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Abstract

In recent years branes have had significant impact in the construction of higher di-
mensional theories of SUSY breaking, and of gravitational phenomena. In particular
they provide strong motivation for considering anomaly mediation as a mechanism of
SUSY breaking communication. Anomaly mediation provides a very predictive spec-
trum for the superpartner masses, which is quite model independent, and is given in
terms of the beta functions and anomalous dimensions of the fields. This spectrum is
also largely flavor blind, and thus does not suffer from flavor changing neutral current
problems. Anomaly mediation, however, predicts negative slepton mass squardes. In
this thesis we will try to address this problem by providing positive contributions to
the slepton masses, through higher order SUSY breaking effects stemming from hav-
ing additional heavy fields in the theory. We will also provide natural values for the u
and B parameters of the MSSM. Branes also allow for the surprising possibility that
we may be living in a world with infinite extra dimensions with minor observational
consequences. In this dissertation we will show that the RS2 and LR models, which
have a single infinite dimension, are completely consistent and conform nicely with
current experiments. We will also comment on possible holographic interpretations of
these models as having 4D gravity coupled to a fully quantum conformal field theory.

Thesis Supervisor: Lisa Randall
Title: Professor
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Chapter 1

Introduction

1.1 The challenges of a supersymmetric solution

to the hierarchy problem

One of the most fundamental challenges of particle physics is to address the vast
hierarchy of scales between the Planck mass and the scale of electroweak symmetry
breaking. Assuming, as in the Standard Model (SM), that the Higgs is a fundamental
scalar particle, this is two-fold challenge. One must not only explain why the Higgs
mass is much smaller than the Planck scale, but also provide a reason for this mass to
remain small against radiative corrections. Such corrections would naturally push the
Higgs mass to highest available scale, which would be near the Planck scale. Thus,

the problem involves two separate types of fine tunings.

Traditionally, these two facets of the so called hierarchy problem were addressed
using four dimensional field theory models and techniques. Among these, supersym-
metry (SUSY) emerged as a very compelling framework. Models with softly broken
supersymmetry naturally protect the mass of the Higgs from radiative corrections due
to near cancellation between fermion and partner boson contributions. The simplest
supersymmetric extension of the Standard Model was constructed, named the Mini-
mal Standard Supersymmetric Model (MSSM). This model doubles the field content
of the Standard Model by introducing a SUSY partner for each SM field. In addition,
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a second Higgs must be added in order to cancel gauge anomalies stemming from the
spinor partner of the first Higgs. Supersymmetry, however, introduces its own hierar-
chy problems. These include facing the first fine tuning issue of above, by explaining
why it is that mass of the Higgs is so small. This is related to the so called p problem.

The 11 parameter is a supersymmetric Higgs mass which is permitted by the sym-
metries of the MSSM, and therefore is not a priori related to the mass scale of the
soft masses that originate from SUSY breaking. It is in fact a mixing term between

the two Higges,
/ d*QuH, H,, , (1.1)

which appears in the MSSM Lagrangian. Here, H; and H, are the two Higgs su-
perfields This mass, however, must be on the order of the electroweak scale (rather
than more naturally the fundamental scale) if it is to generate the correct electroweak
symmetry breaking. Related to the p is also the pB parameter, a SUSY breaking
term which is responsible for mass mixing between the two Higgs scalars. Thus all

together, the mass terms in the Higgs sector are
,U,2(|h1|2 + |h2|2) + uB(hlhz + hC) (].2)

For the consistency of electroweak breaking, all above parameters need to be on
the order of the electroweak scale, and in particular, uB is in danger of being far
greater if y is not small.

The MSSM also introduces a whole new set of soft mass parameters which could
potentially lead to new sources of CP violation and flavor changing neutral currents
(FCNC). In particular, in flavor space, the squark mass matrices need not be diagonal
in the same basis in which the quark mass matrices are diagonal. This potentially
leads to flavor changing processes, unless the squark mass eigenstates are somehow
aligned with the quark mass eigenstates. Thus, if the squarks are not extremely
heavy, one has to generate new mechanisms to secure alignment.

Within the context of four dimensional models, there have been two proposals for

the communication of SUSY breaking that have had partial success in addressing the
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above issues. In gravity mediated scenarios, the p problem can be partially addressed
using the Giudice-Masiero mechanism. Here, one assumes the this term is absent in
the supersymmetric limit, and hence comes from Planck suppressed operators involv-
ing a SUSY breaking field coupling to the Higgses. This naturally generates parame-
ters on the order of the electroweak scale. Gravity mediated scénarios, however, have
no mechanism for generating flavor diagonal squark mass matrices, as gravitational
interactions are generically not flavor symmetric. Indeed, one expects interactions

between the SUSY breaking sector and the MSSM of the form:

d%%iﬁi)@;f@j, (1.3)
pl
where X is a SUSY breaking superfield with a non-zero F-term, and the indices on the
quark fields are flavor indices. Such interactions therefore lead to dangerous FCNC
processes.

The second proposal suggests that SUSY breaking is mediated instead through
gauge interactions. Since gauge interactions are flavor blind, these scenarios do not
suffer from FCNC problems. However, they face difficulties in generating p and
pB parameters of the right size. This ié because both p and pB receive similar
suppression, and so x turns out to be much smaller than B. It is thus necessary to

find new SUSY mediation mechanisms that address both the p problem and do not
generate FCNC.

1.2 Branes and the sequestered sector models of

SUSY breaking

In recent years, progress in string theory, and in particular the discovery of branes,
has provided a whole new set of tools in constructions of higher dimensional models
which address the above challenges. Initially, branes were seen as supersymmetric
supergravity solitons of varying dimension. These solitons were mostly black hole

- type solutions (in the space transverse to the branes) which were also sources for
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Ramond-Ramond gauge fields. It was later discovered that certain branes have a
worldsheet description as open string end points. Namely, the endpoint of the open
string must obey Neumann boundary conditions along the worldvolume of the brane,
and Dirichlet boundary conditions in directions transverse to the brane. These so
called Dirichlet-branes, where thus found to be dynamic, fluctuating objects - higher
dimensional analogs of particles. Worldsheet calculation then showed that the open
string D-brane vacuum provided a source for Ramond-Ramond fields, completing the
identification of D-branes with the supergravity solitons. Through a web of string du-
alites, various other branes were consequently found to be dynamical objects. Unlike
previously known field theory solitons, branes can posses rich worldvolume theories
that contain spinors, scalars, and non-Abelian gauge fields. For the first time one
could consider subspaces of spacetime which completely localize gauge theories re-
sembling those of the Standard Model. Due to this fact, branes have had considerable
impact on the study of field theory and have provided compelling and novel options

for phenomenological models with extra dimensions.

The advantage of using branes in building such models is that they allow one
to construct models with controlled communication between different sectors. These
sectors may live on distinct branes, and thus be spatially separated. Choosing ap-
propriate fields to live in the bulk between the branes provides new mechanisms for

generating suppression of the interactions of these sectors.

One appealing example of this is the sequestered sector model for SUSY breaking
of Randall and Sundrum [2]. These models were originally inspired by the Horava-
Witten setup of Fg x Eg heterotic M-theory, which is a low-energy description for the
strongly coupled heterotic string. In this setup, one has eleven dimensional super-
gravity compactified on a S'/Z, orbifold, where the radius of the eleventh dimension
is linked to the coupling of the ten dimensional Heterotic string. While the bulk con-
tains only supergravity fields, there are orbifold branes sitting at the orbifold fixed
points which contain matter and gauge fields. In fact, fields transforming under the
first Eg sit at one of the two branes, while those transforming under the second Eg

live at the other orbifold brane. Upon compactification to five dimensions, one can
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embed the GUT group into one of the Ej factors, thereby taking the MSSM to be
localized to an orbifold three brane within a five dimensional bulk. Similarly, the
sequestered sector models include one extra dimension which is compacitified on a
S'/Z, orbifold. The branes are taken to sit at the two orbifold fixed points, with
the bulk of the fifth dimension containing only the gravity multiplet of supergravity.
The MSSM is localized to one of the orbifold branes, while the SUSY breaking sector
is localized on the other brane. At energies below the compactification scale, which
- gives the separation of the two branes, one has the MSSM and sequestered sector

matter coupled to N = 1 4D supergravity.

The crucial difference between these models and the gravity mediated scenarios
mentioned above, is that the extra dimension forbids Planck suppressed operators
like (1.3). This is because the two sectors are separated by a distance on the order
of the GUT scale and hence cannot have local, point like interactions. These Planck
suppressed operators, upon SUSY breaking, were exactly the ones contributing to
ﬂavor> non-diagonal squark masses. Thus by avoiding them, we ensure that there
would be no FCNC processes. With the usual Planck suppressed interactions gone,
the SUSY breaking is communicated instead through terms which result from quan-
tum anomalies, now providing the dominant contribution. In particular, the terms
that generate superparticle masses are related by supersymmetry to non-local terms
involving the metric and matter fields that reproduce the scale anomaly. This method
of communication of SUSY breaking is hence called Anomaly Mediation. Since the
scale anomaly in quantum theories is connected to the running of the couplings, the
superparticle masses are uniquely predicted in terms of the B functions and field
anomalous dimensions (the v functions) in a model independent way. The gaugino

and scalar masses are given by [2, 3]

g
My = e boF (1.4)
1 d
2 _ 2

17




Here, F is the gravitino mass, and by is the one-loop beta function of the gauge group
associated to the gaugino. This leads to largely flavor independent results for the
squark masses, especially for the first two generations (where the Yukawa couplings

are negligible), thus avoiding FCNC.

Unfortunately, anomaly mediation results in negative scalar partner mass squardes
for theories which are not asymptotically free. As a consequence, the sleptons in the
MSSM are in danger of Higgsing the photon. The goal of Chapter 2 of this disserta-
tion, based on work done with Shadmi and Shirman [1] is to address this problem.
We would like to provide positive contributions to the slepton masses entirely within
a 4D framework, i.e. we will work below the compactification scale. We assume that
the only source for SUSY breaking comes through anomaly mediation. The idea is
then to introduce additional heavy fields at a intermediate scale, M, between the
compactification scale and the scale F' of SUSY breaking. Specifically, we will look
for non-decoupling, heavy threshold, effects in anomaly mediation. These effects will
turn out to be higher order in the SUSY breaking scale (i.e. ~ F*/M?), and will
subsequently be used to correct the slepton masses. We will also use these higher

order effects to produce natural u and B parameters.

1.3 Branes and gravitational models with extra di-

mensions

Besides their impact on models of SUSY breaking, branes have also revolutionized
gravitational models with extra dimensions. These more recent models were initially
based on the observation that if the Standard Model fields were confined to a three
dimensional brane, current experiments could not rule out the possibility of macro-
scopic size extra dimensions. The brane was crucial in these scenarios to insure that
the SM interactions indeed remain four dimensional, with the more stringent experi-
mental constraints coming from the new, higher dimensional, nature of gravity. The

purpose of these models was to make the entirely novel suggestion that the hierar-
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chy between the electroweak scale of a TeV, and the Planck energy scale could be
of geometric origin. Namely, one assumes that the fundamental scale of the higher
dimensional theory is a TeV (instead of Planck), thus making the electroweak scale
a natural scale from the particle physics point of view. In other words, one does
not need to worry about radiative corrections pushing the Higgs mass further than a
TeV. The Planck scale is then a derived scale and is large due to the large volume of
the extra dimensions. These type of models, however, suffered from a different type
of hierarchy problem. Namely explaining the large size of newly introduced extra

dimensions, as compared to the fundamental scale of physics.

Fortunately, it was found by Randall and Sundrum [25] that it is possible to
avoid having very large length scales if one considers gravitational backgrounds with
non-trivial curvature. In these so called warped backgrounds, the fascinating observa-

| tion was made that the metric including the extra dimensions need not have a simple
product structure. In other words, it is consistent with the Poincare'symmetry of
our particle physics world, to have the metric vary (or warp) along the extra dimen-
sions. Randall and Sundrum constructed a model where the hierarchy came from an
exponential warp factor in the metric without the need to introduce very large or
small scales. This model, which we will call RS1, consists of two branes with finite
tensions living in a world with a single, compact extra dimension. In a sense, this
setup is reminiscent of the sequestered sector models, where matter is taken to live on
orbifold branes, while the bulk between them contains only gravity. In addition, one
allows for the possibility of a bulk cosmological constant. The important difference is
that tensions of the branes are assumed to be non-zero, and hence one needs to take
into account the back-reaction of the branes on the geometry. By tuning the bulk
cosmological constant against the brane tensions, one can find the following Poincare

invariant (flat brane) solution:
ds® = e72rell/R(y  drtda’) + r2de?. (1.5)

Here, R = \/—12M3/A, where M is the 5D fundamental scale, and A is the bulk
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cosmological constant (which is taken to be negative). The two branes are located
at ¢ = 0 and ¢ = 7, and have the tensions +12M3/R, and —12M?/R, respectively.
Let us remark that having a negative tension brane is not an immediate catastrophe,
as it taken to sit at an orbifold fixed point, and hence cannot fluctuate. The fine
tuning of the tensions is associated with setting the 4D cosmological constant to
zero. Thus, it is related to the usual cosmological constant hierarchy problem, and
we will not attempt to address it here. We note that all of the above parameters are
taken to be not much larger than the fundamental length scale, with the requirement
that they are sufficiently large so that classical gravity may be trusted. We will now
show that despite these fundamental scale parameters, we can naturally generate the

electroweak scale without fine tuning.

Suppose that the SM Higgs is confined the negative tension brane at ¢ = 7. Its

action is therefore given by

S= [d'z\/-G(¢ =) (G" (¢ =m)0,HO,H + (H?> — mg)?) (1.6)
— f dipe—4rem/R (ezrc”/Rn””a”Ha,,H + (H? — m0)2) 7

where again we assume that the mass parameter is near the fundamental scale. We
notice that in this action, the Higgs field does not have a canonical kinetic term. We
therefore rescale the field, to obtain the following action for the properly normalized
Higgs

/d4x (1" 0,H,H + (H* — ™"/ Bmy)?) | (1.7)

An interesting thing has occurred, the mass parameter in the action is rescaled by the
warp factor. By choosing 7, to be slightly bigger than R (assumed to be near the fun-
damental scale), one can easily achieve a large hierarchy between the weak scale and
the fundamental scale. This rescaling of the mass by the warp factor is characteristic
of all mass parameters at the negative tension brane. Consequently, from the view
point of an observer living on the negative tension brane, strong gravitational effects
associated with the 5D fundamental scale, set in at around a TeV, making that the

effective strong coupling scale. It remains to relate the fundamental scale of the 5D
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theory, to the 4D Planck scale: At low energies we can safely assume that the metric
will not vary significantly in the extra dimension. We therefore take the metric to

have the zero mode profile

de? — e R (g (2)dda”) + r2dg?. (1.8)

Inserting this into the five dimensional gravity action yields upon integration in

the fifth dimension
4 " 3 —2r.¢/R 4 M°R —2rem/R
S=[d'% [ dom V—ge 7" Rlgl = [ d z\/—gT(l —e T RIg). (1.9)
0

Hence, we can identify %{R(l —e 2™/BY with the 4D Planck mass, My, which implies
(given r, ~ 30R for generating the hierarchy) that the 5D fundamental scale is near
the Planck scale. Thus the warp factor indeed generates the hierarchy between the

Higgs mass and the 4D gravitational scale.

Perhaps equally exciting is the fact that the above warping allows for the extra
dimension to be macroscopic, or even infinite, without observable consequences. We
can already see an indication of this by taking r, — oo in (1.9), and noting that M,
remains finite. In other words, even if the fifth dimension is infinite, 4D gravity does
not decouple from the dynamics. Randall and Sundrum, hence, proposed a model
(26] (dubbed RS2), which includes only a positive tension brane, with the negative
tension brane removed to infinity. This model is appealing in that it requires no
stabilization of moduli related to volume of the extra dimension, namely the radion
field. In this hon-compact model, the Standard Model fields are taken to be confined
to an orbifold three brane and thus still have four dimensional physics. Gravity, while
localized near the positive tension brane (or Planck brane), is still five dimensional
in nature. Namely, there is a continuous Kaluza-Klein (KK) tower of graviton modes
that start from zero mass. Their contribution is suppressed near the brane, but
significant in the bulk as one moves away from the brane. Thus, unlike in standard

compactifications, the low energy physics is not captured just by the zero mode.
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In fact, in the early stages of examining the model, it was found that including
only the zero mode leads to solutions which are singular near the horizon [91] (which
appears once the negative tension brane is com'p‘iet'eiy removed). The aim of Chapter
3, based on work done with Giddings and Randall [69], is to show that including the
KK modes leads to consistent gravitational phenomenology. We do this by solving
the five dimensional Einstein’s equations in the RS2 background in the linearized
approximation. As a result of this analysis we are able to estimate the shape of 5D
black holes stuck to the brane, describe the metric profile due to general localized
sources, and also find the deviations from 4D Einstein gravity resulting from the 5D
physics. This analysis can also be applied to another non-compact model, the Lykken-
Randall (LR) model, which combines the features of RS1 and RS2. In this model, as
in RS1, there are two branes, the Planck brane and the TeV brane (where the SM
lives). However, the TeV brane is assumed to have a negligible tension, and thus one
can ignore its back-reaction on the geometry. Consequently, the metric background is
that of RS2, but one still has the solution to the hierarchy problem of RS1. Chapter
3 will thus also include a discussion of the gravitational phenomena as seen by an

observer living on the LR zero tension (probe) brane.

1.4 Holography and the low-energy theory of the

non-compact models

An interesting problem related to the above non-compact models is to provide an
effective 4D description of their low energy excitations. As discussed, the low energy
physics of the non-compact models is quite rich, and includes a continuum of low
lying KK modes. It was suggested by Maldacena and Witten, based on the similarity
between RS2 and the near-horizon geometry of D-branes, that from AdS/CFT one
learns that the effect of these KK modes can be accounted for by a CFT. Namely,
instead of describing the 5D gravity of RS2, one can rather consider 4D gravity
coupled to a fully quantum conformal field theory. This idea is motivated by the
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observation that string theory propagating on an AdSg; background (RS2 is in
effect truncated AdSs) is holographically captured by a d-dimensional theory without
gravity, living on the boundary of AdS,,;. The isometries of the AdSg441 space induce
conformal transformations on its boundary, and therefore the holographic theory
should be a conformally invariant one. The hope is that the string theory realization
of RS2 will have the same features, and so for an observer sitting at the Planck
brane (which acts as a boundary), the 5D physics will be holographically captured
by a CFT. The purpose of Chapter 4, which is based on work done with Giddings
[70], is to examine this possibility. In particular, we will provide a dictionary (within
the limitations of a linearized gravity analysis) between bulk 5D energy sources, and
their effective description in terms of the 4D CFT. We will show that for energies
below the curvature scale of the RS2 background, our results are consistent with a
CFT interpretation. For fun, we will then apply our results to the specific case of
a particle free falling towards the RS2 horizon, while flying by a black hole stuck
to the brane (the shape of which is discussed in Chapter 3). We will give the CFT
description of this, as seen by the Planck brane observer, checking that the whole
process can be understood using only 4D physics. Finally, we will attempt to extend
the holographic interpretation to the TeV brane observer in the RS1 and LR models,

concentrating on describing strong 5D gravity effects such as black hole production.
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Chapter 2

Heavy Thresholds, Slepton Masses
and the ;1 Term in Anomaly
Mediated Supersymmetry
Breaking

2.1 Introduction

Recently, it was pointed out that in the presencev of any supersymmetry-breaking hid-
den sector, soft supersymmetry-breaking terms are generated for the observable fields
through the super-Weyl anomaly [2, 3]. Because of their origin, these supersymmetry
(SUSY) breaking terms are directly related to the scaling dimension of the relevant

operator.

