
Learning Query Behavior in the Haystack System

by

Wendy S. Chien

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000

© Wendy S. Chien, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part. MA

A uthor ....... e . . ... .........

Department f Electrical

Certified

OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES
...................................
Engineering and Computer Science

May 22, 2000

by.
David Karger

Associate Professor
Thesis SupervisorA

Certified by
Lynn Andrea Stein
Associate Professor

-- ,zTheswrSupervisor

Accepted by...... .. ......
Arthur C. Smith

Chairman, Department Committee on Graduate Students

TTAICTITITE

/

-/



Learning Query Behavior in the Haystack System

by

Wendy S. Chien

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2000, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science

Abstract

Haystack is a personalized information retrieval system that allows users to store,
maintain, and query for information. This thesis describes how learning is added
to the system so that when a user makes a query on a topic similar to a previous
query, the system can use the relevance feedback information from before to provide
an improved result set for the current query. The learning module was designed to
be modular and extensible so more sophisticated learning algorithms and techniques
can be easily implemented in the future. Testing of our system showed that learning
based on relevance feedback somewhat improved the results of the queries.
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Chapter 1

Introduction

As we advance further in the information age, the amount of data we keep on our

personal computers or accounts is increasing at a rapid rate. This phenomenon is

the result of several factors including the declining price of storage, the increase

in popularity of the Internet, and new forms of digital media. Because storage is

becoming increasingly inexpensive, we are able to store massive amounts of data.

The vastness of the Internet also gives us access to a large amount of information

that only increases as more people go online. The emergence of digital forms of

photographs, audio clips, and video clips only adds to the mass of data available and

collected. The combined result of a large storage space and access to a great number

of files on a wide range of topics and formats is a body of information so large that

we will no longer be able to easily keep track of all of our own data. Not only will

we need tools to search through the Internet as we do now, but soon we will also

need tools to search through our own data repositories. Unfortunately, most current

search engines are geared towards a generic user and make no effort to utilize the

characteristics of the user to increase query performance.

Like these traditional search engines, the main goal of the Haystack System is

to solve all the above mentioned problems, but unlike the other systems, Haystack

seeks to improve the search experience by personalizing the process. Personalization

occurs by maintaining a data repository, or what is called a haystack in the Haystack

system, for each user that contains all the documents archived, all the queries made
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and any other manipulation of data made by the user.

1.1 Personalization in the Haystack System

By keeping a personal haystack for each user, we can improve the search process in

two main ways. The first method is by running the query first locally on the user's

own haystack and then gradually increasing the scope of the files being queried. For

example, the query is initially run on the user's own haystack, then on the user's

associates' haystacks, and finally it is run on a universal set (the web). This sequence

is based on the assumption that the user would like and trust, and therefore find more

useful, documents collected by themselves or people they know more than a random

document found elsewhere.

A second way in which personalization helps improve searching, and the path

that we will explore in this thesis, is by learning about the characteristics of each

user through which documents the user says he finds relevant and useful. Because

the Haystack system is designed for individual users, we are able to observe the query

behavior of each user over the entire time the user uses the system. This means

that we can collect a large amount of data unique to each user regarding how he

evaluates the results from each query he makes. Using this user-specific data we can

learn about the user's interests and improve the result sets of all the future queries

this user makes. Most other systems which attempt learning either learn over only

a single query session for a user, which means they have a limited amount of data,

or generalize and apply what they have learned for all users to each individual user,

meaning their data is not necessarily accurate. Personalization in Haystack allows us

to provide more accurate query results because we are able to amass a large amount

of data specific to each user to help in improving the results of their own queries.
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1.2 Learning

With all this data about the user, the question is, how can we use it to improve the

query results we return to the user when the user makes a similar query in the future?

(Improving the query results means returning more relevant documents than before

and returning relevant documents with higher rankings than before.) To answer this

question, let us step back and examine the idea of information retrieval. In the

problem of information retrieval, we are given a query that is a description of a set

of documents the user wishes us to return. Unfortunately, usually the description is

not specific enough or clear enough to uniquely identify a set of documents. Thus,

we are left trying to compare documents to a query, even though the query string is

too short to be a good example of a relevant document.

Here is where relevance feedback, the relevance ratings the user gave the docu-

ments, can help us. By marking a document as relevant, the user is actually describing

the query with the document because he is saying that that document matches the

query. This new description can help us in multiple ways. First we can expand the

query description to include relevant attributes so when issuing the query again, doc-

uments that have the new attributes will be returned. Secondly, now that our query

also has a document-formulated description, we can produce a ranked list of relevant

documents by comparing the documents in the corpus to our query to see if they

match and therefore are relevant to the query.

The question that follows is then, how do we know how to match documents to a

query even if it is described by documents? Again, if we step back and think about

exactly what we are trying to accomplish, we notice that we would create the ideal

result set by dividing the documents into relevant and non-relevant sets and only

returning the relevant set. This problem then is a perfect example of a standard

machine learning classification problem. A classification problem is one where we

have a set of data made up of several classes or types and after being given "training"

examples of each type, we need to be able to classify any new data point we are

given. In our case, the data set is the set of all the documents in the user's corpus,
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the two classes are relevant and non-relevant documents, and the training examples

are the relevance data that we are given by the user. Therefore, in order to solve our

problem, we need only to apply classification algorithms.

1.3 Learning in Haystack

As we have described above, we can apply the information we gather about users

from the the previous queries they made to improving the results of all their future

queries in a variety of ways. In this thesis, we will focus on learning from previous

queries on a topic how to improve the rankings of documents when given a query

on the same or a similar topic. In this case we can use the information about which

subset of documents the user has found relevant in the previous queries that were

similar to the current one to improve the results returned for the current query. For

example, if the user has queried on the topic of "cars" in the past and said they liked

documents that were mostly on German cars then when they query for cars again, we

can use the information that they were interested in German cars to give documents

about German cars higher rankings.

Another idea, which we will not pursue in this thesis, but would be interesting

to study later, is learning from all previous queries how to improve the rankings of

files for a query on a brand new topic. We would still be able to improve the search

results in this case by finding common traits between this query and previous ones.

An example of such a case is if the user makes a query on airplanes. Suppose in

the past, the user has searched for cars and motorcycles, and for each he was only

interested in articles which discussed the engines of these vehicles. From this we can

guess that the user is interested in engines in general, so when he looks for articles

on airplanes, he is most interested in articles about airplane engines.
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1.4 Learning Module

To implement the learning tasks described above, we created a new module in the

system because Haystack currently does not support learning. The module works

closely with the module that handles the query processing. The responsibilities of

the learning module include gathering the relevance information from the user, storing

it, and using several basic relevance feedback techniques and classification algorithms

to produce a better result set. Because this is the initial attempt at learning in the

system, much of the work of this thesis is not focused on the actual algorithms we

use, but rather on the design of infrastructure in Haystack that supports learning and

future more sophisticated algorithms.

1.5 Problem Definition and Thesis Overview

The problem we are trying to solve is given a query from the user, how should we

modify it based on past information, and how should we provide a better set of

rankings from that information. In this thesis, we will only concentrate on using past

data on queries that are on topics the system has seen before. Because none of the

infrastructure needed for learning is in place, much of the work in this thesis is in

designing the learning module. Testing is done to show that the implementation is

correct and to show the usefulness of having machine learning in the system.

In the next chapter, we cover in more detail the relevant work done in machine

learning research. In chapter 3 we discuss the Haystack System. Chapter 4 describes

the design of the learning module, while chapter 5 goes over the actual implementation

of the learning module. In chapter 6 we review the correctness testing done. Chapter

7 suggests future work and draws conclusion from this research.
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Chapter 2

Machine Learning Background and

Related Work

Many approaches have been tried in applying machine learning to information re-

trieval. In this section we review some of the standard ideas in using the vector space

model, relevance feedback, and query expansion.

2.1 Vector Space Model

Many learning algorithms for information retrieval represent documents using the

vector space model. In this model, each document is represented by a vector where

each element of the vector maps to an attribute or feature of the document. An

example of an attribute is the number of times a particular word appears in the

document, though we should be careful to note that features need not be only words.

Choosing which features to put in the vector is an important decision because it

determines which attributes of a document the learning algorithm will consider. Also,

since many learning algorithms assume independence between features, not including

too many similar dependent attributes is also important.

Two techniques are commonly used in selecting the terms used in the vector when

dealing with text queries. The first method is the elimination of stop words. Stop
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words are words like "the", "and", "of", etc. that appear in many documents and

do not provide any insight about the content of a document. Removing these words

removes any distortion in the results that might occur because of these words. The

second technique is called stemming. In stemming, only one term is used to represent

words that have the same stem, but are in different forms (e.g., eat vs. eating). This

method therefore maintains a more accurate count of the number of times a word ap-

pears because it counts all the different forms of a word as the same word. Stemming

is especially important because of the term independence assumption many learning

algorithms use. This assumption is clearly incorrect, but is applied because it greatly

simplifies the problem and reduces the computation needed. So if stemming were not

used, and a query term was "eat", then all instances of "eating" in a document would

have no bearing on the query score of the document because the algorithm would not

recognize that "eat" and "eating" are the same word. Since we know we are working

with this independence assumption, we ought to remove cases of dependence which

are easy to detect and rectify. This includes the counting of the same word in two

different forms as two separate unrelated words. The final words found in the vector

are all of those that appear in the documents and remain after applying these two

techniques.

