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Abstract

We give a homotopy theoretic characterization of stacks on a site € which allows one to think of
stacks as the homotopy sheaves of groupoids on €. We use this characterization to construct a
model category, that is a formal homotopy theory, in which stacks play the special role of the fibrant
objects. This allows us to compare the different definitions of stacks and show that they lead to
Quillen equivalent model categories. In addition, these model structures are Quillen equivalent to
the S2-nullification of Jardine’s model structure on sheaves of simplicial sets on €. -
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Chapter 1

Introduction

Stacks arise as classifying objects for moduli problems in algebraic geometry. This means that, in
some sense, maps from a scheme X into a stack correspond to isomorphism classes of families of
certain objects over X. A standard example is the stack of all curves: a map from a scheme X into
this stack corresponds to an isomorphism class of families of curves over X. Other examples include
the stack representing vector bundles and the stack representing curves of genus g with n marked
points. In algebraic geometry, stacks are regarded as a generalization of schemes, and many of the
usual constructions for schemes are extended so as to make sense for stacks as well. For example, one
can define cohomology groups for a stack. These groups yield important information about general
properties of the objects which the stack classifies.

Recently, stacks have also come up in algebraic topology. Complex oriented cohomology theories
give rise to Hopf algebroids or, equivalently, groupoid objects in affine schemes. The associated rep-
resentable functors are sheaves of groupoids on affine schemes, which can be interpreted as functors
assigning to a ring R the category of certain formal groups over R. Thus, complex oriented coho-
mology theories give rise to stacks bearing some relationship to the moduli stack of formal groups.
Conversely, in recent work of Hopkins and Miller, it has been shown that in good situations stacks
over the moduli stack of formal groups give rise to spectra which are approximations (often localiza-
tions) of the sphere spectrum. These spectra play a key role in modern attempts at understanding
and calculating the stable homotopy groups of spheres.

There are many different definitions of stacks. The main purpose.of this paper is to show that
all of these definitions can be interpreted in terms of homotopy theory, and to show that with this
view they are natural to understand and easy to compare. '

One definition of stacks is based on the concept of category fibered in groupoids [DM, Gi] and
another based on the concept of lax presheaf of groupoids [Brn, Bry]. In each definition, part of the

‘information encoded in a stack M is an assignment to each scheme X of a groupoid M(X). These
assignments are required to satisfy ‘descent conditions’, which are often somewhat cumbersome. We
will show that, for the definitions of stack commonly in use, the descent conditions can be given a
simple homotopy theoretic interpretation.

The descent conditions describe the circumstances under which we require that local data glue
together to yield global data. Naively, one might require “isomorphism classes of -” to satisfy the
sheaf condition. However, for very fundamental reasons, this almost never happens in examples.
Taking isomorphism classes is a localization process, and such processes rarely preserve limits such
as those which arise in the statement of the sheaf condition. Instead, one can ask that an assignment
of groupoids satisfy a sheaf condition with respect to-the best approzimation to the limit which is
invariant under taking isomorphism classes. This is called the homotopy limit, and denoted holim.
Stacks are assignments which satisfy this modified sheaf condition, so in this sense, stacks are the
homotopy sheaves.




We propose the following definition of stack as a reference point, as it is conceptually the simplest:

Definition 1.1. Let C be a Grothendieck topology. A presheaf of groupoids, F on C is a stack if
for every cover {U; — X} in €, we have an equivalence of categories

F(X)

Here Uy,..;, denotes the iterated fiber product Uy, xx --- X x U;,, and the homotopy limit is taken
in the category Qf groupoids (see chapters 3-4). '

We will show that all other definitions of stack commonly in use can be given similar homotopy
theoretic interpretations. Not only the definition but many properties of stacks which are of interest
are homotopy theoretic in nature, and this homotopy theoretic perspective both simplifies the task
of comparing the different definitions as well as illuminates the sense in which stacks are the “right”
classifying spaces for algebraic problems. In particular, the previous definition gives an alternate
category of stacks which is equivalent from the point of view of homotopy theory but much easier
to work with, and which is related in a simple way to familiar homotopy theoretic categories.

In more detail, for each of the definitions of stack, we will construct a model category in which
the stacks are the fibrant objects. In these model categories, constructions that are commonly
performed on stacks (such as 2-category pullbacks, stackification, sheaves over a stack and others)
have easy homotopy-theoretic interpretations [Holl]. Moreover, homotopy classes of maps from an
object X € @ to a stack M correspond to the isomorphism classes of M(X), and the homotopies
themselves correspond to isomorphisms in M(X). We will see that all of these different model
categories are Quillen equivalent. This is the formal way of saying they are all models for the same
underlying homotopy theory. This equivalence makes precise the sense in which, when dealing with
stacks, it is enough to consider presheaves of groupoids satisfying descent conditions.

“More precisely, we will analyze three different categories in which stacks can be defined (see
chapter 5 for the definitions) and prove the following results. Let € be a Grothendieck topology.

Theorem 1.2. There are adjoint pairs of functors between: categories fibered in groupoids over C,
presheaves of groupoids on C, sheaves of groupoids on €, and laz presheaves of groupoids on C,

~ r i
laz — P(€, Grpd) > Grpd/C P(C, Grpd) Sh(C, Grpd),
~ P sh

where the right adjoints point to presheaves. All of these functors take stacks as defined in the
domain category to stacks as defined in the range category and thus restrict to give adjoint pairs
between the stacks in each of these categories. =~ :

Theorem 1.3. There are simplicial model category structures on each of the above listed categories
in which: '

1. the stacks are the fibrant objects,

2. in P(@,Srpd) or Sh(C,Grpd), a weak equivalence is a map satisfying the local lifting conditions
(see 8.2),

3. if the topology on € has enough points, the weak equivalences in P(C,Srpd) are the stalkwise
equivalences of groupoids,

4. all of the adjoint pairs listed above are Quillen equivalences,




5. the fundamental groupoid of the simplicial Hom set between X € C and a stack M, the ho-
motopy function complezx hHom(X, M) is equivalent to the groupoid M(X). In particular,
[X, M] is the set of isomorphism classes of M(X).

Presheaves of groupoids, which will be our preferred setting for talking about stacks, is closely
related to presheaves of simplicial sets. The homotopy: theory of the latter has been developed
by Jardine [Ja], and is the basis on which Morel and Voevodsky build the A'-homotopy theory of
schemes, see  MV].

Theorem 1.4. The local model structure on P(@,Grpd) is Quillen equivalent to Jardine’s model
category structure on P(€, sSet) localized with respect to the maps A" ® X — A" ® X, for each
XeCandn>2.

This theorem says that the homotopy theory of stacks is recovered from Jardine’s model category
by eliminating all higher homotopies.

Finally, we will also construct an explicit stackification functor for presheaves of groupoids. Given
F € P(C,Srpd), let F denote the presheaf defined by

F(X) := hoecolim holim F(U.),
U€ccou(X)

where hoecolim is the homotopy enriched colimit (see chapter 9) and U, is the nerve of the cover U.

Theorem 1.5. The natural map F — Fisa stackification of F'.

This should be compared with the sheafification of presheaves of sets. There you define a functor
on presheaves '

F(X):= Ugggr(nx) lim F(U.,),

and the natural map F — F is the sheafification.

1.1 Notation ahd Assumptions

So as not run into set theoretic problems, we assume that the Grothendieck topology € is a small
category. We also assume that the topology on C is subcanonical, so that all the representable
presheaves are sheaves. For {U; = X} a coverin €, and F' a presheaf on €,

e U,, i, denotes the iterated fiber product Ui, Xx --- Xx Ui.,.

" o U, denotes the simplicial diagram in Pre(€) with

(Uo)n. = HUio Xx - xinnv
I

where the coproduct is taken over all multi-indices of length n, and the face and boundary
maps are defined by the various projection and diagonal maps. This is referred to as the nerve
of the cover {U; = X}

e To simplify notation || U; will sometimes be denoted by U,
~ the coproduct ][] U;; will be denoted by U xx U,
and HUijk by UxxUxx U.

e F(U,) = Hom(U., F) denotes the cosimplicial diagram F(Us)n = I, F(Ui, xx -+ xx Us,)
. with coface and codegeneracy maps dual to those for U,.




* We will sometimes write F(U) for [] F(U;),
F(U xx U) for [T F(Usy),
and F(U xx U x x U) for [] F(Uyjx).

e Similarly, a cover {V; = Y} may be denoted by V — Y, and the nerve of this cover by
{V-ril..

1.2 Contents

The following is an outline of the contents of this thesis:

In chapter 2 we give necessary background information about groupmds monoidal categories,
enriched categories, model categories and localization.

In chapter 3 we construct a model structure on groupoids, and prove that it is Quillen equivalent
to a localization of simplicial sets with respect to the map S? — *, called the S? nullification of sSet.

In chapter 4 we give some background on homotopy limits and colimits, and prove that the
descent category is a model for the homotopy inverse limit of a cosimplicial diagram of groupoids.

In chapter 5 we review the definition of categories fibered in groupoids over a fixed base category
€. Then we construct an adjoint pair of functors between this category and the category of presheaves
of groupoids on €. We define stacks in each of these categories as the objects whlch satisfy a homotopy
sheaf condition.

Chapter 6 contains a discussion of the classical definition of stacks [DM], and a proof that it is
equivalent to our definition in terms of the homotopy sheaf condition.

In chapter 7 we put model structures on the categories described in chapter 5 and on the category
of sheaves of groupoids. The weak equivalences are defined to be object, respectively. fiberwise. We
note that the pairs of adjoint functors between the different categories that were defined previously
are Quillen pairs. We also observe that these model structures can be localized with respect to the
local equivalences holimU, — X, and in these local model structures the fibrant objects are the
stacks.

In chapter 8 we give a characterization of pointwise weak equivalences for presheaves of groupoids
in terms of Dan Dugger’s local lifting conditions.. We use this to prove that the local model categories
are all Quillen equivalent. We also obtain that the local model category structure on presheaves
of groupoids is Quillen equivalent to. the S? nullification of Jardine’s model category structure on
presheaves of simplicial sets, and conclude that when the Grothendieck topology on € has enough
points, the weak equivalences in the local model category structure are precisely the pointwise
equivalences of groupoids.

In chapter 9 we construct an explicit stackification functor for presheaves of groupoids.

Appendix A contains a discussion of limits and colimits in the category Srpd/C of categories
~ fibered-in groupoids.

In appendix B we define the category of lax presheaves of groupoids and describe the adjoint pair
between lax presheaves and categories fibered in groupoids. This is an equivalence of categories and
hence allows us to translate all the results from categories fibered in groupoids to lax presheaves.

1.3 Acknowledgments

Many thanks are owed to Dan Dugger, Gustavo Granja, and Mike Hopkins, for many helpful con-
versations and ideas, without which this thesis would not exist.

The author has recently learned about the paper of Jardine [Ja2], which appears to treat some
of the questions dealt with here. Although his approach is quite different, it is possible that there is
some overlap in the results.
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Chapter 2
Preliminaries

A groupoid is a small category in which all morphisms are invertible. Grpd denotes the full sub-
category of Cat whose objects are groupoids. In this section we will define the notion of a category
with a groupoid action. Many of the categories we will discuss in the future have groupoid actions,
and many of their properties follow from similar properties of groupoids. We show that such cat-
egories have a natural simplicial structure, determined by the action of the fundamental groupoid
of the simplicial sets. We also review the concept of a model category, and quote the results about
localization which we will need later.

2.1 Groupoids

From a homotopy theoretic point of view, groupoids are a cross between categories and simplicial
sets. Recall, the nerve embedding, N : Cat — sSet. For € € Cat, N(C€)n is the set of n-tuples of
composable morphisms ' ‘ :

N f'l— fn—
Xo <2 x, I tx,_, 2 x,

with the convention that a O-tuple is just an object. For i # 0,n, the boundary maps d; send
(for--- fis fit1s o or fne1) = (f1s--- fic1 © fiy. .-, fa—1); do leaves out fo, and dn leaves out f,. In

particular N(G); Lo, N (@) is the domain function, and d; is the range function. The degeneracy
maps s; insert an identity morphism in the ith position.

We begin by noting that Srpd is compiete' and cocomplete since the ‘(co)limit of a diagram of
groupoids in Cat is still a groupoid.

Note 2.1. Recall that the limit of a diagram in Cat is the category whose objects (morphisms) are
the limit of the sets of objects (morphisms) in the diagram. To construct a colimit in Cat one takes
as objects the colimit of the sets of objects and for morphisms the formal compositions of elements
in the colimit of the morphisms, modulo the obvious relations. :

We will need the following characterization of the functors in Grpd that are equivalences of
categories.

Lemma 2.2. The functor G £ He Srpd is an equivalence of categories, if and only if the
following two conditions hold: '

e F induces a bijection on the sets of isomorphism classes.

11




* For every a € G, the induced map Autg(a) — Autgy(F(a)) is an isomorphism.

Definition 2.3. Let sSet 7% Grpd be the functor which assigns to a simplicial set X the groupoid
with objects Xo and morphisms freely generated under composition by the members of X1 and their
formal inverses subject to the relations daz o doz = diz for each z € X5,

The proof of the following lemma is easy.

Lemma 2.4. The functors
Toid
sSet - grpdv
N
are an adjoint pair, in which N is the right adjoint, and T.:q is the left adjoint. The composition of
functors m,;9 o N is naturally isomorphic to the identity functor of Grpd.

Note 2.5. The definition of m,;4 here is not the standard definition of the fundamental groupoid of
a simplicial set [GJ, p. 39]. Our definition is needed to form the adjoint pair (7,4, V), and thus to
define the simplicial structure on Grpd which is essential for many of our results.

Usually, the fundamental groupoid of X is defined to be the groupoid m,:4'(X) with objects Xj
and morphisms the homotopy classes of paths between two vertices. There is a natural transfor-
mation 7yiq — 7eiq’ which is the identity on objects, and which sends a 1-simplex to its homotopy
class. If X is fibrant, then all homotopies between paths are encoded in X3, 50 mpia X = mpia' X.

Note 2.6. Since 744 o N = id, and NG is a Kan complex, the previous note implies that, for
any G € Grpd, the isomorphism classes of G are in bijective correspondence with 7o NG, and the
automorphism group of an object a € G, is isomorphic to m; (NG, a).

The category Grpd has an internal Hom, written Srpd(G, H), where the objects of §rpd(G, H)
are the functors G — H, and the isomorphisms are the natural isomorphisms between these functors.

Lemma 2.7. Let G be a groupoid, then Srpd(G,—) is the right adjoint to the functor G x (=).

Recall [EK] that a closed category (short for closed symmetric monoidal) is a category M with
an internal Hom and an associative and commutative product ® with a unit S, such that for all
X € M, the functor X ® (=) is the left adjoint of M(X, —).

By lemma 2.7, Grpd is a closed category with the categorical product and the internal Hom
defined above. ‘

Another example of a closed category is s8et. The tensor product is just given by the categorical
product, and the internal Hom is given by the formula

58et(X,Y )n := Hom,set (A™ x X,Y)

where A® denotes the cosimplicial standard simplex [BK, p. 268].