The soft terms are most readily obtained by working in a supergravity formulation
that uses the superconformal, or super-Weyl compensator, ®, a non-dynamical chiral
superfield which allows one to write a manifestly super-Weyl invariant action at the
classical level [4]. Essentially the role of @ is to compensate for the non-trivial super-
Weyl transformations of different action terms, while any ® vev breaks the super-Weyl

invariance. In particular, one may choose the lowest component ® vev to be 1, leading
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to a trivial modification of the action. However, for the discussion of supersymmetry
breaking, we will focus on the auxiliary component of ®. As was argued in [2], in the
presence of supersymmetry breaking, this auxiliary component acquires a non-zero
vev, which we denote by F, so that ® = 1 + Fé?.

To recover the observable sector Lagrangian coupled to canonical supergravity, one
then rotates ® away through a super-Weyl rescaling. For a scale-invariant observable
sector Lagrangian, ® disappears altogether. However, if any explicit mass scale ap-
pears in the Lagrangian, it gets rescaled by ® as M — M®, so that in the presence of
supersymmetry breaking, various tree-level supersymmetry splitting masses appear.

Even if there are no explicit mass scales in the classical theory, some mass scale
is generated quantum mechanically. In particular, if We consider the renormalized
Lagrangian, the wave function renormalizations of the fields contain some cutoff de-

| pendence. The cutoff scale now appears multiplied by ®. Expanding the wave func-
tion renormalization in F' (which enters through ®), one finds a soft supersymmetry
breaking mass for the relevant field.

Let us concentrate for now on the scalar masses squared. Since these masses

squared enter through [2]

2(w) = Zo() (1—5%-(#) (FO+cc)+ 7 % (1) |F|29262) L@

they have two immediately apparent features. First, the soft mass has no O(F?) or
higher contributions. Second, while the soft masses can be obtained through (2.1)
at the UV cutoff of the theory and then evolved dowﬁ to any lower scale, it is also
possible to directly evaluate them at the low scale, again through (2.1). The reason
is of course that the wave function renormalization already takes running effects
into account. Thus, at any scale, the anomaly-mediated (AM) masses appear to
be determined solely by the theory at that scale, specifically by the B-function and

anomalous dimensions at that scale, with no memory of the theory at higher scales.

!The extraction of these soft masses is completely analogous to the method of calculating soft
masses in models of gauge-mediated supersymmetry breaking through wave function renormaliza-
tions of [6, 7].
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This picture has been derived to leading order in the SUSY breaking parameter in a

theory in which the only source of SUSY breaking is anomaly mediation.

If there are any additional contributions to the soft masses at high scales (such as
the compactification scale), from, say, different gravitational sources, these contribu-
tions affect the running of the masses to lower scales.

Even if the only source of ‘supersymmetry breaking in the theory is anomaly me-
diation, which generates soft masses near the UV cutoff of the theory which are given
by (2.1), one may wonder about what happens when the theory also contains some
heavy thresholds. The mass of the heavy fields, which we denote by M, is rescaled as
M — M®. Therefore the heavy fields obtain tree-level supersymmetry splittings pro-
portional to F'. If the heavy fields interact with some of the light fields, they can then
contribute to the light fields’ soft masses ét the loop level. Still, these contributions
largely decouple [2, 5]. ‘More specifically, the contribution of any heavy field decou-
ples at order F2. This should be apparent from our discussion above — since the AM
soft masses can be read of the wave-function renormalizations, the effects of heavy
thresholds should somehow be accounted for already. In section 2.2, we will show in
detail how this decoupling occurs. However, we will argue that the heavy thresholds
do not decouple completely. There are in fact two sources of non-decoupling.

First, the O(F?) effects of the heavy threshold do not decouple if there is a light
field associated with this threshold [5]. More specifically, this happens if the masses
of the heavy fields are determined by some modulus, and this modulus is stabilized
primarily by small supersymmetry breaking effects.

Second, if there are fields of mass M and supersymmetry splittings proportional
to F' that interact with the light fields, the loop-level soft masses that they induce
contain contributions that are higher order in F'. For example, scalar masses squared
obtain contributions of order F*/M?. Furthermore, in many cases these contributions
start at one-loop, whereas the F? contributions start at two-loops. Thus, if M is not
much bigger than F', these contributions may be important.

Another interesting issue to address is the decoupling of D-terms. As we shall see

in section 2.3, in anomaly mediation D-terms decouple to leading order in the SUSY

27




breaking, unlike in the usual case. Again, however, F*/M? contributions to D-terms

do not decouple.

The above observations may be used to address the main phenomenological prob-
lem of the minimal anomaly-mediation scenario [2]. In this scenarid, the soft breaking
terms of the supersymmetric standard model (SM) are generated purely by anomaly
mediation, and are therefore given by (2.1). The slepton masses squared are propor-
tional to the SU(2), and U(1) $ functions, and are therefore negative. Ref. [2] invoked
additional gravitational contributions to overcome this problem. Ref. [5] proposed a
solution in which the soft spectrum is modified by the presence of a light (order F)
modulus, which is massless in the supersymmetric limit. Another solution involves
additional Higgs doublets that generate large Yukawa couplings for the sleptons [9].
Here we will instead introduce new heavy thresholds, within one or two orders of
the supersymmetry breaking scale F', and utilize the resulting F** soft masses to gen-
erate positive slepton masses squared. Our model, which has as its basis a simple
U(1) theory, which we describe in Section 2.3, illustrates the decoupling of order F?
contributions and the non-decoupling of F* terms. It also clarifies the issue of D-
term decoupling in AM scenarios, as some of the contributions we will discuss can be

understood as arising from the U(1) D-term.

As we said above, the crucial contributions in our model are of the form F*/M?2.
In Section 2.4, we will show how, in a modification of our model, the relevant scale M
is generated dynamically from F'. In fact, as we will see, it is quite easy to generate
scales that are close to the SUSY breaking scale using anomaly mediation. This fact
could be useful for model building purposes. In Section 2.5, we put these pieces
together and construct a modification of the SM in which sleptons obtain positive
masses squared.

In Section 2.6, we again use the same ingredients, that is, non-decoupling O(F*/M?)
contributions and a scale M that is generated dynamically from F', to naturally obtain
a p-term and a B-term of the correct size.

We close this Introduction with one comment. The mechanism of anomaly-

mediated supersymmetry breaking exists in any theory with some supersymmetry
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breaking sector. In particular, it exists in any 4-dimensional theory. However, in a
4-dimensional theory, higher order, M,-suppressed operators that couple the observ-
able and hidden sector, typically generate tree-level soft masses for the observable
fields. These are the well known “hidden sector” contributions. These contributions
are larger than the anomaly mediated contributions, which are loop-suppressed. In
a 4-dimensional theory, it is hard to rule out the existence of the tree-level hidden
sector contributions. However, in [2], it was shown that in d > 4 dimensions, such
direct couplings of the observable and hidden sector can plausibly be absent. Thus,
while our discussion of decoupling is independent of the dimensionality of the full
theory, when we move on to model building we envision a situation in which the soft
terms are purely anomaly mediated, as in sequestered sector models [2]. We implicitly
assume then that the full theory has more than 4 dimensions, and the appropriate
cutoff scale, at which the anomaly-mediated soft masses of the observable sector are

generated, is the compactification scale.

2.2 The effect of mass thresholds on soft masses of

light fields

We would like to study the impact of supersymmetric mass thresholds on anomaly
mediated SUSY breaking terms. We assume that the heavy thresholds lie above the
visible sector SUSY breaking scale, F', and below the UV cutoff scale, whether it is
the Planck scale or the compactification scale. The decoupling of these thresholds
can then be addressed in terms of an effective 4-dimensional field theory. We also
assume that there are no sources of SUSY breaking other than anomaly mediation.
A discussion of decoupling effects at leading order in the SUSY breaking recently also

appeared in Ref. [5].
In the absence of heavy thresholds, slepton and squark soft masses follow directly
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from the wave function renormalization [2]:

/ d4ez (1 — -y(ﬂ)2 +c.c) + i(aﬁ) |F)? 9252) Q'Q .

Here ® = 1+ F6? is the super-Weyl compensator, A is the UV cutoff, ¢t = In y, and
the anomalous dimension v = d1n Z/d1n . Rescaling the fields

Q— Z71/? exp.(%’yF92) Q, (2.3)

to obtain canonical kinetic terms, and expanding the remaining exponent yields the

following soft mass for the light field @Q:
2 L e
m, = 2 |F|” (Oy) - (2.4)

We see that the soft masses are determined by the anomalous dimensions of the light
fields. Thus, the soft masses (as well as other soft parameters) are largely insensitive

to the details of the high energy theory.

However, in the presence of heaify mass thresholds, there may be additional con-
tributions to the soft masses of the light fields. The theory contains explicit mass
parameters which determine the heavy threshold. Due to the scaling anomaly, all
such parameters will be accompanied by the compensator field ®. The heavy fields
then acquire tree-level supersymmetry-breaking mass splittings. As these fields are
integrated out, their supersymmetry-breaking splittings may in principle generate soft
terms for the light fields, through gauge or Yukawa interactions. We would like to
understand to what extent such thresholds affect the masses of the light fields, and

in particular, whether their effects completely decouple.

To study these questions, it will prove convenient to distinguish between two
possibilities. One is that the heavy threshold, or in other words, the mass of the

heavy fields associated with this threshold, appears as an explicit mass term in the
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Lagrangian. The second is that the mass of the heavy field is given by the expecta-
tion value of some dynamical field. These two cases are different because vevs are
determined dynamically and may depend on non-supersymmetric effects.

Let us first consider the case that the masses of all heavy fields arise from explicit
mass terms in the superpotential. As explained above, any mass term M should be
promoted to a superfield-valued X = M ®. We can then obtain the soft masses of the
light fields at a scale 4 < M from the relevant wave function renormalization Z(u).
Assume for simplicity that Z depends on a single coupling. Then, from the 1-loop

relation

(0%
6,5 7'(67 ( 5)

where c is the appropriate quadratic Casimir, we first solve (2.5) for Z in the low
energy theory, and then match boundary conditions at M. Using arguments of holo-
morphy and R-symmetry [6, 7], we then make the substitutions M? — XX and
A% — ATA. Note that both X and A are superfield valued and contain the compen-
sator ®. This yields

Z (a(p, X), (X)), (2.6)
where,
b Xtx b M?
-1 —1 H — -1 H
a(X)™" = a(A) + o ln—AJrA a(A) -I-—47rln AT (2.7)

2

_ b 7
a(p, X)™' = a(X) 1+ﬁlnXTX

-1 L 14 H L
= alA F 2 1n n
( ) 4m A2DtD ar : A2’

where by (br) is the one-loop beta function above (below) the scale M. Note that the
® dependence cancels between X and A in the last term of (2.8). Therefore, the only
contribution to the soft-mass squared, which is O(F?), comes from the second term in
the second line of eq. (2.8). Since this contribution is not related to the threshold M,
the low-energy theory is insensitive to the mass splittings associated with the heavy

threshold.

It is important to stress that while the previous discussion can be generalized to
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all orders in the coupling constants, it only holds to leading order in supersymmetry
breaking, that is, O(F?) corrections to the scalar-masses squared. We will return to

the question of higher order corrections in the end of this section.

- As we just saw, the crucial point for the decoupling of the heavy fields is that their
mass scale M is rescaled by ® in the same way that A is, so that the ® dependence
cancels in the ratio. This implies a specific relation between the SUSY masses and
the soft masses of the heavy fields. We will refer to masses that are obtained by the
rescaling of some mass-scale by ® as being “aligned”. For example, the mass of a
chiral field is aligned if

2 2
scalar mfermion - F (29)

7
M fermion

|m

and Strm? = 0 in a supermultiplet.

The decoupling of the heavy threshold which we just saw may be understood
as a cancellation between the anomaly-mediated contribution and‘the contribution
of the heavy fields. To see that explicitly, consider an example in which the heavy
fields are Ny pairs of fundamentals and antifundamentals of an SU(N) gauge group,
with supersymmetric mass M. We also assume that the light fields transform as
fundamentals of the same SU(N). Consider then the soft masses of the light fields,

evaluated at a scale u > M,

2

o
1672

m2 (,u)anomaly—mediated = 2coby F? ) (210)

with by and ¢y the one-loop beta function and one-loop anomalous dimension coef-
ficients, respectively. To evaluate these masses at low-scales, we should evolve them
down to the low-scale, but the only thing that evolves in (2.10) is the coupling «.
However, as we go below the threshold M, we also need to integrate out the heavy
fields, and they contribute to the soft masses of the light fields. Their contribution is

the usual gauge-mediated contribution,

2
o 2

F
1672 ’

m? (,u)gauge—mediated = 2¢oNf (2.11)
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Adding the contributions (2.10) and (2.11), we find, at u < M,

@2

1672

m?(u) = 2¢o by, F? (2.12)

since by, = by + Ny. This is precisely the soft mass we would obtain when calculating
directly in the low-energy theory below the threshold M, ignoring the heavy fields
altogether. We see that the contribution of the heavy fields through anomaly medi-
ation, which is proportional to Ny and arises through their contribution to the beta
function, exactly cancels their contribution through gauge mediation. Our discussion
can be easily generalized to models with Yukawa couplings between light and heavy

fields.

This cancellation may also be seen diagrammatically in the Pauli-Villars regu-
larization scheme. The regulator fields always have aligned masses A®, because an
explicit mass term must be put in for them. Now, when we consider any diagram
contributing to the soft masses, with heavy fields running in the loop, there will be
an analogous diagram with the regulator fields running in the loop. We can assume
that the real fields have mass M, the regulators have mass A, and treat the splittings
MF and AF as insertions. Then, to order F? (for which there is no dependence
on the heavy mass), the heavy fields and the regulator fields have exactly opposite
contributions to the soft masses. The contributions are guaranteed to be of exactly
the same magnitude because the masses of both the heavy fields and the regulators

are aligned.

Now let us consider the possibility that some SUSY masses originate from non-zero
vevs. Take X to be a field which acquires a vev in the supersymmetric limit. Fields
that couple to X obtain a SUSY preserving mass C (X), and soft mass splittings
CFx, with C' some constant that depends on different couplings.? Such heavy fields
decouple from the effective theory of the light degrees of freedom if their masses are

aligned, that is, if F'x = X F. In the limit of unbroken SUSY, we write X = v + z,

2For simplicity we assume here that the coupling is renormalizable, but it is easy to repeat the
following discussion for the general case.
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where v is a background superfield whose lowest component is just the vev of X, while
0z is the fluctuating part of X whose vev vanishes in the supersymmetric limit. Since
v is determined by a combination of mass parameters in the superpotential, upon
supersymmetry breaking, it acquires an F-term which is automatically aligned with
the scalar component, v — v(1 + F6?). On the other hand, when supersymmetry is
broken, dx can obtain both a scalar vev and an auxiliary component vev, that are
determined by non-holomorphic effects and thus are not necessarily aligned. Thus
we need to understand under which conditions the vevs can become significantly

non-aligned. The Lagrangian for §z has the form

[ dto [(1—m26%)(6x)t(0z) + (v(®F — m26*)(6z) + c.c.)] + (2.13)
(f d*02 m (® — ab?)(6z)* +c.c.) ,

where m is the mass of dz in the supersymmetric limit, while a and m2 are soft mass
parameters generated by anomaly mediation. Note that while we can treat m as a
free parameter (in a given model, it is determined by the detailed form of W (X)), a
and m, are suppressed relative to F’ by a one loop factor, a ~ m, < F. We see that
the radiative soft parameters in the Lagrangian will modify X and Fx. Solving for
Fj; and extremizing the potential we find for the corrected values of X and Fx at

the extremum
m? + ma m*F + mm}

X = . Fy = . (2.14
Umz—l-mF—l—mi—l-ma X UmQ—l-mF—l-mg—l—ma (2.14)

It is clear that in the limit m — oo we recover the results obtained for explicit mass
parameters in the Lagrangian as should have been expected. On the other hand, in
the limit m — 0 the extremum is found at X = Fx = 0 independently of the value
of m2. This point may in fact be the maximum of the potential if m? < 0. In such a
case there may exist a local minimum at non-zero X if m2 changes sign as a function
of v [5]. Moreover, a local minimum may exist at non-zero X for any sign of m2 if

cubic and higher order superpotential terms for dz are taken into account [5]. In any
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case, as we show and quantify momentarily, for small m alignment is lost in a vacuum
with non-vanishing X.

Assuming that the eigenvalues of the X mass matrix are positive, so that (2.14)
gives a minimum of the potential, we can easily check whether the corrected values

of X and Fx are aligned,

Fx a o> m?
— = - — 4+ — = 1
e F(1 m+m2+mF+ ), (2.15)

where the dots stand for higher order terms in m? and a. We see that alignment is

approximately preserved if
2

~ 1672

a F<m, (2.16)

where y stands for the couplings of X. Note that for small m, m?2 gives a subleading
contribution since it appears at two loops whereas a appears at one loop. Moreover, if
X interacts sufficiently weakly (so that a, which is one loop suppressed, is sufficiently
small), it is possible that the mass of éz is significantly below the SUSY breaking
scale, m < F, yet alignment holds to a good approximation. We therefore conclude
that heavy fields whose masses are generated by the vevs of dynamical fields decoﬁple
so long as all mass parameters (including the masses of the fields which obtain vevs)
satisfy the hierarchy (2.16).

As we mentioned above, our discussion so far only involved the scalar masses-
squared to leading order in the SUSY breaking, O(F?). We do not expect anomaly-
mediation to generate contributions that are higher order in F. To have the correct
dimension, such corrections should be of the form (%)" F? where n is even and A is

a physical cutoff associated with the compactification scale. 3

In contrast, when heavy fields of mass M are present in the theory, with super-

symmetry breaking mass splittings, they generally generate contributions to the soft

3As always in our discussions in this chapter our statement is limited to the case that there are no
~ significant bulk gravity contributions to the soft masses. These necessarily contribute to the masses
at the compactification scale and thus alter the UV boundary conditions on the masses. As a result
the usual formulae for anomaly mediated soft masses cannot be applied. In other words, the UV
physics does not decouple.
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masses of the light fields that are of otder F*/M?. In the presence of Yukawa or
gauge interactions between heavy and light fields, such contributions, which we call
“light-heavy mixing”, may even appear at one loop. Thus, the decoupling of heavy
threshblds is not complete even when the masses of the heavy fields are aligned. The
decoupling holds to leading order in F?, where there is complete cancellation be-
tween anomaly-mediated contributions and light-heavy mixing but at order F**/M?
and higher, there is no analogous cancellation simply because there is no anomaly-
mediated contribution.

This non-decoupling can again be seen by considering the regulator fields as above.
We can calculate the contributions of both the dynamical fields, whose mass is M,
and the regulator fields, whose mass is some physical UV cutoff A by treating the
SUSY breaking parameter F' as a small insertion. However, subleading contributions
in F' are suppressed by some power of F//M in the case of the dynamical fields,
and by the same power of F'/A in the case of the regulators. For very large A, the
regulator contributions are negligible, and can no longer cancel the contributions of
the dynamical fields. Indeed, the F*/M? contributions will play an important role in
the models we will discuss in the following sections. We will use these contributions

to generate positive masses-squared for the standard-model sleptons.

2.3 A U(1) model

We will now construct a simple U(1) theory which illustrates the discussion of the
previous section. The U(1) is higgsed, with some fields becoming massive. These mas-
sive fields then generate one-loop O(F*/M?) contributions to the soft masses of the
remaining light fields through gauge and Yukawa interactions. These contributions
do not decouple. Some of the relevant contributions can be viewed as arising from the
D-term. Different U(1)-charged heavy fields receive different anomaly-mediated con-
tributions to their soft masses, and as a result a non-zero U(1) D-term is generated.
Generally, such D-terms do not decouple from the low energy theory even when the

heavy fields are integrated out [8]. As we will see in the case of anomaly mediation,
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the D-term decouples to leading order in the SUSY breaking F?, but not at higher

orders.

