
Advanced Stochastic Processes.

David Gamarnik 

LECTURE 4 
Large Deviations theory continued 

Outline of Lecture 

• Large deviations lower bound. 
• Examples. 
• Bankruptcy problem. 

4.1. Large deviations lower bound 

We have established an upper bound on the probability of large deviations 

XiP( 

�
1≤i≤n 

> a) ≤ e−l(a)n , 
n 

where l(a) = supθ(aθ − log M(θ)) = aθ∗ − log M(θ∗) is the Legendre transform corresponding 
to the distribution of random variable X1. Perhaps the most surprising result of the theory of 
large deviations is that this upper bound is tight. The following theorem states that. The course 
packet contains the proof on pages 15-17. It involves an important and useful technique called 
change of measures. 

Theorem 4.1. Given an i.i.d. sequence X1, . . . , Xn, . . ., suppose E[eθX1 ] < ∞ for all θ in some 
interval [0, θ0). Let a > E[X1]. Then for every � > 0 there exists a sufficiently large n0 such that 
for all n > n0 

XiP( 

�
1≤i≤n 

> a) ≥ e−(l(a)−�)n , 
n 

where l(a) = aθ∗ − log M(θ∗) is the Legendre transform corresponding to the distribution of X1. 

Theorem 3.4 from the previous lecture and Theorem 4.1 can be combined into the following 
result. 
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θX1Theorem 4.2. Given an i.i.d. sequence X1, . . . , Xn, . . ., suppose E[e ] < ∞ for θ ∈ [0, θ0). 
Let a > E[X1]. Then 

Xi
log P( 

P
1≤i

n 
≤n > a)

lim	 = −l(a). 
nn→∞ 

Xi
Equivalently, we say that the probability of large deviations satisfies P( 

P
1≤i

n 
≤n > a) = 

e−l(a)n+o(n) when n is large. 

4.2. Examples 

Let us go over the examples of some distributions and compute their corresponding Legendre 
transforms. 

•	 Exponential distribution with parameter λ. Recall that M(θ) = λ/(λ − θ) when 
θ < λ and M(θ) = ∞ otherwise. Therefore when θ < λ 

λ 
l(a) = sup(aθ − log ) 

θ λ− θ

= sup(aθ − log λ + log(λ− θ)). 
θ 

Setting the derivative of g(θ) = aθ − log λ + log(λ − θ) equal to zero we obtain the 
equation a− 1/(λ− θ) = 0 which has the unique solution θ∗ = λ− 1/a. Therefore 

l(a) = a(λ− 1/a) − log λ + log(λ− λ + 1/a) 

= aλ− 1 − log λ + log(1/a) 

= aλ− 1 − log λ− log a. 

Let us see the meaning of this expression. First note that the function l(a) is indeed 
convex: For large deviations regime we need to consider a > 1/λ. When a = 1/λ, we 
obtain l(a) = 0 giving e−l(a)n = 1 - useless bound. However, when a is bigger than 
1/λ, l(a) becomes bigger than zero (this involves a tradeoff between increasing the linear 
function aλ and decreasing the function log(1/a), but one can show that the first one 
”beats”), and the bound becomes meaningful. 

The large deviations bound then tells us that when a > 1/λ 

Xi

�
1≤i≤n 

> a) ≈ e−(aλ−1−log λ−log a)nP(	 . 
n 

Say λ = 1 and a = 1.2. Then the approximation gives us ≈ e−(.2−log 1.2)n . On the other 
hand recall that the process X1, X1 + X2, . . . , X1 + X2 · · · + Xn, . . . is a Poisson process 
with parameter λ = 1. Therefore we can compute the probability P(

�
1≤i≤n Xi > 1.2n) 

exactly: it is the probability that the Poisson process has at most n − 1 events before 



= 
�	

. 
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time 1.2n. Thus 
XiP( 

�
1≤i≤n 

> 1.2) = P( 
� 

Xi > 1.2n) 
n 

1≤i≤n 

(1.2n)k 

e−1.2n 

k! 
0≤k≤n−1 

It is not at all clear how revealing this expression is. In hindsight, we know that it is 
approximately e−(.2−log 1.2)n, obtained via large deviations theory. 

θ2 

2 •	 Standard Normal distribution. Recall that M (θ) = e when X1 has the standard 
Normal distribution. The expected value µ = 0. Thus we fix a > 0 and obtain 

θ2 

l(a) = sup(aθ − ) 
θ 2 
2a

= ,
2 

achieved at θ∗ = a. Again we see that l(a) is (as it should be) a convex function of a. 
Thus for a > 0, the large deviations theory predicts that 

2Xi a nP( 

�
1≤i≤n 

> a) ≈ e− 
2	 . 

n 
Xi

Again we could compute this probability directly. We know that 
P

1≤i

n 
≤n is distributed 

as a Normal random variable with mean zero and variance 1/n. Thus 

2t n

�
1≤i≤n Xi 

√
n 

� ∞ 

2P( > a) = √
2π a 

e− dt. 
n 

After a little bit of technical work one could show that this integral is ”dominated” by 
its part around a, namely, 

�
a

a+� 
, which is further approximated by the value of the 

2 

·
a 
2function itself at a, namely 

√
n n . This is consistent with the value given by the √
2π 

e− 

√
nlarge deviations theory. Simply the lower order magnitude term disappears in the √
2π 

approximation on the log scale. 

