome. In

contrast, some introns exhibited a striking degree of similarity. In the tumor necrosis factor-beta

gene (Appendix C, Table 1, gene 93), the first intron has 75% nucleotide identity and nearly

perfect agreement in length (86 bp in human, 83 bp in mouse). Interestingly, the flanking exons

are less well conserved, showing only 70% nucleotide identity and 60% amino acid identity.

134

2.2 Global Sequence Alignment, GLASS

To recognize genes based on the coincidence of biological signals in two organisms, it is

important to start with an accurate global alignment of the genomic sequences. Existing global

alignment techniques were not well suited for our purposes:

1. Standard dynamic programming methods (based on the Needleman and Wunch (1970)

or Smith and Waterman (1981) algorithms) were unsuitable for two reasons. First of all,

these methods are too slow because they involve computing an O(NM)-size dynamic

programming matrix of alignment between the two input sequences of lengths N and M.

For our purposes N and M can be quite large. In our database the largest entries are

longer than 30kb. Moreover we would like our programs to be usable on sequences that

are much longer such as large-insert BAC and YAC clones, or larger contigs, that can

range from 150k to several megabases. Secondly, these standard methods are not

sensitive to finding short regions of good alignment, flanked by much longer regions of

poor alignment. For our purposes, we would like to be able to detect regions of good

alignment (exons) that can be as short as 30-50 bases, flanked in the human and mouse

sequences by much longer regions (introns) that are poorly conserved and have vastly

different lengths.

2. Faster local alignment methods such as BLAST (http://www.ncbil.n.ih. gov/BLA$/)

are better suited for our purposes, but still insufficient. One reason is that BLAST does

not provide a global map of the two input sequences. Instead it provides a set of local

alignments, ranked by quality. One approach then would be to try to use BLAST in order

to detect these local alignments, and then arrange the best ones into an ordered set of

local maps that can be extended to a global alignment. But another problem with BLAST

is that it uses perfect matches between k-long words of a fixed size k in order to detect

local alignments between the two sequences. The default value for k is 11, and this

value is very large for the purpose of detecting short exons that may not have an 11-long

135

matching word between the human and mouse. On the other hand using a smaller value

for k leads to detecting too many local alignments.

Accordingly, we designed a new alignment system called GLASS (GLobal Alignment

SyStem), suitable for aligning hundreds of kilobases of genomic sequence. GLASS works by

iteratively aligning matching segments (Figure 4.1). First, a rough alignment map is constructed

by finding long segments that match exactly, and whose flanking regions have high similarity.

The procedure is repeated on the intervening regions using successive smaller matching

segments. Finally, the remaining short unaligned regions are aligned using standard alignment

techniques.

More precisely, GLASS works as follows. The program takes as input two genomic

segments and returns a global alignment for the segments. The global alignment is computed

recursively. The basic steps are as follows:

1. For an initial value of k, find all matching k-mers in the pair of sequences, i.e. all k-mers

that appear in both sequences.

2. Treating each matching k-mer as a unique "character", convert both the human and mouse

sequences into sequences of such characters, corresponding to occurrences of the matching

k-mers, temporarily leaving out unmatched k-mers.

3. Align these two strings using standard dynamic programming with the following caveat.

Matching k-mers receive a score equal to the sums of the alignment scores obtained by

standard dynamic programming on the short regions flanking the occurrence of the k-mer in

the human and mouse sequence (specifically the 12 bases to the left and 12 bases to the

right). On the short flanking regions, the standard dynamic programming is run with scores

for match, mismatch, gap open, and gap extension of 1, -1, -3, and -2 respectively.

Henceforth, these will be the default parameters when we run standard dynamic

programming on nucleotides. Mismatches and gaps in the k-mer alignment receive a score

of 0.

136

4. In the above alignment, identify those pairs of matching k-mers that lie within regions of

good local alignment between the human and mouse sequences - that is, that have a score

exceeding a threshold T (typically O<T<6).

5. From this list of pairs of matching k-mers, remove those that are inconsistent with the

underlying human and mouse genomic sequences. Specifically, two k-mers are inconsistent

if they correspond to positions that overlap by i>0 bases in the one species but not in the

other species.

6. Using the remaining list of matching k-mers, fix the alignment between the nucleotides in

the underlying human and mouse sequences contained in these k-mers.

7. Recursively align the regions between aligned nucleotides, by repeating steps 1-6 using a

smaller value of k. As currently implemented, GLASS recursively employs k-mers with k

20, 15, 12, 9, 8, 7,6 and 5.

8. Once the last recursive alignment is performed, extend all pairs of aligned segments by short

(of length 12) local alignments to the left and right by SDP.

9. Finally, align the remaining (usually short) unaligned regions using SDP.

Various parameters used in the GLASS program were adjusted on the basis of a test set

consisting of 12 orthologous gene pairs (Table 4.1). An example of an alignment between two

orthologous genomic loci is shown in Figure 4.1.

Once the genomic sequences are aligned, the sequences are processed to mask repeat

elements (using the RepeatMasker program) and poorly aligned regions (defined as those

containing too many gaps or too many mismatches). The remaining, well-aligned sequence

was then used for gene recognition.

MUMmer is another system that provides global alignment of similar sequences, which

was developed independently of GLASS (Delcher et al. 1999). MUMmer however does not

provide the entire alignment map between regions of good alignment, and moreover it uses more

relaxed criteria than steps 3-5 of our algorithm above for fixing parts of the global alignment

based on long matching k-mers. However MUMmer's implementation runs faster than our

implementation of GLASS.

137

2.3 Gene Recognition, ROSETTA

To perform gene recognition, we began by specifying the 'gene model' to be recognized in a

genomic region.

A "coding exon" was defined to be the translated portion of an exon, together with a

designated strand and reading frame. Coding exons can be "initial" (consisting of the region

from the start of translation to either a splice site or the in-frame stop codon), "internal"

(consisting of the region between two splice sites), or "terminal" (consisting of the region from

either a splice site or a start of translation to the in-frame stop codon). Coding exons thus differ

from actual exons in that they exclude the nucleotides in the 5'- and 3'-UTRs.

Human Locus: HUMPCNA

E I E m

Alignment: - Parse

Mouse Locus: MMPCNAG

Figure 4.1: Regions of the human and mouse homologous genes: Coding Exons (white),
Noncoding Exons (gray), Introns (dark gray), and intergenic regions (black). Corresponding

strong (white) and weak (gray) alignment regions of GLASS are shown connected with arrows.
Dark lines connecting the alignment regions denote very weak, or no alignment. The predicted

coding regions of ROSETTA in human, and the corresponding regions in mouse, are shown
(white) between the genes and the alignment regions.

138

A "parse" of a genomic region is a sequence ((a,, b1 , ti, si, fl), ((a2, b2 , t 2, s2 , f2), ... ((an,

bn, t5 Sn, Q,)) where ej = (ai, bi, ti, si, fi)) denote consecutive exons with starting and stopping

points (ai, bi), type t, e {initial, internal, terminal}, designated strand si E (+, -} and reading

frame fi e {0,1,2}. The parse is "valid" provided that the following properties hold for each

pair of consecutive coding exons ei and ei±: (i) If ei is terminal, then ei+1 is initial, and vice

versa, and (ii) if e is not terminal, then ej and eis1 have consistent strands and reading frames

and are both open in the designated reading frame.

Currently strands are handled separately, and parses in the two strands are merged in a

post-processing step.

For details we refer to our website (http://theoryls.miLteduicrosspecies/).

Our automatic procedure involved using a dynamic programming approach to find the

optimal valid parse with respect to a given scoring procedure. Each parse ((a,, b], ti, si, fi),

((a2, b2, t 2, s2, f2), ... ((an, bn, tn, s,, fQ)) of the human genomic sequence corresponds to a parse

((a'i, b'1 , t'i, s's, f1), ((a'2, b'2 , t' 2, S'2, f 2), ... ((a'n, b'n, t'n, s'n, f n)) of the mouse genomic

sequence, by means of the cross-species sequence alignment. Each parse is assigned a score

consisting of the sum of scores for the individual coding exons. The score for each coding

exon consisted of several components, reflecting the presence of appropriate splice sites,

codon usage, amino acid alignment and length.

(i) Splice Sites. Splice site scores were calculated by using a hybrid method that

combines the GENSCAN splice site detector (Burge, 1997) and a directionality effect

(Pachter, 1999, Pachter et al. 1999). The splice site scores for the splice acceptor and splice

donor sites in both the human and mouse sequence were summed to obtain an overall score

for each putative coding exon. (For initial or terminal exons, splice site scores were only

computed at the appropriate end.)

(ii) Codon Usage. Codon usage score was computed for both the human and mouse

exons, and the two scores were added together. Each score was calculated by summing the log

odds ratio for each codon, based on published codon frequencies for the organism (Delphin,

M., et al. 1999).

(iii) Amino Acid Similarity. An amino acid similarity score was calculated by

comparing corresponding codons in the two exons and using the PAM20 matrix to score

139

matches, mismatches and gaps. This score reflected the tendency of particular amino acid

substitutions to occur between human and mouse (Dayhoff et al. 1978).

1. (HUMIL5A, MMIL5G) 7. (HUMAPEXN, MUSAPEX)

2. (HUMCAPG, MUSCATHG) 8. (HUMERPA, MUSERPA)

3. (HUMSMPD1G, MMASM1G) 9. (HUMVPNP, MUSVASNEU)

4. (HSHOX3D, MMU28071) 10. (HUMIL9A, MUSP40M)

5. (HUMTRPY1B, MUSPROT6A) 11. (HSFAUI, MUSFAUA)

6. (D67013, MMAJ2146) 12. (HUMTHYlA, MUSTHYIGC)

Table 4.1. Training set of human/mouse homologs.

(iv) Exon Length. An exon length score was calculated, consisting of two components.

The first component reflected agreement with the known length distribution of initial, internal

and terminal exons. The second component penalized exons pairs that differed in length,

particularly when the difference was not a multiple of 3.

Various parameters were optimized, based on analysis of the test set of 12 orthologous

genes (Table 4.1). The precise definitions of the scores are available on our web site

(htt/theorycsnit-du/crosspecies/).

2.4 Gene Recognition Results

ROSETTA was then applied to our collection of 117 orthologous gene pairs. The program

performed extremely well at identifying internal coding exons. Of internal coding exons, 94%

were predicted perfectly at both ends and another 4% at one of the two ends. When one end is

incorrectly predicted, the error typically involves only a few bases and typically is due to an

alternative choice of splice site that more closely matches the expected pattern.

Only six of the internal coding exons (3%) were completely missed, and the reasons for

the failures are instructive. (i) Three of these were in the galactose- 1-phosphate uridyl

transferase gene (Appendix C, Table C.1, gene 37). They resulted from the failure to

140

mouse intron 4, because 5'-splice site has a GC rather than the canonical GT. As a result, the

gene is predicted to end at a downstream stop codon and a new gene is predicted to begin at an

ATG codon upstream of exon 8. Exons 5, 6, and 7 are thus missed. (ii) Another exon is

missed in the 21-hydroxylase gene (Appendix C, Table 1, gene 95), because the 5'-splice site

is regarded as unlikely by our splice site detector: G-GTGCCTC in human, and T-GTTACCC

in mouse. (iii) The two other internal coding exons that were missed are the instances in which

two exons in one species correspond to a single exon in the other (in the Flt3 ligand

(Appendix C, Table 1, gene 100) and lymphotoxin beta (Appendix C, Table 1, gene 85) genes,

as noted above). The program's rules do not currently handle this special case.

The program was somewhat less accurate for initial and terminal coding exons. A total

of 71% of such exons were correctly predicted at both ends. An additional 19% were correctly

predicted at one end, with the incorrect end almost always being the initiation codon of an

initial exon or the stop codon of a terminal exon. The errors typically involve predicting a

splice site rather than the initiation or stop codon. In 17 cases, these splice sites are in fact

annotated splice sites of the 5' and 3' UTRs.

A total of 2 initial and 9 terminal coding exons were completely missed. The initial

coding exons were missed because they had length 3, consisting only of the ATG, which gave

too weak a signal to detect. The terminal coding exons were missed because the coding exon

was extremely short in one case (3 bp in human, 6 bp in mouse) or because the sequences

were highly divergent between human and mouse.

