
Design of an ARQ/AFEC Link in the Presence of
Propagation Delay and Fading

by

Bradley Bisham Comar

B.S., Electrical Engineering (1995)

Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering in Partial
Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering

at the

Massachusetts Institute of Technology

June 2000

Q2000 Bradley Bisham Comar. All rights reserved.

The author hereby grants to MIT permission to reproduce
and distribute publicly paper and electronic

copies of this thesis document in whole or in part.

Signature of Author:

Depa' ftment of Electrical Engineering
May 17, 2000

Certified by:

Dr. Steven Finn
Principal earch Scientist

T esisjupervisor

Accepted by:

Arhur C. Smith
Professor of Electrical Engineering

Chairman, Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

MIT Libraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://libraries.mit.eduldocs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The images contained in this document are of
the best quality available.

.ftimftm - -,

2

Design of an ARQ/AFEC Link in the Presence of
Propagation Delay and Fading

by

Bradley Bisham Comar

Submitted to the Department of Electrical Engineering
on May 18, 2000 in Partial Fulfillment of the

Requirements for the Degree of Master of Engineering in
Electrical Engineering

ABSTRACT

This thesis involves communicating data over low earth orbit (LEO)
satellites using the Ka frequency band. The goal is to maximize
throughput of the satellite link in the presence of fading and
propagation delay. Fading due to scintillation is modeled with a log-
normal distribution that becomes uncorrelated with itself at 1 second.
A hybrid ARQ/AFEC (Adaptive Forward Error Correction) system using
Reed-Muller (RM) codes and the selective repeat ARQ scheme is
investigated for dealing with errors on the link. When considering
links with long propagation delay, for example satellite links, the
delay affects the throughput performance of an ARQ/AFEC system due to
the lag in the system's knowledge of the state of the channel.

This thesis analyzes various AFEC RM codes (some using erasure decoding
and/or iterative decoding) and two different protocols to coordinate
the coderate changes between the transmitter and receiver. We assume
the receiver estimates the channel bit error rate (BER) from the data
received over the channel. With this BER estimation, the receiver
decides what the optimal coderate for the link should be in order to
maximize throughput. This decision needs to be sent to the transmitter
so that the transmitter can send information at this optimal coderate.
The first protocol investigated for getting this information back to
the transmitter involves attaching a header on every reverse channel
packet to relay this information. The second protocol we explore
leaves the information packets unchanged and makes use of special
control packets to coordinate the rate changes between the transmitter
and receiver.

Thesis Supervisor: Dr. Steven Finn
Title: Principal Research Scientist

3

[This page is intentionally left blank]

4

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 PHASE I: FINDING AN ADAPTIVE CODE
2.1 Procedure and Results of Phase I

3.0 ANALYSIS OF THE 1-D HARD ADAPTIVE CODE

4.0 PHASE II: ARQ/AFEC IN A FADING ENVIRONMENT

5.0 CONCLUSION

1: BACKGROUND

la) Binary Fields
1b) Vector Spaces

lc)

ld)
le)
lf)
lg)
-dh)

Linear Block Codes
Reed-Muller Codes
Bit Error Rate Performance
Erasures and Soft Decision
Iterative Decoding
ARQ and Hybrid Systems

APPENDIX 2: C PROGRAMS TO SIMULATE PHASE I CODES

2a) C Program for 1-D Hard Code Simulation
2b) C Program for 2-D Soft Code Simulation

APPENDIX 3: PHASE II THROUGHPUT CALCULATION PROGRAM

APPENDIX 4: MARKOV CHAIN MODEL & ITS AUTO-CORRELATION 73

APPENDIX 5: PHASE II THROUGHPUT SIMULATION PROGRAM 75

REFERENCES: 79

5

7

11
14

19

23

43

APPENDIX 45

47
49
51
53
57
59
61
62

63

63
67

71

[This page is intentionally left blank I

6

1.0 INTRODUCTION

This thesis involves communicating data over low earth
orbit (LEO) satellites using the Ka frequency band. The
goal is to maximize the throughput of the satellite link in
the presence of long propagation delay. It is assumed that
the communication system uses power control to negate the
effects of fading due to rain attenuation. However, fading
due to scintillation must be dealt with. This fading is
modeled with a log-normal distribution that becomes
uncorrelated with itself at 1 second.

When communicating digital information over noisy
channels, the problem of how to handle errors due to noise
must be addressed. The two major schemes for dealing with
errors are forward error correction (FEC) and automatic
retransmission request (ARQ) [8]. Combining these schemes
into a hybrid ARQ/FEC system can be used to make more
efficient communications over the link [8]. Additional
performance is gained by using an adaptive FEC, or AFEC,
scheme which changes coding rate as the signal to noise
ratio in the channel changes in order to maximize
throughput performance. Throughput performance is also
gained by using the selective repeat ARQ scheme, which our
system uses. Throughput is defined as the inverse of the
average number of transmitted bits required to successfully
send one bit of information. When considering links with
long propagation delay, for example satellite links, the
delay affects the performance of an ARQ/AFEC system due to
the lag in the system's knowledge of the state of the
channel.

This thesis addresses some of the analysis that a
designer of such an ARQ/AFEC system should consider. The
two main phases of this thesis are 1) to analyze various
AFEC codes and 2) to analyze different protocols to
coordinate the coderate changes between the transmitter and
receiver. A good AFEC code is determined from phase 1 of
this project and then a good coordination protocol for this
chosen AFEC is determined in phase 2. Our hybrid ARQ/AFEC
scheme uses a CRC check code for error detection in
addition to the AFEC code for error correction.

In phase one, a set of codes is chosen to construct
the AFEC code. Here, the major focus is on linear Reed-
Muller (RM) codes and two-dimensional (2-D) product codes
constructed with these RM codes. 2-D product codes are

7

explored because literature indicates that they are
efficient and powerful [9]. Because the sizes of 2-D codes
are the square of the sizes of the codes that construct
them, these constructing codes should be limited to
reasonably small sizes. RM codes are chosen to construct
these 2-D codes because they are optimal at smaller sizes
[5] and they have the added benefit of a known hard
decision decoding algorithm that is faster and simpler than
other comparable block codes [12]. In addition to hard
decision decoders, another set of decoders implements soft
decision (erasure) decoding. This decoding method allows
for three decision regions. Erasure decoding is proposed
because this decoding method allows for easy and efficient
hardware or software implementation [12]. Therefore, the
four sets of codes explored are normal RM codes with hard
decision decoders, 2-D RM codes with hard decision
decoders, normal RM codes with erasure decoders, and 2-D RM
codes with erasure decoders.

The second phase of this thesis involves incorporating
the AFEC code chosen in phase one with the selective repeat
ARQ scheme. Sufficient buffering to avoid overflow is
assumed on both the transmit and receive sides of the
channel. The fading on our channel is assumed to be log-
normally distributed. Two different protocols to handle
the change in the AFEC coderate are analyzed. We assume
the receiver estimates the channel bit error rate (BER)
from the data received over the channel. With this BER
estimation, the receiver decides what the optimal coderate
for the link should be in order to maximize throughput.
This decision needs to be sent to the transmitter so that
the transmitter can send the information at the optimal
coderate.

The first protocol for getting this information back
to the transmitter involves attaching a header on every
reverse channel packet to relay this information. The
header is encoded with the rest of the packet during
transmission. The receiving modem tries decoding every
packet it receives with decoders set at each possible
coderate. If none or more than one receiver decodes a
packet that passes the CRC check, a failure is declared and
a request for retransmission is issued. If exactly one
decoder has a packet that passes the CRC check, that packet
is determined good and is passed to the higher layer. A
disadvantage of using this scheme is that every packet has
this additional overhead. This might be a heavy price to

8

-Vw-

pay if the BER is fairly constant for most of the time and
the coderate changes infrequently.

The second protocol we explore leaves the information
packets unchanged and makes use of special control packets
to coordinate the rate changes between the transmitter and
receiver. When the receiver wants the coderate of the
transm.1tter to change, it sends a "change coderate" control
packet to the transmitter telling it what rate to change
to. These packets can be encoded using the lowest coderate
which gives the lowest probability of error. Again, the
receiver can track the transmitter by using several
decoders and choosing the correctly decoded packet as
determined by the CRC code. The benefit of this second
protocol over the first protocol described above is more
efficient use of the link if the coderate does not change
often.

The ARQ/AFEC system under these protocols and log-
normal fading is analyzed for throughput. For a fading
model with a mean of 5dB Eb/No and a standard deviation of
2, the better protocol depends on the data rate. For data
rates higher than 10 Mbps, the second protocol, which uses
control packets, is more throughput efficient. For data
rates lower than 2 Mbps the first protocol, which places
coderate information in the header, is more throughput
efficient. For data rates in between, the choice of
protocols does not effect throughput significantly.

9

[This page is intentionally left blank I

10

2.0 PHASE I : FINDING AN ADAPTIVE CODE

An adaptive FEC code is a code that can change its
coderate in response to the noise environment. In this
work, an adaptive ARQ/FEC Hybrid system is designed in
order to maximize throughput. During periods of low noise,
the system can transmit information at a high coderate and
not waste efficiency transmitting too many redundancy bits.
During high noise time periods, the system can transmit at
a lower coderate and not waste efficiency by re-
transmitting packets too many times. The receiver will
monitor incoming packets, estimate the noise environment,
choose which FEC code should be used to maximize
throughput, and relay this information to the transmitter.

The first step in designing such a system is to choose
an adaptive code. This adaptive code will be a collection
of several individual codes with different coderates.
There are many varieties of codes to choose from. This
project concentrates on two-dimensional iterative block
codes constructed with Reed-Muller codes. See Appendix 1.
After looking at different RM codes, the set of codes of
length n=64 is chosen. The RM(1,6), RM(2,6), RM(3,6) and

RM(4,6) codes are used. The values of k for these codes
are 7, 22, 42, and 57 respectively. Their coderates are
7/64, 22/64, 42/64 and 57/64 and the coderates of the
respective 2-D codes they construct are 72/642, 222/642,
422/642 and 572/642. The methods of iterative decoding in
this thesis are greatly simplified from traditional
iterative block decoding which is described in Appendix 1g.

The RM codes mentioned above are used to create four
2-D codes that use hard decision decoding. These codes are
encoded in the normal manner for 2-D codes. See Appendix
1g. The decoding algorithm is as follows. Hard decode all
the columns in the received n x n matrix Ro to create a new
k x n matrix Rv'. Re-encode Rv' to create a new n x n
matrix Rv. Rv now has valid codewords for each of its
columns that Ro may not necessarily have. Subtract Rv from
Ro to get Ev. Ev is the error pattern matrix. It will have
ls in the locations where the bits in Rv and Ro differ and
Os in the locations where they agree. Run this same
procedure with the rows of Ro to create the matrix EH.
Element-wise multiply the two error pattern matrices to
create the matrix E. E represents the locations in Ro where
both horizontal and vertical decoding agree are corrupted.
Change these bits by subtracted E from Ro. Thus R, = RO-E.

11

See Figure 1. This procedure can be iterated as many times

as desired. After iterating x times, decode R, horizontally
to get the k x n matrix R.' and decode the columns of R,' to

get the k x k matrix of message bits. These codes will be

referred to as 2-D Hard codes in this paper.

Another set of codes to be analyzed is similar to the

set of 2-D Hard codes described above except that decoding
the rows and columns of RO is done with erasure decoding as

described in Appendix 1f. The decoding procedure is as

follows. Erasure decode all the columns in the received n

x n matrix Ro, which may have erasure (?) bits, to create a

new k x n matrix Rv'. Re-encode Rv' to create a new n x n

matrix Rv, which will not have any erasure (?) bits.

Perform a special element-wise "erasure addition" on the

two matrices RO and Rv to get a new horizontal matrix Rvx.

This special addition is labeled as (+) and defined in

table 2.1.

1 (+) 0 =? ? (+) 0 = 0 0 (+) 0 = 0
0 (+) 1 = ? 0 (+) ? = 0 1 (+) 1 1

? (+) 1 = 1
1 (+) ? = 1

Table 2.1: The (+) operation.

This addition is intuitively structured so that if one

matrix says a bit should 0 and the other says it should be

1, Rvx will determine it undecided or ?. If one matrix is

undecided and the other has a solution, that solution is

accepted. Finally, if both matrices have solutions that

match, the solution is accepted. Repeat this procedure on

the rows of RO to create RHx. Erasure add RHx and Rvx to

create R, = RHx (+) Rvx. This procedure can be iterated as

many times as desired. After iterating x times, erasure

decode Rx horizontally to get the k x n matrix R,' and
erasure decode the columns of R.' to get the k x k matrix of

message bits. These codes will be referred to as 2-D Soft

codes in this paper. The decision regions that define when

a received bit should be decided as a 0, 1 or ? are

determined experimentally.

The last two sets of codes use the same k x k matrix

of k2 message bits. These matrices are encoding by encoding

each row of the message matrix with the appropriate RM code

to create a k x n matrix that gets transmitted to the

12

Ro (nxn)

decode

decode

RH'

(nxk)

re-encode

RH\ (nxn)

Rv' (kxn) Rv (nxn)

re-encode

valid codewords

EH

x

E \

valid codewords

FIGURE 1:
iterative

This figure shows the procedure for making matrix E in the

decoding algorithm. R1 = RO - E. Note that binary field

subtraction is equivalent to binary field addition. (See Appendix 1b).

