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Abstract

Design requirements for embedded systems call for architectures with small size, low
power consumption and low cost. These requirements can be met by designing cus-
tom architectures for every single application. However, the commercial viability of
embedded systems calls for short design cycles. These requirements are conflicting:
custom architectures take a long time and substantial effort to produce, because of the
need to manually generate design evaluation tools, such as simulators and compilers,
for each architecture candidate. This conflict can be eliminated by providing a system
capable of generating all design evaluation tools for a given candidate architecture.

This thesis presents two components of the ARIES environment for architecture
synthesis: the machine description language ISDL and the GENSIM simulator gener-
ator system. We also briefly describe the HGEN hardware model generator. In the
ARIES system, candidate architectures are described in the ISDL language. From this
machine description, component tools can automatically generate design evaluation
tools, namely an assembler, Instruction Level Simulator, and disassembler. These
tools can be used to evaluate each candidate architecture and make improvements.
The whole process can be used to implement an architecture exploration loop which
provides the benefits of custom architectures while maintaining short design cycles.
Preliminary results also show that it is possible to generate retargetable compilers
and hardware models from the same machine description.

ISDL is a flexible machine description language that supports a wide range of ar-
chitectures and features with special emphasis on VLIW architectures. It provides
sufficient information to generate all the tools from a single machine description,
and provides constraints which make the machine descriptions concise and intuitive.
The GENSIM simulator generator is a tool that can automatically produce fast (4.5
Mops), cycle-accurate, bit-true Instruction Level Simulators from ISDL descriptions
in a short time. We present experimental results which show that ISDL is flexible
enough to describe a wide range of architectures implementing a broad range of ar-
chitectural features. We also present experimental results demonstrating the capabil-
ities of the GENSIM system and the generated simulators. Finally we present results
that demonstrate the feasibility of architecture exploration based on automatically
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generated design evaluation tools.
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Chapter 1

Introduction

1.1 Introduction

In recent years there has been an tremendous growth in the use of consumer electronic
products such as personal digital assistants, multi-media systems, and cellular phones.
The digital circuits that control and process data in these devices are called embedded
systems. If these systems contain programmable processors, these are referred to as
embedded processors.

Architecture design for embedded processors is substantially different from archi-
tecture design for general-purpose processors. The latter strives to create processors
of maximum possible performance for a given cost. Additionally, because of their
general nature, the domains in which these processors are applied often overlap sub-
stantially, and as a result not many designs exist and most of them share a lot of
features. Finally, the applications that these processors will be called upon to run
are not known at design time, and therefore the processors cannot be customized to
any specific application. By contrast, the world of embedded processors contains a
much richer set of designs and covers a substantially larger portion of the architec-
ture design space. Furthermore, the applications that embedded processors are called
upon to execute are known at design time so theoretically each processor could be
customized for the particular application it will be used for. This results in complex
architectures containing a variety of custom architectural features.

This document is concerned with the task of producing architectures for embedded
processors.

1.1.1 Hardware/Software Co-Design

To reduce the cost, size, and power consumption of embedded systems, manufacturers
often integrate an entire system on a single integrated circuit (IC) [11, 5]. In addi-
tion, the pressure for short design cycles forces designers to implement an increasing
amount of functionality in software relative to hardware. The software implementa-
tions can accommodate late changes in the requirements or design, thus reducing the
length of the design cycle. Figure 1-1 illustrates a typical embedded system, consist-
ing of a digital signal processor (DSP) core or an application-specific instruction-set
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Figure 1-1: A System-on-a-Chip

processor (ASIP), a program ROM, RAM, application-specific circuitry (ASIC), and
peripheral circuitry.

Since the embedded processor, the program ROM and the custom ASIC are im-
plemented on the same chip, the hardware and software components of embedded
systems are strongly coupled. Small changes in the hardware (software) can affect
the software (hardware) dramatically. In order to address the interaction between
the hardware and software, a hardware-software co-design methodology (e.g., [12]) is
required.

A simplified view of a generic hardware-software co-design methodology is shown
in Figure 1-2. In this design methodology, designers partition the system function-
ality (i.e., input application) into hardware and software components. Additionally,
a target processor is chosen from existing processor designs, or an ASIP is designed
to execute the software. The hardware, software, and ASIP are implemented, and
the resulting system is evaluated using a hardware-software co-simulator. The par-
titioning and processor design are repeated until an acceptable system is developed.
This document focuses on the software synthesis portion of hardware-software co-
design. Software synthesis involves designing a target processor to execute the soft-
ware component of the embedded system, and compiling the software component of
the application for the target processor.

1.1.2 Embedded Processor Requirements

Because most embedded processors are used in consumer electronics, their commercial
success requires low-cost architectures. Most applications (e.g., cellular phones) also
have stringent requirements on size and power consumption for the sake of portability.
Additionally, embedded processors are designed with a particular performance target
in mind. In most cases, creating a processor that can provide more that the target
performance does not provide any advantage. Finally, the commercial success of such
products requires short time-to-market and therefore short design cycles.
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Figure 1-2: A Generic Hardware/ Software Co-design Methodology

In order to produce embedded systems which satisfy, cost, power consumption and
size requirements, it is desirable to customize the architecture of embedded processors
to the application at hand. However, generating a custom architecture often involves
a substantial amount of time and effort. This is because a number of candidate
architectures must be designed, evaluated, and successively refined before a final
architecture is selected. For every candidate architecture, a set of design evaluation
tools (such as compiler, assembler, simulator, and hardware model) must be created,
resulting in substantial development effort and long design cycles. This results in
conflicting requirements.

1.2 Architecture Synthesis for Embedded Systems

One way of performing architecture selection is to explore the architectural design
space until a suitable design is found. To implement such a search, an initial archi-
tecture is created and evaluated in the context of the application at hand. Possible
improvements are located and implemented resulting in a new architecture. This
architecture is once again evaluated and the process repeated until no further im-
provement can be obtained. This process is called architecture exploration by iterative
improvement.

In order for architecture exploration to cover a large portion of the design space,
the design evaluation tools (i.e., assembler, disassembler, compiler, simulator, and
hardware model) must be either automatically retargeted or generated for each can-
didate architecture.
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Figure 1-3: Architecture Exploration by Iterative Improvement

1.2.1 Overview of Architecture Exploration by Iterative Im-
provement

Figure 1-3 shows a fully automated system based on architecture exploration. In
this approach, the application code is analyzed, and an initial architecture is gener-
ated and described using a machine description language. This machine description
is then fed into a retargetable compiler along with the application source code. The
retargetable compiler translates the source code into assembly code for the target
processor, optimized for speed and code size. The same machine description is also
passed to a retargetable assembler that converts the assembly code into binary code
for the target processor. Next, a retargetable simulator receives the machine descrip-
tion and the binary code as inputs and executes the code. The simulator generates
a set of measurements that can be used to evaluate the architecture and identify
possible improvements. The machine description is also used to generate a hardware
model of the processor that provides the physical costs of the design (i.e., die size,
cycle length, and power consumption). If the performance of the processor does not
satisfy the design specifications, or if the cost, size, or power consumption can be re-
duced without sacrificing performance, then the appropriate changes are made to the
processor architecture and a new machine description is generated. The entire design
process is repeated using the new machine description until no further improvements
can be made. Once the final architecture has been determined, the hardware model
can be used to generate an implementation of the architecture.

1.2.2 Architecture Exploration for Embedded Systems

Section 1.2.1 describes a completely automated architecture exploration system. How-
ever, for the domain of embedded DSP applications not all the tasks have to be au-
tomated. In embedded DSP applications only a small portion of the code is critical
to performance, and this is typically implemented as hand-coded assembly libraries.
These libraries contain code commonly used in DSP applications such as Finite Im-
pulse Response (FIR) and Infinite Impulse Response (1IR) filters, Fast Fourier Trans-
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form (FFT) functions, and so on. Most of the time taken for DSP applications is
consumed by such functions for almost all DSP applications.

Given that the set of tasks that require good performance is small and well-known
it is possible to implement these libraries by hand-coded assembly for every iteration
of the loop. Note that this does not mean that an architecture optimized for these
libraries is the optimal architecture for any application that uses them. The code that
will form the bottleneck in performance is indeed in these libraries, however, the code
that will incur the most significant code-size cost is the remainder1 . Additionally,
size and power consumption still need to be optimized, and the tradeoffs may be such
that the optimal point is not the same for every application. Consider for example,
an application where an FIR is used to filter a low quality audio channel. The typical
sample rate for such applications is 8KHz, thus performance may not be a big concern
and instead code size and power consumption might become the dominant factors in
architecture selection. If instead the FIR filter is to be used in a high-speed military
radar system where sample rates of MHz are not uncommon, performance will be the
primary concern in architecture selection since it is the hardest constraint to meet.

Given that for embedded applications small amounts of highly optimized code are
typical, it is possible to perform architecture exploration without having some of the
design evaluation tools. For example, a compiler is not necessary since the amount of
code that has to be optimized is small. It is possible to hand-code assembly for each
iteration of the architecture exploration for the particular application. Additionally,
a hardware model may not be necessary if the designer is familiar with the physical
properties of various architectural features. Finally, the fact that most of the code is
not performance critical and the code that is performance critical is small decouples
issues of code-size from performance allowing a manual architecture exploration loop
supported simply by an Instruction Level Simulator and an assembler. In this process,
a designer generates an initial architecture based on intuition and experience with
typical applications in the DSP domain. She then describes the architecture in a
machine description language and uses this description to generate an assembler and
an instruction level simulator. She codes in assembly the time-critical portions of the
application and simulates them to get performance measurements. She modifies the
architecture, generates another description, and repeats the loop until she is satisfied
that no more improvements can be made. Then, she codes the rest of the application
in hand-coded assembly and repeats the process trying to minimize code size without
degrading performance.

1.2.3 Requirements for Architecture Exploration

For architecture exploration to be successful, any implementation of it must provide
the following:

* A system that can automatically produce design evaluation tools given a de-
scription of a target architecture. For a fully automated process all the design

'This is a result of the well-known 80/20 rule: 80% of the time is spent on 20% of the code. The
corollarly to the rule is that 80% of the code size is incurred by code that is not performance critical.
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evaluation tools must be produced automatically. If a single tool has to be
developed manually, then the effort and time required for a single iteration of
the architecture exploration algorithm will be dominated by the effort and time
to develop that tool. The required evaluation tools are: an assembler, a dis-
assembler, an optimizing compiler, an Instruction Level Simulator (ILS), and
a hardware model. For a partly automated process, such as the one described
in Section 1.2.2, an assembler and instruction level simulator are necessary. A
hardware model would be beneficial if provided but not critical.

* A machine description language which can describe as wide a variety of archi-
tectures as possible at a fine granularity. This language should provide features
that support the generation of all required design evaluation tools from a single
machine description. This avoids possible problems of consistency and the effort
of translating machine descriptions between different languages.

* A way of extracting useful information from the design evaluation tools to iden-
tify possible improvements to the architecture.

1.2.4 Overview of the ARIES System

The work presented in this document was performed in the context of the ARIES
system. The ARIES system is our planned implementation of a Hardware/Software
Co-Design system implementing architecture exploration by iterative improvement.
Figure 1-4 shows the framework of the system.

The main components of the ARIES system are:

* A top-level application analysis and partitioning tool that performs the parti-
tioning between hardware and software.

* An ASIC generation tool which implements the hardware component.

* An ASIP tool which implements and evaluates candidate architectures for the
embedded processor.

e The Aviv code generator tool which generates retargetable compilers and as-
semblers for a candidate architecture given a machine description.

* The ISDL machine description language which describes the candidate architec-
ture to the necessary components.

The ASIP generation tool, Aviv code generator, and ISDL machine description
language implement the architecture exploration portion of ARIES.

Figure 1-5 shows the methodology of the ARIES system. A description of the
application in a high-level language is provided as a system specification. This forms
the input to the analysis and partitioning tool which partitions the specification into
hardware and software components. The hardware component is passed to an ASIC
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Synthesis tool which produces an HDL model in synthesizable Verilog. The parti-
tioning tool also produces an interface specification which is passed to the Interface

Synthesis tool. This tool implements theinoeae in HDL and also creates software
stubs which are used by the Operating System Generation tool to communicate with

the ASIC. Finally, the partitioning tool passes the software component to the Code

Synthesis tool which produces specifications for the operating system and source
code for the retargetable compiler. Finally, the partitioning tool provides a set of

area, power, and performe and recometed constraints to the ASIP generation

tool, which produces an initial architecture and describes it in ISDL. This machine

description and the source code are used by the AVV retargetable compiler to pro-
duce an implementation of the software component on the target architecture. It is
also used to create an Instruction Level Simulator and a hardware model. The ILS
and hardware model are used to evaluate the candidate architecture and recommend

improvements resulting in a new architecture description. The loop is repeated until
no further improvements can be made. The final hardware model is linked with the

ASIC and interface models and the complete system is evaluated. Improvements are

made by re-partitioning and re-iterating through the whole procedure.

This document focuses on the ASIP generation process and in particular, the ISDL
machine description language[19, 15, 17, 14], the ILS generator (called GENSIM)[16,
18] and the hardware model generator (called HGEN)[16, 18]. Most of the compo-

nents of the ARIES system have not been fully implemented yet. In particular, the
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retargetable compiler is the most challenging task. Aviv was an attempt to provide
some basic functionality for the retargetable compiler and investigate the issues in-
volved in the design and implementation of such a compiler. While it has succeeded
in those goals, it is still not a full-fledged compiler and cannot be used to automate
the architecture exploration loop. The details of the Aviv retargetable compiler can
be found in [20, 21]. Similarly, preliminary implementations of the partitioning tool
exist, which where used to investigate the issues involved and the performance of
some proposed algorithms. Again, however, these are the result of an incomplete
implementation and cannot be used within an automated system. The details of the
partitioning algorithm can be found in [6]. The results and conclusions presented in
this document are therefore based on the partially automated approach of Section
1.2.2. Note, however, that the current implementation of ISDL and the simulator
generator are complete and can be used within a fully automated system once full
implementations of the remaining tools are provided.

1.3 Contributions

The work described in this document is based on the following thesis:

9 Architecture exploration by iterative improvement is an effective way of obtain-
ing customized architectures for embedded systems.

* It is possible to obtain the advantages of a custom architecture while reducing
design cycles by automating the generation of the design evaluation tools.

e In order to support architecture exploration and automatically generated eval-
uation tools a flexible machine description language is necessary. This language
should cover as much of the architecture design space as possible and support
the automatic generation of at least an assembler, disassembler, and Instruction
Level Simulator. Availability of tools that can generate a retargetable compiler
and a hardware model will enable a fully automated architecture exploration
loop. ISDL provides all the features necessary to describe a wide variety of archi-
tectures and architectural features and contains enough information to generate
all of the above tools.

* It is possible to generate fast, cycle-accurate and bit-true simulators, and effi-
cient hardware models form ISDL. These simulators and hardware models are
effective tools in evaluating candidate architectures.

The main goal of this document is to present the ISDL machine description lan-
guage and the GENSIM simulator and HGEN hardware model generation systems, and
provide experimental results supporting the above thesis.
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1.3.1 ISDL

We present the ISDL machine description language for architecture exploration. ISDL
has proven to be well-suited to the task of supporting architecture exploration. It
can describe a wide range of architectures including VLIW, RISC, CISC, DSP and
micro-controller processors and supports features as varied as register aliases, complex
instructions and predicated execution. It supports the automatic generation of all
design evaluation tools from a single machine description. It is easy to read, write
and modify ISDL descriptions manually, and easy to produce them automatically.
By providing constraints, ISDL allows for concise and intuitive descriptions of real-
world architectures. ISDL modifications resulting in improvements can be performed
in about an hour by an engineer skilled in the use of the language.

1.3.2 Simulator and Hardware Model Generation

We also present the GENSIM simulator generator and HGEN hardware model gen-
erator. The GENSIM simulator generator is an implementation of an ILS generator
based on ISDL. It processes machine descriptions in a reasonable amount of time,
and produces simulators which are cycle-accurate to the instruction set level, and
bit-true. The generated simulators are also fast, and provide full debugging support.
Their ability to produce execution address traces means that dynamic counts for in-
structions can be obtained which can be used to derive utilization statistics and thus
point out possible improvements to the architecture. The GENSIM simulator gener-
ator supports a wide variety of architectures and architectural features. The HGEN
hardware generation model is a sister-tool based on the same algorithms implemented
in GENSIM. It produces efficient hardware models of a candidate architecture given
a machine description in ISDL. These models (implemented in synthesizable Verilog)
can then be used to obtain the physical costs and parameters (such as cycle-length,
die size, and power consumption) of the architecture.
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Chapter 2

Instruction Set Description

Language (ISDL)

ISDL (Instruction Set Description Language) is a machine description language specif-
ically designed to support retargetable tools for architecture exploration and develop-
ment. In particular, it is designed to allow the automatic generation of an assembler,
disassembler, code generator, instruction level simulator, and hardware model from
a single description of the architecture. At the same time, it is designed to support
architecture descriptions that are either generated automatically by another tool, or
generated and/or modified manually by an engineer. Figure 2-1 shows how ISDL
descriptions can be used to generate a set of tools to support a design environment.

ISDL supports the description of a wide variety of architectures. Its main fo-
cus is on VLIW architectures; however, it also supports standard microcontrollers,
and other unifunctional architectures. Unifunctional architectures can be considered
degenerate cases of VLIW architectures. ISDL supports the description of multiple
functional units, different interconnect topologies, complex instructions, resource con-
flicts, pipelining idiosyncrasies, etc. ISDL can also describe automatically generated
architectures. Such architectures cannot be guaranteed to have clean instruction sets
(i.e., instruction sets where every operation combination is valid). In order to handle

these instruction sets, ISDL supports explicit constraints that define the valid opera-
tion groupings. This allows operations in the instruction set to be treated as if they
are completely orthogonal. The compiler can then avoid generating invalid instruc-
tions by ensuring that each instruction satisfies all of the constraints. Note that many
commercial architectures also require such constraints (e.g., the Motorola 56000 DSP
cannot perform a REPetition of a DO loop).