Overall, the exon predictions were very accurate at the nucleotide level: 95% of

nucleotides lying within coding exons were correctly predicted as such, and 97% of

nucleotides predicted to lie within coding exons in fact did so. ROSETTA thus had 95%

sensitivity and 97% specificity at the nucleotide level. ROSETTA predicted 26 coding exons

that failed to overlap with any known exon.

We also compared our results with the performance of GENSCAN (Burge 1997). On

our dataset, GENSCAN had similar nucleotide sensitivity (98%) but considerably lower

nucleotide specificity (89%). Moreover, GENSCAN predicted 68 regions not overlapping any

known coding exon, whereas ROSETTA predicted only 26 such instances.

141

3. Methods

3.1 Database Construction

A database of 1196 corresponding human/mouse mRNA pairs that had been previously

compiled (Makolowski et al. 1996) was used to compile a database of 117 orthologous and

annotated (with respect to gene structure) human and mouse genes. This was done by

matching the human and mouse mRNA entries of the database to all human and mouse DNA

entries in GenBank Release 109 (October 1998). Genes in the human or mouse that did not

have a corresponding entry in the other organism were rejected. Entries were accepted only if

they contained all the coding part of the gene, as well as the introns that lie between coding

exons. Therefore, entries were accepted even if they did not constitute a complete gene,

provided that they contained the coding part of the gene. In some cases, this caused us to

accept genes without annotations or sequence for non-coding exons. Even though structural

comparative information in non-coding regions could not be compiled for these entries, they

were very useful for evaluating the quality of the ROSETTA coding region prediction method.

Our training set consisted of twelve pairs of human and mouse homologous genes,

shown in Table 4.1. Training involved several steps. (1) Tuning parameters of GLASS in order

to perfect the construction of global alignments of homologous genomic loci. (2) Choosing a

PAM matrix for the protein alignments of pairs of potential exons. (3) Defining appropriate

likelihood penalties for exons that were not preserved as is typical (for example exons whose

length difference was not a multiple of 3).

3.2 Sequence Alignments and Comparative Analysis

When two corresponding regions in the human and mouse are not very similar, GLASS does

not necessarily produce the exact map between the regions. For that reason, the corresponding

introns, coding, and non-coding exon fragments in human and mouse sequences were further

realigned using the standard dynamic programming alignment algorithm in order to compute

more accurate local alignments for the purpose of compiling nucleotide similarity statistics.

142

Furthermore, the corresponding coding fragments were translated into protein and aligned

using a PAM20 matrix obtained from the NCBI website (http://www.ncbi.nl.nih.gov/) for

the purpose of compiling protein similarity statistics.

Nucleotide similarity statistics in Appendix C, Table I for corresponding regions were

computed using our similarity count SC(*,*) function. SC is a non-symmetric function that

given two sequences si, S2 (in our case in human and mouse, respectively) and an alignment

between sI and s2, returns the number of valid matching positions of sI into s2. The number of

valid matching positions is the number of positions j in si that are mapped with a match to s2

and such that either (1) j is the first or last position in s1, or (2) j - 1 and j + 1 are not mapped

to gaps in S2. Thus, spurious matches in predominantly gapped regions do not add to the

similarity count. This way the similarity count is not higher in the cases where the region s2, in

our case the mouse region, is much longer than s, and therefore si can be aligned with many

gaps and a large number of spurious matches. The similarity counts were divided by the

lengths of the human regions.

Amino acid similarity statistics for corresponding coding regions were computed by

counting the number of matching positions in the amino acid alignment of the regions, and

dividing it by the length of the human exon.

Total sequence nucleotide similarity statistics were computed using the global alignment

of the sequences derived by GLASS. A window of good alignment was defined to be a window

of size 51 containing at least 20 matches. Any matches not contained inside a window of good

alignment were discarded, and the number of remaining matches was divided by the length of

the human locus.

3.3 Computational Prediction of Coding Regions

(i) Masked Regions. Before finding the optimal valid parse, the human and mouse

sequences were preprocessed to mask repeats using the Repeatmasker program (available in

http ://ftp..genome.washington.edu/RM/RepeatN/lasker.html) and regions of weak alignment. A

position was defined to be in a region of weak alignment if it was either (1) situated in a gap

143

of length at least 30, or (2) in the middle of a window of size 37 that contained fewer than 10

matches. Nucleotides in masked regions were disqualified from being predicted as coding.

(ii) Splice Site Scores. Splice site scores were computed using the directional rule

modification to the GENSCAN splice site detector, as explained in (Pachter, 1999, Pachter et

al. 1999). Donor splice site scores were multiplied by 0.5 and acceptor splice site scores were

multiplied by 3.5. These values were obtained by requiring that the mean scores for donor and

acceptor splice sites be equal in our training set (Pachter et al. 1999). Potential exons with a

combined score of less than -10 for flanking splice sites were discarded in the dynamic

programming algorithm (that is, they were given a score of -oo).

(iii) Coding Exon Length. Corresponding potential coding exons with different lengths

in the human and mouse sequence, were penalized as follows: initial and terminal exons with

different length were given a penalty of -3 if lengths were equal mod 3, and -9 otherwise. For

internal coding exons, the corresponding penalties were -9 and -27. These values were chosen

heuristically, and were found to combine well with the other components of the scoring, most

importantly the PAM20 matrix and the splice site scores. For instance, a PAM20 gap penalty

is -19, while a PAM20 base substitution "penalty" ranges from +1 to -17, with typical values

in the -8 range.

(iv) Merging Forward and Reverse Complement Strand Parses. Currently ROSETTA

handles forward and reverse complement strands separately. Parses in the two strands are

subsequently merged in a post-processing step. For each predicted exon e, a window

extending 2000 positions in each direction from the endpoints of e, is used to count the

forward and reverse complement coverage of the genomic region. That is, the number of

predicted coding positions in each direction, included in the window, is calculated. If the

direction of e is the direction with the highest count, e is accepted. Otherwise e is rejected.

Future versions of ROSETTA may include a sophisticated genomic region model, where

parses in both strands are simultaneously optimized.

For further details on the parameter selection for ROSETTA and GLASS we refer to our

website (http://theory.lcs.mit.edu/crosspecies/).

144

3. Discussion

Analysis of large genomes is challenging because the important functional elements comprise

only a small minority of the sequence: the problem is to extract signal from noise. Feature

detectors that perform well enough in small genomes may become overwhelmed by large

genomes and yield too many false positives.

A powerful solution is to first increase the signal-to-noise ratio by using evolutionary

conservation among species. One can thereby focus attention on the portion of the sequence

that is conserved (thereby decreasing noise) and search for features that are present in both

species (thereby increasing the specificity of the signal).

Such strategies, of course, require that the elements to be found are indeed conserved by

evolution. This certainly is the case for coding exons in human and mouse. Our study of the

genomic structure of 117 orthologous gene pairs provides a quantitative description of the

high degree of conservation in the number, length and sequence of coding exons.

The basic notion of using cross-species sequence comparison to identify important

functional elements is well known, and has been used to study particular human and mouse

regions (Hardison et al. 1997; Oeltjen et al. 1997; Jang et al. 1999). Gene recognition, however,

does not emerge by simple inspection from the pattern of conservation: many non-genic

elements are also well conserved, sometimes more so than genic elements. On average, the

coding exons represented only a subset of the total well-aligned sequence.

We sought to develop an automatic method for gene recognition given cross-species

sequence. The approach involves aligning the genomic sequences and then parsing the

sequences to find a gene model in which the proposed exons are supported by features (splice

sites, codon usage, etc.) present in both species. Alignment is performed with the GLASS

program and gene recognition with the ROSETTA program. Both programs are available for

use on a public web server (http://theorvIes.mit.edu/crosspecies/).

The resulting program identifies the location of coding exons with high specificity and

sensitivity. The vast majority of coding exons are identified perfectly. The overall results were

robust across genes, including instances such as the tumor necrosis factor beta gene in which

145

the first intron shows higher conservation than the flanking exons. The remaining errors

largely result from highly unusual features - such as rare splice signals or fused exons.

ROSETTA represents only a first attempt at systematically using cross-species

information for gene recognition. It should be possible to refine the program by incorporating

feature detectors used in single-species gene recognition programs (such as those for

promoters, poly-adenylation sites, etc, as well as more sophisticated statistical tests), by

refining the way in which the existing detectors are combined and by incorporating rules to

detect special cases (such as fused exons or non-canonical splice sites). The program is

designed to recognize a single optimal gene model; a further challenge would be to recognize

conserved patterns of alternative splicing by exploiting backtracking features of dynamic

programming.

Our list of 117 orthologous pairs studied is necessarily biased toward genes with smaller

genomic loci, owing to the fact that genomic sequence from such loci is over represented in

current databases. Such a bias towards shorter genes could potentially enhance ROSETTA's

performance because of a higher signal-to-noise ratio in such genes. Nonetheless, the list

contains many larger genomic loci and ROSETTA performs as well on the larger loci as on the

smaller ones. It will be important to continue to test the program on large loci, as they become

available.

An interesting question is whether the mouse is a suitable organism to select for exon

prediction in human genes. Organisms whose sequence has not drifted sufficiently far from

the human will not increase the signal-to-noise ratio sufficiently, while organisms that are too

distant may make it difficult to recognize important signals. Interestingly, ROSETTA produced

roughly equal amounts of over-prediction and under-prediction, which may suggest that the

human and mouse are at a felicitous distance for the purpose of coding exon prediction.

With the explosion in the sequencing of the human and mouse genomes, cross-species

sequence comparison should become an increasingly important technique for extracting

information from the mammalian genome. We demonstrate here a systematic technique for

extracting the vast majority of the information about coding exons. The next challenge will be

to create similar systematic techniques to extract information about non-coding exons,

promoters, regulatory elements and other important functional features of the genome.

146

CONCLUSION

In this thesis we discussed the steps involved in the planning and execution of a large

sequencing project, and the subsequent steps of first-order annotation and global sequence

comparison of the finished genomic sequence.

We presented contributions in all the above steps of a genome project:

In the steps of planning and sequencing a genome, we presented contributions in the

major alternative methods for whole-genome sequencing. (1) We first studied the Hypergraph

Superstring problem, a mathematical problem motivated by physical mapping, the main clone-

by-clone approach for sequencing a genome. Our complexity results on the MIN-Hypergraph-

Superstring and on the MIN-Sperner-Decomposition problems, and our approximation

algorithms, may be interesting from a theoretical computing perspective irrespective of their

application to physical mapping. (2) We studied an important method for sequencing a large

genome: walking with BAC-ends. Our statistical analysis and simulations provide predictions

of performance, and suggest optimal tradeoffs between sizes of clone libraries used, number

of walking phases, and resulting sequencing quality and efficiency. (3) We studied the

computational problem of assembling shotgun sequencing data. Our prototype system

ARACHNE shows considerable success in obtaining a rough assembly of the data using

computational resources that are within the means of current high-end computers. ARACHNE

may be a starting point for building an elaborate assembly system to be used by academic

sequencing efforts to assemble a mammalian genome such as the mouse genome.

We then turned to the important problem of studying the finished genomic sequence,

using computational techniques. (1) We first presented GLASS, a system for obtaining the

global alignment of pairs of long homologous DNA stretches. We demonstrated that the

system succeeds extremely well in aligning human and mouse homologous genomic loci that

are similar around 60-95% in the short exon regions, but almost unrelated in the much longer

intron regions between the exons. GLASS should also be appropriate for obtaining the global

alignment of homologous pairs of sequences that are more similar than human and mouse

orthologous loci. It may prove useful in whole-genome self-similarity studies and we may use

it for this purpose on the human genome draft that will soon be available. However, GLASS

147

may be inappropriate to use for aligning more distant homologs, as it relies in the presence of

several matching k-mers between the two input sequences. (2) We used GLASS to perform a

study of 117 homologous human and mouse genomic loci. We provided structural similarity

statistics for human and mouse genes, and suggested the use of them in genomic annotation

using sequence comparisons. (3) Finally, we built ROSETTA, the first cross-species

comparison-based gene recognition system. We demonstrated that a very simple

implementation of such a system compares favorably to sophisticated gene recognition

programs that use information from one species alone.

We would like to conclude with some remarks on future work.