Recall [Db], that a category C is enriched over a monoidal category M, if there is a bifunctor
from C°? x € — M assigning to each X,Y € € an object Me(X,Y) € M (which we also denote by
M(X,Y)) for each object X an “identity” S — M(X,X), and for each triple of objects X,Y,Z € €
a “composition” M(X,Y) ® M(Y,Z) - M(X, Z) which is associative and unital. Moreover it is
required that Home(X,Y) = homy (S, M(X,Y")). € is said to be enriched with tensor and cotensor
if for all G € M and X,Y € C there are objects X®G and Y € € such that

M(XBG,Y) = M(X,YS) = M(G, M(X,Y)).

It then follows that this tensor and cotensor operations satisfy all the usual properties.

Note 2.8. In practice we will abuse notation and denote the tensor product of objects of € with
objects M by ®.

12




Any closed monoidal category M is enriched with tensor and cotensor over itself. A category
enriched with tensor and cotensor over simplicial sets is called a simplicial category. We will say
that a category enriched with tensor and cotensor over groupoids has a groupoid action.

Proposition 2.9. Let C be a category with a groupoid action. Then the assignment
s8et(X,Y) := N(Grpd(X,Y))

‘gives C the structure of a simplicial category. Moreover, the tensor and cotensor are given by the
formulas :
Y®S:=Y ®7idS,

YS = Yo
for any X,Y € C,S € s8et.
This proposition follows immediately from the following lemma.

Lemma 2.10. Let X € sSet,G € Grpd, then the adjoint pair of functors Toid and N satisfies
N(Srpd(miaX,G)) = sSet(X, N(G)).

In particular, given G, H € Grpd,
N(Srpd(H,G)) = s8et(N(H), N(@)).

Proof. The nerve of §rpd(7.iaX,G) has O-simplices the functors m,iq X — G. By lemma 2.4 these
are the elements of Hom,se:(X, N(G)) = sSet(X,N(G))o. The n-simplices of N(Grpd(msiaX,G))
are n-tuples of composable natural isomorphisms between such functors. They can be naturally
identified with functors meigX X ToigA™ = Teia(X X A™) = G By another application of lemma 2.4
these are identified with the elements of Hom,se: (X x A", N(G)). O

The following examples of categories with a groupoid action will be used throughout the rest of
the paper.

Example 2.11 (Diagrams of Groupoids). Let X and Y be diagrams of groupoids indexed by
a category D, and G a groupoid. Then we define rpd(X,Y’), to be the groupoid with objects the
natural transformations X — Y, and with morphisms the natural isomorphisms X x ToiaA! = Y,
where 7,;4A! denotes the constant diagram (which assigns to each object the groupoid with two
objects and a unique isomorphism between them). Then we have ‘

X ®G(d) = X(d) xG,

X%(d) = Hom(G, X (d)).

When € is a Grothendieck topology, diagrams indexed by €°?, are called presheaves of groupoids
on €. The category of presheaves of groupoids on € is denoted P(C, Srpd).

Example 2.12 (Sheaves of Groupoids on a Grothendieck Topology C). A sheaf of groupoids
on € is a presheaf which satisfies the “sheaf condition”: For every covering {Ui=U}, '

FU) = [[Fws) = [[F: xv Uj)
is an equalizer sequence. Equivalently, we could require F(U) to be the limit of the cosimplicial
diagram determined by the nerve of the covering as, in any category, the limit of a cosimplicial

diagram X* is the equalizer of d°,d! : X° = X'. The category Sh(€, Grpd) is the full subcategory
of P(C,Srpd) whose objects are the sheaves of groupoids on C.

13




We list some of the important properties of sheaves and presheaves.

1. There is a “sheafification functor” P(€, Grpd) LN Sh(€, Grpd) which is the left adjoint to the
inclusion functor of sheaves in presheaves.

2. The category Sh(€, Srpd) inherits a Grpd action via the inclusion into P(€, Grpd) as it is easy
to check that for a sheaf F, the presheaves F ® G, FC are still sheaves.

For further elaboration of these points see [MM].

2.2 Review of Model Categories

We recall the definition of a model category structure on a category C. Model categories are an
abstract setting in which to do homotopy theory.

A model category [Ho, Q, DS], is a category C, together with three distinguished classes of
morphisms in €, called cofibrations, fibrations, and weak equivalences, which are closed under com-
position and contain all identity morphisms, and satisfy the following properties:

e (MC1) Small limits and colimits exist in €.

o (MC2) If f, g are morphisms with g o f defined, and two of the three morphisms f, g,go f are
weak equivalences then so is the third.

e (MC3) If f is a retract of g and g is a fibration, cofibration, or weak equivalence, then sois f.

¢ (MC4) Given a commutative square

Lox

1,7
il P
,

B—>vY.

where either (a) i is a cofibration and p a trivial fibration (a fibration which is also a weak
equivalence), or (b) 4 is a trivial cofibration (a cofibration which is also a weak equivalence),
and p a fibration, then there exists a lifting [ : B — X making the above diagram commute.

e (MC5) Any morphism f can be factored functorially in two ways: (a) f = poi where i is a
cofibration and p is a trivial fibration; and (b) f = po ¢ where 7 is a trivial cofibration and p
is a fibration.

If € has small limits and colimits, a model category structure on € consists of the data of three
distinguished classes of morphisms, as above, satisfying MC2-MC5. An object X in € is called
cofibrant if the map from the initial object, denoted @, to X is a cofibration. An object X in € is
called fibrant if the map from X to the final object, denoted #, is a fibration. The category obtained
from € by formally inverting the weak equivalences is called the homotopy category of €, and denoted
Ho(C).

A set of (trivial) cofibrations are said to generate if the trivial fibrations (fibrations) are charac-
terized by having the right lifting property (as in MC4) with respect to these morphisms.

A simplicial model category is a model category € which has a simplicial structure compatible
with the model structure in the sense that the following axiom holds:

(SM?) Given a cofibration A —— B and a fibration X —= Y, the induced map

88et(B, X) — sSet(A, X) Xgset(4,y) $8et(B,Y)

14




is a fibration. In addition, if either 4 or p is a weak equivalence then the above map is a
trivial fibration. ‘

The above map is a (trivial) fibration of simplicial sets if and only if it has the right lifting
property with respect to trivial cofibrations (cofibrations) of simplicial sets so using the adjunctions
given by the simplicial structure we obtain the following reformulation:

(SM7) Given a cofibration K 4 L of simplicial sets and a fibration X 25,Y € C, the
induced map
XL 5 XK xyx YT

is a fibration. In addition, if either i or p is also a weak equivalence then the induced
map is a trivial fibration.

A Quillen pair between model categories is an adjoint pair L : € & D : R where the left
adjoint L preserves cofibrations and trivial cofibrations, or equivalently the right adjoint R preserves
fbrations and trivial fibrations. Under these conditions, one can define the derived functors L:
Ho(€) — Ho(D) and R : Ho(D) — Ho(C), and they form an adjoint pair. A Quillen pair is called
a Quillen equivalence if, for A € € cofibrant and B € D fibrant, a morphism LA — B is a weak
equivalence in D if and only if its adjoint A => RB is a weak equivalence in €. A Quillen pair is a
Quillen equivalence if and only if it induces an equivalence of categories between Ho(C) and H o(D),
see [Ho, p. 19].

Under mild conditions there is a procedure called localization which formally adds weak equiv-
alences to a model category (a good reference is [Hi]). Let C be a simplicial model category and
S a set of morphisms between cofibrant objects in €. A fibrant object X € C is called S-local if
for all f € S the induced map sSet(f,X) is a weak equivalence. A morphism f in € is called an
S-equivalence if for all S-local X, we have that hHom(f, X) is a weak equivalence, (where h Hom
is the homotopy function complex, see [Hi]). A model category is left proper if pushouts of weak
equivalences along cofibrations are weak equivalences.

Theorem 2.13. (J.Smith) [Sm] Let € be a left proper, combinatorial, simplicial model category
and S a set of morphisms between cofibrant objects in €. Then there ezists a new model category
structure on C in which :

e the weak equivalences are S-equivalences,
e the cofibrations are the old cofibrations,

e the fibrations are maps with the right lifting property with respect to the maps which are cofi-
-brations and also S-equivalences. ’

In addition the fibrant objects of € are precisely the S-local objects, and this new model structure is
again left proper, combinatorial, and simplicial.

Note 2.14. A model category € is combinatorial if it is cofibrantly generated and the underlying
category is locally presentable [Sm]. All the categories we will be working with here are locally
presentable, (as they have underlying sets) and we will give explicit sets of generating cofibrations.

This new model category is called the S-localization of € and denoted S —1€. Notice that all of
the original weak equivalences in € are, by construction, S-equivalences. The following theorem will
be used often. '

Theorem 2.15. (P. Hirschhorn) [Hi] Let S and C be as in the above theorem, D be a model category,

and L : € & D : R a Quillen pair such that L takes morphisms in S to weak equivalences in D.
Then :
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(a) The pair (L, R) is also a Quillen pair L: S™1€ +» D : R.

(b) In particular, if S' is a set of mafphisms between cofibrant objects in D, and L takes morphisms
in S to S'-equivalences, there is a Quillen pair L : S71€ + (§')"'D : R.

(c) [Hi, Theorem 3.4.20] If L : € < D : R is a Quillen equivalence and S is a set of morphisms
between cofibrant objects in C, then L : S71C + (LS)™'D : R is also a Quillen equivalence.

(d) If S',S are sets of morphisms in € then the two model structures S~1(S')7*€ = (§')"1S~'€
agree. v
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Chapter 3

Model Category Structure on
Groupoids

In this section we will describe a model category structure on Grpd. This model category structure
will enable us to prove, in the next section, that the descent category, which appears prominently
in the definition of stacks, is a model for the homotopy inverse limit of a cosimplicial groupoid.
With this in mind the various definitions of stacks can be interpreted as different incarnations of
presheaves of groupoids satisfying a ‘homotopy sheaf condition’. ‘

Under the nerve embedding, functors between categories become maps between simplicial sets,
and natural transformations between functors give rise to homotopies between the corresponding

maps. If F' NYel ,and F -£, H are natural transformations, we obtain homotopies between N(F)
and N(G), and from N(F) to N(H). So there is also a homotopy from N(G) to N(H), but there
is not necessarily a natural transformation from G to H corresponding to this homotopy. Thus,
our intuitive notion of homotopy in Cat, as a natural transformation between functors, does not
correspond to the one defined via the nerve embedding in sSet. However, if our categories are
groupoids, this problem does not arise since all natural transformations are natural isomorphisms.
This close relationship between our intuition for what homotopy should be in Grpd and the notion
of homotopy defined via the nerve, motivates the model category structure on Srpd we define here,
where a map f in Grpd is a weak equivalence or fibration if and only if N (f) is one.

We will sometimes abuse notation and denote the groupoid myiq(Af) by A'. This is the groupoid
with 7 + 1 objects with unique isomorphisms between them. Similarly, we will sometimes denote
Toia(OAT) by OAT. BG denotes the groupoid with one object whose automorphism group is the
group G.

Theorem 3.1. There is a left proper, simplicial, cofibrantly generated model category structure on
Grpd in which:

o weak equivalences are functors which induce an equivalence of categories,
e fibrations are the functors with the right lifting property with respect to the map AC o Al
e cofibrations are functors which are injections on objects.

The generating trivial cofibration is the morphism A% — Al, and the generating cofibrations are the
morphisms 0A* — A',1=0,1,2.

Note 3.2. In this model category structure all objects are both fibrant and cofibrant, so all weak
equivalences are homotopy equivalences.
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Lemma 3.3. Let G - H be a map of groupoids. The following are equivalent:
o f is a weak equivalence in Grpd
e Nf is weak equivalence in sSet
Similarly, the following are equivalent:
P f is a (trivial) fibration in Srpd.‘
o Nf is a (trivial) Kaﬁ fibration in sSet.

o f has the right lifting property with respect to A° — Al (with respect to GA™ — A" for
n=0,1,2).

Note that the morphisms OA? — A% i =0,1,2, are
RS

o {x,x} =1

o A2 x (BZ — ).

Proof. If f is a weak equivalence in Grpd, it is an equivalence of categories and so N f is a homotopy
equivalence in s8et. Since the nerve of a groupoid is a Kan complex, if N f is a weak equivalence, it
must be a homotopy equivalence, and so 7,;gNf = f is an equivalence of categories. ‘

Kan fibrations of simplicial sets are characterized by having the right lifting property with respect
to the maps V,, — A”,n > 1 and trivial Kan fibrations are characterized by having the right
lifting property with respect to the maps OA™ — A™. Given a morphism G — H of groupoids, it is
equivalent to construct a lifting in either of the diagrams

Var — N(G) - ToidVakg —> G
ey |
Ve rd

// . /'/
AT ——)N(H), WoidAn ——>H,

so we can characterize the maps in Grpd whose nerves are fibrations as the maps which have the
right lifting property with respect to moig Vg — oig A™. Similarly, the maps whose nerves are
trivial fibrations are characterized as the morphisms with the right lifting property with respect to
the maps moiq & A™ — mo;q A™. Now notice that the inclusions moaVi g — ToigA! are isomorphisms
for i > 1, and that the inclusions myigdA* = T,gA' are isomorphisms for 7 > 2. O

Note 3.4. The previous lemma gives sets of generating cofibrations and trivial cofibrations for the
model structure in Theorem 3.1.

Proof of Theorem 3.1. First assume the cofibrations are defined as the maps with the left lifting
property with respect to the trivial fibrations. Later, we will prove that they are the maps which
are inclusions on objects. With this definition of cofibration, MC1-MC3 and MC4a are obvious.

For MC5 we apply the small object argument to our generating cofibrations and trivial cofibra-
tions to obtain factorizations. All the groupoids A™,8A™,V, k, are sequentially small since they
have a finite number of objects and a finitely generated set of morphisms. This proves MC5a.

Note that cofibrations must have the left lifting property with respect to the fibration A — A°
and this implies that they must be inclusions on objects. It follows that the nerve of a trivial
cofibration is still a trivial cofibration. Pushouts in groupoids can be computed by applying m,iq to
the pushout of the nerves in sSet, and, in sSet, the pushout of a trivial cofibration is still a trivial
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cofibration, so the same is true in Grpd. It is clear that directed colimits of weak equivalences in
Grpd are again weak equivalences. Thus the small object argument applied to the generating trivial
cofibrations proves MC5b.

For MC4b, we factor our trivial cofibration A B , using the construction in the small object .
argument, as a trivial cofibration A —4 C which is a directed colimit of pushouts of generating
trivial cofibrations followed by a necessarily trivial fibration C -£, B. By construction, j has the
left lifting property with respect to fibrations. Applying MC4a to the diagram

(__j>c
bl
B——B

we get a lift B — C. Therefore i is a retract of j, and so i also has the right lifting property with
respect to fibrations. :

We now show that the cofibrations, the maps with the left lifting property with respect to
trivial fibrations, are precisely the maps which are inclusions on objects. We have already seen

that cofibrations must be inclusions on objects. Now let A —f—> B be a map which is an inclusion
on objects, we show that it has the left lifting property with respect to trivial fibrations. Trivial
fibrations X —» Y are surjections on objects and bijections on Hom-sets. To construct the required
lift [ on objects in the complement of A, use any left inverse to the surjection on objects. Once this

is done, [ is uniquely determined on morphisms by the requirement that the diagram commutes.