Our U(1) theory consists of the fields hs, x4, and Iy, with U(1) charges £1, as

well as the gauge singlets S, n;=; 2, with the superpotential,
W = S()\l h+h_ — M2) +y1 n h+ X- +y2 N9 h_ X+ (217)

where A1, y;=12 are couplings. The first term is needed to break the U(1). As we
will see the last two terms with different Yukawa couplings, y; and s, are required to
generate positive soft masses squared for some light scalars. With this superpotential
all fields except [ acquire mass, either through the Higgs mechanism or through

Yukawa interactions. We will eventually identify [+ with standard model fields.

We assume that the only source of supersymmetry breaking in the theory is gravi-
tational, through anomaly-mediation. We can then can keep track of supersymmetry-
breaking effects by rescaling M — M®, with ® = 14 F6? as before. We also assume
that F' < M. The potential is then given by:

V= |Mhshe — M2+ X2 ISP (lhy P+ |ho?) = 2M2 F (S + S*) +..., (2.18)

where we left out terms that involve n; 5, x4, as we will be interested in a (potentially
local) minimum where these fields do not obtain vevs. Note that because supersym-
metry is broken, there is a tadpole for the scalar component of S, so that it develops
a vev proportional to F,

__ 1 F?

S§=— 1 F+03m)

whereas hy obtain vevs h = M//A; + O(F?/M). The U(1) is then Higgsed by the

(2.19)

hs vevs, and at tree level we obtain a heavy vector multiplet with a vector of mass

Msysy = 2eh, a scalar of mass m?> = M2, + 252, and two fermions of masses

M2y + S2/4 £ S/2, where e is the U(1) gauge coupling. In addition, x_ mixes
with n; to give a chiral multiplet with a fermion of mass 3~ and scalars of masses-

squared y?h? + yA1Sh, and similarly for the pair ., no.
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At low energies the theory contains only the fields /., with no renormalizable
interactions. However, soft masses are generated for the [, scalars through gauge
and Yukawa loops containing the heavy fields. As discussed in the previous section,
to leading order in supersymmetry breaking, namely, order F2, these soft masses
vanish. We can see that by working directly in the low energy theory, which contains
‘no renormalizable interactions, so that the anomalous dimensions of I, vanish. We
will return to this point shortly and see how this can be understood from the point

of view of the full theory.

However, even at one loop, both the heavy gauge multiplet and the heavy chiral
fields generate contributions to the ;. soft masses starting at order F'*/M?%.* Specifi-
cally, the gauge multiplet one-loop contribution to the /1 scalar mass-squared is given

by

2 2
méauge — ¢ 1617T2 4e* B2 []n (1 + %) - \/16§+W In ( 1+ 12? + %)} ,
(2.20)

where z = %, and ¢ is the relevant U(1) charge, which for Iy is ¢ = +1. This
contribution arises purely from the U(1) gauge interactions,

The contribution of the heavy matter fields x_ — n; to the [1 scalar mass-squared
is:
9\ —1

2 qd 4,9 T
= - 1+ —
My 64m2 / ( * 2e?

(A B Y ) P

with ¥ = w;, and where again, for l,, ¢ = £1. This contribution, although we

denote it by the subscript y for the Yukawa superpotential coupling, arises from both

superpotential interactions and D-term interactions. Similarly, the contribution of

“Recall that unlike F2 terms, such contributions to the soft masses cannot be read off the wave-
function renormalizations.
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the heavy matter fields x; — ns is

m2, = —milyzy, . (2.22)

Note the relative minus sign between (2.21) and (2.22), which arises from the opposite

signs of x, and x_.

The contribution of (2.21) and (2.22) can also be understood as arising from
the U(1) D-term. The fields hy obtain soft-masses from one-loop diagrams with
X+ —n1 2 running in the loop. Since Ay and h_ have different superpotential couplings
(y1 # y2), their soft masses are also different. As a result, the hy and h_ vevs are
shifted by different amounts, so that the U(1) D-term is non-zero and proportional to
the difference between the h, and h_ soft masses squared. This non-zero D-term then
leads to soft masses for Iy, proportional to their U(1) charges, which are precisely

given by (2.21).

Let us now return to the F? contributions to the soft masses. As we already
mentioned, if we work directly in the low-energy theory, which contains only I with no
interactions, the order-F? anomaly-mediated soft masses, can be read off the (trivial)
wave function renormalizations of /. and therefore vanish. We could however try to

derive this result starting from the full theory, above the scale of the heavy fields.

In the UV theory, the wave function renormalizations of I depend on the gauge
coupling, and lead to non-zero, gauge-coupling dependent soft masses for /4, which
we denote by m2. Once we go below the heavy threshold, we have to add to m%
the contribution of the gauge multiplet to the soft masses which comes from loops
involving the heavy gauge multiplet, m%. mZ is the analogue of (2.20). However, it
only comies in at the two-loop level, since at one loop there can be no F? contribution
to the soft masses squared [6]. As was shown in [6], m% can also be read off the
supersymmetric wave function renormalizations. Adding these two contributions,

2 : 2
mg precisely cancels my;.

The Yukawa-dependent contribution to the /. soft masses is a bit trickier, since

the [+ wave function renormalizations do not depend on the Yukawa couplings. As
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discussed above, the Yukawa dependence enters through the D-term. As long as h,
and h_ have different soft masses, the D-term is non-zero, and leads to soft masses
for .. The relevant quantities to consider are then the h. soft masses. Again, we
can read these off the hy wave function renormalizations in the full theory, but as we
integrate out the heavy fields x4 —no and x_ — n;, we obtain x4 — n; 2 loops which
precisely cancel the original contribution. Thus, the D-term decouples to order-F?,
since the radiative contributions to the k4 soft masses vanish in the low-energy theory.
In fact, it would be surprising if D-terms generated F? contributions to soft masses
through anomaly-mediation. We expect to be able to obtain anomaly-mediated F?
soft masses from wave function renormalizations, which certainly cannot capture D-
term contributions. It is therefore reassuring to find that the D-term decouples at
order F2. This is in contrast to the usual case [8] where the leading order SUSY
breaking effects do not decouple. As we have seen, however, there are non-decoupling

effects at order O(F*/M?).

We would eventually like to identify /, with the standard model leptons, and to

2

use the contributions we found to its soft mass, mZ,, ..

and m?, to compensate for the
negative masses squared which the sleptons obtain in the minimal anomaly-mediated

2 and m?2 are proportional to F*/M?  so that would

scenario [2]. However, m;,, .. "

involve tuning the ratio of two unrelated scales, F' and M. In the next section we
will present a model in which a “large” scale M ~ F/)q, where ) is some Yukawa

coupling, is generated dynamically.

2.4 A two step model

Our goal is to find a mechanism which would naturally generate a mass scale which
is somewhat larger than the SUSY breaking scale, yet parametrically is of the same
order. In fact the model considered in the previous section suggests a way to achieve
this goal. Our main observation is that the field S obtained a small vev of the
order F'/)y. For relatively small Ay this scale may be sufficiently large, so that the

S threshold is supersymmetric, yet it is not parametrically large, and can therefore
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play the role of the mass scale M of the previous section. Thus we are lead to the

modification of our model which has the following superpotential®
W = X(\gn? — M?) + S (Mhyh_ — XX +yinshy x— +yonahe x4 . (2.23)

We now describe the role of the various terms in this superpotential. The last three
terms are exactly the same as in the superpotential (2.17) with the substitution
M? — X, X?. This substitution is justified since X is heavy. Moreover, all other
fields in the above superpotential become heavy at the minimum at least in the sense
of eq. (2.16). If X obtains a non-vanishing vev, this sector of the theory will generate
soft masses for [, exactly as in the previous section.

The first term in the superpotential (2.23) is designed to produce an X vev of the
order F'/Xg. The large scale M is necessary to generate this vev as well as other field
vevs and eventually leads to the breaking of the U(1) gauge symmetry. Such a large
mass parameter may be naturally generated by various strong coupling effects in the
microscopic theory. It is important, however, that our results are insensitive to the
precise value of M. |

Let us now analyze the model. Upon supersymmetry breaking the scalar potential

has the form (neglecting the couplings to x)

V = | Ahihe — X2 4 | MShye|? + [MSh_* +

-2 . (2.24)
—2XSX + Agn® — M?| + 20X n)* — 2M2FX +c. c) .

We wish to separate our analysis in two stages. First we set Ay = 0 and find vevs
for n and X using our results from the previous section. Since these fields are heavy
at the minimum we then assume that their vevs are not significantly shifted in the
full theory. We will discuss under which conditions this assumption is true shortly.
Then we turn on A, and integrate out the heavy fields X, and n, and then we consider
an effective theory for the lighter fields S, hy and h_. Using our results from the
previous section we find that X = F/)q. It is also easy to find that Fx = F? /Xo- The

®This superpotential is the most general one preserving a U(1)z symmetry.
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superpotential for the lighter fields now acquires the form (2.17) with the substitution
M = +/X3X. Note that the value of mass scale M is indeed irrelevant for the dynamics
of the lighter degrees of freedom, S and hy. We now have to check that the mass
parameter M can be promoted to a superspace valued background superfield with an
F-term expectation value M F'. Indeed,

2
VA F
VX = \/)\2)\5 + \//\21;—02 = %(1 + F6?) . (2.25)
0 0 0

Thus we can use our results from the previous section for the soft masses of I. by

substituting M — v/ Ao F/Ao.

Finally, let us turn to the conditions for the existence of the desired minimum
in the model (2.23). We note that the model possesses a flat direction parameter-
ized by the S vev. In the limit of unbroken SUSY and in the region of the moduli
space of interest S is heavy and can not acquire a vev until h,. ~ h_ — 0. How-
ever, when we turn SUSY breaking on, it is possible that one mass eigenvalue for
the two real fields in the S supermultiplet will become negative, and the local min-
imum will not exist. We should, therefore, require that the F-type SUSY violating
masses for S are much smaller that the supersymmetric contribution to the mass.

For the supersymmetric mass we have m% = 2\;°A\ Mo F2, while the soft mass is

m2 = V2ME, =/ 20y 2)\1)\2_F 2. We easily see that a local minimum exists if

A
2«1, (2.26)

VA1 A2

Note that the combination of couplings in (2.26) is exactly the quantity z which
enters formulae (2.20) and (2.21) for the soft masses. We performed a numerical
minimization of the scalar potential, and verified that the local minimum exists for a

range of parameters when the ratio in (2.26) is of order or smaller than 0.1.
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Table 2.1: Table 1: The field content of the model without the SM fields that are
neutral under the U(1). g

SM U(1)
S (1,1,0) 0
X (1,1,0) 0
n (1,1,0) 0
hy (1,1,0) 1
h_ (1,1,0) -1
L=107131(1,2,-1/2) 1
x=t3 (1,2,1/2) -1
ni=1-3 (1,2,1/2) 0
=075 | (1,1,-1) 1
Xi_:4..6 (1’1”1) -1
ni=4-6 (1,1,-1) 0

2.5 Correcting the slepton masses

As was pointed out in [2], the minimal AM scenario in which the sole origin of
the superpartner masses is anomaly mediation gives negative slepton masses squared.
Thus extra contributions to the slepton masses squared are required. We will now use
the model we constructed in the last two sections to generate positive contributions
to these masses. To do that we augment the SM gauge group by the U(1) of the
model we described earlier, and charge the lepton fields under this U(1), with U(1)
charge +1. Our starting point is then the theory described in Section 2.3, with six
copies of the field [, corresponding to the six SM lepton fields: I = (1,2, —1/2,+1),
lf|_+3 = (1,1,-1,41), where ¢ = 1...3 is a generation index, and the parenthesis
indicate the SMxU(1) representation. Similarly, we also take six copies of the fields
X-, with x*. = (1,2,1/2,-1), and ¥ = (1,1,1, —1), and six copies of the field n;
with nf = (1,2,-1/2,0), and n5™ = (1,1,1,0). It is easy to check that with this
field content there are no SMxU(1) anomalies. The field content of the model is

summarized in Table 1. The superpotential is then given as in (2.23),

6
W = X(Aon? = M?) + 8 (Mhyph — 2 X?) +y1 > _ndhyx', (2.27)

=1
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except that so far we have not added the fields I, X+ énd ﬁz, so that the superpo-
tential term containing them does not appear. The fields x°, n¢ become heavy, with
mass y1h. As discussed in Section 2.2, the sleptons then obtain the following soft
masses

2

2 2
mslepton - mgauge + 9my|y=y1 ’ (228)

where m2,, . and m2 are given in (2.20) and (2.21) with ¢ = 1.

Let us now discuss the different mass contributions. Recall that the heavy matter

contribution to the I, mass, m;, is proportional to the charge of [, whereas m2,, . is

2

gauge 15 always negative. Thus,

proportional to the square of the charge. In addition, m
if we want to generate positive masses squared for all sleptons, they all have to have
U(1) charges of the same sign. Thus, we choose all leptons to have U(1) charge +1,
and identify them with the fields /. To cancel anomalies, we then add fields of the
type x—, of U(1) charge —1, and n;. These fields then become heavy, and at one loop
generate the contribution m;|,—,,. Unfortunately, however, this contribution is also
negative! Examining eq. (2.22), we see that in order to get a positive contribution,
we need heavy fields of opposite U(1) charge running in the loop, that is, fields of
the type x. (and their n, partners).‘ Again anomaly considerations then require the
presence of additional fields I_. Unlike the x’s and the n’s, these fields remain light,
so that the simplest possibility is to identify them with some of the SM fields. We
are therefore led to charging additional SM fields under the U(1), with charges that
are opposite in sign to the lepton charges. We will now discuss two possibilities of
doing so. One in which the down anﬁiquarks have charge —1, and the other in which
the first and second generation quarks have charge —1. While we will be able to
generate positive masses squared for the sleptons, we see from the required matter
content that probably the most disappointing aspect of our model is that it can not
be made consistent with grand unification. As explained above, the lepton fields all
have the same U(1) charge, and some other SM fields should have the opposite U(1)
charge. This automatically excludes both SU(5) and SO(10) unification. Moreover,

the additional matter fields do not come in GUT representations, and even gauge
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Table 2.2: Table 2: Additional fields: down antiquarks without the SM fields that
are neutral under the U(1).

SM__ | UQ)

d=10="3)(3,1,-1/3) | -1
Xt (3,1,1/3) | -1
ns=* 1 (3,1,-1/3)| 0

coupling unification requires the introduction of extra matter at intermediate scales.

2.5.1 U(1) charged leptons and down antiquarks

As discussed above, in order to obtain positive slepton masses-squared, we need heavy
fields of positive U(1) charge running in the loop. We can achieve that by identifying
the SM down antiquarks with the fields /_. Thus, there are three copies of the field
I_: 1" =(3,1,—1/3, 1), which are accompanied by three copies of the field x, with
x4 = (3,1,1/3,1) and three copies of n, with n = (3,1,—1/3,0). This additional
field content is summarized in Table 2.

The superpotential is then given exactly as in (2.23). For convenience we rewrite

it here:

6 3
W = X(Aon® = M*)+8 (Mhyh_ =X X?) 441 Y nihe X' +1o Y nhhoxy . (2.29)

=1 =1

The fields x*, n? (x%, nb) all become heavy, with mass y;h (yoh). The sleptons and

down antiquarks obtain the following soft masses

2 _ 2 2 2
mslepton - mgauge + 9my|y=y1 - 9my|y=y2 ’
2 .2 g2 2
mg = mgauge 9my’1/=y1 + 9my|y=y2 - (230)

Note that because the sleptons and down quarks have opposite U(1) charges, their
soft masses obtain opposite contributions from the heavy matter fields.

As explained in the beginning of this section, mgauge and m are negative. Thus,

45



to get a positive contribution to the slepton masses squared, the third term in the first

2 2

gauges Myys and

line in (2.30) should overcome the first two. We also point out that m
m?, all start at order h?z* = s*/h®. At this order, the dependence on the couplings

e, y; drops out, so that the O(z*) terms cancel between m2 and m?2,.

It is clear from (2.30) that as long as the sleptons obtain a positive contribution
to the mass squared, the down-type squarks get a negative contribution. We then
have to ensure that the new contribution to the slepton mass is bigger than the one
generated directly by anomaly-mediation, whereas the new contribution to the down

squark mass is smaller than the one generated by anomaly-mediation. Thus, we need,

milepton > |m§lepton,AM| ’ |m§| < mg,AM ) (231)

where m m and mJ 4, are the slepton and down squark masses generated by

2
slepton,A

anomaly-mediation in the absence of any heavy thresholds,

2 F2 2 1 F2
Mgiepton, AM ™ 10~ W ) Mg anm ™ 10~ 1672 (232)

Thus, the different couplings need to be tuned to satisfy this relation. It turns out
that the tuning required is not drastic. First, no large hierarchy is required between

the couplings e, y; and y, to obtain a positive m Second, to satisfy (2.31), the

2
slepton*
coupling X, which controls the size of h, can vary within an overall factor of around

five.

We now turn to consider the SM Yukawa couplings. Since both the SU(2)-doublet
and -singlet leptons have U(1) charge +1, and the down quarks have U(1) charge —1,
the lepton and down Yukawas are not neutral under the U(1). These Yukawas can
however arise from non-renormalizable terms,

1

_ 1 _
Mh+Hde+Wh2_HdLl, (2.33)

where M is some higher scale. We are thus led to a model with nontrivial flavor struc-

ture, where the up Yukawas have no suppression, the down Yukawas are suppressed
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Table 2.3: Table 3: Additional fields: 1% and 2°¢ generation quarks
~ SM [U@)
Q=1"""1 (3,2,1/6) | -1
Xfl-:LQ (37 25 _1/6) 1
ny (3,2,1/6) | ©

by one power of h/M, and the lepton Yukawas are suppressed by two powers of h/M.

2.5.2 U(1)-charged leptons and first generations quarks

An alternative to assigning U(1) charge —1 to the SM down-type antiquarks, is to as-
sign charge —1 to the first and second generation doublet quarks. We then have fields
I', x_ and n’ as in the previous subsection, as well as the the first and second gen-
eration quarks, which we identify with 1= = (3,2,1/6, 1), x= "* = (3,2, -1/6,1)
and ni"? = (3,2,1/6,0). We summarize the additional field content of this model
in Table 3. |

The sleptons and first and second generation squarks now obtain the following

contributions to their masses-squared:

2 _ 2 2 2
Mglepton = mgauge + 9my|y=y1 - 12my2 ]y=y2 )
2 2 g2 2
Mg = Mgguge = IMyly=y, + 12my |y—y, (2.34)

Again, the third term on the first line gives a positive contribution, with the two other
contributions negative. As in the last subsection, we can fune the various couplings
so that the total élepton mass is positive, and the squark mass receives only a small
(negative) correction.

The lepton Yukawa couplings again arise from non-renormalizable operators, and
are suppressed by two powers of h/M. As for the quark Yukawa couplings, the third
generation term is not suppressed, whereas the first two generations are suppressed
by one power of h/M.

Note that, unlike in the previous subsection, the soft masses are no longer flavor-
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blind: the soft masses of the first two generation Squaﬂis receive negative corrections
and are smaller than the soft masses of the third generation squarks. However,
these corrections can be chosen to be small, with no severe tuning of parameters.
In addition, constraints on FCNC processes which involve the third generation are

typically weaker.

2.6 The py-term from anomaly mediated SUSY break-
ing

We now turn to the p-term problem in AMSB. As has been noted in [2] this problem
is much less severe than in gauge mediated models, and indeed several mechanisms
generating 4 and B terms of the correct order of magnitude have been proposed
recently [2, 5, 9]. Here we propose a solution to this problem based on the use of the
higher order (in SUSY bfeaking) correction as well as the observation that in AMSB
models it is easy to generate a scale which is somewhat larger than gravitino mass,
mayg ~ F.

We introduce the superpotential
WZ)\HSHqu+)\Ss3+)\NSN2+MN2 , (235)

where the mass parameter M is assumed to be generated dynamically as in Section
2.4, M = F/y for some coupling constant y. In addition, the scalar components of
N have soft tree level contributions to their masses, M F'. Generally, the Higgs boson
vevs lead to a vev (and therefore an effective p term) for S through the superpotential
(2.35). We will argue shortly that such a contribution does not affect the conclusions

we will draw, and therefore, will neglect it throughout our discussion.