We believe that the main interesting open questions on Chapter 1 are theoretical: to

completely determine the approximation complexity of the MIN-Hypergraph-Superstring and

MIN-Sperner-Decomposition problems. We have shown that the problems are at least MAXSNP-

hard, but it is still open to either give constant approximation algorithms, or prove stronger

inapproximability results.

We have barely touched the expanding field of global sequence comparisons, and

comparison-based genome annotation. There are several possible avenues of future work.

Here we will mention only a few: (1) Refinement of GLASS and application to many different

pairs of organisms, and also to self-similarity studies of genomes. Such studies could reveal

important evolutionary facts, and/or evidence for large-scale genome duplications and

rearrangements. (2) Expansion of the gene recognition methods into recognition of other

evolutionarily preserved signals such as promoters and regulatory elements. (3) Development

and application of similar annotation methods for different pairs of organisms (4)

Development of similar methods for the simultaneous comparison and annotation of three, or

more organisms.

Several parts of this thesis are motivated by the search for better methods for whole

genome sequencing. We would like to conclude with a description of what we believe may be a

powerful method of sequencing and assembling large genomes in the future. In particular we

believe that while whole genome shotgun assembly may be possible for a large genome such as

148

a mammalian genome, the fragment assembly problem may become much easier, and result in

better sequence fidelity, if combined with clone-by-clone data. The academic sequencing

community may believe the same, since the mouse genome will be obtained by a combination of

whole genome shotgun and clone-by-clone sequencing (Science, vol. 287, p. 1179, 2000).

However what has not been systematically addressed yet is the exact method with which the

data will be used to assemble the mouse sequence. Hence neither the optimal ratio of shotgun vs.

clone-by-clone sequencing, nor the optimal combination of insert sizes for shotgun (to get the

forward/reverse linking information), are known.

We would like to sketch here a plausible procedure by which a large genome could be

sequenced and assembled using a specific combination of Whole Genome Shotgun and Clone-

by-Clone (WGSCC) data. (Appendix D contains a more detailed description.)

First we would like to describe a plausible mix of data that could be obtained, aiming at a

total amount of sequencing equal to the current standards, of 1 Ox coverage of the genome with

reads:

1. The majority of this sequence, say Kx where K is a constant < 10, is in the form of

whole genome shotgun data, consisting of mostly short plasmid paired reads while

possibly using some cosmid paired reads, or unpaired reads.

2. A random collection of BAC clones covers the genome to Lx, each clone being

sequenced to a small Mx coverage.

3. A deep library of end-sequenced BAC clones is formed. If the library is 20-deep, if

sequencing a read off the end of a BAC clone is twice as expensive as sequencing a

regular plasmid or cosmid read, and if BAC clones are on average 150kb-long, this

costs 0.25x of whole genome sequencing.

Typical values for K, L, and M would be 7, 2, and 0.5, respectively. Then, a majority of the

genome would be covered with BAC clones that are obtained in step 2 above, and are each

sequenced to 0.5x. This would correspond to having roughly 150 reads per clone, or one read

per 1,000 bases. Assume for the moment that the full sequence of most of these clones can be

reliably obtained using these local reads, in combination with the 7x coverage of the whole

149

genome with shotgun reads.' Then, the genome would be covered with islands of fully

assembled sequence, separated with oceans of unassembled genome. The library of end-

sequenced BACs could then be employed to walk from these islands similarly to the way

described in Chapter 2. In this case though, it would not be as important to obtain a minimal

overlapping clone from the library. The library clones selected for walking would only be

sequenced to 0.5x depth resulting in virtually no wastage due to overlaps with already assembled

islands. The whole scheme as described above involves performing a total sequencing of around

8.5x. This is lower than the "allowable" 1 Ox total sequencing, and therefore there is considerable

slack that can be devoted to sequence the most "difficult" regions of DNA. Specific regions can

receive special attention because they are "captured" in BAC clones that have been end-

sequenced or lightly shotgun sequenced. For instance, the hardest 5% of the genome consisting

of repeats that are hard to resolve and assemble with 99.99% accuracy with whole genome

shotgun could be sequenced clone-by-clone to depth ~5x. The total additional sequencing this

step would involve is only 0.25x, well within the allowable slack. Then, the 5x sequencing of

these clones together with the 7x whole genome shotgun should enable to yield the best possible

quality of assembly in these regions, similar to I Ox clone-by-clone sequencing. One can see that

the WGSCC approach allows for considerable control over the quality of the final sequence,

exactly because a clone-by-clone map of the genome is obtained in parallel with the consensus

sequence.

We plan to develop the prototype system ARACHNE into a finished software package

that is capable of performing fragment assembly in the presence, or absence, of clone-by-

clone data as described above. That would first of all involve implementing an algorithm as

the one described in Appendix D, which is capable of utilizing WGSCC data. It would also

involve several important refinements of our existing software: using PHRED scores in

pairwise read alignments; producing finished sequence instead of a rough assembly of reads

into supercontigs; refinement and speedup of the algorithms; development and parallelization

in a suitable platform; and possibly several other crucial steps.

' In fact assembling the sequence of such a clone ought to be considerably easier using the 150 reads
from the clone, than it would be if the only data available were 7.5x shotgun sequence of the whole
genome.

150

Appendix A

The Genetic Code

The ribosome converts mRNA into protein according to the genetic code. Three nucleotides are

converted to one amino acid. Protein synthesis starts from an occurrence of the initiation codon

(ATG) and ends with the first occurrence of a termination codon (TAA, TAG, or TGA) in the

translating frame.

T C A G

TTT Phe (F) TCT Ser (S) TAT Tyr (Y) TGT Cys (C)

TTTC * TCC * TAC * TGC *
TTA Leu (L) TCA * TAA Stop TGA Stop
TTG * TCG * ;TAG Stop TGG Trp (W)

CTT Leu (L) CCT Pro (P) CAT His (H) CGT Arg (R)
CTC * CCC * CAC * CGC *

C CTA * CCA * CAA GIn(Q) CGA *

CTG * CCG * CAG * CGG *

ATT Ile (I) ACT Thr (T) AAT Asn (N) AGT Ser (S)
ATC * ACC * AAC * AGC *

A ATA * ACA * AAA Lys (K) AGA Arg (R)
ATG Met (M) ACG * AAG * AGG *

GTT Val (V) GCT Ala (A) GAT Asp (D) GGT Gly (G)
GTC * GCC * GAC * GGC *

G GTA * GCA * GAA Glu(E) GGA *

GTG * GCG * GAG * GGG *

Table A.1. The Genetic Code.

151

Appendix B

Performance of ARACHNE

In the tables below we provide the results on the performance of ARACHNE on all our test runs.

Please refer to the main text (Chapter 3) for the meanings of Coverage, CERR, RERR, RERR2,

GAP, RGAP, and ROUT. #SCON is the number of supercontigs above SC Length, and #CON is

total the number of contigs in these long supercontigs.

Sc Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

1000000 11 1869 51.6575 0.267523 0.121643 0.104435 0.951052 0.009267 2.07779

250000 30 3117 81.8569 0.737889 0.296759 0.182583 1.44267 0.012559 2.03651

100000 46 3506 90.1023 1.79692 0.325442 0.190764 1.66472 0.022858 2.02364

25000 82 3879 94.6051 2.83578 0.776246 0.448309 2.44104 0.117326 2.03509

10000 108 4017 95.8134 2.96241 0.91559 0.552387 2.71454 0.203166 2.04511

5000 141 4101 96.2259 3.02365 0.986972 0.611251 2.95164 0.374266 2.05136

2000 211 4220 96.5669 3.34123 1.11745 0.693346 3.25165 0.670593 2.0638

Table 1. Performance of ARACHNE on human chromosome 22, 11x coverage.

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

1000000 9 1859 51.0186 0.053792 0.03538 0.029433 0.993216 0.013933 1.80048

250000 28 2989 81.1249 0.16728 0.097715 0.084798 1.35776 0.010587 1.78148

100000 44 3323 88.9773 0.150466 0.106079 0.094278 1.5358 0.019265 1.78906

25000 78 3684 93.9008 1.00434 0.510291 0.255239 2.21059 0.096817 1.7857

10000 102 3812 94.9333 1.60021 0.790593 0.428751 2.49243 0.186535 1.78851

5000 134 3890 95.3919 1.79949 0.889088 0.495323 2.69901 0.351437 1.79182

2000 193 3990 95.775 2.10526 1.01624 0.569789 2.9524 0.59603 1.79655

Table 2. Performance of ARACHNE on human chromosome 22, 9x coverage.

152

I ~Human, 1 1x

153

I Hinnan, 7x

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

1000000 8 1971 46.1732 0 0 0 1.3558 0.014499 1.46109

250000 30 3452 80.1969 0.057937 0.037863 0.024349 1.64758 0.020045 1.48063

100000 46 3824 87.4488 0.156904 0.11998 0.099143 1.93451 0.035474 1.46937

25000 77 4125 92.3115 0.606061 0.433768 0.273264 2.28699 0.068087 1.47533

10000 109 4268 93.9096 0.937207 0.652197 0.424052 2.57763 0.165069 1.4793

5000 150 4367 94.5611 1.14495 0.809359 0.556805 2.76095 0.301605 1.47879

2000 223 4461 95.0031 1.18807 0.912839 0.638131 2.87392 0.419139 1.48756

Table 3. Performance of ARACIHNE on human chromosome 22, 7x coverage.

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

250000 16 1003 16.7055 0 0.012878 0.012878 5.17857 0.236511 1.01796

100000 109 3640 59.1112 0.192308 0.175004 0.070327 6.07925 0.346571 1.04065

25000 277 5489 85.6575 0.564766 0.513473 0.245193 6.3743 0.368636 1.05154

10000 373 5886 90.1071 0.696568 0.725086 0.391209 6.69131 0.474651 1.06078

5000 462 6081 91.4638 0.74001 0.844548 0.512033 6.87023 0.68757 1.06279

2000 671 6318 92.6469 0.79139 1.02212 0.64133 6.84246 0.769325 1.07202

Table 4. Performance of ARACHNE on human chromosome 22, 5x coverage.

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

25000 50 329 4.72639 0 0.366415 0.366415 18.4532 3.16608 0.582848

10000 496 1895 24.4016 0.686016 1.24275 0.892227 19.3543 5.82302 0.64801

5000 1396 3801 42.1679 0.552486 1.41661 1.11506 15.935 6.55698 0.714661

2000 3481 5979 58.3367 0.401405 1.53955 1.28717 11.769 5.04107 0.699569

Table 5. Performance of ARACHNE on human chromosome 22, 3x coverage.

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

1000000 3 484 37.8117 0.413223 0.593201 0.482119 2.11728 0.00389 1.83739

250000 15 1268 79.2325 0.630915 0.643322 0.520089 2.74224 0.015964 1.95141

100000 29 1702 96.1433 1.64512 1.21876 0.812193 3.46796 0.014012 1.99304

25000 33 1759 97.841 1.59181 1.25085 0.851715 3.48182 0.013765 1.99171

10000 37 1781 98.2516 2.02134 1.38385 0.923465 3.70871 0.138385 1.99164

5000 42 1795 98.5143 2.22841 1.48353 1.00047 3.80176 0.203332 1.99229

2000 49 1810 98.5938 2.26519 1.53518 1.05018 3.85746 0.26253 1.99449

Table 6. Performance of ARACHNE on C. elegans chromosome 1, 1 lx coverage.

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

1000000 2 399 36.0866 8.5213 0.59539 0.576362 2.04595 0.008161 1.44865

250000 14 1307 80.9604 3.36649 0.709746 0.584082 3.19038 0.015718 1.46863

100000 26 1639 94.8184 3.17267 1.07257 0.837145 3.76298 0.019756 1.51286

25000 33 1732 97.499 3.52194 1.18568 0.914727 4.02217 0.07801 1.50727

10000 37 1750 97.7769 3.71429 1.28042 0.990229 4.14704 0.147317 1.50858

5000 47 1776 98.1206 3.71622 1.36847 1.08131 4.2263 0.215473 1.51782

2000 57 1791 98.1938 3.74093 1.42934 1.13924 4.27348 0.266396 1.51923

Table 7. Performance of ARACHNE on C. elegans chromosome 1, 9x coverage.

