Advanced Stochastic Processes.

David Gamarnik
LECTURE 13 Ito integral. Properties

Lecture outline

- Definition of Ito integral
- Properties of Ito integral

13.1. Ito integral. Existence

We continue with the construction of Ito integral. We combine the results of Propositions 1-3 from Lecture 12 and prove the following result.

Proposition 1. Given any process $X \in H^{2}$ there exists a sequence of simple processes $X_{n} \in S^{2}$ such that

$$
\begin{equation*}
\lim _{n} \mathbb{E}\left[\int_{0}^{T}\left(X_{n}(t)-X(t)\right)^{2} d t\right]=0 \tag{13.1}
\end{equation*}
$$

Proof. Given any large $n>0$, by Proposition 3 from Lecture 12, there exists a bounded process $X_{n}^{1} \in H^{2}$ satisfying

$$
\mathbb{E}\left[\int_{0}^{T}\left(X(t)-X_{n}^{1}(t)\right)^{2} d t\right] \leq \frac{1}{n}
$$

Applying Proposition 2 from Lecture 12, for each n there exists a bounded continuous process $X_{n}^{2} \in H^{2}$ satisfying

$$
\mathbb{E}\left[\int_{0}^{T}\left(X_{n}^{1}(t)-X_{n}^{2}(t)\right)^{2} d t\right] \leq \frac{1}{n}
$$

Finally, applying Proposition 1 from Lecture 12, for each n there exists a simple process $X_{n}^{3} \in H^{2}$ satisfying

$$
\mathbb{E}\left[\int_{0}^{T}\left(X_{n}^{2}(t)-X_{n}^{3}(t)\right)^{2} d t\right] \leq \frac{1}{n}
$$

Let $a_{j}=X_{n}^{j}(t)-X_{n}^{j+1}(t), j=0,1,2$, where $X_{n}^{0}(t)$ stands for $X(t)$. Then

$$
\begin{aligned}
\left(X(t)-X_{n}^{3}(t)\right)^{2} & =\left(X(t)-X_{n}^{1}(t)+X_{n}^{1}(t)-X_{n}^{2}(t)+X_{n}^{2}(t)-X_{n}^{3}(t)\right)^{2} \\
& =\sum_{j} a_{j}^{2}+2 \sum_{j<k} a_{j} a_{k} \\
& \leq \sum_{j} a_{j}^{2}+\sum_{j<k}\left(a_{j}^{2}+a_{k}^{2}\right) \\
& =3 \sum_{j} a_{j}^{2}
\end{aligned}
$$

Combining, we conclude

$$
\mathbb{E}\left[\int_{0}^{T}\left(X(t)-X_{n}^{3}(t)\right)^{2} d t\right] \leq \frac{9}{n}
$$

We have constructed a sequence $X_{n}^{3}(t) \in S^{2}$ of processes such that

$$
\lim _{n} \mathbb{E}\left[\int_{0}^{T}\left(X(t)-X_{n}^{3}(t)\right)^{2} d t\right]=0
$$

Now, given a process $X \in H^{2}$, we fix any sequence of simple processes $X_{n} \in S^{2}$ which satisfies (13.1). Recall, that we already have defined Ito integral for simple processes $I_{T}\left(X_{n}\right)$.

Proposition 2. Suppose a sequence of simple processes $X_{n} \in S^{2}$ satisfies (13.1). Then the sequence of random variables $I_{T}\left(X_{n}\right)$ is Cauchy.

Proof. We begin by establishing the following simple result, which incidently holds for every two simple processes.

Lemma 13.2. Ito integral defined for simple processes is a linear functional: for every m, n

$$
\begin{equation*}
I_{T}\left(X_{m}\right)-I_{T}\left(X_{n}\right)=I_{T}\left(X_{m}-X_{n}\right) \tag{13.3}
\end{equation*}
$$

Proof. Given two partitions $\Pi_{1}: 0=t_{0}^{1}<\cdots<t_{r(m)}^{1}=T$ and $\Pi_{2}: 0=t_{0}^{2}<\cdots<t_{r(n)}^{2}=T$, consider a superimposed partition $\Pi: 0=t_{0}<\cdots<t_{r}=T, r \leq r(m)+r(n)$. Then we have for $X_{m}-X_{n}$ that

$$
\begin{aligned}
I_{T}\left(X_{m}-X_{n}\right) & =\sum_{j \leq r-1}\left(X_{m}\left(t_{j}\right)-X_{n}\left(t_{j}\right)\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right) \\
& =\sum_{j \leq r-1} X_{m}\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)-\sum_{j \leq r-1} X_{n}\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)
\end{aligned}
$$