13

Ev

receiver. The received matrix RO can be decoded by hard
decoding each row of RO to regenerate the k x k message
matrix. This set of codes is referred to as 1-D Hard
codes. See Appendix 2a. RO can also be decoded by erasure
decoding each row of R0 to regenerate the k x k message
matrix. This set of codes is referred to as 1-D Soft
codes. These 1-D codes are used as baseline codes that are
used to evaluate the performance of the 2-D codes described
above.

2.1 Procedure and Results of Phase I

Before analyzing these codes, decision regions for the
soft codes must be determined. The first regions in signal
space that are tried are: (See Appendix le)

------z-----I

- X-----I----------- ------ X-----
choose 0 1 choose ? I choose 1

Here, the length of z equals two times the length of y.
Letting a = sqrt(Eb/No) and b = sqrt(energy of signal):

P(error) = Q(distance to travel / s)
z + 2y = 3z = 2b => z = 2b/3
P(erasure or error) = Q(2b/3s) = Q(2a/3)
P(error) = Q(4a/3)
P(erasure) = Q(2a/3) - Q(4a/3)

When these decision regions are tried, the soft decision
decoders perform worse than the hard decision decoders in
both the 1-D and 2-D codes. Therefore, we tried other size
regions to see if performance can be improved. We tried
the following region sizes:

P(error)=Q(0.80a) P(erasure)=Q(1.20a)-Q(0.80a)
P(error)=Q(0.85a) P(erasure)=Q(1.15a)-Q(0.85a)
P(error)=Q(0.90a) P(erasure)=Q(1.10a)-Q(0.90a)
P(error)=Q(0.95a) P(erasure)=Q(1.05a)-Q(0.95a)

The third row of probabilities works best for the 2-D Soft
codes. This corresponds to a value of z that is (0.22...)y.
For 1-D soft codes, no decision region works well. When
the decision region for ? shrinks to zero, the performance

14

of this code approaches the performance of 1-D hard codes.
The third row of probabilities is used to calculate the
performance of 1-D soft codes.

Due to a programming mistake found while debugging C
code, a peculiar property with the 2-D soft codes is
discovered. When calculating R, = RHX (+) Rvx, better
performance is gained defining this erasure addition as
shown in table 2.2.

1 (+) 0 = 1 ? (+) 0 = 0 0 (+) 0 0
0 (+) 1 = 0 0 (+) ? = 0 1 (+) 1 1

? (+) 1 = 1
1 (+) ? 1

Table 2.2: A new (+) operation.

When the horizontal and vertical matrices disagree, side
with the horizontal matrix. This new calculation, labeled
R, = RHX (+)H R7x, does not get better with more iterations
while R, = RHX (+) Rvx does. Thus, the best performance of
these codes is gained when doing Ra = RHX (+) Rvx on the
first n-1 iterations and doing R, = RHX (+) H Rvx on the last
iteration. A value of n=6 seems to work reasonable well.
Going beyond this point requires more calculations and
achieves less benefit form the extra work. In this thesis,
the first five iterations use (+) while the last iteration
used (+)H. See Appendix 2b. Note that this problem is not
horizontal specific. If the rows are decodes first and the
columns second during the iterations, then the best codes
requires siding with the vertical matrix. Therefore, it
does not matter whether the columns or rows are decoded
first as long as (+)x is consistent. In this project, the
columns are decoded first.

Calculating the throughput of these codes under the
selective repeat ARQ scheme assuming sufficient buffering
on both ends to avoid overflow makes use of the throughput
equation: Tsr = PcR where R is the coderate and P, is the
probability that the matrix is decoded correctly. See
Appendix lh. The simulated performance of 1000 matrices
transmitted for each code under each of several different
Eb/Nos is run. Table 2.3 shows the simulated error
probabilities and Figure 2 shows the throughput performance
graph calculated from these error probabilities.

15

Codes constructed by RM(1,6):
Eb/NO 1-D Hard 1-D Soft 2-D Hard 2-D Soft
0.2 95.5 95.2 .1 0
0.4 29 26.7 0 0
0.6 1.9 1.8 0 0
0.8 0 0 0 0

Codes constructed by RM(2,6):

Eb/NO 1-D Hard 1-D Soft 2-D Hard 2-D Soft

0.4 100 100 100 100
0.6 100 100 82.5 12.3

0.8 99.6 100 0 0
1.0 90.2 92.8 0 0
1.2 49.2 54.4 0 0
1.4 16.1 19.0 0 0
1.6 3.8 5.4 0 0
1.8 0.9 2.2 0 0
2.0 0.1 0.5 0 0
2.5 0 0 0 0

Codes constructed by RM(3,6):
Eb/NO 1-D Hard 1-D Soft 2-D Hard 2-D Soft
1.2 100 100 100 100
1.4 100 100 99.9 92.4
1.6 100 100 75.4 25.7
1.8 99.1 99.6 15.8 1.3
2.0 91.8 96.3 0.9 0
2.5 31.0 43.8 0 0
3.0 5.6 10.0 0 0
3.5 0.8 1.5 0 0
4.0 0 0.1 0 0
4.5 0 0 0 0

Codes constructed by RM(4,6):
Eb/NO 1-D Hard 1-D Soft 2-D Hard 2-D Soft
2.0 100 100 100 100
2.5 100 100 100 99.6
3.0 98.8 99.9 92.4 69.8
3.5 78.7 91.6 43.2 14.7
4.0 45.0 61.7 10.0 2.0
4.5 17.3 32.2 1.7 0.2
5.0 6.1 14.0 0.2 0
5.5 2.8 6.1 0.1 0
6.0 1.3 2.2 0 0
6.5 0.3 0 0 0

Table 2.3: P(Matrix error) with 1000 packets passed. Eb/No is in the
linear scale.

16

Throughput Performance Curves for the different RM codes

AXXXXXX x

. - A ;

r=3 r

A A3

:Xx

- x - I-

'1*-

X (3

A-0i

. 3 9 7 9 10

Eb/No

FIGURE 2: These throughput performance curves are obtained by taking

the error probability information in table 2.3 and multiplying the
probabilities by the coderates of the respective codes.

17

0.

From the information in Figure 2, the 1-D hard set of codes

is chosen to make the adaptive FEC code. This code does

not always perform as well as the 2-D codes, but it comes

close. The 2-D codes require much more calculations, and

thus they become unattractive. It should be noted that the

2-D codes give much better BER performance, but they

operate with lower coderates which pushes their throughput

performance back to levels similar to those of the 1-D hard

code.

18

3.0 ANALYSIS OF THE 1-D HARD ADAPTIVE CODE

The set of 1-D hard codes is modified so that all the
codes are the same size. This is a good idea so that the
transmitter and receiver do not lose synchronization when
coderate information is miss-communicated. Currently, the
k x n matrix sizes vary because the values of k vary.
Therefore, the number of rows needs to be fixed to a value

f. The size of the f x n matrix is -n and it contains 'k
message bits. Another factor to consider is that extra
overhead bits are needed. In this project, 64 bits are
allocated for a 32 bit CRC-32 checksum, a 24 bit packet
number field, and 8 bits for other control information.
Therefore, the new coderate of the individual 1-D hard

codes is R=(ke-64)/ne and throughput of these codes is

PcR=(1-Pe) (k-64) /ne.

In order to verify the results of the simulated
throughput performance of the chosen code, the union bound
estimate is used.

P(row correctly decoded) = P(O bit errors) +
P(l bit error) + P(2 bit errors) + ... +
.5P (dmin/2 errors)

The last term is added into the equation because when
exactly dmin/ 2 errors occur, the decoder picks one of the
two nearest codes and is correct half the time. The
decoding is deterministic, but the probabilities of
occurrence of the two codes to decide upon are equal. Note
that the codes used in this project all have even dmins.
Also note that these equations assume only one nearest
neighbor for each codeword. If there is more than one
nearest neighbor, the probabilities calculated will be less
than the actual probabilities. Even if there is only one
nearest neighbor, other neighbors a bit further away may
make the union bound estimate smaller that the actual
probabilities. The calculated probabilities of correctly
decoded rows are:

P(for RM(4,6)) = x64 + Comb(64 1) (l-x)x 63 +

.5Comb(64 2) (1-x)2 x62

P(for RM(3,6)) = x 6 4 + Comb(64 1) (l-x)x63 +

Comb(64 2) (1-x) 2 + Comb(64 3) (1-x) x61 +

.5Comb(64 4) (l-x) 4x60

P(for RM(2,6)) = x64 + Comb(64 1) (-x)x 63 +

P(for RM(1,6)) = x 64 + Comb(64 1) (1-x)x 63 +

19

The solutions for these calculations appear in table 3.1.
Also in this table is the simulated calculations for 1000

matrices of one row for comparison.
and are traditional RM codes.

Eb/NO
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.5
3.0

RM (1, 6)
36.6%/58.8%

4.8/ 9.8
0.2/ 7.8

0/ 0.4
0/ 0.2
0/ 0
0/ 0
0/ 0
0/ 0
0/ 0
0/ 0
0/ 0

RM (2, 6)
98.7/99.6
85.7/89.5
56.0/59.0
26.2/27.3
9.2/ 9.5
3.2/ 2.7
0.6/ 6.6

0/ 1.4
0/ 0.3
0/ 0
0/ 0
0/ 0

These matrices have =l

RM (3, 6)
100 / 100
99.9/99.7
96.7/96.5
88.9/85.4
72.9/66.2
54.8/44.8
34.1/27.0
21.0/14.8
10.8/ 7.6
5.4/ 3.7
1.0/ 0.5
0.2/ 0.1

RM (4, 6)
100 / 100
100 / 100
99.9/99.7
98.2/97.9
94.6/92.7
88.3/82.9
80.2/69.8
68.7/55.4
56.0/41.9
41.1/30.4
19.8/12.1
7.8/ 4.4

Table 3.1: 1000 Packet Simulation vs. Analytic Solution. The

following table shows the simulated probability of error P(e)
data run on the 1-D Hard C program in Appendix 2a with a slight
modification. The number of rows is changed from k to 1. A C

program is used to calculate the union bound estimate as shown in
section 3. The format for the table is (simulated P(e))/

(analytic P (e)) .

Note that the analytic solutions are close to the simulated
solutions. Given that the analysis is an approximation,
the simulation algorithm will be used to obtain values for
the probability of matrix error. To get more accurate
calculations, 100000 matrices (data packets) are
transmitted in the simulation program for each RM code as a
function of Eb/No. The results of these simulations on

packets of £=l appear in table 3.2.

20

For the packets constructed with the RM(2,6) code:
P(e)=0.000 for all Eb/No values tested.

For the packets
Eb/No P(e)
0.25dB 6.852%
0.50 4.779
0.75 3.207
1.00 2.013
1.25 1.256
1.50 0.706

.For the
Eb/No
0.25dB
0.50
0.75
1.00
1.25
1.50
1.75
2.00

For the
Eb/No
0.25dB
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

packets
P(e)
67.611%
61.298
54.542
47.494
40.414
33.500
27.204
21.333

packets
P(e)
95.026%
93.160
90.860
87.981
84.420
80.180
75.262
69.611
63.344
56.850
50.018
43.186

constructed with the RM(2,6) code:
Eb/No P(e) Eb/No
1.75 0.401 3.25
2.00 0.190 3.50
2.25 0.097 >3.5
2.50 0.038
2.75 0.014
3.00 0.006

constructed with the RM(3,6) code:
Eb/No P(e) Eb/No
2.25 16.186 4.25
2.50 11.895 4.50
2.75 8.414 4.75
3.00 5.803 5.00
3.25 3.722 5.25
3.50 2.370 5.50
3.75 1.413 5.75
4.00 0.815 6.00

>6.0

constructed with the RM(4,6) code:
Eb/No P(e) Eb/No
3.25 36.460 6.25
3.50 30.134 6.50
3.75 24.323 6.75
4.00 19.111 7.00
4.25 14.644 7.25
4.50 10.962 7.50
4.75 7.871 7.75
5.00 5.515 8.00
5.25 3.783 8.25
5.50 2.517 8.50
5.75 1.645 >8.5
6.00 1.038

Table 3.2: 100000 Packet Simulation. The following table shows
the simulated probability of error P(e) data run on the 1-D Hard
C program in Appendix 2a with 1 row. This simulation differs
from the one recorded in table 3.1 because it is run on 100000
packets instead of 1000 packets and Eb/NO is in the dB scale here
while it is in a linear scale above. The probabilities of errors
here are used to characterize the performance of the 1-D Hard
codes.

Our adaptive code, which can code messages at any of
the four coderates discussed above, can also choose not to
code the message at all. To determine the probability of
error for uncoded packets, the simulation program is run
with 100000 packets without encoding or decoding. The

21

P(e)
0.001
0.001
0.000

P(e)
0.460
0.244
0.10?
0.04C
0.020
0.007
0.003
0.001
0.000

P(e)
0.603
0.361
0.184
0.096
0.042
0.022
0.015
0.006
0.004
0.001
0.000

following calculations are made to compare with the
simulations. Note that this calculation does not depend on
approximations as did the calculations for coded data.