2.1 Requirements and Features

The machine description language is a critical component in the architecture explo-
ration design flow and should be capable of performing the following functions:

* Specify a wide variety of architectures. In particular, it should support VLIW
(Very Long Instruction Word) architectures because they are very efficient for
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custom applications, and because more traditional architectures can be treated
as degenerate cases of VLIW architectures.

e Explicitly support constraints that define valid instructions.

e Be easily understandable and modifiable by a designer.

9 Support automatically retargetable code generation.

9 Support the automatic generation of an assembler, disassembler, compiler, In-
struction Level Simulator and hardware model.

* Provide adequate information to allow for code optimizations.

* Decouple the description of an Instruction Set Architecture (ISA) from a par-
ticular implementation of the ISA.

In order to ensure that all of the design evaluation tools receive a consistent ma-
chine description, it is desirable that a single machine description be used to retarget
or generate all of the design evaluation tools. In addition, the effort of generating
multiple machine descriptions for the different tools can be avoided by using a single
machine description.

Various proposed machine description languages lack support for one or more
of the above features (see Section 2.5 for a review). In contrast, ISDL provides all
of the above features. We have written complete ISDL descriptions for ASIPs and
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commercial DSP cores including a powerful seven-way VLIW ASIP and the Motorola
56000 DSP.

2.1.1 Specifying a Wide Variety Of Architectures

It is important that the range of architectures that are supported by the design en-
vironment is not limited by the abilities of ISDL, but rather by the abilities of the
various tools that handle ISDL descriptions and those that are generated from ISDL
descriptions. In order to achieve this, ISDL attempts to encompass as wide a vari-
ety of architectures as possible. In particular, ISDL supports Very Long Instruction
Word (VLIW) architectures; these are not explicitly supported by most other machine
description languages, and are a superset of more traditional architectures. VLIW ar-
chitectures have more than one functional unit, and these functional units can be used
in parallel. This parallelism is reflected in the instruction set, where instructions are
groups of operations that can be performed in parallel'. One can consider the more
traditional architectures that only have one unit active at any given time in their
instruction set, (from now on called unifunctional architectures), to be degenerate
cases of VLIW architectures.

VLIW architectures are very important for two reasons:

* By amortizing control overhead over a number of functional units they actually
result in more efficient use of silicon area.

* Given that the set of VLIW architectures can be considered as a superset of the
set of unifunctional architectures, then if we can describe VLIW architectures,
we can automatically describe unifunctional architectures.

ISDL has specific features to support the efficient description of VLIW architec-
tures. It can also gracefully handle unifunctional architectures. These two classes of
architectures cover traditional micro-controllers, CISC and RISC processors, vector
processors, most DSP cores, and a large number of Application Specific Instruction-
set Processors (ASIPs).

2.1.2 ISDL Descriptions as a Programmer's Manual

In order to make the task of understanding, writing and modifying ISDL descriptions
easier, ISDL was designed to look like the conventional Programmer's Manual that
accompanies most commercial processors and DSPs. It turns out that this also makes
it easier to generate the support tools. In particular, ISDL models an architecture by
describing the user visible state and then listing every operation that can affect this
state. Thus, ISDL is a behavioral language (rather than a structural one). It does,
however, contain enough structural information to allow for the complete description

'This is in contrast to parallelism which is not apparent in the instruction set (such as the
parallelism in super-scalar architectures).
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of an architecture (although it tends to disguise such structural information in a
behavioral-like fashion).

The 6 sections of an ISDL description correspond closely with the sections found
in most Programmer's Manuals for commercial architectures. The Instruction Word
Format describes how long the instruction word is, and how it can be broken down
into subfields. Global Definitions correspond to the various data types and tables
of common sub-expressions (such as addressing modes) common in most processors
and DSPs. They are the main source of abstraction in ISDL. The Storage Resources
section explicitly lists all the visible state of the processor2 . The Instruction Set
section lists all possible operations that the architecture provides, grouped in fields.
The effect of each operation on visible state, the assembly representation of the op-
eration, the binary representation of the operation, the timing characteristics of each
operation, and various costs are all listed on a per-operation basis. The Constraints
section describes various restrictions as to how these operations may be assembled
into instruction words and programs. This corresponds to the restrictions commonly
listed in the Programmer's Manual.

2.2 Syntax and Semantics of ISDL

An ISDL description consists of six sections:

1. Instruction Word Format

2. Global Definitions

3. Storage Resources

4. Instruction Set

5. Constraints

6. Optional Architectural Details

ISDL also supports cpp style macros which allow common patterns to be easily
reused.

Each of the sections listed above is described below, and a detailed example of each
is provided in Section 2.3. There is also a BNF description of ISDL in Appendix B.

2.2.1 Instruction Word Format

The Instruction Word Format section defines the hardware instruction word. The
instruction word is divided into one or more fields each containing one or more sub-
fields. This section specifies the field and subfield division of the hardware instruction
word. In particular, it specifies the ordering of the fields and subfields as well as the

2Visible state includes control registers and memory-mapped I/O.
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bitwidth of each subfield. The instruction word is assembled by concatenating all of
the subfields in the order specified, beginning with the most significant bit.

Note that the division into fields and subfields is a convenience to the designer.
The subfield division may be arbitrary; however, careful subfield division can make
later parts of the machine description easier to write.

2.2.2 Global Definitions

The second section of an ISDL description contains a list of definitions used in the later
sections. These definitions form the main abstraction mechanism in ISDL. There are
three types of global definitions in ISDL: Tokens, Non-terminals, and Split functions.

Tokens are a symbolic representation of the primitives in the assembly syntax of
the target processor. Tokens are used to represent entities such as register names,
memory bank names, and immediate constants. In addition, tokens can be used to
group syntactically related entities such as the names of registers within a register
file. In order to be able to differentiate among the elements in a group, tokens return
a value identifying the particular element being represented (e.g., register names
such as RO to R15 can be abbreviated as one token whose value corresponds to the
register number). A token definition contains a name for the token, a definition of
the assembly syntax for the syntactic entities it represents, and a return value if any.
Non-terminal and operation definitions can refer to tokens by their name.

In addition to the tokens explicitly listed in an ISDL machine description, there
are additional tokens that are automatically defined (e.g., operation names). Further-
more, ISDL also includes predefined tokens for integers, hexadecimals, floating point
numbers, single characters, and labels (symbolic names that represent instruction
memory locations).

Non-terminals are used to abstract common patterns in operation definitions (e.g.,
addressing modes). For example, consider a Move operation that moves data across
a bus that has seven units attached to it:

Move SRC DEST

where SRC and DEST can each be one of seven different options. Without non-
terminals, 49 rules are required to describe all possible syntax combinations. However,
the source and destination could be factored out into non-terminals. This factoriza-
tion would result in only three rules: one for the operation, and one each for the SRC
and DEST non-terminals.

Non-terminal definitions consist of a name followed by a list of options that the
non-terminal can represent. Operation and other non-terminal definitions can refer
to any non-terminal using its name3 . Non-terminal options consist of the following
components:

e The assembly syntax of the option which can include references to tokens or
other non-terminals.

3Non-terminals can be nested to an infinite level.
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" A return value that identifies the option. This value can be used in operation bit-
field assignments (Section 2.2.4). The return value of tokens and non-terminals
referred to in the assembly syntax of the option can be used to define the return
value for the option.

" An RTL action clause that describes the RTL equivalent of the option when
the non-terminal is used in the RTL action portion of an operation definition
(Section 2.2.4). The RTL action clause can refer to the return value of tokens,
or the RTL action clause of non-terminals, referred to in the assembly syntax
of the option.

" An RTL side effects clause which is similar to the RTL action clause but refers
to side effects.

" A cost modifier clause that contains a set of expressions describing the effect of
the non-terminal option on the operation costs. The cost expressions can include
the return value of the tokens, or the cost modifier clause of the non-terminals,
referred to in the assembly syntax of the option.

" A timing modifier clause that contains a set of expressions describing the effect
of the non-terminal option on the timing parameters of the operation. The
timing expressions can include the return value of the tokens, or the timing
modifier clause of the non-terminals, referred to in the assembly syntax of the
option.

Split functions define how long constants (e.g., a long memory address, or imme-
diate data) can be split among multiple subfields of the binary instruction word. A
split function definition consists of the function name followed by a list of subfields.

2.2.3 Storage Resources

The Storage section lists all storage resources visible to the programmer. It lists the
names and sizes of the memories, register files, general purpose registers, and special
registers.

A storage definition consists of the type of storage, a name for the storage unit,
and the size of the unit (width in bits for single registers, depth in locations and
width in bits for addressed units). Multiple units of each type may be defined. The
instruction memory and program counter must be explicitly identified.

ISDL recognizes the following types of storage units:

* Memory - Used to declare both data memories and the instruction memory.

* RegFile - Used to declare register files.

e Register - Used to declare single registers used for data computation.
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* CRegister - Used to declare control and status registers. These registers have
side effects when written (e.g., may cause a change in processor mode) and do
not necessarily return the last value written to them when read (e.g., status of
peripherals).

* Stack(SP) - Used to declare hardware stacks. SP represents the name of the
stack pointer which must be a single register that is also defined in the storage
section.

* MMIO - Used to declare memory mapped I/O ports. These ports may have side
effects when written and do not necessarily return the last value written to them
when read.

* ProgramCounter - Used to explicitly declare the Program Counter.

2.2.4 Instruction Set

The Instruction Set section lists all of the operations available on the target processor.
It groups the operations into mutually exclusive sets called Fields. Each field roughly
corresponds to the operations that can be performed on a single functional unit. A
VLIW instruction consists of a group of operations, one from each field.

The instruction set section consists of a list of field definitions. Each field definition
consists of a number of operation definitions. Each operation definition consists of
the following elements:

* Syntax: This declares the assembly syntax of the operation. It consists of an
operation name followed by a list of parameters, each of which is the name of a
token or a non-terminal.

* Bitfield Assignments: The bitfield assignments define the assembly function
for the operation. The assignments are a set of statements that assign the
appropriate binary values to the subfields defined in the instruction word format
section. The bitfield assignment statements may make use of the return values
of the tokens and non-terminals in the operation's parameter list.

9 RTL Action: This describes the effect of the operation on the processor state
using an RTL type language. It may make use of the return values of tokens and
the RTL action clause of non-terminals appearing in the operation's parameter
list.

* RTL Side Effects: This describes any side effects of the operation using the
same RTL language as the RTL action description. It may make use of the
return value of tokens and the RTL side effects clause of non-terminals in the
parameter list.

* Costs: Multiple costs are permitted including operation execution time, code
size, costs due to resource conflicts, etc. ISDL predefines three cost parameters:
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1. Cycle declares the number of cycles that the operation requires to execute
on the hardware.

2. Size declares the number of instruction words needed to represent the
operation.

3. Stall declares the number of stall cycles that will be inserted if the next
instruction attempts to use the results of the operation.

The cost parameters are defined as a set of arithmetic expressions resulting in
numerical values. The arithmetic expressions can include arithmetic operators
(i.e., +, -, *, /, and Y) and relational operators (e.g., ==, <, >). They may also

use the return value of tokens and the cost modifiers of the non-terminals in the
operation's parameter list. Furthermore, the arithmetic expression may use the
cost clauses of operations in other fields and the values of storage references.

Timing: The timing parameters describe when the various effects of the oper-
ation take place. ISDL predefines two timing parameters:

1. Latency specifies the number of instructions (including the one containing
the current operation) that must be fetched before the results of the current
operation become available.

2. Usage specifies the number of instructions (including the one containing
the current operation) that must be fetched before the corresponding func-
tional unit becomes available again.

The timing clauses are complex arithmetic expressions resulting in numerical
values. The timing arithmetic expressions obey the same syntax and semantics
as the cost clauses.

A set of examples can better illustrate the use of the costs and timing parameters
to describe the effect of pipelines:

* Case 1: Consider a simple architecture with no pipelining where each instruc-
tion completes before the next one is fetched and requires three cycles to do so.
Thus, Cycle = 3 and Stall = 0 because it is not possible for any operation
to stall (no pipeline). Latency = 1 because the next instruction can use the
results of the current operation.

* Case 2: Consider an architecture with a simple four-stage pipeline with no
protection (no bypass logic or stall capability). The architecture can execute
one instruction per clock cycle for all instructions. Thus, Cycle = 1 because
each instruction effectively takes one clock cycle. Stall = 0 since stalls are
not necessary in an unprotected pipeline. Latency = 4 because the current
instruction plus three additional instructions must be fetched before another
instruction can use the results of the current operation.
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9 Case 3: Consider an architecture with a four-stage pipeline with full protection
(bypass logic). The architecture can execute one instruction per clock cycle for
all instructions. Thus, Cycle = 1 since each instruction effectively takes one
clock cycle. Stall = 0 since stalls are not necessary because of the bypass
logic. Latency =1 because the bypass logic guarantees that the results will be
available to any subsequent instruction.

* Case 4: Consider an architecture with a four-stage pipeline protected by bypass
logic for all operations except loads. Loads are protected by a single stall cycle.
For the load instruction Stall =1 because one cycle will be inserted if the
next instruction attempts to use the results of the current operation. Cycle =

1 since all instructions effectively take one instruction, except for the case of a
load with a stall which was already taken into account. Finally, Latency = 1
since all operations (including loads) are protected, thus the next instruction
will be able to use the results of the current operation.

* Case 5: Finally, consider an architecture with a four-stage pipeline and a
branch-if-zero instruction which flushes two stages of the pipeline if the branch
is taken. The effect of the pipeline flush would appear as an additional two
cycles added to the Cycle cost of the operation if the branch is taken. Therefore,
Cycle = (R == 0) * 2 + 1, Latency = 1 since the next operation will be fetched
from the target of the branch, and Stall = 0. The Cycle cost is 1 if register
R is not zero (i.e., the branch is not taken) and 3 if R is zero (i.e., the branch
is taken).

2.2.5 Constraints

The Instruction Set section describes a number of fields whose operations can gener-
ally be executed in parallel. However, there are certain combinations of operations
that may not be executable by the hardware. The Constraints section is used to make
these combinations visible to the instruction set.

Constraints are described as a set of Boolean rules. The syntax for the constraints
is shown below (in BNF):

<constraint> = <expression>

<expression> = ~ <expression>

( <expression> 'I' <expression> ')' I
( <expression> '&' <expression> ) I

<timeshiftop> <expression>

'(' <operationmatch> ')'

<timeshiftop> ='[ INT '1'
<operationmatch> :: regular expression

<variablematch> ::= '[ INT ']

The operation matches are regular expressions that can be used to match the text
of an operation. The regular expressions can contain standard wild-card characters
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(e.g., *, +, ?), range operators, and variable matches '. The wild-card characters
may be used to simplify the description of the constraints. Variables may be used
to enforce any restriction that requires different parts of a single constraint to match
(i.e., require different parts of the operation or instruction to map to the same text).

The semantics of the constraint expressions are described below:

operationmatch = TRUE iff regular expression matches
any field in instruction.

(expri I expr2) = TRUE iff either expri or expr2
evaluates to TRUE.

(expri & expr2) = TRUE iff both expri and expr2 evaluate
to TRUE.

expr = TRUE iff expr evaluates to FALSE.

time-shift-op expr = TRUE iff expr evaluates to TRUE with
respect to the instruction that is X
instruction slots away from the base
instruction where X is the INT in
timeshiftop.

To evaluate a constraint, each sub-expression must be evaluated against the base

(or current) instruction or, if time-shifted, against the instruction following the base
instruction by the appropriate number of slots. If a constraint yields FALSE when
evaluated with a particular instruction as the base instruction, then the instruction
has violated the constraint and it is considered invalid. Only when an instruction
does not violate any constraints can it be considered valid.

We have identified three types of constraints (distinguished by the type of resource
that causes the conflict):

9 Datapath Conflicts: Datapath conflicts result when two parallel operations
try to use the same datapath resources (e.g., competition for the bus).

9 Bitfield Conflicts: Bitfield conflicts results when two parallel operations try
to set the same bitfield in the instruction word.

* Syntactic Constraints: Syntactic constraints are restrictions that do not
correspond to hardware conflicts but are artifacts of the assembler syntax.

All three forms of constraints are included in the constraints section.

4 Note that the syntax for variable matches in ISDL is slightly different than that of conventional
regular expression packages.
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2.2.6 Optional Architectural Details

The ISDL description can provide additional information about the hardware architec-
ture in order to generate better tools. This information is not necessary to generate
correct design evaluation tools, but may result in better tools if provided. For exam-
ple, correct code can be generated without knowledge of the structure or presence of
caches; however, a compiler may be able to optimize the generated code if information
about the caches is provided.

2.2.7 Macro Definitions

In addition to its other abstraction mechanisms, ISDL also provides cpp style macro
definitions which allow common patterns to be defined and then reused throughout the
ISDL description. This feature can be used, for example, to abstract operations that
are common to multiple functional units and only differ in the registers they access.
This is achieved by defining a macro that describes the common operation. The
operation definitions are then instantiated by using the macro within the instruction
set section of the description.

2.2.8 ISDL Model of the Instruction Set

The instruction set of a processor consists of the state available in the architecture
and the instructions that modify this state. In order to describe the instruction set of
the processor, a machine description language must describe these two components.

The processor is capable of recognizing and executing a number of complete in-
structions. However, instructions in ISDL are described in terms of their components,
the operations. In order to arrive at the set of instructions that the processor sup-
ports, it is necessary to group operations from the ISDL description into valid VLIW
instructions.

ISDL divides the set of available operations into fields. The operations in a given
field roughly correspond to the various functions that a single functional unit can per-
form. Therefore, operations defined within the same field are mutually exclusive and
cannot appear in the same instruction. Fields roughly correspond to the functional
units that make up the processor and as a general rule these can operate in parallel.
Therefore, each instruction consists of a group of operations - one taken from each

field.
The set of all possible combinations of operations, formed by taking one operation

from each field, is a superset of the set of instructions available in the architecture.
Some of these combinations are invalid and cannot be executed in hardware - these
combinations are reflected in the constraints. The constraints declare a subset of
all possible combinations as legal. This subset is the set of valid instructions in the
architecture. The constraints effectively form a filter which when applied to the set of
possible combinations of operations results in the set of valid instructions. Figure 2-2
shows this mapping function pictorially.
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Figure 2-4: The Instruction Word of the SPAM VLIW-1 Architecture

2.3 An Extended ISDL Example

An extended example based on the simple architecture of Figure 2-3 is used to
better illustrate the features of ISDL. It is a VLIW architecture with three functional
units U1, U2, and U3. Each functional unit has its own register file consisting of four
16-bit registers. The architecture also includes a data memory of 4096 16-bit locations
and an instruction memory capable of storing 4096 44-bit instructions. The register
files and the two memories are connected through two buses: DB1 and DB2. This
architecture can perform three data operations and two data transfers in parallel. In
this processor, U1 can perform addition and subtraction, U2 can perform addition,
subtraction, and multiplication, and U3 can perform addition and multiplication.