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

1000000 1 67 86.4665 0 0.357992 0.357992 2.12391 0.010928 1.36494

100000 2 78 99.711 0 0.311869 0.311869 2.1178 0.009477 1.35722

5000 3 80 99.711 0 1.22267 1.22267 2.15926 0.031893 1.3644

Table 8. Performance of ARACHNE on the H. influenzae genome, lIx coverage.

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

1000000 1 78 86.3928 1.28205 0.391347 0.330261 2.04927 0.00076 1.14271

100000 2 91 99.6368 1.0989 0.339633 0.28656 2.07378 0.000659 1.1471

5000 3 93 99.9196 1.07527 1.47565 1.42485 2.07958 0.002189 1.16129

Table 9. Performance of ARACHNE on the H. influenzae genome, 9x coverage.

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

1000000 1 76 86.3722 1.31579 0.392627 0.331343 2.32361 0.018239 1.13575

100000 2 88 99.6019 1.13636 0.340737 0.287492 2.3432 0.021527 1.10452

5000 3 91 99.912 1.0989 1.48024 1.42928 2.33619 0.021459 1.14056

Table 10. Performance of ARACHNE on the H. influenzae genome, 7x coverage.

154

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

250000 2 130 51.4554 0 0.042932 0.042932 4.70981 0.257302 0.777423

100000 5 203 78.0981 0 0.057954 0.057954 5.26323 0.337643 0.647762

25000 10 258 97.1 0.387597 0.431085 0.431135 5.19668 0.32288 0.688458

5000 11 260 97.1 0.384615 1.67383 1.67402 5.18229 0.321847 0.700137

2000 19 268 97.4689 0.373134 1.75329 1.75349 5.12246 0.318131 0.704265

Table 11. Performance of ARACHNE on the H. influenzae genome, 5x coverage.

SC Length #SCON #CON Coverage CERR RERR RERR2 GAP RGAP ROUT

1000000 1 215 99.9589 0 0.023263 0.023263 0.909781 0.01539 1.28596

5000 2 216 99.9589 0 0.069652 0.069652 0.907585 0.015353 1.28348

Table 12. Performance of ARACHNE on the A. fulgidus genome, 7x coverage.

Below we provide the figures of statistics of the assembly quality, for each of the above tests.

These are in exactly the same format as the corresponding figures in Chapter 3. The figures in

Chapter 3 are duplicated here in order to provide a complete reference to all our tests.

155

Figure 1. Quality of shotgun assembly on human chromosome 22, 11 x coverage with shotgun reads.

3.5 -- ------- - -

3

2.5 -+- CERR

- 0RERR
2 --- RERR2

1.5--X-GAP
1.5-IK RGAP

1 -e- ROUT

0.5

0-
1000000 250000 100000 25000 10000 5000 2000

Figure 2. Quality of shotgun assembly on human chromosome 22, 9x coverage with shotgun reads.

156

3.5

3

2.5

2

1.5

1

0.5

0

2.5
-*-CERR-+-CERR
-U- %RERR

-Ar- %RERR2

-X- %GAP

-*- %RGAP

-* %ROUT
1 -e %OU

5000 20001000000 250000 100000 25000 10000

.14

Figure 3. Quality of shotgun assembly on human chromosome 22, 7x coverage with shotgun reads.

8

7-

6-
-- CERR

5 --- RERR
-*-RERR2

4 -4-GAP

3 -- RGAP
-- ROUT

2

0
250000 100000 25000 10000 5000 2000

Figure 4. Quality of shotgun assembly on human chromosome 22, 5x coverage with shotgun reads.

157

3.5

3

2.5

1.5

1

0.5

0

2 0 R 2 - -- -

1 -- OU

1000000 250000 100000 25000 10000 5000 2000

-+- CERR

- -RERR

-A- P
*-RGAP

25

Figure 5. Quality of shotgun assembly on human chromosome 22, 3x coverage with shotgun reads.

Figure 6. Quality of shotgun assembly on C. elegans chromosome I, 11 x coverage with shotgun reads.

158

20

-+-CERR

15 RERR

-*- RERR2

-*- GAP
10 - RGAP

-+ ROUT

5

0 1

25000 10000 5000 2000

4.5

4

3.5

3-

2.5-

2

1

0.5-

0-

3 -4-- CER

-+ CERR

-4-RERR

-- RERR2

---- GAP

-*- ROUT

25000 10000 5000 2000

---------------- -

1000000 250000 100000

Figure 7. Quality of shotgun assembly on C. elegans chromosome I, 9x coverage with shotgun reads.

Figure 8. Quality of shotgun assembly on the H. influenzae genome, lIx coverage with shotgun reads.

159

9 -

8

7- -

6 -+- ERR

--- RERR

5--*- RERR2

4 - -- GAP

-9- RGAP

-4- ROUT

1-

0 4K -

1000000 250000 100000 25000 10000 5000 2000

2.5 -- - -- - - - - -- -

2

-- CERR

1.5 - RERR

RERR2

XGAP

1 -*W- RGAP

-0- ROUT

0.5

0 -

1000000 100000 5000

2.5

Figure 9. Quality of shotgun assembly on the H. influenzae genome, 9x coverage with shotgun reads.

Figure 10. Quality of shotgun assembly on the H. influenzae genome, 7x coverage with shotgun reads.

160

2-

+CERR

1.5 -1- RERR

-A- RERR2

-)(- GAP
1--*- GAP2

-- ROUT

0.5

0,
1000000 100000 5000

2 .5 - - - - - - - - - - - - - -

x M x

2

-+- CERR

1.5 -U- RERR
-*- RERR2

--- GAP
-*-RGAP

--- ROUT
0.5

0

1000000 100000 5000

6

Figure 11. Quality of shotgun assembly on the H. influenzae genome, 5x coverage with shotgun reads.

Figure 12. Quality of shotgun assembly on the A. fulgidus genome, 7x coverage with shotgun reads.

161

5-

4 -4-CERR

-U- RERR

-A- RERR2
3- X- GAP

-- RGAP

2 -0 ROUT

0 22
250000 100000 25000 5000 2000

1.4 - - - - -- - - - - - - - -

1.2

1 -4- CERR

-- RERR
0.8 -A- RERR2

-- GAP
0.6 -06- RGAP

0.4- ROUT

0.2

01 5
1000000 5000

162

Appendix C

Comparative Analysis of Human and Mouse Loci

In the table below (Table C.1) we report a structural comparison of 117 orthologous human and

mouse genomic loci. We also report the exon prediction performance of ROSETTA on each of

these loci.

Each entry in the table, numbered 1-117, is a pair of orthologous loci. In the first column,

the Genbank LOCUS of the human entry, followed by the Genbank LOCUS of the mouse entry,

followed by short descriptions of the genes, are given. The following columns have the following

meanings, depending on the rows:

1. First row corresponds to the human entry.

2. Second row corresponds to the mouse entry.

3. Third row corresponds to nucleotide sequence similarity.

4. Fourth row, when applicable, corresponds to amino acid similarity.

5. Fifth row, when applicable, corresponds to ROSETTA predictions.

Thus the columns have the following meaning:

1. Third column, colored dark, corresponds to the total size for human and mouse, and the

total sequence similarity using the GLASS alignment.

2. Fourth column corresponds to the sizes, and nucleotide similarity of the 5'-UTRs.

3. Fifth column corresponds to the sizes, nucleotide, and protein similarity of the

translated regions.

4. Sixth column corresponds to the sizes, and nucleotide similarity of the 3'-UTRs.

5. Seventh column corresponds to the sizes, and nucleotide similarity of the introns.

6. The rest of the columns correspond to the sizes, nucleotide similarity, and protein

similarity plus ROSETTA predictions whenever applicable. The color shading the

regions indicates the type of the regions: coding exons (white), noncoding exons (light

gray), and introns (medium dark gray).

The ROSETTA predictions are indicated as follows:

++: Coding exon predicted correct on both ends.

+-: Coding exon predicted correct only on the 5'-end.

162

-+: Coding exon predicted correct only on the 3'-end.

Coding exon was not missed totally, but both 3'- and 5'- boundaries were wrongly

predicted.

X: Coding exon was missed altogether.

Structurally unusual cases, such as when two coding exons in human correspond to one in

mouse, can readily be seen in the table. For instance entry 30 has such a situation. Coding exons 5

and 6 in human can be seen to correspond to coding exon 5 in mouse.

163

Toal C.ex 3'N Alignments of Regions
1 -=KIB 648

MMGMCK2B 648 72 103 116 76 190 91

93.06 94.44 95.15 89.66 92.11 93.16 94.51
Casein kinasel 1 98.61 100 99.03 98.28 98.68 97.89 98.9 h

subunit beta gent ++ + t+ + ++ -

2 1 USACT 15 1134 1814
MUSACASA _1134 129 325 162 192 182 144 : Coding Exons

90.3 89.15 88.~~~2 8.1 9. 23 30
Skeletal alpha- 99.21 8910 998.9 9.15 98.44 98.91 13006% | ocdn xn

actin gene .,.+1 .0 96 81 84 8. 0 ocdn x

3 312 :EHI Introns

MMHIS412 31231

89.42.894
Histone H4 gene 10010

4 -SU3930
MMMRPS24 396 3 66 210 111 8

Riboomal88.55 100 84.85 89.05 90.99 66.7
Riooa E 100 100 100 100 100 100

protein S24 gene ++ + ++ X

5 HUMRIS4-31
MUSHIST4 31231

87.,18 87. 18

Histone H4 gene 100 -100

6 HSHI$H3 - 1

MMHIST31 411 411

85.,89 85.89
Histone H3 gene 100 100

7 HSSC70 1941

MMU73744 1941 205 206 153 556 203 199 233 186 -

Tiso7O gene for 88.97 86.34 89.32 90.2 89.57 92.12 84.92 89.7 88.71 '+A

heat shock 99.23 99.51 99.03 100 99.82 97.54 99.5 97.85 100 -

cognate protein -+++ ++ -++ ++ ++ ++ ++

8 HUMNOCT 133
MUSPOUDOMB 1338 138

POUdomin93.84936
transcription 99.1 9.

f actor _+

9 486OC15 3

MUSCTNC 486 24 31 147 115 137 3

Sw twitch 89.92 91.67 83.87 91.16 92.17 86.86 937

skeletal nuscle 96.91 100 96.77 97.96 96.52 96.35 937

cardiac troponin ++ ++ ++ ++ ++ +

10 1G 1113
MUSINT1IA 1113 104 254 266 489

IntI ammr-91.11 90.38 88.98 91.35 92.23
In-1mamg 8.8 942 98.03 99.25 100

oncogene + ++

145
88.28
95.17

204
93.63
98.53

96
88.54
93.75

126
92.06
100

12

13

14

15

16

17

18

19

20

195
88.72
96.92

105
92.38
91.43

206
87.86
96.12

70
70

91.43
98.57

++-

124
87.9
94.35

57
89.47
94.74

134
85.82
96.27
77-

223
94.17
99.55

198
85.35
93.94

202
89.11
96.53

59
86.44
96.61

109
88.99
99.08

70
85.71
94.29

80
87.5
93.75

99
85.86
93.94

165
90.3
100

11

59
86.44
81.36

22 HSCKBG 114 12 0 1
MUSCIRKNB 116193 155 133 172 124 10 179 1-4;

89.62 87.05 88.39 91.73 88.37 93.55 92.63 87.15 4
Creatine kinase B 9.591.71 90.97 99.25 95.93 9.7 96.32 98.88

gene

23 HUMACHRM41

MMM4ACHR 1440 1440

Muscarinic 8.489.05
acetylcholine m4 95.2 9.