2.2 Relevance Feedback

Relevance feedback refers to the situation where the system receives feedback from

the user about which documents the user found to fit the query. Previous studies

[H92, SB90] have shown that users tend to input queries which often do not provide

enough information to uniquely and accurately identify the topic for which the user

is searching. User queries can be inadequate for a variety of reasons, including being

too short so not all the features pertinent to the query are present, the user and

the system interpret the features in two different ways, or simply query formulations

and documents are different concepts and cannot be easily compared. For all these
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reasons, having examples of documents the user finds relevant to the query is useful

to further describe the topic the user means to define with the query.

Traditionally, relevance feedback has been used in two ways to help improve the

result set for future queries, query expansion and reranking the documents returned.

Query expansion is the process of adding terms to the query to refine or redefine the

scope of the results. Reranking is generally done by using the relevant documents as

examples of what the user is looking for and then ranking the rest of the documents

based on how similar they are to the relevant ones.

2.2.1 Query Expansion

Query expansion is the process where important features found in the relevant doc-

uments are added to the original query so when the query is issued again, the topic

described by the new query more accurately reflects the user's information need. It

is helpful because often the original query does not accurately describe the topic the

user has in mind.

There are two main types of query expansion, automatic query expansion (AQE)

and interactive query expansion (IQE). As the names suggest, in AQE, the machine

tries to expand on the query without the help of the user, while in IQE, the user

is asked for help in deciding which terms are added to the query. A simple version

of AQE working with relevance feedback is where the algorithm finds the N most

frequently occurring terms in the relevant documents and adds them to the query,

where N is some preset parameter. A basic version of IQE behaves similarly in

selecting the N frequently appearing terms, but instead of automatically adding them

to the query, it presents these N terms to the user and allows the user to select which

are relevant and should be added.

Past research has shown that if the user is knowledgeable and active in his partic-

ipation, the results of using IQE are superior to AQE. The main problem with AQE

is accidentally choosing to add a non-relevant term to the query. Because documents

are not all equally relevant and even a relevant document can contain non-relevant
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terms, it is possible for a non-relevant term to be added. If this happens, then "query

drift," where the results returned by the query drifts apart from the topic the us-

er is actually interested in, can occur. This problem can be mitigated by methods

which aim to determine which documents and terms are more relevant. There is

ongoing research to find such methods. The main drawback of IQE is that we do not

want to burden the user with the responsibility of choosing the relevant terms. Also,

if the user is not active in providing feedback then the system will see no improvement.

2.2.2 Reranking

Relevance feedback from the user also allows us to treat the information retrieval

problem as more of a traditional classifier problem. Information retrieval is different

from classification in the sense that we are mapping query words which we use to de-

fine a topic to documents which might fit that topic, instead of mapping documents

to topics. Using feedback, we obtain training data because we now have examples

of both positive and negative documents. With this new information, we turn the

retrieval problem into a classification problem and can use standard machine learning

algorithms for classification. Below, we discuss two algorithms which can be used for

relevance feedback ranking.

Rocchio's Algorithm

A basic relevance feedback technique in information retrieval is Rocchio's algorithm,

which was developed in 1961, and has been shown to perform relatively well despite

its simplicity [SMB97]. The idea behind Rocchio's algorithm is to find what is called

the optimal query, which in theory ideally describes the representation of a query

that would return the relevant documents. Since the optimal query represents what

the user is looking for in a document, we can use it to calculate, by some similarity

measure such as the dot product, how closely documents match it, and therefore how
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well they fit what the user is looking for.

In order to determine the optimal query, we use the following equation.

1 D- 1D
QOP= - I Di I D i (2.1)

n DiER |Dj| N - n DENR |Dj|

where QOpt is the optimal query and represented by a word vector, Di is a document,

also represented by a vector, IDjj is the Euclidean length of the vector Di, R is the

set of relevant documents, NR is the set of non-relevant documents, n is the number

of relevant documents, and N is the total number of documents. Because the QOpt
cannot be calculated exactly (we do not have the sets of relevant and non-relevant

documents), we will use the following equation to approximate it.

Qi = aQii + D EP Di - 1 -D (2.2)
Di R-seen |Dj I DiNR-seen |Dj|

where R - seen and NR - seen are the sets of relevant and non-relevant documents

that the user has specified, and a, 3, and -y are parameters chosen, through calibra-

tion, to optimize the approximation. Now we can compare document vectors to Qj,
and update Qj every time this query is run. Each document vector is normalized

by its Euclidean vector length to keep from overweighting longer documents. Long

documents tend to have higher term frequencies (because the same term can be re-

peated more in a longer document) and more distinct terms (because long documents

contain more terms overall). Both of these characteristics can increase a document's

score in a similarity function and give long documents an advantage over shorter ones.

Normalization by vector length reduces the effect of both characteristics because an

increase in either the term frequencies or number of distinct words will increase the

length of the vector. The the relevant and non-relevant sums are normalized by the

number of documents in each category so a difference in the number of documents

marked relevant versus non-relevant will also not affect the optimal query.

Thus, we can see that the optimal query is essentially the average characteristics

of the relevant documents minus the average characteristics of the non-relevant docu-
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ments. In the equation, each relevant document is added to the optimal query while

each non-relevant document is subtracted. Looking at it from the vector space view,

we are moving the optimal query vector closer to the relevant document vectors and

away from the non-relevant document vectors. The optimal query tries to capture

all the important characteristics of the relevant documents by adding all the relevant

document vectors to the optimal query and assuming the important characteristics

are the ones which appear in many of the relevant documents. By the same argument,

the optimal query also captures, but negatively, the characteristics that appear often

in non-relevant documents. Intuitively this makes sense because if we use similarity

to the optimal query as a measure of how relevant a new document is to the query,

then if it shares many of the characteristics of the relevant documents but not many

of the non-relevant documents, then it is most likely a relevant document.

Improvements on Rocchio: Since the invention of the algorithm, several im-

provements have been made on Rocchio. One type of improvement involves using a

more advanced document length normalization on the vector while another changes

the domain of the non-relevant documents used.

A possible normalization technique is pivoted document length normalization [SBM96].

This approach tries to reweight the terms in the vector so that for every given doc-

ument length, the probability of retrieving a document of that length is equal to

the probability of finding a relevant document of that length. It first determines the

relevance and retrieval probabilities of documents as functions of document length

using a another normalization technique (like the Euclidean vector length). It then

finds the pivot point, the point at which the two functions intersect. On one side

of the pivot point, the retrieval probability is higher than the relevance probability,

while on the other side of the point, the opposite is true. By increasing the normal-

ization factor (the amount the raw value is divided by) on the side with a higher

probability of retrieval, we lower the probability of retrieval for those lengths. By the

same reasoning, if we lower the normalization factor on the opposite side of the pivot

point, we increase the probability of retrieval. So we see that in order to equalize the
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probabilities of retrieval and relevance, we want to tilt the normalization at the pivot

point. The equation for finding the tilted or pivoted normalization factor is below.

pivoted normalization = (1.0 - slope) x old normalization

where the slope is the amount to tilt.

In addition to normalizing the document vectors, training Rocchio on only the

query domain (the set of documents in the topic of the query) instead of the entire

corpus will also yield better results [SMB97]. In the original algorithm, non-relevant

documents outside the query topic affected the formulation of the optimal query, but

this could lead to problems. Consider the case where the user asks "Which Volk-

swagon models have performed well in crash safety tests?" The word "car" points

us to the right domain, but will not help in determining which articles are good for

learning about the safety of Volkswagons. If we run Rocchio's original algorithm the

number of occurrences of "car" in the non-relevant documents will be low because

of all the non-relevant documents outside the query domain, but it will be high a-

mong the relevant documents because it is likely to appear in any document about

Volkswagon safety. Therefore, the word "car" will appear to be a good word for de-

termining relevance when it is not. If, however, we only use non-relevant documents

within the query domain, then we will not encounter this problem. Any word that

describes the domain, but is not relevant to the query itself, will appear in both the

relevant and non-relevant examples used in formulating the optimal query. Its high

occurrence in both sets will cancel out so the word will hopefully be used as neither

an indicator of relevance nor non-relevance. Unfortunately, this algorithm can also

accidentally overshoot and mark the terms in the query string as being indicators of

non-relevance, because non-relevant documents in the query domain will likely have

a occurrence of the original query terms.
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Boosting

While Rocchio is typically used only for relevance feedback in information retrieval,

boosting is a generic machine learning technique that can be applied to a wide variety

of problems. The idea behind boosting is to create a highly accurate classifier (or

hypothesis) by combining the opinions of several different "weak" classifiers, thereby

"boosting" the overall accuracy. These classifiers are made by training a weak learning

algorithm on different data sets. A weak learning algorithm is defined to be one which

is only required to be correct slightly more than half of the time, meaning it only needs

to perform better than random guessing does. To classify a future document each of

the classifiers classifies the new document as a positive or negative example of the

query and their combined votes determine the overall classification.