Anomaly mediation generates a positive contribution to the S singlet mass squared

of the order
As + i
mia, ~ W F?. (2.36)
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Here and throughout this section we omit some order one numerical coefficients. On
the other hand, a one loop negative mass squared for the singlet is generated due to
the non-decoupling of the heavy states,

2% Rt PY:
miy ~ ——X =N 42F%, (2.37)

1672 M2~ 16m2
It is easy to see that the singlet mass will be negative as long as®

Ao+ A

Ay? >
Ny 167!'2 ’

(2.38)

where the right hand side indicates the order of magnitude only.

As a result both the scalar and the auxiliary components of S acquire vevs

1 Ay

F 1 A%\7y2 F2
§ 1672 )‘S ’

Substituting these vevs into the superpotential (2.35) we find that both y and B

are generated

b et (2.40)
1 dm 2v2 72
~ = F
B 1671’2/\,5' )\N

After S acquires a vev there is an additional contribution to B arising from the
S H, Hy A-term, however, it is negligible when (2.38) is satisfied. It is easy to see

that B and p? are of the same order if

Air/rs ~ O(1) . (2.41)

6Remember that N is heavy, and as a result A does not contribute to the S mass at order F2.
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We further need to require that the p term is of the order of the weak scale,
L AN~ 2R (2.42)
T s

This requirement together with (2.41) gives a condition on two Yukawa couplings
ANY ~ a3. We note that this condition is quite compatible with the requirement that

S has a negative mass squared.

Finally we observe that the Higgs vevs generate a mass term for S. This mass
contribution is below the negative mass (2.37) by roughly Ay Hy/p. Since Ay can be
arbitrary as long as it is comparable with Ag, such a contribution is small compared
to the negative mass generated by non-decoupling effects (which we can arrange to
be between electroweak scale and 1TeV'). Even in the case Ay ~ 1, our qualitative
conclusions remain valid, and both a p and a B term of the correct order of magnitude

are generated.

Having established that eq. (2.40) gives a leading contribution to x and B it is
possible to show that the physical phase ¢ = arg(Bu*M}) vanishes. Here M, is the
gaugino mass. Thus, this sector of the theory does not lead to a SUSY CP problem.

To conclude our discussion of the p term, we observe that the superpotential
(2.35) could be introduced in a gauge mediated model, with N being a messenger
field. However, in calculable models of gauge mediation the scale of supersymmetry
breaking is relatively large, while the messenger mass is at most suppressed by several
loop factors relative to this scale. As a result the higher order contributions used here
are too small to generate electroweak scale parameters. 7 In principle it is possible to
generate a small mass for the messengers, however, this requires the introduction of a
quite complicated structure and explicit mass scales, unlike with anomaly mediation
where a mass scale somewhat larger than the SUSY breaking scale of the visible sector

can naturally be generated.

"This is not a problem in strongly coupled gauge mediated models with a low SUSY breaking
scale. However, such models are non-calculable, and it is not possible to quantitatively analyze their
spectrum.
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2.7 Conclusions

In this chapter, we studied the decoupling of heavy thresholds in theories with
anomaly-mediated supersymmetry breaking. To leading order in the supersymme-
try breaking, such thresholds decouple. That is, the anomaly-mediated supersym-
metry breaking terms at some low scale are independent of whether or not there are

supersymmetric thresholds above that scale. These soft terms are thus quite robust.

It is possible to see this decoupling in several ways. For example, it can be
understood as a cancellation between the following two quantities: The first is the
contribution of the heavy fields to the anomaly mediated soft terms in the full theory.
Recall that the AM soft terms depend on the beta function of the theory, which in
the full theory reflects the presence of the heavy fields. The second is the direct
radiative contribution, through gauge or Yukawa interactions, of the heavy fields to
the soft terms of the light fields. This contribution is generated when the heavy
fields are integrated out. These two contributions cancel exactly, so that below the
scale of the heavy fields, they leave no trace on the soft terms at leading order in
SUSY breaking. That these two contributions exactly cancel can be seen on a case
by case basis, but it is most simply seen from the fact that the direct gauge- or
Yukawa-mediated contributions of the heavy fields can be read off the wave function

renormalizations [6, 7] in precisely the same way as the AM contributions.

Alternatively, the decoupling can be seen as a cancellation between “real” fields

and their regulators.

When do heavy threshold not decouple? One obvious possibility is that they are
not truly heavy [5]. That is, there is some light modulus associated with the heavy
threshold whose mass comes mainly from SUSY breaking effects. It is worth pointing
out that approximate decoupling persists even for a modulus much lighter than the
SUSY breaking scale F' so long as its mass is primarily determined by supersymmetric

parameters.

However, there is additional non-decoupling even when all the heavy fields are

truly heavy. That is because the purely anomaly-mediated soft terms only appear at
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leading order in the SUSY breaking. For example, scalar masses squared are order F2.
In contrast, as we integrate out some heavy fields, they give direct contributions, again
through loops, to the soft terms to all orders in the SUSY breaking. Scalar masses
squared now have contributions of order F*/M?, where M is the heavy threshold.
Moreover, these contributions typically appear at lower order in the loop expansion.
For scalar masses squared, they can appear at one-loop, whereas the AM soft masses
are two-loop contributions.

Having established that heavy supersymmetric thresholds do affect the soft terms
at order F*, we then use this fact to generate positive slepton masses. If the only
source of SUSY breaking in the SM is anomaly mediation, and if there are no su-
persymmetric thresholds, the slepton masses squared are negative. However, we can
charge the leptons (and another subset of SM fields) under a new U(1) gauge sym-
metry, which is broken at a scale somewhat above the visible sector SUSY-breaking
scale, and add some fields that obtain supersymmetric masses. In the presence of
anomaly-mediation, these heavy fields also acquire SUSY-breaking masses, and con-
tribute to slepton masses at order F'*. Interestingly, we are led to a model with some
non-trivial flavor structure. Unfortunately, this model is not consistent with grand
unification.

As another model building application, we used the F* contributions of heavy
. supersymmetric thresholds to generate acceptable u- and B-terms. As we saw, this
can be done quite simply in models of anomaly mediation, unlike in the case of gauge-
mediation. In the latter case, an acceptable y term typically leads to a B term that
is too large.

In both these model building examples, we also use a simple mechanism that
dynamically generates a scale that is naturally somewhat above the SUSY breaking
scale through anomaly-mediation. We expect this fact to be useful for further model

building applications.

52




Chapter 3

Linearized gravity in brane

backgrounds

3.1 Introduction and summary

It is possible that the observed world is a brane embedded in », space with more non-
compact dimensions. This proposal was made more concfete in the scenario advanced
in [25, 26], where the problem of recovering four-dimensional gravity was addressed.
(Earlier work appears in refs. (28], [27]-[29].) Further exploration of this scenario
has included investigation of its cosmology [10, 65, 13, 66, 15, 16, 18], [57]-[67] and
phenomenology [22, 23].1 '

In order to “localize” gravity to the brane, ref. [26] worked in an embedding space

with a background cosmological constant, with total action of the form
S ='/ EXV-G(~A + M3R) +/d4x\/—g£ : (3.1)

G and X are the five-dimensional metric and coordinates, and g and z are the
corresponding four-dimensional quantities with g given as the pullback of the five-
dimensional metric to the brane. M is the five-dimensional Planck mass, and R

denotes the five-dimensional Ricci scalar. The bulk space 1s a piece of anti-de Sitter

'For a recent survey of some of these topics, see also [49].
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space, with radius R = \/m, which has metric
ds? = 52(dz2 +dz3) . (3.2)
22 4 ’
The brane can be taken to reside at z = R, or in scenarios [76] with both a probe (or
“TeV”) brane and a Planck brane, this will be the location of the Planck brane. The
horizon for observers on either brane is at z = oo.

There are a number of outstanding questions with this proposal. One very inter-
esting question is what black holes or more general gravitational fields, e.g. due to
sources on the brane, look like, both on and off the brane. For example, consider a
black hole formed from matter on the brane. From the low-energy perspective of an
observer on the brane it should appear like a more-or-less standard four-dimensional
black hole but one expects a five-dimensional observer to measure a non-zero trans-
verse thickness. One can trivially find solutions that a four-dimensional observer sees
as a black hole by replacing dz? with the Schwarzschild metric in (3.2). 2 However,
these “tubular” solutions become singular at the horizon at z = oo, suggesting that
another solution be found.

Another related question concerns the dynamics of gravity. It was argued in [26]
that four-dimensional gravitational dynamics arises from a graviton zero mode bound

to the brane. Fluctuations in this zero mode correspond to perturbations of the form
R2
dS* = dS? + —;hy,dztda” . (3.3)
z
where h,, is a function only of z,
hyw = by () . (3.4)
Computing the lagrangian of such a fluctuation yields

R ~ 2°0hoh . (3.5)

2Such metrics were independently found in [91].
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This and other measures of the curvature of the fluctuation generically grow with-
out bound as z — oco. In particular, if we add a higher power of the curvature to
the action, with small coefficient, as may be induced from some more fundamental
theory of gravity, then generically divergences will be encountered. For example, one

easily estimates

Rm/)\a’R'”y)‘U ~ Z4 (36)

suggesting that Planck scale effects are important near the horizon. This would raise
serious questions about the viability of the underlying scenario. These estimates are

however incorrect as they neglect the non-zero modes.

Yet another question regards corrections to the 4d gravitational effective theory
on the brane. We’d like to better understand the strength of corrections to Newton’s
Law and other gravitational formulae; some of the leading corrections have already
been examined via the mode sum [26, 76]. Sufficiently large corrections could provide

experimental tests of or constraints on these scenarios.

A final point addresses reinterpretation [75, 31, 73] of these scenarios within the
context of AdS/CFT duality [35], [36]-[37]. In this picture, gravity in the bulk AdS
off the brane can be replaced by N' = 4 super-Yang Mills theory on the brane. Witten
[73] 3 has suggested that gravitational corrections from the bulk can be reinterpreted

in terms of the loop diagrams in the SYM theory.

In order to address these questions, this chapter will give an analysis of linearized
gravity in the background of [26]. We begin in section 3.2 with a derivation of the
propagator for a scalar field in the braﬁe background of [26], generalized to d+1
dimensions. This exhibits much of the physics with ’less complication than gravity.
The propagator is the usual AdS propagator plus a correction term, and can be
rewritten, for sources on the brane, in terms of a zero-mode contribution that produces
d-dimensional gravity on the brane plus a correction from the “Kaluza-Klein” modes.
For even d > 4 this term produces corrections of order (R/r)4=? at large distances r

from the source.

3See also [74].
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In section 3.3 we perform a linearization of gravity about the d+1 dimensional
brane background. For general matter source on the brane, the brane has non-zero
extrinsic curvature, and a consistent linear analysis requires introduction of coordi-
nates in which the bending of the brane is manifest, as exhibited in eq. (3.22). We
outline the derivation of the graviton propagator, which can be written in terms of
the scalar propagator of section 3.2. (For those readers interested primarily in the
applications discussed in the subsequent sections, the results appear in eqs. (3.23),
(3.24), and (3.26).) Special simplifying cases include treatment of sources restricted
to the Planck brane, or living on a probe brane in the bulk.

In section 3.4 we discuss the asymptotics and physics of the resulting propaga-
tor. Linearized gravity on the Planck brane corresponds to d-dimensional linearized
gravity, plus correction terms from Kaluza-Klein modes. As in the scalar case, these
yield large-r corrections suppressed by (R/r)4~2 for even d > 4 and by R/r for d = 3,
in agreement with [77]. We also discuss corrections in the probe-brane scenario of
[76]. We then find the falloff in the gravitational potential off the brane and thus de-
duce the shape in the extra dimensions of black holes bound to the brane or of more
gene‘ral gravitational fields. In particular, we find that black holes have a transverse

1/d-3 along the

size that grows with mass like logm, compared to the usual result m
brane. Thus black holes have a pancake-like shape. We also check consistency of the
linearized approximation, and check that higher-order curvature terms in the action
in fact do not lead to large corrections, as the naive analysis of the zero mode would

indicate.

3.2 The massless scalar propagator

Much of the physics of linearized gravity in the scenario of [26] is actually found in
the simpler case of a minimally coupled scalar field. Because of this, and because the
scalar propagator is néeded in order to compute the graviton propagator, this section
will focus on computing the scalar Green function. '

In much of this chapter we will work with the generalization to a d+1 dimensional
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theory with a brane of codimension one. The scalar action, with source terms, takes

the form

S = / A XV-G [—%(V¢)2+J(X)¢(X) . (3.7)

Here we work in the brane background of [26]; for z > R the metric is the d + 1-

dimensional AdS metric,

ds? = R—Z(dzz + dz?) (3.8)
=5 2. :

Without loss of generality the brane can be located at z = R. This problem serves as
a toy-model for gravity; for a given source J(X), the resulting field ¢(X) is analogous
to the gravitational field of a fixed matter source. The field is given in terms of the

scalar Green function, obeying

5d+1 (X _ X')

DAd+1(X7 XI) = m

(3.9)

Analogously to the boundary conditions that we will find on the gravitational field,

the scalar boundary conditions are taken to be Neumann,

0. Agy1(z, 2", =0; (3.10)

|z=R

- these can be interpreted as resulting from the orbifold boundary conditions at the
 brane, or alternately as due to the energy density on the wall. The scalar field has a

bound zero mode ¢ = ¢(z) analogous to that of gravity.

In order to solve (4.23), we first reduce the problem to solving an ordinary differ-

ential equation via a Fourier transform in the d dimensions along the wall,
d’p | '
Agi1(z, 22", 7)) = / ﬁe”’(”‘_z IN, (2, 7). (3.11)
The Fourier component must then satisfy the equation,
2? d—1 z\d+1
=5(0.7 = =0, = p) (2, ) = (—) 5(z— 7). (3.12)
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Making the definitions A, = (%

¢ =-p, (3.13)

this becomes

d?\ -
(22322, + 20, + ¢*2* — Z) Ap(z,2") = Rz6(z — 2'). (3.14)
For z # #', the equation admits as its two independent solutions the Bessel functions
Ja (¢z) and Ya (gz). Hence, the solution for z < 2’ and for z > 2z’ must be linear
combinations A (z, 2'), As (2, ') of these functions. Eq. (3.14) then implies matching

conditions at z = 2':

A<|z=z’ = A>|z:zl (315)
(A —A) ey = 2 (3.16)

Z’

We begin with the Green function for z < 2. The boundary condition (3.10)

translates to

9, [zd/2A<] er=0. (3.17)
This has solution

Ao= AR [VyaR)Ty(e2) ~ To (@R)Ys(a7)] (3.15)
iA(Z) [J41 (BB (g2) - B, (aR)J4(a2)]

a
2

where HO) = J + Y is the first Hankel function.

Next, consider the region z > 2. The boundary conditions at the horizon z =
oo are analogous to the Hartle-Hawking boundary conditions and are inferred by
demanding that positive frequency waves be ingoing there, implying[41]
A, = B(zH(q2) . (3.19)
2
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The matching conditions (3.15) between the regions then become

iA() [ Je (R H (02) - BY (aR)T3(02)] = BEHP (62),  (3.20)

B (¢2') —iA() [Ty @RH (0) - H (aB) Ty (a2)] = &

qz’

The solution to these gives

H(l)
A, =ilR [Jd (qR)HY (qz<) — HY (qR)J4(qz )] ﬂ (3.21)
v/ 2 5—1 q % q < %_1 q g q < Hélll(qR), .

where 25 (z<) denotes the greater (lesser) of z and z’. This leads to the final expression

for the scalar propagator:

Agi1(z, 22", 2") = T (z2')% f(2 L, gir(z=2') (3.22)

Jg_l(qR)
g (aR)
d_

B )~ Jylaz ) B a2

We note that the second term is nothing but the ordinary massless scalar propagator

in Ade+1 .

A case that will be of particular interest in subsequent sections is that where one of
the arguments of A4, is on the Planck brane, at z = R. In this case, the propagator

is easily shown to reduce to

oW
v ot —(Z d/2/ d’p ip(m—:c’)l g (a2)
Agi1(z, 232", R) = <R) (27T)de QH ) ( ) ) (3.23)

Qo

For both points at 2 = R, a Bessel recursion relation gives a more suggestive result:

(n
’ ddp ip(z—z' d—2 1 H ( R)
Ban(e, Bz, ) = / e | PR T4AD 4R)

g1

(3.24)

This can clearly be separated into the standard d-dimensional scalar propagator Ay,
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with
0,0'Ng(z,2') = 6%z — o), (3.25)

which is produced by the zero-mode, plus a piece due to exchange of Kaluza-Klein

states:
d—2

Agy1(z,R; 2’ R) = 7

Ad(l’,.’l)l) +AKK(.’E,.'L'I) . (326)

Here sy ( ,)1H«(i_122(‘1R)
Agg(z,z') = —/ erETTlo 2 -~ (3.27)
(2m)e q ng (qR)

Note that for d = 3, this gives the very simple result

d3p eip(m—.z") _ 1
(2m)3 ¢ 2z —af|?

Agg =i (3.28)

(One must however be careful in treating the gravitational field as a perturbation in
this case; recall that in d = 3 the potential is logarithmic, which is in a sense not a
small perturbation on a Minkowski background.)

" The effective action for exchange of ¢ fields between two sources as in (3.7) is given
by the usual quadratic expression involving this propagator. While we’ll postpone
general discussion of the asymptotics of these expressions for large or small z or z until
we discuss the graviton propagator, it is worth noting that at large distances on the
brane, |z — 33’! > R, the zero mode piece dominates and we reproduce the standard
effective action for d-dimensional scalar exchange, plus subleading corrections from

the Kaluza-Klein part.
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3.3 Linearized gravity

3.3.1 General matter source

We next turn to a treatment of linearized gravity in the context of brane reduction.

We again work with a d 4+ 1-dimensional theory, with action
S = /dd+1X V —G(Md_lR - A -+ Ematter) — /dd.’E\/ —gr . (329)

Here Lpaiter may include both matter in the bulk and restricted to the brane. We
have explicitly separated out the brane tension 7 from the matter lagrangian. Away
from the Planck brane, the vacuuni solution is d + 1-dimensional AdS space, with
metric (3.8). The AdS radius is determined by solving Einstein’s equations. Denote

the Einstein tensor by Grs; these then take the form

1

gIJ:W

[T]J - AGIJ - TPIJJ(Xd-H — Xd+1(33))] (330)

where Pr; is the projection operator parallel to the brane, given in terms of unit
normal n! as

Pry=Gry—nmy (3.31)

and X%t!(z) gives the position of the brane in terms of its intrinsic coordinates z*.

Off the brane, (3.30) gives

R= \/ —d(d = AI)M - (3.32)

As in [26], the brane tension is fine-tuned to give a Poincare-invariant solution with

symmetric (orbifold) boundary conditions about the brane; this condition is

_4(d—1)M*
= (3.33)

The location of the brane is arbitrary; we take it to be z = R.

The rest of this subsection will focus on deriving the linearized gravitational field
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................................................................... y=0
X

Figure 3-1: A generic deformation of the base surface leads to a redefinition of gaussian
normal coordinates. :

due to an arbitrary source; the results are presented in eqs. (3.23), (3.24), and (3.26)
for readers not wishing to follow the details of the derivation. As we’ll see, maintaining
the linearized approximation requires choosing a gauge in which the brane is bent,

with displacement given in eq. (3.22).

It is often easier to work with the coordinate y, defined by
z = ReV/R (3.34)
in which the AdS metric takes the form
ds? = dy* + "W/ Ry dztdz, (3.35)

the brane is at ¥ = 0, and we have written the solution in a form valid for all y.