P(row error) = 1-P(good row) = 1-(l-P(bit error))6 4

[no coding] = 1- (1-Q (sqrt (2E/N,)) ")
= 1- (1-. 5erf c (2E/NO) 6)

= 1-(1-.5erfc(exp(.1(Eb/Noin dB)lnlO)) 4)

The last line is a trick used because MS Excel does not
have an antilog function. The analytic solutions and
simulations at 100000 passed packets match to within %0.1.
See table 3.3. This case validates the accuracy of the
simulations. For the case where there is no coding, the
throughput performance curve uses the analytic solutions
and not the simulations. Now that the probability of an
error in a row is determined for all codes, the probability

of an f row packet error is: P(packet error) = 1 - P(good

packet) = 1-P(every row is good) = 1 - [1-P(row error)]'.

Sim'd Analytic Sim'd Analytic
Ee/NO P(e) P(e) Eb/No P(e) P(e)
0.25dB 99.183% 99.205% 5.25 26.684 26.610
0.50 98.762 98.824 5.50 22.026 21.938
0.75 98.205 98.287 5.75 17.751 17.791
1.00 97.471 97.546 6.00 14.145 14.190
1.25 96.464 96.545 6.25 11.065 11.127
1.50 95.175 95.220 6.50 8.613 8.575
1.75 93.437 93.507 6.75 6.425 6.492
2.00 91.347 91.341 7.00 4.765 4.827
2.25 88.690 88.665 7.25 3.465 3.522
2.50 85.559 85.436 7.50 2.508 2.520
2.75 81.623 81.634 7.75 1.745 1.768
3.00 77.279 77.264 8.00 1.194 1.214
3.25 72.341 72.362 8.25 0.784 0.816
3.50 66.919 66.998 8.50 0.581 0.536
3.75 61.147 61.268 8.75 0.344
4.00 55.217 55.295 9.00 0.215
4.25 49.087 49.219 9.25 0.131
4.50 43.121 43.181 9.50 0.077
4.75 37.287 37.321 9.75 0.045
5.00 31.864 31.763 ...

Table 3.3: Analytic Solution & Simulation for No Coding. The
simulation for no coding is run for 100000 packets and is
compared to the calculations as shown in section 3. Simulations
are stopped after Eb/No of 8.5dB while the calculations continue
until P(e) rounds to 0.000.

22

4.0 PHASE II: ARQ/AFEC IN A FADING ENVIRONMENT

A log-normal fading environment with an Fb/No that is
constant over the duration of one packet transmission is

assumed. The overall throughput over a long period of time
that includes fading is the average of the throughput
performance curve (with Eb/No in dB) scaled by the Gaussian
PDF curve of a certain mean m and standard deviation s.

MATLAB code is written to calculate this throughput
for values of m that range from 1 to 10 in steps of 1 and

values of s from .25 to 2.5 in steps of .25. Values of f
ranging from 1 to 50C are calculated for each case and the
value that gives the optimal throughput for each m and s
for each code is recorded in figure 3. The graphs have
sections with a ceiling of 500, but the actual optimal

values of f will be higher in these regions. The optimal

throughputs at these values of i are shown in figure 4.
Figure 5a shows the best throughput for any of the
individual codes at each value of m and s. This graph
represents the best that can be done in a location with
noise characteristics m and s where the system designer can
choose any fixed code but not an adaptive code. Figure 5b
has a graph that shows which code gives that optimal
performance. Notice that in figure 5, the values of s are
extended to 5.0 and the step size of m is decreased to 0.5.
Figure 6 shows the performance of an adaptive code and the

value of 4 that should be used for that code. All the
constituent fixed codes that make up the adaptive code have

f rows at each value of m and s so that all packets are the
same size at each value of m and s. Therefore, picking a

value I for the adaptive code is a compromise that results
in each constituent code not necessarily having the optimal
size. Figure 7 shows what is gained by using the adaptive
code of figure 6a instead of the best fixed code of figure
5a. The graph shows percent change by plotting throughput
of the adaptive code divided by throughput of the fixed
code. As expected, when the standard deviation is small,
the impact of using the adaptive code is minimal because
only one of its constituent codes is running most of the
time. As s increases, the adaptive code becomes a better
solution. Appendix 3 shows the program that is used to
generate the graphs in figures 3-7.

23

(a) RM(1,6)

501

5004

499
10 25

"?7 0 0

(c) RM(3,6)

600,!

4001

200 l

10

1_75 0 0
'.

(b) RM(2,6)

600

4004

200

0

10 .

0 0

(d) RM(4,6)
600

400

200

10
S2.6

0 0

FIGURE 3: These graphs show the values of t which give the optimal
throughput for 1-D Hard codes in a hybrid selective repeat ARQ scheme.

Values of e are shown for fading environments with mean values of m
ranging from OdB to 5dB and standard deviation values s ranging from

.25 to 2.S. Note that values of t are restricted to a ceiling of 500.

24

(a) RM(1,6) (b) RM(2,6)

5

0 0

(c) RM(3,6)

15
505

rh r)
S

(d) RM(4,6)

0~0.51

10

/77.0
0 0

FIGURE 4: These graphs show the optimal throughput of the constituent

codes at the values of f in figure 3.

25

0.12

= 0.1.

0 0.08,

0.061
10

-~N \\

0,

5.

0 0

0.2,

10

S

CL

0)

a) Non-Adaptive Code Throughput

0.

0.5

0
10

50 0
) Ns

b) Non-Adaptive Code: Constituent Code Selection

5

uncoded r=4

r4

3

21
10

5

51 0S

FIGURE 5: The first graph, figure 5a, is the composite of the optimal
throughputs of the constituent codes in figure 4. This graph
represents the best throughput that can be achieved using a non-
adaptive FEC code with selective repeat hybrid system. Figure 5b is a
graph that shows which of the constituent codes is used by the adaptive
code at each of the different fading environments (at each of the
values of m and s.) Note that the step size of m is decreased co .5dB
and the range of s is extended to 5.

26

rn s

a) Adaptive -ode Throughput

CL

0

0 0 S

b) Adaptive Code I values

300-,

S200

100

0-
10

M 0 0

FIGURE 6:

5

The throughputs that are achieved with our adaptive FEC code

and selective repeat hybrid system are shown in figure 6a. Figure 6b

is a graph showing the optimal values of 1 at each of the different

fading environments. Notice the spikes in this graph where the noise

PDF is sharp (s is low) and is centered on an Eb/No value that is near a

transition point of constituent codes in the AFEC.

27

0.5

10
5

Adap. Thru / Non-Adap. Thru.

C.

= 1.5,
0

1.4 1

*0

S1.

0

C3

1.1>
<:7-

0 0

FIGURE 7: This graph shows the ratio of the optimal non-adaptive
hybrid system throughput in figure 5a to the adaptive hybrid system
throughput in figure 6a. This graph represents how much better an
adaptive hybrid code works in different fading environments. Notice
that the benefit of using an adaptive hybrid system increases as the
standard deviation of the fading environment increases.

28

To study the effects of propagation delay in the link,

we focus on a specific fading model. We choose the fading

model with mean m = 5dB and standard deviation s = 2. The

optimal value of f in this case is 18. Figure 8 shows how

different values of e affect the throughput of this system.
Figure 9 shows the performance curves at m=5dB, s=2 and e=18

for the constituent codes that make the AFEC. The

performance of the AFEC is the maximum of these curves.

Also shown in this figure is the Gaussian PDF curve of the

fading. This curve is not plotted on the same vertical

scale as the throughput performance curves. It is included

in the figure to give a sense of how often each coderate is

used. Notice that the curves are cut off at Eb/NO=OdB. At

zero Eb/NO and below, it is assumed that the modem loses its
lock on the signal and thus the throughput is zero.

To explore how a delay in the estimated BER of the

noise in the channel affects the overall throughput of the

system, a fading model for Eb/NO with respect to time must
be determined. This delay can be caused by the propagation

delay while the estimated coderate information is sent from

the receiver to its transmitter. The model used in this

thesis is a Markov Chain model with a Gaussian probability

density function. The pertinent Markov Chain equation is:

Pj+j = (Xj/pj+)Pj. The probability of being in state j, Pj,

is determined by the Gaussian function. The probability of

staying in the current state is some fixed probability for

all states. In this thesis, the probability of staying in

any state is 0.9. This is all the information needed to

determine values for X and pi. Appendix 4 has a program that

used these Markov chain calculations. Notice that a chain

is created which has a PDF of only the right side of the

Gaussian function. At state 0, a coin is flipped to

determine whether the states that the chain visits should

be interpreted as left or right of the center of the

Gaussian function. This coin is re-flipped each time state

0 in entered. This trick creates a Markov Chain with a

full Gaussian PDF. Each time the chain makes a decision to

enter a new state or stay in the current state, an

iteration occurs. The chain is allowed to run for various

numbers of iterations to determine how many iterations it

takes for the PDF to look like a Gaussian function. See

figures 10-12.

29

Maximum I Curve

0.58

0.56 --

0.54 -

0.52

.
0.5

0.48-

0.46

0.44-

0.42-

0.4
0 10 20 30 40 50 60 70 80 90 100

iterations

FIGURE 8: This graph shows the throughput performance of an adaptive

.EC selective repeat ARQ hybrid system with the specific fading

characteristics of m = 5dB and s = 2 for different values of f.
Throughput is maximized for f = 18. Therefore, the packet size of our

system is 64*18 = 1152.

30

Constituent Curves

1- 0 000uncoded0 0

0.9- 0 0 RM(4,6)
0 0

0.8-
0 0

0.7- 0 0

RM(3,6)
0.6- 0

0.0

0.5-
00

0.4 - 0

0 0 RM(2,6)
0.3 -

0.2-

00

0.1 - 0 0 RM(1,6)

S- 0 2 4 6 8 10 12

Eb/No

FIGURE 9: This graph shows the performance curves of the constituent

codes that make up the AFEC at e=18. The performance of the AFEC is

simply the maximum of these curves at each Eb/Nq value. The curve drawn

in the circled line is the PDF of the fading at mean m = 5dB and

standard deviation s = 2. This PDF curve is not drawn to scale

vertically.

31

a) Fade

0 100 200 300 400 500

iterations

b) Prob. Density

0

0 2 4 6 8 10 12 14 16 18 20

FIGURE 10: The output of the Markov Chain run for 1000 iterations
modeling a fade with m=5dB and s=2 is shown in figure 10a. Figure 10b
is the calculated PDF for this chain. Because it does not look like

the expected Gaussian curve, more iterations should be run.

32

6

5.5

5

4.5

4

3.5

3

-

-

600 700 800 900 1000

01
0 0

0 0
0 0

0 0

0 00 0
0 0
0 0

a) Fade

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

iterations

b) Prob. Density

a-

0 0
0
0

00 0

0 0
0

0 0

0 2 4 6 8 10 12 14 16 18 20

FIGURE 11: The output of the Markov Chain run for 10, 000 iterations
modeling a fade with m=5dB and s=2 is shown in figure Ila. The PDF
curve in figure llb looks more like the Gaussian curve. However, more
iterations should be run.

33

6- ~
5

3-

2-

CD

a) Fade

10

8

6

2

0

U-
0
0L

0

0 0.5 1 1.5 2 2.

iterations X 10
4

b) Prob. Density

0
0 0

0 0
0 0

o 0.
0

0
0 0

0
0

0
0

0 2 4 6 8 10 12 14 16 18

5

20

FIGURE 12. The output of the Markov Chain run for 25,000 iterations

modeling a fade with m=5dB and s=2 is shown in figure 12a. The PDF

curve in figure 12b looks more like the Gaussian curve.

34

Auto-correlation graph

3.5,

3

2.5

2

1.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

iterations

FIGURE 13: This graph shows the auto-correlation RA = E [A (t) 'A (t+T) I of
the output of the Markov Chain run for 100,000 iterations. The
expected value is taken by averaging over 90,000 iterations. T ranges
from 0 to 10,000 iterations. The output becomes uncorrelated with
itself at about 2000 iterations.

35

1

0.5

0

-0.5

At this point in the thesis, an absolute time scale

for the iterations of the Markov Chain model is set using

an auto-correlation function, RA(T) = E[A(t+T)A(t)I. See

Appendix 4. This function determines how well the Eb/No at

one point in time is correlated with the Eb/No T iterations

later. The results are shown in figure 13. The noise

becomes uncorrelated with itself at approximately 2000

iterations. This cutoff will be defined as 1 second to

approximate the affects of scintillation on Ka band

signals. It is assumed that fading due to rain attenuation

is handled by power control or some other means. Thus,

2000 iterations of a Markov Chain corresponds to 1 second

of time.

The affects of delay and the different protocols to

relay channel Eb/No information from the receiver to the

transmitter can now be simulated. MATLAB code is run to

simulate the affects of delay on throughput. See Appendix

5. The choice of running this simulation for 1 million

iterations or 500 seconds is determined by running

simulations with zero delay for varying amounts of time and

seeing how close the simulations' throughputs come to the

calculated throughputs of the program in Appendix 3. The

results are listed in table 4.1.

#iteratons throughput #iteratons throughput
100K .5868 850K .5927

400K .6099 1000K .5871

600K .5890 1500K .5837
--

Table 4.1: This table shows the number of iterations for which

the Markov Chain fading model is run and the associated system

throughput calculated. m = 5dB, s = 2, t = 18.