Observe, however, that

$$
\sum_{j \leq r-1} X_{m}\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)=\sum_{j \leq r(m)-1} X_{m}\left(t_{j}^{1}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right),
$$

because the term corresponding to t_{j} between the points of partition Π_{1} contributes zero. Similar assertion holds for X_{n} with respect to partition Π_{2}. We conclude that (13.3) holds.

Now we return to proving the proposition. We have using the lemma above and Ito isometry

$$
\begin{aligned}
\mathbb{E}\left[\left(I_{T}\left(X_{m}\right)-I_{T}\left(X_{n}\right)\right)^{2}\right] & =\mathbb{E}\left[I_{T}^{2}\left(X_{m}-X_{n}\right)\right] \\
& =\mathbb{E}\left[\int_{0}^{T}\left(X_{m}(t)-X_{n}(t)\right)^{2} d t\right] \\
& \leq 2 \mathbb{E}\left[\int_{0}^{T}\left(X(t)-X_{m}(t)\right)^{2} d t\right]+2 \mathbb{E}\left[\int_{0}^{T}\left(X(t)-X_{n}(t)\right)^{2} d t\right]
\end{aligned}
$$

But since the sequence X_{n} satisfies (13.1), the assertion of the proposition holds.
Now we can formally state the definition of Ito integral.
Definition 13.4 (Ito integral). Given a stochastic process $X \in H^{2}$ and $T>0$, its Ito integral $I_{T}(X)$ is defined to be the \mathcal{L}_{2} limit of random variables $I_{T}\left(X_{n}\right)$, where $X_{n} \in S^{2}$ is any sequence of simple processes satisfying (13.1). Namely, $I_{T}(X)$ is the unique random variable satisfying

$$
\lim _{n} \mathbb{E}\left[\left(I_{T}(X)-I_{T}\left(X_{n}\right)\right)^{2}\right]=0
$$

We write

$$
I_{T}(X)=\int_{0}^{T} X(t) d B(t)=\int_{0}^{T} X(t, \omega) d B(t, \omega)
$$

Theorem 13.5. Ito integral is well defined. That is the \mathcal{L}_{2} limit of $I_{T}\left(X_{n}\right)$ exists and does not depend on the choice of the sequence satisfying (13.1). Moreover, Ito integral satisfies Ito isometry

$$
\mathbb{E}\left[I_{T}^{2}(X)\right]=\mathbb{E}\left[\int_{0}^{T} X^{2}(t) d t\right]
$$

Proof. We need to prove the consistency of the Ito integral definition. Namely, that such a limiting random variable exists and does not depend on the choice of the sequence X_{n}.

We have established in Proposition 1, the existence of a sequence X_{n} satisfying (13.1). We have established in Proposition 2 that the sequence $I_{T}\left(X_{n}\right)$ is Cauchy. Applying Theorem 12.3 from Lecture 12 (Completeness of \mathcal{L}_{2}), there exists a unique (up to measure zero sets) random variable which is the \mathcal{L}_{2} limit of $I_{T}\left(X_{n}\right)$.

Now we need to establish uniqueness. Namely, if X_{n}^{\prime} is another sequence satisfying (13.1), then the unique limit of the sequence $I_{T}\left(X_{n}^{\prime}\right)$ is the same as that of the sequence $I_{T}\left(X_{n}\right)$.

Problem 1. Let $I_{T}(X)$ be a limit of $I_{T}\left(X_{n}\right)$ along some sequence of simple processes $X_{n} \in S^{2}$ satisfying (13.1). Establish that $I_{T}(X)$ satisfies Ito isometry:

$$
\mathbb{E}\left[I_{T}^{2}(X)\right]=\mathbb{E}\left[\int_{0}^{T} X^{2}(t) d t\right]
$$

Using this finish the proof of the theorem, by establishing the uniqueness of the limit.