Boosting originated from work on the "PAC" (Probably Approximately Correct)

learning model. In the early 1980s, the idea of "boosting" a weak learning algorithm

to be an arbitrarily accurate "strong" learning algorithm was invented. By the end of

that decade, several more boosting algorithms emerged but each with some practical

drawback. In 1995, AdaBoost, which solved many of the problems that plagued its

predecessors, was introduced by Freund and Schapire [S99]. Currently is it one of the

most effective boosting algorithms used.

AdaBoost is given a training set (X),Y) ... , (XM, Y) where xi c X, yi E Y and

X is some domain space and Y = {-1, 1}. The number of weak classifiers, ht, used

is dependent on the number of training rounds, T, used. In each round, the weak

learning algorithm is called on some distribution Dt, t = 1 ... T determined in the

previous round based on the previous error of the learner. This distribution is really

a length m array of weights (whose sum is 1). When the weak learner is called on the

distribution Dt, the pair (xi, yi) is scaled by the weight held at Dt(i). The resulting

trained weak learner is one of the T classifiers used in the end. Below is the pseu-

docode for AdaBoost.

Given: (xi, yi), ..., (xm, y,) where xi E X, yj E Y = {-1, 1}
Initialize D1(i) = 1/m.
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For t = 1, ..., T:

* Train weak learner using distribution Dt.

* Get weak hypothesis ht : X -+ {-1, 1} with error

Et E Dt(i). (2.3)
i:ht(xj)5byj

* Choose at = 1ln('7t).

* Update: D2i e-t fhtx)=y

D+ 1 ( i ) = Dt( i f e t  i f h ( x ) ( 2 .4 )
Zt eat  if ht(xi) #y

where Zt is a normalization factor (chosen so that Dt+ will be a distribution.

Ouput the final hypothesis:

T

H(x) = sign(E acht(x)). (2.5)
t=1

When using boosting in relevance feedback, the training set (x1, yI), ... , (Xm , Yin)

is a list of document vector-relevance rating pairs.

2.3 Related Work

Many studies have been done in applying machine learning to information retrieval. In

addition to the algorithms mentioned above, some of the techniques that have been

used include neural nets, naive Bayes, decision trees, k-nearest neighbor, genetic

algorithms. Because there are too many to discuss here, we will only talk about

studies which are closely related to what we are trying in Haystack.

2.3.1 Boosting and Rocchio in Text Filtering

In their paper Boosting and Rocchio Applied to Text Filtering, Schapire, Singer, and

Singhal, compare the performance of a modified Rocchio algorithm to their own

algorithm AdaBoost on the problem of text filtering. Text filtering is only a slightly

different problem from ranked retrieval, which is the problem we are trying to solve.
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In text filtering the system is trying to decide whether or not to send the user a

document, meaning it has to make a binary decision. In ranked retrieval we do not

need to make a strict decision on the relevance of a document, but instead can give

it a value for how relevant we think the document is.

The boosting algorithm they use is AdaBoost, the same as the one described here

earlier, and the version of Rocchio they use is one enhanced with query zones and

term reweighting. Their experiments with TREC data show that unless there is a

large number (hundreds to thousands) of relevant documents, there is no noticeable

difference in the performance of AdaBoost and Rocchio.

2.3.2 Okapi

Okapi is an information retrieval system developed at City University in London. It

is accessible by academic users at the university and uses the library catalog and a

scientific abstracts journal as databases. Okapi is a family of bibliographic retrieval

systems and suitable for searching files of records whose fields contain textual data.

In currently runs many different retrieval techniques, including relevance feedback

applied to query expansion. Results from their studies showed that query expansion

does improve performance, with very few queries returning no relevant documents. A

note to make here is that the system does not store user relevance opinions beyond

the current query session.

2.3.3 Direct Hit and Ant World

Direct Hit [DHOO] and Ant World [AWOO] are two systems for web searches which use

relevance feedback from all users to improve query results to each user. For example,

if a user makes a queries on "German cars," then the system will see what documents

other users liked in the past and will use those to recommend documents to this user.

So if other users thought the official site for "Volkswagon" was an excellent page, then

it would appear with a high ranking for this user even though this user has made no

relevance judgments on this query.
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Chapter 3

Haystack Background

In this chapter we will describe the Haystack System in more detail by examining the

information that is stored in Haystack, the types of queries accepted by Haystack,

and finally the architecture of the system.

3.1 Information Stored in Haystack

The Haystack system provides its users a personal environment to store and manage

their data, but the main focus in the system is in providing powerful searching services

for the user. Nevertheless, the searching ability lies largely in what data the system

chooses to store.

When a file is archived, not only is the content of the file stored, but meta-data

about the file is also stored. For example, if the user archives an email from Fred

dated yesterday, the content of Fred's email will be kept, but so will the related pieces

of information that the type of the file is an email, the author is Fred, and the date

it was received was yesterday. By also storing the meta-data associated with the file,

we enable ourselves to expand the scope of the queries to include searches over the

attributes of the file, not just the content. This also means any of meta-data can

be returned as a result of a query. A user might find this feature useful if they are

looking for an author who has written a lot about a topic the user is interested in. For
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simplicity, we will define a document to be an information item that can be described

and returned by a query.

In addition to storing files that the user archives, the system also stores infor-

mation about all the queries the user has made. Kept with the query is the query

description (or string), and the entire result set. Like the meta-data, this means

queries can also be returned as results of other queries. A previous query is probably

only returned if it is somewhat similar to the current one, so the results of the previ-

ous query may be of interest to the user for this query.

3.2 Types of Queries in Haystack

As mentioned in the previous section, the real power of Haystack comes from the

searches it is able to run. Currently Haystack accepts two types of queries, textual

and structured queries. Textual queries have been available since the beginning of

the project [A98], Structured queries have only recently been added [SOO].

3.2.1 Text Queries

In a text query, the user gives the system a string of words that describes the topic

on which they want information. The system then tries to match the query to the

documents in the user's haystack and returns a list of documents relevant to the topic.

For instance, the user might input the string "German cars" and the system would

return documents on Mercedes, BMW, Volkswagon, or any other articles that talk

about German cars.

In Haystack, we use an off the shelf information retrieval (IR) system to do the

basic text search. We are using a system called ISearch, but we treat it as a black

box. The query module passes the query string to the IR system and receives in

return a ranking of documents. Haystack knows nothing about how the IR system

decided that these documents were the most relevant. The decision to treat the IR
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system we use as a black box was made to allow the IR system to be easily replaced

so users could use whichever search engine they like best. The black box model keeps

our design modular, but because we have no access to the internal data structures, we

have had to replicate some of the functionality in our own system [LI99]. In the future

we will use a different IR system called Lucene and fully integrate it with Haystack,

allowing us access to the data structures and algorithms used, thereby improving our

ability to learn and rank documents.

3.2.2 Structured Queries

A structured query is one where the user is able to specify attributes they are specif-

ically looking for in a document. Often these attributes will be meta-data that the

services were able to glean from the document. For example, suppose the user is

looking for a piece of email that was sent to them last month. While the text query

might be able to return the right piece of email if the user was able to describe the

content of the email correctly, it would be much easier for both the system and the

user if the user were able to say that he wants all documents where the date is April

2000 and the type of the document is email. Using a structured search, the user gets

exactly the type of document he is searching for. In addition, the user is allowed to

combine a textual and a structured query so the user can specify both the content

and the type of document.

Structured queries are handled by a completely different module than the textual

queries. The query module separates the types of queries and issues them to the

different modules assigned to handling them. The structured query string is sent to

a query parser which translates the string to SQL. The SQL description is sent to

a relational database which analyzes and returns the result. The score given to a

document is between 0 and 1 and is equal to the fraction of the number of parts of

the query it satisfies. For example, for the April 2000 email query described above,

if a document is of type email but was received in March 2000, then the score of this

document for this query would be 1. A listing of the documents with their scores is
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then returned to the query module.

3.3 Architecture of Haystack

The main tasks of the Haystack System are archiving data and allowing the user to

search through the data stored. These abilities are achieved mostly through the use of

the data objects (which we call straws) and the services which manipulate the straws.

3.3.1 User Interfaces

Haystack has three user interfaces: the graphical user interface (GUI), the web in-

terface (WebGUI), and the command line interface. Currently, each is implemented

separately and there is no shared code between the interfaces.