From this table, it looks as though 1000K iterations is

where the throughput starts to stabilize near the .5766

calculated throughput target. The calculated PDF for 1

million iterations also looks Gaussian. The program in

Appendix 5 is run for several different delays and the

results are listed in table 4.2. This information is

graphed in figure 14. These throughputs do not take into

account the BER information that gets passed over the link

from the receiver to its transmitter. This plot represents

the baseline curve because any protocol for transferring

BER information will not be able to perform better than the

throughputs in this curve. Also shown on this graph is

another simulation that only differs in the number of

overhead bits, which is changed from 64 to 72. The extra 8

36

bits of information represent the extra space in the header
of each packet that would be used to relay coderate
information from the receiver back to the transmitter in
the return link. Because the link is bi-directional, the
extra overhead will be added on packets in both directions.

To simulate the protocol in which control packets are
used to relay coderate information as opposed to an
increased header, the data rate for the link must be known.
This simulation is done for data rates of 1 Gbps, 10 Mbps,
and 2 Mbps. Because a packet is roughly 1000 bits
(=18)'(n=64), 1 Gbps represents 1 million packets per
second or 500 packets per iteration. Thus, each iteration
represents the passing of 500 packets while sending a
control packet only costs 1 packet worth of information.
Following the same reasoning, the 10 Mbps data rate leads
to 5 packets per iteration and the 2 Mbps leads to 1 packet
per iteration. The throughputs for these links are shown
in table 4.2.

header control packet protocol
baseline protocol 1 Gbps 10 Mbps 2 Mbps

delay thruput thruput thruput thruput thruput
0 .5871 .5809 .5871 .5806 .5817
25 .5788 .5726 .5788 .5777 .5735
50 .5719 .5658 .5719 .5709 .5667
75 .5653 .5593 .5653 .5643 .5602
100 .5592 .5532 .5592 .5581 .5541
200 .5387 .5330 .5387 .5378 .5338
300 .5246 .5190 .5246 .5237 .5198
400 .5127 .5072 .5126 .5117 .5080
500 .5029 .4975 .5029 .5020 .4983
1000 .4772 .4721 .4772 .4763 .4729
1500 .4639 .4590 .4639 .4631 .4597
2000 .4547 .4498 .4546 .4538 .4505
2500 .4513 .4465 .4513 .4504 .4472
3000 .4486 .4438 .4586 .4478 .4445
3500 .4493 .4445 .4493 .4485 .4452
4000 .4487 .4439 .4586 .4487 .4445

Table 4.2: This table shows the throughput of the baseline curve
in column 2 with respect to the delay in iterations of the Markov
Chain. This column does not use any protocol to get coderate
information back to the transmitter. Column 3 uses an extra 8
bits in the header to relay coderate information. The last three
columns use control packets to relay coderate information with
system data rates of 1 Gbps, 10 Mbps, and 2 Mbps respectively.

For all these columns, m = 5dB, s = 2, and f = 18.

37

The performance plot of the control packet protocol at
1Gbps is indistinguishable from the plot for the baseline
delay curve (figure 14). At 10 Mbps, the performance plot
of the this protocol is worse than the baseline curve, but
still better than the plot of the curve which represents
passing coderate information in each packet header (figure
15). At 2 Mbps, the performance of this control packet
protocol is worse than the performance of the header
protocol (figure 16). However, all these curves are close
to the baseline curve. Minimizing delay is more important
than the protocol used to relay coderate information from
the receiver back to the transmitter. This delay is
approximately twice the round trip propagation delay of LEO
satellite communications, and therefore is on the order of
.025 seconds or 50 iterations.

38

1Gbps

baseline

ctrt pkts
-header

500 1000 1500 2000 2500 3000 3500 4000

iterations

FIGURE 14: This graph shows how delay of the channel noise information

affects throughput for a system at bit rate 1Gbps with a fading

environment of m=5dB and s=2. The upper curve is the baseline curve

and also shows the throughput of the system using the control packet

protocol. The second lower curve shows the throughput of the system

using the header protocol. Also shown is the throughput of the

calculated adaptive hybrid system at zero delay and the throughput of

the non-adaptive hybrid system at zero delay. From these zero delay

lines, we see that the throughput performance of the adaptive system

degrates to that of the best non-adaptive system if the channel

information is delayed for about 1000 iterations or 1 second.

39

0.6

0.58

0.56

0.54

0.52
0.

0)
0.

0.5

0.48

0.46

0.44
C

10Mbps

0.6

0.58

0.56-

.54-

c.0.52 -

o.5 -
baseline

0.48-

ctrl pkts

0.46- header

0 500 1000 1500 2000 2500 3000 3500 4000

iterations

FIGURE 15: This graph shows how delay of the channel noise information

affects throughput for a system at bit rate 10Mbps with a fading

environment of m=5dB and s=2. The baseline curve (upper curve) and the

throughput curve of the system using the header protocol (lower curve)

do not change. The throughput curve of the system using the control

packet protocol (middle curve) starts to move lower. However, this

system still performs better than the system that uses the header

protocol.

40

2Mpbs

0.6

0.58

0.56-

0.54-

. 0 .52,-
0

0.5-
baseline

0.48

header

ctri pkts

0.44
0 500 1000 1500 2000 2500 3000 3500 4000

iterations

FIGURE 16: This graph shows the same throughput performance curves
when the systems are operating at 2Mbps. The curve of the system that
uses control packets has now dropped below the curve of the system that
uses the header protocol.

41

[This page is intentionally left blank]

42

5.0 CONCLUSION

When designing an ARQ/AFEC system, many choices of
codes are available to construct the AFEC. If RM codes are
chosen, then erasure decoding and/or simple 2-D iterative
block decoding do not buy enough throughput performance to
make them worth their added complexity. One reason for
this may be due to the fact that in an AFEC, codes are run
on the edges of their performance curves. The range of
Eb/No values for which a code is used starts near to where
that code's throughput performance falls off to zero. This
most likely explains why a delay in updating coderate
information in our AFEC has such a dramatic negative effect
on throughput. If fading causes the Eb/No to decrease, then
the throughput of the system is falling to zero for a
period of time until the new code is selected.

The ARQ/AFEC system under the two protocols and log-
normal fading was analyzed for throughput. First a

comparison of the ARQ/AFEC with an ARQ/Non-Adaptive FEC was
made to determine whether a system designer should bother
with an adaptive code. Adaptive codes become more worth
while as the standard deviation of the fading environment
increases. With communications over a LEO satellite, which
has a round trip delay on the order of .013 seconds, and a
fading model with a mean of 5dB Eb/No and a standard
deviation of 2, an ARQ/AFEC system makes sense. With this
fading model, the better protocol for sending channel
information from the receiver to its transmitter depends on
the data rate. For data rates higher than 10 Mbps, the
protocol that uses control packets is more throughput
efficient. For data rates lower than 2 Mbps the protocol
that places coderate information in the header is more
throughput efficient. For data rates in between, the
choice of protocols does not seem to affect throughput
significantly.

These observations introduce two interesting
extensions to this thesis. First, the erasure decoding and
2-D iterative decoding can be tested for throughput
performance at much higher Eb/No values that have error
probabilities on the order of 10-6 and 109. This is the
usual region in which non-adaptive codes are used and
analyzed. Our ARQ/AFEC does not run codes in this region
because throughput is not maximized by doing so. Better
throughput is achieved by switching to a code with a higher
coderate and letting the ARQ system handle much of the

43

error control. It would be interesting to see if the

erasure decoding and iterative decoding methods greatly
outperform the normal RM decoding at these higher Eb/NO
regions. If they do, one conclusion that may be drawn is
that when constructing an ARQ/AFEC system, a designer
should not bother with complex codes that approach the
Shannon limit. Simple codes like normal RM codes may be
used with minimal loss in throughput performance.

The second interesting extension to this thesis is to
use margin when switching from one code to the next code so
that the throughput of the system does not fall to zero as
quickly during the delay in switching coderates. A range
of margins can be analyzed to find the margin that produces
the highest throughput.

44

APPENDIX 1: BACKGROUND

To understand the error correcting codes used in this

thesis, binary fields are first explained. Next, vector

spaces that are defined over these fields are introduced.

With this knowledge, linear FEC codes can be explained.

The Reed-Muller code, a specific binary linear code, is

then introduced in detail because this is the code that is

focused upon in this thesis. After this code is explained,

bit error rate performance is explained. This section is

then followed by short introductions to erasure and

iterative decoding. Finally, the selective repeat ARQ

scheme is introduced.

45

[This page is intentionally left blank I

46

la) Binary Fields

A binary field, GF(2), is a set of two elements
commonly labeled 0 and 1 with 2 operations. This is the
simplest type of field. The two operations, addition and
multiplication, are under modulo 2 arithmetic. To
understand fields, abelian groups must first be understood.
An abelian group, G, is a set of objects and an operation
"*" which satisfy the following:

1. Closure: if a,b in G, then a*b = c in G.
2. Associativity: (a*b)*c = a*(b*c) for all a,b,c in G.
3. Identity: there exists i in G such that a*i = a for all

a in G.
4. Inverse: for all a in G, there exists a-' in G such that

a*a-1 = i.
5. Commutativity: a*b = b*a for all a,b in G.

Examples of abelian groups are the set of integers and the
set of real numbers. An example of a finite group is the
set of integers from 0 to m-1 with the operation of
addition modulo m. For example, the group {0,1,2,3} is a
group under modulo 4 addition. This table defines the
group:

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

All the rules above are met. For example, 0 is the
identity element, the inverse of 3 is 1, 2+1 = 1+2, etc.
Note that this same set of elements under modulo 4
multiplication would also meet these rules and would also
be an abelian group.

A field, F, is a set of objects with two operations,
addition (+) and multiplication (*), which satisfy:

1. F forms an abelian group under + with identity element
0.

2. F-{0} forms an abelian group under * with identity
element 1.

3. The operations + and * distribute: a*(b+c) =
(a*b)+(a*c).

47

The example above of {0,1,2,3} is not a field under
addition and multiplication modulo 4 because 2*2 = 0 which
is not in F-{0}. F-{0} is not closed and is not a group
under *. Notice that the set of integers {0,1,2 ... (p-1)}
under addition and multiplication modulo p where p is a
prime number does not fall into this trap. This set under

these two modulo p operations does define a field. The

simplest field is the set {0,1} under addition and
multiplication modulo 2. The tables below define the

field.

+ 0 1 * 0 1

0 10 1 0 1 0 0
1 1 0 1 1 0 1

48

lb) Vector Spaces

Letting V be a set of elements called vectors and F be a
field of elements called scalors, the operations vector
addition "+" and scalor multiplication "*" can be
introduced. V is said to form a vector space over F if:

1. V forms an abelian group under +.
2. For any a in F and v in V, a*v = u in V.
3. The operations + and * distribute: a*(u+v) = a*u + a*v

and (a+b)*v = a*v + b*v. (Here (a+b) is the additive
field operation and not the additive vector operation.
These operations can be distinguished because vectors
are in bold and scalors are not.)

4. Associativity: for all a,b in F and v in V, (a*b)*v =
a*(b*v).

5. The multiplicative identity 1 in F is also the
multiplicative identity in scalor multiplication: for
all v in V, 1*v = v.

The simplest example of a vector space is the set of binary
n-tuples. Here, vector addition is defined as element wise
modulo 2 addition and multiplication is normal scalor
multiplication.

u+v = (uo+vo, ul+vl, ... , Un-l+Vn-1)
a*v = (avo, avi, ... ,avn- 1)

For example, (1,1,0,0,0,1) + (1,0,0,1,0,0) = (0,1,0,1,0,1)
and 0 * (1,1,0,0,0,1) is (0,0,0,0,0,0). A spanning set is
a set of vectors such that the linear combination of these
vectors creates all the vectors in the vector space. A
basis is a spanning set of minimal cardinality. For
example, if vo=(1, 0,O,0), V1=(0,1,0,0), v2=(,0,1,0) and
v 3=(0,0,0,1), then the set {vo,v 1,v2,v3} is a basis for the
set of binary 4-tuples because any binary 4-tuple can be
expressed as a linear combination of these vectors. For
example, (0,0,1,1) = 0*vo + 0*vi + 1*v 2 + 1*v 3 . The
dimension of a vector space equals the cardinality of its
basis. A subspace is a subset of V which also satisfies
the properties of a vector space. The inner product is
defined as:

UWV = uo*vo + u1+v1 + U2*v 2 + ... + Un-l*vn-1

Let S be a k-dimensional subspace of vector space V, and
let SD be the set of all v in V such that for all u in S and

49

for all v in SD , V = 0. Subspace SD is the dual space of
subspace S. Note that S and SD are disjoint subspaces in V
and thus the dimension of SD is:

dim(SD) = dim(V) - dim(S).

Finally, note that vector subtraction is the same as vector
addition in binary vector spaces because of the group
property of V under vector addition. Every vector is its
own inverse and thus -v = v because v+v = 1*v + 1*v =
(1+1)v = O*v = 0 (the zero vector). Thus, v+v = v+(-v) =
v-v.