The instruction word for the example architecture is shown in Figure 2-4. Each of
the functional units has its own field in the instruction word. Each field consists of an
opcode, two source register identifiers, and one destination register identifier. Each
of the buses also has its own field in the instruction word consisting of the databus
source and destination identifiers.

The Format section for this example architecture is shown below. It describes the
components of the instruction word.

Section Format

U' = OP[2], RA[2], RB[2], RC[2];
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U2 = OP[2], RA[2], RB[2], RC[2];

U3 = OP[2], RA[2], RB[2], RC[2];

DB1 = SRC[5], DEST[5];
DB2 = SRC[5], DEST[5];

This description specifies that the instruction word is divided into five fields U1, U2,
U3, DB1, and DB2. Each field is further divided into subfields, and each subfield is
annotated with its length in bits. The concatenation of each subfield in MSB (most
significant bit) to LSB (least significant bit) order results in the instruction word
shown in Figure 2-4.

The following is the complete Storage section description for the example archi-
tecture.

Section Storage

Instruction Memory INST = Ox1OO x Ox2C

Memory DM = Ox1000 x Ox10

RegFile U1 = Ox4 x Ox1O

RegFile U2 = 0x4 x Ox1O

RegFile U3 = Ox4 x Ox1O

ProgramCounter PC = Ox10

Each of the storage units (memories and register files) is explicitly listed along with
the number of entries it contains and the width of each entry. For individual registers,
such as the Program Counter, the size describes the width of the register in bits. Note

that the instruction memory is explicitly identified, and that the program counter
must be included even though it is implied by the instruction set.

A sample token definition, which is part of the Global Definitions section, is
presented below:

Section Global-Definitions

// assembly token value

Token "U1.R"[O..31 U1_R { [O..31; };

The line beginning with the keyword Token defines a token that groups the syntactic

entities U1.RO, U1.R1, Ut.R2, and U1.R3 as denoted by the assembly syntax decla-

ration "U1 . R" [0 . .3]. These are actually the names of the registers in the register

file of unit U1. The token is named U1_R and can be referred to in non-terminal and
operation definitions using that name. The return values are zero, one, two, and three

respectively (i.e., they are the index of the corresponding register) as denoted by the

return value entry { [0. .3]; }. In the full description of the example architecture,
two additional tokens exist that define the register names for the other two register

files in the same manner.

The following set of non-terminal definitions are also part of the Global Definitions
section:
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Non-Terminal U1.RA: U1_R { $$ = UlR; } {U1[U1_RI} {} {} {} ;
NonTerminal UtRB: UtR { $$ = U1_R; } {U1[U1_RI} {} {} {} ;
NonTerminal UtRC: Ut_R { $$ = U1_R; } {U1[U1_ R]} {} {} {};

NonTerminal SRC:

U1_R { $$ = OxCO I U1_R; } {U1[U1_RI} {} {} {} I
U2_R { $$ = 0x04 I U2-R; } {U2[U2_R} {} {} {} I
U3.R { $$ = Ox08 I U3_R; } {U3[U3_R]} {} {} {}

NonTerminal DEST:

U1_R { $$ = OxOC I U1_R; } {Ui[U-R]J} {} {} {} I
U2_R { $$ = 0x04 I U2_R; } {U2[U2_R]} {} {} {} I
U3_R { $$ = Ox08 I U3_R; } {U3[U3_R]} {} {} {} ;

The first line defines a non-terminal named UKRA. This name can be used to refer
to it in operation and other non-terminal definitions. This non-terminal consists of a
single option. The single token UlR forms the assembly syntax for this option. The
return value of this option, which can be used in the bitfield assignments of operations,
is the same as the return value of the token as denoted by the statement { $$ = U1_
R; }. The RTL action corresponding to this non-terminal is simply a reference to
the appropriate storage location as denoted by the RTL action statement {U1 [U_
RI }. It specifies that the non-terminal refers to a register in register file Ut indexed
by the return value of the UlR token. The next set of braces contains the RTL side
effects of the non-terminal. An empty side effects statement denotes that there are
no side effects. The next two sets of braces contain the costs and timing modifiers of
the non-terminal option. Undefined cost or timing modifiers imply a value of zero.

The next two lines define non-terminals identical to UlRA except that they are
named differently. The reason for defining identical non-terminals with different
names is so that they can be distinguished when used in the same operation defi-
nition.

The next non-terminal defined is named SRC and consists of three options. The
syntax of the first option is UlR which represents the registers in the Ut register file.
Similarly, the second and third options represent the registers of register files U2 and
U3. This non-terminal can be used to represent a register in any of the three register
files. The return value of the non-terminal is defined as follows: for registers in the
Ul register file, the return value is the constant 00 concatenated with a two bit value
representing the index of the register, for registers in the U2 register file the return
value is the constant 01 concatenated with the value representing the index of the
register, and for registers in the U3 register file the return value is the constant 10
concatenated with the value representing the index of the register. The RTL action
for each non-terminal option is a reference to the appropriate storage location, and
there are no side effects or costs and timing modifiers specified. An identical non-
terminal named DEST is also defined for use in conjunction with the SRC non-terminal
when describing databus move operations.
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Below is a portion of the Instruction Set section for the example architecture:

#define ADDm(x,y) ADD(x,y,16,"trn")

Section Instruction-Set

Field Ulf:

Uladd UlRA, UtRB, UtRC

{ U1.OP = OxO; U1.RA = U1-RA; U1.RB = UtRB; Ut.RC = UlRC; }
{ URC <- ADDm(U1_RA,URB); }

{ }
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

Field U2f:

Field U3f:

This section defines the three functional unit operations, and the memory and databus

operations. The functional unit definitions consist of three field definitions, one for
each functional unit. Each field lists all of the operations that the corresponding
functional unit supports. For brevity, a single operation, namely an add on unit U1,
is presented. The syntax of the operation is shown on the first line of the operation
definition. It consists of the operation name Uladd followed by a list of three register

names denoted by the non-terminals UtRA, UtRB, and UlRC as parameters. The
following is an example of an operation of this type:

U1_add U1.RO, Ut.R2, U1.R2

The first set of braces in the operation definition contain the bitfield assignments
(i.e., the bits assigned to the various subfields in the instruction word to denote this
operation). In this case, the subfields of the Ut field are assigned the following values:

the OP subfield is assigned the value 0 which is the opcode for the add operation,
and the RA, RB, and RC subfields are set to the return values of the corresponding
non-terminals. These are actually the indices of the corresponding registers in the
register file.

The next set of braces contain the action of the operation in RTL. For this oper-

ation, the value of the register corresponding to the first parameter is added to the
value of the register corresponding to the second parameter, and the result is stored

in the register corresponding to the third parameter of the operation5.

'The reference UIRC inside the RTL action of the operation description refers to the RTL value
of the non-terminal UK-RC. This is given by the corresponding RTL action of the non-terminal
definition - in this case a reference to the appropriate register.
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The third set of braces describe the side effects of the operation. An empty
side effects statement denotes that there are no side effects. Note that in ISDL, the
program counter, PC, is implicitly incremented in order to fetch the next instruction
and thus does not appear in the operation side effects statement. Also note that
explicit manipulation of the program counter denotes a control flow operation.

Finally, the costs and timing parameters of the operation are provided. This add
operation takes one cycle to execute, and requires at most one instruction word. This
operation will not introduce any stall cycles if a subsequent instruction attempts to
access the result of the current operation. The results of this operation are available to
all subsequent operations, and functional unit Ul is immediately available to perform
another operation.

A load operation from the data memory field is shown below:

#define DMdata OxOC
#define DMaddr OxOD
#define REG SRC
#define LOC DEST
Field DMf:

DM-ld REG, LOC
{ DB1.SRC = DMdata; DB1.DEST = REG;

DB2.SRC = LOC; DB2.DEST = DMaddr; }
{ REG <- DM[LOC]; }
{}
{ Cycle = 1; Size = 1; Stall = 1; }
{ Latency = 1; Usage = 1; }

The main difference to note in this operation definition is the Stall cycle cost. A
value of one means that if the next instruction attempts to use the result of the load
operation, then the pipeline will be stalled for one cycle and the cycle count for this
operation must be increased by one.

Finally, a portion of the Constraints section of the example VLIW architecture
description is shown below:

Section Constraints

// SRC and DEST cannot be the same on either bus
~DB*_move UQ[1].R*, UQE[1.R* )

The third line declares a constraint that is violated if the instruction contains a
databus move operation on either bus (represented by DB*_move), and the source and
destination come from the same register file (represented by UE[1]. R*, UE[11.R*
where 0 [11 is a variable that must match in both its instances). This is not possible
to execute in hardware since each register file only has one port attached to each
databus. Therefore, a constraint is used to disallow such an operation.

The following is a time-shifted constraint taken from the description of the Mo-
torola 56000 DSP:
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~((MainREP *) & [1](MainDO *))

The first regular expression (i.e., (Main..REP *)) is evaluated against the base in-
struction, while the time-shift operator (i.e., [l) denotes that the second regular
expression (i.e., (Main-DO *)) should be evaluated against the instruction immedi-
ately following the base instruction. This constraint will be violated whenever a
MainREP instruction is followed by a MainDO instruction. This particular sequence
of instructions is forbidden according to the Motorola 56000 instruction set.

2.4 Describing Real-world Architectures

This section describes several complications that were identified when ISDL was used
to describe real world architectures. All of these complications were handled success-
fully by ISDL.

2.4.1 Time-Shifted Constraints

While describing the Motorola 56000 DSP, we realized that many operations con-
straint which operations are permissible in the instruction slots that follow them. For
example, a REPeat instruction cannot be used to repeat a DO instruction. There are
numerous examples of such constraints in almost any DSP that provides zero-overhead
loops. This problem is easily solved by providing a single time-shifted constraint:

// You cannot repeat a DO using REP
~ ((MainREP *) & [1 (MainDO *))

This constraint specifies that a DO operation cannot immediately follow (within 1
instruction) a REPeat operation.

2.4.2 Register Aliasing

Another issue that seems to be common in many DSP processors is that of register
aliasing. We first noticed register aliasing while trying to describe the Motorola
56000 DSP. In this DSP, the X register is 48 bits long but can also be accessed as two
separate registers called XO and X1. Writes to Xl are reflected in the top portion of
the X register while the bottom portion remains unchanged. Similarly, writes to XO
affect the bottom portion of X, and writes to X are reflected in both XO and Xl. The
Y register and the A and B accumulators are also aliased in this architecture.

ISDL provides an alias facility explicitly for this purpose. It allows a "new" storage
element to be defined and composed from portions of existing state. This storage
element does not have any state of its own - rather it shares state with the elements
that were used in its composition.
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2.4.3 Heavy Op-code Encoding

While trying to describe the SPAM VLIW-2 architecture (see Section 4.1), we discov-
ered that the opcode for the addressing mode for each memory had to be combined
with the opcode for the corresponding address generator in order to generate the
final value to be inserted in the binary instruction. We call combining opcodes in this
manner, heavy opcode encoding 6. One way to handle heavy opcode encoding would
be to combine each address generator operation with each data memory operation
thus forming a cross product of the two fields. This, however, would violate the or-
thogonality of operations between the address generator fields and the data memory
fields resulting in a much longer and much less intuitive description. Instead, we
chose to maintain orthogonality by using the fact that in ISDL bitfield expressions the
value of a subfield as set by a previous operation can appear in the right-hand side
of another bitfield expression. Thus, the address generator operations are encoded
as usual, and they set the opcode first. Then, the data memory operations read the
existing opcodes that the address generator operations set and combine them with
their own opcodes to produce the final encoding. Hence, the description of the two
sets of operations remains completely orthogonal, yet the correct assembly function
is described.

2.4.4 Field Opcode Takeover

Field opcode takeover is another property that seems to be common amongst DSP-
style architectures with heavy encodings; both the SPAM VLIW architectures and
the Motorola 56000 allow operations to take over the opcodes of other fields. Consider
an operation I in field M that requires additional bits to encode large constants and
may choose to take over bits that are allocated to the opcode of field N. Operation
I is said to take precedence over field N. While the bitfield assignments in ISDL have
no trouble describing such an occurrence, the semantics are somewhat tricky. Since
the value stored in the bits that normally encode the opcode for field N now represent
an unknown parameter, we should ignore the opcode of field N because it could be
any random value. Therefore, when operation I is instantiated in an instruction, no
operation should be executed for field N even though one may be encoded in its opcode.
The disassembler and decode logic generated from such a description should take this
into account. Note that if field N contains an operation J that takes precedence over
field M then the function is undecodeable. If the opcode of M encodes I and the opcode
of N encodes J, then the precedence is unclear.

6Heavy opcode encoding can be used to shorten the instruction word.
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2.5 Related Work on Machine Description Lan-
guages for Embedded Processors

This section briefly reviews three representative research projects in the area of ar-
chitecture exploration for embedded systems: MIMOLA [27], FLEXWARE [32], and
CHESS [7]. The proceedings of the Dagstuhl workshop [29] contain a collection of
papers documenting several other contributors' efforts. In addition, it reviews five
other machine description languages: ISPS [1], MARIL [2], LISA [38], HMDES[13] and
RADL [34].

2.5.1 MIMOLA

The MIMOLA design system is an environment for hardware-software co-design and
includes a retargetable microcode compiler [27][28]. The MIMOLA microcode com-
piler infers rules for code generation directly from a structural description (e.g., a
netlist) of the target architecture instead of a behavioral description (e.g., the in-
struction set). The advantage of this approach is that it provides a single machine
description for the synthesis of the target architecture, the generation of microcode,
and the simulation of the target architecture. However, MIMOLA descriptions are
generally very low-level, and therefore laborious to write and modify. In addition,
simulation in the MIMOLA environment is slow because of the low-level descriptions.
Furthermore, the source code for the MIMOLA compiler must be written using the
MIMOLA language itself. Finally, the MIMOLA system assumes that the target archi-
tecture implementation already exists and precludes using the machine description to
generate an implementation. It is also not amenable to local changes in the instruc-
tion set because adding an instruction and evaluating the resulting instruction set
would require significant changes to the machine description. Thus, MIMOLA cannot
be used to explore various implementations of the same ISA.

2.5.2 FLEXWARE, CODESYN, and INSULIN

FLEXWARE consists of a code generator, CODESYN [31], and an instruction-set sim-
ulator, INSULIN [36]. The machine description for CODESYN includes three compo-
nents: a pattern set of micro-instructions, the available resources and their classifica-
tion, and an interconnect graph. The pattern set of micro-instructions is a behavioral
level representation of the instruction-set. This machine description is used for code
generation; however, the INSULIN simulator uses another model. It is based on a
partially reconfigurable VHDL model of a generic instruction set processor. The user
must define the target instruction set in terms of the generic assembler instructions
supported by the VHDL model. The main disadvantage of the FLEXWARE system is
that it does not permit the same machine description to be used for all of the design
evaluation tools. Also, the VHDL model for INSULIN is a parameterized model and
thus has a granularity that is coarse compared to that if ISDL.
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2.5.3 CHESs and nML

CHESS is a retargetable code generation environment for fixed-point DSPs and ASIPs;
it was developed in the context of the CATHEDRAL II high-level synthesis system [8].
The target machine is described using the language nML [10]. Just like ISDL, nML
allows the user to specify the target architecture in a way that parallels instruction-
set descriptions found in a user's manual. In contrast to MIMOLA, the machine
description contains behavioral as well as structural information. This enables the
code generator to recognize more optimization opportunities. The syntax of nML
is a subset of the syntax of ISDL corresponding to the definition of non-terminals.
In addition, the semantics of nML are substantially weaker than those of ISDL. For
example, there is no notion of a field in nML. This limitation makes it difficult to
determine which operations correspond to a functional unit. The timing model in
nML is based on an execution model of the hardware consisting of a list of resources

(e.g., pipeline stages) and reservation tables for each instruction. This means that
the appropriate timing information must be derived from the execution model for
each instruction. In addition, it requires that all of the pipelines described be of

equal length. In contrast, ISDL allows pipelines for different functional units to be
of different lengths. nML contains an explicit timing model; however, this timing

model is less straightforward than the ISDL methodology which provides simple per-
operation timing information. In addition, nML's timing model is not well integrated
with the rest of the language because it was added after the initial language was
defined.

The most serious shortcoming of nML (as well as most of the other languages
reviewed in this section) compared to ISDL is its lack of explicit constraints. In nML,
some constraints can be derived; however, the lack of explicit constraints makes de-
scriptions longer and less intuitive. Additionally, the lack of constraints implies that
the actual definition of the ISA must present only valid instructions thus coupling

the ISA to its implementation. Both of these effects are explained in more detail in
Section 2.5.8. Finally, there exist constraints that cannot be derived from an nML
description (the time-shifted constraints) because nML must describe valid instruc-
tions and therefore cannot describe interactions between two instructions issued at
different times. Architectures containing such constraints are not supported by nML.

An additional shortcoming of nML is its limited capability regarding the descrip-
tion of assembly functions. The expressions and semantics used to create the "image"
of an operation are simple and cannot, for example, encode the case of an additional
instruction word being used to encode a long constant.

2.5.4 LISA

LISA is a generic machine description language that was originally created to au-
tomatically generate fast, instruction-level simulators. Its timing model consists of
declared pipeline stages (resources) and resource usage tables for each instruction.
In this respect, it is similar to nML. It uses ASAP (As Soon As Possible) Gantt
chart scheduling to determine the timing effects of the pipeline. This timing model
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is more flexible than the timing model of ISDL. However, ISDL can support most
common place architectures and can accurately represent commercial DSPs such as
the Motorola 56000. Unlike ISDL, LISA exposes a large portion of the underlying
implementation to the description, thus precluding the exploration of different im-
plementations of the same ISA. Furthermore, we believe that the structure of LISA
will unnecessarily complicate the retargetable code generator which is the hardest and
most complex tool to produce. There is currently no implementation of a retargetable
code generator based on LISA.