It is convenient to describe fluctuations about (3.35) in Riemann normal (or hy-
persurface orthogonal) coordinates, which can be locally defined for an arbitrary

spacetime metric which then takes the form
ds® = dy* + g, (7, y)dz da”. (3.36)

The coordinate y picks out a preferred family of hypersurfaces, y = const. Such
coordinates are not unique; the choice of a base hypersurface on which they are
constructed is arbitrary. This base hypersurface may be taken to be the brane, but

later another choice will be convenient.

In the case where the coordinates are based on the brane, small fluctuations in
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the metric can be represented as
ds* = dy® + e W[, + b, (z,y)]dz"dz” . (3.37)

Parameterize a deformation of the coordinates corresponding to changing the base

hypersurface (see fig. 3-1) by
y' =y —a(z,y); 2 =2"(z,y) = 2" — o/(z,y) (3-38)

and consider a small deformation in the sense that o¥ is small. Working at y > 0, the

condition that the metric takes Gaussian normal form (3.36) in the new coordinates

is*

ox* Oz
20, oY v =0 .
Ooz* Oz
Y B —
aﬂla + guu ay, 8;1;#’ —_ O - (3.40)

In the background metric (3.35), at ¥y < R this has general solution in terms of

arbitrary small functions of z: ‘

o = o (z) (3.41)

at(z,y) = —LeW/Ry,a¥(z¥) + (). (3.42)

The corresponding small gauge transformation in the fluctuation &, is

| .
hyw = By = By + 8y, + By, — % T - (3.43)

It is straightforward to expand Einstein’s equations (3.30) in the fluctuation hy,;

“Here we have suppressed a subtlety that arises in trying to write a similar expression valid on
both sides of the brane due to the discontinuity in the change of coordinates (3.38) across the brane
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at linear order the result is

d—1) Ty
26 = R — ( ) d,he(y) = Mg—l (3.44)
1 T
ZQL(L )y = ayau(huy — hn[.u/) = MTu—l (345)
de(y) 1 2/ R
e _ (dau B SERY _ Z 52(hE — SERY — TH
gu gu + 2R ay(h’u 6uh) 9 ay (hu duh’) TI/ 2Md_1 (346)

where GV denotes the linear part of the Einstein tensor. In these and subsequent
equations, indices on “small” quantities hy,, T,,, etc. are raised and lowered with
Nuw- DR and DG# represent the curvatures of the induced d-dimensional metric of
(3.36) (which include the conformal factor and will subsequently be expanded in h),

and we have used the definitions

(3.47)

1 if y > 0;
6(y)={

-1 ify<0O

and h = h.

Boundary conditions on h,, at the brane are readily deduced by integrating the
equation (3.46) from just below to just above the brane — resulting in the Israel
matching conditions [42] — and enforcing symmetry under y — —y. If the energy

momentum tensor includes a contribution from matter on the brane,
T = S ()6(y), T =Ty =0 (3.48)

then we find
_ Syw (z)
2 M1 '

Ay (hw — M) jy=o0 = (3.49)

The first step in solving Einstein’s equations (3.44-3.46) is to eliminate (YR be-
tween the (yy) and (up) equations, resulting in an equation for h alone, (working on

the y > 0 side of the brane)

1

0 (M 0uh) = (|

T — (d— 2)e" /" Tg] . (3.50)
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Matter

horizon

Figure 3-2: In the presence of matter on the brane, the brane is bent

Conservation of T allows this to be rewritten

_ R R

This can be integrated with initial condition supplied by the trace of (4.26). There
is however an apparent problem if S # 0 or 97, # 0: the resulting h grows
exponentially, leading to failure of the linear approximation.

Fortunately this is a gauge artifact, resulting from basing coordinates on the
brane. Indeed, non-vanishing S,,, (z) produces extra extrinsic curvature on the brane;
to avoid pathological growth in perturbations one should choose coordinates that are
straight with respect to the horizon. In this coordinate system, the brane appears
bent, as was pointed out inv [79]. (See fig. 2). For simplicity consider the case where
all matter is localized to y < ym,, for some y,,. First, the exponential growth in A
due to the initial condition (4.26) can be eliminated by a coordinate transformation
of the form (3.41). We may then integrate up in y until we encounter another source
for this growth due to T),, on the RHS of (3.51, and kill that by again performing
a small deformation of the Gaussian-normal slicing. We can proceed iteratively at
increasing y in this fashion, with net result that the exponentially growing part of h

can be eliminated by a general slice deformation satisfying

0,0t (z) =

! [Sﬁ(x)+RT O =R [ dyorT | 3.52
2(d— )M | 2 vy W | (3.52)

in this equation and the remainder of the section, we work in the region on the y > 0
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side of the brane. In particular, consider the case 0"T,, = T,,(0) = 0; the solution
to (3.52) then explicitly gives the bending of the brane due to massive matter on the

brane.

In order to solve Einstein’s equations we’ll therefore work with the metric fluctu-
ation A, in this gauge, which for small coordinate transformations is given by (??)

(the spatial piece B¥(z) is still arbitrary). Eq. (3.51) has first integral

R ym
O =~ (T () — e™/" / dyd T, | (3.53)
Y

and can be solved by quadrature, up to the boundary conditions at y = 0. Eq. (3.45)

is then
. , Tf{
0,0 hW = 0,0,h' + = (3.54)

and can be integrated, again given the boundary conditions, to give the longitudinal

piece of hf,,. Finally, lincarizing (YG% in (3.46) and defining

1

Py = by — S (3.55)
gives
Oy = €/F(—nu,0*0°h), + 0*9,h,, + PO, R,,) (3.56)
LR g, (VR H)
e2y/R
T e

In this expression, O is the scalar anti-de Sitter laplacian. All quantities on the
right-hand side of (4.22) are known, so A, is determined in terms of the scalar
Green function for the brane background, found in the preceding section. The metric

deformation itself is given by trace-reversing,

= h
huu = hp,u - m My - (357)
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Note, however, that (4.22) also suffers potential difficulty from exponentially grow-
ing sources. By (3.53) we see that for a bounded matter distribution, the trouble only
lies in the terms involving 8”51“,. Note also that outside matter 83,6”52“, = 0, from
(4.21) and (3.53). Therefore, the remaining gauge invariance 8#(z) in (3.41) can be

used to set these contributions to zero just outside the matter distribution,
8Vﬁ;w|y=ym =0, (3.58)

and the same holds for all ¥ > y,,, eliminating the difficulty. Eq. (4.22) can then be

solved for h,, using the scalar Green function Agy (X, X'), given in eq. (A.1).

This will give an explicit (but somewhat complicated) formula for the gravitational

Green function, defined in general by

1

hr(X) = Md-1

/ﬁ“ﬁxv—GAﬁﬂxgvﬂ}dXO, (3.59)

and which can be read off in this gauge from (3.53), (4.21), and (4.22). In order to
better understand these results, the following two subsections will treat two special

cases.

3.3.2 Matter source on the brane

Consider the case where the only energy-momentum is on the brane. In terms of the

flat-space Green function Ay, (3.52) determines a brane-bending function of the form

1
Y - - d, ./ N oQuf :
o(z) 4(d_1)Md_1/dxAd(:c,x)Sﬂ(x). (3.60)
Eq. (3.53) and (4.21) then imply
O,k = 0= 8,0"h., . (3.61)

67




The gauge freedom [B*(z) can then be used to set

&hy,, =0 (3.62)
and the remaining equation (4.22) becomes

Ell_z:“, =0. (3.63)

Boundary conditions for this are determined from the boundary condition (4.26) and
the gauge shift induced by (3.60), and take the form

Sy

_m_—l - 2(auau - nmzai) a?. (364)

ay(h:w ~ W) ymo =

In terms of the scalar Neumann Green function Ay.; of the preceding section, the

solution is given by

BaX) =B () = g [ dVEG Aun(X:,0) (3.65)

2Md-1
N A B ;M
[Sw@) = g5 mwS(e) + 7 T 5@)

where the first equality follows from tracelessness of E:w; the source on the RHS is
clearly transverse and traceless as well. Recall that in this gauge the brane is located

at y = —a¥.

The quantity hj, is appropriate for discussing observations in the bulk, but a
simpler gauge exists for observers on the brane. First note that integration by parts

and translation invariance of Agyq(z,0;2’,0) implies

d, ./ o0 aual/ a§ !
d*z'/—g A1 (z,0; ', 0) [2—¥ - nﬂ,,éz] S(z") (3.66)
= (28,0, — nﬂuai)/ddx'\/—g Ad+1(x,0;x',0)%5(x') ;
X

this, together with a gauge transformation using 8#(z), can be used to eliminate the

third term in (3.65). We then return to h,, by inverting the gauge transformation
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(3.43) ; from the d-dimensional perspective the only gauge non-trivial piece is the a¥
term, which we rewrite using (3.60). Thus, modulo d-dimensional gauge transforma-

tions,

7 1 ! !
by (z) = ST / dd:c’{ Agy1(z,0;2',0)S,,(z") — (3.67)

(d—2) S (z")
Mw [Ad+1($,0;$'50) - TAd(x,m’)] m -
Note from (3.24) that the zero-mode piece cancels in the term multiplying S3.
Writing the result in terms of the d-dimensional propagator and Kaluza-Klein kernel

given in (3.27) then yields

7 d—2 )
i () = ORMI-1 /dd:c'Ad(x,:c’)SW(g;) (3.68)
1 ! ! N _ At
+gg | 4 Al ) [ S0 - 5820

The first term is exactly what would be expected from standard d-dimensional gravity,

with Planck mass given by 5

RMd—l

M=

(3.69)

The second term contains the corrections due to the Kaluza-Klein modes.

3.3.3 Matter source in bulk

As a second example of the general solution provided by (4.22), suppose that the
matter source is only in the bulk. This in particular includes scenarios with matter
distributions on a probe brane embedded at a fixed y in the bulk [76].

By the Bianchi identities, Einstein’s equations are only consistent in the presence
of a conserved stress tensor. If we wish to consider matter restricted to a brane at

constant y, a stabilization mechanism® must be present to support the matter at this

®QOur conventions are related to the standard ones for the gravitational coupling G (see e.g. [43])
by M7 = 1/16nG for four dimensions.
6See e.g. [80, 53, 67].
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constant “elevation.” Consider a stiess \te‘ns’o;r.of the form
T = S (2)8(y = yo) (3.70)
which is conserved on the brane,
0"Sw=0. (3.71)

For simplicity assume 7}, = 0. Energy conservation in bulk then states

6(2_d)y/R

9y (e™¥/*Ty,) = — R

S1(2)8(y = o) - (3.72)

A solution to this with T}, = 0 for y > y, is

el2vot+d(y—yo)l/R

Ty = 7 0(yo — y)Sh(z) . (3.73)

We can think of this Ty, as arising from whatever physics is responsible for the

stabilization.

Whether we consider matter confined to the brane in this way, or free to move
about in the bulk, the results of this section give the linearized gravitational solution
for a general conserved bulk stress tensor. Assuming for simplicity that T}, = T, =0

for y > yo, and that T,, = 0, we can gauge fix such that (see (3.53),(4.21))
#hy =0, ,h=0 (3.74)

for y > yo. Thus outside of matter, we see from eq. (4.22) that h,, again satisfies the
scalar AdS wave equation. In particular, for matter concentrated on the probe brane

at y = yo, eq. (4.22) gives

_ ew/R g 1 ] 5 1
Oy = =571 [Sww = 2d—1) ™A (¥ — %) — ST (3.75)

where S'W arises from nonvanishing 8“7»,”, for y < yo on the RHS of (4.22), resulting
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from the stabilization mechanism. This has solution

hulX) g [ 4G (X, e 50t - st )|

/ XG44 (X XG0 (X) (3.76)

Md-1

Again the graviton Green function AKE(X, x ) is given in terms of the scalar Green

function Ay, of (A.1).

3.4 Asymptotics and physics of the graviton prop-

agator

shape of black holes, etec.

3.4.1 Source on “Planck” brane

We begin by examining the gravitational field seen on the “Planck” brane by an
observer on the same brane. The relevant linearized field was given in (3.68). This
clearly exhibits the expected result from linearized d-dimensional gravity, plus a cor-
rection term. The latter gives a subleading correction to gravity at long distances.
This can be easily estimated: z > R corresponds to ¢R < 1, where (3.27) and the
small argument formula for the Hankel functions yields

dp
(27)¢

Agg(z,z') ~ R/ e"”(z‘m'? In(gR) < R/r* (3.77)

for d = 4, with r = |z —2'|. Ford > 4, we need subleading terms in the expansion

of the Hankel function, For even d, this takes the general form (neglecting numerical
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coefficients)
HV(z) ~ 27" (1 + 22+ 2 +--) + z” Inz(l+ 22ttt ) (3.78)

Powers of ¢ in the integrand of (3.27) yield terms smaller than powers of 1/r (contact
terms, exponentially supressed terms). The leading contribution to the propagator

comes from the logarithm, with coefficient the smallest power of ¢q. This gives

' dd : ’
Agg(z,z') / (—2%6”’(1_“’ )¢4*In(¢R) o< 1/|z — 2/ 244 (3.79)
T
for d > 4 and even. For odd d, the logarithm terms are not present in the expansion
(3.78), and such corrections vanish. Thus for general even d, the dominant correction
terms are supressed by a factor of (R/r)42 relative to the leading term; these are
swamped by post-newtonian corrections. Note that in the special case d = 3, Agx

was ezactly given by eq. (3.28), yielding a correction term of order R/r for a static

source, as noted in [77].

One can also examine the short-distance, 7 < R, behavior of the propagator,

which is governed by the large-¢ behavior of the Fourier transform. In this case we

find

ddp in(e—z' 1 1
AKK(;L‘y;[;I) I~ /WC p( )2—9 X m . (380)

Here clearly the Kaluza-Klein term dominates, and gives the expected d 4+ 1 dimen-

sional behavior.

Next consider the asymptotics for z > R and/or |z — 2’| > R, with a source
on the Planck brane. These are dominated by the region of the integral with ¢ <
min(1/z,1/|z—z'|). This means that a small argument expansion in ¢R can be made

in the denominator of the propagator (A.3), and this gives
; d/2
Agyi(z, 253, R) =~ g (Z)

m = (3.81)

2

ddp in(z—z' _ 5
/—(27r)d6p( )qd/2 QHél)(qz) [1+O((qR)d ZIquR):’ .

72



In particular z > |z — 2/| gives exp{ipz} ~ 1, and we find a falloff

Ad—l—l(x7 Z; .’L", R) ~ Rzd—2

(3.82)

in the propagator at large’ 2.

Note that this means that in the physical case d = 4, for a static source, the
potential falls like 1/z at large z. This calculation can be taken further to determine
the asymptotic shape of the Green function and potential as a function of r and z; we
do so only for the d = 4 potential though the calculation may be extended to other

d. The static potential for a source at 2’ = 0 follows from (3.81) by integrating over

time,
V(z,z) = / G041 (2, 2: 0, R) (3.83)
which then becomes
w122 d3p iz (1) -
V(.Z', Z) ~ —“Z—R— W& H2 (’LpZ) . (384)

This integral is straightforward to perform, and yields

3 1 212 r?\ 7 R’ R?

giving the large r and large z dependence. We will return to discuss implications of

the 1/z behavior shortly.

3.4.2 Source in bulk or on probe brane

Similar results hold for gravitational sources in the bulk, for example due to matter
on a probe brane as described in (3.76). As seen there, the detailed field depends on
the form of the stabilization mechanism, but a general understanding follows from
consideration of the scalar propagator entering into (3.76). Begin by considering the

general scalar propagator (A.1) for |z — 2’| > R, 2z, 2. This region is again governed
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by the small-g expansion. At leading order in ¢, (A.1) again yields

d =2 dp . 1

Agii(z, 251, 2') & —R—/ (271_)116"’(’”_“”q—2 . (3.86)

Note that the result is z independent, as in the analogous situation in Kaluza-Klein
theory when we consider sources at large separation compared to the compact radius;

the long-distance field is determined by the zero mode.

From this result we find that the gravitational potential energy between two ob-
jects at coordinate z > R and with d + 1 dimensional masses m and m' behaves

as

1 R\ ? mm/
V(’I’) o W ; T‘d_3 . ‘ (387)

(Note that this potential only includes contributions from the two objects and not
their stabilizing fields.) This can be rewritten in terms of the d-dimensional “physical”

mass using

mg = Rm/z . (3.88)

For probe-brane scenarios [76], it is also important to understand the size of the
corrections to this formula. This follows from (A.1) and the expansions (3.78) and

(again neglecting numerical coefficients)
J(@)~z'(l+z*+zt+--1) . (3.89)

Applying these to the first term in (A.1) yields (for even d)

J4—1(‘1R)
2 " H? )
R+21

~y

o [1+¢*R* + ¢*2* + (qR)*2In(qR) + ¢%2¢ In(q2)] {1+ O [(gz)?, (gR)?]} .

~d

Here we have dropped subdominant terms. The corrections involving simple powers
of ¢ again all integrate to yield contact terms at x = z’, so the dominant corrections

at finite separation come from the logarithmic terms. These then give contributions
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to the propagator of the form

1 R « d=2 Zd
Az, z;2', 2) ~ Rrd—2 1+ (7) tat (3.91)
Combining this with a similar analysis of the second term in (A.1) using
Jg_(qz)H%(qz) ~1+¢222 + -+ ¢%2%n(gz) + - - - (3.92)

leads to an expansion of the form

1 Ri-2 L4 2 pd-2 2 R2
A
Az, z;2',2") ~ Tord=? 1+ v + o + W—Rd—z] [1 +0 (ﬁ’ T—Q)J (3.93)
for the propagator for even d. Which terms are dominant depends on the magnitude

of r. At long distances, 72 > 2¢/R%2 the first term is dominant. In the physical
g

case of d = 4, the corresponding scale is
r~ 22 /R~ (107%V) ! (3.94)

in the scenario of [76], and at larger scales the corrections to the newtonian potential
therefore go like 1/r® with a Planck-size coefficient, and would be swamped by post-
newtonian corrections, as with corrections on the Planck brane. On the other hand, at
shorter scales than (3.94), the last term in (4.68) dominates. This gives a propagator
correction of the form z®/r® in four dimensions.” This is the first correction that we

could hope to measure in high-energy experiments.

It is interesting to investigate the asymptotics of the propagator in more detail.
Concretely, consider a source at (z',z') with 2’ > R. In the limit 72 and/or 22 >
(2)%/R%2, or z* < (2')2R42, the first term in the propagator (A.1) dominates over
the bulk AdS part given by the second term. Consequently, the behavior is given by
expressions like (3.81) and (3.85) (where z is replaced by 2’ for the latter limit). On

"This is in agreement with [76], and the subleading corrections can also be obtained from the
mode sum.
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the other hand, for r?, 22 < (2')%/ R2, the bulk AdS portion dominates and hence
determines the shape of the potential. This AdS propagator is explicitly given in
terms of a hypergeometric function [20, 21]. This transition to bulk AdS behavior is
that seen in (4.68). Indeed, the asymptotic behavior of the bulk AdS propagator for
r>z 2z, R,

) d
2z
Gads ~ [m] ; (3.95)

is what determines the 22¢/r?¢ corrections discussed there.

Finally, the short-distance bulk asymptotics are also easily examined. Specifically,
let |z—2'| < R and |z—2'| < R; again, the result is governed by the large ¢ R behavior
of the Green function. From (A.1) we find

T

g [ A e () )
Agii(z, 257", 2") “—W(ZZ')Q/WEP( )H% (¢2>)H,y " (g2<) ,  (3.96)

where H® = J—iY. Aside from non-standard boundary conditions, this is the usual
propagator for anti-de Sitter space, and at short distances compared to R will reduce
to the flat space propagator (see e.g [34]). In particular, suppose that |z — 7’| < z, 2.

Then we may also use the large ¢z expansion, which gives

d—1
) "\ T dp . N 1
Agp1(z, 232", 7)) =~ —% (ZR—Z2) /ﬁe”’(z"” )+’q(z>_z<)a , (3.97)
resulting in
d—1
z2' | R? 7
Agyi(z, 28", 2") ~ (|5E s z’|2> (3.98)

which is the expected behavior in d + 1 dimensions.