50

lc) Linear Block Codes

A block code C is a set of m codewords {co, c1 , ... ,Cm-1}
where each codeword is an n-tuple of elements from a finite
field, c = {cO, ci, ... ,c,_I}. If these elements are from the
finite field GF(q), then code C is q-ary. For binary block
codes, the elements of c are form {0,1}, i.e. from GF(2).
Block codes work in the following way. A data stream is
broken up into message blocks of length k bits. Each block
is encoded into an n bit codeword from C and transmitted.
The receiver may then correctly decode the n bit block back
into the original k bit message block, even if some of the
bits in the codeword are corrupted by noise during
transmission. This decoding is possible because r = n-k
redundant bits have been added to the codeword. The rate
of a code is R = k/n. Thus, using a half rate code
requires the system to transmit twice as many bits as an
uncoded system.

There are several definitions used to describe codes
and their codewords. The weight of a codeword is the
number of non-zero elements in that codeword. In the case
of binary codes, the weight is the number of 1 coordinates.
The Hamming distance between two codewords is the number of
coordinates in which the two codewords differ. For
example, the Hamming distance between (0,1,1,1,1) and
(0,1,0,0,1) is 2. The minimum distance, dmin, of a code is
the minimum Hamming distance between any of its codewords.
An error pattern is an n-tuple of Os and is in which is are
placed in the coordinate positions of corrupted bits and Os
fill the rest of the n-tuple. For example, if (0,1,1,1,1)
is transmitted and (0,1,0,0,1) is received due to noise,
the error pattern is (0,0,1,1,0). Notice that the receiver
can detect all errors in a received word whose error
pattern weights are <= dmin-1 because a corrupted codeword

could not be disguised as another valid codeword. Also,
the receiver can correct all errors in a received word
whose error pattern weights are <= (dmin-l)/2 because the
received word will be closest in Hamming distance to the
correct codeword. In this case, the receiver would simply
replace the received word with this closest codeword and
continue decoding.

A linear q-ary block code C is a specific type of q-
ary block code in which C forms a vector subspace over
GF(q). In the case of binary linear block codes, q = 2.
The dimension of a linear code is the dimension of the

51

subspace which equals k, the number of coordinates in the
message block for that code. Thus, there are 2k codewords
in the code. Properties of linear block codes include:

1. Any linear combination of codewords is also a codeword.
2. The minimum distance of the code is the weight of a

lowest weight non-zero codeword.

Both properties follow directly from the group property of
vector addition. The second property can be understood as
follows: let c and c' be codewords with the minimum
Hamming distance. c = c-c' is a codeword which has this
same minimum Hamming distance from the all 0 codeword. c
is also a lowest weight non-zero codeword. Note that the
all 0 codeword must be included in any linear code because
0 is always a valid element over any field which the vector
space can be formed over and 0*c,= the all 0 codeword.

A generator matrix G for a linear block code can be
constructed from a basis {g0,gi,...,gk-1} of its vector space.

go I I goo ... go,n-1 I
gi I ,

G = I ... I = | I
gk-1i I gk-1,n ... gk-1, n-1i

The k bit message block is then encoded into the n bit
codeword as follows: c = aMG = mOgO + migi + ... + mk-.lgk-.
Note that any basis of the vector space can be used to
construct this generator. The resulting codes will have
the same performance and codewords, but the messages may be
represented by different codewords in the code. A parity
check matrix H for a code C is constructed using the basis
{ho,h,...,hn-k-k} of the dual of C's vector space CD.

I ho I I ho,o ... ho,n-1
|hi hi, 0

H = ... I =...

Sh I- hn-k-l,n ... hn-k-l,n-1 I

If a codeword is multiplied by its parity check matrix, the
result is the all 0 n-tuple, cHT = 0. This follows directly
from the property of dual spaces. Finally, a syndrome is
calculated by multiplying the received word r by HT. Note
that s = rHT = (c+e)HT = cHT + eHT = 0 + eHT = eHT . For many

decoders, the syndrome is used to look up the error pattern
e which can be used to correct the errors in r.

52

1d) Reed-Muller Codes

ReedMuller (RM) codes are considered "quite good" in
terms of performance vs. complexity. [5] They are not the
most powerful codes. However, they have an "extremely fast
maximum likelihood decoding algorithm." [12] To understand
RM codes boolean functions are first introduced. An
example of boolean functions of four variables is shown in
the following truth table.

V4 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
V3 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
V2 = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
V, = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

f= 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
f2= 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0

In this example, fl = v 3+v 2 +vl and f 2 = v 3v 2 vl+v 4 v3+vl+1.
These boolean functions and variables can be associated
with vectors. For example, fi = (0, 1, 1,0, ..., 1). Notice that
the matrix [v4 , v2, v]

T is arranged such that the columns
are the binary numbers from 0 to 24-1. Any boolean function
can be represented as:

f = aol + alvi + ... + amvm + a 12v1v 2 + ... + a::..mvlv2...vm

where m represents the number of variables that the
functions are defined over. Note that the associated
vectors are binary 2m-tuples. There are 2 2^m distinct
vectors/functions.

The RM code R(r,m) is the set of all 2m-tuples that is
associated with boolean functions in m variables of order
r, i.e. boolean function that are polynomials of degree r
or less. For example, R(2,4) has the generator matrix:

53

1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11
Iv4 10 0 0 0 0 0 0 0 1 1 1 1 1 1 1 11
1 v 3 1 10 0 0 0 1 1 1 1 0 0 0 0 1 1 1 11
1 V2 1 10 0 1 1 0 0 1 1 0 0 1 1 0 0 1 11
1 V, 1 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 11

G = 73V4| = 10 0 0 0 0 0 0 0 0 0 0 0 1 1 1 11

1 V2V41 10 0 0 0 0 0 0 0 0 0 1 1 0 0 1 11

1v1v41 10 0 0 0 0 0 0 0 0 1 0 1 0 1 0 11
1V2V31 10 0 0 0 0 0 1 1 0 0 0 0 0 0 1 11
IV1V31 10 0 0 0 0 1 0 1 0 0 0 0 0 1 0 11

Iviv21 10 0 0 1 0 0 0 1 0 0 0 1 0 0 0 11

Note that to create the R(3,4) generator matrix, this
matrix would be extended down to by adding the rows for
V 2V3V 4, VV3V4, V 1V 2V 4 , etc. The matrix above can be more
co:pactly expressed using sub-matrices where Go = 1, G, =

[v4,vv 2, vi T, and G2 = [v3v4 ,v2v 4, ... ,viv 2] I. Note that the

indices indicate the order of the collection of rows. The
message vector can also be expressed in a similar way: mo =

m, mI = [m4,m3,m2,m1] , and m2 = [m34,m 24,...,m 12] . To encode a
message, into a codeword:

Got

c = mG = [m0 I 1 m2] G1

1G2 1

So for an RM(r,m) code, n = 2 m and k = SUM Comb(m, j) where
th- summation variable j goes from 0 to r inclusive and
Comb represents m things taken j at a time. For example, k
of RM(2,6) is Comb(6,0)+Comb(6,1)+Comb(6,2) = 1+6+15 = 22.

Decoding an RM code back into a message m is done by
estimating m, from the highest order to mo. For our RM(2,4)
example, this means estimating M 2 , then mi, then mo. Notice

that for RM (2, 4) , co =- m, c1 = mO+Mn, c 2 = mO+m 2 and c3 =

mO+ml+m 2 +min 2. These equations can be directly read off the

generator matrix by looking at the positions of ls down its
columns associated with each c,. These equations can be
added to get Mi1 2 = cO+c 1+c2+c 3. This procedure can be
repeated to get the other four expressions for Mi12 : Mi12 =

c 4 +c 5 +c 6 +c 7 = c8 +c 9+cio+cll = c1 2 +ci 3+cl 4+ci 5 . Thus, to estimate

Mi12 from the received word r, a majority vote of the four
corresponding estimations are taken:

54

Am 1 2 (1) ro+rl+r 2 +r 3 Am(2) = r 4+r 5 +r 6 +r 7

^12 (3) = r 8 +r 9 +rl 0 +rl Ami 2 (4) = ri2+rl3+rl4+rl5

^M12 = maj { Am 12 (1) , AM 12 (2) , Ami 2 (3) , i12 (4) }

Am is used here to indicate an estimation of m. This same
procedure can be followed to estimate Am 1 3. The result
would be:

Am 13 (= ro+r+r4+r Am () = r2+r 3 +r 6 +r 7
M3 (3) = r+rgr2+r3 M13 (4) = rio+ r +r 4 +r 5

AM 13 = maj{ AMi 3 (1) , AM 13 (2) , Am 13 (3) , Am 13 (4) }

Once the components of m 2 are all estimated, it is
multiplied by G 2 and subtracted form r to get r' = r-Am2 G2 -
The entire procedure above can be repeated to get an
estimate for Am,. Continuing with this RM(2,4) example, m,
= cO+c 2 = c2+c3 = c4+c5 = ... = c14+c15. Again, a majority vote
of the estimates is taken: Ami = maj{Ami, Ami,..., Ami(8)}.

Once the four components of Am, are estimated r" can be
obtained by r" = r' -AmiGi which is also equal to m01+e.
Thus, the estimate for AmO is Am, = maj{ro", ri", ... , r15"
All the components of the message vector m are now
estimated and this estimate is the decoded message.

Running through an example of this decoding process,
let the received vector r = (0101101100011011). AM2 =
maj{0,1,1,1} = 1, AM13 = maj{1,1,1,1} = 0, Am 1 4 = 0, and all
the the rest of the Amxys are 0. Thus Am 2 = (000011) and

r= r-Am 2G2 = (0101101100011011)
-(0001010000010100)

(0100111100001111)

The first order estimate are all 0 except ^m3. Thus ^ml =
(0100) and

r = r - m1G1 = (0100111100001111)
-(0000111100001111)

(0100000000000000)

The estimate for AmO is clearly 0. Thus, r is decoded as m
= (AmO,^ m 4, Am 3, ̂ iM2, AI, A M34 , Am 2 4 , Am 1 4 , Am2 3, Am1 3 , Am 1 2) =

(00100000011).

55

There is a general method of finding the checksums
upon which the majority decisions are taken. Let Px be the
ls complement of the binary number for x. For example, P3 =
1100 because 3 is 0011 in binary. To find the checksums
for estimating mi 1 2,...,ik, let S be the set of Pxs indexed by
the 1 positions of the basis vector VilVi2...Vik. Let T be the
set of Pxs indexed by the 1 positions in the complementary
subspace to S, Vfx: {1,2.m}-{ili2,...ik}}. Expressing T in Pxs,
the indices of P indicate the first checksum. Translating
T by each vector in S, expressing the results in Pxs and
taking the indices for each translation indicates the other
checksums. For example, to find the checksums for M3 4 on
code R(2,4), first look at basis vector v3v4 =

(0000000000001111). Thus, S = { P12, P13, P14, P1}5 - The
complementary subspace to S is v1v2 since {1,2,3,4} - {3,4}
= {1,2}. v1v2 = (0001000100010001). Thus, T =
{P 3 , P7 , P1 1 , P15}. To find the translations of T:

S={ (0011), (0010), (0001), (0000) }
T={ (1100) , (1000) , (0100) , (0000) } = { P3, 2, P1 1 , P15}

Translating T by (0011) = {(1111), (1011), (0111), (0011)}
= { PO, P 4 , P8 , P1 2}

Translating T by (0010) = {(1110), (1010), (0110), (0010)}
= { P1 , P5 , P 9 , P13}

Translating T by (0001) = {(1101), (1001), (0101), (0001)}
= { P 2 , P6 , P10 , P14}

Looking at the indices of the Ps in T and its translations,
the checksums for M3 4 = cO+c 4+c 8 +cl 2 = cl+c 5 +c3+ci 3 =

c 2 +c 6+ciO+c 1 4 = c 3 +c 7 +cll+ci 5 .

56

le) Bit Error Rate Performance

The noise signal, which gets added to the transmitted
signal during its propagation through the channel, is
modeled as White Gaussian Noise, WGN in this thesis. That
is, it is modeled with a Gaussian distribution of the noise
amplitude and a constant power spectral density over the
bandwidth of interest. The Gaussian probability
distribution f(x) will be abbreviated as -N(u,s) where u is
the mean and s is the standard deviation. It is assumed
that the mean is zero because if it were not, that mean
could simply be subtracted off the incoming signal and the
new signal would be zero mean. The probability that the
random variable x is between y and z, P(y<x<z) is the
integral of f(x) with respect to x from y to z.

The simplest modulation scheme to analyze is BPSK. It
is analyzed over a signal space which is a vector space
over the infinite field of real numbers. Signals are
represented as vectors where the length of the vector is
the square root of the energy in the signal and an inner
product is defined. BPSK uses two antipodal signals,
representing 0 and 1. It is always assumed that each
signal is transmitted with equal probability. The two
signals have equal energy and are 1800 out of phase. Let b.
be the head of the vector representing signal x whose tail
is at the origin of the signal space. bo = -bi= b. The 2
dimensional signal space looks like:

bi b2
-- X ----------- X----

-b +b

The received signal is Zi = bi + n;. The optimal decision
region for each bit is the Y axis and decisions are made by
comparing the energy of the received signal with the
energies of the two possible transmitted signals. Note
that the distance between the possible transmitted signals
in the signal space is d = 2b = bl-bo. Assuming that a 1 is
sent, an error in the decision of that bit is made when:

57

IZi - bo1 2 < IZi - bi1 2

1bi bo + ni1
2 < lbi + ni - bi1

2

1bi-bo1 2 + 2nilbi-boI + Inil 2 < ni 12
nid < -d2/2
ni < -d/2

Because the problem is symmetric, redoing it assuming a 0
is sent results in the same answer. Thus, the probability
of signal error is the probability that the noise vector is
greater that d/2.

