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Abstract
Phase-amplitude modulation is a form of cross frequency coupling where the phase of one
frequency influences the amplitude of another higher frequency. It has been observed in
neurophysiological recordings during sensory, motor, and cognitive tasks, as well as during
general anesthesia. In this paper, we describe a novel beamforming procedure to improve
estimation of phase-amplitude modulation. We apply this method to 64-channel EEG data
recorded during propofol general anesthesia. The method improves the sensitivity of phase-
amplitude analyses, and can be applied to a variety of multi-channel neuroscience data where
phase-amplitude modulation is present.

I. INTRODUCTION
Oscillations are thought to underlie many aspects of brain function, but the mechanisms by
which these oscillations organize neural activity across different temporal and spatial scales
remains an area of active investigation. Recently, cross-frequency coupling has been
observed where the phase of theta oscillations (4-8 Hz) modulates the amplitude of gamma
oscillations (> 30 Hz) [1]. Similar phase amplitude relationships have been observed during
different sensory, motor, and cognitive tasks [2]. These phase-amplitude relationships are
usually estimated from single channel data, even when multi-channel data are acquired
simultaneously, using non-parametric models of the relationship between phase and
amplitude (e.g., constructing a histogram of amplitudes across discrete phase bins). The
efficiency of these analyses could be improved substantially if data could be incorporated
across multiple channels, and if parametric representations could be used to model the
phase-amplitude relationship.

In recent work, we studied phase-amplitude modulation during general anesthesia. We
examined how the phase of slow oscillations (< 1 Hz) influenced the amplitude of alpha-
band oscillations (8-14 Hz), and found distinct patterns of modulation corresponding to
different levels of consciousness under general anesthesia [3]. In this work, we describe a
novel beamforming procedure to improve estimation of phase-amplitude modulation. In this
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method, we model the phase-amplitude relationship parametrically using a low-order
Fourier series. We then identify the optimal linear combination of channels to minimize the
quadratic error for this phase-amplitude modulation curve. We apply this method to 64-
channel EEG data acquired during induction of general anesthesia with the drug propofol.
The method improves the sensitivity of phase-amplitude analyses, and can be applied to a
broad range of multi-channel neuroscience data, such as EEG or local field potentials (LFP),
where phase-amplitude modulation is present.

II. METHODS
A. EEG Recordings

We induced and maintained general anesthesia in healthy volunteers using the intravenous
anesthetic propofol. The anesthetic induction was carried out by increasing the targeted
effect-site propofol concentration to levels of 0, 1, 2, 3, 4, and 5 μg/ml every 14 minutes
with a computer controlled infusion pump [4, 5]. We recorded 64-channel EEG
continuously during this time (BrainAmp MRPlus, BrainProducts, GMBH). These studies
were approved by the Massachusetts General Hospital Human Research Committee. In this
paper, we analyze a subset of the data including n = 2 subjects to demonstrate our method
for multi-channel estimation of phase-amplitude modulation between the slow (0.1-1 Hz)
and alpha (8-14 Hz) bands.

B. Beamforming Formulation of Phase-Amplitude Coupling
Let x(t) := [x1(t), x2(t), ···, xN(t)]T denote the EEG time-series corresponding to EEG
channels for time 0 ≤ t ≤ T. Let α(t) := [α1(t), α2(t), ···, αN(t)]T and s(t) := [s1(t), s2(t), ···,
sN(t)]T denote the alpha rhythm and slow oscillation time-series which are obtained by band-
pass filtering x(t) in the frequency bands of 8-14 Hz and 0-1Hz, respectively [3]. Let

 and , where  is the discrete-time
Hilbert transform. In [3] we showed that the amplitude of the alpha rhythm is modulated by
the phase of the slow oscillation during general anesthesia, based on an analysis of single-
channel Laplacian-derived EEG. Assuming that the phase-amplitude modulation arises from
a unified and possibly spatially localized mechanism in the brain, the problem reduces to
reconstructing a single phase-amplitude modulation relationship based on the observation
through the multi-channel array of EEG sensors.