receptor gene +

24 HUMMHHSP2
MUSHSP7A2 1929 1929

MHC heat shock 91.28 91.21

protein (H SP70- 95.33 95.33

2) gene ++

25 HUMAPEXN9551 W
MUSAPEX 954 55 188 193 518 156,

86.1 70.8 88.83 86.53 86.87 A
APEX nules 94.0 62.07 89.36 97.93 97.881

gene +

26 HUMGAD45A1
MUSGAD45 498 44 102 238 114

89.76 95.45 87.25 87.82 93.86
gadd45 gene 93.37 88.84 91.18 92.02 100

27 HUMMHHSPHO 12
MUSHSC70T 1926 - 1926

Heat shock 84.99 84.99

protein 70-HOM 94.39 94.39

gene ++

28 HSHOX51to35
MMU77364 753 427 326

HOX 5.1 88.15 87.91 90.47

(human), HOXD4 92.19 90.76 94.03 E
(mouse) gene - +++ mr

29 HUMHISAC 0

MUSH1EH2B 660 660

Histone H1F4 85.91 85.91
(human), HWe 94.09 94.09

(mouse) gene ++

30 HUMSPERSYN 2
MMSPERSYN 909 167 121 93 154 230 123 21 2

,.87.79 92.81 89.26 88.17 87.01 46.5 68.62 82.93 71.43 41.O
Spr~ie93.73 97.01 99.17 100 93.51 92.86 90.41 85.37 85.71

synthase gene

108
90.74

100

102
85.29
82.35

765
84.9

83.74

76
82.89
86.84

67
88.06
94.03

157
90.45
93.63
77-

642
88.79
9439

174
86.21
94.83

49
75.51
73.47

162
88.27
92.59

173
173
89.6

90.17

130
94.62
96.92

126
89.68
92.86

135
135

86.67
93.33

57
92.98
100

221
89.59
96.38

82
84.15
87.8

123
80.49
85.37

23
47.62

0

84
86.9

89.29

133
90.23
90.23
x

155
81.94
87.1

163
86.5

92.02

215
87.91
93.49

113
113

83.19
92.92

145
77.93
74.48

84
92.86
96.43

81
76.54
81.48

31rl

40

42

43 AF027148
MMMYOD1 957 7

Myogenic 84.74795
determining 87.85683

factor 3 (MYOD1)+

44 HUMKER18 1293 3 17 165 126 224
MUSENDOBA 1 272 36 83 157 165 126 224 12

Keratin 18 82.6 8.4 87.95 87.9 87.27 80.16 83.93 01

(human), 86.54 8.9 93.98 95.54 89.09 80.95 88.39 8.7

cytokeratin +++++++ +

45 HUMADRA
MUSALP2ADB 1353 1353

Alpha-2 87.14 87.14
adrenergic 88.25 88.25

receptor gene ++

46 HSMHCPU15 008 132 130
MUSLMP2A 642 132 130 9

-listocompatibility 62.12 5 788 84.85 80647

01 comples 58.18 - 1. 88.64 90 190 NA

00(human), ++ ++ ++ ++

47 HSU72648
MUSADRA 677 1377

Alpha-2 -C4- 90.9 96.21
adrenergic , 7'8 98.1 88.1

receptor gene ++

48 HUMMK 152
MUSMKPG 423 76 159 162 2

86.34 28 86.24 90.12 8.4
Midkine gene B4.72 28 82.14 87.04 923

49 HSMYF4G /1
MUSMVYOGEN 875 41 82 12

Skeletal muscle- 90.07 06 87.12 8.
specific, 94.67 68 85.19 926

myogenic gene -+++ ++

50 HUMVHISAB

90
82.22
86.67

75
78.67

88

112
87.5

91.07

130
79.85
63.16

120
80.83
92.5

189
78.22

75
++

110
110
80

79.09

55
89.09
87.27

128
87.5

91.41

100
64.15
61.61

137
77.26
72.86

103
87.38
81.55

259
79.15
81.08

91
81.32
89.01

117
117
90.6

94.87

76
84.21
86.84

94
79.79
70.21

114
88.6
97.37

320
77.81
74.06

51

125
78.4
84
++-

128
78.91

75

410
83.66
84.15

157
86.62
85.99

142
80.28
69.72

72
70.83
83.33

102
78.43
85.29

237
81.86
18.99

124
83.06
77.42

127
88.98
94.49

65
78.46
73.85

103

84
60.98
58.25

x

155
84.98
79.75

224
86.56
99.07

124
91.13
84.68

77
89.61
93.51

61

0

72

73

74

75

76

77

78

79

80

1524
81.6
80.75

333
81.68
81.08

609
80.35
79.23

582
78.28
78.79

507
84.44
81.21

1203
78

80.2

1446
76.13
79.18

2151
79.78
78.51

642
71.76
79.17

294
79.25
77.55

158
77.22
75.95

133
84.76
79.41

186
79.36
80.21

104
85.58
86.54

159
83.65
90.57

202
91.58
93.56

40
16.13
13.64
x

1446
60.41
79.18

148
83.78
81.08

137
75.91
72.26

154
86.36
89.61

88
79.55
85.23

88
93.18
92.05

612
80.88
78.43

147
68.63
66.04

111

84.68
78.38

115
80.87
78.26

121
76.03
76.86

36
86.11
91.67

119
79.83
83.19

109
71.3

76.86

196
71.23
71.01

4+-

78
85.9

84.62

84
82.14
89.29

131
75.57
75.57

147
80.95
81.63

140
82.14
68.57

137
83.21
83.21

137
75.91
76.64

++7-

82

83

84

85

738
79.86
82.5

444
81.76
79.73

612
80.79
79.8

606
80.2

60.15

921
78.21
82.43

837
78.23
76.87

459
79.82
78.95

279
77.42
75.27

1680
78.45
78.07

7778
7749

175
175

85.14
82.29

77+

173
173

80.92
86.71

135
79.26
82.22

77+

73
67.12
57.53

135
77.78
68.89

114
67.53
64.1

443
80.4
74.5

414
79.04
76.44

86

87

88

89

90

92

93

94

95

96

97

98

99

100

MMVITRO
S-protein
(human),

vitronectin
HSGCSFG
MMGCSFG
Granulocyte

colony-
stimulating factor

HUMTNFBA
MMTNFBG

Tumor necrosis
factor-beta gene

HSU16720
MUSIL1OZ

Interleukin 10
(IL10) gene

HUMCP210H
MUS210HA1

21 -hydroxylase B
(human), 21-

hydroxylase A
HUMMIS
MMAMH

Anti-Mullerian
hormone gene

HUMAPOE4
MUSAPE

Apolipoprotein
gene

HUMREGB
MUSREGI

Regenerating
protein gene

HUMPROLA
MUSPROL

Cathepsin L gene

HSU29874
MMU44024

Flt3 ligand gene

110
78.92
79.65

351
73.28
69.57

201
73.63
71.64

10
104

78.85
72.12

72.52

]68.8

21
28.99
18.75

179
170

73.93
70.39

0
67

83.21
77.14

102

103

104

105

106

107

108

109

110

185
78.92
71.35

129
84.5
74.42

31
47.46
21.43

119
75.63
60.5

49
77.23
63.46

136
77.94

75

140
143

74.91
64.29

++7

163
80.37
64.42

97
81.44
71.13

017

223
74.04
69.55

186
85.48
85.48

++

99
74.75
78.79

210
84.63
78.87

149
71.14
62.42

149
79.87
74.5

t=

141
76.6

65.96

177
74.58
76.27

108
78.7
66.67

138
78.99
73.91

202
73.27
56.44

255
66.67
61.18

92
84.78
71.74

68
72.06
66.18

131
83.21
84.73

175
175

81.71
70.29

127
66.93
66.14

171
69.64

60

192
62.3

55.17

112

113

114

115

116

117

144
77.08
77.08

++-

148
79.05
72.97

159
72.96
69.81

54
75.93
66.67

1098
71.08
65.07

211
69.21
59.13

33
72.73
72.73

43
81.4
56.3

390
70.19
61.48

133
69.96
62.31

598
72.4
61.6

282
60.73
60.19

42
88.1

85.71

-~1

Appendix D

Whole Genome Assembly Using Combined Shotgun and Clone-by-Clone Sequencing

(WGSCC Sequencing)

Below we describe a procedure by which a large genome could be sequenced and assembled

using a specific combination of whole genome shotgun and clone-by-clone data (WGSCC data).

a.

b.

............
C. s3on...... :::E 3.3 .*....

Figure..... D.1 Whole.... geom.sotunredscvein.te.enme. -y-loe lightshotun;.c.dee

........ *.M

The...... prcdr asue the existence of.th.folowingdata

...

3.*.....3.......3so

Figure D.1. a. Whole genome shotgun reads covering the genome; b. Clone-by-clone light shotgun; c. deep

library of end-sequenced BACs.

The procedure assumes the existence of the following data:

1. Plasmid whole genomne shotgun paired reads (WGS reads) covering the genomne at depth

Kx where K is a constant < 10 (Figure D.la).

2. A random collection of BAC clones covering the genome to Lx, each clone being

sequenced to a small Mx coverage (Figure D.lb).

176

3. A deep library of end-sequenced BAC clones (of depth at least 15, Figure D.1c).

Typical values for K, L, and M would be 7, 2, and 0.5, respectively. The depth of the BAC library

could be around 20 deep. For these values, the total cost measured in equivalent whole genome

shotgun coverage depth, would be:

1. 7x, because we have a depth K = 7 of shotgun reads.

2. LMx =x.

3. Assuming that end-sequencing a BAC is equally expensive as twice the end-sequencing of

a plasmid insert, we get 2 times 20 (depth) times 4 reads / 150kb. Letting each read be

roughly 500 long, this gives a total of 0.25x cost.

Therefore the total cost of obtaining this initial data is 8.25x.

Then, a majority of the genome would be covered with BAC clones that are obtained in step

2 above, and are each sequenced to 0.5x. This would correspond to having roughly 150 reads per

clone, or one read per 1,000 bases. This data can be used to assemble each of the light-sequenced

BAC clones. Below we describe the algorithm:

Algorithm: assembling a BAC clone using a set of reads r1 , ... , rn from the clone and a Kx (K

roughly = 7) coverage of the genome with random shotgun.

1. Form adjacency graph of reads for the above reads, plus the WGS reads (refer to the first

steps of the ARA CHNE algorithm, Chapter 3).

2. Find in this graph the pairwise shortest paths for reads ri, ... , rn where distance is measured

by the overlap shifts (refer to Chapter 3).

3. Order and orient r1, ... , rn using these shortest paths. Report the existense of ambiguities, if

any.

4. The above steps result in one or more contigs covering the entire clone. If any ambiguities

exist in step 3, there is possibly more than one contig. Order and orient these contigs using

the plasmid paired reads of WGS.

5. If more than one contig, fill in the regions between contigs using shortest paths in the

overlap graph.

6. For the resulting assembly of the clone, determine if any regions exist that are the result of

overcollapsing WGS reads from two or more copies of a repeat. Do that heuristically by

177

measuring the density of reads covering specific subregions (high density means higher

probability of overcollapsing (Myers et al. 2000)).

We conjecture that the full sequence of most of these clones can be reliably obtained using

the above procedure. Moreover, whenever there is ambiguity, or high probability of obtaining lower

quality consensus sequence due to the presence of repeats, the algorithm reports this in steps 3 and

6. We conjecture that the majority of the clones will be assembled with virtually no ambiguities,

and with reliable resulting consensus sequence. Some clones will be assembled with lower accuracy

guarantees, reported in step 6. And few clones will not be assembled successfully.

The assembled clones can form islands of fully sequenced genome, separated with oceans of

unassembled genome. The library of end-sequenced BACs could then be employed to walk from

these islands similarly to the way described in chapter 2. In this case though, it would no longer be

as important to obtain a minimal overlapping clone from the library. The library clones selected for

walking would only be sequenced to 0.5x depth resulting in negligible wastage due to overlaps with

already assembled islands.

The whole scheme as described above involves performing a total sequencing of around 8.5x.

Therefore there is considerable slack up to the total maximum of lOx, to devote additional

sequencing of specific clones in "difficult" regions of DNA. For instance, the hardest 5% of the

genome consisting of repeats that are hard to resolve and assemble with 99.99% accuracy with

whole genome shotgun could be sequenced clone-by-clone (after failure to assemble) to depth 5x.

The total additional sequencing this step would involve is only 0.25x, well within the allowable

slack. Then, the 5x sequencing of these clones together with the 7x whole genome shotgun should

enable to yield the best possible quality of assembly in these regions, similar to lOx clone-by-clone

sequencing.

To summarize, the procedure runs as follows. (1) Obtain WGS reads, random BAC clone-by-

clone reads, and deep BAC library. (2) Assemble the lightly sequenced clones as described above,

resulting in islands of sequenced genome. After this step most of the islands should be assembled

with high-fidelity sequence, with some marked regions of lower fidelity. (3) Walk using the end-

sequenced clone library, covering the entire genome and potentially increasing the fidelity of some

regions. After this step, roughly 8.5x sequencing has been used. The result is a full genome

sequence, with some parts marked as lower fidelity. The remaining 1.5x sequencing that we are

allowed to perform can be used to "finish" these parts. This should be easy given that virtually all

parts of poor quality should be "captured" by lightly sequenced clones, and by library clones.

