Advanced Stochastic Processes.

David Gamarnik

Abstract

LECTURE 15 Martingale property of Ito integral and Girsanov theorem

Lecture outline

- Continuity of Ito integral
- Martingale property of Ito integral. Martingale representation theorem.
- Girsanov's theorem.

15.1. Continuity and martingale properties of Ito process

Ito process is a process of the form $X(t)=X(0)+\int_{0}^{t} U(s) d s+\int_{0}^{t} V(s) d B(s)$. The first part of this expression, $\int_{0}^{t} U(s) d s$ is a continuous function of t (recall from real analysis that Reimann integral is continuous in t). What about the Ito integral part? It turns out that there always exists a continuous version of the Ito integral.

Theorem 15.1. Given $V \in H^{2}$ and $T>0$ there exists an a.s. continuous stochastic process $Y(t)$ such that $Y(t)=\int_{0}^{t} V(s) d B(s)$ a.s. for all $0 \leq t \leq T$. Namely, there exists a continuous version of $\int_{0}^{t} V(s) d B(s)$ on every finite interval.

Note that the theorem does not imply that every version of $\int_{0}^{t} V(s) d B(s)$ is continuous. Can you think about two process which are a.s. equal to each other but one is a.s. continuous while the other is discontinuous everywhere?

Proof. Recall that $\int_{0}^{t} V(s) d B(s)$ is the \mathcal{L}_{2} limit along any sequence of simple processes V_{n} satisfying

$$
\begin{equation*}
\mathbb{E}\left[\int_{0}^{t}\left(V_{n}(t)-V(t)\right)^{2} d t\right] \rightarrow 0 \tag{15.2}
\end{equation*}
$$

Fix any such sequence V_{n} and consider their corresponding Ito integral $I_{t}\left(X_{n}\right)$.
Lemma 15.3. $I_{t}\left(V_{n}\right)=\int_{0}^{t} V_{n}(t) d B(t)$ is a martingale.

Proof. Let $\Pi_{n}: 0=t_{0}<t_{1}<\cdots<t_{n}=t$ be the partition corresponding to V_{n}. Fix $s<t$. Increase the partition by an extra point $t_{k}=s$. Observe that $I_{t}\left(X_{n}\right)$ with respect to the new partition is the same as the original one. Also $\mathcal{F}_{s}=\mathcal{F}_{t_{k}}$. We have

$$
\begin{aligned}
\mathbb{E}\left[I_{t}\left(V_{n}\right) \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[\sum_{j} V_{n}\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right) \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\sum_{j \geq k} V_{n}\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right) \mid \mathcal{F}_{s}\right]+\mathbb{E}\left[\sum_{j \leq k-1} V_{n}\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right) \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\sum_{j \geq k} V_{n}\left(t_{j}\right) \mathbb{E}\left[B\left(t_{j+1}\right)-B\left(t_{j}\right) \mid \mathcal{F}_{t_{j}}\right] \mid \mathcal{F}_{s}\right]+\sum_{j \leq k-1} V_{n}\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right) \\
& =0+I_{s}\left(V_{n}\right),
\end{aligned}
$$

where the last equality holds since $\sum_{j \leq k-1} V_{n}\left(t_{j}\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right) \in \mathcal{F}_{s}$. Therefore $I_{t}\left(V_{n}\right)$ is indeed a martingale.

We fix $\epsilon>0$. From (15.2) it follows that there exists n_{0} such that for all $m, n \geq n_{0}$

$$
\mathbb{E}\left[\int_{0}^{T}\left(V_{n}(t)-V_{m}(t)\right)^{2} d t<\epsilon^{3}\right.
$$

Fix any such pair m, n. From Lemma 15.3 we have $I_{t}\left(V_{n}\right)-I_{t}\left(V_{m}\right)=I_{t}\left(V_{n}-V_{m}\right)$ is also martingale. Applying the Doob-Kolmogorov inequality, we obtain

$$
\begin{aligned}
\mathbb{P}\left(\sup _{0 \leq t \leq T}\left|I_{t}\left(V_{n}\right)-I_{t}\left(V_{m}\right)\right| \geq \epsilon\right) & \leq \frac{\mathbb{E}\left[\left(I_{T}\left(V_{n}\right)-I_{T}\left(V_{m}\right)\right)^{2}\right]}{\epsilon^{2}} \\
& =\frac{\mathbb{E}\left[\left(I_{T}\left(V_{n}-V_{m}\right)\right)^{2}\right]}{\epsilon^{2}} \\
& =\frac{\mathbb{E}\left[\int_{0}^{T}\left(V_{n}(t)-V_{m}(t)\right)^{2} d t\right]}{\epsilon^{2}} \\
& <\epsilon .
\end{aligned}
$$