This problem is well-studied in array signal processing, and a viable solution is given by
beamforming [6]. The idea of beamforming is to form a scalar signal based on the array
observations in order to minimize an appropriate cost function representing the underlying
system model. Let w := [w1, w2, ···, wN]T denote a weight vector (beamforming vector) and
consider the corresponding projection of the alpha rhythm and slow oscillation time-series
given by αw(t) := wT αH(t), and sw(t) := wT sH(t), respectively. The amplitude of αw(t) and
the phase (argument) of sw(t)are given by

(1)

and

(2)
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respectively. Suppose that for a given value of the phase of sw(t), denoted by θ, the
amplitude of the alpha rhythm Aw(t) has a distribution given by the density pw(A; θ). Then,
the phase-amplitude modulation relation is defined as

(3)

where the ensemble averaging Epw is with respect to the density pw(A; θ). The function
Aw(θ; t) is clearly periodic with the full period defined as [–π, π]. We further assume that
Aw(θ; t) is stationary during the observation period [0, T] and hence drop the dependence on
t. Assuming that the function Aw(θ) has sufficient smoothness properties, it can be
represented in the Fourier basis as follows:

(4)

where μ, ak, and bk denote the expansion coefficients. A suitable model for estimating
Aw(θ) is given by its truncated Fourier expansion to the first L terms, with L ≤ 3. This
reduced-order model enforces a smooth phase-amplitude modulation relation, which is
consistent with empirical observations in [3]. A suitable cost function for estimating Aw(θ)
is given by the following quadratic form:

(5)

Since the densities pw(A; θ) are unknown, it is not possible to compute Aw(θ) = Epw{Aw(t)|
θ}. Hence, we resort to an empirical quadratic cost function for estimating Aw(θ) by
substituting the ensemble averaging operator Epw by the corresponding temporal averaging
as follows:

(6)

where tw(θ) denotes the inverse function of θw(t), p(θ) is the prior distribution of the slow
oscillation phase and Et denotes temporal averaging. Note that we are implicitly assuming
the ergodicity of the underlying processes during the observation period [0, T] and hence are
replacing ensemble averaging by temporal averaging. Since the prior p(θ) is unknown, the
cost function can be further approximated by substituting the ensemble averaging over θ by
the corresponding temporal averaging as follows:

(7)

For a given beamformer w, it is possible to minimize the cost function over the parameters
μ, ak, and bk. Then, we can choose the best such beamformer by minimizing the resulting
cost function over w. This, in fact, corresponds to a cost minimization formulation for
estimating the reduced-order phase-amplitude modulation relation that is most consistent
with the data (in the sense of the above quadratic cost function). Assuming that the
beamformer elements are bounded as w ≤ wk ≤ w̄, for some constants w and w̄, the overall
optimization procedure can be expressed as:
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(8)

The inner minimization can be easily carried out by linear regression and the resulting
solution can be expressed explicitly in terms of Aw(t) and θw(t). The outer minimization can
be performed using standard optimization routines. In particular, since the constraints on wk
form a convex set, we have employed the interior point method for the outer minimization
stage.

C. Data Analysis
For this analysis, the data from two subjects was used to compute optimal weight
coefficients w. In our earlier studies, we showed that the phase-amplitude modulation of
frontal EEG under GA [3] undergoes two different patterns of modulation, corresponding to
depth of anesthesia. The first pattern, occurring before and after the point of loss of
consciousness, consists of maximum alpha amplitude occurring at the trough (surface-
negative) of the slow oscillation, which we refer to as the “trough-max” pattern. Under a
deeper level of GA, the relationship reverses and maximum alpha amplitude occurs at the
peak (surface-positive) of the slow oscillation, which we refer to as the “peak-max” pattern.
In order to compute the electrode weights that would show both modes of the phase-
amplitude modulation most clearly, equal-length segments of data from both modes were
chosen and used to compute the optimal weights for each mode. These trough-max and
peak-max data for the two subjects was were used to perform the averaging described in
Equation (7). The data used in the optimization consisted of four-minute segments, chosen
as periods during which the phase-amplitude modulation was relatively constant, based on
phase-amplitude histograms computed using Laplacian-referenced data.