The above procedure can be varied considerably. For instance, it is not clear which is the

optimal combination of WGS data (unpaired reads, plasmid paired reads, cosmid paired reads). A

178

variation of the above method could use a higher depth of coverage of the genome with lightly

shotgun sequenced BAC clones, with each clone sequenced to lower depth. For instance at an

extreme a 15x coverage of the genome could be obtained with BACs, each being sequenced to

depth 0.1x (around one read per 5kb, or -30 reads total) for a total sequencing of 1.5x. The same

clones could also be end-sequenced. That would result in minimizing the need for walking in order

to close gaps of unassembled genome, and thus may be done more in parallel. Or, a library of

shorter BACs and/or cosmids could be also employed, in order to do more targeted finishing by

going into very deep sequencing in small highly problematic regions.

179

BIBLIOGRAPHY

Adams, M.D., S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, P.G. Amanatides, S.E.
Scherer, P.W. Li, R.A. Hoskins, R.F. Galle, R.A. George, S.E. Lewis, S. Richards, M.
Ashburner, S.N. Henderson, G.G. Sutton, J.R. Wortman, M.D. Yandell, Q. Zhang, L.X.

Chen, R.C. Brandon, Y.-H.C. Rogers, R.G. Blazej, M. Champe, B.D. Pfeiffer, K.H. Wan,
C. Doyle, E.G. Baxter, G. Helt, C.R. Nelson, G.L. Gabor Miklos, J.F. Abril, A.
Agbayani, H.-J. An, C. Andrews-Pfannkoch, D. Baldwin, R.M. Ballew, A. Basu, J.
Baxendale, L. Bayraktaroglu, E.M. Beasley, K.Y. Beeson, P.V. Benos, B.P. Berman, D.

Bhandari, S. Bolshakov, D. Borkova, M.R. Botchan, J. Bouck, P. Brokstein, P. Brottier,
K.C. Burtis, D.A. Busam, H. Butler, E. Cadieu, A. Center, I. Chandra, J.M. Cherry, S.

Cawley, C. Dahlke, L.B. Davenport, P. Davies, B. de Pablos, A. Delcher, Z. Deng, A.
Deslattes Mays, I. Dew, S.M. Dietz, K. Dodson, L.E. Doup, M. Downes, S. Dugan-
Rocha, B.C. Dunkov, P. Dunn, K.J. Durbin, C.C. Evangelista, C. Ferraz, S. Ferriera, W.

Fleischmann, C. Fosler, A.E. Gabrielian, N.S. Garg, W.M. Gelbart, K. Glasser, A.

Glodek, F. Gong, J.H. Gorrell, Z. Gu, P. Guan, M. Harris, N.L. Harris, D. Harvey, T.J.
Heiman, J.R. Hernandez, J. Houck, D. Hostin, K.A. Houston, T.J. Howland, M.-H. Wei,
C. Ibegwam, M. Jalali, F. Kalush, G.H. Karpen, Z. Ke, J.A. Kennison, K.A. Ketchum,
B.E. Kimmel, C.D. Kodira, C. Kraft, S. Kravitz, D. Kulp, Z. Lai, P. Lasko, Y. Lei, A.A.
Levitsky, J. Li, Z. Li, Y. Liang, X. Lin, X. Liu, B. Mattei, T.C. McIntosh, M.P. McLeod,
D. McPherson, G. Merkulov, N.V. Milshina, C. Mobarry, J. Morris, A. Moshrefi, S.M.
Mount, M. Moy, B. Murphy, L. Murphy, D.M. Muzny, D.L. Nelson, D.R. Nelson, K.A.
Nelson, K. Nixon, D.R. Nusskern, J.M. Pacleb, M. Palazzolo, G.S. Pittman, S. Pan, J.
Pollard, V. Puri, M.G. Reese, K. Reinert, K. Remington, R.D.C. Saunders, F. Scheeler,
H. Shen, B. C. Shue, I. Siden-Kiamos, M. Simpson, M.P. Skupski, T. Smith, E. Spier,
A.C. Spradling, M. Stapleton, R. Strong, E. Sun, R. Svirskas, C. Tector, R. Turner, E.
Venter, A.H. Wang, X. Wang, Z.-Y. Wang, D.A. Wassarman, G.M. Weinstock, J.
Weissenbach, S.M. Williams, T. Woodage, K.C. Worley, D. Wu, S. Yang, Q. Alison
Yao, J. Ye, R.-F. Yeh, J.S. Zaveri, M. Zhan, G. Zhang, Q. Zhao, L. Zheng, X.H. Zheng,
F.N. Zhong, W. Zhong, X. Zhou, S. Zhu, X. Zhu, H.O. Smith, R.A. Gibbs, E.W. Myers,
G.M. Rubin, and J.C. Venter. 2000. The Genome Sequence of Drosophila melanogaster.

Science 287(5461): 2185-2195.

Alizadeh, F., Karp, R.M., Weisser, D.K., and G. Zweig. 1995. Physical mapping of
chromosomes using unique probes. Algorithmica 13(1/2): 52-76.

Allard, W. J., I. S. Sigal, and R. A. F. Dixon. 1987. Sequence of the gene encoding the human
MI muscarinic acetylcholine receptor. Nucleic Acids Research 15(24): 10604.

Altschul, S.F., Miller, W., Myers, E.W., and D.J. Lipman. 1990. Basic Local Alignment
Search Tool. Journal of Molecular Biology 215: 403-410.

180

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and D.J.
Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research 25: 3389-3402.

Antequera, R. and A. Bird. 1993. Number of CpG islands and genes in human and mouse.
Genetics 90: 11995-11999.

Arratia, R., Lander E. S., Tavare S. and M.S. Waterman. 1991. Genomic mapping by
anchoring random clones: a mathematical analysis. Genomics 11: 806-827.

Batzer, M.A., Deininger, P.L., Hellmann Blumberg, U., Jurka, J., Labuda, D., Rubin, C.M.,
Schmid, C.W., Zietkiewicz, E., and Zuckerkandl, E. 1996. Standardized nomenclature
for Alu repeats. Journal of Molecular Evolution 42: 3-6.

Bassett, D. E., M. S. Boguski, F. Spencer, R. Reeves, S. H. Kim, T. Weaver, and P. Hieter.
1997. Genome Cross-Referencing and XREFDB - Implications for the identification and
analysis of genes mutated in Human Disease. Nature Genetics 15(4): 339-344.

Batzoglou, S., Berger, B., Kleitman, D.J., Lander, E.S., and L. Pachter. Recent developments
in computational gene recognition. 1998. Documenta Mathematica, Extra Volume 1CM
1998 1: 649-658.

Batzoglou, S., Berger, B., Mesirov, J., and E.S. Lander. 1999. Sequencing a Genome by
Walking with Clone-end Sequences: A Mathematical Analysis. Genome Research
9(12): 1163-1174. Abstract in Proceedings of the Fourth Annual International
Conference on Computational Molecular Biology, RECOMB 2000 p.4 5 .

Batzoglou, S. and S. Istrail. 1999. Physical Mapping with Repeated Probes: The Hypergraph
Superstring Problem. Lecture Notes in Computer Science, vol. 164. Special issue on
CPM '99.

Batzoglou, S., Pachter, L., Mesirov, J.P., Berger, B., and E.S. Lander. 2000. Human and
Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction.
Genome Research, In Press. Abstract in Proceedings of the Fourth Annual International
Conference on Computational Molecular Biology, RECOMB 2000 p.46-53.

Benson, G. 1997. Sequence alignment with tandem duplication. Journal of Computational
Biology 4(3): 351-367.

Boguski, M. S., D. R. Cox, and R. M. Myers. 1996. Genomes and evolution - Overview.
Current Opinion in Genetics & Development 6(6): 683-685.

Booth K. S. and Lueker G. S. 1976. Testing for the consecutive ones property, interval graphs
and planarity using PQ-tree algorithms. Journal of Computer Systems Science 13: 335-
379.

181

Burge, C. 1997. Identification of genes in human genomic DNA. Ph.D. dissertation, Stanford
University, Department of Mathematics.

Burge, C. and S. Karlin. 1997. Prediction of complete gene structures in human genomic

DNA. Journal of Molecular Bioogy 268: 78-94.

Burset, M. and R. Guigo. 1996. Evaluation of gene structure prediction programs. Genomics

34(3): 353-367.

Cech, T.R. 1993. Catalytic RNA: structure and mechanism. Biochemical Society Transaction

21: 229-234.

The C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans:

a platform for investigating biology. Science 282: 2012-2018.

Celeste, A. J., V. Rosen, J. L. Buecker, R. Kriz, E. A. Wang, and J. M. Wozney. 1986. Isolation

of the human gene for bone gla protein utilizing mouse and rat cDNA clones. The EMBO

Journal. 5(8): 1885-1890.

Collins, F., and D. Galas. 1993. A new five-year plan for the U.S. Human Genome Project.

Science 262(5): 43-46.

Collins, J.E., Cole, C.G. , Smink, L .J. , Garrett, C.L., Leversha, M.A., Soderlund, C.A., Maslen,
G.L., Everett, L.A., Rice, C.M., Coffey, A.J., Gregory, S. G., Gwilliam, R., Dunham, A.,
Davies, A.F., Hassock, S., Todd, C.M., Lehrach, H, Hulsebos, T.J.M., Weissenbach, J.,
Morrow, B., Kucherlapati, R.S., Wadey. R., Scambler, P.J., Kim, U-J., Simon, M.I., Carter,
N.P., Durbin, R, Dumanski, J.P., Bentley, D.R., and I. Dunham. 1995. A High Resolution
Integrated Yeast Artificial Chromosome Clone Map of Human Chromosome 22. Nature

377: 367-379.

Collins, F.S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L., and the

members of the DOE and NIH planning groups. 1998. New goals for the U.S. Human

Genome Project. Science 282(23): 682-689.

Cormen, T., Leiserson, C.E., Rivest, R.L. 1990. Introduction to Algorithms. MIT Press.

Coulson, A., Sulston, J., Brenner, S., and J. Karn. 1986. Towards a physical map of the

genome of the nematode Caenorhabditis elegans. Proceedings of the National Academy

of Science. 83: 7821-7825.

Dayhoff, M., R. M. Schwartz, and B. C. Orcutt. 1978. A model of evolutionary change in

proteins. Atlas of Protein Sequence and Structure 5: 345-352.

182

Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, 0., and S.L. Salzberg. 1999.
Alignment of whole genomes. Nucleic Acids Research 27(11): 2369-2376.

Delphin, M. E., P. A. Stockwell, W. P. Tate, and C. M. Brown. 1999. Transterm, the

translational signal database, extended to include full coding sequence and untranslated

regions. Nucleic Acids Research 27: 293-294.

Dujon, B. 1996. The yeast genome project: what did we learn? Trends in Genetics 12: 263-

270.

Edwards, A., and C.T. Caskey. Closure strategies for random DNA sequencing. 1991.

Methods: a Companion to Methods Enzymology 3: 41-47, Academic Press, New York.

Erdos, P. 1993. Personal communication.

Ewing, B. and P. Green. 1998. Genome Research 8: 186-194.

Fasulo, D., Jiang, T., Karp, R.M., Settergren, R.J., and E. Thayer. 1999. Algorithmic
Approach to Multiple Complete Digest Mapping. Journal of Computational Biology

6(2).

Fishburn, P. 1985. Interval orders and interval graphs. Wiley, New York.

Fleischmann, R.D., Adams, M.D., White, 0., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R.,
Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., McKenny, K., Sutton, G.,
FitzHugh, W., Fields, C., Gocayne, J.D., Scott, J., Shirley, R., Liu, L.I., Glodek, A.,
Kelly, J.M., Weidman, J.F., Phillips, C.A., Spriggs, T., Hedblom, E., Cotton, M.D.,
Utterback, T.R., Hanna, M.C., Nguyen, D.T., Saudek, D.M., Brandon, R.C., Fine, L.D..
Fritchman, J.L., Fuhmann, J.L., Geoghagen, N.S.M., Gnehm, C.L., McDonald, L.A.,
Small, K.V., Fraser, C.M., Smith, H.O., and J.C. Venter. 1995. Whole-genome random

sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496-511.