This means that we can construct a subsequence n_{k} along which

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T}\left|I_{t}\left(V_{n_{k+1}}\right)-I_{t}\left(V_{n_{k}}\right)\right| \geq \frac{1}{2^{k}}\right) \leq \frac{1}{2^{k}} .
$$

In particular, the sum of these probabilities is finite. Applying the Borel-Cantelli Lemma, for almost all samples ω, there exists $k(\omega)$ such that for all $k>k(\omega)$

$$
\sup _{0 \leq t \leq T}\left|I_{t}\left(V_{n_{k+1}(\omega)}\right)-I_{t}\left(V_{n_{k}}(\omega)\right)\right|<\frac{1}{2^{k}}
$$

Now we need a short digression into real analysis. We define a sequence of functions $a_{k}(t), t \in$ $[0, T]$ to be uniformly Cauchy if for every $\epsilon>0$ there exists k_{0} such that for all $k, m>k_{0}$ we have $\sup _{0 \leq t \leq T}\left|a_{k}(t)-a_{m}(t)\right|<\epsilon$. The following is the result from real analysis.
Proposition 1. Suppose a_{k} is a uniform Cauchy sequence of continuous functions on $[0, T]$. Then $a_{k}(t)$ converges everywhere on $[0, T]$ to some continuous function $a(t)$.

Applying this proposition to our case we conclude that for almost all ω the point-wise limit of $I_{t}\left(V_{n_{k}}(\omega)\right)$ exists and is continuous on $[0, T]$. We call this limit $Y(t, \omega)$ and now we show that $Y(t)=I_{t}(V)$ a.s. From the definition of Ito integral, we have that the subsequence $I_{t}\left(V_{n_{k}}\right)$
converges to $I_{t}(V)$ in \mathcal{L}_{2}. This implies convergence in probability. On the other hand a.s. convergence also implies convergence in probability. Therefore Y_{t} and $I_{t}(V)$ are two limits in probability of $I_{t}\left(V_{n_{k}}\right)$. Therefore (check that this is indeed the case) they are a.s. equal to each other.

We have created a version Y_{t} of $I_{t}(V)$ which is a.s. continuous.
From now on assume that we are dealing only with continuous versions of $I_{t}(V)$.
Another important property of $I_{t}(V)$ is that it is a martingale.
Theorem 15.4. For every $V \in H^{2}, I_{t}(V)$ is a martingale.
Proof. We first need to check $\mathbb{E}\left[\left|I_{t}(V)\right|\right]<\infty$. This will be true, provided that $\mathbb{E}\left[I_{t}^{2}(V)\right]<\infty$. But by Ito isometry $\mathbb{E}\left[I_{t}^{2}(V)\right]=\mathbb{E}\left[\int_{0}^{t} V^{2}(s) d s\right]<\infty$ since $V \in H^{2}$.

Fix $s<t$. Take any sequence of simple processes V_{n} satisfying (15.2). Let $Y_{s}=\mathbb{E}\left[I_{t}(V) \mid \mathcal{F}_{s}\right]$. Consider

$$
\begin{aligned}
\mathbb{E}\left[\left(Y_{s}-I_{s}(V)\right)^{2}\right] & =\mathbb{E}\left[\left(Y_{s}-I_{s}\left(V_{n}\right)+I_{s}\left(V_{n}\right)-I_{s}(V)\right)^{2}\right] \\
& \leq 2 \mathbb{E}\left[\left(Y_{s}-I_{s}\left(V_{n}\right)\right)^{2}\right]+2 \mathbb{E}\left[\left(I_{s}\left(V_{n}\right)-I_{s}(V)\right)^{2}\right]
\end{aligned}
$$