For SM7, we need to show that given A ~ B a cofibration and X -2, Y afibration, the induced

map
sSet(B, X) — sSet(A, X) Xsset(a,Y) s8et(B,Y)

is a fibration of simplicial sets. In addition, we need to show that if either 4 or p is a weak equivalence,
then the above map is a trivial fibration. The simplicial structure on Grpd is defined by taking the
nerve of the internal Hom, and N commutes with limits, so we can rewrite the above map as

N(Grpd(B, X) —= Srpd(4, X) Xgrpa(a,y) Srpd(B,Y));
which is a (trivial) fibration if and only if the map
Srpd(B, X) = Srpd(A, X) X grpd(a,v) S7pd(B,Y)

is one. By lemma 3.3, this is the case if and only if this map has the right lifting property with
respect to A® — Al (A - Af i = 0,1,2). In the first case, the desired lifting is equivalent to a
lifting in the diagram- :

A— AxA'—= X

A

B=—— B x Al —>Y.

This follows since (4 x A')[[, B — B x Al is a trivial cofibration. Similarly, in the second case,
the desired lifting exists because the map (4 x A) [ 4 ga:(B x 8A) = B x A' is a cofibration.
To show that the model category structure is left proper we must show that the pushout of a
weak equivalence along a cofibration is again a weak equivalence. We have already observed above
that this is true when the weak equivalence is a cofibration so, by MCS5, it suffices to show that the
pushout P of a trivial fibration 4 -5 C along a cofibration A — B is a weak equivalence. This
follows from the following more general proposition. O
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Proposition 3.5. Let A, B,C be small categories, and A s Bbea functor which is a monomor-

phism on objects, and A -5 C a surjective equivalence of categories. Then the induced functor to
the pushout in Cat, B —» P := C 1] 4 B is also a surjective equivalence of categories.

Proof. First note that the universal map B —= P is surjective on objects. If b,5" € ob B, then
p(b) = p(t') if and only if b = b’ or there exist a,a’ € ob A with i(a) = b,i(a’) = " and j(a) = j(a').
In the latter case there is a unique map a — a’ € A which maps to the identity of j(a) and we
will call the image of this map in B the canonical map & — b'. For b not in the image of A the
canonical map b — b is defined to be the identity.

It is clear that p induces an isomorphism on components so it remains to show that p induces
an isomorphism ' .

Hompg(b,b') — Homp(p(b), p(d)).

For 3, objects of P, let W(83,8') denote the set of words formed by formal compositions of
morphisms in B and C such that the first map in the word has domain 8, the last map has range §'
and consecutive maps have domains and ranges whose images in P agree. Recall that Homp(3,3') is
the quotient of W (4, 4’) by the equivalence relation generated by the composition in B, composition
~in C and i(f) ~ j(f) for f a morphism in A. .

Let b,b" be objects of B and write 3 = p(b),8' = p(b'). We will define functions ¢y -
W(B,0') — Homp(b,b') which are constant on the equivalence classes of W(3,3') and so de-
termine functions Homp(8,3') — Homp(b,d'). It will be immediate from the construction that
these are inverse to p and this will complete the proof.

The functions @ are defined by induction on the length of words as follows. Let w be a word

of length 1. If w is a morphism ¢ A € C then let a,a’ be the unique objects in A such that

i(a) = b,i(a’) = V,j(a) = ¢,j(a’) = ¢ and let a -2+ o’ denote the unique morphism in A such
that j(g) = f. Define ¢y (w) = i(g). If w is a morphism b; N by € B define ¢y i (w) to be the
composite b — by 2, by — b’ where the unlabeled arrows are canonical morphisms.

Now suppose ¢, has been defined on words of length < n and let w = w'f where w' is a word
of length n and f is a morphism in B or in C. Let b” be an arbitrary object of B mapping to

the range of w’ and define ¢, (w) as the composite b Do () g ?22)  1 follows from the
construction that the value of ¢y is independent of the choice of b and that ¢, is constant on
the equivalence classes of W(8, 3'). O

Corollary 3.6. With this model category structure on Grpd, the adjoint pair 7,4 : s8et <> Grpd : N
is a Quillen pair.

Remark 3.7. The previous corollary implies that 7,4 preserves trivial cofibrations, and hence is
equivalent to the usual fundamental groupoid functor.

This model structure on Grpd is also described in [An, Bo] (without proof).
To end this section we give an alternative description of the homotopy theory of groupoids.
Consider the model category on sSet which is the localization of the usual model structure with

respect to the map
0A% = A3,

We will call this the S? nullification of sSet, following [DF]. Notice that the maps
OA™ = A", n > 2.

are all weak equivalences in this localized model structure, so we could equivalently localize‘sSgat
with respect to this set of maps.
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Lemma 3.8. In the S? nullification of sSet, weak equivalences are the maps which induce an iso-
morphism on g and m1 at all base points.

Proof. X is local if and only if it is a Kan complex and h Hom(8A%, X) ~ hHom(A3, X), that is if

m(X,z) =0forallz € X,n> 1 Since YV . Zisan equivalence if and only if h Hom(Z, X) —
hHom(Y, X) is an equivalence for all local X, f is an equivalence if and only if it induces an
isomorphism on mg and 7; at all base points. : ]

Theorem 3.9. The adjoint pair
. Moid
S
sSet - Srpd,

is a Quillen equivalence between Grpd and the S nullification of sSet.

Proof. First notice that a map f in sSet induces an isomorphism on mo and 7; for all base points,
if and only if Toiqf is an equivalence. Therefore the adjoint pair is a Quillen pair by Theorem
2.15. To see that it is a Quillen equivalence, it is enough to show that the unit and counit of this
adjoint are weak equivalences. The counit m,qN — id is an isomorphism. Applying 7o to the unit

‘X = Ny X, we obtain the isomorphism TpiaX — ToiaNToidX = TeiaX, s0 the unit is a weak

equivalence in the $2 nullification of sSet. a
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Chapter 4

Homotopy Limits and Colimits

It is well known how to define homotopy limits and colimits in simplicial model categories. One can
write down explicit formulas going back to [BK]. In this section, we will give simplified formulas for
homotopy (co)limits in case the simplicial structure comes from a groupoid action (2.9). Our main
concern will be the homotopy limit of a cosimplicial diagram, and dually the homotopy colimit ofa
simplicial diagram. Our simplified formula for the former will allow us in section 7 to interpret the
descent conditions for stacks in a homotopy-theoretic manner.

Let C be a simplicial model category. The homotopy limit of an I-diagram X in C with each
X () fibrant is the equalizer of the two natural maps

HX(’i)N(I/i) = H X (@)NI/9),
i =i

where I/i denotes the category of objects over i. Similarly, the homotopy colimit of an objectwise
cofibrant I-diagram X is the coequalizer of the two maps

II x®enNG/D= ]_[ X (i) ® N(/T),

where j/I denotes the category of objects under j. An exposition of these constructions for simplicial
sets appears in [BK, GJ], and for a general simplicial model category in [Hi]. For Y a fibrant object
and X € @ objectwise cofibrant, these functors satisfy the equation

sSet(hocolim X, Y) = holim s8et(X,Y). ' (4.1)

Note 4.2. When the simplicial structure on € is derived from a groupoid structure, the above
formula is obtained by applying NNV to the equality

Grpd(hocolim X, Y) = holim §rpd(X,Y).

Theorem 4.3. Let C be a simplicial model categofy whose simplicial structure derives from a
groupoid action, and let X* be a cosimplicial object in €, with each Xt fibrant. Then a model
for the homotopy inverse limit of X*® is given by the equalizer of the natural maps

2 ' i<2,5<1 .
[y = [ xH*.
i=0 (A1)
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Proof. First, notice that writing sko A® for the 2-skeleton of A®, the inclusion 7yig ska A® = ToiaA®
is an isomorphism. It follows that T'otX®, the space of maps from A® to X*, is isomorphic to T'ot, X ®,
the space of maps from the restriction A’| afz) to X°| A[21 where A[2] denotes the full subcategory of
A with objects [0], [1] and [2]. Since the map 7,iq5k; A2 — 7,;4A? is surjective, Tot; X * is given
by the equalizer in the statement of the theorem.

It now suffices to show that the homotopy limit of X *® is naturally homotopy equivalent to Tot X*®.
Using the definition of the homotopy limit in a simplicial model category given above, this is an
easy consequence of the following proposition. : O

Proposition 4.4. There is a homotopy eguivalence of cosimplicial groupoids
F: ﬂoidN(A/[O]) “r ﬂ'oidA. :G.

Proof. Morphisms in 7, N(A/[n]) are generated by the commutative triangles

k] —————[m]
\[]/

and their formal inverses. Let m,;aN(A/[n]) ELN ToidA™ be the functor which sends

e the object [m] — [n] to the vertex [0] <= [m] = [n],
where ey : [0] = [k] denotes the map which sends 0 to k.

e a generating morphism as above to the 1-simplex in A™ which is the unique map filling in the
following diagram

-2 £ (g

lek |! ) lem ‘ ‘ o
|
(k] ———— [m]
\ | /
]
[n].
One can check easily that F is well defined and natural in n, and so defines a morphism

ToiaN(A/[e]) i ToidA* € cGrpd.
Let G, be the functor which is defined
e on objects by including [0] — [n] in A/[n].
e on generating morphisms [1] — [n] as the composition

O)—l

0] £ [1]

\l/

[n].

[0]
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Again it is easy to check that G, is well defined and natural in [n], and so defines a morphism
ToiaA® -2 ToiaN(A/[e]) in cSrpd.

The composition F o G is the identity. There is a natural transformation G o F — id defined
on objects [m] = [n] € moia N (A/[n]) by the triangle

[0] ———— [m]
N
O

The groupoid Totz(X*) will also be called the descent category of X*. From now on, when we
refer to the homotopy limit of a cosimplicial groupoid X* we will mean the simpler model Totz (X*).
The following corollary gives an explicit description of this groupoid.

Corollary 4.5. The homotopy inverse limif of a cosimplicial groupoid X*° is the groupoid whose
o objects are pairs (a,d (a) -2, &(a)), with a € 0bX°,a € morX", such that s%(a) = idg, and
- d(a) o d(a) = d*(a),

e morphisms (a,a) = (a/,a') are maps a N a', such that the following diagram commutes

1
da) 22 d(a)

R
d°(8)

d®(a) —=d'(d)

Dually we have the following theorem giving a formula for homotopy colimits of simplicial dia-
grams.

Theorem 4.6. Let C be a simplicial model category whose simplicial structure derives from a
groupoid action and let Xo € sC, be such that each X; is cofibrant. Then the homotopy colimit
of X, is naturally homotopy equivalent to the coequalizer of the maps

n<1l,m<2 2
[I Xnes"=]J]X.@A™
() {rm] n=0
\
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Chapter 5

Categories Fibered in Groupoids

There are different categories in which the descent condition can be formulated, and in which stacks
can be defined. In this section we will discuss the category of categories fibered in groupoids over C,
[DM, Gi]. This category is denoted Grpd/C.

After discussing some important properties of Grpd/€, we will be able to define an adjoint pair

of functors
r

Srpd/€ ___ P(€,Srpd)
P .

satisfying the following properties:
e For F in P(€, Grpd), the map F(X) — I'pF(X) is an equivalence of groupoids, for all X € €.
e For € € Grpd/C, the map pI'€ — € is an equivalence of categories over €.

When € has a Grothendieck topology, we will define stacks in both categories so that the pair (p,T")
restricts to an adjoint pair between the subcategories of stacks. In section 7, we will define model
structures on these categories such that the adjunction above induces a Quillen equivalence.

5.1 Categories Fibered in Groupoids over €

One should think of a category fibered in groupoids over € as the analogue in Cat of a fibration over

€ with fibers which are groupoids. Recall that if X 2, ¥ is a fibration of topological spaces, given
apath IinY, and z € X such that f(z) = I(1), we can lift I to a path I' in X, with I'(1) = z.
One can use these liftings to define a map from the fiber over (1) to the fiber over I(0). This map
is only determined up to homotopy but a homotopy between two liftings is again determined up to

homotopy and so on. Similarly, a category fibered in groupoids over €, & il C, satisfies a path
lifting condition, where the lift is unique only up to isomorphism. However, since in groupoids there
are no nontrivial homotopies between homotopies, this isomorphism is unique. More precisely, a
morphism X — Y € C, determines a pullback functor from the fiber over Y to the fiber over X ,
which is unique up to a unique natural isomorphism.

Here is a standard example to motivate the definition.

Example 5.1 (Vector Bundles on Top). Let Vec(Top) be the category whose objects are vector
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bundles Ey — Y, and whose morphisms are pullback squares

EY _— E}\’
Y —X.
The projection functor Vec(Top) — Top is an example of a category fibered in groupoids over Top.

Here are some ways in which it resembles a fibration:

e The fact that we can pull back vector bundles tells us that there is ‘path lifting’

o EE Vec(Top)

P kd
LT l
7 v-L
I— TOp;
A lifting in this diagram is a choice of a bundle E' - Y and an isomorphism E' —-) frE.
Two different choices will necessarily be canonically isomorphic.

o All the fibers of this functor are groupoids.

Now we give the definition of a category fibered in groupoids, which formalizes the ‘path lifting’
condition described above.

Definition 5.2. [DM] The category Grpd/C is the full subcategory of Cat/C whose objects are func-
tors & = @ satisfying the following properties:

1. GivenY Ly X € €, and X' € € such that F(X') = X, there ezists Y’ Lo x € & such that
F(f)=T.

2. Given a diagrdm in €, over the commutative diagram in C,

Y" é Y
lf’ % lf
ZI _gl> XI é VA _i> X,

- with F(f') = f,F(g') = g; there ezists a anigue b’ .such that g’ o b l:‘f'- and F(R') = h.

This definition may seem involved but it becomes very simple when we look at the functors Fx:
induced by F' on the over categories B
F 14
g/ X' =5 e/X,

where X’ € €, and F(X') = X. The conditions for £ E, ¢ to be a category fibered in groupoids
over C are equivalent to the following simple requirements of the functors Fi:

1. Fx: is surjective.

2. For every pair of objects Y', Z' € S/X’ with Fx: (Y') =Y, Fx:(2') = Z the induced map
Homg/xl (Y’, Z') — Home/x(Y, Z)

is a bijection.
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Together these conditions are equivalent to saying that the functors Fx: are surjective equiva-
lences of categories.

Let £x denote the fiber category over X in &. This has objects those of £ lying over X and
morphisms those of & lying over idx. It is easy to see that if € — € € Grpd/C, the fiber categories
& x are groupoids.

Example 5.3. The simplest examples of categories fibered in groupoids over € are the projection

functors €/X — Cforeach X € €. If Y i Xisan object of €/X, then (C/X)/f = €/Y, and so
conditions 1. and 2. above are trivially satisfied. Notice that (€/X)y is the discrete groupoid whose
set of objects is Home(Y, X).

Another class of simple examples are (3 x G 25 @, for G € Grpd. Here the fibers over each X € €
are canonically isomorphic to G.

Categories fibered in groupoids are enriched over Grpd in a natural way.

Lemma 5.4. Grpd/C is enriched with tensor and cotensor over Grpd. The objects of Srpd(&,&') are
the functors € — &' over C, and the morphisms are the natural isomorphisms between such functors
covering the identity natural automorphism of ide. Moreover, the tensor is given by the formula

E®G:=€&xe(CxG),
and the cotensor EC is the category of functors from (G — ) to (€ — €).

Proposition 5.5. Let £ Hee Srpd/C, X' € €, and let X = F(X'). Then
1. there is a section

4
G 7
P F

e
such that G(idx) = X'.