13.2. Ito integral. Properties

13.2.1. Simple examples

Let us compute the Ito integral for a special case $X(t)=B(t)$. We will do this directly from the definition. Later on we will develop calculus rules for computing the Ito integral for many interesting cases.

We fix a sequence of partitions $\Pi_{n}: 0=t_{0}<\cdots<t_{n}=T$ and consider $B_{n}(t)=B\left(t_{j}\right), t \in$ $\left[t_{j}, t_{j+1}\right)$. Assume that $\lim _{n} \Delta\left(\Pi_{n}\right)=0$. We first show that this is sufficient for having

$$
\begin{equation*}
\lim _{n} \mathbb{E}\left[\int_{0}^{T}\left(B(t)-B_{n}(t)\right)^{2} d t\right]=0 \tag{13.6}
\end{equation*}
$$

Indeed

$$
\int_{0}^{T}\left(B(t)-B_{n}(t)\right)^{2} d t=\sum_{j=0}^{n-1} \int_{t_{j}}^{t_{j+1}}\left(B(t)-B\left(t_{j}\right)\right)^{2} d t
$$

We have

$$
\begin{aligned}
\mathbb{E}\left[\int_{t_{j}}^{t_{j+1}}\left(B(t)-B\left(t_{j}\right)\right)^{2} d t\right. & =\int_{t_{j}}^{t_{j+1}} \mathbb{E}\left[\left(B(t)-B\left(t_{j}\right)\right)^{2}\right] d t \\
& =\int_{t_{j}}^{t_{j+1}}\left(t-t_{j}\right) d t \\
& =\frac{\left(t_{j+1}-t_{j}\right)^{2}}{2},
\end{aligned}
$$

implying

$$
\mathbb{E}\left[\int_{0}^{T}\left(B(t)-B_{n}(t)\right)^{2} d t\right]=\frac{1}{2} \sum_{j=0}^{n-1}\left(t_{j+1}-t_{j}\right)^{2} \leq \Delta\left(\Pi_{n}\right) \sum_{j=0}^{n-1}\left(t_{j+1}-t_{j}\right)=\Delta\left(\Pi_{n}\right) T .
$$

By our assumption, though, the right-hand side of this expression converges to zero implying that (13.6).

Thus we need to compute the \mathcal{L}_{2} limit of

$$
I_{T}\left(B_{n}\right)=\sum_{j} B\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)
$$

as $n \rightarrow \infty$. We use the identity

$$
B^{2}\left(t_{j+1}\right)-B^{2}\left(t_{j}\right)=\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)^{2}+2 B\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)
$$

implying

$$
B^{2}(T)-B^{2}(0)=\sum_{j=0}^{n-1} B^{2}\left(t_{j+1}\right)-B^{2}\left(t_{j}\right)=\sum_{j=0}^{n-1}\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)^{2}+2 \sum_{j=0}^{n-1} B\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)
$$

But recall the quadratic variation property of the Brownian motion:

$$
\lim _{n} \sum_{j=0}^{n-1}\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)^{2}=T
$$

in \mathcal{L}_{2} (recall that the only requirement for this convergence was that $\Delta\left(\Pi_{n}\right) \rightarrow 0$). Therefore, also in \mathcal{L}_{2}

$$
\sum_{j=0}^{n-1} B\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right) \rightarrow \frac{1}{2} B^{2}(T)-\frac{T}{2}
$$

We conclude
Proposition 3. The following identity holds

$$
I_{T}(B)=\int_{0}^{T} B(t) d B(t)=\frac{1}{2} B^{2}(T)-\frac{T}{2}
$$

13.2.2. Simple properties

The following properties follow in a straightforward way from the definition:
(a) $\int_{0}^{T}\left(a_{1} X(t)+a_{2} Y(t)\right) d B(t)=a_{1} \int_{0}^{T} X(t) d B(t)+a_{2} \int_{0}^{T} Y(t) d B(t)$.
(b) $\mathbb{E}\left[\int_{0}^{T} X(t) d B(t)\right]=0$.
(c) $\int_{0}^{T} X(t) d B(t)$ is \mathcal{F}_{T} measurable.

13.3. Additional reading materials

- Course Packet. Chapter from Harrison's book "Brownian models and stochastic control".
- Øksendal [1], Chapter III.

BIBLIOGRAPHY

1. B. Øksendal, Stochastic differential equations, Springer, 1991.