The function Q(y) is defined as the integral of
~-N(0,1) from y to infinity. The probability that a
Gaussian random variable x with zero mean and variance =

is P(x > X) = Q(X/s). Thus, P(signal error) = P(ni > d/2) =

Q(d/2s). For WGN, the variance of the random variable ni is
the power spectral density No/2. The energy per signal E, =
energy per bit Eb (because there is one signal per bit in
BPSK) = b2 = (d/2)2. Thus P(signal error) = P(bit error) =
Q(d/2s) = Q'(2Eb/No) where Q' (x) is defined as Q(sqrt(x))
For QPSK, the signal space looks like:

(-b,+b) X X (+b,+b)

(-b,-b) X X (+b,-b)

The decision regions are defined by both the X and Y axes.
The distance of these signals to the origin is d/sqrt(2).
Thus, Eb = d2 /2. Assuming that the top right signal is
sent, P(signal error) is the probability that noise pushed
the received signal outside its region. Therefore,
P(signal error) = P(signal is push left beyond Y axis) +
P(signal is pushed below the X axis) - P(both events) [the
area that is counted twice]. Again, because of the
symmetry of this problem, assuming other signals were sent
results in the same answer. Thus P(signal error) =
2Q (d/2s) - Q2 (d/2s) . Because Q(d/2s) is small, Q2 (d/2s) is
very small and can be discarded. Since there are 2 bits
representing each signal, P(bit error) = P(signal error)/2
= Q(d/2s) = Q'(2Eb/No) = same as for BPSK. Q'(2Eb/No) is the
probability of bit error that is used in this project.
Thus it can be assumed that the modulation scheme being
used in this thesis is BPSK or QPSK.

58

lf) Erasures and Soft Decision

It may seem as though information is being lost when
each signal is simply decoded to the nearest bit before the
set of n bits is decoded into a message block for coded
signals. The minimum distance decoding in Hamming space
takes as much as a 3dB loss in coding gain when compared to
the optimum decoding in signal (Euclidean) space. For
example, a (2,1,2) code, which is a shorthand way of
writing a linear block code with (n=2,k=1,din=2) can be
view in a 2-D space as:

I X (+b,+b)

(-b,-b) X ?

where ? represents a received hard decision that is not a
valid codeword. In this region, the decoder fails because
simply knowing that the received signal is ? does not help
the decision of which bit was sent. Notice that a valid
codeword is distance b away from entering a ? region in
Hamming space. For Euclidean space however, the decision
region is the -450 diagonal through the origin. Thus the
distance from one codeword to the other is sqrt(2)b.
P(entering a ? region) = 2Q(b/s) while P(the optimal
Euclidean decision) = Q(sqrt(2)b/s), which is 3dB better.
As the Hamming space is taken to higher dimensions (as the
coderate decreases), P(Error) for the optimum Hamming space
decoder approaches P(Error) for the optimum Euclidean space
decoder.

In soft decision, the receiver knows how far each
signal is from the decision regions (knows the quality of
its decision) and is able to use this information to help
in the decoding process. The better the soft decision, the
closer the Hamming space decoder mimics the Euclidean space
decoder and thus the better its performance. Erasure
decoding is the crudest form of soft decision. Here, there
are three decision regions for each bit, 0, 1, or ?. ?
represents a received signal that is close enough between a
0 and 1 that the receiver does not want to make a guess as
to which one it is. Once all the bits of the codeword are
received in this way, decoding goes as follows: Put Os in

59

place of all the ?s and decode the word as normal to get co.
Put is in place of all the ?s and decode the word as normal
to get cl. Compare the Hamming distance of r and co with
that of r and c, and choose the codeword closest to r.

60

1g) Iterative Decoding

Iterative block codes, also referred to as turbo
product codes, have their bits arranged in a 2 or higher
dimensional matrix. Only the 2-D case is dealt with in
this paper. Using an (n,k) code, a 2-D block can be
created. Starting with a k X k matrix of k2 message bits,
each row can be encoded separately to create a new k X n
matrix. Then each column of the k X n matrix can be
encoded to create an n X n matrix which is ready for
transmission across the channel. Note that different codes
with different rates can be used to encode horizontally and
vertizally to form a rectangular matrix instead of simply a
square matrix. In this paper, only square matrices using
the same code horizontally and vertically are considered.

2 2The rate of such a code is k /n 2 .

The decoder.receives a matrix Ro and applies soft
decision decoding to each row to get a reliability yj and a
decision dj for each received bit rj. The receive vector is
mapped to the closest codeword in Euclidean space and the
following djs are determined from that codeword. To find
the reliability yj, the closest codeword which has a 0 in
the jth position is found and labeled co. The closest
codeword which has a 1 in the jth position is found and
labeled cl. Reliability yj = I lr-c 012-Ir-cI'2 . Thus, if co
and c1 are approximately the same distance from r, then bit
j is not relied upon much and yj is low. If the distances
of co and c' from r vary greatly, then bit j is relied upon
more in the decision process and yj is higher. Let rj' =

yjdj which moves rj in the direction of the decision dj
scaled by its reliability yj. This is the extrinsic
information that is important for iterative decoding.
Running through this procedure for each row generates the
matrix of rj's labeled Wo. The receive matrix RG can be
modified to R, = Ro + a0W0 . Doing the same thing for the
columns on the new matrix R, to generate W, allows the
calculation of R2 = R, + a1Wj. Using R2 the procedure on the
rows can be repeated to find and even better W2 . This
operation can be iterated for as many times as desired and
the final iteration makes a hard decision. The best
scaling factors a, here are found experimentally. These
factors usually start small because the early calculations
for W, are less reliable and these factors get larger when
the calculations for W, become more reliable.

61

lh) ARQ and Hybrid Systems

An ARQ system handles errors by requesting re-
transmissions of packets in the form of negative
acknowledgments (NAKs) which are usually piggybacked on
packets traveling in the reverse direction. In a selective
repeat scheme, packets are transmitted continuously and
only those packets that are NAKed (or timed out) are
retransmitted. This scheme, which is used in this thesis,
is throughput efficient but requires buffering at the
transmitter and receiver. Here throughput is defined as
the inverse of the average number of bits needed to
correctly transmit one bit of information. Assuming
sufficient buffering to avoid overflow at both ends, the
average number of transmitted packets required for one
packet to be correctly received is:

Nsr = l'Pc + 2-Pc(l-Pc) + 3'Pc(l-Pc) 2 + ... = l/PC

where PC is the probability of a packet being transmitted
correctly. The throughput of this system is Tsr = 1/Nsr =

PC. If this ARQ system also uses a linear block code of
rate k/n to encode each packet, then PC will increase. The
throughput of this hybrid system is then Tsr = Pc(k/n) where
PC is the new probability which takes linear block coding
into account.

62

APPENDIX 2: C PROGRAMS TO SIMULATE PHASE I CODES

2a) Abbreviated C program for 1-D Hard code simulation:
this code simulates the performance by generating a random
message, encoding it as specified in Appendix 1d, adding
noise (flipping bits with a probability specified in
Appendix le), decoding the result and then checking whether
this new message is the same as the original message. This
procedure can be repeated many times to estimate a
probability of a frame error.

const int n=64; //Global Variables
int r; int k;
bool v6[] ={0,0,0,0,0,...,1); //these are the vectors
bool v5[] ={0,0,0,0,0,...,1); //comprise the rows of
... bool v1[] ={0,1,0,1,0,...,1); //the generator matrix.
bool v6v5[]={0,0,0,0,0,...,1);
... bool v5v4v3v2v1[]={0,0,0,0,0,...,1);

void CreateGeneratorMatrix(bool gen[n][n])
int col;
for (col=O; col<n; col++) //This procedure creates

gen[col][0] = 1; //the generator matrix
gen[col][1] = v6[col];
... gen[col] [56] = v4v3v2vl[col];}}

void CreateRandomMessage (bool message [n] [n])

{
int col,row; //matrix message gets modified
for (col=0; col<k; col++)

for (row=O; row<k; row++)
if (rand() > 16384) message[col][row]=0;
else message[col][row]=1;}

// This procedure will only encode 1 row or 1 column of the
// nXk message. It is called by procedure EncodeMessage.
void EncodeLine(bool messageline[n], bool gen[n][n],

bool cw line[n])

int col, row;
bool sum;

//variables message & gen not modified
//variable cw line is modified

for (col=0; col<n; col++)//This segment encodes our
//message by multiplying

sum = 0; //message vector with
for (row = 0; row<k; row++)//generator matrix.

sum = sum ^ (messageline[row] && gen[col][row]);
cwline[col] = sum;}}

void EncodeMessage(bool message[n][n], bool gen[n]En], bool cw[n][n])
int col, row; //message & gen not modified
bool message_line[n]; //cw is modified
bool cwline[n];

for (row=0; row<k; row++)

63

for (col=O;col<k;col++) //Grab each row from message
message_line[col] = message[col] [row]; //and
EncodeLine(messageline,gen,cwline); //encode it
for (col=O; col<n; col++) //into cw

cw[col][row] = cwline[col];}}

void AddNoiseToCodeword(bool cw[n][n], int error)
int count,col,row,error val;
count=O; //errorval = (32767 * errorpercentage);
if (error==i) errorval=8636; //P1e)=.2635, EbNo=0.2

else if(error==2) errorval=6080; //P(e)=.1855, EbNo=0.4
else if(error==3) errorval=4478; //P(e)=.1367, EbNo=0.6
...else if(error==19) errorval= 5; //Pe)=.03015,EbNo=6.5

for (row=O; row<k; row++) //Above segment adds noise
for (col=O; col<n; col++) //to the codeword cw.

if (rand() < errorval)
{count = count + 1; //With certain probability

if (cw[col] [row]==i) cw[col] [row]=O; //the bits
else cw[col][row]=1;}} //in cw are swapped

int CountBitErrors(bool message[n] [n],bool decode[_-] [n])
{int sum=O, col, row;
for (row='; row<k; row++)

for (col=O; col<k; col++)
if (message[col] [row] != decode[col] [row!) sum=sum+l;

return sum;}

bool CheckSum(bool rcvcw[n], bool S[n], bool T'n])
{ int zerosum=O, onesum=O; col;

int s count=O, tcount=O, count, count2;
int selement[n], telement[n];
bool sum[n];

for (col=O; col<n; col++)
{ if (S[col] == 1) //gather S subspace points

{s_element[scount] = (n-1) - col; //and store in
s_count = s count + 1;} //array selement

if (T[col] == 1) //gather T subspace points
{t_element[tcount] = (n-1) - col; //and store in
t_count = t count +1;}} //array telement

for (count=O; count<s count; count++) sum[count] = 0;
for (count=O; count<scount; count++)

for (count2=0; count2<tcount; count2++)
sum[count] = sum[count] A rcvcw[(telementFcount2] +

s_element~count])];
for (count=O; count<scount; count++)

if (sum[count] == 0) zerosum = zerosum + 1;
else if (sum[count] == 1) onesum = onesum + 1;

if (zerosum > onesum) return 0;
else if (onesum > zerosum) return 1;
else return 0;}

void DecodeLine(bool cw line[n], bool gen[n] [n], bool m[n])

64

rcvcw[n];
int maj,col,row;

for (col=O; col<n; col++) //Creating copy of cwline
rcvcw[col] = cw_line[col]; //in local variable.

{m[42]=CheckSum(rcvcw,v6v5v4v3,v2vl); //compute
m[43]=CheckSum(rcvcw,v6v5v4v2,v3vl); //value of

m[44]=CheckSum(rcv_cw, v67574vl, v3v2 ; //vector m4
...m[56]=CheckSum(rcvcw,v4v3v2vl,v6v5);
for (col=0; col<n; col++) //Calculate m4 times G4

{sum=0; //and subtact off of r.
for (row=42; row<k; row++)
sum = sum ^ (m[row]&&gen[col][row]);
rcvcw[col] = rcvcw[col] ^ sum;}}

if (r>=3)
{m[22]=CheckSum(rcvcw,v6v5v4,v3v2vl); //compute m3
...m[41]=CheckSum(rcvcw,v3v2vl,v6v5v4);
for (col=0; col<n; col++) //Calculate m3 times G3

{sum=0; //and subtact off of r'.
for (row=22; row<42; row++)
sum = sum ^ (m[row]&&gen[col][row]);
rcv cw[col] = rcv cw[col] ^ sum;}}

if (r>=2)
{m[7] =CheckSum(rcvcw,v6v5,v4v3v2vl); //Compute m2
...m21]=CheckSum(rcv_cw,v2vl,v6v5v4v3);
for (col=0; col<n; col++) //Calculate m2 times G2

{sum=0; //and subtact off of r''.