2. IfG,G": €/X — € are two such sections and G(idyx) RN G'(idx) a morphism in Ex, then
there is a unique natural isomorphism G 2, G over ide, with ¢(idx) = f.
Proof. First notice that giving a section €/X £, € over € with G(idx) = X' is the same as giving

a section
E/ X' ——=¢

)

/X —¢.
sending idx to idx:.
1) Define G on objects Y € €/X, to be an arbitrary choice of Y’ € /X' with Fx/(Y') =Y,
(this is possible since £€/X' — €/X is a surjection). For a pair of objects Y, Z € €/X, define
Home,x (Y, Z) — Homg, x:(Y", Z')

to be the inverse of the bijection

Homg x (Y', Z') 255 Home x (Y, 2).
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To show this construction gives a functor, consider a pair of composable morphisms f,g € C/X.

The morphisms G(f) o G(g) and G(f o g) have the same domain and range and the same image,
fog,in C/X, therefore they must be equal.

2) Suppose G' is another such functor. Then for each object (Y — X) € €/X there is a unique
isomorphism

G(Y = X) — Glidx)
L
G'(Y = X) —= G'(idx).

lying over the identity of Y. By uniqueness, this collection of isomorphism forms a natural isomor-

phism G N G’', and ¢ is the unique natural isomorphism G — G’ over ide which evaluated at idx
is f. : O

Corollary 5.6. For each X € C, the natural map

Srpd(€/X,€) = Ex
given by evaluation at idx is a surjective equivalence of groupoids.- There 'is o left inverse which is
unique up to unique natural isomorphism.

This corollary says that given & — C there is a functorial “rigidification” of the fibers. Later we
will use this method of rigidification to construct a functor from Grpd/C to P(€, Grpd).

In a similar fashion we can prove:
Proposﬂuon 5.7. Let £ = C be a category fibered in groupoids, and Y 4 x morphism in C.

There are “pullback” functors Ex —> Ey which are unique up to a unique natural isomorphism
covering idy .

Proof. To construct the functor on objects X' € €x, we arbitrarily lift ¥ — X using condition
1 of Definition 5.2. Once the functor has been defined on objects, condition 2 of Definition 5.2
yields a map ¥’ — Y for each morphism X' — X" € £x. Finally, the uniqueness in condition
2 implies that this assignment is a functor and that any two assignments are naturally isomorphic
over idy. : O

Now we can give a definition of stack in Grpd/C.
Definition 5.8. Let € be a category with a Grothendieck topology. A category fibered in groupoids
& L ¢ is.a stack if for all covers {U; — X} the map
Grpd(€/X, €) — holim Grpd(C/U.,, &)

is an equivalence of groupoids.

We will compare this definition with the usual definition [DM] in the next section.

5.2 Adjoint Pair Between Grpd/C and P(C, Srpd)

Let € — € be a category fibered in groupoids. By Corollary 5.6, the assignment to each X € C of
the sections Srpd(€/X, &) is a functor such that Grpd(€/X, &) — Ex.

Definition 5.9. Let ' : Grpd/C — P(C,SGrpd) be the functor which sends € — C to the presheaf
FS(X) = STPdgrpd/e(e/X E)
Let p: P(C,Grpd) — Grpd/C be the functor defined by setting pF' to be the category whose
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e objects are pairs (X, a) with a € F(X),

e morphisms (X,a) — (Y,b) are pairs (f,a) where X Ly vecanda F(f)b is an
isomorphism in F(X).

The composiﬁon of two morphisms (X,a) ) (Y,b) (e.8) (Z, c) is the pair (go f,F(f)(B) o a).

Tt is easy to check that both p and T' preserve the groupoid action on their domain categories.
Under p presheaves of groupoids sit inside Grpd/C as the “trivializable bundles” (see example 5.1).

Theorem 5.10. The functors

P
P(e,Grpd) > Srpd/e,
r

form an adjoint pair with p the left adjoint. The unit of the adjunction is an objectwise equivalence,
and the counit is a fiberwise equivalence of groupoids.

_ Proof. We will define natural transformations n : id — I'p, and € : pI' = id. It will be clear
from their definition that they satisfy the equations required to form the the unit and counit of an
adjunction.

Define € : pT'€ — € on objects by sending (X, ¢ : €/X — €) to ¢(idx) € &, and on morphisms
by sending (f : X = X',€: ¢ — f*(¢')) to the composite ¢'(f) o £(idx). It follows from Corollary
5.6, that ¢ is a fiberwise equivalence. ‘

Define 17 : F — T'pF to be the map of presheaves which sends an object a € F(X) to the section

¢q : /X — pF defined by ¢,(Y N X) = (Y, F(f)a); (Y %4 Z) = (g,id), and a morphism

a — b € F(X) to the natural transformation £ : ¢, — ¢y defined by £(Y 2, X) = F(f)(o).
By construction F(X) is the fiber over X in pF. Another application of Corollary 5.6 shows that
Srpd(€/X,pF) — pFx = F(X), and so 7 is an objectwise equivalence. O

The existence of this adjoint pair now motivates the following definition of stack in P(C, Grpd).

Definition 5.11. A presheaf F of groupoids on € is a stack if for all covers {U; — X} the map
F(X) — holim F(U,) is an equivalence of groupoids.

With this definition, a category fibered in groupoids € £, e is a stack if and only if '€ is a

stack in P(€, Grpd), so our adjoint pair restricts to one between the stacks in Grpd/C and the stacks
in P(€, Grpd). '
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Chapter 6

Stacks

In this section we will discuss the usual definition of stacks in Grpd/C [DM] used in algebraic
geometry, and show that it is equivalent to the definition we have given using homotopy limits
(Definition 5.8).
We start with an example that will hopefully provide intuition for the descent/homotopy sheaf
condition. ‘

Example 6.1 (Principal G-bundles on X). Consider the functor moBG which assigns to a space
the set of isomorphism classes of principal G bundles over it. Locally all bundles are trivial, so gluing
together isomorphism classes via the sheaf condition yields only the isomorphism class of the trivial
bundles. The sheafification of moBG is just the constant assignment of the isomorphism class of the
trivial bundle. In particular, moBG is not generally a sheaf. ,

Yet there is a sense in which isomorphism classes of principal G-bundles are determined locally.
~ A cover, principal G-bundles on each member of the cover, and coherent isomorphisms between their
restrictions to the intersections determine a G-bundle on the total space. More precisely, given an
open cover {U; C X} and

e G-bundles E; — U;,

e isomorphisms we call gluing data oy : Ei|lv,nu; = Ejluinu;,
e satisfying a,x o a;; = aix when restricted to U; N Uy N Uy,

there is a principal G-bundle E — X, and isomorphisms f; : E|y, — E;, compatible with the gluing
data:

fi
Eilv.nu; <—— Eluinu;

ai) lfj

Ejlvinu;-

Let BG(X) denote the groupoid of principal G-bundles on X and isomorphisms between them, and
U, the nerve of the cover {U; C X}. We can translate the above property as saying:

Given an object a € [] BG(U;), and an isomorphism d'a -2 da, which is coherent in the sense
that d°(a) o d?(a) = d'(a), then up to isomorphism a is in the image of BG(X).

This is essentially what it means for BG(X) to be the homotopy inverse limit of the cosimplicial
diagram of groupoids BG(U,).

Let &€ — C be a category fibered in groupoids, and assume that for each X L5 ¥ we have chosen
pullback functors €y e x- Given a morphism U; =+ U € €, we will sometimes abuse notation
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and denote the pullback of an element a € €y to £y, by aly,. In defining some of the maps below,
we will also make implicit use of the natural isomorphisms (a|y, )|y

Definition 6.2. [Gi] [DM] A stack in Grpd/C is an object € — € which satisfies the following
properties for any cover {U; - X} :

1. given a,b € Ex, the following is equalizer sequence
Homg (a, b) - H Homsu,- (alUi ’ bIU.‘) = H Homﬁuij (a‘lU",‘ ) blUij ),

2. given a; € &y, and isomorphisms
ai U.'J' _). aj

Uijl

satisfying the cocycle condition
ajklU{jk o aile.‘jk = aikIUijk,

then there ezist a € Ex, and isomorphisms a|y, i) a;, such that the following square commutes

Bilu,; .
a‘lUij —_— a’iIUij . (63)
|

ﬁj|U-;j

aly,; — ajluy;-

In this case, we say that € — € satisfies descent.

Note 6.4. Note that pulling back the square 6.3 along the diagonal map A : U; = U; shows that
the family of isomorphisms a;; must satisfy the added condition A*(a;;) = idy; and so we might as
well have added this requirement to the cocycle condition.

This definition seems very complicated, but it can be considerably simplified if we recall the
description of the homotopy inverse limit of a cosimplicial groupoid given in Corollary 4.5.

Proposition 6.5. A category fibered in groupoids €& — € is a stack in the sense of Definition 6. 2
if and only if for all covers {U; = X}

Grpd(C/X, &) = holim Grpd(C/U., £) (6.6)
is an equivalence, i.e. if € = C is a stack in the sense of Definition 5.8.

Proof. We begin by showing that condition 1. in Definition 6.2 is equivalent to the requirement that
for objects F,, Fy € Grpd(€/X, €), the set of morphisms F, — Fj is in bijective correspondence with
the set of morphisms between their images in holim Grpd(C/U,, €).

Consider objects F, Fy € Grpd(€/X, &), and let a = F,(idx) and b = Fy(idx) in Ex. Evaluation
at id(_) induces bijections

Hom(Fava) — HHom(FﬂIUanIU.‘) = HHom(FGIUiijbIU.‘j)

T

Homg , (a,b) — [] Homeg,, (alu;, b ., (aluy, bluy;)-

It follows that the top line is an equalizer if and only if the bottom one is. By corollary 4.5, the top
line is an equalizer if and only if Hom(F,, F}) is in bijective correspondence with the set of maps
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from the image of F, to the image of F} in holim §rpd(€/U., €). The requirement that the bottom
line be an equalizer is condition 1. in Definition 6.2.

To finish the proof we have to show that condition 2. is equivalent to the requirement that every
object in holim Grpd(€/U,,€) be isomorphic to one in the image of Grpd(€/X,E). This follows
from the description of morphisms in Corollary 4.5 once we show that specifying an object in
holim Grpd(C/U,, €) is equivalent to specifying descent datum as in condition 2. of Definition 6.2.

By corollary 4.5, an object of holim Grpd(€/U., €), consists of an object F. € [ Srpd(C/Ui, &),
and an isomorphism d*F, -+ d°F,, satisfying d°(a) o d?(e) = d*(a) and s°(@) = idp,. For any
v-L V, and F, € Srpd(C/V, &) with F,(idv) = a, the evaluation F;|y(idy) is a choice of pullback
of a along f, and so F,|y(idy) is canonically isomorphic to the pullback f*a, which we chose in .
advance. Evaluating at idy, determines ¢ € []£y;, and isomorphisms a;; = a(idy,;) satisfying
the cocycle condition. Composing with the canonical isomorphisms clv,; = Felu,; (idu,; ), we obtain
isomorphisms ¢|y; Sl c|y;, satisfying the cocycle condition.

Conversely, given ¢ € [] €u, and a;j, as in condition 2. satisfying A*(ai;) = idy, (see Note 6.4),
we can lift them to an object F, € []SGrpd(C/U;, E), and an isomorphism d'F, = d°F,. Since
these lifts are essentially unique they must also satisfy the cocycle condition and s%(a) = idp, and
hence determine an object of holim §rpd(C/U., £).
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Chapter 7

Model Structures

In this section we put model structures on P(€,Srpd), S h(@,SGrpd), and Grpd/C. In the first two
subsections, we describe model structures on (pre)sheaves and categories fibered in groupoids. A
morphism in (sh)P(€, Grpd) will be a fibration or weak equivalence if it is one when evaluated at each
object. In Grpd/C, the weak equivalences are the maps which induce an equivalence of groupoids on
the fibers or, equivalently, maps which become weak equivalences in P(C, Grpd) after applying I'.

The above model category structure on P(€,Grpd) is not very interesting because it does not
see the topology on €. In a Grothendieck topology there is a notion of locality. Just as sheaves
are isomorphic if they are locally isomorphic, so too stacks should be equivalent if they are locally
equivalent. Thus, there should be a model structure for which weak equivalences are those maps
which locally are weak equivalences of groupoids. The most basic local equivalences are the maps
hocolim U, — X, as stacks can be defined to be those presheaves which see this as an equivalence.
This suggests that we should declare these to be new weak equivalences.

‘In the third subsection, we use Theorem 2.13 to localize the model structures on P(€, Grpd),
Sh(€,Srpd), and Grpd/C, with respect to the set of maps

hocolim U, = X, where {U; = X} a cover in

We then observe that in these local model structures, the fibrant objects are the stacks.

In the next section we will prove that all these local model category structures on P(C,Grpd),
Sh(C,Grpd), and Srpd/€ are Quillen equivalent. We will also prove that the weak equivalences in
the local model structure on P(C, Grpd) are the maps which, locally, are weak equivalences.

7.1 Model Category Structure on (Pre)Sheaves of Groupoids

In this subsection we construct a model category on both sheaves and presheaves of groupoids on
a Grothendieck topology C, using a set of “generators”. More precisely, we will give a collection
of objects X and define a map f to be a weak equivalence or a fibration if and only if the map of
groupoids Grpd(X, f) is one for all X. This definition of weak equivalences and fibrations together
with the smallness of the generators X implies that the sets of maps {X ® G — X ® H}, where X
is a generator and G — H is a generating (trivial) cofibration of groupoids, form sets of generating
(trivial) cofibrations. In our case the “generators” X will be the representable functors.

Henceforth we will abuse notation and denote by X the sheaf Home(—, X) of discrete groupoids
represented by the object X € €.

Theorem 7.1. There are left proper, cofibrantly generated, model category structures on P(C,Grpd),
and Sh(C, Grpd), where
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* f is a weak equivalence or a fibration if Srpd(X, f) is one for all X € €,
e cofibrations are the maps with the left lifting property with respect to trivial fibrations.

The maps of the form X - X® Al', for X € €, form a set of generating trivial cofibrations. The
maps of the form X @ 0A* - X @ A for X € € and i = 0,1,2 form a set of generating cofibrations.

Corollary 7.2. The adjoint pair

Sh(€, Grpd) P(€, Srpd)
sh

is a Quillen pair.

Proof. Presheaves: For MC1, note that limits and colimits are defined objectwise in P(C, Srpd).

MC2-MC4a are obvious. For X € €, the functor Grpdp(e grpa)(X,—) is evaluation at X, which

commutes with all limits and colimits in P(€, Grpd). It follows that X is small in P(C, Grpd), hence

the domains of the generating (trivial) cofibrations are small. This implies MC5a. Now note that

cofibrations are, in particular, objectwise cofibrations. Since colimits are computed objectwise, it
-follows that pushouts and directed colimits of trivial cofibrations are again trivial cofibrations, which
" proves MC5b. Similarly, left properness follows from the left properness of- Grpd and the fact that
cofibrations are objectwise cofibrations. MC4b now follows by the same argument used in the proof
of Theorem 3.1. SM7 follows immediately from SM7 for Grpd.

Sheaves: MC1-MC4a, are obvious. The inclusion of sheaves in presheaves preserves filtered
colimits so the domains of the generating (trivial) cofibrations are also small in sheaves, and MC5a
follows. For MC5b, it suffices to show that the pushout in presheaves, of a sheaf along a generating
trivial cofibration is still a sheaf. Consider the diagram

X——F

l |

X @A — (X®AY [y F.

where F is a sheaf and X € €. The presheaf of groupoids X ® A [y F has:
e object presheaf, the presheaf of objects in F [[ X and
o morphism presheaf, the presheaf of objects in F2A" [[ FA" xp X [[ X x FFPA [ X xpFA xpX.