3.3.2 Data Objects (Straws)

The data in the system are kept in objects called straws (class Straw), that are

arranged in a directed graph used to represent the information and relationships

between the data. The nodes in the graph are either pieces of information or hubs

for information and the edges represent the relationship between the nodes.

The class Straw has three main subclasses, Needle, Tie, and Bale, each of which

has a different role in the data model. A Needle object is responsible for storing the

actual piece of information. For example, the title or body of a document is wrapped

in a Needle object. A Bale object acts as a hub, and represents a collection of infor-

mation, such as a query (a collection of query results) or a document (a collection of

the body and the meta-data of the document). A Tie object describes the relationship

between two other Straws. Therefore, a Tie would connect a Needle containing an

author name to the bale representing a document written by that author. Figure 3-1
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shows an example of how a document and a query are represented. The document is

Shakespeare's tragedy Romeo and Juliet as we can see from the title, author, and text

needles. The type of the document is Postscript. It matched a query on "Romeo"

with a score of .75. We can see how powerful the data graph is because of its abili-

ty not only to hold information but also to express the relationships between the data.

Tie.QueryResult Query
Bale

Tie. Ti.QueryString
Needle. urycr Bale
HayFloa QueryScore

Data: 0.75

Tie tchesQuery Needle.HayString
Data: Romeo

Tie.DocType

Docum t

Needle. Tie.Body

HayMIMEDa a.
Text Needle.HayString
Data: Text Tie. thor Data: Two households, both alike in dignity,

In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,

Tie. "tle Where civil blood make civil hands unclean.

Needle . HayString

Data: William Shakespeare

Needle .HayString
Data: Romeo and Juliet

Figure 3-1: Straw Representation of a Query and a Document.

3.3.3 Services

The services in Haystack that are responsible for all the actions done or based on the

data model consist of two types. The first type of service is one which is triggered off

of an event in the data model, such as the creation of a tie between two straws. The

second type is one that is called from a user interface and needs to interact with the

data.

Services triggered on events in the data model make up the majority of the services
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in Haystack and perform most of the actions on the data in a haystack. Examples of

this type of service are the ones that examine a document and try to extract meta-

data, such as an author extractor. A service in this category first registers an event

interest (e.g., the appearance of a new document bale) with the service dispatcher.

If this event occurs in the data model, the dispatcher notifies the service, which

then carries out its task for that event. For example, the document type guesser is

interested whenever a document is archived. When a new document is archived, it

examines the document, determines the type of the document, and then creates a

new document type tie pointing at a new needle containing the document type and

attaches the tie to the document bale in the data model (See Figure 3-1).

Services run from the user interface are responsible for taking user input and

putting this information into the data model so other services can trigger off the new

data. The query service is an example of such a service. When the user indicates he

wants to make a query in the user interface, the query method in the query service is

called. After the query method calls outside modules for the ranking of documents,

it creates a query bale that contains the query string, the results, and the scores.
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Chapter 4

Design of the Learning Module

In order to improve Haystack's searching capability, we decided to introduce machine

learning to the system. Our goal in using learning is to present a better set of results

to the user by improving the rank of the relevant documents and presenting relevant

documents that would not have been shown without learning. We created the learning

module to be the component of the system responsible for learning in the system. Our

initial design focuses on using relevance feedback to do query expansion and ranking.

However, in order to implement relevance feedback, we needed to first change the

user interface and the query module. We also had to create several other modules to

help us find similar queries, aggregate results, and a vector class based on the vector

space model.

Throughout the design, the main consideration was for extensibility. Since this

was the initial attempt for learning in the system, we expect that in the future more

sophisticated learning algorithms will be tried and the functionality of the learning

module will grow. Therefore the main infrastructure of the learning module must be

modular and flexible enough to easily handle changing algorithms and the addition

of new learning abilities.
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4.1 User Interface

The WebGUI and the GUI have buttons that allow the user to rate the relevance of

documents returned by queries. After the user marks the relevant documents in the

user interface, the user's preference must then be submitted to the system in a way

the learning module can find it and use it. The most logical solution is to put the

relevance information into the data model so the learning module can be triggered

off the new data. Nevertheless, the user interface should not need to understand

the anything about how relevance feedback is done in the system, even including

how relevance is represented. If the user interface is unaware of all the underlying

details then it does not need to change even when the learning algorithm or require-

ments change. To achieve this modularity, the user interface calls a component in the

learning module which takes care of properly putting objects representing user stated

relevance in the data model so that learning can be triggered.

4.2 Working with the Query Service

Originally the query service (implemented in HsQuery) supported no learning and

simply called the IR system and returned the results. We wanted to add a learning

component as well as expand on the types of queries performed to include database

queries and any others that might be used in the future. With these additions we have

complicated the query process, which can now be viewed as consisting of three major

steps: pre-processing, dispatching, and post-processing. Figure 4-1 below depicts the

flow of information in completing a query in the original model (on the left) and the

revised model (on the right).

The pre-processing that occurs includes both splitting up the query into the dif-

ferent types (text and database) as well as performing any expansion on the query

before dispatching it to the appropriate system. The issuing of the queries remains

the same except there are more query systems to use. Notice that the query is also
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User
Query

User Pre-processing
Query (separation of queries

and expansion)

Query Issued Queries Issued

IR IR DB ML

Query Returned Queries Returned

Results Post-processing
to User (combination oscores)

Results
to User

Figure 4-1: Original and New Query Process Models

issued to the machine learning module in parallel with the IR and DB modules. This

is because the machine learning module also contributes directly to the final ranking.

The feedback the machine learning module gets from the user is not shown in the dia-

gram because it is only showing the data flow from the current query. Post-processing

includes any re-evaluation of the results of the systems and aggregating the results

from each of the systems. Because the query process has changed, we must revise the

role of the query service, HsQuery.

4.2.1 HsQuery as a Query Manager

We have chosen to change the role of HsQuery to that of a query manager, which

means that it is responsible for calling the appropriate modules for each step in the

query process and for maintaining the flow of information between each of the query

and learning modules.

The pre-processing that occurs includes both splitting up the query into the dif-

ferent types as well as performing any expansion on the query before dispatching it

to the appropriate system. Because the query manager should not be concerned with
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the specifics of the individual query systems, the expansion of the queries should be

left to an outside subsystem, such as the learning module. The issuing of the queries

remains the same except there are more query systems to use than before. Post-

processing includes any re-evaluation of the results of the systems and aggregating

the results from each of the systems. Combining the different results is a non-trivial

task because it is hard to know in advance how much the user will value the rankings

of each query system. Therefore the weights on the different results must change

over time to accommodate the user's tastes. For example, if the user views textual

searches as guides, but structured searches as definitions (they only want documents

which satisfy all parts of their query) then the structured search should be weighted

more heavily because the user prefers documents with high structured search scores.

Again the learning module can be called in to apply the knowledge the system has

about the user's opinions on documents to determine how much each query system

should be weighted. Thus, the learning module is closely tied to the query manager.

Figure 4-2 shows the interaction of the query manager with the learning module.

User
Query

query expansion

IR DB ML .

.. relevance
feedback

Query
Manager Learning Module

Results
to User

Figure 4-2: Learning Module Interaction with the Query Manager
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In preprocessing, we use the query expansion capability of the learning module. In

issuing the query, we use relevance feedback to generate a ranking of the documents,

and in post-processing we also use relevance feedback to rank the query systems.

4.2.2 Alternative roles for HsQuery

Several other designs were considered for how the query service (HsQuery) should

interact with the learning module. The first is to leave the role of HsQuery the same

as it was initially implemented, where it is only responsible for acting as the interface

between the user and the ranking system. The second is remove HsQuery entirely

and have learning be completely integrated in the same module as the query service.

HsQuery as a Dispatcher

Under this design, HsQuery's tasks would include only interacting with the user and

the data model while leaving all the work of ranking to a different module. (This was

the role of HsQuery prior to the addition of learning and database queries.) The oth-

er module would need to work as a query manager, calling and managing the query

systems.

This design is probably preferable to the one we chose to implement because it

is more modular but does not limit the functionality. The reason we chose grouping

the query manager with the other tasks of HsQuery was mostly for simplicity and the

desire to get a working model done first with all the extensions of the query service.

In the future, the manager can be separated from HsQuery.

HsQuery and the Learner as One

Another design idea was to merge the query service entirely with the learning module,

opposite of the previous design. This combined service would take care of all aspects

of querying and the user would be able to specify which algorithms they wanted to

run by picking which version of the learning query service to use. For example, there

could be a RocchioQuery or a BoostingQuery which ran their respective algorithms.
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An advantage to this design is that multiple learning query services can run at the

same time and the user would be able to pick which they wanted to view. How-

ever, this design was conceived before the system was capable of making database

queries. With the additional query types now, too many possible configurations of

the learning algorithm and the use of the database exist for this design to be practical.