2.5.5 RADL

RADL[34] is a machine-description language geared towards DSP-style architectures.
It contains a fully generic timing model that explicitly declares pipelines and their
strategies. This timing model is even more flexible than the timing model in LIsA,
but this flexibility comes at the cost of increased complexity. Just as in LISA, the
RADL timing model exposes the underlying implementation of the architecture to the
description, and thus precludes the exploration of different implementations of the
same ISA. Furthermore, the additional complexity of the timing model increases the
complexity of the code generator because operation timing must now be derived from
the pipeline structures instead of being explicitly defined in the description.

2.5.6 HMDES

HMDES[13] is a machine description language that was developed specifically for the
TRIMARAN compiler system. It is based on a parameterizable architecture called
PLAYDOH[23]. PLAYDOH represents a very general class of architectures which in-
cludes features as complicated as predicated execution and complex instructions.
While PLAYDOH is very general and can encompass a wide variety of architectures, it
is still a parameterized architecture and thus has a limited scope. Similarly HMDES
supports a parameterizable instruction set and therefore has a more restrictive scope
than ISDL. Like nML, HMDES does not support constraints which may result in
longer and less intuitive descriptions.

2.5.7 Other Machine Description Languages

Isps is a very flexible machine description language with semantics similar to struc-
tural Verilog. Due to its semantics, it tends to result in very long descriptions that are
not very intuitive. Additionally, it is effectively a structural language even though it
has the syntax of a behavioral language. For example, timing has to be emulated by
explicit pipelines or some similar method. As a result, ISPS forces a strong coupling

between the ISA and its implementation.

MARIL is a machine description language specifically geared towards retargetable
code generation for RISC-style general purpose processors. The language cannot
handle the complexities of heavily encoded DSP-style processors nor can it handle
explicit parallelism. It is therefore unsuitable for a system geared towards embedded
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Figure 2-5: Constraints Help to Simplify the Machine Description

processors where DSP-style and VLIW architectures are at a distinct advantage over
RISC processors.

None of the systems mentioned above provide support for explicit constraints.
Without explicit constraints, descriptions for architectures with instruction level par-
allelism become very laborious to write because every legal combination of operations
must be explicitly listed. Constraints can also be useful in decoupling the ISA of a
processor from a particular implementation, and in determining resource sharing op-
portunities which result in more efficient hardware models. Section 2.5.8 elaborates
on the benefits of explicit constraints.

2.5.8 Using Constraints to Simplify the Machine Description

Of the languages described in Section 2.5, the nML machine description language
has the most generic abstraction mechanism and therefore results in the most concise
descriptions. Both nML and ISDL use an attributed grammar as their abstraction
mechanism. However, nML does not support explicit constraints. As a result, ma-
chine descriptions written in ISDL will generally be significantly simpler, and easier
to use, than those written in nML.

Figure 2-5 illustrates how constraints simplify the description of a target processor.
In the example architecture of Figure 2-3, the databuses cannot be used to transfer
data from one register to another within the same register file since each register file
has only one port connecting it to each data bus. Thus, in describing a Move operation
from SRC to DEST, it is necessary to specify the legal combinations of SRC and DEST.
In a language that is purely an attributed grammar, without support for explicit
constraints, one would have to list all possible legal combinations of SRC and DEST
as separate Move operations. In other words, there would be a non-terminal, SRC1,
defined as all possible sources except for the U3 register file, and then a corresponding
operation which would specify that a Move SRC1,U3 is supported by the target proces-
sor. This operation is legal because the SRC1 non-terminal can never take on the value
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of the U3 register file. This form would be repeated for each possible destination, as
illustrated by each row in Figure 2-5 (a). Thus, resulting in three non-terminal defini-
tions and three corresponding move operations, for this particular example. In ISDL,
however, which explicitly supports constraints, one would describe a single operation
Move SRC,DEST where SRC and DEST are non-terminals corresponding to all possible
sources and destinations of the move operation. In other words, the move operation
includes the entire space of sources and destinations, as shown in Figure 2-5 (b). In
addition to the one move operation, a constraint which prohibits the SRC and DEST
of the Move operation from coming from the same register file is also described. The
constraint corresponds to removing the patterned blocks from the instruction space.
The combination of one operation and one constraint describes the same information
in ISDL, that the three non-terminals and three operations described in nML. If SRC
and DEST consisted of seven options each, the ISDL definitions are still valid while the
nML definitions would now have to include seven non-terminals and seven operation
definitions. It is easy to see that as the instruction space expands and additional
constraint dimensions are introduced, this problem grows exponentially for machine
description languages that do not support explicit constraints. This simplification is
the most significant advantage of ISDL over nML.

Additionally, constraints allow the ISA to be decoupled from the particular im-
plementation. If in the above example, each register file had two ports connecting it
to a data bus, a new implementation would result that would not have this particular
hardware restriction. In ISDL, this implementation detail can be expressed by simply
removing the constraint without changing any of the operation definitions. In nML
the actual definition of the ISA would have to be changed by collapsing all of the
separate definitions of the operation into a single definition. Thus constraints (which
naturally express implementation details) decouple the definition of the ISA from the
actual implementation.

Finally, time shifted constraints cannot be expressed in nML. This is because nML
can only describe valid instructions and its semantics prevent it from referring to more
than a single instruction at a time. This is in contrast to the time-shift operator of
ISDL which allows restrictions between multiple instructions to be expressed while
still only requiring that the ISA be defined in terms of one instruction at a time.
Thus there is a whole class of architectures which nML cannot describe but ISDL can.
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Chapter 3

Simulator and Hardware Model
Generation

3.1 Introduction

In order to be able to evaluate the suitability of a candidate architecture for a particu-
lar application, it is necessary to simulate the program on the particular architecture.
This makes it possible to verify performance, determine the utilization of individual
architecture features and functional units, and suggest possible improvements to the
architecture. Additionally, estimates of the physical costs (e.g., silicon area, power
consumption) as well as the clock cycle length of the candidate architecture are nec-
essary to fully evaluate it. These can be obtained by generating a suitable hardware
model.

This section presents a pair of tools that generate a simulator and a hardware
model given a target architecture described in ISDL. The simulator generator tool is
called GENSIM and creates simulators called XsIM simulators. The hardware model
generation tool is called HGEN. We would like to note that the hardware model
generation tool was implemented by Pietro Russo[33] and it is only described here for
completeness since it is based on the infrastructure created for the XsIM simulators.

3.1.1 Requirements and Features

In order to be able to provide the required performance measurements for architec-
ture exploration, the simulators should be cycle accurate and bit-true. Additionally,
they should be fast so that realistic data samples can be simulated for the complete
application. In order to allow extraction of useful utilization statistics the simula-
tors should provide at least a method of obtaining dynamic execution counts for all
instructions. In order to be useful in verifying correctness, the simulators should
provide user-friendly interfaces, full debugging support, and support for regression
testing.

Accordingly, the XsIM simulators provide the following features:

9 Cycle-accurate and bit-true by construction. The XsIM simulators model any
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timing and cycle costs that can be modeled in ISDL. This includes all features
visible to the instruction set. The XsIM simulators do not model the effects
of architecture features that are not visible to the instruction set, such as the
effect of caches. The effects of caches can be derived after the simulation from
an execution trace.

* Bit-true: The XsIM simulators use the same representations as the hardware,
and correctly account for any timing effects described in ISDL.

* Fast: The prototype simulators can currently simulate between 1.1 M and 4.5 M
operations per second on a Sun Ultra 10/333. Disassembly is performed off-line
to improve speed. This allows real examples to be used when evaluating the
architecture. The same methodology can be used to generate compiled-code
simulators that can yield much higher performance.

9 Execution traces: The simulators have the ability to dump an execution trace
either to a file or directly to a processing program. These execution traces can
be used, together with static information in the program files, to determine the
utilization of architectural features and to measure performance.

e Easy to use interface and full debugging support: The XSIM simulators provide
both a graphical user interface and a command line interface. The command line
interface can be used for automated simulation runs, and batch-file processing.
The graphical user interface can be used for step-by-step debugging of hand-
coded examples, as well as for manual operation of the simulator.

* Full debugging support: The XsiM simulators provide breakpoints, state mon-
itors, checkpoints, batch files for regression testing support, and the ability to
attach simulator commands to particular instructions.

- Breakpoints: stop execution of the program when a given instruction ad-
dress is reached.

- Monitors: notify the user when any user-defined part of the state is mod-
ified.

- Attached commands: Allow the user to attach simulator commands to
instruction addresses. The commands get executed as if they were typed
by the user when the particular instruction is executed.

- Checkpoints: At any stage in the simulation the simulator can dump the
entire state into a file and re-load it at a later time. This is useful for
detecting bugs that occur very late into a simulation run.

* Regression testing support: XsIM simulators can process batch-files (a list of
commands placed in a file). They can also maintain a log of a user session and
dump the log into a file, which can then be used as a batch file to re-create the
results of the session.
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Figure 3-1: Internal Structure of the XsIM Simulator

* Off-line disassembly to improve performance: The disassembly of the binary

program happens when the program is first loaded, and is stored internally.
This improves simulator performance since it takes disassembly off the critical
path in simulation.

These features make it possible to use the XsIM simulators for detailed evaluation
of candidate architectures. At the same time, they make the simulators easy to use

both manually as well as automatically.

In order for the hardware models to be useful, they should be optimized for silicon
area and cycle length. Additionally, both the simulator and the hardware model
generators should generate their output in a reasonable amount of time.

3.1.2 Simulator Structure

Figure 3-1 shows the structure of an XsIM simulator. All the simulators generated

by the GENSIM system share this structure. The simulators consist of six parts:

1. User Interface and File I/O: This part implements the command line as
well as the graphical interface. The command line interface is written in C. The
graphical interface is written in Tcl/Tk and issues commands to the command
line interface. It also implements the interfaces to the operating system and
file-system.

2. Scheduler: The scheduler is responsible for sequencing the instructions during
execution, managing most of the debugging support, producing the execution
address traces, and dispatching attached commands back to the user interface
for processing.
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3. State Monitors: These detect when any user-defined portion of the state
changes, and print a message to that effect. All accesses to the state are routed
through the state monitor hooks.

4. State: This is a set of data structures that emulate the state of the target
architecture.

5. Disassembler: The simulator loads the same binary file that would be used
to program the ROM on the final hardware'. Therefore, the program must be
disassembled in order to determine which operations are instantiated in each
input instruction. The simulator contains a built-in disassembler which dis-
assembles the program off-line at load time. It then stores the disassembled
form internally. The processing core uses this disassembled form to simulate
instructions.

6. Processing Core: Each operation and ISDL non-terminal option has an RTL
action (and an RTL side-effect) associated with it. These translate to a set
of routines that emulate those actions. The processing core consists of the
collection of these routines.

The sequence of events during simulation starts with a user command to load
the binary program file. The user interface loads the appropriate file and then dis-
patches to the disassembler which disassembles the whole program off-line. During
disassembly it detects the operations and non-terminal options instantiated in the
instructions, and converts all token instantiations to constants. It then associates
with each instruction identifiers that uniquely identify the processing core routines
that correspond to the instantiated operations and non-terminal options. It also as-
sociates with each instruction the specific token constants. Execution proper begins
with a user command to run a program or step through the next (few) instruction(s).
This causes control to pass to the scheduler which accesses the PC to find out which
instruction to execute. It then checks to see if there is a breakpoint associated with
that instruction, and if so passes control back to the user interface. If not, it checks
for attached commands and executes them (if any). Then it looks up the identifiers
of the processing core routines that were attached to this instruction by the disassem-
bler, and executes the appropriate routines in order. After execution of the processing
core routines is complete, it updates the execution trace. It then either passes control
to the user interface (if the user command was a step command) or fetches the PC
again to find the next instruction to execute.

3.1.3 Relationship Between Simulator and Hardware Model

Note that the simulator and hardware model for a particular architecture are very
closely related. In particular, we decided to generate hardware models in synthesizable

'This ensures that the simulator receives the same information as the hardware, thus making
simulator-based testing more robust.
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Verilog: these models are themselves simulators. The reason is that both describe the
behavior of the architecture in as much level as ISDL will allow, but they are used for
different purposes. The simulator simply emulates the behavior, while the hardware
model describes an implementation of the same behavior.

This result has a very profound impact on the generation of the hardware model:
the model can be generated using the same methodologies that are used to generate
the simulator. In particular, the disassembler performs exactly the same function
as the decode logic performs in hardware. Similarly, the state portion of the sim-
ulator performs the same function as the storage elements allocated in hardware,
and the processing core routines implement the same function as the data-paths do
in hardware. Therefore, to a first approximation, the hardware model is simply a
syntax-translated version of the simulator, minus the user interface, sequencer, and
state monitors.

The main difference is the approach to the resource sharing problem (see Section
3.3.2). In the simulator, we do not need to worry about the possibility of sharing
resources since the naive implementation of ignoring resource sharing simply results
in duplicate pieces of code. Other than increasing the size of the executable and
reducing the effectiveness of caches during simulation, this is not a major obstacle.
In the hardware model however, ignoring resource sharing results in duplicate data-
paths which artificially increase silicon area and power consumption. Therefore, we
have to take into account resource sharing. Section 3.3.2 explains how this is done.

3.2 The GENSIM Simulator Generator

This section presents the implementation of a tool called the GENSIM system, that
automatically generates an Instruction Level Simulator given an ISDL description of
a candidate architecture. This simulator (called an XsIM simulator) can then be
used to execute a program in order to measure performance, verify correctness and
evaluate the suitability of the architecture.

Figure 3-1 shows the structure of an XsIM simulator. All of the simulator code
is written in C, with the exception of the graphical user interface which is written
in Tcl/Tk. The user interface, state monitors, and scheduler code is common to all
architectures and is implemented as a library. The state data structures, disassembler,
and processing core routines are specific to each architecture and are generated as
C source code from the ISDL description. The C source can then be compiled and
linked with the common library to create an executable program for the simulator.
This executable is specific to an architecture, but can load different programs for the
same architecture (unlike compiled code simulators).

The following three sections describe how we generate the state, disassembler and
processing core of an XSIM simulator.
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3.2.1 Storage Generation

Generating the state data structures is the most straightforward step in the simulator
generator. For each primary (i.e., non-alias) storage element defined in the ISDL
description, a data structure is created containing the following:

1. A block of memory sufficient to hold all the data to be stored in the element.
For uniformity reasons this block is always treated as a two-dimensional array
with the exact depth declared in ISDL and padded to an integer of 32 bits in
the width dimension.

2. The name of the storage element as defined in the ISDL description.

3. The type of the storage element as defined in the ISDL description.

4. A flag that denotes whether the element is addressed or not.

5. The width of the two-dimensional array in multiples of 32 bits.

6. The width of the element in bits.

7. An array of monitor flags that are set when the user requests a monitor on a
particular location of this storage element.

The only elements of this data structure used by the processing core is the memory
block and the element type. All the other elements are used by the user interface and
debugging features of the simulator to relate the actual data structure to what the
user sees in the panels of the graphical interface.

To handle aliases the simulator generator creates read and write functions. The
read functions read the parts of the state that make up an alias, and concatenate
them into a contiguous value which they return. The write functions take a value
and split it up into the parts of the state that make up the alias. These functions are
used exclusively when dealing with aliases of storage elements.

If the debugging support of the simulator is turned on, all accesses to state are
automatically routed through the state monitors2 . Tests for the monitors happen
during the write-back phase (see Section 3.2.3).

3.2.2 Disassembler Generation

The bitfield assignments of ISDL provide the assembly function. This is a function
that given the operations instantiated in the instruction, the options instantiated
in any non-terminals, and the actual parameters to the operation, will produce the
binary instruction word. More specifically, this function can be modeled as a circuit,
where the operation, non-terminal options, and actual operation parameters (such as
constants) are inputs to the circuit and the binary instruction word is the output.

2The debugging support can be turned off. This helps improve speed since the overhead of checks
for breakpoints and monitors can then by eliminated.
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Figure 3-2: Model of the Assembly Function in ISDL

In this model, the variables corresponding to which operation is instantiated from

each field and which non-terminal option is instantiated in each non-terminal are

represented as multi-bit symbolic variables representing a unique identifier. Figure

3-2 shows this model pictorially.
In order to produce a disassembler, we need to reverse this function to derive the

decode function. This is a function that given an instance of the binary instruction

word, produces the symbolic variables that yielded it in the first place. We define
a decodeable assembly function to be one such that for every valid combination of

input (i.e., every valid instruction in the instruction set), the output of the assembly

function is unique. This means that if the assembly function is decodeable, we should

be able to reverse the assembly function for every valid instruction word3 .

In order to avoid consistency and redundancy issues, we decided not to include

the decode function in the machine description. This means that the decode func-

tion has to be derived from the assembly function (which is provided in the machine

description) in order to derive the disassembler. It turns out that by far the hardest

problem in simulator generation is the generation of a disassembler. The general ver-

sion of the problem is NP-complete (see Theorem 3.2.1) and the number of variables

in the input is very large (typically on the order of hundreds or thousands of bits) so

a simple search is intractable. Therefore, a number of heuristics are used, and these

complicate the algorithms substantially. In addition, approximate answers cannot be

used - an exact answer must be determined or the search for a solution aborted.

The Binary Decision Diagram (BDD) Model

Our first attempt to solve the disassembler generation problem was based on Binary

Decision Diagrams (BDDs)[4]. The reasoning was that the assembly function can be

modeled as a circuit so it can naturally be described by a Reduced Ordered BDD

(ROBDD). The ROBDD effectively represents an algebraic description of the assem-

bly function circuit. The circuit can then be algebraically manipulated in order to

3In the worst case, we could perform an exhaustive search over the valid inputs of the assembly
function until we produce the right instruction word.
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Figure 3-3: Assembly Function Modified for Reversal

reverse it.