The presheaves of objects and morphisms of (X ® A!) [y F are sheaves, so (X ® A)[[x F is
a sheaf. MC4b follows by the same argument glven in the proof of Theorem 3.1. SMTY follows
immediately from SM7 for Grpd.

Since P(€,Grpd) is left proper, to show left properness for sheaves it suﬂices to show that the
pushout in P(€, Grpd) of a weak equivalence along a cofibration of sheaves is again a sheaf. Since
we have already proven that the pushout of a sheaf along a trivial cofibration is a trivial cofibration
whose range is a sheaf, we can assume that our weak equivalence is a trivial fibration.

* We begin by noting that cofibrations of sheaves are, in particular, objectwise cofibrations, as
sheafification preserves monomorphisms (and N and 7,4 preserve cofibrations).

Trivial fibrations in Grpd are the surjective equivalences of categories, and so pushouts of triv-
ial fibrations along objectwise cofibrations in P(C, Srpd) are again trivial fibrations in P(C, Grpd).
Consider the diagram in P(C, §rpd)

— = s F

|

B—~—>>BHAF
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Let P denote the pushout B][, F. The argument given above to show that cofibrations are object-
wise cofibrations shows also that the pushout in presheaves of a sheaf along a cofibration of sheaves
is a sheaf on objects. Hence P is a sheaf on objects.

To see that the morphisms of P are a sheaf, recall that for each X € €, the map B(X) » P(X).is
a surjective equivalence of categories.

Given a presheaf G, let I(G) be the presheaf with I(G)(X) the category with objects, the
objects of G(X) and a unique morphism between each pair of objects G(X). There is a canonical
map G — I(G) and if G is a sheaf on objects, then I(G) is a sheaf. Since B — P is a trivial
fibration, it is easy to check that B = I(B) x(py P. Using the following facts:

e the set of morphisms of a fiber product is the fiber product of the morphisms,
e the map I(B) — I(P) is a surjection on objects and morphisms,
it is not hard to check that P satisfies the sheaf condition. O

7.2 Categories Fibered in Groupoids over ¢

In this subsection we construct a model category on Grpd/C relative using the set of “generators”
e/X — C.

Theorem 7.3. There is a left proper, cofibrantly generated, simplicial model category structure on
Srpd/C in which

e f is a weak equivalence or a fibration if Srpdg,pq4/e(€/ X, f) is one for all X € C,
e cofibrations are the maps with the left lifting property with respect to trivial fibrations.

The maps of the form €/X — (C/X ® Al), for X € C, form a set of generating trivial cofibrations.
The maps of the form (C/X ®DAY) = (€/X ®A?), for X € € and i =0,1,2 form a set of generating
cofibrations.

Proof. For MC1, see Appendix A. MC2-MC4a are obvious. In order to apply the small object
argument to prove MC5, we need to check that the objects €/ X ® G — € with G = (8)A%,i=0,1,2,
are small with respect to the colimits which appear in the small object argument. First notice
that sequential colimits in Grpd/€ agree with sequential colimits in Cat /€. For convenience, in
the construction of the factorization for MC5a we will take pushouts along both the generating
cofibrations and the generating trivial cofibrations.

Let & — &£;11 be constructed as usual, using the small object argument, and let consider a map
F:@/X — colim&;. F(idx) lifts to some element X' in some €;, and we can extend this to a map
F!:@/X — &;. Let F' be the composition €/X — &; — colim &;. Then F'(idx) = F(idx), and
so there is a unique natural isomorphism ¢ : F — F' making the following diagram commute

e/x —2 ¢,

L
C/X —C/X @ A? -¢—>colim£,-.
\'—__/

F
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The map €/X — €/X ® A is one of the generating trivial cofibrations, so by construction we obtain
a lift

e/X — ¢,

t

81+1
,f:fl_
e/ ’;»G/X@A1 -—¢+colim£i.
\—/
F

Thus €/X is small with respect colim &;. Since natural transformations between sections are deter-
mined uniquely by their evaluation on idx, a similar argument shows that €/X ® (8)A* is small
with respect to colim ;. This completes the proof of MC5a.

For MC5b, note that if &€ — £’ has the left lifting property with respect to all fibrations, then
in particular it has the left lifting property with respect to & — € and (£)2" — (& )"’A , and
therefore it is an equivalence of categories over €. An equivalence of categories over € is clearly a
weak equivalence. It follows that the cofibration constructed using the small object argument for
MC5b is also a weak equivalence.

MC4b now follows by the same argument given in the proof of Theorem 3.1. SM?7 follows
immediately from the definition of (trivial) fibration in Grpd/C and the adjunction formulas given
by the simplicial structure.

To show left properness, it suffices to show that the pushout of a trivial fibration along a cofi-
bration is a weak equivalence. We begin by noting that trivial fibrations are surjective equivalences
of categories. Let F : & — &" be a trivial fibration and let X', Y’ € £, X" = F(X"),Y" = F(Y").
Clearly F is surjective on objects and morphisms. We will show that the map

Homg¢ (X',Y’') = Homen (X", Y")

is a bijection. If F(f') = F(g') then f’ and g’ have the same image in € and so there is a unique
isomorphism A’ filling in the following triangle in &'

Xl

| f

’lh\ .

Y P

X —Y'
By the uniqueness of the lifting ', F(h') = idx» € £". Since F is a trivial fibration it follows that
h = id X' -

Now note that cofibrations in Grpd/€ are inclusions on objects as this is the case for the gener-

ating cofibrations. Proposition 3.5 implies that the pushout in Cat /€ of a surjective equivalence of
categories along an inclusion on objects is still an equivalence of categories over €. This simultane-

ously implies that the pushout in Cat /€ coincides in this case with the pushout in Grpd/C (see the
proof of Proposition A.1) and completes the proof. O

Corollary 7.4. The adjoint pair
§rpd/C ____ P(C,Grpd)
is a Quillen equivalence.

40




Proof. This follows immediately from the definition of the model structures and Theorem 5.10. [J

7.3 Local Model Category Structures

Recall that given X € € we also denote by X the (pre)sheaf represented by X. For convenience,
we will sometimes also denote by X the category fibered in groupoids €/X — €. In any of the
categories P(C, Grpd), Sh(C, Grpd) or Grpd/C, we denote by S the set of maps

S = {hocolimU, = X : {U; = X} is a cover in C}
where U, denotes (as usual) the nerve of the covering {U; = X}.

Proposition 7.5. Let M be one of the categories P(€,Grpd), Sh(€,SGrpd) or Grpd/C. There is a
model category structure on M which is the localization of the model structure of Theorems 7.1 or
7.3 with respect to the set of maps S.

Proof. Since homotopy colimits of cofibrant objects are cofibrant, the domains and ranges of the
morphisms in the localizing set are cofibrant. By Theorems 7.1 and 7.3, the model category structures
on P(C,Srpd), Sh(€,Grpd) and Grpd/C satisfy the hypothesis of Theorem 2.13, so the proposition
follows. ‘ O

- Let M be one of the categories P(C, Grpd), Sh(€, Srpd) or Grpd/C. We will write My for the
category M with the model structure given by the previous proposition.

Since in the old model structure on M every object is fibrant, and X € € is cofibrant, an object
F € My, is fibrant if and only if

Srpd(X, F) — Srpd(hocolim Us, F) = holim Grpd(U,, F)

is a weak equivalence for all covers. By definition of stack, this happens if and only if F' is a stack.
It follows that a fibrant replacement functor for My is a stackification functor.

Remark 7.6. Since stacks are the fibrant objects, and representables are cofibrant, it follows that
when M is a stack, h Hom(X, M) is equivalent to the groupoid M(X). In particular, [X, M] is the
set of isomorphism classes of M(X).

Remark 7.7. It is not hard to check that a small presentation (in the sense of [Dg, Definition 6.1])
of P(€,Grpd) L is given by the Yoneda embedding of € in P(C, rpd) and the set of maps

X®0A" 5> X @A™, forall X e C,n > 2

hocolim U, — X for all covers {U; — X} in C.

This means that the local model category structure is the “quotient” of the universal model category
generated by € by the relations given by the maps above.
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Chapter 8

Characterization of LoCal
Equivalences |

In this section we prove that a morphism f is a local weak equivalence if and only if it satisfies one
of the following equivalent properties:

e f is an isomorphism on sheaves of homotopy groups,
e f satisfies the local lifting conditions,
e fis a stalkwise weak equivalence (when € has enough points).

Furthermore we prove that our local model structure P (€, Grpd)r is Quillen equivalent to the S2
nullification of Jardine’s model structure on presheaves of simplicial sets {Ja].

In subsection 8.1 we describe Jardine’s model structure on presheaves of simplicial sets and
show that it is the localization of the Heller model structure with respect to a set of maps Sr,.
There is an analogue of the Heller model structure for presheaves of groupoids which we denote
by P(€,Grpd)y. We prove that its localization with respect to m,;4Sy, has weak equivalences the
isomorphisms on sheaves of homotopy groups, and is Quillen equivalent to the S? nullification of
Jardine’s model structure. The main theorem in this subsection is that the identity adjoint pair
induces an isomorphism

P(€,Grpd)L, > (moiaS.)~"P(€, Srpd)sr. (8.1)

It follows that P(€, Grpd)L is Quillen equivalent to the 52 nullification of Jardine’s model structure.
We prove that (8.1) is a Quillen pair, and leave the proof that the weak equivalences are the same
till 8.2.

In subsection 8.2 we introduce Dan Dugger’s local lifting conditions, and prove that they are
satisfied by a map ¢ € P(€, Grpd) if and only if ¢ induces an isomorphism on sheaves of homotopy
groups, and if and only if ¢ is a local weak equivalence. This completes the proof that (8.1) is an
isomorphism.

In subsection 8.3 we apply the characterization of local weak equivalences to show that the
adjoint pairs

sh: P(€,Grpd) + Sh(C,SGrpd) : i

and
p: P(C,Grpd) « Grpd/C:T

are Quillen equivalences between the local model structures on each of these categories.
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8.1 Jardine’s Model Structure

In this subsection we compare the local model structure on presheaves of groupoids to Jardine’s
model structure on simplicial presheaves [Ja]. In order to define this model structure we will need
the notion of sheaves of homotopy groups.
Definition 8.2. [Ja] Let F be a presheaf of simplicial sets or groupoids. Then
e moF is the presheaf of sets defined by (moF)(X) := mp(F(X)).
- For F € P(C,s8et) and a € F(X)o, mn(F,a) is the presheaf of groups on €/X defined by

m(Fa)(Y 5 X) = ma(F(Y), f*a).
For F € P(C,Srpd) and a € ob F(X), m,(F,a) := mn(NF,a).

We say that a map F ANYe, of presheaves of simplicial sets or groupoids is an isomorphism on
sheaves of homotopy groups if the induced maps shmo(¢) and shr,(¢,a) are isomorphisms for all
a € F(X), and all X € C.

Note that if F is a presheaf of groupoids then m;(F,a) = 0 for i > 1, and 7, (F, a) is the presheaf
of groups Autr(a) on €/X, where

Autp(a)(Y -1 X) i= Autp (f*a).

Note also that if F' — G is an objectwise weak equivalence, then the induced map of presheaves
of homotopy groups is an isomorphism. ‘

Theorem 8.3 (Jardine’s Model Structure [Ja]). There is a left proper, cofibrantly generated,
simplicial model structure on P(C, sSet) where
e cofibrations are the maps which are objectwise cofibrations,
o weak equivalences are the maps which are isomorphisms on sheaves of homotopy groups,

e fibrations are the maps with the right lifting property with respect to the trivial cofibrations.
The Jardine model category will be denoted by P(C, s8et);.

Proposition 8.4. (a) There is a model structure on P(C, Grpd), denoted (4:4Sx.) " P(€, Srpd)n,
in which the cofibrations are objectwise and the weak equivalences are the isomorphisms on
sheaves of homotopy groups. '

(b) The adjoint pair (7sia, N) induces a Quillen equivalence between (T0iaSx.) 1 P(C,Grpd) i and
the S? nullification of P(€, sSet);.
To prove the proposition we will make use of the following model structure:
Theorem 8.5 (Heller Model Structure [He, Sm}). There are left proper, cofibrantly gener-
ated, simplicial model structures on P(C, sSet) and P(C,Srpd) where
o cofibrations are the maps which are objectwise cofibrations,
e weak equivalences are the objectwise weak equivalences, and
e fibrations are the maps with the right lifting property with respect to the trivial cofibrations.

Proof. A proof for presheaves of simplicial sets is contained in [He], while the general case of a left
proper combinatorial model category is contained in [Sm]. |

44




The categories of presheaves of simplicial sets and groupoids with the Heller model structure will
be denoted P (€, sSet)y and P(C, Grpd) g respectively.
The following lemma will also be needed in the proof of Proposition 8.4.

Lemma 8.6. 1. Let S,. be a set of generating trivial cofibrations in P(C,sSet);. Then the iden-
tity adjoint pair is an isomorphism

(5:.) 1 P(C,sSet)g = P(C,s8et) .
2. Consider the set of morphisms in P(C, sSet):
A" X 5 A"® X, forn>2,X€C

and let (52)~1P(C,sSet)y denote the localization of the Heller model structure with respect to
these morphisms. The Quillen pair (o4, N) induces a Quillen equivalence:

Toid : (S2)"1P(C, sSet)y +» P(C,Grpd)n : N.

Proof. 1. The existence of the Quillen pair is easy, from which it follows that trivial cofibra-
tions in (Sy,)"1P(C,s8et)y are also trivial cofibrations in P(€,sSet);. All trivial cofibra-
tions in P(C, sSet); are built from the generating ones, and so are also trivial cofibrations in
(Sx.)"1P(C, sSet)sr. As the cofibrations in the two model structures also agree, it follows that
the model structures are the same.

2. It is clear that (moig, N) form a Quillen pair. A fibrant object F' € (S?)~1P(C,sSet)y is

a Heller fibrant presheaf which has no homotopy above dimension 1. If F' is fibrant, then
F = Nm,i3F is an objectwise weak equivalence and hence a weak equivalence. For any
G € P(€,Srpd)y, the counit m,;¢NG — G is the identity, so the result will follow when
we prove that f € (S§2)~1P(C,s8et)y is a weak equivalence if and only if moia(f) is a weak
equivalence in P(€, 9rpd) . '
A map f is a weak equivalence if and only if the induced map on homotopy function complexes
hHom(f, F) is a weak equivalence for every fibrant F € (§2)'P(C, sSet)n. Let G/* denote
the fibrant replacement of G € P(€,Srpd)y and note that N preserves weak equivalences.
Writing hy ~ hy for maps of simplicial sets which are conjugated by weak equivalences in sSet,
and given that all objects are cofibrant, we have

hHom(f, F) ~ hHom(f, NoiaF) ~ h Hom(f, N (moiaF)/") ~ sSet(f, N(moiaF)! )

= sSet(wm-df, (WoidF)'fib).