3.4.3 Off-brane profile of gravitational fields and black holes

These results can readily be applied to discuss some interesting properties of black
holes and more general gravitational fields in the context of brane-localized gravity.
In particular, one might ask what a black hole — or more general gravitational field —

formed from collapsing matter on the brane looks like. In a naive analysis, considering
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only fluctuations in the zero mode (3.4), one finds that metrics of the form
452 = 10 1 g (@)dada” 3.9
s* = —5[dz" + g (@)da"ds”] (3.99)

are solutions of Einstein’s equations for general Ricci flat four-dimensional metric
gu(x). These solutions are, however, singular on the horizon at z = o0, as was
discussed in [91]. Nonsingular solutions require excitation of the other modes of
the graviton. Although exact solutions are elusive except for d = 3 [77], the linear

analysis of this chapter gives us the general picture.

Consider a massive object, m > 1/R, on the Planck brane. Without loss of
generality its metric may be put in the form (3.37). The linear approximation is valid
far from the object (for more discussion, see the next subsection). As we’ve seen in
section 3.4.1, at long distances along the brane we recover standard linearized gravity,
with potential of the form (3.87). Transverse to the brane, we use the expression

(3.82), which, with (3.65), implies that

m

hoo ~ —5——
Mg 2243

(3.100)

(the extra power of z arises because we are considering the static potential). Note
that the proper distance off the brane is given by y, defined in eq. (3.34). Thus in
fact the metric due to an object on the brane falls exponentially with proper distance

off the brane.

If the mass is compact enough to form a black hole, the corresponding horizon
is the surface where (for static black holes) hgo(z,y) = 1. In the absence of an
exact solution, the horizon is approximately characterized by the condition hgy ~ 1.
Since we recover linearized d-dimensional gravity at long distances along the brane,
the horizon location on the brane is given by the usual condition in terms of the

d-dimensional Planck mass (3.69):

(3.101)




Transverse to the brane (3.100) implies that the horizon is at z, ~ r,. Taking into
account the exponential relation between y and z, a rough measure of the proper

“size” of the black hole transverse to the brane is

(%) = H . (3.102)

So while the size along the brane grows like m!/?~3, the thickness transverse to the

yn ~ Rlog

brane grows only like logm. The black hole is shaped like a pancake.® This black
pancake has a constant coordinate radius r, in z coordinates for z < z;, as seen in

(3.86). From (3.8) we then see that the proper physical size scales with z as
rh(z) = Rry/z . (3.103)

An amusing consequence of this picture of black holes is the possibility that matter
on a collision course with a black hole from the four-dimensional perspective can
in fact pass around it through the fifth dimension.® This suggests that from the
perspective of the four-dimensional observer, matter can pass through a black hole!
To investigate this more closely, consider the specific case of a black hole on the Planck
brane. A bulk mode (graviton or other bulk matter) can bypass the black hole by
traveling at z > z,. Suppose first that the proper wavelength of the bulk mode is
A > R. From the four dimensional perspective of the Planck brane the wavelength is
redshifted,

A ~ (%) A >z, (%) . | (3.104)
Thus for A > R, such matter has a wavelength larger than the size of the black hole,
which suggests that this process is difficult to distinguish from passage around the
black hole in four dimensions. Next consider a mode with wavelength A < R. Such a

perturbation obeys the geometric optics approximation and will fall into the horizon

8The value of z;, was guessed by [91] who nonetheless referred to the resulting object as a black
cigar instead of a black pancake. Ref. [77] also independently found the black pancake picture in
the special case of d = 3, where they were able to find an exact solution.

9We thank L. Susskind for this observation.

78




at z = oo; if emitted from the Planck brane it will never return. However, although
this particle is moving in the z direction it might be possible that a four-dimensional
observer could observe it’s projected gravitational field emerging from the far side of
the black hole. We leave further investigation of this process for future work.

A semi-quantitative picture of the shape of gravitational fields due to sources in
the bulk, e.g. on a pfobe brane, also follows from the asymptotics of the propagator
as described in section 3.4.2. Again, let the source be at ' = 0 and 2’ >> R. At short
distances r?, 22 < (2’)%/R472, the shape is given by the bulk AdS propagator (which,
as expected, for r < R and z — 2’ < R reduces to the flat d+1 dimensional result as
seen in (3.98).) At longer distances, r? and/or 2% > (2/)?/R%2, or 2¢ < (2')?R%2,
the zero mode begins to dominate with a shape given by (3.85) or its d-dimensional

generalization. This determines the pancake shape discussed above.

3.4.4 Strength of perturbations

Lastly we turn to the question of consistency of both the linear approximation, as
well as of the scenario of [26] within the context of a complete theory of quantum
gravity, such as string theory (see the next section for comments on the latter). For
simplicity we confine the discussion to the d = 4 case, although the results clearly
extend.

If one were to base one’s analysis solely on the properties of the zero-mode of
(3.4), serious questions of consistency immediately arise. For one thing, the black
tube metrics mentioned in the introduction become singular at the AdS horizon [91].
Alternately, trouble would be encountered when one considered consistency of lin-
earized gravity, or of the overall scenario after higher-order corrections to gravity of

the form

S—S+a / d°XV/-GR? (3.105)

are taken into account. The apparent trouble occurs due to the growth of the curva-
ture of the zero-mode correction to the metric, (3.3).

To see the problems more directly, recall that the general structure of the curvature
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scalar is

R~ G728%G ~ 22 (8*h + hd*h + W2Ph + - ) . (3.106)

Similarly, scalars comprised of p powers of the curvature will grow like 22?. According
to this naive analysis, such terms would dominate the action of the zero mode, which
would suggest the scenario is inconsistent. Likewise, consider the Einstein-Hilbert
action, |

1
S~ /d5X; (hO®h + h?0°h +---) . (3.107)

Rescaling b — 2%/2h gives an expansion of the form
S ~ /d5X (h0®h+ 2*2h28%h + - - ) , (3.108)

with diverging expansion parameter, a similar problem. What these arguments do
not account for is that far from the brane the zero-mode no longer dominates, and
in fact for a static source the perturbation falls as A ~ 1/z as seen in (3.100). This
ensures that RP corrections and non-linear corrections to linearized Einstein-Hilbert »
action are indeed suppressed, in accord with the intuition that a localized gravitational

source produces a localized field, not a field that is strong at the horizon.

This addresses the question of potential strong gravitational effects near the hori-
zon in the static case. We see that the source of the apparently- singular results is
the treatment of the zero mode in isolation; with the full propagator the field dies
off as it should with z. This leaves open questions about potentially strong effects in
dynamical processes. However, once again given the falloff of the propagator with z,
we expect this situation to be very similar to that of scattering in the presence of a
black hole, where for most local physics processes ( e.g. near the brane), the existence
of the black hole is irrelevant. However, while we have not attempted to fully describe
particles that fall into the AdS horizon, and radiation that is potentially reemitted
from the horizon, this may require confronting the usual puzzles of strongly coupled

gravity.!¢

10For related comments see [73).
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3.5 Conclusion

The scenario posed in [26] has by now survived several consistency checks, includ-
ing those of this chapter. In a linearized analysis, this chapter has outlined many
interesting features of gravity and gravitational corrections in this scenario. These
await a treatment in an exact non-linear analysis. Many other questions remain, in-
cluding other aspects of phenomenology and cosmology, and that of a first-principles

derivation of such scenarios in string theory.
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Chapter 4

Effective theories and black hole
production in warped

compactifications

4.1 Introduction

It is an old idea that, as an alternative to compactification, the observed Universe
instead lives on a brane in a higher-dimensional space. Such “branification” scenarios
had however until recently been hard to realize, largely because of the difficulty of re-
covering four-dimensional gravitational dynamics. Two new approaches have changed
~this and at the same time suggested new views of the origin of the hierarchy of scales
in physics. The first, pursued by [68], is a hybrid of branification and compactifica-
tion, in which matter is confined to a brane and then large-radius compactification

of the extra dimensions yields four-dimensional gravity at long distances.

A more recent approach utilizes warped compactifications to achieve effectively
four-dimensional gravitational dynamics. A outline of such a picture has been pro-
vided by the RS2 model [72]. This utilizes a “Planck brane” that serves as the
boundary of five-dimensional anti-de Sitter space, and the curvature of anti-de Sit-

ter space effectively “localizes” low-energy gravity to the brane. Related models are
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the RSI model [71] in which AdS is terminated above the horizon by a “negative
tension brane,” and the model of Lykken and Randall [76] in which visible sector
matter lives on a probe brane. None of these are fundamental pictures as they do
not provide a microscopic dynamics for the Planck, “negative-tension,” and probe
branes, but recent work in string theory has begun to provide descriptions of such
objects. In particular [75] has given a geometrical realization of an object akin to a
Planck brane, and [86, 84] have provided geometrical realizations of objects similar
to “negative-tension” branes. At the same time, these models have been connected to
renormalization group flows in four-dimensional gauge theories through the AdS/CFT
correspondence.

In providing a new view of the hierarchy problem, either through large radius or
other geometrical mechanisms, these scenarios suggest the exciting possibility that
quantum gravity effects could be observed at scales far below the usual Planck scale,
and perhaps even near the TeV scale. They also suggest the possibility of interesting
new gravitational phenomena, particularly in scenarios with infinite extra dimensions
(e.g. RS2) and with non-trivial curvature and horizon structure of the resulting

spacetime.

Some aspects of this gravitational dynamics has been studied in [77, 78], [79]-
[69]. In particular, [69] studied linearized gravity in the RS2 scenario, and gave
both prescriptions for computing propagators and a general picture of the structure
of black holes bound to the Planck brane. The latter were found to be pancake-like
objects, whose transverse sizes are logarithmically smaller than their four-dimensional
Schwarzschild radii. Cosmology of these scenarios has also been extensively studied
(see e.g. [65, 66] [67]-[57]) with suggestions that they offer new approaches to the
cosmological constant problem [59, 58, 64, 63, 62, 54, 12, 60], [51]-[61].

Many open questions remain, however, in the RS2 scenario and its variants. One
set of questions centers on the four-dimensional representation of the five-dimensional
dynamics. In particular, localization of gravity is not complete and in the RS2 sce-
nario there is a gapless spectrum of analogs to Kaluza-Klein modes that are weakly

coupled to excitations on the brane. Therefore a four-dimensional low-energy effec-
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tive field theory does not follow from the usual Kaluza-Klein reasoning, and so one
challenge has been to deduce what this effective theory is. It has previously been
argued [75, 73, 74, 69, 85] that the bulk‘dynamics can be replaced via the AdS/CFT
correspondence by a conformal field theory on the brane, and this suggests an answer,
namely that the effective field theory is provided by conformal field theory coupled
to the visible sector solely through gravity. This chapter amplifies on this statement,
clarifies the role of the cutoff, which in RS2 is expected to be at the AdS radius scale,
and provides one entry in the map between the five- and four-dimensional descrip-
tions by computing a linearized approximation to the four-dimensional stress tensor
corresponding to an arbitrary five-dimensional matter distribution. This stress ten-
sor is both conserved and traceless. Corresponding statements should hold for other
warped compactification scenarios, using realizations of the AdS/CFT correspondence
in more general warped compactifications.

Given the novelties of the gravitational dynamics, for example the above picture of
black holes, one is also prodded to investigate whether this field theory has unusual
properties. For example, consider the following question [69]: ! suppose that a
particle is launched towards a black hole on the brane with zero four-dimensional
impact parameter, but such that it follows a trajectory that misses the black hole
through the fifth-dimension. Does this correspond in the four-dimensional perspective
to matter that enters a black hole and exits the opposite side? This would surely be
a radical departure from usual four-dimensional effective theory!

However, standard AdS/CFT reasoning suggests a more mundane answer. In the
UV/IR correspondence outlined in [81], a state deep in AdS corresponds to a state in
the far infrared of the corresponding field theory. This suggests that a falling particle
corresponds to a state that spreads. Indeed, using our results for the stress tensor we
find that in the four dimensional description, the falling particle corresponds to an
expanding shell of CFT matter. The condition that the five-dimensional trajectory
misses the black hole becomes the four-dimensional statement that the shell misses

by expanding to a size larger than the black hole.

1This question was asked by L.Susskind.
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It is important to emphasize that the CF'T description is an effective description,
and another interesting set of questions therefore regards breakdown of the effective
field theory and the question of whether strdng gravitational dynamics — for example
black hole formation — is observable at scales far below the four-dimensional Planck
scale. We investigate the scales at which scattering experiments would be expected to
encounter dynamics beyond the four-dimensional description in the three scenarios
outlined, RS2, the LR probe brane scenario, and RS1. In particular, in the latter
scenario with a certain set of assumptions it appears possible to create black holes
that decay into observable matter in scattering experiments in the vicinity of the TeV
scale. This exciting possibility deserves more theoretical investigation; in particular
through construction of concrete models with the required properties.

In outline, section 4.2 of this chapter discusses conformal field theory as the 4d
low-energy effective theory of RS2. Section 4.3 computes the linearized effective stress
tensor of bulk matter, as well as solving a corresponding simpler problem of the 4d
scalar profile of a five-dimensional scalar source. It also elaborates on the black hole
flyby scenario mentioned above. Section 4.4 then discusses questions of the scale of
breakdown for the 4d effective theories, and of the possibility of low-energy black hole

production. Section 4.5 closes with conclusions.

4.2 The effective theory of RS2

We begin with a quick review of the RS2 scenario, and of its transcription into
conformal field theory via the AdS/CFT correspondence [73, 74, 69] in which we
will offer some refinements. The upshot of this discussion is that the low-energy
effective field theory for the RS2 scenario consists of visible 4d matter gravitationally
coupled to dark matter described by a cutoff CFT. Subsequent sections will explore
consequences and extensions of this picture.

The RS2 scenario is of course just an example of a much broader class of warped
compactifications, which have recently been widely studied both in the context of

model building, and in the context of string theory and the correspondence between
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renormalization group flows and supergravity geometries. While many of our com-
ments will be made within the framework of this greatly simplified example (for which
the only known microscopic construction is [75]), corresponding arguments should
apply to other models including those with stringy realizations. In particular later
sections will also comment on other variants of the RS2 scenario (those with a termi-

nated AdS space (RS1) or with a probe or “TeV” brane) and their possible stringy

realizations.

We therefore begin by considering the geometry with a single “Planck” brane.
Although our central interest is dimension d = 4, most of the relevant formulas easily
generalize and will be given in arbitrary dimension. We assume that matter fields,

denoted by 1, live only on this Planck brane. The action is
S = / EH X/ ZE(MEIR — A) + / /=7 (L (7, ) — 7] (4.1)

where G, M, R, and A are the d + 1 dimensional metric, Planck mass, curvature
scalar, and cosmological constant respectively, v is the induced metric on the Planck
brane, £ is the action of matter on the brane, and 7 is the brane tension. The bulk
AdS metric is
. R, 2
ds® = = (d2* + dz3) (4.2)

in d+ 1-dimensional coordinates X = (z, z); here dz? is the d-dimensional Minkowski

metric and the AdS radius R is given by

R= \/ —d(d - Al)M - (4.3)

The brane tension is fine tuned to the value

4(d— 1) M

in order to maintain a Poincaré invariant Planck brane. We may take the Planck

brane to reside at an arbitrary elevation z = p.
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As argued in [71, 72, 69], at long distances compared to R, the gravitational
dynamics appears d-dimensional. However, there is also a gapless spectrum of weakly-
coupled bulk modes. An obvious question is what serves as a d-dimensional low-energy
effective field theory describing the dynamics. Within string theory, an answer to this

is provided by the conjectured AdS /CFT correspondence [73, 74, 69].

To see this, recall that the AdS /CFT correspondence equates the d+1-dimensional
bulk gravity (or more precisely, string theory) functional integral to a generating
function in the CFT. A regulator is provided by excluding the AdS volume outside
Z = p. Suppose that we put the fluctuating metric in a gauge such that near this
boundary

2
ds? = Jj—z [dz? + (2, z)dztdz"] . (4.5)

The induced metric 7 on the boundary z = p is thus
, _ R?
ds; = —p?gﬂ,,(p, z)dzhde” = v, do"dz”. (4.6)
Define the functional integral over bulk metrics @ for fixed boundary metric v as

Z[y, o] = /DGeifdd+1X\/—_G(Md—1R—A)+2iMd-1fddz\/qK (4.7)
Y

where K is the extrinsic curvature of the boundary. The AdS/CFT correspondence

then states that for small fluctuations about the flat boundary geometry, g, = 1, +
Ry

lim e—Serav 7] Zly, p] = < ot J b T > (4.8)

p—0 CFT '

Here Serav 18 a counterterm action formed purely from the induced metric (82, 83]

3

in the case d = 4

6M3  RM3
Seray = / d“a:\/—v[ 7t R(v)—2M3R310g(p)Rz(7)J (4.9)
where
1 1
- _ = pv P2
Ry =~ RuwR + 3R (4.10)
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While the AdS/CFT correspondétice was or%i’g’inélly stated in terms of small fluctu-
ations, a natural assumption is that it extends to more general boundary geometries.
We therefore assume that the CFT generating functional can be written as a func-
tional integral over the CF'T degrees of freedom, which we collectively denote ¥, in
the background metric g,,, and that the correspondence thus becomes

lim e_isg'a"['V]Z[fy, pl = /Dxeifddx‘/__gﬁoFT(g“”’X) . (4.11)

p—0

Following the ideas of the UV/IR correspondence [81], we connect this with the RS
scenario by extending the conjecture to a statement with a finite cutoff, and assume
that

¢Sl 7]y, p] = / (D], et 2v=3Lorn(om ) (4.12)

where the on the RHS p provides the cutoff scale for the CFT. While a precise
description of this cutoff in the language of the CFT is not known, for sake of intuition -
one may imagine that it is for example given by only considering fluctuations on scales
Az such that ’

AT Az’ > p* (4.13)

In particular, notice that since the only dependence of the CFT on the scale of the

metric is through the cutoff, this implies
/ [Dx]peif %2\ /=g LerT(gurX) / [Dx]re’! 492/ =Y LFT (Vv 1X) (4.14)
where on the RHS the cutoff is thought of as restricting to fluctuations with

YuwATFAz” > R* . (4.15)

From (4.12) and (4.14) we therefore see that the integral over the bulk modes
can be replaced by a correlator in the CFT, as originally proposed in [73, 74, 69],

with a cutoff given by R. Specifically, d-dimensional dynamics is summarized by a
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functional integral of the form
/ [DyDYDx|re’’ /[ S L v+ Lowt (%) + Lgrav (1) 7] (--4) . (4.16)

For consistency with the cutoff (4.15) the other modes also presumably should have
a corresponding cutoff, as indicated. One consistency check on this approach is can-
cellation of the brane tension 7 by the corresponding term in Sgay, using (4.4). This
indicates that the low-energy effective field theory for the system, up to the scale de-
termined by R, is the theory of brane-matter gravitationally coupled to “dark” matter
described by the CFT. The d-dimensional Planck mass follows from the d-dimensional

version of (4.9), and is given by

RMd—l

M{? R

(4.17)

4.3 Effective stress tensor of bulk matter

We now investigate some of the consequences of the above identification of the CFT
as the low-energy effective field theory for the RS2 scenario. In particular, we start
by giving an entry in the bulk to boundary dictionary, by computing a linearized
approximation to the CF'T stress tensor corresponding to a perturbation in the bulk.
We then investigate the particular case of a particle freely falling into the bulk.
| Using this calculation, we discuss a test of the AdS/CFT correspondence and of
our effective description of RS2: suppose that we shoot a particle towards a black
hole with zero 4d impact parameter, but such that it will miss the black hole through
the z direction. How does a 4d observer understand the failure of the black hole to

absorb the particle?

4.3.1 General results

In this subsection we turn to the problem of deriving the d-dimensional brane stress

tensor that corresponds to a general d + 1-dimensional bulk matter distribution. In
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general this is a difficult problem, requiring solution of the bulk Einstein equations,
so we will only give a linear treatment.