4.3 Relevance Feedback and Query Expansion

Because relevance feedback is applied to query expansion and to ranking documents,

we decided to combine both features in one module. Therefore this module is respon-

sible for maintaining the information on the user's relevance ratings for each query

and for deciding how to use this information. This module must support the ability

to retrieve the user's relevance ratings from the data model, organize and store the

data, give terms to expand the query, and to rank a list of documents based on the

query's previous relevance ratings.

Since this module is responsible for managing so much information, we decided

to separate the actual learning algorithm into a different module which is called

by the relevance feedback module. This way we can easily change the algorithm

without changing any of this module or duplicating the management of information.

Nevertheless, because all the relevance feedback information is stored in this module,

it is responsible for compiling a training set from the data and passing it to the module

which does the actual learning. The outside module only needs to return scores for

documents passed to it by the relevance feedback module after it has been stored.

4.4 Factories and Scorers

We have decided to divide the task of training and scoring into two separate modules

because we wanted to emphasize the difference in the two steps. Because training

produces a scorer (like a classifier, but returning a value, not just a boolean), the
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module that does the training will actually create the module that does the scoring.

Therefore, we call the training modules factories and the scoring modules scorers.

The factories are the ones to receive training data and use it to train and return

a scorer. The factory can also add training data to the data in a scorer and generate

a new scorer. A scorer stores the training data used to make it, but is unable to add

new data. So a scorer has a state, but it is unable to change its state.

Changing Algorithms

A major concern in the design was the ability to easily switch algorithms without

disrupting the flow of the relevance feedback module. Several problems arise while

trying to achieve this goal. Because retraining the scorers each time we want to pro-

vide test data to the scorers is too inefficient, we want to have a factory train them

in advance. However, if we switch factories, then all the scorers from the previous

factory become obsolete because they are running the old algorithm. New scorers

with the training data from the previous scorers must be made as transparently as

possible to the relevance feedback module. To help with this, a scorer can be given

to a factory other than its parent factory and give its training data so a new scorer

of the new factory type can be created and returned. One issue with this setup is

that the relevance feedback module will not know when to resubmit scorers to the

new factory. One possible solution is to invalidate the scorers, but this requires some

overhead on the part of the relevance feedback module. Another solution would be

to move the method of scoring a document to the factory and have the scorer only

maintain the training set. This way, if the factory changes, the scoring will also be

changed to using the new algorithm. However, this no longer has the desired effect

of separating the training from the testing.

Updating Scorers

All of the discussion about how to get the latest scorer might be moot depending on

when we choose to update the scorers. Because we are constantly adding documents

to the repository, the possible features and their values (those that depend on corpus
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data) will be changing. With the addition of all types of features, such as database

queries, the end result could be a scorer which has been trained on data that was

accurate when it was trained, but is now very different. If this is the case then the

scorer will act differently than it should if it were given the same training samples

(but with additional features and different values) as before. If we choose to update

the scorers every time we start a haystack session, the only time a new factory can

be loaded, then the scorers will automatically update themselves. We were unable to

reach a conclusion about the best time to update the scorers because on one hand,

if we are using outdated vectors, then our scorer might also be outdated, but on the

other hand, training the scorer is an expensive task especially if the user has accu-

mulated a lot of relevance data in the system. Currently the scorer are not being

updated at all. Once we have come to a consensus about the design, we will make

the change.

4.5 Similar Queries

We need a similarity module to help us find the previous queries we want to learn

from. Initially we want to learn only on the queries that are an "exact match" to

the current one, meaning they have the exact same query string. Looking only at

these queries is generally what is done in systems, however, we also want to add

the ability to do cross-query learning, that is learning from queries that are similar,

but not exactly the same as the current query. However because the data from these

other queries is not in response to this query exactly, our confidence in how applicable

they are will not be as high as our confidence in data about the current query. The

similarity function we use and how we use it need to address these issues.

Since there are many different types of similarity measures, we decided to make

the similarity check a separate module that can be easily switched. This module only

needs the ability to say if the current query is an exact match on a previous query or

is considered similar to a previous query. An exact match method is needed because
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if the query is the same as, not just similar to one before, then we do not want to

create another query bale for it, but rather we want to use the same bale as before.

This method will return the appropriate bale if one exists. We also need a separate

method which determines if two bales are considered similar so the query manager

can pass the similar bales to the relevance feedback module, which may use their

previous relevance ratings.

4.6 Aggregator

The role of the aggregator is important because it is the last step in learning and

the results of the aggregator are the results shown to the user. Thus, it needs to

accurately decide how valuable each query system is and how much the final ranking

should depend on each system. The aggregator gets a list of rankings from the query

systems and needs to combine the scores to produce a final ranking. We have decid-

ed to start with a simple idea where each ranking is given a weight and the overall

ranking is the sum of the weighted scores. In order to determine the weights, we will

use relevance feedback where each feature is the score assigned by one of the query-

ing systems (currently these are the IR system, the database query system, and the

learned results). So if the user consistently likes documents which satisfy a particular

type of query, then the corresponding query system will get a higher weight in the

vector.

4.7 Feature Vectors

We will represent documents and the set of query systems in learning with feature

vectors. When limiting the type of queries to textual queries, the features are words

(or terms) only. The set of words used is the set of all words found in documents in the

corpus after stemming and removing stop words as described in section 2. However,
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to expand the capabilities of the learning system to cover non-textual queries as well,

we can generalize the components of the vectors describing the documents. The only

constraints on the features in a vector are that we must be able to uniquely identify

the feature and obtain its value from the vector. Specifically this means we will need

to be able to get its identification number, the value of the feature in that vector at

that time, and the type of feature. These requirements are needed to ensure that the

learning algorithm can learn on the features. Nevertheless, they are flexible enough to

allow several different combination of features. Below, in figure 4-3 we show several

possible ways to combine the features into vectors.

ML IR DB ML IR DB ML

im~~~ ~ ~ 1: 3 iiI

terms terms DB queries

Figure 4-3: Possible Feature Vector Configurations

The boxes going into the ML box represent the different features used in the

feature vector for machine learning.

The tree on the left has words as well as the results of all the database queries

in the same vector. The advantages of this design is that it is simple to implement

and we capture the characteristics of the database query part in learning as well. For

instance, imagine the user is looking for articles on "President Clinton's inauguration"

and selects "date = 1992." When the results are returned, the user marks that he

or she found only the articles from 1992 relevant. If later they only input "President

Clinton's inauguration" without a database component, the system would return the

articles where "date = 1992" with a higher score than if the system did not consider

the date.

The tree on the right shows a design where we separate the word features from

the database query features. This design might be preferable to the previous design
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because we are unsure how practical comparing terms and database queries is. For

example, unless we properly weight the features, if the number of queries is much

higher than the number of terms, then the impact of the words in the document will

be almost negligible and the learning will depend solely on the DB query scores in the

vector. Other difficulties might also arise because the space of terms and of queries

is inherently different so combining them in one vector space and comparing their

values to each other might not make sense. While the design on the right separates

these types of features, it does not rule out learning on the DB portion of the query.

Instead of having one large learning module for all types of queries, we could have

learning modules specific to the type of the query. The drawback to separating the

query types though, is that we lose some of the importance that a document satisfies

all parts of the query if we evaluate the scores for each query separately.

Our current design is the design on the left. Other designs which combine queries,

query systems, and terms together in feature vectors in different ways are also plausi-

ble. Since we cannot predict which design will work best in practice, we have designed

the feature vector to be flexible enough to handle either design we have mentioned

and most others using the vector space model.
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Chapter 5

Implementation of the Learning

Module

In this chapter we discuss the details of the implementations of the designs described

in the previous chapter. We will review all the classes and interfaces involved in each

module as well as the specific implementations of the algorithms we have chosen to

use.

5.1 User Interface

In order to have relevance feedback, the user interfaces only need to include buttons

that let the user to mark documents as being relevant or non-relevant when a query

is returned. Figure 5-1 shows the WebGUI with the new buttons.

When the user marks a document as relevant, the interface calls calls the method

HsLearner. setRelevance(HaystackID, HaystackID, boolean) which is given the

query bale id, the document id, and a positive or negative rating on that document for

that query. HsLearner acts as the interface to the learning module and is responsible

for putting in ties of label "Tie.PosSample" or "Tie.NegSample" between the query

bale and the document straw in the data model. In order not to over-count the

documents if the user repeatedly rates the same document, HsLearner ensures that
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Query Results

Documents:

1 Title - Unknown

Summary - Unknown

URL - file:/homewchien/Haystack/applelc_appl4.txt

2 Title - Steven Wozniak

S Steven Wozniak STEVEN WOZNIAK by Manish Srivastava Steve Wozniak, born 1950.
Summary - Wozniak and Jobs de...

URL - file:/home/vchien/Haystack/apple/WOZNIAK.HTM

3 Title - Unknown

- Apple juice, Apple sauce, or the whole fruit?-Apple's future after the Microsoft deal The
way I see...