By definition, we have $\lim _{n} \mathbb{E}\left[\left(I_{s}\left(V_{n}\right)-I_{s}(V)\right)^{2}\right]=0$. On the other hand, since by Lemma 15.3 we have $I_{s}\left(V_{n}\right)=\mathbb{E}\left[I_{t}\left(V_{n}\right) \mid \mathcal{F}_{s}\right]$, then

$$
\begin{aligned}
\mathbb{E}\left[\left(Y_{s}-I_{s}\left(V_{n}\right)\right)^{2}\right] & =\mathbb{E}\left[\left(\mathbb{E}\left[I_{t}(V) \mid \mathcal{F}_{s}\right]-\mathbb{E}\left[I_{t}\left(V_{n}\right) \mid \mathcal{F}_{s}\right]\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\mathbb{E}\left[I_{t}(V)-I_{t}\left(V_{n}\right) \mid \mathcal{F}_{s}\right]\right)^{2}\right] \\
& \leq \mathbb{E}\left[\mathbb{E}\left[\left(I_{t}(V)-I_{t}\left(V_{n}\right)\right)^{2} \mid \mathcal{F}_{s}\right]\right] \\
& =\mathbb{E}\left[\left(I_{t}(V)-I_{t}\left(V_{n}\right)\right)^{2}\right]
\end{aligned}
$$

where we use conditional Jensen's inequality in the second step. But again $\lim _{n} \mathbb{E}\left[\left(I_{t}(V)-\right.\right.$ $\left.\left.I_{t}\left(V_{n}\right)\right)^{2}\right]=0$ by definition. Combining, we conclude that $\mathbb{E}\left[\left(Y_{s}-I_{s}(V)\right)^{2}\right]=0$ or $Y_{s}=$ $\mathbb{E}\left[I_{t}(V) \mid \mathcal{F}_{s}\right]=I_{s}(V)$, or $I_{t}(V)$ is indeed a martingale.

15.2. Martingale Representation Theorem and Girsanov' theorem

We established in the previous section that Ito integral is a martingale. It turns out a converse statement is true. The proof of this fact is complicated, it is based on some complex analytic techniques and we skip it.

Theorem 15.5 (Martingale Representation Theorem). Suppose $M(t) \in \mathcal{F}_{t}$ is a martingale with a.s. continuous sample paths. Then there exists a unique process $X(t) \in H^{2}$ such that

$$
M(t)=\mathbb{E}[M(0)]+\int_{0}^{t} X(s) d B(s)
$$

The martingale representation theorem is based on a related Dudley's Theorem and is an important tool in finance. Another related tool is Girsanov's theorem, which we now discuss.

First let us review the change of measure technique. Given a probability measure \mathbb{P} and a non-negative random variable ψ such that $\mathbb{E}[\psi]<\infty$, we may define a new probability measure

$$
\mathbb{P}_{2}(A)=\frac{\mathbb{E}[\psi 1\{A\}]}{\mathbb{E}[\psi]}
$$

The following identity was established during the recitation. Given two fields $\mathcal{F} \supset \mathcal{G}$ and a random variable $X \in \mathcal{F}$ such that $\mathbb{E}_{\mathbb{P}}[|X|], \mathbb{E}_{\mathbb{P}_{2}}[|X|]<\infty$

$$
\begin{equation*}
\mathbb{E}_{\mathbb{P}_{2}}[X \mid \mathcal{G}]=\frac{\mathbb{E}_{\mathbb{P}}[\psi X \mid \mathcal{G}]}{\mathbb{E}_{\mathbb{P}}[\psi \mid \mathcal{G}]} \tag{15.6}
\end{equation*}
$$

Girsanov's theorem is an important statement which provides a translation between different probability measures on the same space (Ω, \mathcal{F}) and filtration $\left\{\mathcal{F}_{t}\right\}$.

Thus suppose we have an Ito process $X(t)=X(0)+\int_{0}^{t} U(s) d s+\int_{0}^{t} V(s) d B(s)$. Recall that both $X(t), B(t) \in \mathcal{F}_{t}$ and correspond to the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We will derive Girsanov's theorem first for the case $V(s)=1$ and then state without proof the general case.