‘So fisa Weak.‘equiValenée if and onl}" if hHom(7sia f, ToiaF) is a weak equivalence for all fibrant
F. As 74N = id and N preserves fibrant objects, this is exactly the requirement that 7,iq f
be a weak equivalence in P(C, Grpd)n.

|

Proof of Proposition 8.4. Applying Theorem 2.15(c) and (d) we see that after localizing the above
Quillen equivalences we still have Quillen equivalences

(S7)71(S5.) 2 P(€, sSet)s = (%) P(€, sSet);

(52)~Y(8,.) 1 P(@, s8et) g > (T0iaSx,) ' P(C,Grpd)

It follows that (migSy.) Y P(€, Grpd) g is Quillen equivalent to (S%)~1P(C, sSet);.
Now we will show that the weak equivalences in (S2?)~'P(C, sSet); are the isomorphisms on
sheaves of homotopy groups in dimensions 0 and 1. As F' — Nm,;qF is a weak equivalence (because
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it is one in (5§?)~! P(C, s8et)y ), morphisms which are isomorphisms on sheaves of homotopy groups
in dimensions 0 and 1 are weak equivalences.

The fibrant replacement functor in (S%)~!(S,,) ' P(C,s8et)y can be constructed as a (trans-
finite) composition of fibrant replacement functors of (S2)~!P(C, s8et)y and (S,,) ' P(C,s8et)n
[Dg2]. As fibrant replacement in (S2)~!P(€, sSet)y and in (S,,) ! P(C,sSet)y are isomorphisms
on sheaves of homotopy groups in dimensions 0,1, the same is true for fibrant replacement in
(5%)71(Sx.) "1 P(C, s8et) . Now let A 2, B be a weak equivalence and let P denote a fibrant re-
placement functor in P(S?)~1(S,,) ! P(C, sSet)s. As Pf, A— PA, and B — PB are isomorphisms
on sheaves of homotopy groups in dimensions 0,1, so is f. ’

We now show that weak equivalences in (74:¢Sr, ) "1 P(C, Grpd) g are the isomorphisms on sheaves
of homotopy groups. As m,;q preserves trivial cofibrations and objectwise weak equivalences, it
preserves all weak equivalences. It follows that all isomorphisms on sheaves of homotopy groups are
weak equivalences. Since 7,4 induces a surjective equivalence of categories

Ho((5%)7'(Sx.) ™ P(€, sSet)rr) = Ho((ToiaSr,) ™ P(C, Grpd)n),

all the weak equivalences in (70;aSr,) 2 P(C, Grpd) g are the imagé under m,iq of weak equivalences
in (S§?)71(S,,) 1 P(C, sSet) g and therefore are isomorphisms on sheaves of homotopy groups.
v ' : O

Theorem 8.7. The identity adjoint pair induces a Quillen pair
P(€,Srpd)r + (M0iaSx.) " P(€,Srpd)n-

Proof. The cofibrations in the model structure on P(€,Srpd) of Theorem 7.1 are in particular
objectwise cofibrations, and the weak equivalences agree with those in P(C, §rpd)g. So there is an
induced Quillen pair

P(€,Srpd) ¢+ P(C,Srpd) g ++ (MiaSa,) " P(C, Srpd)n.

To complete the proof, by Theorem 2.15, it suffices to show that the maps hocolimU, — X are
isomorphisms on sheaves of homotopy groups. Note that in the model structure of Theorem 7.1
the homotopy colimit of a simplicial object F, agrees with the geometric realization |F,|, as the
homotopy colimit is constructed objectwise.

Let Y € C, and consider the map

Grpd(Y, |U.|) = |Grpd(Y,U.)| — Srpd(Y, X),

where the equality above holds because both the simplicial action and colimits are defined objectwise
and Y is a discrete presheaf of groupoids. Using the fact that the Yoneda embedding preserves limits
we see that Grpd(Y,U,) is the nerve of the map Grpd(Y,U) — Srpd(Y, X), that is, the simplicial
groupoid:

= STPd(Ya U) X Grpd(Y,X) ST'Pd(Yy U) = 9rpd(Y7 U)

As Srpd(Y,U) and Grpd(Y, X) are discrete groupoids, it follows that the simplicial set Srpd(Y, U,)
has contractible components indexed by the image of Grpd(Y,U) in Grpd(Y, X). In other words
Srpd(Y, |U,|) is homotopy equivalent to the discrete set of maps ¥ — X which factor through U —
X . It follows that mo|U,| is the presheaf of sets defined by the image of U in X, and the presheaves
m1(|U.|, a) are trivial for all base points. Therefore the induced maps on m; are isomorphisms.
Now we check that |Us| = X induces an isomorphism on shmo. Locally, all maps f: Y — X
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factor through U, as f xx idy : Y xx U — U. Following f in the diagram

mo|Us|(Y)C X(Y)

|

mo|Ue|(Y % x U)——— X(Y xx U)
mo|Ue|(Y xx U xx U)— X (Y xx U xx U),

we see that f x idy is in the equalizer of the left column, and so defines an element of shmo|U.|.
It follows that the map shmo|Us] - X = mpX = shmeX is surjective. By construction of the
sheafification functor, as the map of presheaves mg|Us| — X is injective, the induced map shmo|Ud| =
X is also injective. Hence shmo|U,| = X = shmoX. O

Theorem 8.8. The identity adjoint pair induces a Quillen equivalence
P(€,5rpd) ¢ (MoiaSa.) " P(C, Grpd)n.
Furthermore, the weak equivalences in these two model structures agree.

Proof. To see that the left adjoint preserves weak equivalences, i.e. that the local weak equivalences
are isomorphisms on sheaves of homotopy groups, factor a weak equivalence f € P(C,SGrpd)r as a
cofibration 4 followed by a trivial fibration p. The cofibration 7 is a weak equivalence and so, by
Theorem 8.7, its image is a trivial cofibration in (m4iqSr.) 1 P(C,Srpd)s. As p is an objectwise
weak equivalence, it is also a weak equivalence in (mpiaSy.) 1 P(€, Grpd)n.

~ To complete the proof, it suffices to show that the weak equivalences in (T0iaSx.) 1 P(C, Grpd) gy
are also weak equivalences in P(C, Grpd). We use the characterization of weak equivalences in the
next subsection to prove this in Theorem 8.13. O

Corollary 8.9. If the Grothendieck topology on C has enough points, a morphism fe P(€,Grpd)
is a local weak equivalence if and only if it is a stalkwise weak equivalence of groupoids.

Proof. We have characterized the weak equivalences as those maps which induce isomorphisms on
sheaves of homotopy groups, so the proof is exactly the same as the proof in [Ja] of the analogous
result for P(C, sSet). O

Corollary 8.10. The local model structure on presheaves of groupoids P(C,Grpd)r is Quillen

equivalent to the S%-nullification of Jardine’s model structure on presheaves of simplicial sets
(S2)71P(C, s8et) ;.

8.2 Characterization of Local Weak Equivalences

In this subsection we give a characterization of the weak equivalences in P(C, Grpd)y, in terms of Dan
Dugger’s local lifting conditions. This characterization allows us to complete the proof of Theorem
8.8, and prove in subsections 8.3 that the local model structures P(C,Srpd)r, Sh(€,Grpd); and
Srpd /€y of section 7.3 are Quillen equivalent.

Definition 8.11. [Dg2] A map F 2 Ge P(C, Grpd) is said to satisfy the local lifting conditions
if: .
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1. (Surjectivity onmo). Given an isomorphism class in G(X), not necessarily represented in F(X),
there is a cover U — X such that it is represented in F(U).

00— F(X) ‘ A®<"—9 F(X) —=F(U)
P -
A® — G(X) Al ~— A" —> G(X) —= G(U).

Tt —_—— e - -

2. (Injectivity on mg). If two isomorphism classes in F(X) become identified in G(X), there is a
cover U =+ X such that they become identified in F(U).

8A! — F(X) OA} —> F(X) —= F(U)
A e
Al — G(X) Al G(X) GU).

8. (Injectivity on w1 ). If two elements in the automorphism group of some object in F(X) become
identified in G(X), there is a cover U such that they become identified in F(U).

BZ—=F(X) | BZ — F(X) —= F(U)
S I U el
A — G(X) A0 T G(X) G(U).

4. (Surjectivity on m ). If an element of the automorphism group of an object in G(X) is not in
the image of the automorphism group of an object lying over it in F(X), then there is a cover
U for which it is.

A? —> F(X) | A F(X) —F(U)

IR N

BZ — G(X) BZ — G(X) G(U).

Theorem 8.12. [Dg2] A map F 2, Ge P(C,Grpd) is an equivalence on sheaves of homotopy
groups if and only of it satisfies the local lifting conditions.

Proof. Recall that for F a presheaf, its sheafification shF', can be constructed by setting
shF(X) = colim(lim F(U) = F(V))

where the colimit is taken over all covers U = X and V' — U xx U. It follows that if a € shF(X)
then there exists a cover U — X such that a lifts to an element of F(U). Similarly if a,b € F(X)
have the same images in shF(X) there exists a cover U — X so that they have the same image in
F(U). Conversely these two properties are enough to characterize the sheafification. It follows that
conditions 1. and 2. are equivalent to shmg¢ being an isomorphism, and conditions 3. and 4. are
equivalent to sh Auty(a) being an isomorphism for all @ € F(X), X € C. O

We use this theorem to prove the following result which cdmpletes the proof of Theorem 8.8.

Theorem 8.13. A map F — G € P(C, Srpd) which satisfies the local lifting conditions is a local
equivalence. ‘
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Proof. We may assume F and G are fibrant, as fibrant replacement is a local weak equivalence, and
we have already seen that the local weak equivalences are isomorphisms on sheaves of homotopy
groups. In this case, we need to show that F' — G is an objectwise weak equivalence.

Consider a map F — G between stacks in P(€, Grpd) which satisfies the local lifting conditions.
First we show F(X) — G(X) is injective on automorphism groups. We are in the situation of 8.113,
so we are guaranteed that there is a cover U — X and a lift in the diagram of 8.113. The descent
condition for the cover U — X gives a commutative diagram

B7Z — F(X)

|

A —— F(U)==F(U xx U)==F({U xx UxxU).

The image of BZ in each F(U?) is an identity morphism. Since F'(X) - holim F(U,), the image
of BZ in F(X) must be trivial also. :

To show that F(X) — G(X) is surjective on automorphism groups, suppose we have a diagram
as in 8.114. Consider again the descent condition for the cover U — X, and the commutative
diagram '

BlZ > F(U) = F(U xx U) == F(U xx U xx U).

Let ¢ denote the image of BZ in F(U). Then d°(¢) and d'(¢) are automorphisms of the same
object in F(U x x U), and they have the same image in G(U xx U). Since F — G is an injection

‘on automorphism groups, d®(¢) = d!(¢), which gives us a lift of ¢ to holim F(U,). Since F(X) —

holim F(U.,), there is a unique lift BZ = F(X). »
Next we show that F(X) — G(X) is an injection on connected components. Let a,b € F(X),
be objects with isomorphic images in G(X). By 8.112, we have a commutative diagram

Al — F(X) —— F(U)

-7
ai// l
-
-

Al 2> G(X) — G(U).

We also have two maps A’ ) F(U xx U), whose composition to G(U xx U) is the same. Since
F — G is injective on automorphism groups, it follows that d*(a) = do(a). This data gives a lifting
of & to holim F(U,). Since F(X) — holim F(U.,), and the domain and range of a lie in F((X), this
in turn lifts uniquely to a morphism in F(X).

Lastly, we show that F(X) — G(X) is surjective on isomorphism classes. Consider the diagram
from 8.111

a

T
A =—— ) —— F(X) —F(U)

R

Al =— A0 —2 G(X) —= G(U).
v

Let a € F(U) be the image of A°, b € G(X), be the image of A® in G(X), and 3 : im(a) — im(b)
be the image of A! in G(U). Since F — G is an surjection on automorphism groups, we can lift
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(dl/.B)"1 o (d°B) : im(d°(a)) — im(d!(a)), to some a : d®(a) — dy(a) € F(U?). Since F — G is
an injection on automorphism groups, this lifting is unique. The image of d*(a™!) o d®(a) o d*(a)
is trivial in G(U?), so it is also trivial in F(U?). Hence (a, ) is an element of holim F(U,), which
determines a lifting in the diagram

0 F(X) —— holim F(U,)

e

A° =2 G(X) —= holim G(UL).

Pick o' € F(X) whose image in holim F(U,) is isomorphic to (a,a). Then the image of a’ in G(X)
is isomorphic to b, so we can fill in the following diagram

a’'

AV =———9)—3F(X)
Al == A2 =3 G(X).
which completes the proof. . O

Corollary 8.14. A map F — G € P(C,S9rpd) is a local equivalence if and only if it satisfies the
local lifting conditions.

Corollary 8.15. Let F — G be an objectwise fibration, then the first of the local lifting conditions
of 8.11 can be simplified to 1'. (Surjectivity on mg ). ‘

) — F(X) (0—>F(X)—:—;F(U)
R N s
AO—fG(X) : A0 ¥— G(X) —= G(U).

The local lifting conditions 1',2,3,4 are preserved under pullbacks, so the pullback of an objectwise
fibration which is a local weak equivalence is again an objectwise fibration which is a local weak
equivalence.

8.3 Comparison of the Local Model Category Structures

Proposition 8.16. The adjoint pair

r i
Grpd/C P(€,Grpd) Sh(@, Grpd)
14 sh

induce Quillen equivalences between the local model structures.
Proof. Let S denote the sets of mérphisms
hocolim U, — X, for {U; —-) X} a cover
in P(@, Srpd), Sh(C, Srpd) and Srpd/C. Since homotopy colimits commute with the left adjoint in a
Quillen pair, the set S € P(€, Grpd) is mapped by sh and p to the sets S in Sh(C, Grpd) and Srpd/C
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respectively. By Theorem 2.15, the adjoint pairs (sh,1), and (p,T) are still Quillen pairs between
the local model category structures, and (p,T) is still a Quillen equivalence.

It remains to show that (sh,i) is a Quillen equivalence. By construction of the sheafification
functor, the map F — shF satisfies the local lifting conditions, and so is a weak equivalence in
P(@,Grpd)y. Similarly, it is easy to check that if a map f € P(C,Srpd) satisfies the local lifting
conditions then so does sh(f). ,

We will now prove that sh preserves weak equivalences. Let A — B be a weak equivalence in
P(C,Srpd)r, and P denote a fibrant replacement functor on P(C, Grpd)r. One can check directly
that the sheafification of a stack F is a stack and so sheafification preserves fibrant replacement. We
have the following commuting diagram

A——B ’ shA —— shB
lN l~ sh l~ v l~
. B
PA—— PB sh(PA) — sh(PB).

In P(€,Srpd)L, the morphism sh(PA) — sh(PB) is a weak equivalence between fibrant objects
(as PA =5 PB is a weak equivalence in P(€,Grpd)r) and so is an objectwise weak equivalence.
It follows that sh(PA) — sh(PB) is a weak equivalence in Sh(C,Grpd)r, and therefore, so is
shA — shB.

Now we show that the forgetful functor i also preserves weak equivalences. Let f be any weak
equivalence in Sh(C,Srpd)r, and Pf its fibrant replacement in P(C,SGrpd)r. As sh(Pf) is the
fibrant replacement of f in sheaves it is also a weak equivalence, and so also an objectwise weak
equivalence. It follows that sh(Pf) is a weak equivalence in P(C, Srpd) L, and therefore f is a weak
equivalence also. ‘

As both i and sh preserve weak equivalences, and the unit and counit are weak equivalences, the
Quillen pair (sh,1) is a Quillen equivalence. O

Corollary 8.17. A morphism X Live Sh(@,Srpd);, is a weak equivalence if and only if i(f)
is a weak equivalence in P(€,Grpd)r. It follows that the weak equivalence in Sh(C,Srpd)L are the
maps which satisfy the local lifting conditions. In particular, the weak equivalences in Sh(C, Srpd)L
are the maps which are objectwise full and faithful, and satisfy 8.11(1).