URL - file:/homelwchien/Haystack/applec_app-msft.txt

4 Title - Unknown

Summary - Is iMac The Core of A New Apple? (10t23/98, 6:12 p.m. ET) By Paula R...

URL - file:/homelwchiedHaystacklapple/c_app20.txt

5 Title - Unknown

Summary - Steve Jobs: A Closer L ook Part #1 by Dan Cohen February...

URL - file:/homehvchien/Haystacklapplelc_appl2.txt

Neutral' Relevant-v

Non Relevant 11

Neutral ., RelevantO

Non Relevant v

Neutral^ Relevant-v

Non Relevant v

Neutral -v Relevant v

Non Relevant A

Neutral IV Relevant^

Non Relevant 9I

Neutral" Relevant N/
6 Title - Unknown

Figure 5-1: WebGUI Screen Shot
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only the first rating given to the document from that query is used. It is also possible

to only use the last rating given but because using the first rating has a much simpler

implementation, it was chosen. Now that we have gotten a first version of the learning

module running, we can change this aspect of the interface to using the last rating

because it is more user friendly and correct.

So far, the only interface which supports learning is the WebGUI. When the us-

er marks a document as being relevant, the webscript relevantResult . java calls

HsLearner with the data. The GUI has the markers in place, but has not been

changed to call HsLearner. The command line interface must be expanded to accept

commands which set the relevance ratings as well as call HsLearner.

5.2 Query Manager

We implemented the query manager in the query method of HsQuery. It is responsible

for calling the database query system, the IR system, the similar query checking

service (HsSimilarQuery), the relevance feedback module (HsRelevanceFeedback)

for both query expansion and ranking, and the aggregator (Aggregator). Figure 5-2

shows the control flow of the query manager.

The data from each module is returned to HsQuery which then decides which

other modules need that information. This design was chosen over having the modules

communicate with each other to simplify the implementation as well as reduce the

dependence of the modules on each other.

Future designs of the query manager might reduce the responsibility of the query

manager and have separate pre-processing, dispatching, and post-processing modules

which handle the passing of data. So instead of passing the data through the query

manager, these smaller modules would have knowledge about to which module it

needs to pass its data. For example, the preprocessing module is given a query by

the query manager. It separates the query into its different parts and makes calls

to outside systems to expand the parts of the query. Since it knows the dispatching
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Query Manager

User Query (text string + DB string)

is there an exact match?

make new bale

is DB

yes

get old bale

string null?

eno

call DB, add new DB features

is text String null?

yes

did n

-- no

call IR on text string

find similar queries

find

do expansion -- > get expanded string

call IR on expanded string

call relevance feedback rank

aggregate results
(DB results,
IR on text string
IR on expanded string

relevance feedback ranking)

return results

Figure 5-2: Query Manager Control Flow

50

ot



module is next in line in the query process, it passes its separated expanded queries

to the dispatching module. After the dispatching module has issued all the query

parts to the query systems, and received the results from each system, it passes them

to the post-processing module, where the results are combined. The post-processing

module then returns the combined results to the query manager.

5.3 Relevance Feedback

The Relevance Feedback module is responsible for getting the data on which docu-

ments the user finds relevant and not relevant, as well as containing a method which

ranks a list of documents and a method which returns the new terms to add. Be-

cause there are several ways to use learning algorithms to come up with a ranking

of documents, we designed an interface HsRelevanceFeedback which all classes pro-

viding relevance feedback need to implement. HsRelevanceFeedback itself extends

HaystackEventService in order to detect when relevance ratings are added to the

data model.

5.3.1 HsRelevanceFeedback

The required methods of any class that provides relevance feedback are listed below.

* addInterest: The class must register its interest of a bale (the query) at-

tached to a straw (the document) with a relevance label tie ("Tie.PosSample"

or "Tie.NegSample.").

" handleHaystackCreateEvent: When this method is called, we know new

relevance information has appeared in the data model. The module needs to

read the new relevance information and store it so it can be used the next time

a similar query is issued.
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" rank: This method will take in a vector of RankedHaystackIDs, a list of similar

query bales and the current query bale. The similar bales and current bale

provide the relevance information we need. Because we cannot afford, nor do

we have the ability to run our scorer on the entire corpus, we use a filter to limit

the number of documents we rank. We use the vector of the other systems'

rankings as a filter and only score documents contained in the ranking of one

of the query systems. This is a pretty safe choice to make because it is unlikely

there is a relevant document not retrieved by one of the query systems after

query expansion is done. The rank method returns a ranking of documents

based on the relevance information. No restrictions on which documents are

included or how they are ranked are made.

" getImportantFeatures: This takes in the number of terms to return as well

as a vector of the similar query bales to use for the relevance information. When

called, this method returns a list of terms that can be added to the query.

5.3.2 Implementations

So far two implementations of this interface exist, HsSingleScorer and HsBoosting.

The only difference between them are how they handle ranking documents and all

the various data structures they need in order to implement the two algorithms.

HsSingleScorer.rank

As the name suggests, HsSingleScorer is the implementation of HsRelevanceFeedback

which uses only one scorer to help in ranking the documents. So for each query topic,

one scorer keeps track of all the training data and is responsible for returning the

score for each document being ranked. Therefore in the rank method, all the docu-

ments being ranked are passed to the same single scorer and are ranked by the score

returned. In order to increase efficiency a table is used to keep track of all the current

scorers. Because of this, we must be careful that we are using a scorer running the

correct algorithm (as described in the previous chapter). The current implementation
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does not address this problem because we have not yet come to a conclusion about

the appropriate time to update the scorers.

HsBoosting.rank

This class is the implementation of the AdaBoost boosting algorithm. When the

rank method is called, it creates several scorers of the same type (running the same

learning algorithm) by varying the weights used on the training set. A document is

given a final score based on the opinions of the all the scorers.

HsSingleScorer.getImportantFeatures and

HsBoosting.getImportantFeatures:

This method is the same in both implementations because both are currently using

automatic query expansion where we add the most frequently appearing words in the

relevant documents. Right now this method is implemented in the relevance feedback

module, though in the future it should be moved to a separate module, in the same

way as the ranking algorithm, to ease in switching between algorithms.

5.4 Scorer Factories and Document Scorers

The factory-scorer pair represents a learning algorithm we want to use. The purpose

of the scorer factory is to return scorers when given the training data. The document

scorer is able to take in a document and return a score based on how it was trained.

Because we would like to be able to change algorithms easily, we have designed an

interface called ScorerFactory which details the methods that a scorer factory needs

as well as an interface DocumentScorer which describes all the methods a document

scorer needs.
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5.4.1 Interface ScorerFactory

In the scorer factory, we only need the ability to create a new document scorer when

given training data and an old document scorer. The method declared by this interface

is getScorer(training set, document scorer) and should work as follows:

* Case: training set = null, document scorer = null If both are null, then

getScorer also returns null.

" Case: training set = null, document scorer $ null If there is no training

data and the scorer was not made by this factory, then a new scorer from this

factory is returned, otherwise the same document scorer is returned.

" Case: training set 0 null, document scorer = null If there is no previous

document scorer, then a new document scorer with the training data is made.

" Case: training set # null, document scorer # null If both the training

data and the old document scorer exist, then a new document scorer is returned

with the new training data combined with the old training data.

5.4.2 Interface DocumentScorer

The main task of the document scorer is to give an opinion about a document based

on the training data with which it is created. The specific methods are described

below.

* score: score(document) This method returns a score when given a document

in the form of a Straw object or a FeatureVector. The score needs to be a value

between 0 and 1.

" classification: In addition to giving a score, this module also needs to be able

to state a boolean classification (relevant or non relevant) for a document in

both representations (straws and vectors). This method is used by algorithms

that require a boolean decision.
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* getTrainingData: In the case that a scorer is returned to a factory other than

the one which created it, this method allows the new factory to get the training

information and create a new scorer of its own type.

The class which implements the DocumentScorer interface is an inner class of the

class which implements the ScorerFactory interface for the same algorithms. Under

this design, the parent factory of the scorer will be able to use any methods of the

scorer that are specific to the algorithm being implemented by the pair. If in the

algorithm, adding a training sample is possible without reviewing all the previous

training examples, then the scorer can supply a method to make updating the scorer

more efficient. For example, in Rocchio when we want to add a new piece of training

data, we only need to add the vector of the piece of training data to the optimal query.

5.4.3 Rocchio Implementation

One implementation of the ScorerFactory/DocumentScorer interfaces currently ex-

ists. We have chosen to use Rocchio's algorithm to create the two classes RocchioFactory

which implements ScorerFactory and RocchioScorer which implements DocumentScorer.

In addition to the methods of DocumentScorer, RocchioScorer also contains a

method getVectorO that returns the vector that represents the "optimal query,"

and a method setVector(O that allows the factory to set a new vector.