Foote, S., Vollrath, D., Hilton, A., and D. Page. 1992. The human Y chromosome:
Overlapping DNA clones spanning the euchromatic region. Science 258: 60-66.

Gale, M.D. and K.M. Devos. 1998. Plant comparative genetics after 10 years. Science

282(23): 656-659.

Gelfand, M. S., A. A. Mironov and P. A. Pevzner. 1996. Gene recognition via spliced

sequence alignment. Proceedings of the National Academy of Science 93: 9061-9066.

Ghosh, S.P. 1975.Consecutive storage of relevant records with high redundancy.

Communications of the ACM 18: 464-471.

183

Goebel, S.J., Johnson, G.P., Perkus, M.E., Davis, S.W., Winslow, J.P., and E. Paoletti. 1990.
The complete DNA sequence of Vaccinia virus. Virology 179: 247-266.

Green E. D. and P. Green. 1991. Sequence-tagged site (STS) content mapping of human
chromosomes: theoretical considerations and early experiences. PCR Methods and
Applications 1: 78-90.

Green, P. 1997. Against a whole-genome shotgun. Genome Research 7: 410-417.

Greenberg, D.S., and S. Istrail. 1995. Physical mapping by STS hybridization: algorithmic
strategies and the challenge of software evaluation. Journal of Computational Biology
2(2): 219-274.

Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C., and W.M. Gelbart. 1993. An
Introduction to Genetic Analysis. Fifth Edition, W.H.Freeman and Company, New York.

Hardison, R. C., J. Oeltjen, and Webb Miller. 1997. Long Human-Mouse Sequence
Alignments Reveal Novel Regulatory Elements: A Reason to Sequence the Mouse
Genome. Genome Research 7: 959-966.

Heusel, J. W., E. M. Scarpati, N. A. Enkins, D. J. Gilbert, N. G. Copeland, S. D. Shapiro, and T.
J. Ley. 1993. Molecular cloning, chromosomal location, and tissue-specific expression of
the murine cathepsin G gene. Blood. 81(6): 1614-1623.

Hodgkin, J., Horvitz, H.R., Jasny, B.R., and J. Kimble. C.elegans: sequence to biology. 1998.
Science (11282): 2011.

Hudson. T. J., L. D. Stein, S. S. Gerety, J. Ma, A. B. Castle, J. Silva, D. K. Slonim, R. Baptista,
L. Kruglyak, S.H. Xu, X. Hu, A. M. E. Colbert, C. Rosenberg, M. P. Reeve-Daly, S.
Rozen, L. Hui, X. Wu, C. Vestergaard, K. M. Wilson, J. S. Bae, S. Maitra, S. Ganiatsas, C.
A. Evans, M. M. DeAngelis, and K. A. Ingalls. 1995. An STC-based map of the human
genome. Science 270(5): 1945-1954.

Hunt, A.R.; J. E. Collins; R. Bruskiewich; D. M. Beare; M. Clamp; L. J. Smink; R. Ainscough;
J. P. Almeida; A. Babbage; C. Bagguley; J. Bailey; K. Barlow; K. N. Bates; 0. Beasley; C.
P. Bird; S. Blakey; A. M. Bridgeman; D. Buck; J. Burgess; W. D. Burrill; J. Burton; C.
Carder; N. P. Carter; Y. Chen; G. Clark; S. M. Clegg; V. Cobley; C. G. Cole; R. E. Collier;
R. E. Connor; D. Conroy; N. Corby; G. J. Coville; A. V. Cox; J. Davis; E. Dawson; P. D.
Dhami; C. Dockree; S. J. Dodsworth; R. M. Durbin; A. Ellington; K. L. Evans; J. M. Fey;
K. Fleming; L. French; A. A. Garner; J. G. R. Gilbert; M. E. Goward; D. Grafham; M. N.
Griffiths; C. Hall; R. Hall; G. Hall-Tamlyn; R. W. Heathcott; S. Ho; S. Holmes; S. E. Hunt;
M. C. Jones; J. Kershaw; A. Kimberley; A. King; G. K. Laird; C. F. Langford; M. A.
Leversha; C. Lloyd; D. M. Lloyd; I. D. Martyn; M. Mashreghi-Mohammadi; L. Matthews;
0. T. McCann; J. McClay; S. McLaren; A. A. McMurray; S. A. Milne; B. J. Mortimore; C.
N. Odell; R. Pavitt; A. V. Pearce; D. Pearson; B. J. Phillimore; S. H. Phillips; R. W. Plumb;

184

H. Ramsay; Y. Ramsey; L. Rogers; M. T. Ross; C. E. Scott; H. K. Sehra; C. D. Skuce; S.
Smalley; M. L. Smith; C. Soderlund; L. Spragon; C. A. Steward; J. E. Sulston; R. M.
Swann; M. Vaudin; M. Wall; J. M. Wallis; M. N. Whiteley; D. Willey; L. Williams; S.
Williams; H. Williamson; T. E. Wilmer; L. Wilming; C. L. Wright; T. Hubbard; D. R.
Bentley; S. Beck; J. Rogers; N. Shimizu; S. Minoshima; K. Kawasaki; T. Sasaki; S.
Asakawa; J. Kudoh; A. Shintani; K. Shibuya; Y. Yoshizaki; N. Aoki; S. Mitsuyama; B. A.
Roe; F. Chen; L. Chu; J. Crabtree; S. Deschamps; A. Do; T. Do; A. Dorman; F. Fang; Y.
Fu; P. Hu; A. Hua; S. Kenton; H. Lai; H. I. Lao; J. Lewis; S. Lewis; S.-P. Lin; P. Loh; E.
Malaj; T. Nguyen; H. Pan; S. Phan; S. Qi; Y. Qian; L. Ray; Q. Ren; S. Shaull; D. Sloan; L.
Song; Q. Wang; Y. Wang; Z. Wang; J. White; D. Willingham; H. Wu; Z. Yao; M. Zhan;
G. Zhang; S. Chissoe; J. Murray; N. Miller; P. Minx; R. Fulton; D. Johnson; G. Bemis; D.
Bentley; H. Bradshaw; S. Bourne; M. Cordes; Z. Du; L. Fulton; D. Goela; T. Graves; J.
Hawkins; K. Hinds; K. Kemp; P. Latreille; D. Layman; P. Ozersky; T. Rohlfing; P. Scheet;
C. Walker; A. Wamsley; P. Wohldmann; K. Pepin; J. Nelson; 1. Korf; J. A. Bedell; L.
Hillier; E. Mardis; R. Waterston; R. Wilson; B. S. Emanuel; T. Shaikh; H. Kurahashi; S.
Saitta; M. L. Budarf; H. E. McDermid; A. Johnson; A. C. C. Wong; B. E. Morrow; L.
Edelmann; U. J. Kim; H. Shizuya; M. 1. Simon; J. P. Dumanski; M. Peyrard; D. Kedra; E.
Seroussi; I. Fransson; I. Tapia; C. E. Bruder; K. P. O[@squo]Brien; 1. Dunham. 1999. The
DNA sequence of human chromosome 22. Nature 402(6761): 489-495.

Hurowitz, E. 1999. httpj /cmgm. stanford. edu/~hurowitz/chemotaxis/chemo I.html.

Jang, W., A. Hua, S. V. Spilson, W. Miller, B. A. Roe, and M. H. Meisler. 1999. Comparative
Sequence of Human and Mouse BAC Clones from the mnd2 Region of Chromosome
2pl 3. Genome Research 9: 53-61

Karp, R. M. 1993. Mapping the genome: some combinatorial problems arising in molecular
biology. SODA 1993 278-285.

Klenk, H.P., Clayton, R.A., Tomb, J., White, 0., Nelson, K.E., Ketchum, K.A., Dodson, R.J.,
Gwinn, M., Hickey, E.K., Peterson, J.D., Richardson, D.L., Kerlavage, A.R., Graham,
D.E., Kyrpides, N.C., Fleischmann, R.D., Quackenbush, J., Lee, N.H., Sutton, G.G., Gill,
S., Kirkness, E.F., Dougherty, B.A., McKenney, K., Adams, M.D., Loftus, B., Peterson,
S., Reich, C.I., McNeil, L.K., Badger, J.H., Glodek, A., Zhou, L., Overbeek, R.,
Gocayne, J.D., Weidman, J.F., McDonald, L., Utterback, T., Cotton, M.D., Spriggs, T.,
Artiach, P., Kaine, B.P., Sykes, S.M., Sadow, P.W., D'Andrea, K.P., Bowman, C., Fujii,
C., Garland, S.A., Mason, T.M., Olsen, G.J., Fraser, C.M., Smith, H.O., Woese, C.R. and
J.C. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate-
reducing archaeon Archaeoglobus fulgidus. Nature 390(6658): 364-370.

Koop, B. F. 1995. Human and rodent DNA sequence comparisons: a mosaic model of human
evolution. TIG 11(9): 369-379.

Koop, B. F. and L. Hood. 1994. Striking sequence similarity over almost 100 kilobases of
human and mouse T-cell receptor DNA. Nature Genetics 7: 48-53.

185

Kou, A.T. 1977. Polynomial complete consecutive information retrieval problems. SIAM

Journal of Computing 6(1): 67-75.

Krapivsky, P.L. 1992. Kinetics of Random Sequential Parking on a Line. Journal of Statistical

Physics 69: 135-150.

Kumar, A., A. Toscani, S. Rane, and E. P. Reddy. 1996. Structural organization and

chromosomal mapping of JAK3 locus. Oncogene 13(9): 2009-2014.

Lander, E. S. 1997. The new genomics- global views of biology. Science 274(5287): 536-539.

Lander, E.S. and M.S. Waterman. 1988. Genomic mapping by fingerprinting random clones:

a mathematical analysis. Genomics 2: 231-239.

Lander, E.S. and R.A. Weinberg. 2000. Genomics: journey to the center of biology. 2000.

Science 287(5459): 1777-1782.

Lamerdin, J. E., M. A. Montgomery, S. A. Stilwagen, L. K. Scheidecker, R. S. Tebbs, K. W.
Brookman, L. H. Thompson, and A. V. Carrano. 1995. Genomic Sequence Comparison

of the Human and Mouse XRCCI DNA Repair Gene Regions. Genomics 25: 547-554.

Leslie, N. D., E. B. Immerman, J. E. Flach, M. Florez, J. L. Fridovich-Keil, and L. Elsas. 1992.
The human galactose-l phosphate uridyltransferase gene. Genomics 14: 474-480.

Lewin, B. 1996. Genes VI. Oxford University Press.

Lin, X, Samir Kaul; S. Rounsley; T.P. Shea; M.-I. Benito; C.D. Town; C.Y. Fujii; T. Mason;
C.L. Bowman; M. Barnstead; T.V. Feldblyum; C.R. Buell; K.A. Ketchum; J. Lee; C.M.
Ronning; H.L. Koo; K.S. Moffat; L.A. Cronin; M. Shen; G. Pai; S. Van Aken; L.
Umayam; L.J. Tallon; J.E. Gill; M.D. Adams; A.J. Carrera; T.H. Creasy; H.M.
Goodman; C.R. Somerville; G.P. Copenhaver; D. Preuss; W.C. Nierman; 0. White; J.A.
Eisen; S.L. Salzberg; C.M. Fraser; J.C. Venter. 1999. Sequence and analysis of

chromosome 2 of the plant Arabidopsis thaliana. Nature 402(6763): 761-768.

Lipski, W.Jr. 1976. Information storage and retrieval - mathematical foundations II.

Theoretical Computer Science 3: 183-212.

Lipski, W.Jr. 1978. On strings containing all subsets as substrings. Discrete Mathematics 21:

253-259.

Lodish, H., Baltimore, D., Berk, A., Zipursky, S.L., Matsudaira, P., and J. Darnell. 1998.
Molecular Cell Biology. Fifth Edidion. Scientific American Books, New York.

186

Lukashin A. V. and M. Borodovsky. 1998. GENEMARK.HMM: new solutions for gene
finding. Nucleic Acids Research 26(4): 1107-1115.