(r==4)

{sum=0

//For min
//majority vote on r'

== 1) maj = maj + 1;
=1; else m[0]=0;}}

if (r>=0)
{maj=0;

for (col=0; col<n; col++)
if (rcv_cw[col]

if (maj > 32) m[0]

if

ml

we simply do a
'''

void DecodeBlock(bool cw[n][n], bool gen[n][n], bool decode[n][n])
{int col, row;
bool decodeline[n];
bool cw_line[n];

for (row=0; row<k; row++)
{for (col=0; col<n; col++) //Grab each row from

cw lineicol] = cw[col][row]; //kXn decoded rows
DecodeLine(cw_line,gen,decodeline);//and decode them
for (col=O; col<k; col++) //into a final block.

decode col][row] = decodeline[col];}}

//******************** MAIN PROGRAM *******************

int main()
{int test;

int error, bit error count, frame error count;

65

for (row=7; row<22; row++)...}}
if (r>=l)

{m[l] =CheckSum(rcvcw,v6,v5v4v3v2vl); //Compute
...m[6] =CheckSum(rcv_cw,vl,v6v5v4v3v2);
for (col=0; col<n; col++) //Calculate ml times Gl

//and subtact off of r'''.
for (row=1; row<7; row++)...}}

{ bool sum;

long runningbit_errorcount;
float BER,k2,running_error;

bool message[n][n]; //size nXn but only use kXk of it
bool decode[n][n]; //decoded message (also kXk bits)
bool cw[n][n]; //codeword
bool gen[n][n]; //generator matrix

CreateGeneratorMatrix ,gen);
for (error=1; error<20; error++)
{printf ("\nerror%d ",error);
for (r=1; r<5; r++)
{if (r==1) k= 7; else if (r==2) k=22;
else if (r==3) k=42; else if (r==4) k=57;
runningbiterror count=O;
frameerrorcount=0;
for (test=0; test<1000; test++)//Runs 1000 test frames

{srand(test); // for each value of r
// and prints results

CreateRandomMessage(message);
EncodeMessage(message,gen,cw);
AddNoiseToCodeword(cw,error);
DecodeBlock(cw,gen,decode);
bit errorcount=CountBitErrors(message,decode);

if (bit error-count != 0) frame error count += 1;
running bit errorcount += biterrorcount;}
printf ("%d ",frameerrorcount);
printf ("%d ",running_biterrorcount);
running_error = runningbiterror count;
k2 k*k*10;
BER = runningerror / k2;
printf ("%.4f ",BER);} }

return 0;}

66

2b) Abbreviated C program for 2-D Soft code simulation:
this code simulates iterative erasure decoding as specified
in Appendix 1 sections f and g. When a procedure is
identical to one in Appendix 2b, it is specified as such
and thus not repeated.

void CreateGeneratorMatrix(bool gen[n][n])
{...same as 2a

void CreateRandomMessage (bool message [n] [n])
{...same as 2a}

void EncodeLine(bool message_line[n], ...)

{...same as 2a}

void EncodeMessage(bool message[n] [n], ...)

{ int col, row;
bool message_line[n], cwline[n];

for (row=0; row<k; row++)
{...same as above}

for (col=0; col<n; col++)
{for (row=0; row<k; row++)

messageline[row] = cw[col][row]
EncodeLine(messageline,gen,cw line

for (row=0; row<n; row++)
CwLcol][row] = cw line[row];}}

void AddNoiseToCodeword (bool cw [n]

if (error==l) errorval =
else if (error==2) errorval =
else if (error==3) error val =
...else if(error==18) error val =

[n],
9326;

6895
5311

30;

//Grab each col from
//kXn encoded rows

;//and encode
//them into an
//nXn block

//P(e)=.2846;
; //P(e)=.2104;
; //P(e)=.1621;

//P(e)=.0009;

if (error==1)
else if (error==2)
...else if(error==18)

errorval2 = 7972;

error val2 = 5328;

error val2 = 2;

//P(e)=.2433;
//P(e)=. 1626;
//P(e)=.0001;

for (row=0; row<n; row++)
for (col=0; col<n; col++) //add noise to codeword
{ number = rand();

if (cw[col][row]==1) corruptcw[col] [row]='1';
else corruptcw[col][rowV='0';
if (number < errorval)
{ corrupt cw[col][row]='X'; //bits are undecided.
sumX+=1;}

if (number < errorval2) //bits are swapped
{ if (cw[col][row]==1) corruptcw[col] [row]='0';

if (cw[col] [row]==0) corruptcw[col] [row]='l';
sum+=1; } }

int CountBitErrors(bool message[n] [n],bool decode[n] [n])
{...same as 2a}

bool CheckSum(bool rcvcw[n], bool
{...same as 2a}

S[n], bool T[n])

67

;
)

void DecodeLine(bool cwline[n], bool gen[n][n], bool m[n])
{...same as 2a}

void ErasureDecodeLine(char eracwline[n], ...)
{int col, distance0=O, distancel=O;
bool cwline[n],temp_decodelineO[n],tempdecodelinel[n];

for (col=0; col<n; col++) //replace Xs with Os
{ //and hard decode

if (eracw_line[col]=='O') cw_line[col]=0;
else if (eracw_line[col]=='l') cw_line[col]=l;
else if (eracwline[col]=='X') cw_line[col]=0;}

DecodeLine(cw line, gen, temp_decodeline0);
for (col=0; col<n; col++) //replace Xs with is
{ //and hard decode

if (eracw_line[col]=='O') cw_line[col]=O;
else if (eracw_line[col]=='l') cw_line[col]=l;
else if (eracw_line[col]=='X') cw_line[col]=1;}

DecodeLine(cw line, gen, tempdecodelinel);
for (col=0; col<n; col++) //determine Hamming distances
{if ((eracw_line[coll=='O') &&

(tempdecode lineO[col]==1)) distanceC +=1;
else if ((eracw line[col]=='i') &&

(temp_decodelineO[col]==O)) distanceO +=1;}
for (col=O; col<n; col++) //Note that we consider

//distances from X to be zero for both cases.
if ((era cw linefcol]=='O') &&

(tempdecodelinel[col]==l)) distancel +=l;
else if ((eracw_line[col]=='1') &&

(tempdecode linel[col]==O)) distancel +=1;}

if (distanceO < distancel)
for (col=0; col<n; col++)

decodeline[col] = tempdecodeline0[col];
else

for (col=0; col<n; col++)
decode line[col] = temp decode linel[col];}

void DecodeBlock(char corruptcw[n][n], ...)
{int col, row, count;
bool decodeline[n], reencodeline[n], cwline[n];
char eracw_line[n], vertcorrectgrid[n][n];
char hori _correctgrid[n][n];

// We do this procedure 2ce. First we do iterations
//impartial, then we do last iteration siding with hori.
for (count=0; count<5; count++)
{for (col=0; col<n; col++)

{for (row=0; row<n; row++) //Grab each col***
era cw line[row] = corruptcw[col][row];

ErasureDecodeLine(eracw_line,gen,decodeline);
EncodeLine(decode line,gen,re encode line);
for (row=0; row<n; row++)
{if (corruptcw[col][row]=='0')

{if (reencodeline[row]==0)
vertcorrect_grid[col][row]='O';

else if (re encode line[row]==1)

68

vertcorrect_grid[col][row]='X';}
else if (corruptcw[col][row]=='1')
{ ... follow impartial rules}
else if (corrupt_cw[col][row]=='X')
{ ... follow impartial rules}}

for (row=O; row<n; row++)
{for (col=O; col<n; col++) //Grab each row***

... do the same as did for columns}
for (col=O; col<n; col++)//Combine to make corrupt_cw

for (row=O; row<n; row++)//the overall correct grid
{if (vertcorrect_grid[col][row]=='0')

{if (hori _correctgrid[col][row]=='0')
corruptcw[col][row]='0';

else if (hori correctgrid[col][row]=='1')
corruptcw[col][row]='X';

else if (hori _correctgrid[col][row]=='X')
corrupt cw[col][row]='0';}

else if (vertcorrect_grid[col][rowj=='1')
{...continue with impartial calculations}}}

for (count=O; count<1; count++)
{...repeat procedure above expect do the calculations

that involve sizing with the horizontal.}
// Now we simply do the normal decode.
for (col=O; col<n; col++)
{for (row=O; row<n; row++) //Grab each col

era cw_line[row] = corrupt_cw[col][row];
ErasureDecodeLine(eracw_line,gen,decode line);
for (row=O; row<k; row++)

decode[col][row] = decodeline[row];}
for (row=O; row<k; row++)
{for (col=O; col<n; col++) //Grab each row

cw line[col] = decode[col][row];
DecodeLine(cwline,gen,decodeline);
for (col=O; col<k; col++)

decode[col][row] = decode line[col];}}

//********************* MAIN PROGRAM ******************

int main()
{int test;
int error, biterrorcount, frameerror count;
long runningbiterrorcount;
float BER,k2,running_error;
bool message[n][n]; //size nXn but only use kXk
bool decode[n][n]; //decoded message (also kXk bits)
bool cw[n][n]; //codeword
bool gen[n][n]; //generator matrix
char corruptcw[n][n];

CreateGeneratorMatrix(gen);
for (error=1; error<19; error++)

{for (r=1; r<5; r++)
{if (r==1) k= 7; else if (r==2) k=22;
else if (r==3) k=42; else if (r==4) k=57;
runningbiterrorcount=O;
frameerrorcount=0;
for (test=O; test<1000; test++) //Runs 1000 frames
{ srand(test);

69

CreateRandomMessage(message);
EncodeMessage(message,gen,cw);
AddNoiseToCodeword(cw,corruptcw,error);
DecodeBlock(corrupt_cw,gen,decode);
bit errorcount=CountBitErrors(message,decode);
if (biterrorcount != 0) frameerror count += 1;
running_bit_errorcount += biterrorcount;}

printf ("%d ",frameerrorcount);
printf ("%d ",running_bit error count);
running_error = runningbit error count;
k2 = k*k*10;
BER = runningerror / k2;
printf ("%.4f",BER);}}

return 0;}

70

APPENDIX 3: PHASE II THROUGHPUT CALCULATION PROGRAM

This is the MATLAB script file that is used to

generate graphs for various throughputs and e values. Using
the probabilities calculated in section 3, this file
determines optimal packet sizes and throughputs of the
adaptive code for various fading environments. This file
also calculates the throughput of the optimal non-adaptive
code.

al = zeros(1,120); %a = Pr(frame decodes incorrectly)
a2 = [06.825 04.779 03.207 02.013 01.256 0.706 ... 0];
a3 = [67.611 61.298 54.542 47.494 40.414 33.500 ... 0];
a4 = [95.026 93.160 90.860 87.981 84.420 80.180 ... 0];
a5 = [99.205 98.824 98.287 97.546 96.545 95.220 ... 0];

bl = 1 - (al / 100); %b = Pr(frame decodes correctly)

b2 = 1 - (a2 / 100); b3 = 1 - (a3 / 100);
b4 = 1 - (a4 / 100); b5 = 1 - (a5 / 100);

x = (.25:.25:30); % x = x-axis
kl = 7; k2 = 22; k3 = 42; k4 = 57; k5 = 64;

for m2 = 1:20
m = .5 * m2;
for s2 1:20

s = .25 * s2;
for 1 = 1:500
c = bl .^ 1; %c=Pr(l frame block decodes correctly)
y = (1/(((2*pi)^.5)*s)) * exp(-1 * (x-m).A2 /

(2*s^2)); % y = Norm(m,s) curve
t = c*((kl*l)-64)/(64*l); % t = throughput
t(t<0) = - t(t<0)*0; % set neg thrpts to 0
tnorm = t .* y; % normalize throughputs
tnorml(l) = .25 * (t * y'); % overall thpts in tnorml
end
[thruputl(m2,s2),thruputll(m2,s2)] = max(tnorml);
% store best thrpt in thruput & best 1 in thruputl

end
end

for m2 = 1:20
m = .5 * m2;
for s2 = 1:20

s = .25 * s2;
for 1 = 1:500

{... repeat above expect c = b2 .^ 1 and store in
thruput2(m2,s2) }

end
end

{... repeat again for b3 and b4}

71

for m2 = 1:20
for s2 = 1:20

d = [thruputl(m2,s2) thruput2(m2,s2) thruput3(m2,s2)
thruput4 (m2,s2) thruput5(m2,s2)];

[thruputx(m2,s2),thruputx2(m2,s2)] = max(d);
end %This segment picks the best

end %non-adaptive code for a given m & s.

for m2 = 1:20
m = .5 * m2;
for s2 = 1:20

s = .25 * s2;
for 1 = 1:500
cl = bl .^ 1; %c=Pr(l frame block decodes correctly)

tl = c1*((kl*l)-64)/(64*l); % t = throughput
c2 = b2 .^ 1;
t2 = c2*((k2*l) -64)/(64*l);
c3 = b3 .^ 1;
t3 = c3*((k3*l)-64)/(64*l);
c4 = b4 .^ 1;
t4 = c4*((k4*l)-64)/(64*l);
c5 = b5 .^ 1;
t_5 = c5*((k5*1)-64)/(64*1);
-or e = 1:120

t(e) max([tl(e) t2(e) t3(e) t4(e) t5(e)]);
end;