5.5 Similarity

The checking of similarity between queries is done by the class HsSimilarQuery. To

keep a list of all the queries that have been made, it extends HaystackEventService

and registers an interest with the dispatcher for the appearance of query bales. When

a new query bale appears, the module adds it to the list of bales that already exist

in the data model. This class also offers three methods for similarity.
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" isExactMatch(string): This method is needed to check if a query already

exists in the data model. It is given the query string of the current query and

compares it to all the previous query strings to see if it is exactly the same

query as a previous one. If it is, it returns the query bale of the query.

* isSimilarTo: This method is used to give a confidence rating for how similar

a bale is to another query bale. When given two sets of rankings, this method

returns a value between 0 and 1 of how similar they are, with 0 being not similar

at all and 1 being exactly the same.

* hasSimilarResults: This method is called to given two sets of rankings and

it returns true if the two lists are considered "similar," and false otherwise.

Similarity in this case is measured by how similar are the sums of the feature

vectors. Similarity between the vectors is computed in the standard way in this

system, using the normalized dot product.

5.6 Aggregator

The aggregator module is implemented by the class Aggregator. It has one main

method called combine which is given a list of rankings from the different query

systems and combines them to return a single final ranking. In the current imple-

mentation, combine produces a final set of rankings by finding the weighted sum of the

rankings it has been passed, where the weights are preset. When the FeatureVector

interface is implemented and query systems can be represented as features in a vector,

relevance feedback will be used to adjust the weights dynamically, so query systems

which have higher scores on relevant documents will be given a higher weight.
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5.7 Features and Feature Vectors

We currently have not implemented the FeatureVector class, however we do have a

design, shown in Figure 5-3, for the classes which would make up the Feature and the

FeatureVectors. This design is a result of collaboration with Jaime Teevan, Svetlana

Shnitser, and Ziv Bar-Joseph, who are also working on the Haystack project.

Feature Vector
Feature getlDO)_________________

toString()

DBFeature TermFeature
getCorpusFrequency()

'l FVFeaturesFVFeature getValue()
getRawValue()
setRawValue()

FVDBFeature FVTermFeature

Figure 5-3: Feature and Feature Vector Module Dependency Diagram.

In the figure we see the different methods contained by each of the classes for the

features and the feature vectors.

5.7.1 Features

The key idea in this model for features is that they are themselves objects with an

identity and methods, but their values are dependent on the specific vector which

contain them. In order to model this behavior we create two interfaces, one that

describes the methods of a stand alone feature, and one that describes the methods

of a feature in a vector.

The interface Feature maps out the methods required for a feature. Because a

feature has an identity on its own without the presence of a vector, the Feature inter-

face requires a getID() method and a toString() method. These are implemented

by the classes DBFeature, TermFeature, QuerySystemFeature, and any other types

of feature we want to create. In addition to the two methods of the Feature interface,
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the classes that implement the interface can have other methods specific to the type

of Feature it is. For example, the TermFeature class also has the method getCor-

pusFrequency() that returns the frequency of this term in the whole corpus. This

method appears at this level because the values returned by them still have meaning

even if the feature does not appear in a vector. Each of these implementing classes

also have a subclass that represents that type of feature in a vector and implements

the FVFeature interface.

The FVFeature interface describes the methods that each feature in a vector need-

s for learning. As we described in the design sections, the only additional methods

needed for learning is the getValue 0 method (because the id and the type of feature

can be found from the classes which implement Feature). The getValue 0 method

is dependent on the type of feature. For instance, the value of a term feature might

be affected by the number of times that term appears in the corpus, where a DB

feature value might not take that into account.

5.7.2 Feature Vectors

Feature vectors are, as one would expect, vectors made up of objects of classes imple-

menting the FVFeature interface. The methods in FeatureVector are ones that

deal with the vector as a whole but most use the values of the features it con-

tains to return answers. The methods of the FeatureVector will at least include

getNormalizedVector, scale, add, clone, dot, equals, and will probably increase

as more applications are added that need to use them.

5.7.3 Word Vectors

As we stated above, Features and Feature Vectors have not yet been implemented.

Until they are, we are using the classes Term, WVTerm, and interface WordVector

which have almost the same functionality as Feature and FeatureVector described
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above. Originally WordVector was designed for features that were only the words

in documents so it holds elements of the class WVTerm. A WVTerm contains a Term

object, which is a string and id pair, as well as the frequency of that term in the

vector. WordVector itself has many of the methods that FeatureVector will have,

including add, clone, scale, equals, getNormalizedVector, getRawVector, dot,

normalizedDot, getSize, and getLength methods. WordVector is implemented by

the class Prof ile originally designed by Lisanskiy [L199] and modified to fit the

WordVector interface. It is important to note that the only normalization done by

profiles is by the length of the vector. Profiles currently have no knowledge of the

corpus as the implementations of FeatureVectors should have.
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Chapter 6

Testing and Results

We have completed two types of tests on the learning module in Haystack. The

first set of tests use TREC data and provide assurance that our module is working

correctly. The second set of tests are run on a hypothetical example which describes a

situation where the personalization in Haystack allows us to make a distinction where

other search engines would not.

6.1 TREC Tests

We ran our system on a small subset of the TREC data. More specifically, we archived

200 Wall Street Journal articles from 1990 found on TIPSTER disk 2 and queried

them with TREC Topic 1. The reason we only used a fraction of the data available

from TREC was that our system was unable to run efficiently when given too much

data to store. Without enough time to determine the reason for the slowdown in our

system, we attempted to run a set of smaller tests on the data we could store.

6.1.1 Data Preprocessing

The TREC articles are stored in files which contain around 130-190 distinct articles

each. The data has also been changed to standard Standard Generalized Markup
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key TREC Document Number (DOCNO)
DOCI WSJ900625-0090
DOC2 WSJ900629-0045
DOC3 WSJ900702-0034
DOC4 WSJ900703-0065
DOC5 WSJ900706-0008
DOC6 WSJ900713-0067
DOC7 WSJ900716-0039
DOC8 WSJ900719-0126
DOC9 WSJ900803-0089

DOClO WSJ900807-0031
DOC11 WSJ900808-0106
DOC12 WSJ900810-0086

Table 6.1: List of Relevant Documents

Language (SGML) format. We ran the files through a program that extracted the

articles from the file and removed the SGML tags leaving plain text.

Because of our limitation of only being able to store about 200 documents, we

needed to select the files we chose to archive carefully. For each query, the percentage

of the TREC articles which are considered relevant is extremely low (around .1%).

Therefore in order for us to have several relevant documents in our corpus for a par-

ticular query, we had to increase the percentage of relevant documents for our corpus.

Unfortunately, changing the composition of the corpus can skew the results. Imagine

a corpus where 1% of the documents are relevant to a query, but it is artificially in-

creased to 50%. When the retrieval algorithm is run and a lot of relevant documents

are returned, we do not know if the good results are from a good algorithm, or if

it is just a result of returning a lot of documents. With this in mind, we chose to

archive twelve documents relevant to topic 1 (total percetage 6.0%), giving us enough

relevant documents to do some testing. The twelve documents we chose are listed in

Table 6.1.

The TREC document number is listed (DOCNO) along with a name we will use

in the results below.
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6.1.2 Testing Procedures

We wanted to test both the Rocchio and the boosting algorithms with our tests. In

general, to test a learning algorithm, data with the correct classifications attached

is used. The data is split into two sets, one for training and one for testing. The

training data is used to train the classifier running the algorithm. The testing data

is then given to the classifier to classify. Since we have the correct classifications for

the test data, we can see how much of the test data the classifier classified correctly.

We use the same basic strategy for our tests. But since we have so few relevant

examples, we performed cross validation. Cross validation is for situations like ours

where there is a limited amount of training and test data. In cross validation, we split

all the data we have for training and testing into several smaller sets. We designate

one subset to be our test set while the other subsets make up the training set. Then we

test using the general methodolgy described above. We repeat this process until every

subset has been used as the test set. For our tests we are going to do leave-one-out

cross-validation, which is where the subsets are of size one.

The outline of our testing procedure is as follows:

1. Start with a clean haystack.

2. Archive the 200 selected documents.

3. Select one document to leave out.

4. Submit the query (Topic 1: "Antitrust Cases Pending"). No learning will be

done on this query because there are no previous queries.