III. RESULTS
The alpha amplitude as a function of slow wave phase was fit for each of these data sets
using the Fourier model in Equation (4), as well as a non-parametric model using 100 phase
bins (Figure 1A). The Fourier model order was chosen using an F-test for inclusion of
successive terms. Based on this test, a first order model was used everywhere except in the
peak-max data segment from subject 2, where a second order model provided a better fit to
the data.

The results of the optimization in all cases tended to give the greatest weight to one or two
electrodes, and included smaller contributions from the other channels. The values of the
weights for each electrode for subject 2 are shown in Figure 1, using the first Fourier
harmonic for the trough-max period, and the first and second Fourier harmonics for the
peak-max period.

To assess the efficacy of the beamformer weighting, we computed time-varying non-
parametric phase-amplitude histograms using: 1) a single frontal channel with bipolar
reference, 2) a single frontal channel with Laplacian reference (i.e., using the average of
neighboring electrodes as the reference, as in [3]), and 3) the proposed method with optimal
weights. These phase-amplitude histograms were computed using 100 phase bins, averaging
over 1-minute windows with 30 seconds overlap, normalized by average alpha amplitude
within each window. Figure 2 shows these time-varying phase-amplitude histograms for
both subjects during periods of both trough-max and peak-max modulation. The modulation
relationship appears clearest when the optimal weights w are used. To characterize this
quantitatively, we computed the modulation depth for each of the methods by taking the
average phase-amplitude histogram in each period (trough-max and peak-max), and taking
the difference between the maximum and minimum points of the histogram. The
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beamforming method produced the largest modulation depth, followed by the Laplacian
method, with bipolar referencing showing the lowest modulation depth in both regimes.

IV. DISCUSSION AND CONCLUSIONS
Phase-amplitude modulation has been observed in a number of oscillatory neural systems
sensory, motor, or cognitive tasks [2]. The modulation of alpha wave amplitude by slow
wave phase is present in the EEG during general anesthesia, and could be an important
variable for assessing brain activity and level of consciousness during general anesthesia. In
EEG data, the ability to detect cross-frequency coupling is strongly influenced by the
electrode reference scheme, and is often difficult to detect with a standard bipolar reference.
The beamforming method presented here provides a means to obtain electrode weights that
minimize the least-squares error in a parametric sinusoidal model of the phase-amplitude
relationship. This optimal weighting of EEG electrodes allows for improved detection of
phase-amplitude modulation across time and subjects. This method could be useful in
studies of phase-amplitude modulation in the EEG under general anesthesia, as well as other
conditions where this phenomenon might arise.
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Fig. 1.
For trough-max modulation (A), and peak-max modulation (B), estimates of the empirical
phase/amplitude relationship (blue) are shown along with first and second order model fits.
The optimal weights for each electrode are shown to the right as estimated by the cost
minimization procedure using the sinusoidal model of order 1 for trough-max and order 2
for peak max, chosen based on the corresponding F-statistics.
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Fig. 2.
(A) The targeted effect-site propofol concentration is shown, along with the time-varying
phase-amplitude histogram computed based on Laplacian-referenced data for a period
spanning the trough-max and peak-max regimes of modulation. (B) Phase-amplitude
histograms computed separately for a bipolar referencing, Laplacian referencing, and using
the optimized combination of electrodes for both trough-max and peak-max data segments.
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TABLE I

Modulation Depth For Different Methods

Subject 1 Subject 2

Trough-Max Peak-Max Trough-Max Peak-Max

Bipolar 0.26 0.39 0.22 0.76

Laplacian 1.08 0.73 0.98 1.00

Optimized 1.23 0.91 1.33 1.67
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