For now, consider the process $X(t)=X(0)+\int_{0}^{t} U(s) d s+d B(s)$ or $d X=U d t+d B$. Consider the following process

$$
M(t)=\exp \left(-\int_{0}^{t} U(s) d B(s)-\frac{1}{2} \int_{0}^{t} U^{2}(s) d s\right)
$$

This process is adapted to \mathcal{F}_{t}, but does it belong to H^{2} ? Not necessarily. So we only consider the case when it does:

Definition 15.7. A process U is defined to satisfy Novikov's condition if for every t

$$
\mathbb{E}\left[e^{\frac{1}{2} \int_{0}^{t} U^{2}(s) d s}\right]<\infty
$$

It turns out (we do not prove this) that this suffices to ensure $M \in H^{2}$. There is a reason we used the mnemonic M for the process - it gives rise to a martingale.

Proposition 2. Consider an Ito process $d X=U d t+d B$. The processes $M(t)$ and $Y(t)=$ $M(t) X(t)$ are martingales.

Proof. It turns out (we skip the proof) that the Novikov condition implies $\mathbb{E}[M(t)]<\infty$. This implies $\mathbb{E}[Y(t)]<\infty$. By Ito's lemma $Y(t)$ is an Ito process since M, X are Ito processes. Using the Ito formula we have

$$
d M=M\left(-U d B-\frac{1}{2} U^{2} d t\right)+\frac{1}{2} M U^{2} d t=-M U d B
$$

Since Ito integral is a martingale, $M(t)$ is a martingale. We use the multidimensional Ito formula applied to function $g(x, y)=x y$:

$$
d Y=X d M+M d X+(d M d X)
$$

Therefore

$$
d Y=X(-M U d B)+M(U d t+d B)+(-M U d B)(U d t+d B)=(-X M U+M) d B
$$

where we use $(-M U d B)(U d t+d B)=-M U U d B d t-M U(d B)^{2}=-M U d t$ and this cancels with $M U d t$. We conclude that Y is an Ito integral (it does not have a non-Brownian component). We have established earlier that Ito integral is a martingale.

Now let us consider a change of measure implied by the transformation $X \rightarrow M X$ meaning the following. First fix $T>0$. Consider the random variable $M(T)$ and a new measure $\mathbb{P}_{T}=M(T) \mathbb{P}$ introduced by $M(T)$: for every $A \subset \Omega, A \in \mathcal{F}$ we let

$$
\mathbb{P}_{T}(A)=\frac{\mathbb{E}[M(T) 1\{A\}]}{\mathbb{E}[M(T)]}=\mathbb{E}[M(T) 1\{A\}],
$$

where the second equality follows since M is a martingale and therefore $\mathbb{E}[M(T)]=\mathbb{E}[M(0)]=1$. This change of measure is called Girsanov's transformation. Intuitively every sample $\omega \in \Omega$ is reweighted from $\mathbb{P}(\omega)$ to $\mathbb{P}(\omega) M_{T}(\omega)$. We know that this transformation does introduce a new probability measure. The distribution of $X(T)$ under the new measure \mathbb{P}_{T} is then the distribution of $X(T) M(T)$ under the old measure \mathbb{P}. This begs the question: how dependent is this transformation on the choice of T ? What if we chose a different T ? The wonderful thing about this transformation is that it "works across" times as the following lemma establishes.

Lemma 15.8. For every $t \leq T$, the measures $\mathbb{P}_{t}=M(t) \mathbb{P}$ and $\mathbb{P}_{T}=\mathbb{E}[M(T)] \mathbb{P}$ are identical on \mathcal{F}_{t}. In particular the distributions of $X(t) M(t)$ and $X(t) M(T)$ are identical.

Proof. Fix $A \in \mathcal{F}_{t}$. We have using the martingale property of M from (2)

$$
\mathbb{P}_{T}(A)=\mathbb{E}[M(T) 1\{A\}]=\mathbb{E}\left[\mathbb{E}\left[M(T) 1\{A\} \mid \mathcal{F}_{t}\right]\right]=\mathbb{E}\left[1\{A\} \mathbb{E}\left[M(T) \mid \mathcal{F}_{t}\right]\right]=\mathbb{E}[1\{A\} M(t)]=\mathbb{P}_{t}(A)
$$

We turn to the first version of Girsanov's theorem. It basically states that the Girsanov change of measure "creates" a Brownian motion out of the process X :

Theorem 15.9 (Girsanov's Theorem I). For every $T>0$, the process $X(t), 0 \leq t \leq T$ is a Brownian motion with respect to the probability measure \mathbb{P}_{T}.

