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Advanced Stochastic Processes.

David Gamarnik 

LECTURE 15 
Martingale property of Ito integral and Girsanov theorem 

Lecture outline 

•	 Continuity of Ito integral 
•	 Martingale property of Ito integral. Martingale representation theorem.


Girsanov’s theorem.
• 

15.1. Continuity and martingale properties of Ito process 
t t

Ito process is a process of the form X(t) = X(0) + 
0 U (s)ds + V (s)dB(s). The first part of 

0 
t

this expression, 
0 U (s)ds is a continuous function of t (recall from real analysis that Reimann 

integral is continuous in t). What about the Ito integral part? It turns out that there always 
exists a continuous version of the Ito integral. 

Theorem 15.1. Given V ∈ H2 and T > 0 there exists an a.s. continuous stochastic process 
t

Y (t) such that Y (t) = 
0 V (s)dB(s) a.s. for all 0 ≤ t ≤ T . Namely, there exists a continuous 

t
version of V (s)dB(s) on every finite interval. 

0 

t
Note that the theorem does not imply that every version of 

0 V (s)dB(s) is continuous. Can 
you think about two process which are a.s. equal to each other but one is a.s. continuous while 
the other is discontinuous everywhere? 

t
Proof. Recall that V (s)dB(s) is the L2 limit along any sequence of simple processes Vn0 
satisfying 

t 

(15.2)	 E[ (Vn(t) − V (t))2dt] 0.→
0 

Fix any such sequence Vn and consider their corresponding Ito integral It(Xn). 

t
Lemma 15.3. It(Vn) = 

0 Vn(t)dB(t) is a martingale. 
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Proof. Let Πn : 0 = t0 < t1 < tn = t be the partition corresponding to Vn. Fix s < t.< · · · 
Increase the partition by an extra point tk = s. Observe that It(Xn) with respect to the new 
partition is the same as the original one. Also Fs = . We have Ftk 

E[It(Vn)|Fs] = E[ Vn(tj )(B(tj+1) − B(tj ))|Fs]

j


= E[ Vn(tj )(B(tj+1) − B(tj ))|Fs] + E[ Vn(tj )(B(tj+1) − B(tj ))|Fs] 
j≥k j≤k−1 

= E[ Vn(tj )E[B(tj+1) − B(tj )|Ftj ] ] + Vn(tj )(B(tj+1) − B(tj ))|Fs

j≥k j≤k−1 

= 0 + Is(Vn), 

where the last equality holds since j≤k−1 Vn(tj )(B(tj+1) − B(tj )) ∈ Fs. Therefore It(Vn) is 
indeed a martingale. � 

We fix � > 0. From (15.2) it follows that there exists n0 such that for all m,n ≥ n0 � T 

E[ (Vn(t) − Vm(t))2dt < �3 . 
0 

Fix any such pair m,n. From Lemma 15.3 we have It(Vn) − It(Vm) = It(Vn m) is also − V
martingale. Applying the DoobKolmogorov inequality, we obtain 

P( sup It(Vn) − It(Vm)
E[(IT (Vn) − IT (Vm))2] 

0≤t≤T 
| | ≥ �) ≤ 

�2 

E[(IT (Vn − Vm))2] 
= 

�2 � TE[ 
0 (Vn(t) − Vm(t))2dt] 

= 
�2 

< �. 

This means that we can construct a subsequence nk along which 
1 1

P( sup It(Vnk+1 ) − It(Vnk ) . 
0≤t≤T 

| | ≥ 
2k 

) ≤ 
2k 

In particular, the sum of these probabilities is finite. Applying the BorelCantelli Lemma, for 
almost all samples ω, there exists k(ω) such that for all k > k(ω) 

1 
sup It(Vnk+1(ω)) − It(Vnk (ω)) < . 

0≤t≤T 
| | 

2k 

Now we need a short digression into real analysis. We define a sequence of functions ak (t), t ∈
[0, T ] to be uniformly Cauchy if for every � > 0 there exists k0 such that for all k,m > k0 we 
have sup0≤t≤T ak (t) − am(t) < �. The following is the result from real analysis. | | 

Proposition 1. Suppose ak is a uniform Cauchy sequence of continuous functions on [0, T ]. 
Then ak (t) converges everywhere on [0, T ] to some continuous function a(t). 

Applying this proposition to our case we conclude that for almost all ω the pointwise limit 
of It(Vnk (ω)) exists and is continuous on [0, T ]. We call this limit Y (t, ω) and now we show 
that Y (t) = It(V ) a.s. From the definition of Ito integral, we have that the subsequence It(Vnk ) 
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converges to It(V ) in L2. This implies convergence in probability. On the other hand a.s. 
convergence also implies convergence in probability. Therefore Yt and It(V ) are two limits in 
probability of It(Vnk ). Therefore (check that this is indeed the case) they are a.s. equal to each 
other. 