The basic strategy is as follows. Ref. [69] computes the linearized bulk gravita-
tional field of a general matter perturbation. This in particular gives the linearized
metric and therefore Einstein tensor induced on the brane. We can then read off the
matter stress tensor from the right hand side of the d-dimensional Einstein equations
along the brane.

Although the resulting stress tensor has a number of special properties, we have
not yet found a particularly illuminating expression for it. However, in the next
subsection we specialize to the case of a particle falling into the bulk; in the long

distance approximation the corresponding stress tensor simplifies substantially.

In studying gravitational perturbations it proves convenient to introduce the

proper “height” coordinate y, given by
z= ReV/R (4.18)
in terms of which the linearized metric takes the form

ds? = dy* + e~/ (n,, + h,,)dz"dz" . (4.19)

Eqs. (3.20), (3.24), and (3.26) of [69] then give the linearized bulk Einstein equa-

tions in terms of the metric perturbation B,“, = hy — %hn“,, as:

_ 1 _
8, (e/Fa,h) = CE [T;; — (d—2)e /R Tg], (4.20)
v "
0,0 by = B,0h + 57 (4.21)

and

DBIW — n_g” eyd/R ay (e_yd/R(?yh)

+ R (@0 By + O Oyhux + 0 0yhy)

91




er/ R

~—=7 T (4.22)
The right hand side of (4.22) is determined by the stress tensor and the solutions of

eqs.(4.20), (4.21). This equation can then be solved for h,, using the scalar Neumann

Green function Ayyq, satisfying

L (X - X
OAg (X, X') = %7 (4.23)

ayAd+1(X,XI)Iy=0 - 0, (424)

and which was derived in [69]. In the present situation we need the retarded propaga-
tor rather than the Feynman propagator; the relation between these and approximate
expressions for them are given in the appendix. The resulting expression for the met-
ric has three terms arising from the three lines of (4.22). However, the second term is
inessential as a short calculation shows it to be pure gauge on the brane. Therefore

its contribution drops when we compute the Einstein tensor on the brane.

One must also specify boundary conditions at the brane; in the case of a surface

stress tensor

T = Sw(@)d(y), Ty =Ty =0 (4.25)

these become
Su,,(m)
opfd-1 "

Oy (huy — Nuwh)y=0 = — (4.26)

In order to simplify the resulting expression for the metric, it is useful to rewrite

the scalar Green function in terms of a new function F as
Aoy, 23,0) = 2 1Rg, (o@D IRE, (o — )] - (4.27)
One nice property of this redefinition is immediate: one readily checks that

/ dy'e®= D IRA, (X, X") = —Fy(y;z — 2) (4.28)
0
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satisfies the equation for the d-dimensional Green function, and so
Fy(y;z —2') = —=Ag(z, 2') . (4.29)

Using this and integrating by parts gives the contribution to A, from the first line

in (4.22) as

7 Nuv ' . /
R (x,y) = W / dV'8y Fy (y;x — o) [e2/BTH(X") — (d — 2)TY(X")] .
(4.30)

Eq.(4.30) combines with the terms induced by the stress tensor and the surface

stress (4.25) to give a complete expression of the form

Py = — i [ Ve /Ry, [e" @V /RE, (y; x — 2')] T, (X") (4.31)
+oaiaa [ V' 0y Fy (y; 2 — o) [e2/FTH(X") — (d - 2)TY(X")]
+h5, + hgaee

Here h&3'¢° is the piece that is pure gauge on the brane, mentioned above, and hﬁy is

the contribution due to the surface stress (we will see an example of this shortly).

For simplicity consider a purely bulk distribution (S,, = 0). The four-dimensional

effective stress tensor is readily computed from (4.31) via Einstein’s equations,

RMd—l

meff d—2(d —
T = aMmf2Agr = -

(0° Ry + 100 hap — 0,0%haw — 0,0%hap)]y=o ,
(4.32)
with h,, given by (4.31). The contribution of ﬁﬁ‘},“ge drops out.

One may expand out the expression (4.32) to write it explicitly in terms of the

bulk stress tensor T},,:

R

l_z'veff —
e d—2

f dV,{{edy,/Rayl [e—(d—-Z)y'/RFy’ (0, T — .'L',)] (asz,y + nuyaaaﬂTaﬂ |
—0%0, Ty, — 0%0,T,,)

+d—ilaylel (0; T — x’) (8,;% - nuya2) [er'/RTI_‘L" — (d — Q)Tg] }(433)
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Note that T;,ff satisfies two important properties. First, from its construction and the

Bianchi identities, it is conserved:
eff
o*T;, =0. (4.34)
Secondly, one may readily verify that it is traceless,
nTE =0, (4.35)

which accords nicelylwith its interpretation as arising from a conformal field theory

on the brane. Indeed, this easily follows from the (yy) Einstein equation, which states

(cf. [69] eq. (3.14)) o -
D+ (_I‘%_)@yhe(y) =3 (4.36)

where €(y) is a step function. On the brane 9,h and T} vanish (the former by (4.26)),
implying (DR (y = 0) = 0, and thus T = 0.

Note that in the abové discussion we have said nothing about bending of the
brane, which was described in [79, 69]. The reason for this is that we are interested
in the metric on the brane, and for this it is best to work in a gauge where the brane
is straight. In [69] the resulting metric was computed by first working in the bent
gauge, and then transforming back, but an equivalent result is found by working

directly in the straight gauge.?

4.3.2 Matter on the brane

In order to illustrate this equivalence — and because the result will be used in the
next subsection — we’ll compute the linearized metric and effective stress tensor due
to matter on the brane in this approach. Specifically, suppose that there is a surface
stress of the form (4.25), but that otherwise 77; = 0. The field eqs.(4.20-4.22) should
then be solved subject to the boundary conditions (4.26). By tracing the latter can

2For purposes of measurements on the brane, the apparent breakdown of the linearized approxi-
mation at y — oo may be ignored; for another treatment of these matters see [92].
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be rewritten in terms of h, and take the form

1 1 Uy
Oy y=0 = oA [Sp,u - ms] . (4.37)

By Green’s theorem these give a contribution

1

I
b (X) = — 50

ymz
[ @0 2a(6:0,2) [Se) - 55| sy
to the metric. As above, the second term on the RHS of (4.22) is pure gauge, and the

third term vanishes, so the remaining contribution comes from the first term. The

trace equation (4.20) and the boundary condition (4.26) imply

er/R
which gives a contribution
T v 2—d 1 (2— !
h&ly) = 4(;7”_ (l)R]VI)d—l /ddx'S(x')/dy e DEA, (X, XY . (4.40)

The integral over 3’ is eliminated by using the identities (4.28) and (4.29), and the
combined expressions (4.38) and (4.40) yield

P (z) = = ddx’{Ad_,_l(:v,O;a:’,O)Sm,(j;’) (4.41)

_ Ma!
ymz [Ad+1 (z,0;2',0) — %Ad(‘x’ ml)] 5()21(_1)) }

in agreement with [69]. In particular, this expression may be evaluated for a stress

tensor corresponding to a point mass at rest on the brane at ¥ = 0,3

Ty = 2mé“ ()6 (y) . (4.42)

3The extra factor of two is present because of the orbifold boundary conditions, and compensates
the 1/2 in (4.16).
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Using the long-distance expansion of the propagator [69],

d=2 | R
Ad+1 (.’L', 0, x’, 0) = TAd(m, _'L") [1 + (7‘1—_2)] (443)

this gives the d = 4 expression

m R? - mR
4.3.3 The falling particle

The above expression (4.33) for the stress tensor appears rather complicated, but
simplifies significantly in the long-distance limit. To illustrate this, we compute the
effective stress tensor of a particle falling into the bulk. (The corresponding approxi-
mate metric has also been computed by Gregory, Rubakov, and Sibiryakov in [87].)
~ This case will also apply to our later discussion of black hole flybys; by performing a
boost along the brane we get a trajectory that can sail behind a black hole through

the extra dimension.

Concretely, consider a particle of mass m that is stuck to the brane at Z = 0 until
time t = 0 and then released and allowed to freely fall into the bulk. The trajectory

for ¢ > 0 is easily seen to be given by the equation
2 —-t*=R*. (4.45)

For ¢ < 0 the only nonzero component of the stress tensor is given by (4.42). For

t > 0 the stress tensor is given by the general formula

dX1dX; 0%z —z(t))6(y — y(t))

Ty = .
IJ m dT dt \/——G ) (4 46)
which in the present case gives nonvanishing components
Ty = med=DV/R51(7) 5 (y — y(t)) , (4.47)
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t? L _
T,y = mzel W6 (@)6(y — y(1) (4.48)
and

t 1/
T, = —mEe(d‘z)y/Réd D)oy —y(?)) - (4.49)

Therefore the contribution to the metric from the trajectory for ¢ < 0 is a special

case of the general surface-stress result of the preceding subsection, (4.41), with
S, = 2mé* 1 (z)8(—1t) , S =0. (4.50)

The contribution to the metric from the second half of the trajectory is given by our

formula (4.31). Specifically, rewriting the ¢ > 0 stress tensor as

Try = St y)d(y — y(?)) , (4.51)

we find

1

ﬁiy(m) = — 77T Jiso dd:c’{c')y- [e’(d_z)y/RFy(O; z —2')] Sw(e',y) (4.52)

e RO, F [t — (d = DSy Hmyo

7, gauge
+hEEe .

The expression for the effective stress tensor follows directly from computing the
Einstein tensor (4.32) from these expressions for the linearized metric. In order to
gain some intuition for this expression, consider the approximation of distances and
times much greater than the AdS scale R, which we've seen is the cutoff for the
effective theory:

x> —t* > R* . (4.53)
In this limit the Green function simplifies dramatically (see appendix),

Fy(0:z — o) = %5@2 +(z— )2t — 1) (4.54)
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and the trajectory (4.45) becomes

z=ReVE ot (4.55)

Defining 7 = |z|, in d = 4 the approximate metric is then

= m

S~ st 45
o 27TM3R1"6“6” (4.56)

for r > t, and

=2 2 _ 2

Py = ZW%R [(% - -2‘%) 58t + %n‘w (4.57)

for r < t,asin [87]. A straightforward computation shows that the Einstein tensor

of both of these metrics vanishes! Thus the effective stress tensor is concentrated on
the surface where they match, » = t. This stress tensor is

eff m v
Th =~ W&(t —r)utu (4.58)

where ut = z#/t.

The effective stress tensor of the conformal field theory configuration describing a
falling particle is thus concentrated on a thin shell of radius r which expands outward
with time, » = ¢. We can estimate the thickness of the shell by investigating the
size of the leading corrections in the limit (4.53). One readily sees that the metric is
corrected at order R?/t?, R?/r?, both due to corrections to the trajectory and to the
Green function. This suggests that the thickness of the shell of CFT matter is the
expected O(R), the cutoff length scale.

This spreading behavior appears to be quite generic, as one might expect from the
IR/UV duality of the AdS/CFT correspondence. Another example of this behavior
is provided by a falling charged particle coupled to a bulk gauge field, as investigated

in [88]. Indeed, an even simpler example is provided by a falling particle coupled to
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a bulk scalar field. Specifically, consider a Lagrangian

S=— / dv%(wsf 4 / dro(X (7)) (4.59)

with a coupling of a bulk scalar field ¢ to a particle of scalar charge ¢ falling along a

trajectory X (7). This determines the scalar field,

6(X) = q / drAgiy (X, X (7)) . (4.60)

If we assume that the particle again follows the trajectory (4.45) and work at large

distances as compared to R and with d = 4, then the field at y = 0 takes the

R 2
r

If we compute the effective source, J = Oy¢, we find it vanishes except at r = t.

approximate form

g |[1 4R*

| - r)] (4.61)

Again, subleading O(R) corrections appear to smooth this into a shell of thickness

R.

Note that similar behavior was found by Horowitz and Itzhaki [89], who inves-
tigated the CE'T stress tensor corresponding to a particle moving geodesically in the
full, infinite AdS. This work also found a shell expanding outward at the speed of light.
Indeed, the two calculations are directly related in the infrared limit, as discussed in

appendix B.

This behavior can can also be understood directly in terms of the CF'T using an
argument due to Coleman and Smarr [90], which shows that a stress tensor that
is conserved, traceless, and has positive energy density will be localized on the light

cone. The basic idea for the proof is to show that the average squared energy radius,

2 fd3fET2T00

F(t)* = T 2T, (4.62)
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satisfies i

T

e =2 (4.63)

from which it immediately follows that a configuration initially localized at a point

will expand on the light cone. Ref. [89] argues that the argument extends even to the

quantum case, where the eﬂergy density may be negative, as long as the total energy
is positive.

These results neglect the backreaction of gravity on the outgoing shell. It would
be interesting to understand what dynamics results when strong self gravitation of
the shell is included.

Vanishing of the Einstein tensor for the metric (4.57) at first sight leads to another
puzzle. Specifically, suppose we consider a “bounce” trajectory, where the particle
follows the trajectory (4.45) for all time. The calculation of the metric above is mod-
ified by extending to the trajectory for ¢ < 0, but still yields a stress tensor that
vanishes everywhere. This contradicts our expectation of a shell that collapses and
then reexpands. However, note that this computation is not complete. The z coordi-
nates only cover the region outside the AdS horizon, and thus this calculation would
miss the contribution of the piece of the trajectory behind the past horizon. If this
is not included, energy-momentum conservation is violated at the horizon, and con-
sequently gravity cannot be consistently coupléd. A correct calculation includes this
piece, but also requires more information about the structure of the Green function.
Speciﬁcally,.one needs to know what boundary conditions it obeys in the far past. In
order to make predictions in the RS2 scenario, one needs to understand the physics
determining the boundary conditions at the past horizon. Correspondingly, in CFT

language one needs to know in what state the CFT sector began.

4.3.4 Black hole flybys

We now have the necessary tools to discuss particles flying past black holes through
the bulk; for simplicity we discuss the four-dimensional case. Specifically, suppose

that there is a black hole of mass m located at £ = 0 and that a particle is shot at it
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Planck Brane

Planck Brane Black Hole )

Trajectory of falling particle

Figure 4-1: A particle trajectory that misses a black hole on the brane because of its
motion in the extra dimension.

with zero four-dimensional impact parameter, but is allowed to fall in z long enough
that it misses the black hole by paséing it in the z direction (see fig. 1). How does
a four dimensional observer describe such an experiment, and in particular does one
see radical departures from usual gravitational dynamics, such as matter entering and

then escaping a 4d event horizon?

The answer to the latter question is, of course, no. Indeed, a black hole with mass
and 4d Schwarzschild radius m has a horizon extending to z, ~ m in the bulk picture.
In order for the particle to miss the black hole, the particle must have z > m when
Z = 0. As we’ve seen above, in the CFT description the particle corresponds to a
shell of CF'T matter. If it has reached z > m by the time it reaches the black hole
at £ = 0, then the shell has expanded to size r > m by the time it has reached the
black hole, and is continuing to expand outward. No novel physics need be invoked to
explain why the shell is not absorbed by the black hole.* The process has a perfectly
adequate four-dimensional effective description in terms of the matter conformal field

theory coupled to four-dimensional gravity.

“Note, however, that a small piece of the shell may be absorbed by the black hole; a quantum
treatment of the bulk should yield a corresponding result.
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4.4 Breakdown of EFT; cutoffs, strong gravity, and
black hole production

Section 4.2 argued that at low energies the RS scenario is equivalent to coupling ordi-
nary matter to a hidden CFT. Section 4.3 provided illustrations of this statement. An
obvious question regards the limitations of this description. At what scale does it fail?
Is there any practical advantage or consequence of the five-dimensional description?
And what conclusions can one draw about strong gravitational phenomena, such as
production of black holes in high-energy scattering?

In this section we will first consider the scenario with a single Planck brane, and
then comment on extensions of the discussion to scenarios with an added probe or
“TeV” brane or with AdS terminated by a brane-like object at large z (like the

“negative tension” brane proposal of [71]).

4.4.1 Scattering on the Planck brane

The four-dimensional effective action for the scenario with a single Planck brane is
given in (4.16). Recall that the fundamental parameters determine the 4d Planck
mass by the relation (4.17). We would like to understand what this scenario predicts
for high-energy scattering.

The simplest assumption (if one is not trying to solve the hierarchy problem) is
“that the five-dimensional Planck scale and inverse AdS radius, and hence the four-

dimensional Planck scale, are all comparable:
M~1/R~M,. (4.64)

In that case all new physics is clearly at the Planck scale. How much can this state-
ment be relaxed? One would expect observable deviations in microgravity experi-
ments — as in the scenario of [68] — for R ~ lmm. This puts a lower bound of
M > 108GeV on the five-dimensional Planck scale.

Consider now high energy scattering of particles confined to the brane. From
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the bulk perspective, we see that at distances < R the dynamics is effectively five-
dimensional. This is mirrored in the foﬁr—dimensional description of (4.16; ehergies
above 1/R are past the cutoff and the cutoff CFT description is incomplete.

Does this mean that we can see what a 4d observer would interpret as strong
gravitational phenomena at energies just above 1/R? Clearly not, except when the
parameters satisfy 1/R ~ M, in which case we are at Planckian 4d energies anyway.
Consider for example black hole production. There are two types of black holes that
one might produce. The first type is the AdS/Schwarzschild black hole, which moves
freely in the bulk, and in general will fall towards the AdS horizon once produced.
The threshold for producing such black holes is the 5d Planck energy M > 108GeV.
The second type of black hole is bound to the brane, as described in [91, 69]. The
horizon radius of such a black hole is 7, ~ m/M2; this should be larger than the 5d
Planck length which implies m > RM?. Since RM > 1, the threshold is again at M
or above.

From this discussion we see that scattering pushes beyond the cutoff scale at the
threshold 1/R and in the bulk perspective begins to explore the extra dimension.
While this may have visible consequences through production of the Kaluza-Klein
modes, strong gravitational dynamics such as black hole production has a much higher
threshold of M, which in the most “optimistic” scenario of M ~ 103GeV is still a

long ways off.

4.4.2 Scattering on a probe brane

The preceding Planck-brane scenario is not favored from the viewpoint of low-energy
phenomenology in any case, given the expected relation (4.64) between scales. Sce-
narios which try to generate the hierarchy via the exponential warp factor show more
promise. Consider first the probe brane scenario of [76]. Here 4d matter is taken to
reside on a “TeV” brane at an elevation z = pr; the Planck brane is again at z = p.
This brane must be stabilized by a mechanism such as in [80, 53]. The 4d Planck
mass is again given by (4.17), but matter on the TeV brane has its energy redshifted
by p/pr relative to the Planck brane. If p/pr ~ TeV /My, this gives a mechanism
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to generate TeV scale effective masses from particleé with fundamentally Planckian

masses.

To elaborate on these comments, note that in giving a four-dimensional description
of the physics it is necessary to specify a reference framé at a definite value of z in
terms of which four-dimensional energies are measured. The natural frame to use is
that of the Planck brane, as this is where the 4d graviton bound state is supported.
Then if we consider an energy E,.., as measured by an observer at another value
of z, it will be redshifted so that the energy in the frame of the Planck brane is
E = pEpep/z. In particular, a particle of mass m at rest in the frame at z will
have an energy mp/z relative to the Planck brane, and that will be interpreted as its

four-dimensional mass.

The Lagrangian in this scenario is expected to take the form

5= / 4 VIG(MR = A+ Lyas) (4.65)

v [ [Vttt o), ) - V]

Here we denote by Lg,.p the Lagrangian of the stabilizing fields; we assume that

beyond stabilizing the brane the don’t qualitatively affect our conclusions.

What is the CF'T description of this scenario? Here we encounter subtleties beyond
the derivation of (4.16). Specifically, the action depends on the metric at z = py. In
attempting to relate the bulk functional integral to the boundary CFT we have to
confront the non-trivial z-dependence of y, and in particular give a CFT prescription
for computing the metric in the bulk. We have not yet found a convincing prescription

to derive such off-shell information from the AdS/CFT correspondence.

