
Advanced Stochastic Processes.

David Gamarnik 

LECTURE 3 
Large Deviations for i.i.d. Random Variables 

Outline of Lecture 

•	 Chernoff bound using exponential moment generating functions. Examples. Legendre 
transforms. 

3.1. Preliminary notes 

The Weak Law of Large Numbers tells us that if X1, X2, . . . , is an i.i.d. sequence of random 
variables with mean µ � E[X1] < ∞ then for every � > 0 

P(
X1 + . . . + Xn − µ > �) → 0,| 

n 
|

.as n →∞

But how quickly does this convergence to zero occur? We can try to use Chebyshev inequality 
which says 

P(
X1 + . . . + Xn 

> �) ≤ 
Var(X1) 

.| 
n 

− µ|
n�2 

This suggest a ”decay rate” of order 1 if we treat Var(X1) and � as a constant. Is this an accurate 
n 

rate? Far from so ... 

In fact if the higher moment of X1 was finite, for example, E[X2m] < ∞, then using a similar 1 
bound, we could show that the decay rate is at least 

n
1 
m (we skip the proof). 

The goal of the large deviation theory is to show that in many interesting cases the decay rate 
is in fact exponential : e−cn . The exponent c > 0 is called large deviations rate. 
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3.2. Large deviations upper bound (Chernoff bound) 

Consider an i.i.d. sequence with a common probability distribution function F (x) = P(X ≤
x), x ∈ R. Fix a value a > µ. We consider probability that the average of X1, . . . , Xn exceeds 
a. The WLLN tells us that this happens with probability converging to zero as n increases, and 
now we obtain an estimate on this probability. Fix a positive parameter θ > 0. We have 

Xi
P( 

�
1≤i≤n 

> a) = P( 
� 

Xi > na)

n 

1≤i≤n 

θna= P(e θ 
P

1≤i≤n Xi > e ) 

E[e θ 
P

1≤i≤n Xi ] 
Markov inequality 

eθna 
≤ 

θX1E[e eθXn ] 
= 

· · · 
θa)n 

,
(e

But recall that Xi’s are i.i.d. Therefore E[eθX1 eθXn ] = (E[eθX1 ])n . Thus we obtain an upper · · · 
bound 

XiP( 

�
1≤i≤n 

> a) ≤ ( 
E[eθX1 ]

)n . 
θa n e

Of course this bound is meaningful only if the ratio E[eθX1 ]/eθa is less than unity. At least we 
need E[eθX1 ] to be finite. If we could show that this ratio is less than unity, we would be done – 
exponentially fast decay of the probability would be established. 

θX1 ]Can we expect to find θ for which this is indeed the case? First assume for a moment that E[e
is finite for all θ in some interval [0, θ0). Note that when θ = 0 the ratio E[eθX1 ]/eθa is equal to 
unity. Now let us differentiate this ratio with respect to θ at θ = 0: 

d E[eθX1 ] E[X1e
θX1 ]eθa − aeθaE[eθX1 ] 

= 
2θa dθ eθa e

When we set θ = 0 we obtain that the derivative is E[X1] − a = µ − a < 0. Therefore, for 
sufficiently small θ the ratio E[eθX1 ]/eθa is indeed smaller than unity! 

We have established an upper bound part of the large deviations theory: 

Theorem 3.1 (Chernoff bound). Given an i.i.d. sequence X1, . . . , Xn suppose E[eθX1 ] is finite 
for all θ in some interval [0, θ0). Let a > µ = E[X1]. Then for some sufficiently small θ > 0 
there holds E[eθX1 ]/eθa < 1 and, moreover 

XiP( 

�
1≤i≤n 

> a) ≤ ( 
E[eθX1 ]

)n . 
θa n e

In words the large deviations probability is exponentially (geometrically) small. 

How small can we make this ratio? We have some freedom in choosing θ as long as E[eθX1 ] is 
finite. So we could try to find θ which minimizes the ratio E[eθX1 ]/eθa . This is what we will do 
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in the rest of the lecture. The surprising conclusion of the large deviations theory is that such a 
minimizing value θ∗ exists and is tight. Namely it provides the correct decay rate! 

3.3. Exponential moment generating function 

Definition 3.2. An exponential moment generating function of a random variable X with pa
rameter θ is defined to be M (θ) � E[eθX ] = 

� ∞ 
eθxdF (x).−∞ 

We will be primarily interested in the case when θ ≥ 0. Note that when θ = 0, we have M (0) = 
1. Also when θ ≥ 0 the part of the integral corresponding to negative values 

� 0 
eθxdF (x) is at 

most unity. Indeed since eθx ≤ 1 when x < 0 then 
−∞ 

� 0 � 0 

e θxdF (x) ≤ dF (x) 
−∞ −∞� ∞ 

dF (x)≤ 
−∞

= 1 

However, the positive part 
�
0

∞
eθxdF (x) can be infinite (we will have examples later). 

The important case for us is when it is finite at least for some θ > 0. 

Proposition 1. Suppose M (θ) < ∞ for some θ > 0. Then for every 0 ≤ θ� < θ, also M (θ�) < ∞. 
Thus the set of all θ for which M (θ) is finite is some interval. This interval can be open [0, θ0) 
or closed [0, θ0]. 

θ�Proof. We showed already that 
� 0 

e xdF (x) < ∞. Now consider an integral over the positive −∞
part: 

� ∞ 

e θ
�xdF (x) ≤ 

� ∞ 

e θxdF (x) 
0 0 � ∞ 

e θxdF (x)≤ 
−∞ 

= M (θ) 

< ∞. 