In particular, the bitfield assignment expressions form trees of combinational logic
with the inputs to the assembly function as their variables. The output of each ex-
pression either forms the return value of a non-terminal, or is assigned directly to the
subfields of the instruction word. If the outputs of an expression tree form the return
value of a non-terminal, then they are connected directly wherever a bitfield assign-
ment expression makes use of that non-terminal. A new instance of the non-terminal
expression is used for each appearance of the non-terminal. The end result is the cir-
cuit representing the assembly function. Let us call this circuit A. All complications
in the assembly function (such as heavy op-code encoding which appears as subfields
in the r-value of a bitfield expression, op-code takeover, etc.) are all represented in
the resulting circuit and will be taken into account once the circuit is reversed.

To reverse the circuit, we modify it as shown in Figure 3-3. This circuit takes an
as an additional set of inputs the particular instruction word we wish to disassemble.
Its output will be TRUE if the assembly function input variables V, represent the
correct disassembly of the instruction word, and FALSE otherwise. Let us call this
circuit D. Given this circuit and an instruction I to be disassembled, we can co-factor
D with respect to each bit of I by setting the corresponding input to the appropriate
value. Let us call the resulting circuit D'. D' will yield true if the assembly function
input variables V ... V are set to the values that originally produced I. We now need
to find a setting for these variables that satisfies D'. We can represent D by a BDD
and co-factor it and find a variable setting that satisfies D'.

Let BD be the BDD for circuit D. Figure 3-4 shows pseudo-code for constructing
BD. This BDD only needs to be created once during initialization of the disassembler.
Let B' be the BDD that represents D'. This BDD will have a number of the nodes
for the variables V ... V, in it (not necessarily all) arranged in a chain which leads
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generate-bdd-top()
clear word
for each field i

field-bdd = create-bdd-mux(num-of-ops(i))
mux-select(fieldbdd) = identifier(i)
for each operation o in i

for each bitfield assignment statement a in o
tmp generate_bdd-expression(rvalue(a))
word insert_bdd(subfield(a), tmp, word)

end
connect .bdd-mux(fieldbdd, index(o), word)

end
end
create-bdd-xnor(word, input)

generate-bdd-expression(e)
switch (type(e))

case tok:
return create-bdd-parameter(token(e))

case ntl:
return generate _b dd nonterminal(non-terminal(e))

case and:
tmp1 = generate-bdd-expression(left (e))
tmp2 generate-bdd-expression(right(e))
return create-bdd-and(tmpl, tmp2)

end

generateb dd nonterminal(n)
ntl-bdd = create-bdd-mux(num-of-options(n))
mux-select(ntl-bdd) = identifier(n)
for each option o in n

r = return-expression(o)
tmp = generatebdd-expression(r)
connect -bdd-mux(field-bdd, index(o), tmp)

end
return ntl-bdd
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disassemble-with-bdd(b, I)
set all input variables VX to "don't care"
tmp = b
for each bit b in I

tmp = cofactor-bdd(tmp, b)
end

for each node n in tmp
if (branch(zero, n) is FALSE)

set variable(n) to one
else

set variable(n) to zero
end

Figure 3-5: Disassembly Using Decode BDD BD

to the TRUE node at the bottom of the BDD. All other branches will lead to the

FALSE node. By traversing this B' towards the TRUE node and examining the
values required for the variable at each node, we obtain a subset of the assembly

input variable bits (V) and the values they must be set to in order to produce I.

Note that traversing the co-factored BDDs can be performed in linear time since

all nodes are arranged in a chain and any deviation from the correct path instantly

leads to the zero node (which means no back-tracking is necessary). B' has to be
created every time an instruction is disassembled. Figure 3-5 describes this algorithm

in pseudo-code.

This formulation is very elegant and takes care of all the complications that our

assembly function is allowed to contain. Since BD takes into account all of these

complications, and B' represents an exact account of which assembly function input

variables were set to what values in order to produce the particular word, we know

that we will obtain the correct values. Note that input variables to the assembly

function that were not used to produce this word (such as parameters for operations

not instantiated in this word) will disappear from the BDD when it is co-factored.

Similarly, operation identifiers for fields whose op-codes were taken over will disappear

when the BDD is co-factored.

Given the elegance and cleanliness of the above methodology, it was natural to

attempt to implement it. However, very soon we run into problems. BDDs are

notoriously sensitive to the ordering of the input variables and tend to explode to an
exponential size if the ordering is not just perfect. Despite several attempts to produce

ordering algorithms that would contain the problem, the BDDs became prohibitively
large and often consumed all the memory available on the machine before terminating.
With the benefit of hindsight this is hardly surprising: we know that the general
version of the disassembly problem is NP-complete and therefore an exponential run-

54



time is to be expected. However, traversing the co-factored BDDs is linear with
respect to the number of variables, as is co-factoring. It follows that the expected
exponential step would have to be the construction phase of BD and that the resulting
BDD would most likely be exponential in size.

The Signature Model

The main reason for the failure of the BDD model was that no heuristics could be
applied in an intelligent fashion to reduce the size of the search. The problem was
reduced to a different domain and transferring knowledge of the structure of general
decode logic circuits to this domain is non-trivial. A domain closer to the actual
problem of generating decode circuits was necessary so that intelligent heuristics
could be applied.

We produced a model of such a domain, called the Signature model. In this model,
we annotate every bitfield assignment expression with a signature. This is a symbolic
representation of the values of the bits of the expression. A signature is an array of
bit symbols, with the same width as the bitfield expression. Each bit symbol can be
one of:

0 "Unknown" entries (represented by "z") imply that the assembly function for
this operation or non-terminal option does not set the corresponding bit.

* "Don't care" entries (represented by "x") imply that the assembly function for
this operation sets this bit to one in some cases and to zero in others.

* The constant "0" or "1" implies that the assembly function for this operation
sets the corresponding bit to the given constant for all cases.

* A parameter symbol (represented by "s") implies that the assembly function
for the operation sets the corresponding bit to a function of the value of one of
the parameters.

Signatures of sub-expressions in a bitfield assignment expression can be composed
to derive the signatures to the top-level expression. Table 3.1 shows some of the
composition rules for signatures - the rest follow the same pattern. Also note that
composition of a parameter symbol with another parameter symbol yields an error.
The reasons for this is the parameter decode axiom (see axiom 3.2.1).

To determine the signature for the return value of a non-terminal, the signatures
for each option of the non-terminal are merged. Table 3.2 shows the rules for signature
merging. Note that the merging rules form a commutative and associative function.

Before we can generate a disassembler, we need to generate signatures for each
operation and non-terminal option. To do this we generate signatures for the r-
value of each bitfield assignment in the operation (or non-terminal option), and insert
these signatures at the appropriate points inside a signature representing the whole
instruction word (or the return value of the non-terminal). Figure 3-6 presents the
pseudo-code for this step. Figure 3-7 shows an example of how operations and non-
terminal options are annotated with signatures.
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Expression Left Right Result
Node Type Child Child Symbol

Token NA s
Non-Terminal z z

x x
0 0
1 1
s s

AND 0 any 0
any 0 0
x,1,z s s

s x,1,z s
1 x,1,z x,1,z

x,1,z 1 z,1,z
s s ERROR

OR 1 any 1
any 1 1

x,0,z s s
s x,0,z s
0 x,0,z x,0,z

x,0,z 0 zOz
s s ERROR

XOR x,1,0,z 0 x,1,0,z
0 x,1,0,z x,1,0,z

1 x,1,0,z x,0,1,z

x,1,0,z 1 x,0,1,z

any s s
s any s
s s ERROR

any integer shift symbols

I_ I right

Table 3.1: Composition Rules for Signatures

56



signature-annotate()
for each field f

for each operation o in f
clear word
for each bitfield assignment a in o

tmp = generate-signature(rvalue(a))
insert-signature(word, tmp, subfield(a))

end
annotate o with word

end
end

generate-signature(e)
switch (type(e))

case tok:
return create-symbol-signature(token(e))

case ntl:
return generate-ntlsignature(non-terminal(e))

case and:
tmp1 generate-signature(left (e))
tmp2 = generate-signature(right(e))
return compose-signature(and, tmp1, tmp2)

end

generate ntlisignature(n)
clear ret-signature
for each option o in n

r = return-statement(o)
tmp = generate-signature(r)
ret-signature = merge-signature(ret signature, tmp)

end
return ret-signature

Figure 3-6: Annotating Operations and Non-terminal Options with Signa-

tures
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Signature 1 Signature 2 Result

X X X
x 1 x
x 0 x
X z X
x S S

1 1 1
1 0 x
1 z 1
1 s S

0 0 0
0 z 0
0 s s
z z z

z S S

S S S

Table 3.2: Merging Rules for Signatures

Token "AG1.R"[0..7]
AG1_R {[O..7]} ssKEY siatr

AG2R {[O..7])1E
IOx08 100 0ss

Token "AG2.R"[0..7] OR
AG2_R {[O..7]} ssM01s

0x20

Token "ALU.R'[0..31]
ALUR {[O..31]}

Non Terminal RI:
1AG1_R {$$=AG1_R} I

Ox10 AG2R {$$=AG2_R I 0X08} I
OR ssssALUR {$$=ALUR I 0X20} I

Token "MAC.R"[0..15] MACR {$$=MACR I OX10};
MACR {[O..15]}

Figure 3-7: Example of Signature Annotation
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Determining Op-codes

Once we have annotated each operation and non-terminal option with a signature we
can proceed to generating a disassembler. We define the op-code of an operation or
non-terminal option to be the set of bits in its signature that are set to constants
(i.e., "1" or "0"), and the values that these bits are set to. If the assembly function of
the architecture is decodeable, then the op-codes for each operation must be unique.
We say an op-code is unique if its bit-pattern in the instruction cannot be produced
by any other combination of operations and parameters. Assuming all op-codes are
unique, we can determine if an operation is instantiated in the current instruction by
matching its op-code against the instruction word. If we obtain a match, we know
that the operation was present in the instruction by the definition of uniqueness.
Once we know which operations are instantiated in an instruction, then we know
which parameters to expect and we can proceed to decode them.

While we could rely on the input to be decodeable and therefore all the op-codes
to be unique, it is desirable to perform a check for uniqueness. This would alert the
user to invalid inputs and direct him/her to fix the problem. Also note that in the
face of op-code takeover and field merging, uniqueness testing becomes a requirement.
However, uniqueness testing is NP-complete and therefore exponential in run-time in
worst case.

Theorem 3.2.1 Uniqueness testing for op-codes is NP-complete.

Proof Consider two signatures 10001zzzz and 1000xssss. In order to determine
if their op-codes are unique, we need to ensure that bit 5 in the second
signature (marked "x") can never result in "1".

* First we need to show that op-code uniqueness is a member of NP.
Assume we could non-deterministically obtain the combination of op-
erations and parameter values that would set this bit to 1. Then,
starting with these values, we could evaluate every sub-expression and
finally the top-level expression yielding the above bit. Note that since
ISDL bitfield assignment expressions are arranged as trees, each sub-
expression only needs to be evaluated once and we can evaluate all
the expressions in time 0(n) where n is the size of the bitfield ex-
pression that yields the required bit. Therefore, we can verify the
non-deterministic choice in polynomial (actually linear) time and thus
op-code uniqueness is a member of NP.

" Now we need to show that a known NP-complete problem can be
reduced to op-code uniqueness in polynomial time. We choose to
reduce 3-SAT to op-code uniqueness. A 3-SAT problem is arranged as
a conjunction of a set of terms. Each term is a disjunction of 3 variables
either in the normal form or in the inverted form. For each variable in
the given 3-SAT problem, we define a non-terminal with two options.
The first option returns a value of "0" and the second a value of "1".
For each term in the given 3-SAT problem, we combine the return
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values of the non-terminals corresponding to the variables in the term
using the "I" operator of ISDL. If the corresponding variable in the 3-
SAT term was inverted, we invert the return value of the corresponding
non-terminal using the ISDL "!" operator. We then combine all terms
using the "&" operator of ISDL into an expression which we then use
to set bit 5 of the second signature in the example above. We need
to construct as many non-terminals as there are variables in the given
3-SAT problem. So the non-terminal construction phase takes O(m)
steps where m is the size of the given 3-SAT problem. We also need to
construct as many terms as were present in the given 3-SAT problem.
Since each term is independent of the others, this once again takes
O(m) steps. Each step takes 0(1) time. Finally, we need to create
an expression in ISDL that contains all the terms constructed. This
expression takes O(m) time to construct. Setting the corresponding
bit in the second signature above takes 0(1) time. Therefore, the
3-SAT problem can be converted to an op-code uniqueness problem
in O(m) time. Finally, we attempt to determine if the two op-codes
given above are unique. In order for them to be unique, bit 5 of the
second signature must be "0". So if we determine that the op-codes
are unique then we know that there is no satisfying assignment to the
original 3-SAT problem. Note that if we wish to determine whether
there is a satisfying assignment to the original 3-SAT problem, we
try to determine if the constructed op-code is unique with respect to
signature 100OOzzzz. Using the above steps, any 3-SAT problem can
be reduced to an op-code uniqueness problem in polynomial time in
such a form that resolving the op-code uniqueness problem will provide
the answer to the original 3-SAT problem.

U

We can determine op-code uniqueness by verifying that every pair of op-codes is
pazrwise unique. Two op-codes are pairwise unique iff:

e They contain at least one bit in common and they set it to different values.

* There is a set of bits in the two op-codes that does not overlap and that no
combination of operations and parameters other than the current operation can
produce.

As expected, the last step above will result in an exponential search. To implement
this search we may have to expand non-terminal signatures into the set of signatures
for each option in order to test for all possible combinations of parameters. We may
also have to explore all possible combinations of operations. We use a number of
heuristics to prune the search as much as possible:

* Do not explore operations which never set any of the bits in question. This
will also eliminate non-terminal expansion of any non-terminals used by these
operations.
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* Subtract the overlapping part of the op-codes before testing for bit patterns to
increase the probability that operations will be pruned by the heuristic above.

* Memoise the results of non-terminal expansion since these are likely to be used
often.

Note the despite the fact that op-code uniqueness (and therefore disassembler
generation) is NP-complete, matching of op-codes (and therefore the generated dis-
assembler) proceeds in linear time.

Field Merging

In order to deal with heavy-opcode encoding, ISDL allows subfields to appear in the
r-value of bitfield assignment expressions (see Section 2.4.3). This means that the
signatures of the operations of the second field are compositions of the operation
signature and a symbol representing the subfield. Typically, the resulting signatures
do not contain any constants and therefore have no op-code.

In order to resolve the above problem we merge the two fields involved by perform-
ing a cross-product on their operations. The result is a merged field which contains
as many operations as the product of the number of operations of each field. Each
operation from the first field is combined with each operation from the second field,
and the signature of the first operation is composed with the signature of the sec-
ond operation to create a signature for the merged operation. The signatures of
the merged operations are used to perform op-code matching. Once we know which
merged operation matched, we can determine which of the original operations were
instantiated in the instruction.

Determining Precedences from Op-code Overlaps

In the complex instruction sets common in embedded processors, it is common for an
operation ol from field X to take over bits belonging to the op-code of an operation
o2 in another field Y to store large constants. This is called op-code takeover. Since
the bits of the op-code of o2 have now been set to whatever random value corresponds
to the constant, the semantics of op-code takeover state that operations in field Y
must be disabled (i.e., that no operation will be performed for field Y). We say that
operation ol takes precedence over field Y. The disassembler must maintain these
semantics.

In order to implement these semantics, we analyze the signatures of all operations
and attempt to detect op-code overlaps. Op-code overlap is the case where the op-code
of an operation overlaps with anything other than the symbol "z" in the signature of
another operation. If there is an op-code overlap, then there is a good chance that
there is a precedence relationship between the two operations. A true precedence
between ol and o2 exists if the op-code of o2 partially or completely overlaps with
symbols "s" or "x" in the signature of ol. If the op-code bits themselves overlap,
then obviously only one of the two operations can execute. If the op-codes are unique
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then only one operation will match so only that operation will execute. If they are
not unique then the assembly function is undecodeable and an error is produced.

Once we have determined the precedences between operations, we arrange them
in a DAG where the nodes are the fields and the edges are precedences between
operations in the fields. Note that there is one edge in the DAG for each precedence
relationship between operations so there may be multiple edges between nodes. Also
note that if ol in field X takes precedence over field Y and o3 in field Y takes
precedence over field X, then the precedence relationship cannot be resolved since
either operation (or even both) may have been taken over. Therefore, cycles are not
allowed in the precedence DAG and they are signaled as errors.

Note that the edges may form chains of nodes where ol in field X takes precedence
over field Y and operation o4 in field Y takes precedence over field Z. Assume that
an instruction matches the op-codes for ol and o4. Since o4 matches, then one would
expect that field Z would be disabled. However, o4 is invalid since it belongs to
field Y which is disabled by ol. So in such a case, field Z is not disabled. To take
this effect into account the precedence DAG is sorted in topological order. During
disassembly, and once the operation matches have been determined, the precedence
DAG is traversed in topological order looking for instantiated operations that take
precedence over fields. When such operations are found, the corresponding fields
are disabled and, in addition, any operations in them are ignored while looking for
precedences.

Parameter Decoding

Once the disassembler has determined which operations are instantiated in an in-
struction and precedences have been taken into account, we know which parameters
to expect for each operation. We now have to decode these parameters based on the
bits in the instruction word.

Our methodology is based on the following axiom (which we call the parameter
decode axiom):

Axiom 3.2.1 Each parameter symbol in a signature is a function of a single param-
eter only.

What this axiom means is that no bit in the instruction word will be a function
of more than one parameter and therefore no back-tracking will be necessary in order
to decode the parameters. The reason why signature composition does not allow
composition between two parameter symbols is that such an event would violate the
parameter decode axiom. All architectures known to us obey the parameter decode
axiom. It is easy to see why this axiom would hold for any realistic architecture:

* Encoding parameters in a fashion that violates the parameter decode axiom
does not confer any advantages in terms of performance and rarely confers any
advantage in terms of code size since most parameters are powers of 2 and will
fit exactly in a given number of bits.
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Figure 3-8: Example of the Forward/Backward Pass Algorithm

e Back-tracking in the disassembly algorithm translates to very expensive expo-
nential lookup tables in the decode logic.