Proof. The proof relies the the following so called Levi characterization of a Brownian motion
Proposition 3. A continuous process $B(t)$ is a standard Brownian motion if and only if it is a martingale and $B^{2}(t)-t$ is a martingale.

We use this characterization in order to prove Girsanov's theorem. The non-Brownian part of $X(t)$, which is $\int_{0}^{t} U(s) d s$ is a Riemann integral and is therefore a continuous function of t (a fact from real analysis). The Brownian part is an Ito integral. Earlier we showed that Ito integral is a continuous process (always has a continuous representation). Thus $X(t)$ is continuous. Now we show that $X(t)$ is a martingale w.r.t. \mathbb{P}_{T}. Fix $s<t$. Using (15.6)

$$
\mathbb{E}_{\mathbb{P}_{T}}\left[X(t) \mid \mathcal{F}_{s}\right]=\frac{\mathbb{E}_{\mathbb{P}}\left[M(t) X(t) \mid \mathcal{F}_{s}\right]}{\mathbb{E}_{\mathbb{P}}\left[M(t) \mid \mathcal{F}_{s}\right]}=\frac{M(s) X(s)}{M(s)}=X(s)
$$

where we have used Proposition (2) and Lemma (15.8).
It remains to show that $X^{2}(t)-t$ is a martingale w.r.t. P_{T}. We use the Ito formula and the computations of Proposition 2 to compute $d\left(M X^{2}\right)$:

$$
\begin{aligned}
d\left(M X^{2}\right) & =X^{2} d M+2 M X d X+\frac{1}{2} 2 X(d M)(d X)+\frac{1}{2} 2 M(d X)^{2} \\
& =X^{2}(-M U d B)+2 M X U d t+2 M X d B-2 X M U d t+M d t \\
& =X^{2}(-M U d B)+2 M X d B+M d t
\end{aligned}
$$

On the other hand again using Ito formula

$$
d(M t)=t d M+M d t=-t U M d B+M d t
$$

Therefore

$$
d\left(M\left(X^{2}-t\right)\right)=d\left(M X^{2}-M t\right)=X^{2}(-M U d B)+2 M X d B-t U M d B
$$

Since this expression is an Ito integral, the process $M\left(X^{2}(t)-t\right)$ is a martingale. Again using (15.6) we show that under $\mathbb{P}_{T}, X^{2}(t)-t$ is martingale.

We showed that Levi condition for X is satisfied. Thus X is a Brownian motion w.r.t. \mathbb{P}_{T}.
Let us turn to a more general version of Girsanov's Theorem. It corresponds to the case when the multiplicative component of the Brownian part in X is non-unit. We will state it without the proof. The proof details are similar.
Theorem 15.10 (Girsanov's Theorem II). Consider an Ito process $d X=U d t+V d B$. Suppose there exists a process $\eta \in H^{2}$ satisfying $\eta(t) V(t)=U(t)$ a.s. and suppose the Novikov condition holds for η. Let

$$
M(t)=\exp \left(-\int_{0}^{t} \eta(s) d B(s)-\frac{1}{2} \int_{0}^{t} \eta^{2}(s) d s\right)
$$

Fix $T>0$ and consider the change of measures $\mathbb{P}_{T}=\eta(T) \mathbb{P}$. Then $\hat{B}(t)=\int_{0}^{t} \eta(s) d s+B(t)$ is a Brownian motion w.r.t. \mathbb{P}_{T} and $d X(t)=V(t) d \hat{B}(t)$.

In the special case $V=1$ we obtain $\eta=U$ and $X=\hat{B}$ and we recover the first version of Girsanov's theorem.

15.3. Additional reading materials

- Oksendal [1], Chapters III,IV, VIII

BIBLIOGRAPHY

1. B. Øksendal, Stochastic differential equations, Springer, 1991.