5. Mark relevant all the relevant documents except for the one selected above.

(none marked non-relevant)

6. Rerun the query.

7. Examine the rankings of the unmarked relevant documents.

8. Go back to the first step, until all of the documents have been left out once.
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unmarked document _____ ____

orig none DOC1 DOC3 DOC4 Dumak docu OC7 DOC8 DOC9 DOC10 DO 12

DOC1 27 13 50 12 13 13 12 13 13 12 12 13

DOC2 - 8 10 7 8 24 7 7 8 8 11 11

DOC3 5 6 6 11 6 4 6 5 7 5 5 4

DOC4 10 19 20 19 33 16 19 19 21 18 18 25

DOC5 11 2 2 2 2 6 2 2 2 2 2 2

DOC6 4 9 9 9 9 5 14 10 10 9 8 8

DOC7 16 5 5 5 5 9 5 8 5 6 3 5

DOC8 12 12 13 16 12 11 11 12 15 13 9 9

DOC9 28 52 45 51 47 38 52 62 52 102 35 31

DOC10 23 3 3 3 3 2 3 3 3 3 6 3

DOC11 - - - - - - - - - - - -

DOC12 1 1 1 1 1 1 1 1 1 1 1 1

Table 6.2: Rankings using Rocchio's algorithm.

6.1.3 Results and Analysis

We chose to run four sets of tests. We ran tests with both query expansion and ranking

from relevance feedback for both Rocchio and boosting. In these tests, the weights for

the IR rankings, the IR rankings with the expanded query, and the relevance feedback

ranking were 0.5, 0.5, and 1.0, respectively. We also ran tests without using query

expansion, but still using ranking from relevance feedback running for both Rocchio

and boosting. In these tests the weight for both the the IR ranking and the relevance

feedback ranking was 1.0. The database queries were neither tested nor used here.

Rocchio

We begin by looking at the tests for using a single Rocchio scorer. The results of

these tests are shown in Table 6.2. Each column represents a different test done. The

original query (one without learning) is labeled "orig." The rest of the columns are

the tests where the query was performed after documents were marked relevant. The

test labeled "none" is the one where all ten of the relevant documents returned by the

original query are marked relevant. The rest of the tests are labeled by the relevant

document that was used as the test point and therefore was not marked relevant.

(The reason there are fewer documents in the columns than in the rows is that only

ten of the relevant documents were returned by the original query, so only those ten

could be marked relevant.) The rows represent the relevant documents in the corpus,

and therefore a value in a box is the rank of that row's relevant document for that

column's test.

We can see from the table that the overall rankings of the document is better.
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unmarked document
orig none DOC1 DOC3 DOC4 DOC5 DOC6 DOC7 DOC8 DOC9 DOC10 DOC12

DOC1 27 14 24 14 13 16 14 13 15 12 12 12

DOC2 - - - - - - - - - - - -

DOC3 5 6 6 9 6 4 6 5 8 5 5 4

DOC4 10 13 13 12 20 12 13 14 13 13 13 15

DOC5 11 2 2 2 2 6 2 2 2 2 2 2

DOC6 4 9 9 8 9 9 11 8 9 9 8 7

DOC7 16 5 5 5 5 5 5 9 5 7 5 6

DOC8 12 10 10 13 10 10 10 10 11 10 10 10

DOC9 28 24 23 24 24 23 25 27 24 30 23 22

DOC10 23 3 4 4 4 3 4 3 4 4 9 4

DOC11 - - - - - - -

DOC12 1 1 1 1 1 1 1 1 1 1 1 1

Table 6.3: Rankings using Rocchio's algorithm with no query expansion.

DOC2, which was not returned in the original query, is returned for all the learned

queries because the IR system called on the expanded query string retrieved it.

If we look at the ranking of the each document in the original query vs when it

is the test document (the one not marked relevant) nine documents became worse,

three improved, and one stayed the same. We think that these results are due to the

fact that we are only giving it nine training documents and because TREC judges

a document as "being relevant if any piece of it is relevant (regardless of how small

the piece is in relation to the rest of the document)" [NSTOO]. This means that the

non-relevant parts of the documents could be very different from each other. If this

is the case, then nine documents will not be enough to train a learner.

Another oddity was that DOC9, even when marked relevant, would still drop

in the rankings. When we examined the documents, we noticed that most of the

relevant documents contained the words "law," "court," "judge," "FTC," as well as

the words in the query. Unlike most of the other relevant documents, DOC9 is not

about an antitrust case, but instead is about a company's financial status. The reason

this document is retrieved is because it also mentions the company is involved in an

antitrust case.

After seeing how much worse some of the rankings became because many new

documents are retrieved as a result of the expanded query, we decided to also try

running the same tests with query expansion disabled. Table 6.3 shows the results of

these tests. Looking the results in Table 6.3 we see that again the overall rankings

are better. If we look at the ranking of the each document in the original query vs

when it is the test document, as we did before, we see that this time nine documents
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unmarked document
orig none DOC1 DOC3 DOC4 DOC5 DOC6 DC DOC9 DOC10 DOC12

DOC1 27 15 31 15 15 82 14 19 15 15 18 16
DOC2 - 28 28 35 31 146 31 147 34 31 143 139
DOC3 5 7 6 9 9 15 9 12 9 9 14 14
DOC4 10 16 15 16 13 12 15 14 16 16 15 12
DOC5 11 4 7 4 4 56 4 11 4 4 11 10
DOC6 4 5 5 5 5 6 5 6 5 5 6 6
DOC7 16 18 14 23 22 133 22 63 23 22 130 104
DOC8 12 12 12 11 12 25 12 15 12 14 16 17
DOC9 28 34 32 33 34 48 34 47 33 29 59 73

DOClO 23 13 11 21 16 145 17 138 20 13 63 112
DOC11 - - - - - - - - - - - -

DOC12 1 1 1 1 1 2 1 2 1 1 2 1

Table 6.4: Rankings using AdaBoost.

improved, only three became worse, and one stayed the same.

Boosting

Boosting in our system did not work as well as we had hoped. Table 6.4 shows the

results of our tests.

We think the reason why these results are quite poor are partly because we used so

few training points and boosting requires a lot more training data [SSS98]. Not only

are the rankings of the documents that are being left out not improving, but even

the rankings of the training data points not improving. Once the efficiency problem

is solved in the system, more boosting tests should be done.

6.2 Example

The second type of tests we ran were not to test the correctness, so much as to give

an example where the personalization of Haystack can help improve a query result

set. We archived thirty-five documents about Apple computers and thirty-five recipes

containing apples. When the query is run initially, the majority of the top ranked

documents are about Apple computers. We selected ten apple recipes to mark as

relevant and reran the query. After the last run (which uses learning), the top thirty

ranked documents were all apple recipes. This example shows that if there is a word

with two meanings, like apple, the personalization of Haystack will allow the user to

say which meaning they are interested in, and so the system will be able to provide

better results.
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Chapter 7

Conclusions and Extensions

The goal of this thesis was to take advantage of the personalized aspect of Haystack

to learn about the individual users' query behavior. By learning about the interests

of the user, we will be able to better predict what the user is searching for when he

makes a query and therefore be able to produce better results. To achieve this goal

we designed and implemented a learning module that uses relevance feedback and

applies it to query expansion and scoring documents. We chose Rocchio's algorithm

and boosting as our first algorithms to implement because both are relatively simple

and have been shown to perform will in studies. Our tests show that the algorithms

are running correctly in our system and that we are able to learn from past queries.

In addition to writing a working system, we have also been careful to design the

learning module so that it is extensible. Since this is only the first pass at adding

learning to the system, we expect that in the future more sophisticated learning

algorithms will be tried as well as different approaches to learning.

This work is only the beginning of many possibilities for learning in Haystack.

Future work in this area of Haystack include many projects. Some of the more

immediately feasible work is in adding learning to the Aggregator, extending query

expansion to become interactive, trying more sophisticated algorithms. More involved

projects include adding the abiblity to intelligently learn from all previous queries, not

just ones that are similar and developing learning algorithms specifically for Haystack.

With the addition of structured queries and machine learning rankings to our
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longtime textual queries, we need a way to intelligently aggreagate the scores of the

different systems to produce the best combination for the user. Learning can help in

this situation because from the user's relevance ratings and from the scores that each

of the ranking systems gave each relevant document, we will get an idea of which

system the user relies on the most. By giving those systems the user agrees with a

higher weight, we change the aggregation to also rely more on those systems.

Extending the system to support interactive query expansion should be fairly

straightforward because it can use a lot of the infrastructure in place for automatic

query expansion. The main change will occur in the user interfaces becaue we will

need to display the possible expansion terms. The words we choose to display to the

user can be drawn from the list of words that is already compiled by automatic query

expansion.

Because of the modular design of the learning module, adding new algorithms is

very simple. This means it should be easy to implement more learning algorithms

to use for Haystack. Some possible algorithms to try are naive Bayes and k-nearest

neighbor.

Adding the ability to learn from previous queries for a topic the system has never

seen before is a much more involved problem. We first need to be able to know how

the current topic is related to previous topics. We then must apply this knowledge

about previous related topics to to our current query.

Haystack has several distinctive characteristics which could be used in developing

a learning algorithm specifically for it. For instance, the range of topics found in a

user's haystack is much more likely to be clustered than a corpus like the World Wide

Web because a user is likely to only have a certain number of interests. Also, the

personalized nature of Haystack and the involvement of the system in everything the

user does allows us to gather much more information about the user than most other

systems.
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