Given that the axiom above holds, we know that no back-tracking will be nec-
essary to decode the parameters. We can therefore use a simple forward-backward
pass algorithm[3] to decode the parameters. In the forward phase, we propagate
all constants through the bitfield expressions to reconstruct any parts of the inter-
mediate values in these expressions that do not depend on the parameters. In the
backward pass, we propagate the values present in the instruction backwards through
the bitfield assignment expressions to arrive at the values of the parameters. Note
that because of the parameter decode axiom we only need to perform each pass once.
Figure 3-8 illustrates this process with an example.

Note that for non-terminals, the value obtained is the return value of the non-
terminal. This has to be recursively disassembled by matching against the op-codes
of each non-terminal option and once the option is identified, recursively decoding its
parameters.

Overview of Disassembly Process

In the XsIM simulators, disassembly happens during program load time. Once the
identifiers for each operation have been generated (i.e., the operations have been
identified) and the parameters have been decoded, these are stored for reference during
execution. Thus, the cost of disassembly is not incurred during simulation. Even
though the run-time of the generated disassembler is linear with respect to the size of
the description, it is still a substantial overhead which can be avoided by performing
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the disassembly off-line. When the instruction memory is written, the disassembler
is called again for this particular location. Thus, the XsIM simulators can handle
self-modifying code.

Figure 3-9 shows the algorithm of the overall disassembly process in pseudo-code.

3.2.3 Processing Core Generation

The processing core is merely a collection of routines that correspond to the RTL
statements in the actions and side-effects of operation and non-terminal option def-
initions. These are arranged as a set switch statements - one for each field - that,
depending on the operation identifier created by the disassembler, will emulate the
effects of the corresponding operation. The only complication is maintaining the
correct timing and costs semantics.

Maintaining the Costs and Timing Semantics

ISDL semantics state that all RTL statements within every operation in an instruction
read their inputs before any operation writes any of its results. Additionally, some
operations may not write their results back to storage immediately. They may instead
write them at a later time denoted by the value of the Latency expression for the
operation. To implement these semantics, we divide the execution cycle into two
distinct phases:

* Evaluation Phase: During this phase we evaluate the costs and timing ex-
pressions for each operation. Then all RTL statements read their inputs and
evaluate their results. These results are inserted in the write-back buffer. The
write-back buffer is a set of entries each of which consists of:

- the value to be written back to storage

- the storage element and index at which this value will be written

- a mask showing which bits of the storage element are to be updated

- a time marker showing when the update is scheduled to happen, in fetch
cycles from the current instruction (i.e., the value of the Latency expres-
sion).

* Write-back Phase: During this phase, the write-back buffer is scanned for
entries that are scheduled to be written out to storage. The corresponding stor-
age elements are updated and the entries in the write-back buffer cleared and
prepared for re-use. During the update of the storage elements, the correspond-
ing memory monitors are checked and messages are printed out if a monitor was
placed on the storage element and location by the user. Also, the cycle count
is updated.

In addition to the above semantics, we must also maintain the semantics of stall
cycles. Whenever a value is inserted into the write-back buffer, it is also inserted into
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Generate signatures for each operation in each field
Generate signatures for each option in each non-terminal

disassemble(i)
for each f in description

disassemble-field(i, f)
end

disassemble field(s, f)
for each operation o in f

if signature of o matches s
for each parameter p in o

case (p)
token: reverse s to get token value t
non-terminal: reverse s to get return value r

disassemble-ntl(r, p)
end

return OK
end
return ILLEGAL INSTRUCTION

disassemblentl(s, n)
for each option o in n

if signature of o matches s
for each parameter p in o

case (p)
token: reverse s to get token value t
non-terminal : reverse s to get return value r

disassemblentl(r, p)
end

return OK
end
return ILLEGAL INSTRUCTION

Figure 3-9: Disassembly Algorithm
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a stall-cycle reservation table (if the Stall cost of the operation was not 0). Each
entry in this table contains:

e The storage element and index being written

* The value of the Stall expression of the operation.

During the execution phase, if an RTL statement attempts to read a location for
which there exists an entry in the stall-cycle reservation table, the corresponding
number of stall cycles are noted for the current instruction. During the write-back
phase, the maximum stall-cycle cost is computed and added to the cycle-count and
the entries in the stall-cycle reservation table are derated accordingly.

Translating the ISDL RTL

Translating the RTL statements is relatively simple. Wherever possible, statements
are translated to native C operators. The results of these operators is masked accord-
ing to the width of the RTL expression to guarantee that the computed values are
bit-true. Code is generated to detect special conditions such as overflows (which set
the OVF flag of ISDL). Non-terminals translate to switch statements that consult the
disassembled form of the instruction to figure out which non-terminal option is in-
stantiated. They then evaluate the statements for the appropriate option and return
the computed value (if any).

Accesses to storage elements in the r-value of RTL expressions translate to an
access to the memory block corresponding to the storage element. A test is inserted
to check the stall-cycle reservation table for possible stalls.

Accesses to storage elements appearing as 1-values in RTL expressions translate to
code that inserts the computed value into the write-back buffer and fills in the buffer
entry with the appropriate mask, storage element, and index information.

3.2.4 Restrictions

While the simulator generator supports a wide variety of architectures and archi-
tectural features, it still does not support all of the architectural design space that
ISDL supports. This section describes the restrictions on what the current simulator
generator can handle as input. The restrictions are divided into two classes:

1. Restrictions that are imposed by the algorithms used.

2. Restrictions that are imposed by the current implementation of these algorithms
and could easily be lifted by additional implementation effort.

The following sections describe these restrictions in detail. In addition, they state
whether each restriction is a hard restriction that cannot be avoided by restructur-
ing the ISDL input, or whether it is a soft restriction that can be circumvented by
using a different description style in ISDL. Hard restrictions limit the portion of the
architecture design space that can be explored by GENSIM while soft restrictions do
not.
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Algorithm Restrictions

1. The current algorithms expect the parameter disassembly axiom (see axiom
3.2.1) to be obeyed. The simple forward-backward pass for decoding parameters

will fail if this axiom is not obeyed and incorrect results will be generated. This
is a hard restriction.

2. The simulator generator does not currently make use of the constraints in the
description when generating the disassembler. These constraints should not be

necessary to make the function decodeable. Consider the following example:

NonTerminal TEST:

X {$$ = Ox000;} ... I
Z {$$ = Ox100;} ... ;

op_1 TEST {MAIN.OP = 0x1000 I X;} ...
op_2 {MAIN.OP = 0x1100;} ...

~(op_1 Z)

In this case, the op-codes for op_1 and op_2 are distinct but only because of the

constraint that prevents the second option of the non-terminal TEST from being

used with op-1. Since the generator never looks at the constraints, it would
declare an op-code conflict and fail. This is a soft restriction; the example
above could be recoded so that op-1 takes the parameter X directly rather than
through the non-terminal.

3. One of the two parameters of the bitfield operator * must be constant. This is
so that an exponential search can be avoided upon meeting such an operator.
This is a soft restriction as long as the operator does not violate the parameter
encoding axiom.

4. The right operand of a bitfield shift operator must be a constant. This is so that
an exponential search can be avoided upon meeting such an operator. This is a
soft restriction as long as the operator does not violate the parameter encoding
axiom.

5. Subfields can only be used in the r-value of a bitfield expression to denote

heavy op-code encoding. The simulator generator automatically attempts to
merge fields if it detects a subfield used as an r-value. This is a hard restriction.

6. If the options of a non-terminal cannot be distinguished from each other (e.g.,
they have no op-codes) then they must be equivalent. This is defined as: each
option of the non-terminal returns in RTL exactly the same expression it returns

in bitfields modulo the keyword CURRENT being replaced by the value of the
Program Counter. This is a soft restriction.

67



Implementation Restrictions

1. Dependent non-terminals (i.e., non-terminals that set the instruction word di-
rectly rather than through their return value) cannot be used as parameters for
other non-terminal options. This is a soft restriction.

2. The input must be arranged in such a fashion so that non-terminals should not
be necessary in order to determine the order in which precedences are evaluated.
Non-terminals are taken into account in evaluating precedences once these have
been ordered. This is a soft restriction.

3. Either all or none of the options of a non-terminal should have return values.
This is a soft restriction.

4. If a non-terminal has return values for its options then the options should be
decodeable simply be looking at these return values. This is a soft restriction.

5. Only two fields can be merged into a single field during heavy op-code encoding
analysis. This is a soft restriction.

6. If either the action or side-effects return value of a non-terminal is indexed in
any part of the description, then all options in the non-terminal should have
a return value corresponding to a storage reference of depth 1. This is a soft
restriction.

7. No RTL expression can be wider than 64 bits. This is a soft restriction.

8. In the current version of the simulator, the LIMIT and PLIMIT flags and the
CHANGED function have not been implemented so they always return FALSE.
This is a soft restriction.

9. The "equ" mode for the RND function has not yet been implemented - it is
currently replaced by "near". This is a soft restriction.

10. The MUL and DIV functions can only operate in "trn" mode (no "sat"). The MUL
function also does not set the OVF flag. This is a soft restriction.

11. The *, +, and - operators in RTL will not set the OVF flag. This is a soft
restriction.

12. The EVAL and HALT functions operate with the debugging features of the simu-
lator disabled. This is a hard restriction.

13. Assignments to local variables in RTL cannot be indexed. Local variables cannot
be used as carry/borrow flags in ADDC and SUBC either. This is a hard restriction.

With the exception of the above restrictions, the simulator generators can handle
any valid ISDL input.
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Figure 3-10: Implementation Based on Module Libraries

3.3 Hardware Model Generation

In order to fully evaluate an architecture we need to obtain an estimate of its physical
costs (e.g., silicon area or power consumption). At the same time, while the XsIM
simulator provides performance measurements in terms of cycles, the length of the
cycle is still necessary to obtain an accurate measure of performance. Both the cycle
length and the physical costs can be determined by synthesizing a hardware model
for the architecture. We consider a description of the architecture in synthesizable
Verilog to be a sufficient hardware model. This description can then be used to map
to any kind of underlying technology using modern CAD tools (silicon compilers).

We compare two competing approaches to this problem, and provide a detailed
description of the one we selected.

3.3.1 Module Library Approach

One approach is to perform the architecture synthesis at a higher level using modules
from a library. Such a library may contain different implementations of adders, mul-
tipliers, floating point units, ALUs, address generators, and other similar functional
units. Each module definition in the library consists of an implementation in the
technology of interest (in our case, synthesizable Verilog)4 , an ISDL template that
describes the operations available from the functional unit, and a description of the
interfaces between this functional unit and the rest of the processor.

Figure 3-10 shows the design flow for such a process. Once the candidate archi-
tecture has been selected, it is described in terms of its constituent library modules,

4 Note, however, that library-based synthesis can make use of hand-optimized layouts which may
result in much more efficient implementations in terms of area and power consumption.
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their interconnection, and possibly glue logic. This description is then fed to an archi-
tecture compiler which examines the modules in the library as well as the architecture
description, and produces a complete implementation in synthesizable Verilog, plus
a complete description in ISDL5 . The synthesizable Verilog can then be used to map
to the desired silicon technology, while the ISDL description can be used to drive all
of the ISDL-based evaluation tools.

The main advantage of the library-based approach is that it can make use of large,
carefully optimized modules. It thus results in very efficient implementations, both
in terms of silicon area and in terms of power consumption. A related advantage is
that it can map to the desired implementation (e.g., custom silicon layout) directly.
This is mainly due to the fact that the module definitions can contain any type of
implementation definition, and they are large enough that they (as opposed to the
interconnect) make up most of the implementation. Finally, since the modules are
not derived from their ISDL descriptions, the approach is not subject to the resource
sharing inefficiencies described in Section 3.3.2.

The following are a list of the major disadvantages of the library-based approach:

* It requires two descriptions: one for the high-level architecture description that
is provided as input to the architecture compiler, and the ISDL description that
drives all the evaluation tools. These two descriptions must be kept consistent,
and only the architecture description can be changed since the ISDL is generated
from the architecture description.

* The granularity with which the design space can be explored is very coarse. This
is because the only freedom allowed to the designer is which modules are used,
how many, and how to connect them. If you want to examine the benefits of
adding a complex instruction to one of the functional units, you have to provide
a complete library definition for that unit with the new instruction added. This
makes it both harder to find a good architecture, as well as less likely that such
an architecture will be obtained.

* Because of the above, local changes to the instruction set are no longer possible.
Therefore, it is no longer possible to design instruction sets - the designer is
forced to design implementations. For applications were code size is just as
important as the size of the processor (such as the target set of applications)6 ,
it is preferable to be able to design instruction sets.

* If the designer is forced to design architectures rather than instruction sets, it is
harder to evaluate the effects of changes in the architecture since there is a layer
of abstraction between the implementation and both the code and the simulator
statistics. It is therefore harder to create improvements to the architecture.

'This description is created from the templates in the libraries, as well as information about the
interconnect.

6 Remember that both the program ROM and the actual processor are implemented on a single
chip. Code size will consume silicon area and power, just as the processor will.
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Figure 3-11: Hardware Synthesis from ISDL

3.3.2 Hardware Synthesis from ISDL

Figure 3-11 shows our methodology for hardware synthesis. In this methodology,
the architecture synthesis system produces instruction sets instead of implementa-
tions. The output of the architecture synthesis system is an ISDL description, possi-
bly with some implementation-specific details (such as timing information) missing.
This ISDL description is used to drive the ISDL-based evaluation tools, as well as
an ISDL-to-hardware compiler (called HGEN). The output of the HGEN compiler is a
synthesizable Verilog model which can then be used to create a hardware implementa-
tion in any kind of underlying technology. If any implementation-specific information
was missing from the original ISDL description, the HGEN compiler will provide it at
this time.

The main disadvantage of this approach is that results in less efficient implementa-
tions (both in terms of silicon area and power). The primary cause of the inefficiency
is the resource sharing problem which is described in Section 3.3.2. Additionally, the
ISDL-based approach has to rely on silicon compilers, and therefore it inherits their
inefficiencies as well.

The method does, however, have a significant number of advantages:

e There is only a single description to work with. All interfaces are uniform, and
no consistency problems exist.

e The granularity with which the design space can be explored is very fine. It is
as small as the constituent expressions that are allowed in RTL. This makes it
much more likely that a good architecture will be obtained and makes it easier
to obtain such an architecture.

* Local changes to the instruction set are possible. In fact, any change in ISDL is
reflected in the implementation.

* The design is closer to both the program and the simulator statistics, thus
making it easier to detect improvements to the architecture.
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* The method abstracts the instruction set design from the actual implementa-
tion. This effectively decouples the program ROM from the processor. The
instruction set determines the size of the program ROM while the actual im-
plementation of the instruction set (the architecture) determines the size of the
processor. This allows an additional degree of freedom (that of instruction set
implementation) which makes it even more likely to find good solutions to the
design problem.

We feel that direct synthesis from ISDL has compelling advantages, including the
fact that it will benefit more from improvements in other CAD tools. Also, the
resource sharing problem can be solved using a combinatorial optimization strategy.

The Resource Sharing Problem

The scope of an ISDL operation definition is independent of the scope of any other
operation definition. This makes it non-trivial to deduce when hardware resources
may be shared by multiple operations.

For example, consider a move operation that is implemented using a bus, and load
and store operations that are mutually exclusive with the move. The move operation
resides in a different field than the load and store operations. A naive scheme would
generate additional data-paths to handle the load and store operations even though
it is possible to implement these with the same bus that implements the move.

Determining and Synthesizing Shared Resources

We have formulated a way of solving the resource sharing problem to allow ISDL-based
hardware synthesis to be used efficiently. First we break up the RTL expressions for
all operation definitions into a number of nodes, each of which can be mapped to a
circuit. This collective set of nodes (let us say n nodes in total) is numbered with
unique numbers from 1 to n. Then we create an n x n matrix A, with entries that are
1 or 0. Ai is 1 if the nodes can be shared (i.e., they would never operate at the same
time), and 0 if they cannot (because they have to operate in parallel). To determine
the entries in the matrix we can use the following set of criteria:

1. Nodes that are part of the same RTL statement will have to operate in parallel
so they cannot be shared.

2. Nodes that perform completely different tasks (for example a shift and a binary
AND operation) cannot be shared. Pairs where one node is a subset of another

(e.g., an add is a subset of a subtract) can be shared assuming that the rest of
the rules do not prevent it.

3. Nodes belonging to operations in the same field (or to options in the same
non-terminal) will never be active at the same time so they can be shared.

4. Nodes that belong to operations in different fields will probably have to operate
in parallel (since the operations will probably have to operate in parallel) so
they cannot be shared.
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Label each operation in RTL with an integer

for each i from 0 to n
for each j from 0 to n

Aij = 0
if i and j not in same operation

if i and j functionally equivalent
if i and j in operations in same field
or constraint between i and j

Aie
end

end

Generate maximal cliques for A
Generate hardware for maximal cliques

Figure 3-12: Resource Sharing Algorithm

In addition to the above, constraints may be able to determine even more nodes
that cannot operate in parallel (from Rule 4 above), so more sharing may be available
if we take constraints into account. Finally, it may be possible that some nodes can be
shared, but we might not want to implement them as such because of other constraints
(for example routing and layout concerns, or access to register-file ports).

Once we have the entries in the matrix, we can simply create maximal cliques7 of
the nodes that can be shared. These maximal cliques can be synthesized into circuits
and the routing and glue logic can be generated to complete the implementation.
Figure 3-12 shows this algorithm in pseudo-code.

Obtaining Structural Information from ISDL

While ISDL is a behavioral language and it contains no explicit structural information,
a substantial amount of information about the structure of the underlying architecture
can be extracted from various parts of the description.

In particular, the costs and timing information exposes the underlying data-path
pipelines to the instruction set. For example, an operation with a Cycle cost of 1,
a Stall cost of 3, and a Latency of 1 implies a 4-stage data-path pipeline for the
functional unit. Additionally, it implies no bypass logic for this particular operation.
Similarly, an operation with a Cycle cost of 1, a Stall cost of 0, and a Latency of 1

'A clique is a set of nodes such that for any pair of nodes i and j in the clique, Aij = 1. A
maximal clique is a clique such that if any node is added to the clique, the resulting set of nodes is
no longer a clique.
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Figure 3-13: Use of Signatures and Op-Codes for Decode Logic

implies a similar pipeline with full bypass logic. Finally, an operation with a Cycle
cost of 1, a Stall cost of 0, and a Latency of 4 implies a 4-stage pipeline with no
protection (stalls or bypass logic) at all.