Proof. We show that if a morphism X Liyve Sh(€, Grpd)y, is such that i(f) is a weak equivalence
in P(C,Grpd), then f was already a weak equivalence in Sh(C, Grpd)r. Let C denote a cofibrant
replacement functor in P(C,Srpd)r, and let F be a fibrant sheaf. Then the map hHom(f,F) =
sSet(C f, F) is a weak equivalence. As sheafification preserves fibrant replacement

sSet(Cf, F) = sSet(sh(Cf), F),
“and so the map sSet(sh(Cf), F) is also a weak equivalence. As sh(CX) and sh(CY') are cofibrant
as sheaves it follows that sh(Cf) is a weak equivalence in Sh(C,Srpd).. We have the following

commutative diagram in Sh(€, Grpd)

sh(CX) 20 shey)

shX =X —L>shy =Y.

where the vertical arrows are weak equivalences because they are the sheafification of weak equiva-
lences in P(€, Grpd).. By a 2 out of 3 argument, it follows that X 2, ¥ is also a weak equivalence
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in Sh(C,Grpd)r.

To complete the proof, notice that for a morphism X Ly of sheaves, the local lifting conditions
2. - 4. are equivalent to f being objectwise full and faithful. , O
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Chapter 9

Stackification

In this section, we construct an explicit stackification functor for P(C, Grpd). Afterwards we show
that the restriction of this stackification functor to sheaves is also a stackification functor. Note
however that this functor is not the left adjoint to the inclusion of stacks into P(C, §rpd).

9.1 Colimits over Enriched Categories

We recall some of the properties of enriched diagrams over enriched categories see [GJ] for a more
complete discussion of this subject.

Definition 9.1. 1. A functor I RNy Vs of categories enriched over sSet is an enriched functor if
for alli,i' € I F induces a map sSet(i,i') — s8et(F (i), F(i')) compatible with composition.

2. A natural transformation F — G of enriched functors consists of maps F(i) 01 G(i),i el
such that the following square commutes

sSet(i,i") ——— sSet(F (i), F(i'))

. o
(7)

s8et(G(1), G(i')) —= sSet(F (i), G(i")),
which, if M is enriched over sSet, is equivalent to the commutation of following square

s8et(i,i") ® F(i) — F(i')

101(1') : la(i)

sSet(i,i') ® G(i) — G(i')

In this chapter M! denotes the category of enriched functors and natural tmna:formations be-
tween them.
3. The colimit of an enriched functor I i M, denoted ecolim is the left Kan extension of enriched

functors along the collapse functor I 2+ *; that is, ecolim is the left adjoint to M =% M1,
and so
Hom 1 (F, G o p) = Hom s (ecolim F, G)
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Using this definition we can calculate that ecolim; F is the coequalizer in J

HF z)®s$et(z i') = F(i").

i,

The homotopy enriched colimit hoecolim is the diagonal of the bisimplicial set whose mmphcxal set
in dimension n is

[I Fio) ® sSet(io,ir) ... 68et(in_1,in)-

1:0;---7-'“

More generally the left Kan extension of T Ny Vs along I R | , denoted L,F evaluated at j € J

is the colimit of
HF ® sSet(i,1 ) ® sSet(pi’,j) = HF i) ® sSet(pi, J).

i,

The homotopy enriched Kan eztension along I -2, J, denoted hL,F evaluated at j € J is the
dlagonal of the bisimplicial set whose simplicial set in dimension n is

H F(io) ®sSet(zg,zl) ... 88et(in_1,in) ® sSet(pin,j). -

Q.-
By general nonsense one can check that for I 2+ J - K,
Lrop = LpoL,, hLyop — hL, o hLy.

In particular,
ecolim  ecolim oL, hoecolim = hoecolim oh Ly,

Definition 9.2. Let mol denote the category with the same objects as I and mapping spaces
s8etror(i,i') := mosSets(i,i'). I =% mol denotes the enriched functor which is the identity on
objects of I and for each mapping space is the projection

sSet(i,i') —» TosSet(i,i).
We will apply these results to diagrams indexed over the category of covers of some X € C.

Definition 9.3. Let cov(X) denote the categbry of coverings of X, whose objects are covers {U; =
X} and whose morphisms {V; - X} — {U; — X} are refinements of covers. The enrichment
over sSet, and thus Grpd, is given by the simplicial set of maps between the nerves of the covers in

P(C/X, s8et).

To simplify notation we will often write U for the cover {U; — X} when it is understood that
U is in cov(X).
Theorem 9.4. Let I 25 J be a surjective map of enriched categories satisfying for all i,i' € I the

induced map sSet(i,i') — sSet(p(i),p(i')) is a (surjective) weak equivalence, and let I £, sSet be
an enriched diagram. Then the induced map F(i) = hL,F(pi) is a (surjective) weak equivalence for

all i € I. The same holds for diagrams of groupoids I BN Srpd.
Proof. The fact that this map is a weak equivalence is an application of the Dwyer and Kan homotopy

theory of enriched diagrams, Chapter IX [GJ] Theorem 2.14 and Corollary 2. 12 The surjectivity is
apparent from the formula gwen for L,F above.

For diagrams of groupoids I £ Grpd the map F(i) — thF(pz') is a weak equivalence since it is
after applying N (since NL,F = NmoiaLp, NF as N hocolim = N4 hocolim N). By construction
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the map is surjective on objects, and as it is in addition a weak equivalence it is also surjective on
morphisms. ' O

Corollary 9.5. Let F be a cov(X)°P-diagram of groupoids and cou(X)°P =% mocou(X )P the pro-
jection map. .

1. For all covers U the natural map F(U) = hLrF(U) is a surjective weak equivalence, or
equivalently a trivial fibration.

2. Let G be a finitely generated groupoid. Given any G =2 hoecolim,,y(x) F there ezists U and
G = F(U) such that the composite G 23 F(U) — hoecolim,,(x) F' is homotopic to a.
3. Let G — H be a cofibration of finitely generated groupoids. Given any commutative diagram

G—— F(V)

l

FU)

>
-
P
s =
e

H Z— hoecolim .y (x) F

then there ezists a cover U refining V and a lifting as above, with the composite H-F{U) -
hoecolim,,,(x) F' homotopic to the given map H — hoecolim oy x) F. In particular, any object
of hoecolim F' is isomorphic to an object in the image of some F(U); and any automorphism
is conjugate to an automorphism in the image of some F(U). We will often be concerned with
the case G = 0A' = At =H,1=0,1,2.

Proof. 1. We need to show that the maps sSet(U,V) — mos8et(U, V) are weak equivalences for all
U,V € cou(X). The nerve of a cover is a O-coskeleton in s€ /X and so the n-simplices of s8et(U,V)
are in bijective correspondence with n-tuples of 0 simplices (or refinement maps U — V). This
implies that sSet(U, V) is contractible and mosSet(U, V) is a the one point set. ‘

2. As directed colimits commute with finite limits (in Set), the directed colimit of groupoids is the
colimit of the object and morphisms sets. The category mocov(X) is directed and has discrete (trivial)
sSet enrichment and so hoecolimcoy(x) agrees with the usual colimit whose object/morphism sets
are just the colimit of object/morphism sets, and so

hoecolim F — colim hL,.
cou(X) mocov(X)

Hence, there is some U .for which we can lift @ to a map G — hLn,F(U). Now since F({U) —»
hL.,F(U) is a trivial fibration by 1. we can further lift this to some map G —= F(U).
3. As mocou(X) is directed, (and directed colimits of groupoids is the colimit of the ob-

jects/morphisms) there is some U so that H lifts to a map H — hLz F(U). The result follows
as F(U) = hLn, F(U) is a trivial fibration by part 1. : O

Let F be a presheaf of groupoids on € and consider the enriched functor cou(X)” I, Srpd
defined by

U + holim F(U,) = Grpd(|U.|, F).

It is easy to see that Fx is an enriched functor, as it is a composition of the Yoneda embedding of
U, into s€ — P(C, sSet) — P(C,SGrpd), followed by maps into F.
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9.2 Stackification Functor
Definition 9.6. Let (=) be the endofunctor of P(C,Grpd) defined by

F(X)= hoec(o}i)m holim F(U,) = hoecolim Fy.

Given a map X Lvee there is a natural map

£y B9 pex)

defined by pulling back covers and it is easy to check that these assignments make F' an element of
P(€, Grpd). In fact, (=) : P(C,Grpd) = P(C,Grpd) is a functor with a canonical coaugmentation
F > F,
which is induced by the inclusion {X — X} € cov(X).
‘We will prove that (=) is a stackification functor, by which we mean:

1. ¥ is fibrant and
2. the natural map F — F is a weak equivalence.

Statement 2. is an easy consequence of the characterization of the local weak equivalences given in
section 8.

We begin by proving two lemmas concerning maps induced by refinements of coverings between
the homotopy limits of the cosimplicial groupoids obtained by applying a presheaf of groupoids to

the nerves of the coverings. In the lemma and later on, we say that a map of groupoids G5 His
injective (Tesp. surjective, bijective) on morphisms if for each a,b € obG, the map Homg(a, b) N

Hompg (¢(a), #(b)) is injective (resp. surjective, bijective).
Lemma 9.7. ‘Let F € P(C,Srpd) and assurﬁe that for every cover {U; —» X} the ﬁatuml map
| F(X) — holim F(U.)
is injective (respectively bijective) on morphisms. Then the same is true of any map
€* : holim F(U,) — holim F(V,)
induced by a refinement e : {V; =+ X} — {U; — X}
Proof. Consider thg diagram of covers and refinement maps

{VixxU; » X} — {V; = X}

| |

U5 X} — > X=X
Applying F and taking homotopy limits we obtain

holim F(U, % x Va) <— holim F(V})

L 1

holim F(U,) <——— F(X).
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We will prove that under the above hypothesis the maps holim F(V,) = holim F(U, xx V4) also
satisfy the hypothesis. We begin by noting that this map can be constructed as holime (F(Ve) —
holim, F(U, xx V4)) by hypothesis the inside map of diagrams is levelwise (bi)injective on mor-
phisms. Applying holim, this remains true, as m of holim, is the equalizer of 7, and so preserves
isomorphisms and monomorphisms. ' O

Definition 9.8. If F € P(C,Srpd) satisfies the injectivity condition of Lemma 9.7 we say that F
is separated on morphisms. If F satisfies the bijectivity condition we say that F is a homotopy sheaf
on morphisms.

In the proof of the following theorem we will make use several times of the following fact: if G,
is a cosimplicial groupoid there is a natural map '

holim G, = Go

which is an injection on morphisms. This follows immediately from the description of the homotopy
limit in Corollary 4.5

Note 9.9. To simplify notation from here on we will sometimes denote the cover {U; = X} by
U — X, and the products 11 U: xx U; will be denoted by U x x U. Similarly the covers {Vi; = U;}
will be denoted by V — U, their products by V xy V, etc. ,

For a presheaf F on C the product [ F(U;) will often be denoted by F(U), and [TF(U; xx Uj)
by F(U xx U), etc.

Theorem 9.10. Let F € P(C,Srpd). Then
(a) F is separated on morphisms.
(b) If F is separated on morphisms then F is a homotopy sheaf on morphisms.

(c) If F is a homotopy sheaf on morphisms then F is a stack.

Proof. (a) Let U — X be a cover. It suffices here to check that the map F(X) — F(U) is injective
on automorphisms. Let f be an automorphisms in F(X) which is sent to the identity by this
map, and {V — X} be a cover where f is defined. Then by Corollary 9.5 there is a refinement
(W = U) — (V xx U — U) such that the image of f is homotopic to the identity in
holim F((W — U)a). , ,

Let W — X be the composite cover. Then f is sent to the identity in holim F({W — X}.),
since the image of f is the identity in F(W), and therefore f =id € F(X).

(b) Let a,b be objects in F(X) and a Liva map in holim F(U,) (which is necessarily in the
equalizer of F(U) = F(U xx U)). By Corollary 9.5 we can choose covers W — X, V = U,
(refining W x x U — U) so that @ and b can be lifted to holim F(W,) and f can be lifted to
holim F({V — U}.) C F(V).

As f defines an element in holim F'(U,), the two images of f in F(U x x U) agree, and so the two
images of our representative of f in holim F({V xx U = U xx U}.), and holim F({U xx V —
U xx U}.) agree in the homotopy enriched colimit.

Again by Corollary 9.5 there is a common refinement {W' — U xx U} of the two covers
{VxxU—UxxU},and {U xx V = U xx U}, such that the images of f under the two
projections are equalized in holim F({W' — U xx U}.). Since F is separated on morphisms,
by lemma 9.7 we can take the common refinement to be {V xx V = U xx U}. This gives a

57




commutative diagram of groupoids

f € holim F({V = U}.) j]= holim F({V xx V = U xx U}a)

l |

F(V) £ F(V xx V)

dl

where f is in the equalizer of the top row, from which it follows that f maps to an element in
the equalizer of the bottom row. So f is a morphism in lim F({V — X}.) and hence defines a
morphism f’ € holim F({V — X}.)

We claim that the image of f' € F(X) is a lifting of f € F(U). First, as f € F(V) has domain
and range the images of a,b € F(W) — F(V) respectively, f' at least has the correct domain
and range. We must also check that the image of f' under F(X) = F(U) is f € F(U).

The image of f' in F(U) is defined by pulling back to the cover F({V xx U — U}). There is
a refinement of covers given by the “diagonal map”:

(VoUl B {VxxU-U}
and whose composition with the projection the V xx U £+ V is idy. So the pullback of f to
holim F({V = U}.) C F(V) is just f, and so their images agree in hoecolim oy () F-

An object (a,a) € holim F(U,) consists of an element a € F(U) and an isomorphism doa —
dia in F(U x x U), satisfying the cocycle condition in F(U xx U xx U). Let {V — U} be a
cover on which a is represented by (a, 8) in holim F({V — U}l.).

As before, by multiple applications of Corollary 9.5 and of Lemma 9.7, (as we can assume F'is a
homotopy sheaf on morphisms,) it follows that the object (a, ) can be lifted to representatives
which define an object of the homotopy limit of the cosimplicial groupoid (a € F(V xx V))

holim F({V = U}s)=———=—=>holim F({V xx V = U xx U}.)

=== holim F{Vxx VxxV =3UxxUxxU}s) -

In other words, a can be lifted to an isomorphism a € F(V x x V) which satisfies the cocycle
condition in F(V xx V xx V), and all of this is compatible with 3.

" Applying the natural transformation p we obtain an object in the homotopy limit of the cosim-

plicial groupoid -
FV) == FVxx V)= F(VxxVxxV)---.

This is an object in holim F({V — X}.) defined by descent data which we call (a',a’), and
hence determines an object in F(X). :

We can rephrase this by saying that (a, @) can be lifted to an element of the homotopy inverse
limit of the bicosimplicial diagram F({Ve — U.}.), that is the diagram whose n-th column
is F({V™® — U"}.), where V" (resp. U™), is the n-fold product of V' (resp.U), with itself
over X. To obtain an element of holim F({V — X}.) we just restrict to the 0-th row of this
bicosimplicial diagram, which we call alo.