•	 Poisson distribution. Suppose X has a Poisson distribution with parameter λ. Recall 
that in this case M (θ) = eeθ λ−λ . Then 

l(a) = sup(aθ − (e θ λ − λ)). 
θ 

Setting derivative to zero we obtain θ∗ = log(a/λ) and l(a) = a log(a/λ) − (a − λ). 
In this case as well we can compute the large deviations probability explicitly. The 

sum X1 + + Xn of Poisson random variables is also a Poisson random variable with · · · 
parameter λn. Therefore 

(λn)m 

e−λnP( 
� 

Xi > an) = 
� 

. 
m! 

m>an1≤i≤n 

But again it is hard to infer a more explicit rate of decay using this expression 
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4.3. Applications 

4.3.1. Insurance bankruptcy problem 

Imagine an insurance company which has capital x at time t = 0. During periods t = 1, 2, . . . it 
receives revenues Xt ≥ 0 from premiums and pays claims in the amount of Yt ≥ 0. The wealth 
of the company at time t is then St � x + 

�
1≤i≤t Xi − 

�
1≤i≤t Yt. The company is declared 

bankrupt if at some point St ≤ 0 (no borrowing is allowed). Assume X1, . . . , Xt, . . . is i.i.d. and 
Y1, . . . , Yt, . . . is also i.i.d. with expected values E[X1], E[Y1], respectively and also that the two 
processes are independent of each other. How likely is it that the bankruptcy occurs? Namely, 
what is P(inft≥0 St < 0)? 

This problem is also known as Gambler’s ruin problem. It can be solved exactly when Xt, Yt 

take values 0, 1. In more general case solution becomes quite messy. Here we use large deviations 
type bounds to obtain simple bounds on the bankruptcy probability. But first we rule out some 
cases. 

Suppose E[X1] < E[Y1]. The SLLN says that 
P

1≤i≤t Xi−Yi 
converges almost surely to E[X1]−E[Y1].t 

Therefore, almost surely, the sum 
�

1≤i≤t Xi − Yi becomes smaller than any fixed value including 
starting capital x. Therefore inft≥0 St = −∞ almost surely. We conclude that the bankruptcy 
probability is P(inft≥0 St < 0) = 1 

The case E[X1] = E[Y1] will be analyzed later when we study Brownian motion. 

Now we focus on the case of interest: E[X1] > E[Y1]. Our goal is to show that, provided 
the corresponding exponential moment generating functions E[eθX1 ], E[eθY1 ] are finite in some 

e−cxcommon interval [0, θ0), the bankruptcy probability is order for some constant c > 0. 
Namely, it is exponentially unlikely as a function of the starting capital x. 

For simplicity introduce Zt = Yt −Xt. Then Zt, t ≥ 0 is an i.i.d. sequence with µ � E[Z1] < 0. 
Note that whenever θ ∈ [0, θ0), we have M(θ) � E[eθZ1 ] = E[eθY1 ]E[e−θX1 ] ≤ E[eθY1 ] < ∞. Here 
we use the fact e−θX1 ≤ 1. Now we fix t and consider 

P(St < 0) = P(x− 
� 

Zi < 0) 
1≤i≤t 

= P( 
� 

Zi > x). 
1≤i≤t 

We let at = x/t. We have at > 0 > µ ∀ t. Then the Chernoff bound (Theorem 4.2) tells us that 
this probability is 

≤ e−l(at)t , 

where l(at) is the Legendre transform l(at) = supθ(atθ − log M(θ)). Now since µ < 0, then 
by Proposition 2 from Lecture 3, there exists θ∗ ∈ [0, θ0) such that l(0) = 0θ∗ − log M(θ∗) = 
− log M(θ∗) > 0. Using this value θ = θ∗ we obtain l(at) ≥ atθ

∗ − log M(θ∗) ∀ t implying for all 
t, 

P(St < 0) ≤ e−atθ∗t+log M(θ∗)t = e−θ∗x+log M (θ∗)t . 
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Therefore 

P(inf St < 0) ≤ 
� 

P(St < 0) 
t≥0 

t≥0 � 
e−θ∗x+log M (θ∗)t ≤ 

t≥0 

= 
� 

e−θ∗xM (θ∗)t 

t≥0 

e−θ∗x 

= ,
1 − M (θ∗) 

(which probability law are we using in the first inequality?) where the finiteness of the ratio is 
guaranteed since log M (θ∗) < 0. We see that indeed the bankruptcy probability decays at least 
with the rate e−θ∗x . This is not necessarily the optimum rate as we did not optimize over θ (did 
we?) and moreover we did not prove a matching lower bound. Usually, in applications as in this 
one, the upper bound is more important. 

4.4. Additional reading materials 

•	 Course packet Sections 1.2-1.5 . 
•	 Dembo and Zeitouni [1] Section 2.1 and 2.2 . The large deviations theorems in our 

lecture notes are called Cramer’s bounds in this book. The first section discusses the 
method of types and gives a information-theoretic take on large deviations theory. 
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