Similarly, the constraints express hardware restrictions and can therefore be used
to deduce the structure of the underlying hardware. Consider the example given
earlier of a move operation that can move data between various storage elements, and
a constraint that shows that this operation cannot occur in parallel with load and
store operations. It is then possible to connect the memory to the same bus as the
move operation and avoid creating a new set of data paths for the load and store
operations.

3.3.3 Generating Decode Logic

We can generate a complete implementation of the decode logic using the same
approach we use to generate the disassembler for the GENSIM system:

For each operation in a field we define a decode line which will be active if the
operation is instantiated in the current instruction. We can then derive an equation
for each decode line by simply examining the constants in the operation signature.
For example, the equation for the operation op2 in Figure 3-13 is f19.1.116.115. This
results in a a very efficient two-level implementation. Similarly, logic can be generated
from the backward pass that reverses parameter encodings (see Section 3.2.2. Finally
a set of multiplexers and glue logic completes the decode circuit.

3.4 Previous Work on Simulator and Hardware
Model Generation

This section presents work by other researchers related to automatic generation of
simulators and hardware models.

3.4.1 LISA

The LISA[38] language was developed as a machine description language specifically
designed to support the generation of simulators for generic architectures. It results
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in very fast compiled-code simulators, that are cycle-accurate and bit-true. LISA
contains a lot of structural information and can model most of the complicated timing
effects that are likely to be encountered in embedded applications.

LISA is very effective at generating good simulators. Given the structural content
in a LISA description, hardware generation should also be possible although we are
unaware of any publications describing such a system. However, LISA is not well
suited for generating code-generators and assemblers. If it was used in a system such
as ours, a separate language would have to be used for code generation, thus resulting
in consistency issues as well as making it harder to generate, describe, and evaluate
architectures.

3.4.2 RADL

RADL[34], with its very detailed timing model is particularly well-suited to the gen-
eration of simulators and hardware models: it results in very fast ILS simulators and
efficient hardware models. However, it suffers from a coupling of the ISA and im-
plementation that can obstruct ISA development. Additionally, it is not well-suited
for code generation. Therefore, a system employing RADL may have to employ an
additional machine description language in order to support all design evaluation
tools.

3.4.3 PLAYDOH

PLAYDOH[23] is a parameterized architecture model used with the TRIMARAN com-
piler system and the IMPACT project from the University of Illinois. Retargetable
simulators exist for the PLAYDOH architecture which take descriptions in HMDES[13].
Also, hardware models can be generated from a parameterized VHDL model. How-
ever, note that this is equivalent to the library synthesis process of Section 3.3.1.
Granularity in PLAYDOH/HMDES systems is coarse, thus reducing the probability
that a good architecture will be found and making it harder to locate such an archi-
tecture.

3.4.4 CHESS/nML

The nML machine description language[1O] is a high-level machine description lan-
guage that can be used to support automatically generated tools. It was used in
the CHESS[24] system for retargetable code-generation as well as a variety of other
tools[9]. nML is very similar to ISDL in that it is a behavioral language based on
attributed grammars. The main difference between nML and ISDL is in the way con-
straints are handled. nML can only describe valid instructions. Therefore, it must
work around invalid combinations by using additional rules, to describe interactions
between operations. Thus, nML descriptions are longer and less intuitive than ISDL
descriptions. It is also unclear how well suited nML would be for hardware gener-
ation, since the constraints provide a lot of structural information used to generate
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efficient hardware. Finally, it cannot describe some architectures that have complex
assembly functions.

3.4.5 MIMOLA

The MIMOLA[27] design system was created as a high-level design environment for
hardware, based on the MIMOLA hardware description language[37]. Later on, the
system evolved to a hardware-software co-design environment. The MIMOLA system
includes a simulation environment. However, the system was designed for devel-
opment and evaluation of implementations at a much lower level than ISDL. The
MIMOLA language is a structural description at a relatively low level, and thus re-
sults in unnecessarily long and complex descriptions. At the same time, the lower
level of detail results in slower simulators (similar to simulation models written in
Verilog). On the other hand, the low-level detail makes it much easier to synthesize
hardware from the descriptions.

3.4.6 FLEXWARE

FLEXWARE[30] is a software-firmware system for the development of custom ASIPs
and commercial processors. It was developed specifically to support the development
of DSP processors and embedded system software. It consists of the code-generator
CODESYN and the simulator INSULIN. The FLEXWARE system can be used to rapidly
evaluate architectures.

FLEXWARE suffers from the fact that it uses two different machine descriptions
for the code-generator and the simulator. This raises consistency issues and makes
the work of generating tools for a given architecture harder. It is unclear whether
the system is well suited to hardware generation; there are no publications describing
attempts to implement such a system.

3.4.7 UPFAST/ADL

UPFAST[35] (University of Pitsburg Flexible Architecture Simulator Tool) is a sim-
ulator generator tool for generating micro-architecture simulators. The generated
simulators are cycle-accurate to the micro-architecture level and run at about 100-
200K/cycles per second. The machine description for the UPFAST system must be
provided in ADL (Architecture Description Language). ADL is mainly geared towards
RISC and CISC style processors and does not seem to have support for instruction-
level parallelism. It also has a substantial structural component which tends to make
the descriptions unnecessarily long and complicated (RISC architectures take on the
order of 5000 lines of ADL). We are not aware of any systems capable of generating
a hardware model from ADL although given the amount of structural information
in ADL, it should be relatively easy. Despite the low-level structural information
present in ADL, the language does make an effort to distinguish the ISA from the
implementation and thus can be used for designing ISAs.
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3.4.8 TRS-based Systems

TRAC[22] (Term Rewriting Architecture Compiler) is an architecture synthesis tool
based on Term Rewriting Systems (TRS). TRS's are especially well suited to describ-
ing high-level behavior. TRAC takes a machine description in a TRS-based language
and generates an implementation for it. This implementation could form the hard-
ware model. Additionally, the original TRS description can serve as the simulation
environment using appropriate TRS software. TRS's are very flexible and can de-
scribe a wide variety of architectures and architectural features. Unfortunately, they
are not well-suited to the task of expressing implementation details. Constraints can-
not be described naturally in a TRS-based system and assembly functions are missing
from TRAC (they are automatically generated but inefficient).

Marinescu and Rinard[26] also describe a system which will generate an implemen-
tation given a description in a TRS-based language. Once again, the implementation
can serve as the hardware model while the TRS description itself can serve as the
simulator. Like the TRAC system, their TRS-based compiler does not provide any
support for assembly functions - it automatically generates these in a sub-optimal
way. However, it has the ability to support a wide range of architectures and archi-
tectural features and can automatically generate pipelined hardware for the candidate
architecture.
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Chapter 4

Results
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Figure 4-1: The SPAM VLIW-1 Architecture

This section presents some experimental results that were obtained using our sys-
tem and analyzes these results to demonstrate the feasibility of the proposed process
and the effectiveness of ISDL and the implemented tools.

4.1 Experimental Results on ISDL Descriptions

A number of architectures were described in ISDL in order to prove the power and
flexibility of the language as well as to serve as experiment platforms for the results
presented in Sections 4.2 and 4.3. The descriptions of four of these architectures are
provided in Appendix C. These four architectures are:

1. SPAM VLIW-1: The VLIW-1 architecture is a 5-way VLIW architecture
with three data processing units and two transfer buses. In addition, the ar-
chitecture provides a separate instruction and data memory, either of which
may be used to store data. Each data processing unit is very simple and can
do a limited number of operations. Each data processing unit also contains
an internal register file of 4 registers. The two transfer buses can be used in
parallel to execute two register-file-to-register-file transfers in parallel, or can
be used together to perform either a data memory transfer or an instruction

78

I



Data Data
Mem. Mem.

DATA BUS

Reg Reg Reg Reg
File File File File

Addr Addr
Gen. '_j Gen.

ALU MAC

110
EIU

Control

Stack

Instr
Mem.

Figure 4-2: The SPAM VLIW-2 Architecture

memory transfer. In the case of memory transfers, one bus provides the address
to the corresponding memory and the other performs the actual transfer. All
data-paths are 16 bits wide and the instruction word is 44 bits wide. A block
diagram of this architecture is shown in Figure 4-1.

2. SPAM VLIW-2: The VLIW-2 architecture is a 7-way VLIW architecture.
It consists of a floating-point data processing unit, an integer data processing
unit, a data memory for each unit, an address generator of each data memory, a
transfer bus, an external interface unit, and a control unit. The control unit has
a separate instruction memory and a hardware stack. The floating point unit
contains its own own register file of 16 registers and an internal accumulator
register. It is capable of all common floating point operations. The integer data
processing unit can perform any arithmetic or logical operations and contains its
own register file with 32 registers. Each address generator contains a dedicated
register file with 8 registers and can perform simple indexing and incrementing
operations. The two data memories can transfer data either over the bus or
directly to their respective processing unit. If the data bus is not being used
by a data memory, it can be used to transfer data between the registers files of
the various or units. All data paths are 32 bits wide and the instruction word
is 99 bits wide. A block diagram of this architecture is shown in Figure 4-2.

3. SPAM RISC: The RISC architecture is a small architecture implemented in
the same spirit as most existing RISC processors (e.g., the Sun Microsystems
SPARC processor). It contains a single data processing unit and a register file
containing 32 registers. Register 31 is used to store the PC on calls and register
30 is by convention the stack pointer. The architecture supports all common
data processing operations. All data-paths are 24-bits wide and the instruction
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Architecture SPAM VLIW-1 SPAM VLIW-2 SPAM RISC 56000
Class VLIW VLIW RISC DSP
Lines of ISDL 322 972 329 2286
Man-Hours to

Generate 14 50 8 36
Fields 8 8 1 2
Operations 28 81 42 152
Non-Terminals 13 25 5 58
Constraints 6 16 0 43
Reg. Aliases No No No Yes
Heavy Op-code

Encoding No Yes No No
Op-code Prec. Yes Yes No Yes

Table 4.1: Summary of ISDL Descriptions of Base Architectures

word is 24-bits wide also. A block diagram of this architecture is shown in
Figure 4-3.

4. 56000: This is a description of the Motorola 56000 series DSP. It contains two
56-bit accumulators and two data registers each of which may be used as two
24-bit registers or one 48-bit register. It supports two data memories, each
of which is 24-bits wide and which can be combined to a single 48-bit wide
memory. It also contains three register files each of which contains 8 registers;
these are used to support a rich set of addressing modes. The architecture
supports common DSP data processing operations and up to two transfers in
parallel with a data operation. The data paths vary in width according to the
operation being executed and can be 24, 48, or 56 bits wide. The instruction is
24 bits wide. A block diagram of this architecture is shown in Figure 4-4.
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Table 4.1 summarizes the main features of the descriptions. These four archi-
tectures represent a broad spectrum ranging from simple RISC style machines to
commercial DSP processors, to highly-aggressive VLIW designs. Each architecture
listed above was also used to generate several modified designs that were used to
obtain the experimental results presented in Sections 4.2 and 4.3. A number of
the modified versions of the above architectures (except the 56000 which is already
pipelined) were pipelined and provided with a range of timing-related features rang-
ing from unprotected pipelines, to bypass logic, to stalls and delay slot instructions.
This shows that ISDL is capable of describing a wide variety of architectures, both in
terms of the classes of architectures it will allow and in terms of the features within
each architecture.

Note that most architectures resulted in particularly concise descriptions ranging
between 300 to 900 lines. The exception is the Motorola 56000 description. This
architecture has a very heavily optimized instruction set with a very large number of
operations; in fact the encoding of the instruction set appears to have been Huffman-
encoded to allow as many operations as possible to be included in the 24-bit word.
Additionally, many operations have multiple formats which are expressed as different
operation definitions in the ISDL description. The result is a very large number of
operations resulting in a large description. Furthermore, the 56000 description makes
very heavy use of side-effects statements to set the condition code bits, with multiple
such statements occurring in each operation definition. Note, however, that despite
the large size of the description, it was developed in about 36 man-hours. This
illustrates how easy ISDL descriptions are to develop.
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Furthermore, several modified versions of each architecture (except the 56000)
were created. Modifications ranged from the addition of a few operations, to the
addition of up to 8 times the existing number of operations. Some modifications also
involved a complete change in timing model for the associated architecture. Once
again, modifications were simple to implement and local to each operation affected.
In the cases where new operations created resource conflicts with existing operations,
constraints were simply added to the architecture description. Most modifications
were completed in less than 1 man-hour. This illustrates that ISDL maintains the
orthogonality property of instruction sets (modulo the addition of constraints) and
that modifications are easy to implement.

Finally, the descriptions were used to generate functional tools, verifying that ISDL
contains sufficient information to generate the required tools.

4.2 Experimental Results on Simulator Generator

This section presents experimental results related to the GENSIM system. The fol-
lowing are the parameters of interest:

* Cycle-accuracy: The ability to maintain correct cycle-counts (including stall
cycles) and to ensure that results are written back when expected in the case of
unprotected pipelines, as described in the costs and timings expressions of the
input description.

* Range of Architectures: The ability to handle a wide variety of architectures
and, in particular, all the architecture classes that form the target of the ARIES
system.

* Support for Architecture Features: The ability to generate correct behav-
ior for common architectural features such as zero overhead loops, setting of
condition codes, heavy op-code encoding, field precedence, etc.

* Generation Speed: The amount of time it takes to process an ISDL description
and to generate a fully functional simulator from it.

* Simulation Speed: The speed at which the generated simulator runs on sam-
ple programs.

Cycle-accuracy is guaranteed by construction. However, to verify that the behav-
ior of the generated simulators is correct, a number of architectures and modifications
were run on sample programs and the behavior and cycle counts were compared to
those expected. The generated simulators do indeed maintain cycle-accuracy to the
instruction level (i.e., will maintain any timing semantics that are visible to the in-
struction set).

The simulator was used to describe a wide range of architectures with a number
of common architectural features. The simulator generator successfully generated
simulators for all of these, proving that the algorithms are flexible enough to handle
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Base VLIW-1 VLIW-2 SPAM RISC 56000
Version a b c a b c a b c d e a
Class VLIW VLIW RISC DSP
ILP x x x x x x x
Zero-Overhead Loops x x x x x x x
Load/Store x x x x x x x
Direct-memory modes x x x x x
Complex Instructions x x x x x
Condition Codes x
Hardware Stack x x x x
Harvard Architecture x x x x x x x x x x
Address Generators x x x x
Floating Point x x x
Stalls x x
Delay Slots x
Heavy op-code Encoding x x x
Field Precedences x x x x x x x
Register Aliasing x
Predicated Execution x

Table 4.2: Architectures Used for Simulator Generation
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Base Version Heavy Op-code Precedences Word Generation
Encoding (bits) Time (sec)

a x 44 <1
SPAM VLIW-1 b x 44 < 1

c x 44 <1
a x x 99 2.2

SPAM VLIW-2 b x x 99 2.3
c x x 99 2.6
a 24 <1
b 24 <1

SPAM RISC c 24 < 1
d 24 <1
e 24 <1

56000 a x 24 181.27

Table 4.3: Simulator Generation Speed Results

both a wide range of architectures as well as a wide variety of commonly implemented
features. Table 4.2 shows a summary of the architectures for which simulators were
generated and lists the architectural features for each one.

Generation speed was also measured for all of the above architectures. Table
4.3 summarizes the results obtained from the various architectures we examined.
All run-times were measured on a Sun Microsystems Ultra-10 workstation with a
333 MHz processor, running Solaris 2.6. Most of the time spent on generating the
simulator is actually spent determining op-code uniqueness. Note that despite the
worst-case exponential run-time, our heuristics ensure that an exponential search is
almost never used and therefore the run-times are very reasonable. Both the SPAM
VLIW-1 architectures and the SPAM VLIW-2 architectures resort to a non-terminal
expansion phase and the resultant search, but the heuristics make sure that the
exponent is low (n 2 ) and each of the fields involved has only a few operations in it.
The one exception is the case of the 56000 description. A number of factors conspire
to make the exponential search unavoidable:

" The op-codes for operations within the same field are not in a constant place
and therefore non-terminal expansion is necessary to resolve almost every single
case.

" Since there are only two instruction fields in the description and one of them
sometimes uses all the bits in the instruction word, the op-code subtraction
heuristics do not perform well.

" Each field has a very large number of operations which means that the base in
the exponential equation is really large.
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Base Version Fetch Cycles Operations

I (103/sec) (10'/ec
a 503 4.0

SPAM VLIW-1 b 563 4.5
c 328 2.6
a 292 2.3

SPAM VLIW-2 b 297 2.4
c 452 3.6
a 1193 1.2
b 1241 1.2

SPAM RISC c 1204 1.2
d 1061 1.1
e 1169 1.2

56000 NA 46.19t 0.092t

Table 4.4: Simulation Speed Results

Despite the above factors, the GENSIM system can generate a simulator in a
reasonable time even for the 56000 architecture1 .

We also measured the simulation speed for all of the simulators generated by
GENSIM. The results are shown in Table 4.4. All run-times were measured on a
Sun Microsystems Ultra-10 workstation with a 333 MHz processor, running Solaris
2.6. Note that simulation speeds for these example architectures range from 1.1 M to
4.5 M operations per second. These simulation speeds are high enough that realistic
data samples can be run with the full application, thus increasing the accuracy of the
evaluation process. Also note the anomalies in the above figures. While in terms of
the fetch rate the five versions of the SPAM RISC were the top performers, in terms
of the actual operations per second, these were the worst performers. This gives
an indication of the overhead of the scheduler and the write-back mechanism. This
overhead is shared over 8 fields in the two VLIW architectures while it is incurred by
every operation of the RISC architecture. Also note the abnormally high performance
of Version c of the SPAM VLIW-2 architecture. We believe this to be due to a better
fit in the super-scalar issue mechanism of the workstation processor because of the
reduced number of jumps at the end of the loop. We believe that the abnormally low
speed of Version c of the SPAM VLIW-1 architecture is due to the extra computation
that needs to happen for the load-and-increment and store-and-increment instruc-
tions. Finally, the abnormally low speed of the simulator for the 56000 architecture is
an artifact of the compiler used to compile the generated simulators. The simulator
for the 56000 was so large that the compiler could not perform optimizations on it 2 .