Now we would like to show that the pullback of a|g is isomorphic to the original data (a, )
in holim F(U,). The image of alo in holim F'(U,) is determined by pulling back V — X to a
cover of each U™, then the image of a}o determines an element in holim F' of the nerve of these
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covers. For each U™, the covers V xx V™ — U™ refine the pullback of the cover V — X, and

fit together into a cover of the simplicial object U,.

The image of alo in holim F(U,) can be represented by the pullback of alp to an element of
F{V xx V™ = U"},) over the pro;ectlon maps V xx V" 29, V. We can also pullback (a,a)

over the refinement maps V x x V™ == V™, and so both of these elements are represented in F

of the covers V x V™ — U™. Now the image of alo is the pullback of (a, @) along the composite

(V xx Vi = Us}e 2 Vo xx {Vo = Usde 22 Vo 55 (Ve = Ul

Whereas our representative of (a,a) in F({V x V® — U"},) is the pullback of the original
representative (a, o) along the refinement map

{Vxx Ve U}e 2Ve xx{V = Uste 25 {Va = Udle-

Explicitly, we have two maps in s€/X
A(Vy xx {Ve = Uste) = A{Va = Us}e
and we need to show that the inducéd maps
holim F({Vs = Ud}.) = holim F(V, xx {Va = Us}.)

are homotopic. Equivalently we could show that the induce maps

holim F(A{V. — Us.}e) = holim F(AV, xx {Ve = U.}s)
are homotopic. This implies that the image of alo and (a,a) are isomorphic in

hoan(V. x x {Va = U.}+) = holim F(U.).

In order to prove that the induced maps are homotopic, it suffices to show that the simplicial
mapping space from anything into A{V, — U,}. € s€/X is path connected.

Lemma 9.11. Consider A{V. — U,}e € sC/X, the simplicial set of maps sSet(—, A{V, —
Us}e) is path connected.

Proof of lemma. Using the Yoneda embedding s€/X — P(€/X, s8et) it suffices to show that
the mapping space in simplicial presheaves sSet(—, A{V, — U, }.) is path connected, or that
the groupoid of maps Grpd(—, meia A{Ve — U.}.) is contractible. As we have the following
equivalences in P(C/X, sSet)

A{V, = U.}s — hocolim{V, = Us.}.

it suffices to show that A{V, — U.}. —= * is an objectwise weak equivalence in P(€/X, Srpd).

First, we will prove that hocolim{V, — U, }. is a contractible simplicial presheaf. Given any
Y = X € €/X, let S(y,v) (resp. S(y,v)) denote the set of mapsY = V € €/X (resp. Y = U).
We have that V,(Y) = coskoS(y,v) and Us(Y) = coskoS(v,v) and so

hocolim{V, — U,}«(Y) = hocolim{V.(Y) = U.(Y)}« = hocolim{coskoS(y,v) — coskoS(y,u)}e-
We can compute this homotopy colimit in each dimension and see that it is coskoSy,y,v where

Sy v,u denotes the image of Sy,v in Syu It follows that the map hocolim{V. — U,}s — * is
an objectwise weak equivalence. O
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Appendix A

Limits and Colimits in Srpd/C

Theorem A.l. Categories fibered in groupoids over € are closed under small limits and colimits.
In order to prove this, we will need a few preliminaries.

Definition A.2. F : & — C € Cat /C is pre-fibered in groupoids if
1. Given f : Y = X € € and X' € & such that F(X') = X, there ezists f' € & such that
F(f =1 ‘

2. Given a diagram in &, over the commutative diagram in C,

Y’ e Y
v e
Z’LI)X’ =F> Z—g—>X,

with F(f') = f,F(g") = g, there ezists h' such that g'oh’ = f' and F(h') = h. Moreover, given
two such maps h',h, there ezists an automorphism ¢ € Aute(Y') such that F(¢) = idy and
hi o ¢ =hi. ’

Thus, the difference between fibered and pre-fibered is that categories which are pre-fibered in

groupoids only satisfy the uniqueness in condition 2) of Definition 5.2 in a weak form.

Proposition A.3. Let I be a small category, and F : I — Grpd/C, a diagram. Then the colimit
of F in Cat/C is pre-fibered in groupoids.

Proof. The coproduct in Cat/C€ of a set of objects in Grpd/C is again in Grpd/C so it suffices to
consider the case of a coequalizer diagram. Consider the diagram

E'%E—mﬁ,
2

N

¢

where Fy, F; € Grpd/C and € is the coequalizer of the two arrows in Cat. Recall that the coequalizer
in Cat has objects the coequalizer of the sets of objects, and morphisms the formal compositions of
the coequalizer of the morphisms, modulo the relations given by composition in €. Thus the map
& — € clearly satisfies condition 1. of definition A.2.
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We now prove that it also satisfies condition 2. with an induction argument. Consider the
diagrams

v Y

l' /lf
- g — g
Z7—X Z—X

where the bared objects and morphisms represent objects and morphisms in € projecting to the

corresponding objects and morphisms in €. Using the construction of &, we can factor f and § as

formal compositions of maps in the image of € in & Let f=(fo, fi,-- > fn)and @ = (G0, G1s--- »Gm);

with domain(f;) = range(fi—;), domain(g;) = range(gi-1), and range(f,) = range(gm) = X in €.
Firstly, consider the case when n = m = 0. Let ‘

Ihx, 2,8 X, c¢

be representatives of the maps f and § respectively. If there is X’ € & such that F1(X') = X; and
F(X') = X, lift f, g to morphisms f',¢' in & whose range is X'. Since & € Grpd/C, there is a
unique h' € &', projecting to h € €, such that g’ o b’ = f'. Since & € Grpd/€, there are unique
isomorphisms in &, projecting to identity morphisms in €, filling in the diagrams

R (YY"

Fz(h’)l

Fz(ZI) Fz(f')

|
'
sz(kx

Zz T X2‘.

Then the map h, defined as the formal composition ¥; — F1(Y') ~ Fo(Y') = Fy(Z') = Z,,
is such that o h = f € &. In general, there will not be an object X' such that F1(X') = X, and
F>(X") = X, but a finite sequence of objects in £’ such that their images under F; and F, form a
chain connecting X; and X;. The above argument is easily generalized to deal with this case. This
completes the proof in the case when n =m = 0. :

If n = 0 then we can use the previous case and induction on m to lift as indicated in the following
diagram

so the result is true in the case when n = 0 and m is arbitrary.

It is not hard to check that one can choose the lift A so that it is the image in & of a formal
composition of isomorphisms in €y followed by a lift of A to €.

To complete the proof, notice that there is a lift of f € € to a map

7, L % ek
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which is in the image of £. Then by the previous case, there is an isomorphism ¢ € &, projecting to '
idy € €, as well as a map A’ € £ such that the following diagrams commute in €

% ;
_ F '_{
ol IR

Y _ Y _
Y-T’X Z——§—>X.

We can now take k = &' o¢~1. Notice that if A is the identity, we can choose % to be an isomorphism.
0O

Proposition A.4. Let £ — € be pre-fibered in groupoids. Let ~ be the equivalence relation on €
generated by setting a ~ id for the automorphisms a € & which satisfy:

1. a maps to an identity morphism in €,
2. there ezists f € € such that foa = f.
Then £/ ~— € is also pre-fibered in groupoids.

- Proof. The map & — &/ ~ is surjective on morphisms and bijective on objects so this is obvious. [

Proof of Theorem A.1. Colimits: Let I be a small catego:ry and F : I — Grpd/C be a diagram.

We denote by F' the composite 1 £, Grpd/C — Cat/C€. Let Ecolim denote the colimit of F' in Cat.
We will show that the colimit of F is the directed colimit of categories in Cat/C,

E:colin-'n - Ecolim/ ~—r (Ecolim/ ~)/ ~— (A5)

Denote the i-th category in this diagram &i,;, and the colimit € := colim;(€%ym)- Propositions
A.3 and A.4 imply that Condition 1) and the existence part in Condition 2) of Definition 5.2 are
still satisfied by &.

To show the uniqueness part in Condition 2), suppose given a commutative diagram in &

vy 1> x
hzﬂhy
Z

such that h; and hy project to the same map in €. Pick lifts b} and hj of h; and h; in some €} tim-
Then they also project to the same map in € so by Proposition A3, there is an automorphism a of
Y in €%, mapping to an identity in € such that hj o a = hj. It follows that hy = hj € gl and
- s0 h; and hy agreein €.

We still need to show that & is the categorical colimit in Grpd/€, but this follows because any
map F — &' € Cat/C, with & € Grpd/€ factors uniquely through F/ ~.

Limits: Let F : ] — Grpd/C be a diagram, and let lim F' denote its inverse limit in Cat/C. If
lim F' € Grpd/C then it is the limit in Grpd/C as this is a full subcategory of Cat/C.

The objects and morphisms of lim F' are the inverse limits of the sets of objects and morphisms,
so for each object X' € lim F”, the category (lim F')/ X', is the limit of categories F'(i)/X],i € I. It
is easy to see that the map (lim F')/X' — €/X

e is a bijection on Hom-sets, since this is the case for each of the constituent functors F'(i)/X; —
/X,

e but it is not necessarily a surjection on objects even though each of the functors F'(i)/X; — €/X
is.
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It follows that if lim F” is not fibered in groupoids over €, this is due to the failure of Condition |
1) in Definition 5.2. However, in this case, the full subcategory of lim F’ with objects all those X’
such that (lim F')/X' — €/X is surjective on objects, clearly is fibered in groupoids and satisfies
the universal property of the limit,

d
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Appendix B

Lax Presheaves of Groupoids

In this section we will define the category of lax presheaves of groupoids, denoted laz — P(€, Grpd),
and we will give an equivalence between this category and the category Srpd/C. When € has a
Grothendieck topology, laz — P(C,Grpd) is also used as an ambient category in which to define
stacks and we observe that the two different definitions of stack agree under this equivalence.

Using this equivalence of categories, all the results proved in this paper for Grpd/C can be
transfered to laz — P(C, Grpd). '

One should think of a lax presheaf on € as a category fibered in groupoids together with a choice
of pullback functors. The morphisms between lax presheaves are sufficiently flexible so that different
choices of pullback functors for the same category fibered in groupoids correspond to canonically
isomorphic lax presheaves. :

The relation between the categories Grpd/C and laz — P(€,Grpd) is analogous to the relation
between two different ways of defining principal G-bundles. One can define a bundle on X as a
space over X which is locally trivial, or one can define the bundle to be the space over X together
with a set of local trivializations. When the trivializations are part of the definition, one has to add
morphisms to the category which give equivalences between the different choices of trivializations.

Definition B.1. [Bry, Brn] The objects of lax — P(C, Grpd) are the assignments:
e for each object X € €, a groupoid F(X),
e for each morphismY Jixe G, a functor F(X) W F(Y),

e for each pair of composable morphisms Z Sy Lixe €, a natural transformation F(g) o

F(f) 25 F(fog),
such that

e for every triple of composable morphisms W Sz Ly I x € C, the following diagram
commutes

F(h) o F(g) o () L F(h) 0 F(f o g)

ah,gof(.f)l Gh.fugl
F(goh) o F(f) F(fogoh).

A morphism ¢ : F — F' € lax — P(€, Grpd) is an assignment:

Ogon, s

e for each object X € €, a map F(X) oux) F(X),
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e for each morphism'Y i x € €, a natural isomorphism (Y ?—2 F'(f X),

5(x) 25 5 (x)
o) y’ i
F(Y) —= V),

such that

e for each pair of composable morphisms Z <5 Y Jixe C, the following diagram commutes

/l/¢(Z) e Qg)\A

#(Z)ob,, : #(fog)

#(Z) 0 F(g) o F(f) - F'(fog)op(X)

#(g)oF (f) . Tolglf°¢(x)
)o 6(¥) 0 5(1) e F(g) 0 () 0 9(X).

There is a natural groupoid action on laz — P(€, Grpd), in which:
o the groupbid of maps has objects maps, and morphisms the coherent natural isomorphisms,
o the tensor and cotensor are defined objectwise.

There is an obvious inclusion i : P(C,Srpd) — laz — P(C, Grpd) which preserves the groupoid
action. ‘

Example B.2 (Vector Bundles on Top Revisited). Consider the assignment Top — Grpd
which sends Y to the groupoid of vector bundles over Y, and a map f to the pullback function

f*. This assignment is not a functor because given Z -4 ¥ Jx € Jop and E — X a vector
bundle, the pullbacks g*f*FE and (f o g)*E are not equal. There is, however, a canonical isomor-
phism g* f*E — (f o g)*E so the assignment above together with the canonical isomorphisms is an
example of a lax presheaf on Top.

Instead of working with this lax presheaf, we can consider its associated category of pairs, or
Grothendieck construction. This has objects the pairs (Y,E — Y'), where E is a vector bundle
over Y € Top, and morphisms (Y, E) — (Z,E'), the pairs formed by amap f: Y — Z, and an
isomorphism a : E — f*E'. It is easy to check that this category is isomorphic to the category
Vec(Top) € Grpd/C of Example 5.1.

Just as in the bundle case, there is a “forgetful functor” lez — P(C,Srpd) — Grpd/C which
sends lax presheaves corresponding to different choices of pullback functors for € = €, to objects in
Grpd/C which are canonically isomorphic to € — €.

Definition B.3. Given F € laz — P(C, Srpd), let pF € Cat /C be the category with
e objects, the pairs (X,a) with X € C and a € F(X),
e morphisms (X,a) — (Y,b), the pairs (f,a) where f : X — Y is a morphzsm in C and
a:a— F(f)b is an isomorphism in F(X). .
7o) (Y,b) = (o) (Z,c) is the pair (go f,05,00F(f)(B) o).

It is not hard to show that pF is a category fibered in groupoids over €, and that p defines a
functor laz — P(C, Grpd) — Grpd/C.

The composition of two morphisms (X,a) —
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Theorem B.4. The functor p : laz — P(C, Srpd) + Grpd/C is an equivalence of categories.

Proof. Let & € Grpd/€. A choice of a pullback functor f* : €Ex — €y for each ¥V i) X € G,
determines a lax presheaf F with F(X) := £x, and F(f) = f*. Given two such choices of lax
presheaves F, 3", there is a canonical isomorphism ¢ : F — ¥, where ¢(X) =idg, for each X € G,
and ¢(f) is the canonical natural isomorphism from F(f) — F( f). For each € € Grpd/€ make an
arbitrary choice of pullback functors, and let L(€) denote the resulting lax presheaf.

For each X —'f-> Y €€ amap & e determines squares

Ex Lﬂ‘ly

where the unique natural isomorphism follows from condition 2. of Definition 5.2. The uniqueness

of the natural isomorphism in the square above guarantees that these squares patch together to give
a morphism L(F) : L(€) — L(€') € lax — P(C,$rpd) and that L is indeed a functor.

. It is now easy to check that there are canonical natural isomorphisms L o p & idj,,_p and

pOL EidSrpd/e- O

Note B.5. It is easy to check directly from the definition of stacks in lax presheaves [Brn, Pg.5]
that F € laz — P(C, Grpd) is a stack if and only if p7 is a stack in Grpd/€. Thus, the equivalence of
categories between lax— P(€, Grpd) and Grpd/€ restricts to an equivalence between the subcategories
of stacks.
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