Therefore the entire integral M (θ�) = 
� ∞ 

eθ�xdF (x) is finite. Thus the set of θ for which −∞
M (θ) is finite is an interval. We will show later that this interval is open from the right when 
the underlying distribution is exponential. Exercise 1 below asks you to find an example of a 
distribution for which the corresponding interval is closed. � 

Exercise 1. (a) Construct example of a random variable for which the corresponding inter
val is trivial {0}. Namely, M (θ) = ∞ for every θ > 0. 

(b) (*) Construct an example of a random variable X for which the corresponding interval 
[0, θ0] is closed. That is M (θ0) < ∞, but M (θ�) = ∞ for all θ� > θ0. 
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3.4. Examples 

Let us do some examples of computing exponential moment generating functions. 
•	 Exponential distribution. Consider an exponentially distributed random variable X 

with parameter λ. Then 

M (θ) = 
� ∞ 

e θxλe−λxdx 
0 

= λ 
� ∞ 

e−(λ−θ)xdx. 
0 

When θ < λ this integral is equal to −1 e−(λ−θ)x
���
∞ 

= 1/(λ − θ). But when θ ≥ λ, the
λ−θ 

0 
integral is infinite. Thus the exp. moment generating function is finite iff θ < λ and is 
M (θ) = λ/(λ − θ). In this case θ0 = λ and the corresponding interval [0, θ0) is open. 

Standard Normal distribution. When X has standard Normal distribution, we 
obtain 

21 θx 
2M (θ) = E[e θX ] = √

2π 

� ∞ 

e e− x 
dx 

−∞�	 ∞ 

e− x 2 −2θx+θ2 −θ21 
2= √

2π	
dx 

−∞ 

θ2 1 
� ∞ 

e− (x−θ)2 

2 2= e √
2π 

dx 
−∞ 

Introducing change of variables y = x − θ we obtain that the integral is equal to 
2 

1	
� ∞ 

e− y 
2 dy = 1 (integral of the density of the standard Normal distribution). There-√

2π −∞ 
θ2 

2 .fore M (θ) = e We see that it is always finite. That is θ0 = ∞. 

In a retrospect it is not surprising that in this case M (θ) is finite for all θ. The density 
2 

of the standard Normal distribution ”decays like” ≈ e−x and this is faster than just 
exponential growth ≈ eθx . So no matter how large is θ the overall product is finite. 

•	 Poisson distribution. Suppose X has a Poisson distribution with parameter λ. Then 

λm 
θX 

∞
θmM (θ) = E[e ] = 

� 
e e−λ 

m! 
m=0 

∞
(eθλ)m 

= 
� 

e−λ 

m! 
m=0 

eθλ−λ = e , 
tm 

(where we use the formula 
�

m≥0 = et). Thus again the exp. moment generating
m! 

function M (θ) is finite always. This again has to do with the fact that λm/m! decays at 
the rate similar to 1/m! which is faster then any exponential growth rate eθm . 

Exercise 2. (a) Let X have a uniform distribution on an interval [0, 1]. Find M (θ) for all 
θ ≥ 0. 



� 

5 LECTURE 3. LARGE DEVIATIONS 

(b) Suppose X is a bounded random variable. Namely a ≤ X ≤ b for some finite constants 
a < b. Prove that M(θ) is finite for all θ. 

3.5. Legendre transforms 

Theorem 3.4 gave us a large deviations bound (M(θ)/eθa)n which we rewrite as e−n(θa−log M (θ)). 
We now study in more detail the exponent θa− log M(θ). 

Definition 3.3. A Legendre transform of a random variable X is the function l(a) � supθ(θa−
log M(θ)). 

Proposition 2. (a) l(a) is a convex function of a. 
(b) Suppose a > µ. Then l(a) = supθ≥0(θa− log M(θ)) (no need to consider negative θ). 
(c) Consider θ0 – the largest θ for which M(θ) < ∞. There exists 0 < θ∗ < θ0 at which 

value l(a) is achieved: l(a) = aθ∗ − log M(θ∗). 

Proof. (a) Note that, for every fixed θ, the function θa − log M(θ), as a function of a is 
linear. Therefore l(a) is a supremum of linear functions. As such it is convex. 

(b) Since eθz is a convex function then using Jensen’s inequality M(θ) = E[eθX1 ] ≥ eθE[X1] = 
eθµ. When θ < 0 we have eθµ ≥ eθa , implying log M(θ) ≥ θa or aθ − log M(θ) < 0. But 
when θ = 0 this difference is 0 − M(0) = 0. So, indeed, there is no reason to consider 
negative θ when computing l(a). 

(c) This part is more difficult and technical. We skip the proof. 

Armed with the results of this proposition, we can restate Theorem 3.4 in terms of θ∗: 

Theorem 3.4 (Chernoff bound). Given an i.i.d. sequence X1, . . . , Xn suppose E[eθX1 ] is finite 
for all θ in some interval [0, θ0). Let a > µ = E[X1]. Then 

XiP( 

�
1≤i≤n 

> a) ≤ ( 
E[eθ∗X1 ]

)n 
θ∗an e

= e−l(a)n , 

where θ∗ solves aθ∗ − log M(θ∗) = supθ(aθ − log M(θ)). 

3.6. Additional reading materials 

•	 Course packet. Section 1.1 and Section 1.2 up to including page 15. 
•	 Chapter 0 of [1]. This is non-technical introduction to the field which describes motiva

tion and various applications of the large deviations theory. Soft reading. 
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