(t<0) = - t(t<0)*O; %set any negative thrpts t

y = (1/(((2*pi)A.5)*s)) * exp(-1 * (x-m).^2 /
(2*sA2)); % y = Norm(m,s) curv

tnorm = t .* y; % normalize throug

tnorml(l) .25 * (t * y'); % store overall th
end
(thruputa(m2,s2),thruputal(m2,s2)] = max(tnorml);
estore best throughput in thruput & best 1 in thruputl

end
end

hputs
rpts

%mesh (thruputa-thruputx);
%mesh(thruputa ./ thruputx);

%adaptive - non-adaptive
%adaptive / non-adaptive

subplot (2,1,1);
mesh(thruputx); %thruputs for best non-adaptive code
subplot (2,1,2);
mesh(thruputx2); %the specific code used

%subplot(2,1,1);
%mesh(thruputa); %thruputs for adaptive code

%subplot (2,1,2);
%mesh(thruputal); %value of 1 at those thruputs

%subplot(2,2,1); %we can also get thruputs and 1 values
%mesh(thruputl); %for individual codes.
%subplot(2,2,2);
%mesh(thruput2);
% ... mesh(thruput4);

72

o 0

e

APPENDIX 4: MARKOV CHAIN MODEL AND ITS AUTO-CORRELATION

This MATLAB script file runs the Markov Chain model of
fading. It also calculates the auto-correlation of the
state of the chain as a function of iterations. This
function is used to determine how many iterations equal 1
second of time.

m = 5; % range from 0 to 10 in steps of 0.5
s = 2; % range from 0 to 5 in steps of 0.25
lambda = zeros(1,80);
mu = zeros(1,80);
sumstate = zeros(1,80);

rand('seed',O); % set -and # seed to startup value
x = (.25:.25:20); % x = u-axis (index for Eb/Nos)
y = (1/(((2*pi)A.5)*s)) * exp(-1 * (x-m).^2 / (2*sA2));

% y = Norm(m,s) curve
state = m*4; % state = y's index corresponding to m
lambda(state) = .05;
while ((lambda(state)>=0)&(mu(state)>=0)&(state<80)
mu(state+1) = lambda(state)*y(state)/y(state+l);
lambda(state+1) = .1 - mu(state+1);
state = state+l; % setting up lambda and mu vectors

end
lambda(state)=0; mu(state)=.1;
state = m*4;
lambda(state) = 2*lambda(state); % readjust lambda and mu at
mu(state) = 2*mu(state); % mean value

for t = 1:100000 %-----------Creates Fading--------------------------
if (state==(m*4)) % m*4 b/c x in .25 increments

if (rand > 0.5) dirgauss = 1;
else dirgauss = 0; end;

end;
staterand = rand;
if (staterand < lambda(state)) state=state+1;
elseif (staterand < (lambda(state)+mu(state))) state=state-1; end;

if (dirgauss==1)
statex(t) = .25 * state;

else stref = (m*8)-state; % reflect state to other side of chain
statex(t) = .25 * st ref; end;

end;
save mclOOk

AmtTau = 10000; % How far do we calculate Rt?
Amt t = 90000; % How many points do be average out?
for tau = 1:AmtTau %------Calculates coorlelation--------

SumR = 0;
for t = 1:Amt_t

SumR = SumR + (statex(t+tau)-m)*(statex(t)-m);
end;
R(tau) = SumR / Amt t;

73

end;
save mc90k;
subplot (2, 1, 1) ; plot (R);
%plot (x, y);
subplot(2,1,2); plot(statex);
%subplot(2,1,2); %plot(x,sumstate);

74

APPENDIX 5: PHASE II THROUGHPUT SIMULATION PROGRAM

This script file is used to simulate the throughput
performance of the ARQ/AFEC system. The UsingCtrlPkts
variable is set appropriately to simulate the desired
protocol.

clear;
%variables to input
m = 5;
s = 2.0;
1 = 18;
delay = 0;
iterations = 1000000;
UsingCtrlPkts = 1;
pkts_per_iter = 5;

% clear all variables

% mean of gaussian fade
% standard deviation of gaussian fade
% length of block

% # of packets to transmit
% 1=ctrl pkts, 0=code field in header
% 500 for 1 GHz, 5 for 10 MHz

for trials = 1:5

delay = 25 * (trials-1);
%delay = 100 * trials + 100;
%delay = 500 * trials + 500;

rand('seed',0);
if (UsingCtrlPkts==0)

overhead = 72;
else overhead = 64; end;

al = zeros(1,80);
a2 = [06.825 04.779 03.207 ...
a3 = [67.611 61.298 54.542 ...
a4 = [95.026 93.160 90.860 ...
aS = [99.205 98.824 98.287 ...
bl = 1 - (al / 100);
b2 = 1 - (a2 / 100);
...b5 = 1 - (a5 / 100);
cl = bl .^ 1; c2 = b2 .^ 1;
...c5 = b5 . 1;

x = (.25:.25:20); % x

k1 = 7; k2 = 22; % #
k3 = 42; k4 = 57; % k
k5 = 64;

% delays 0 25 50 75 100
% delays 200 300 400 500
% delays 1k 1.5k 2k 2.5k 3k 3.5k 4k

% set rand # seed to startup value

% # of bits for CRC, pkt #, control
%using 64 again to compare to
%NoDelay... will change to 72

% a = Pr(frame decodes incorrectly)
0];
0];
01;
01;
% b = Pr(frame decodes correctly)

% c = Pr(block decodes correctly)

= x-axis (index for Eb/Nos)

info bits per line of block
*1 - overhead = # info bits per block

n = 64;
ratel = ((k1*l)-overhead)/(n*l);
rate2 = ((k2*l)-overhead)/(n*l);
..rate5 = ((k5*l)-overhead)/(n*l);

% create vectors that store which code
for c = 1:80 % gives max throughput & value for that Pr

[maxPrC(c),maxCode(c)] =max([cl(c)*ratel c2(c)*rate2...c5(c)*rate5]);
end;

actualEbNo =m;

assumedEbNo =m;

% determines noise to pick Pr(success) from
% determines code transmitted & received

75

transl = 0; trans2 = 0; % # of times transmitter switches code
trans3 = 0; trans4 = 0; % while system using code x
trans5 = 0;
numcodel = 0; numcode2 = 0; % running sum of the number of
numcode3 = 0; numcode4 = 0; % times that code x is transmitted
numcode5 = 0;
sum-success = 0; % running sum of # of correct decodes

for d = 1:10000
Delay(d)=m;

% initialize delay matrix to the
% mean EbNo value.

end;
assumedPtr = 1; % initialize delay pointers
actualPtr = assumedPtr + delay;

% Setting up variables for Markov Chain
lambda = zeros(1,80); % lambda & mu used for Markov Chain.
mu = zeros(1,80); % sumstate used to check chain
sumstate = zeros(1,80); % distribution (make sure Gaussian)

y = (1/(((2*pi)^.5)*s)) * exp(-1 * (x-m).^2 / (2*sA2));
% y = Norm(m,s) curve

state = m*4; % state = y's index corresponding to m
lambda(state) = .05;
while ((lambda(state)>=0)&(mu(state)>=0)&(state<80)
mu(state+1) = lambda(state)*y(state)/y(state+l);
lambda(state+1) = .1 - mu(state+1);
state = state+1; % setting up lambda and mu vectors

end
lambda(state)=0; mu(state)=.1;% terminate positive end properly
state = m*4;
lambda(state) = 2*lambda(state); % readjust lambda and mu at mean
mu(state) = 2*mu(state); % value (b/c counted 2ce, 1 pos, 1 neg)

t = 0;
while (t < iterations)

t = t + 1;

%------------Gaussian Procedure: uses and updates-------------------
%------------variable state to update variable -------------------

%------------actualEbNo
if (state==(m*4))

if (rand > 0.5) dirgauss = 1;
else dirgauss = 0; end;

end;

% When state at mean, it has a
% 50/50 chance of going positive/
% normal or going negative/
% reflection of positive

staterand = rand; % Calculate next normal state
if (staterand < lambda(state)) state=state+1;
elseif (staterand < (lambda(state)+mu(state))) state=state-1; end;

if (dirgauss==l)
sumstate(state) = sumstate(state)+1; % State positive
actualEbNo = state;

else
stref = (m*8)-state; % reflect state to other side of chain
if (stref>0)
sumstate(stref) = sumstate(stref)+1;
actualEbNo = st ref;

else

76

actualEbNo = 0;
end;

end;

% when state < 0, modem unlock and
% Pr(success) = 0;

%--------Delay procedure for picking code that system -------------
%--------thinks is current -------------

Delay(actualPtr) = actualEbNo; % use variable assumedEbNo2
assumedEbNo2 = Delay(assumedPtr); % to compute transitions
actualPtr = actualPtr + 1; % info for throughput
if (actual Ptr==10001) actualPtr = 1; end;
assumed Ptr = assumedPtr + 1;
if (assumedPtr==10001) assumedPtr = 1; end;
if (assumedEbNo2==0) assumedEbNo2=1; end; %send at least codel

%--------Collect the variables that are needed to -----------------
%--------calculate the throughput -----------------

if (actualEbNo==0)
success = 0;

else
if (maxCode(assumedEbNo2) -= maxCode(assumedEbNo))

if (UsingCtrlPkts==l)
%tracks # times code changed while system in code x
if (maxCode(assumedEbNo)==) transl=transl+1;
elseif (maxCode(assumedEbNo)==2) trans2=trans2+1;
...elseif (maxCode(assumedEbNo)==5) trans5=trans5+l; end;

end;
assumedEbNo = assumedEbNo2; % start using assumedEbNo now

end

if (maxCode(assumedEbNo)==l)
PrSucc=cl(actualEbNo); % calculate correct probability
num codel=num codel+1; % of success and calculate running

elseif (maxCode(assumedEbNo)==2) % sum of # of times each code
PrSucc=c2(actualEbNo); % is transmitted
num code2=numcode2+1;

...elseif (maxCode(assumedEbNo)==5)
PrSucc=c5(actualEbNo);
numcode5=numcode5+1;

end;
if (PrSucc > rand) success=l;
else success=0; end;

end;

if (success) % sum of the number of
sumsuccess = sumsuccess + 1; % successful decodes

end;

end;

% ---
% Now we calculate throughput. For system using ctrl info in packets,
% increase overhead and zeroize transitions information. For system
% using control packets, subtract transitions info because these use
% control pkts and are not counted in throughput.
% ---

PrCorrect = sum-success / iterations;

77

numcodel = numcodel * pkts_per_iter;
numcode2 = numcode2 * pktsper_iter;
...numcode3 = numcode5 * pkts_per_iter;
numcode t = numcodel + num code2 + ... +

%Mult by pkts_per_iter and
%thus each numcode actually
% represents x amt of pkts.

num code5;

%# of info bits txmtd by each code in the session
% ...divide sum by the total # of bits txmtd in the session
Ratel = (numcodel-transl)*((kl*l) - overhead);
Rate2 = (numcode2-trans2)*((k2*l) - overhead);
...Rate5 = (num code5-trans5)*((k5*l) - overhead);
OverallRate = (Ratel+Rate2+Rate3+Rate4+Rate5) / (n*l*numcode t);

Throughput = PrCorrect * OverallRate % Thrput for Selective Repeat

end;

%subplot (2,1,1);
%plot (y);
%subplot(2,1,2);
%plot(sumstate);

78

REFERENCES:

[1] Buch, Gabriele; Burkert, Frank, "Concatenated Reed-Muller Codes

for Unequal Protection," IEEE Communications Letters, vol. 3, no.
7, July 1999.

[2] Chang, Yuwei, "A New Adaptive Hybrid ARQ Scheme," IEEE

Transactions on Communications, vol. 43, no. 7, July 1995.

[3] Efficient Channel Coding, Inc. "Technical Description of Turbo
Product Codes." Eastlake, OH, Version 3.1, June 1998.

[4] Evans, John, "New Satellites for Personnal Communications,"
Scientific American, pp 71-77, April 1998.

[5] Forney, David, Class Notes for 6.451: Principles of Digital

Communications. MIT Spring 2000.

[6] Howald, Rob, "Symbol Error Expressions Demystified,"

Communication Systems Design, vol. 6, no. 2, Feb 2000.

[7] Kallel, Samir, "Efficient Hybrid ARQ Protocols with Adaptive

Forward Error Correction," IEEE Transactions on Communications,

vol. 42, no. 2/3/4, Feb/Mar/Apr 1994.

[8] Lin, Shu; Costello, Daniel; Miller, Michael, "Automatic-Repeat-

Request Error Control Schemes," IEEE Communications Magazine,
vol.22 no.12, pp 5-17, Dec. 1984.

[9] Pyndiah, Ramesh, "Near-Optimal Decoding of Product Codes: Block

Turbo Codes," IEEE Transactions on Communications, vol.46 no.8,

pp 1003-1010, Aug. 1998.

[10] Shiozaki, Akira, "Adaptive Type-II Hybrid Broadcast ARQ System,"

IEEE Transactions on Communications, vol. 44, no. 4, April 1996.

[11] Shiozaki, Akira; Okuno, Kiyoshi; Suzuki, Katsufumi; Segawa,
Tetsuro, "A Hybrid ARQ Scheme with Adaptive Forward Error

Correction for Satellite Communications," IEEE Transactions on

Communications, vol. 39, no. 4, April 1991.

[12] Wicker, Stephen B, Error Control Systems for Digital
Communication and Storage. New Jersey, Prentice Hall, 1995.

79