We have created a version Yt of It(V ) which is a.s. continuous. � 

From now on assume that we are dealing only with continuous versions of It(V ). 

Another important property of It(V ) is that it is a martingale. 

Theorem 15.4. For every V ∈ H2 , It(V ) is a martingale. 

Proof. We first need to check E[ It(V ) ] < ∞. This will be true, provided that E[It 
2(V )] < ∞. 

But by Ito isometry E[It 
2(V )] = E

|
[ t 

V 2
|
(s)ds] < ∞ since V ∈ H2 .

0 
Fix s < t. Take any sequence of simple processes Vn satisfying (15.2). Let Ys = E[It(V )|Fs]. 

Consider 

E[(Ys − Is(V ))2] = E[(Ys − Is(Vn) + Is(Vn) − Is(V ))2] 

≤ 2E[(Ys − Is(Vn))2] + 2E[(Is(Vn) − Is(V ))2] 

By definition, we have limn E[(Is(Vn) − Is(V ))2] = 0. On the other hand, since by Lemma 15.3 
we have Is(Vn) = E[It(Vn)|Fs], then 

E[(Ys − Is(Vn))2] = E[(E[ ] − E[It(Vn)|Fs])
2]It(V )|Fs

= E[(E[It(V ) − It(Vn)|Fs])
2] 

≤ E[E[(It(V ) − It(Vn))2|Fs]] 

= E[(It(V ) − It(Vn))2], 

where we use conditional Jensen’s inequality in the second step. But again limn E[(It(V ) −
It(Vn))2] = 0 by definition. Combining, we conclude that E[(Ys − Is(V ))2] = 0 or Ys = 

] = Is(V ), or It(V ) is indeed a martingale. �E[It(V )|Fs

15.2. Martingale Representation Theorem and Girsanov’ theorem 

We established in the previous section that Ito integral is a martingale. It turns out a converse 
statement is true. The proof of this fact is complicated, it is based on some complex analytic 
techniques and we skip it. 

Theorem 15.5 (Martingale Representation Theorem). Suppose M (t) ∈ Ft is a martingale 
with a.s. continuous sample paths. Then there exists a unique process X(t) ∈ H2 such that 

t 

M (t) = E[M (0)] + X(s)dB(s). 
0 

The martingale representation theorem is based on a related Dudley’s Theorem and is an 
important tool in finance. Another related tool is Girsanov’s theorem, which we now discuss. 
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First let us review the change of measure technique. Given a probability measure P and a 
nonnegative random variable ψ such that E[ψ] < ∞, we may define a new probability measure 

P2(A) = 
E[ψ1{A}] 

.
E[ψ] 

The following identity was established during the recitation. Given two fields F ⊃ G and a 
random variable X ∈ F such that EP[ X ], EP2 [ X ] < ∞| | | |

(15.6) EP2 [X|G] = 
EP[ψX|G] 
EP[ψ|G] 

Girsanov’s theorem is an important statement which provides a translation between different 
probability measures on the same space (Ω, F ) and filtration {Ft}. 

t t
Thus suppose we have an Ito process X(t) = X(0) + 

0 U (s)ds + V (s)dB(s). Recall that 
0 

both X(t), B(t) ∈ Ft and correspond to the same probability space (Ω, F , P). We will derive 
Girsanov’s theorem first for the case V (s) = 1 and then state without proof the general case. 

t
For now, consider the process X(t) = X(0) + 

0 U (s)ds + dB(s) or dX = U dt + dB. Consider 
the following process 

t 1 t 

M (t) = exp(− U (s)dB(s) − U 2(s)ds). 
2 00 

This process is adapted to Ft, but does it belong to H2? Not necessarily. So we only consider 
the case when it does: 

Definition 15.7. A process U is defined to satisfy Novikov’s condition if for every t R 
2 0E[e 
1 t U 2(s)ds] < ∞. 

It turns out (we do not prove this) that this suffices to ensure M ∈ H2 . There is a reason we 
used the mnemonic M for the process – it gives rise to a martingale. 

Proposition 2. Consider an Ito process dX = U dt + dB. The processes M (t) and Y (t) = 
M (t)X(t) are martingales. 

Proof. It turns out (we skip the proof) that the Novikov condition implies E[M (t)] < ∞. This 
implies E[Y (t)] < ∞. By Ito’s lemma Y (t) is an Ito process since M, X are Ito processes. Using 
the Ito formula we have 

1 1 
dM = M (−U dB − U 2dt) + M U 2dt = −M U dB. 

2 2 
Since Ito integral is a martingale, M (t) is a martingale. We use the multidimensional Ito formula 
applied to function g(x, y) = xy: 

dY = XdM + M dX + (dM dX). 