Makalowski, W. and M. S. Boguski. 1998a. Synonymous and Nonsynonymous Substitution
Distances are Correlated in Mouse and Rat Genes. Journal of Molecular Evolution 47(2):
119-121.

Makalowski, W. and M. S. Boguski. 1998b. Evolutionary parameters of the transcribed
mammalian genome: An analysis of 2,820 orthologous rodent and human sequences.
Proceedings of the National Academy of Science 95: 9407-9412.

Makalowski, W., J. Zhang, and M. S. Boguski. 1996. Comparative analysis of 1196
orthologous mouse and human full-length mRNA and protein sequences. Genome
Research 6: 8456-857.

Marshall Graves, J.A. 1998. ILAR Journal 39: 48.

Maxam, A.M., and W. Gilbert. 1977. A new method for sequencing DNA. Proceedings of the
National Academy of Science 74: 560-564.

McCullough, A.J., and S.M. Berget. 1997. G triplets located throughout a class of small
vertebrate introns enforce intron borders and regulate splice site selection. Molecular and
Cellular Biology 17(8): 4562-4571.

Meinke, D.W., Cherry, M.J., Dean, C., Rounsley, S.D., and M. Koornneef. 1998. Arabidopsis
thaliana: a model plant for genome analysis. Science 282(5389): 662-882.

Myers, E.W. 1999. Whole-Genome DNA Sequencing. Computing in Science and Engineering
1(3): 33-43.

Myers, E.W., G.G. Sutton, A.L. Delcher, I.M. Dew, D.P. Fasulo, M.J. Flanigan, S.A. Kravitz,
C.M. Mobarry, K.H.J. Reinert, K.A. Remington, E.L. Anson, R.A. Bolanos, H.-H. Chou,
C.M. Jordan, A.L. Halpern, S. Lonardi, E.M. Beasley, R.C. Brandon, L. Chen, P.J. Dunn,
Z. Lai, Y. Liang, D.R. Nusskern, M. Zhan, Q. Zhang, X. Zheng, G.M. Rubin, M.D.
Adams, and J.C. Venter. 2000. A Whole-Genome Assembly of Drosophila. Science
287(5461): 2196-2204.

Nagata, S., M. Tsuchiya, S. Asano, 0. Yamamoto, Y. Hirata, N. Kubota, M. Oheda, H. Nomura,
and T. Yamazaki. 1986. The chromosomal gene structure and tho mRNAs for human
granulocyte colony-stimulating factor. The EMBO Journal 5(3): 575-581.

Needleman, S.B. and C.D. Wunch. 1970. A general method applicable to the search for
similarities in the amino acid sequences of two proteins. Journal of Molecular Biology
48:443-453.

187

Nelson D.O. and T.P. Speed. 1994. Statistical issues in constructing high-resolution physical

maps. Statistical Science 9(3): 334-354.

O'Brien, S.J., Menotti-Raymond, M., Murphy, W.J., Nash, W.G., Wienberg, J., Stanyon, R.,
Copeland, N.G., Jenkins, N.A., Womack, J.E., and J.A. Marshall Graves. 1999. The
promise of comparative genomics in mammals. Science 286(5439): 458-481.

O'Brien, S.J., Seuanez, H.N., and J.C. Womack. 1988. Annual Reviews of Genetics 22: 323.

Oda, K., Katsuyuki, Y., Ohta, E., Nakamura, Y., Takemura, M., Nozato, N., Akashi, K.,

Kanegae, T., Ogura, Y., Kohchi, T., and K. Ohyama. 1992. Gene organization deduced

from the complete sequence of Liverwort Marchantia polymorpha mitochondrial DNA.
Journal of Molecular Biology 223: 1-7.

Oeltjen, J. C., T. Malley, D. M. Muzny, W. Miller, R. A. Gibbs, and J. W. Belmont. 1997.
Large Scale Comparative Sequence Analysis of the Human and Murine Bruton's

Tyrosine Kinase Loci Reveals Conserved Regulatory Domains. Genome Research 7:

315-329.

Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y.,
Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., and H. Ozeki. 1986. Chloroplast gene
organization deduced from complete sequence of livewort Marchantia polymorpha
chloroplast DNA. Nature 322: 572-574.

Oliver, S.G., et al. 1992. The complete DNA sequence of yeast chromosome III. Nature 357:
38-46.

Olson, M.V., Dutchik, J.E., Graham, M.Y., Brodeur, G.M., Helms, C., Frank, M., MacCollin,
M., Scheinman, R., and T. Frank. 1986. Random-clone strategy for genomic restriction

mapping in yeast. Proceedings of the National Academy of Science 83: 7826-7830.

Pachter, L.S. 1999. Domino tiling, gene recognition, and mice. Ph.D. dissertation MIT

Department of Mathematics.

Pachter, L., Batzoglou, S., Spitkovsky, V.1., Beebee, W., Lander, E.S., Kleitman, D.J., and B.

Berger 1999. A dictionary based approach for gene annotation. Journal of

Computational Biology (6) 3-4: 419-430. Abstract in Proceedings of the Third Annual

International Conference in Computational Molecular Biology, RECOMB '99.

Papadimitriou, C.H. 1994. Computational Complexity. Addison-Wesley Publishing Company.

Papadimitriou, C.H. and M. Yannakakis. 1993. The traveling salesman problem with distances
one and two. Mathematics of Operations Research 18: 1-11.

188

Phizicky, E.M., and C.L. Greer. 1993. Pre-tRNA splicing: variation on a theme or exception
to the rule? Trends in Biochemical Science 18: 31-34.

Riedy, M. C., A. S. Dutra, T. B. Blake, W. Modi, B. L. Lal, J. Davis, A. Bosse, J. J. O'Shea,
and J. A. Johnston. 1996. Genomic sequence, organization, and chromosomal
localization of human JAK3. Genomics 37: 57-61.

Roach, J. 1995. Random subcloning. Genome Research 5: 464-473.

Roest Crollius, H., Jaillon, 0., Dasilva, D., Bouneau, L., Fizames, C., Billault, A., Bernot, A.,
Quetier, F., Weissenbach, J., and W. Saurin. 1999. Exon Detection by Comparison
Between Two Distant Vertebrate Genome Sequences. The Second Georgia Tech
International Conference in Bioinformatics, Poster.

Ross, S.M. 1970. "Applied probability models with optimization applications". Holden-Day,
San Fransisco.

Rubin, G.M. 1996. The Drosophila Genome Project. Genome Research 6: 71-79.

Rubin, G.M., M.D. Yandell, J.R. Wortman, G.L. G. Miklos, C.R. Nelson, I.K. Hariharan,
M.E. Fortini, P.W. Li, R. Apweiler, W. Fleischmann, J.M. Cherry, S. Henikoff, M.P.

Skupski, S. Misra, M. Ashburner, E. Birney, M.S. Boguski, T. Brody, P. Brokstein, S.E.
Celniker, S.A. Chervitz, D. Coates, A. Cravchik, A. Gabrielian, R.F. Galle, W.M.
Gelbart, R.A. George, L.S.B. Goldstein, F. Gong, P. Guan, N.L. Harris, B.A. Hay, R.A.
Hoskins, J. Li, Z. Li, R.O. Hynes, S.J.M. Jones, P.M. Kuehl, B. Lemaitre, J.T. Littleton,
D.K. Morrison, C. Mungall, P.H. O'Farrell, O.K. Pickeral, C. Shue, L.B. Vosshall, J.
Zhang, Q. Zhao, X.H. Zheng, F. Zhong, W. Zhong, R. Gibbs, J.C. Venter, M.D. Adams,
and S. Lewis. 2000. Comparative Genomics of the Eukaryotes. Science 287(5461): 2204-
2215.

Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J.H., and B.A. Roe. 1980. Cloning in
single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular
Biology 143: 161-178.

Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F., and G.B. Petersen. 1982. Nucleotide
sequence of bacteriophage X DNA. Journal of Molecular Biology 162: 729-773.

Sanger, F., Nickolen, S., and A.R. Coulson. 1977. DNA sequencing with chain-terminating
inhibitors. Proceedings of the National Academy of Science 74: 5463-5467.

Shamir, R. 1997. Personal communication.

Sharp, P.A. and C.B. Burge. 1997. Classification of introns. U2-type or U 12-type. Cell 91:
875-879.

189

Shehee, W. R., L. Loeb, N. B. Adey, F. H. Burton N. C. Casavant, P. Cole, C. J. Davies, R. A.
McGraw, S. A. Schichman, D. M. Severynse, C. F. Voliva, F. W. Weyter, G. B. Wisely,
M. H. Edgell, and C. A. Hutchison. 1989. Nucleotide Sequence of the BALB/c Mouse p-
Globin Complex. Journal of Molecular Biology 205: 41-62.

Sherman, F. 1997. Yeast genetics. The Encyclopedia of Molecular Biology and Molecular
Medicine 6: 302-325. Edited by R. A. Meyers, VCH Pub. Weinheim, Germany, 1997.
Also in h: /www.urnic.rochester.edu/siid/biochemiyeast/.

Schmid, C. W. 1996. Alu: structure, origin, evolution, significance, and function of one-tenth
of human DNA. Progress Nucleic Acids Research Molecular Biology 53: 283-319.

Schuller, M.K., C., Wambutt, R., Murphy, G., Volckaert, G., Pohl, T., Dusterhoft A,
Stiekema, W., Entian, K.D., Terryn, N., Harris, B., Ansorge, W., Brandt, P., Grivell, L.,
Rieger, M., Weichselgartner, M., de Simone, V., Obermaier, B., Mache, R., Muller, M.,
Kreis, M., Delseny, M., Puigdomenech, P., Watson, M., McCombie, W.R., et al. 1999.
Nature 402(6763): 769-77.

Siegel, A.F., Trask, B., Roach, J., Mahairas, G.G., Hood, L. and van der Engh, G. 1998.
Analysis of sequence-tagged-connector strategies for DNA sequencing. Genome
Research 9: 297-307.

Smit, A.F.A. 1996. Origin of interspersed repeats in the human genome. Current Opinion
Genetic Development 6(6): 743-749.

Smit, A.F.A. 1995. Origin and evolution of mammalian interspersed repeats. Ph.D.
dissertation, USC.

Smit, A.F.A. and A.D. Riggs. 1995. MIRs are classic, tRNA-derived SINEs that amplified
before the mammalian radiation. Nucleic Acids Research 23: 98-102.

Smith, T.F. and M.S. Waterman. 1981. Identification of common molecular subsequences.
Journal of Molecular Biology 147: 195-197.

Stryer, L. 1996. Biochemistry. Fourth Edition, W.H. Freeman and Company, New York.

Venter, J.C., Smith, H.O., and Hood, L. 1996. A new strategy for genome sequencing. Nature
381: 364-366.

Watson, J.D. and F.H.C. Crick. 1953a. Molecular structure of nucleic acid. A structure for
deoxyribose nucleic acid. Nature 171: 737-738.

Watson, J.D. and F.H.C. Crick. 1953b. Genetic implications of the structure of
deoxyribonucleic acid. Nature 171: 964-967.

190

Weber, J.L. and E.W. Myers. 1997. Human whole-genome shotgun sequencing. Genome
Research 7: 401-409.

Yoneda, K., D. Hohl, 0. W. McBride, M. Wang, K. U. Cehrs, W. W. Idler, and p. M. Steinert.
1992. The human loricrin gene. The Journal of Biological Chemistry 267(25): 18060-
18066.

Zhang, J. and T. L. Madden. 1997. PowerBLAST: A New Network BLAST Application for
Interactive or Automated Sequence Analysis and Annotation. Genome Research 7: 649-
656.

httpj//theorv.lcs.nitedu/crosspecies/. 2000. GLASS and ROSETTA webpage.

httipi/Ag. Arizona. Edu/tree/. 1999. Tree of Life webpage.

http_://www. I WRAI. com. 1999. PHRAP system webpage.

http/ www.sanger.ac .uk/Software/Wise2/. 1999. Wise2 webpage.

http //wwwncbaininnih.gov/. 1998. National Center for Biology Information webpage.

Lttp /wwwncbi.nim ih. gov/BLAST/. 1999. BLAST program family webpage.

http: //ftpgenomewashmgtonj du/R M/RepeatMasker.html. 1999. RepeatMasker webpage.

191