In the absence of such a prescription we will consider two approaches to this
problem. The first is to work with long-wavelength excitations of the theory such

that the simple scaling approximation

y(z, p) = ’;—fgv(x, or) (4.66)
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holds. We use this equation to replace v(z, pr) by %(z, p) in the Lagrangian for
matter on the TeV brane. This effectively rescales parameters of dimension § in that
Lagrangian by a factor (p/pr)° (c.f [76]). Rewriting the functional integral as in
section 4.2 produces a 4d effective action analogous to (4.16) in the Planck brane

scenario,

Strev = / d*z/=7 [L(y, ¥, mp/pr) + LorT(7, X) + Lerav(y) — 7] - (4.67)

Here we have explicitly indicated the rescaling of a typical mass parameter in the
matter Lagrangian. Again Lcpr(x) represents the Lagrangian of “dark” CFT matter,

and Lgray, given by (4.9), is the gravitational action.

The simple approximation (4.66) fails at short wavelengths, where the z depen-
dence becomes non-trivial. This effect can be estimated from the long-distance ex-
pansion of the propagator [69],

-2 ,d  ,2d pd-2 2 p2
A(x,z;a;',z')rv; {1+R +z_+z_r_] [1—!—(’)(2— i)] . (4.68)

Rrd—2 pd—2 rd r2d Rd——2 r2 ! 72

In d = 4, the correction due to the last term becomes large at distances

P 4/3
r~<7T) R, (4.69)

or at about 10 Fermi for p/pr ~ TeV/M.

In order to understand the origin of corrections at this scale, first let’s recall a
similar phenomenon in the large scale compactification scenario of [68]. If one for
example considers such a compactification with two extra dimensions of size O(mm),
gravitational experiments performed at shorter scales reveal the six-dimensional na-
ture of spacetime: the part of the four-dimensional effective Lagrangian describing
the gravitational sector breaks down. One way of understanding this is to note that
sources with shorter wavelengths than a millimeter will generically have coupling to
the Kaluza-Klein modes that is comparable to the coupling to the gravitational zero

mode; summing over these modes produces the six-dimensional gravitational field.
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While the gravitational part of the 4d effective action breaks down, nonetheless the
gauge part of the effective action remains four-dimensional up to scales of order a
TeV where gravity itself becomes strongly coupled.

A similar phenomena occurs here. At scales given by (4.69), the couplings of
the TeV brane matter to the continuum analogs of the Kaluza-Klein states become
comparable to the coupling to the four-dimensional graviton. This means that in the
gravitvational sector the 4d effective theory fails, but of course the gauge part of the
theory remains four-dimensional up to the TeV scale. The stress tensor of the TeV
brane matter acts as the source for these couplings to the Kaluza-Klein modes.

Corresponding statements can be made in the CFT, and will tell us the form of
the corrections to the action (4.67) that are responsible for its failure as a 4d effective
description. In particular, we expect that corresponding to the couplings to the KK |
modes, a term is induced in (4.67) in which there is a direct coupling of the stress
tensor of the TeV brane matter to the stress tensor of the CFT, and by scaling the
coefficient of this should include a factor of (pr/p)*. Such terms are responsible for
the breakdown of the gravitational part of the 4d effective theory.

A second approach would be to use the holographic renormalization group [55]
to evolve the Lagrangian from the Planck brane to the TeV brane. We would expect
this to produce similar results, namely a gravitationally coupled CFT with a cutoff
scale ~10 MeV. We expect the T,T, terms described above to be present in the
Lagrangian at the Planck scale, and then to be rescaled by the renormalization group
flow. A better understanding along these lines of the relationship between operators
at different 2z would also clearly be illuminating for our fundamental understanding
of holography in the AdS/CFT correspondence.

As in the scenario of [68], there is a distinction between the scale at which the 5d
nature of gravity becomes important and the scale at which gravity becomes strongly
coupled. A particularly interesting question is when do we expect to be able to
manufacture configurations which would manifest signatures for black holes that we
as four-dimensional observers could see?

Within the context of the TeV-brane scenario, there are again two kinds of black
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hole solutions known. The first is the AdS-Schwarzschild black hole. The minimum
energy to create these should be O(M). A collision of TeV brane matter with a
proper energy of this magnitude is a collision at the TeV energy scale as measured
with respect to the four-dimensional observer. However, it appears that such black
holes are not bound to the brane. In the probe-brane limit, where the gravitational
backreaction is neglected, this is manifest, but even taking into account the small
energy density of the probe brane it seems likely that the binding of the black hole
to the brane will be overcome by the gravitational pull of the black hole towards
the AdS horizon.® While a complete analysis of this requires detailed investigation
of stabilized probe brane scenarios, it appears that such a black hole will therefore
generically fall towards the AdS horizon, and that the 4d observer will therefore not
perceive it as a black hole. In the CFT picture, such black holes will be perceived as
complex excitations of the CF'T which spread out over time, and it is very unlikely
that their signature can be experimentally disentangled from other excitations of the
CFT.

The second type of solution is the black hole on the Planck brane. These are truly
perceived as 4d black holes. However, given the relation (4.64) between scales, the
minimum energy to create such a black hole is again of order the Planck energy. The
TeV brane scenario doesn’t seem to allow access to what a 4d observer would perceive
as strongly coupled gravitational dynamics at lower scales.

In fact, notice the following novelty. A small black hole bound to the Planck brane
will not intersect the TeV brane, until its horizon reaches the TeV ~! size. Therefore
matter moving on the TeV brane may bypass such a black hole, in a close analogy to
the black hole flybys discussed in sec. 3.2. (See fig. 2.) In other words, 4d observers
made of TeV brane matter have difficulty resolving sub-TeV size black holes. How is
this interpreted in four-dimensional language?

To really study this question requires a detailed model of the stabilization and the

TeV brane matter. However, a plausible answer to this also comes directly from our

5There may be interesting transitory effects — such as stretching and then recoil of the probe
brane — that we leave for future investigation.
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Figure 4-2: A particle moving on a probe brane can bypass a small black hole localized
on the Planck brane.

earlier discussion. Matter passing a black hole by moving on the TeV brane should
be interpreted in the 4d berspective as matter smeared out on the TeV scale. Such
matter has a small probability of probing a black hole with a radius much less than

1/TeV.

4.4.3 The RS1 scenario

Another interesting possibility is that AdS is terminated at both ends in 2. The
outlines of such a picture was suggested in Ref. [71] with a idealized lower brane
taken to have a finely-tuned negative tension.

Recent developments in string theory have suggested a concrete means to construct
geometries with similar properties. Specifically [86, 84] describe geometries that
terminate at a definite value of 2. These geometries do not arise from negative
tension objects, or even singular branes, but rather are rounded off at the maximal »
in a smooth geometry that uses the extra dimensions of string theory in a non-trivial
way.

Refs. [86, 84] do not have a simultaneous microscopic construction of the analog
of a Planck brane. However, one can envision building such a model by using Ver-
linde’s geometric realization [75] of the Planck brane as a piece of a compactification
manifold on the ultraviolet end, and then realize the IR brane as in [86, 84] or in a

variant of these scenarios producing other low-energy dynamics. There may of course
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be other inequivalent stringy constructions of such doubly-terminated AdS spaces.

Constructing detailed models of this kind is an interesting problem for the future.

The models of [86, 84] have explicit gauge theory duals. If one constructs a
model with a geometric “Planck brane,” one would expect these to be modified af
the UV end and depend on the internal structure of the compactification manifold.
Nonetheless, these gauge theories should serve as good effective theories at lower

scales, in parallel with our earlier discussion.

Such a scenario — or others with a microscopic realization of an IR brane — may
have very interesting consequences for the observability of strong gravitational phe-
nomena. Assume that in such a construction there is a gauge theory sector that we
may think of as being truly localized in the vicinity of the maximal z which we take
to be z >~ pp. This would then realize what was referred to as matter living on the
“negative tension brane” of ref. [71]. As explained above, energies at z ~ pr are
redshifted relative to those at the Planck brane, and so if a suitable way is found of
stabilizing the separation between the branes, TeV scale scattering corresponds to a
proper energy comparable to M, the five-dimensional Planck scale, if the scattering
takes place at z =~ pp. Thus scattering at this scale should begin to make black holes.
‘'These should be similar to AdS-Schwarzschild solutions, or to the analogous solutions
in the new geometry of [86, 84]. (For an explicit formula for the smooth metric in
question, see sec. 5.1 of [86].)

In the probe-brane picture, these black holes were expected to fall off the brane
and into the horizon at z = co. Now this is not possible since the geometry terminates
at z ~ pr. One expects such a black hole to undergo approximately geodesic motion
in this vicinity, and ultimately to evaporate.

Note that one may achieve a clean separation of scales in situations where the AdS
radius R is larger than the 5d Planck length M~'. In this situation (which can be
achieved by taking large 't Hooft parameter g> M — here only M is the dimension of
SU(M) —in [86]), there exist black holes larger than the Planck size but smaller than
the AdS radius. These would have an approximately (five-dimensional) Schwarzschild

description.
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In the probe brane picture, the evaporation of 5d black holes was expected to
be nearly exclusively into bulk modes, since the black hole becomes well separated
from the TeV brane and so will not couple to its excitations. However, in the present

“picture, the black hole remains in the vicinity of the analog of the IR brane and this
suggests that there is no reason for it to decouple from the matter modes in this
vicinity. Indeed, in the idealized “negative tension brane” picture, gauge modes on
the brane will directly see the black hole metric. Therefore, with this assumption,
on general grounds one expects the black hole to Hawking radiate into all available
modes, including the visible matter sector modes. As explained in [56], the radiation
in the visible sector is generically expected to be important.

This suggests an interesting scenario in which a black hole could be created at an
accelerator operating in the vicinity of the TeV scale. Assuming the black hole is suf-
ficiently coupled to the visible modes, these would provide a channel for the Hawking
decay and provide an observational window on this process. One would observe such
an object by looking for the characteristic approximately thermal spectrum — with
increasing temperature — of the Hawking process.

The basic assumptions that could lead to this possibility being realized are 1) that
one has a geometry effectively terminated at a maximal z corresponding to the TeV
scale, 2) that one has a description of visible-sector matter localized to the vicinity
of this maximal z, and 3) that black holes near the maximal z couple to the visible
sector. Whether these assumptions will hold in models based on the ideas of [86, 84]
remains to be seen, but they plausibly do, and there may also be other models with
these properties, for which the creation and visible-sector decay of TeV-scale black

holes seems a generic prediction.

4.5 Conclusions

This chapter has investigated the interplay between the four- and five-dimensional
descriptions of the physics of warped compactifications. In the simplified example of

the RS2 scenario, at distances long as compared to the AdS radius R there is a four-
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dimensional effective description of the dynamics giveri by observable brane matter 4
coupled gravitationally to a sector described by a conformal field theory. At shorter
distances the derivation of this description fails. One expects similar 4d effective
descriptions for other warped compactification scenarios.

One element of the correspondence between the 4d and 5d descriptions is supplied
by the computation of the 4d stress tensor corresponding to a 5d matter distribution.
At the linear level we have given a formula for this stress tensor. We have also
investigated an amusing scenario that illustrates the interplay between the 4d and
5d descriptions, that of a particle passing a black hole through the fifth dimension,
with a corresponding 4d description in terms of a matter distribution expanding into
a shell larger than the black hole.

Finally, we have explored situations in which strong gravitational dynamics may
give important modifications to the 4d description. In particular, in scenarios where
the hierarchy is addressed by visible matter being effectively localized to a large z in
AdS space, one potentially has access to strong gravitational dynamics such as black
hole formation at TeV energy scales. In probe brane scenarios this may not lead
to observable effects since the resulting black hole seems to rapidly decouple from
the visible sector by falling off the brane, but scenarios with AdS terminated at this
maximal z show much more promise as such a black hole should stay localized in the
vicinity of the maximal z. This leads to the possibility of creation and observable
Hawking decay of a black hole in the vicinity of the TeV scale. It would be particularly
interesting to find extensions of the work of [75] and [86, 84] which give explicit string

theory realizations of such RS1 type scenarios.
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Chapter 5

Summary and Outlook

We have found through the course of this work that branes provide new tools for
addressing the hierarchy problem. In particular, within a supersymmetric solution
to the hierarchy, they allow one to consider models where the dominant contribution
to SUSY breaking comes from anomaly mediation. The resulting spectrum for the
superpartners is quite predictive and model independent. Minimal anomaly media-
tion suffers from having negative slepton mass squareds, however, we have given an
existence proof that one can provide sufficient positive contributions entirely within
anomaly mediation. We have also shown how to generate acceptable p and B pa-
rameters, insuring proper electroweak breaking. As a result, we have shown that one
can construct a model that protects the hierarchy against radiative corrections, and
has a spectrum which is consistent with current observations, including the bounds
on FONC. |

Unfortunately, our solution is quite complicated and involves a host of new heavy
fields, which do not allow for unification. There has been another proposal for gen-
erating positive contributions within a 4D framework which is perhaps simpler and
does allow GUTs [5]. It, however, has a very light field of mass comparable to that
of the MSSM fields, and also suffers from possible cosmological problems of why we
live in the vacuum with positive slepton masses. This is because in this proposal the
sleptons, in fact, have negative mass squareds above the heavy threshold scale. Thus,

there is still an important challenge to find a solution to the negative slepton mass
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problem, which is simple, elegant, and is completely consistent.

Perhaps related to this, it would be interesting to better understand the 5D dy-
namiés that leads to anomaly mediation. Thus far, we have been working entirely
within the low-energy, 4D effective theory below the compactification scale. It would
be interesting to construct explicit 5D theories where the interactions of anomaly me-
diation can be seen directly. This might also help in providing solutions to the slepton
mass problem by including contributions from 5D bulk fields which are naturally of
the right size and sign. Also, a realization of this scenario from a string compactifi-
cation with a limited number of moduli fields lighter than 5D compactification scale
is important, and might shed some light on the physics.

We have also seen that the gravitational phenomena associated with curved brane
backgrounds are quite novel. We have shown that even with an infinite extra di-
mension, one can have models which are perfectly consistent, and conform to current
observations. This possibility is thus especially important to keep in mind when con-
sidering possible string compactifications. Indeed, it would be interesting to find a
stringy realization of warped solutions similar to the RS models. Perhaps, it would be
possible to construct a string background with some type of brane defect, localizing
gravity only near its vicinity, without having any compact directions at all. This
would then be a very exciting solution to the usual moduli problem associated with
a complicated compact manifold.

In addition, we have seen that 5D warped backgrounds might have equivalent,
holographic, interpretations as 4D field theories. As shown by our toy example of
a falling particle, this might be an important insight for simplifying the analysis of
certain problems. In other words, one can use features generic to any CFT to make
statements about gravitational solutions, that would be non-trivial to derive from the
full 5D gravity theory. This knowledge was also crucial to describing the otherwise
intractable strong coupling physics for a TeV brane observer above a TeV. Much
remains to be done to fully understand the implications of holography. Holography
could also be a useful tool in addressing the important issue of GUTSs, in the warped

backgrounds which solve the hierarchy problem.
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Appendix A

The retarded Green function

In this appendix we describe some properties of the scalar Green function for the RS2

geometry. This was given in [69] and takes the form

gplz—z')

o (A.1)

aRa1 )

Ja_,(qR)
x | 20— HP(g2)HP (¢2') = Ja(az<)HD (g25) | (A-2)
[HE;L(qR) B T

T d¢
Santast) = oty [

For the following discussion it is most convenient to use the z coordinate, related to
y by (4.18).

The scalar propagator with d = 4 and one point on the boundary is given by [69]

- z)?2 d4p ip(:l:—z’)l H2(1) (QZ)
A4+1(1',Z,17 ,R) = (E) /WC EM 5 (A3)

where ¢2 = —p?. As in eq. (4.27), let us define a function F,

13 o
Bl mi2,) = oo [ L=

(A4)
Hence, F'is given as Fourier transform of Hankel functions,
F (RI _ 12,) _ _Z_, d4p eip(a:—:):’) 1 Hl(l) (qzl) (A 5)
o RJ (2m)* > HP(¢R) '
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In our conventions (given by (4.23) the Feynman propagator is
Ap(X,X") = =i [0(t —t)AT(X, X") + 0(t — )A~(X, X, (A.6)

where A™ is the Wightman function (¢(X)¢(X')) and A~ is its hermitian conjugate.

The retarded Green function is defined as
Ap(X,X") = —if(t — 1) [A+(X, X — A7 (X, X’)] : (A.7)

this manifestly vanishes for ¢ < ¢ and can easily be shown to obey (4.23). We
therefore find that
AR(X,X') = 2ReAr(X, X")0(t — t) . (A.8)

In order to compute the asymptotic retarded Green function, note that in the long

distance approximation (¢R << 1), F' reduces to the following form,

iz d*p
2 (2m)*

: n1
F (Ryx —1') ~ — giplz—z )EHl(l)(qz') ) (A.9)

We then perform a Euclidean rotation on the above integral, giving

2 [ AP pe_an ]
F,(Rjz—2') = %/@—&e’p(m_’)inl)(ipz') (A.10)
1 1

(A.11)

~ 42 (x — 2')2 + 22

The Feynman prescription is then to replace (z — z )? with (z — 2')? + 4. Making

this replacement, and taking the real part gives
1
FF Rz —2') = 2—5((96 )2 +2H0t 1), (A.12)
T
which finally yields the retarded scalar propagator,

Ay (Ryz; 2 1) = % [2%6'((x — 2')? + 2%) = 6((z — o)+ 2)])0(t — ') . (A.13)
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Appendix B

The infrared limit

As we saw in the text, our calculation of the effective source on the boundary produces
an expanding shell in the infrared limit. This is true for scalar, vector, and graviton
fields. This is also the result that Horowitz and Itzhaki found in [89], using the
boundary conditions appropriate for infinite AdS rather than the brane boundary
conditions (4.26). In this appendix we sketch the relation between the calculations.
For simplicity we only treat the scalar case although the derivation extends to the

other cases.

In our calculation with brane boundary conditions, we solve the bulk equation

Dd+1¢:T ’ (Bl)

with the Neumann condition

Onlaey =0 . (B.2)

Here T is the scalar source, in the text given by the falling particle, and 8, denotes the
normal derivative. The effective boundary source is found by restricting this solution

to the boundary and computing its Laplacian:
J = Ddgbla . v (B3)

Another way to get the same solution is to solve (B.1) subject to the Dirichlet
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boundary condition

dla =@ . (B.4)

The solution is given in terms of the Dirichlet Green function as
00) = [ AVARLXSTCO) + § AL (X X)ple) . (B
8

The effective boundary action for ¢ is computed by evaluating the d + 1-dimensional

action of this solution, which using the bulk equation of motion becomes

1 ‘
Sle] = ——][dn'cpan'qb : (B.6)
2 Js
The boundary equation of motion for ¢ then states

Thus a solution of the Dirichlet boundary problem such that the boundary field
satisfies the boundary equations of motion corresponds to a solution of the Neumann

boundary problem.

In the latter approach the effective boundary source can be read off from the
boundary equation of motion. Inserting the second term of (B.5) into (B.7) gives the
kinetic operator acting on ¢, which becomes O, in the long distance limit. Thus in
this limit (B.7) states

J =040 x 0,¢p]s , (B.8)

where ¢p, the first term in (B.5), is the solution to (B.1) with Dirichlet boundary
conditions, ¢pls = 0. In the limit as the cutoff is removed, p — 0, this corresponds
to the desired solution in infinite AdS. And aside from a rescaling, ,¢p corresponds
to the source on the boundary, which if we had been discussing the metric would be

the boundary stress tensor of ( [89]).

It is also possible to check the relationship to ( [89]) directly, by acting with O,

on ( 4.60), using the eq. (4.23) to eliminate the d-dimensional laplacian in favor of
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y derivatives, and then using the fact that in the infrared limit (A.1) is the standard

bulk propagator plus a y-independent piece which therefore doesn’t contribute.
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