Therefore 

dY = X(−M U dB) + M (U dt + dB) + (−M U dB)(U dt + dB) = (−XM U + M )dB 

where we use (−M U dB)(U dt+dB) = −M U U dBdt−M U (dB)2 = −M U dt and this cancels with 
M U dt. We conclude that Y is an Ito integral (it does not have a nonBrownian component). We 
have established earlier that Ito integral is a martingale. � 
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Now let us consider a change of measure implied by the transformation X → MX meaning the 
following. First fix T > 0. Consider the random variable M(T ) and a new measure PT = M(T )P 
introduced by M(T ): for every A ⊂ Ω, A ∈ F we let 

PT (A) = 
E[M(T )1{A}]

= E[M(T )1{A}],
E[M(T )] 

where the second equality follows since M is a martingale and therefore E[M(T )] = E[M(0)] = 1. 
This change of measure is called Girsanov’s transformation. Intuitively every sample ω ∈ Ω 
is reweighted from P(ω) to P(ω)MT (ω). We know that this transformation does introduce a 
new probability measure. The distribution of X(T ) under the new measure PT is then the 
distribution of X(T )M(T ) under the old measure P. This begs the question: how dependent is 
this transformation on the choice of T? What if we chose a different T? The wonderful thing 
about this transformation is that it ”works across” times as the following lemma establishes. 

Lemma 15.8. For every t ≤ T , the measures Pt = M(t)P and PT = E[M(T )]P are identical on 
Ft. In particular the distributions of X(t)M(t) and X(t)M(T ) are identical. 

Proof. Fix A ∈ Ft. We have using the martingale property of M from (2) 

PT (A) = E[M(T )1{A}] = E[E[M(T )1{A}|Ft]] = E[1{A}E[M(T )|Ft]] = E[1{A}M(t)] = Pt(A). 

We turn to the first version of Girsanov’s theorem. It basically states that the Girsanov 
change of measure ”creates” a Brownian motion out of the process X: 

Theorem 15.9 (Girsanov’s Theorem I). For every T > 0, the process X(t), 0 ≤ t ≤ T is a 
Brownian motion with respect to the probability measure PT . 

Proof. The proof relies the the following so called Levi characterization of a Brownian motion 

Proposition 3. A continuous process B(t) is a standard Brownian motion if and only if it is a 
martingale and B2(t) − t is a martingale. 

We use this characterization in order to prove Girsanov’s theorem. The nonBrownian part of 
t

X(t), which is 
0 U(s)ds is a Riemann integral and is therefore a continuous function of t (a fact 

from real analysis). The Brownian part is an Ito integral. Earlier we showed that Ito integral is 
a continuous process (always has a continuous representation). Thus X(t) is continuous. Now 
we show that X(t) is a martingale w.r.t. PT . Fix s < t. Using (15.6) 

EPT [X(t)|Fs] = 
EP[M(t)X(t)|Fs] M(s)X(s) 

= = X(s)
EP[M(t)|Fs] M(s) 

where we have used Proposition (2) and Lemma (15.8). 
It remains to show that X2(t) − t is a martingale w.r.t. PT . We use the Ito formula and the 

computations of Proposition 2 to compute d(MX2): 

1 1 
d(MX2) = X2dM + 2MXdX + 2X(dM)(dX) + 2M(dX)2 

2 2 
= X2(−MUdB) + 2MXUdt + 2MXdB − 2XMUdt + Mdt 

= X2(−MUdB) + 2MXdB + Mdt 
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On the other hand again using Ito formula 

d(M t) = tdM + M dt = −tU M dB + M dt 

Therefore 

d(M (X2 − t)) = d(M X2 − M t) = X2(−M U dB) + 2M XdB − tU M dB 

Since this expression is an Ito integral, the process M (X2(t) − t) is a martingale. Again using 
(15.6) we show that under PT , X2(t) − t is martingale. 

We showed that Levi condition for X is satisfied. Thus X is a Brownian motion w.r.t. PT . � 

Let us turn to a more general version of Girsanov’s Theorem. It corresponds to the case when 
the multiplicative component of the Brownian part in X is nonunit. We will state it without 
the proof. The proof details are similar. 

Theorem 15.10 (Girsanov’s Theorem II). Consider an Ito process dX = U dt + V dB. 
Suppose there exists a process η ∈ H2 satisfying η(t)V (t) = U (t) a.s. and suppose the Novikov 
condition holds for η. Let 

t 1 t 

M (t) = exp(− η(s)dB(s) − η2(s)ds). 
2 00 

ˆFix T > 0 and consider the change of measures PT = η(T )P. Then B(t) = 
0 
t 
η(s)ds + B(t) is a 

Brownian motion w.r.t. PT and dX(t) = V (t)d B̂(t). 

ˆIn the special case V = 1 we obtain η = U and X = B and we recover the first version of 
Girsanov’s theorem. 

15.3. Additional reading materials 

• Øksendal [1], Chapters III,IV, VIII 
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