1Note that in all the cases listed in Table 4.3, generating the simulator source code took less time
than compiling the simulator source code with full optimization flags.2If we enabled compiler optimizations then the compiler would crash due to an internal error.
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The code was compiled without optimizations which lead to substantially reduced
speed3 .

4.3 Experimental Results on Architecture Explo-
ration

In order to investigate the ease and effectiveness of using ISDL to explore the architec-
ture design space, we coded some applications for three of the four base architectures
and evaluated them using our simulator. Using the results from the simulation runs,
we modified each architecture repeatedly and evaluated it again. Because of the lack
of a full-featured compiler, we had to resort to hand-coded assembly for the applica-
tions. This means that the applications are small but the process is representative of
what could be obtained had a compiler been available. Additionally, because of the
lack of a full-featured hardware model generator, we had to rely on human intuition
to investigate the effects of ISDL modifications on the physical costs of each design.

The three base architectures that were used for the architecture exploration ex-
periments were the SPAM VLIW-1, the SPAM VLIW-2 and the SPAM RISC archi-
tecture. We did not explore possible improvements to the Motorola 56000 for the
following reasons:

* The 56000 makes full use of all the op-codes which means some operations must
be removed if others are to be added.

9 The 56000 has a Huffman-encoded instruction set which makes it really hard to
add new operations. The operation to be removed must have exactly the same
binary footprint as the one inserted which means the choice in which operations
get removed is restricted.

e The 56000 Instruction Set is already heavily optimized which means opportu-
nities for optimization would be hard to locate without access to a full-featured
compiler and a full-featured hardware model generator.

The metrics of interest in all of the experiments was code size and performance.

4.3.1 Experiments Regarding Data Processing

The first set of experiments was concerned with ways of making data processing more
efficient. The SPAM VLIW-1 and SPAM VLIW-2 architectures were used as base
architectures for this sequence of experiments.

The sequence was initiated by coding an 8-tap FIR and an 8-tap IIR filter on the
SPAM VLIW-1 Version a architecture. The description for this architecture is shown
in Appendix C.1. The assembly program for the FIR filter is shown in Appendix

3The generated code is very inefficient but easy for the compiler to optimize - we count on
compiler optimizations to yield the true performance our simulators are capable of.
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* A simple FIR filter

*/

Memory Map

Writeback loc
Outer Loop Cnt
coefficients

Samples

Output

IM[1]

IM [21

IM[31-IM[10]
DM[01-DM[10231
DM[20481-DM[30721

* this is where the coefficients should be - these will be loaded

* later from a file - unfortunately our assembler does not support

* dot-notation yet. Let's just create some blank holders

BLANK
BLANK

BLANK

BLANK
BLANK
BLANK
BLANK

BLANK
BLANK
BLANK

{ U1_nop;
U2_mul U2.RO, U2.R1, U2.R2;
U3_nop;
DB1_nop;

DB2_nop;

DMNULL;

IMNULL;

CNULL; }
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Split.Int U1.0P + U1.RA + U1.RB + U1.RC +
U3.OP + U3.RA + U3.RB + U3.RC;

U2_mulc U2_RA, INT, U2_RC

{ U2.OP = Ox1; U2.RA = U2_RA;
Split.Int = INT; U2.RC = U2_RC; }

{ U2.RC <- MULm(U2_RA, INT); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

Figure 4-6: Modifications to Derive SPAM VLIW-1 Version b

D.1.1 4 . A portion of that application is shown in Figure 4.3.1. The first thing to note
in the code shown in Figure 4.3.1 is that the coefficients are stored in locations 3-10
in the Instruction Memory and are loaded from this memory when needed. If the
operation that uses the coefficients could load them as immediate constants instead,
the following advantages would obtained:

1. The load operation for the coefficient can be removed completely. This would
result in smaller code and faster performance.

2. The coefficients are 16-bit constants but they are stored in 44-bit instruction

words thus wasting a substantial amount of space.

3. The updates to the coefficient location can be removed thus improving both
code size and performance.

The architecture was modified to include a multiply operation that can take an
immediate constant as a parameter. These modifications are shown in Figure 4-6.
The application was then re-written to make use of this new operation. In order
to do this, the inner loop had to be unrolled thus increasing code size. However,
this increase is offset by the reduction in code size stemming from the fact that

the coefficients are no longer placed in individual memory locations. Additionally, a
substantial performance increase was obtained. Once these modifications were made,
the result was simulated and exact cycle-count figures were obtained. These indeed
showed a substantial performance increase.

However, there was still room for improvement. Figure 4-7 shows a portion of the
inner loop for the modified FIR program. This portion of the program shows one stage
of the unrolled loop. The second instruction performs the accumulation step inherent

4The implementation of the IIR filter is very similar.
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{ UlNULL;
U2_mulc U2.RO, H1, U2.R1;
U3_NULL;

DB1_NULL;

DB2_NULL;

DM-1d U2.RO, U1.RO;

IM-NULL;

CNULL; }

{ Uiaddc U1.RO, 1;
U2_add U2.R1, U2.R2, U2.R2;

U3_nop;

DBlnop;

DB2_nop;

DMNULL;

IMNULL;

CNULL; }

Figure 4-7: Part of the 8-TAP FIR for the SPAM VLIW-1 Version b

in any FIR implementation and also increments the location from which the current
sample is obtained. This instruction can be completely eliminated, resulting in an
increase in performance and reduction in code size, if the instruction set contained
instructions to:

* perform a multiply-accumulate as a single step,

* auto-increment the sample address when it is loaded.

Both of these are features commonly found in DSP architectures. The SPAM
VLIW-1 Version b was modified to include these instructions (see Figure 4-8) resulting
in the SPAM VLIW-1 Version c. The FIR application was re-written for the new
architecture and simulated, verifying the expected increase in performance and the
reduction in code size. Table 4.5 shows a summary of the results obtained using this
process for both applications, running on 1024 samples each.

A similar process was followed for the SPAM VLIW-2. The applications were
once again an 8-tap FIR filter and an 8-tap IIR filter, both using the floating point
unit of the architecture. The description for the base architecture (Version a) is
shown in Appendix C.2, and the assembly program for the FIR filter is shown in
Appendix D.2.1. A portion of that application is shown in Figure 4-9. Figure 4-9
shows part of the code that loads the coefficients into registers of the floating point
unit. These registers can then be used when multiplying the coefficients with the
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U2_mac U2_RA, INT, U2_RB, U2_RC
{ U2.OP = Ox1; U2.RA = U2_RA; U2.RB = U2_RB;

Split.Int = INT; U2.RC = U2_RC; }
{ U2_RC <- ADDm(MULm(U2_RA, INT), U2_RB); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

DM-ldi REG, LOC

{ DB1.SRC = DMdata; DB1.DEST = REG;
DB2.SRC = LOC; DB2.DEST = DMaddr; }

{ REG <- DM[LOC]; LOC <- ADDm(LOC, 1);

{}
{ Cycle = 1; Size = 1; Stall = 1; }
{ Latency = 1; Usage = 1; }

DM-sti REG, LOC

{ DB1.SRC = REG; DB1.DEST = DMdata;
DB2.SRC = LOC; DB2.DEST = DMaddr; }

{ DM[LOCI <- REG; LOC <- ADDm(LOC, 1);

{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

}

}

Figure 4-8: Modifications to Derive SPAM VLIW-1 Version c

Version Conversion Application Fetch Clock Code
Type Cycles Cycles Size

a NA FIR 44840 65338 19
IIR 39981 58433 24

b Immediate FIR 18456 18459 23
Mode IIR 18456 18459 23

b Complex Instr. FIR 11282 17435 17
Auto-increment IIR 10257 17435 16

Table 4.5: Results of Architecture Exploration on SPAM VLIW-1
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/* start by loading the coefficients in the registers */
main: {ControlNOP;

ALUIDLE;

MACIDLE;

DBmove HO, MAC.RO;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{Control_NOP;

ALUIDLE;

MACIDLE;

DBmove H1, MAC.R1;

AG1_NULL;
AG2_NULL;

DM1_idle;

DM2_idle; }

Figure 4-9: Part of the 8-Tap FIR for the SPAM VLIW-2 Version a
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Split.DATAs ALU.OP+ALU.RW+ALU.RA+ALU.RB+ALU.RMEM

+MAC.RB+MAC.RW;

MAC-macc MACRA, INT { MAC.OP = OxO
MAC.RA = MACRA
Split.DATAs = INT ; }

{ ACC <- FADDm(ACC, FMULm(INT, MACRA)) ;}

{}
{ Cycle=l; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

MAC-maccw MAC-RA, INT, MACRW { MAC.OP = Ox1
MAC.RA = MACRA
Split.DATAs = INT
MAC.RMEM = MACRW ; }

{ ACC <- FADDm(ACC, FMULm(INT, MACRA)) ;
MACRW <- FADDm(ACC, FMULm(INT, MACRA)) ; }

{}
{ Cycle=l; Size=1; Stall=O; }
{ Latency=l; Usage=l; }

Figure 4-10: Modifications to Derive SPAM VLIW-2 Version b

actual samples. However, the instruction word to do so is 99 bits long but only
effectively loads a 32-bit value into a register (because of the lack of parallelism at
this stage of the program). If instead, the coefficients could be supplied as immediate
constants, then these instructions could be avoided. In addition, the 32-bit immediate
data in this architecture is stored in the bitfields normally associated with the two
address generators. Since these would be needed when loading the offsets into the
address generators themselves and during the multiplication step which updates the
sample offset and performs the memory access, it would be better to store 32-bit
immediate data somewhere else in the 99-bit instruction. We can observe from the
application that when an immediate constant is needed, the ALU field and and the
MAC.RB and MAC.RW fields are not used so they could be used to store the constant
instead. The architecture was thus modified in two ways:

1. The MACinul and MAC-mac operations were modified so that they take one of
their parameters as an immediate 32-bit constant,

2. Immediate 32-bit constants are now held in the ALU, MAC. RB and MAC. RW sub-
fields.

These modifications are shown in Figure 4-10. The application was then re-written
to make use of the modifications. The resulting program was simulated to verify
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/* break out of the loop if you are done */
{Controlbrcz AG2.R3, stop;

ALUIDLE;

MAC-clr;

DBIDLE;

AG1_idle;

AG2.NULL;

DM1_idle;

DM2_idle; }
/* loop back otherwise */

{Control_jump;

ALUIDLE;

MAC-IDLE;

DB-NULL;

AG1_idle;

AG2_inc AG2.R1, AG2.Rt;
DM1idle;

DM2_dir-save-m MAC.R8, AG2.R1; }

stop: HALTINST

Figure 4-11: Part of the 8-TAP FIR for the SPAM VLIW-2 Version b

correctness and to show that there is no degradation in performance.
Further optimizations were sought out in Version b of the architecture. Figure

4-11 shows the end-of-loop code for the modified FIR program. Because this archi-
tecture only provides a branch-on-zero instruction, the end-of-loop has to be written
using two instructions. We decided to provide a branch-on-not-zero instruction that
redirects control flow back to the beginning of the loop thus saving one instruction for
every loop, resulting in denser code and better performance. Figure 4-12 shows this
modification which resulted in the SPAM VLIW-2 Version c. The FIR application
was re-written for the new architecture and simulated, verifying the expected increase
in performance and the reduction in code size. Table 4.6 shows a summary of the
results obtained using this process for both applications, running on 1024 samples
each.

4.3.2 Experiments Regarding Control Flow

While the results of the previous section showed that substantial benefits can
be obtained by using an architecture exploration methodology for data-dominated
applications, we wanted to investigate if similar results can be obtained for control-
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Control-brnz RI { Control.OP = OxB

Control.RI = RI ; }
{ if (RI != 0)

{ PC <- JR ; }; }
{}
{ Cycle=1; Size=1; Stall=0; }
{ Latency=1; Usage=1; }

Figure 4-12: Modifications to Derive SPAM VLIW-2 Version c

Version Conversion Application Fetch Clock Code
Type Cycles Cycles Size

a NA FIR 11280 11280 25
IIR 11282 11282 27

b Immediate FIR 11269 11269 15
Mode IIR 11270 11270 16

b brnz FIR 10236 10236 14
IIR 10237 10237 15

Table 4.6: Results of Architecture Exploration on SPAM VLIW-2

int acc(a, c) {
if (c == 1)
return a[0];

return (acc(a, c/2) +
acc(a + c/2, c - c/2));

}

Figure 4-13: The Array-Accumulate Divide-and-Conquer Algorithm
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flow issues. We decided to investigate one issue in particular; that of supporting
calling conventions in hardware. To investigate this we selected a sample divide-and-
conquer algorithm (using divide-and-conquer to obtain the sum of all elements in an
array), as shown in Figure 4-13.

Because of its recursive nature, this algorithm is a good test for good calling
conventions. We used the SPAM RISC Version a architecture as the base architecture
for this example. The description for this architecture is shown in Appendix C.3. The
complete assembly program for the array accumulate function is shown in Appendix
D.3.1. A portion of that code is shown in Figure 4-14.

Note that this code is already optimized in a number of respects. In particular, it
only increments the stack pointer at the end of building a frame, it omits the frame
pointer, and performs all accesses to the stack as an offset from the un-updated value
of the stack pointer. It also only saves registers on the stack when it is absolutely
necessary. Figure 4-15 shows the structure of the stack frame to make the program
easier to read. This program was simulated on Version a of the RISC architecture to
verify correctness and to obtain a reference point for performance.

The first thing to note about the program of Figure 4-14 is that it has to constantly
load values from the stack, process them and store them back to the stack. This
requires the overhead of load/store instructions which both increase code size and
reduce performance. Therefore, the first modification that was implemented was to
provide data processing operations which can take their parameters directly off the
stack given an offset from the value of the stack pointer, and can store their results
in the same fashion. This means that the load and store operations can be removed.
Note that since only one value can be loaded from or stored to the memory at a
time, the these operations now have to be multi-cycle operations. However, the fetch
cycle for the corresponding load or store is still eliminated resulting in performance
improvements as well as code size improvements. Figure 4-16 shows two of the new
operations as an example.

The array accumulate function was re-implemented using these new addressing
modes and simulated verifying both the reduction in code size and the performance
improvements. Figure 4-17 shows the new implementation of this function.

By observing the Cycle costs for the new data processing operations of Version
b of the architecture one will immediately notice that there is a cycle cost associated
with the fact that the data is fetched from the same memory which contains the
instructions. The data fetch and the instruction fetch compete for the same port
in the memory. Thus, it became obvious that a Harvard architecture (i.e., one in
which the data is placed in a separate memory with its own port) would provide a
substantial performance benefit. Note that describing this in ISDL simply involves
changing the costs of the associated operations. This modification was implemented
as shown in Figure 4-18. Note that since the instruction set of the processor did not
change, the same program as for Version b can be used for Version c as well. The
program was simulated on the new architecture verifying the performance gains.

Then we decided to investigate issues involving pipelining of the processor. We
decided to simulate a four-stage pipeline with full protection. This means that bypass
logic is to be implemented for all data paths and this can include the new address-
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acc:
{ ldc 2, SP, R1; }
{ subc 1, R1, R2; }
{ brnz R2, LL1; }

{ ldc 1, SP, RO; }
{ ldc 0, RO, R15; }
{ br LL2; }

LL1:
{ stc 4, SP, RET; }
{ ldc 1, SP, RO; }
{ asrc 1, R1, R2; }
{ stc 5, SP, R2; }
{ stc 7, SP, SP; }
{ addc 7, SP, SP; }
{ stc 1, SP, RO; }
{ stc 2, SP, R2; }
{ call acc; I
{ ldc 10, SP, R3; }
{ stc 6, SP, R3; }
{ ldc 1, SP, RO; }
{ ldc 2, SP, R1; }
{ ldc 5, SP, R2; }
{ add RO, R2, R4; }
{ sub R1, R2, R5; }
{ stc 7, SP, SP; }
{ addc 7, SP, SP; }
{ stc 1, SP, R4; }
{ stc 2, SP, R5; }
{ call acc; }
{ ldc 10, SP, R3; }
{ ldc 6, SP, R4; }
{ add R3, R4, R15; }
{ ldc 4, SP, RET; }

LL2:

{ stc 3, SP, R15; }
{ ldc 0, SP, SP; }
{ ret; }

Figure 4-14: Assembly Implementation of the Array-Accumulate Function
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Figure 4-15: The Stack Frame for the acc Function

add SOFF1, RB, RC

{ W.MODE = Ox4; W.OP = 0x1;
W.RA = SOFF1; W.RB = RB; W.RC = RC; }

{ RC <- ADDm(IM[SP + SOFF1], RB); }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

add SOFF1, RB, SOFF3

{ W.MODE = 0x5; W.JP = 0x1;
W.RA = SOFF1; W.RB = RB; W.RC = SOFF3; }

{ IM[SP + SOFF3] <- ADDm(IM[SP + SOFF1], RB); }
{}
{ Cycle = 3; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

Figure 4-16: The New Addressing Modes of SPAM RISC Version b
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acc:
{ subc 1, 2, R2; }
{ brnz R2, LL1; }

{ ldc 1, SP, RO; }
{ ldc 0, RO, R15; }
{ stc 3, SP, R15; }
{ br LL2; }

LL1:

{ stc 4, SP, RET; }
{ asrc 1, 2, 5; }
{ movs 1, 8; }
{ movs 5, 9; }
{ stc 7, SP, SP; }
{ addc 7, SP, SP; }
{ call acc; }
{ movs 10, 6; }
{ add 1, 5, 8; }
{ sub 2, 5, 9; }
{ stc 7, SP, SP; }
{ addc 7, SP, SP; }
{ call acc; }
{ add 6, 10, 3; }
{ ldc 4, SP, RET; }

LL2:

{ ldc 0, SP, SP; }
{ ret; }

Figure 4-17: Array Accumulate Function for SPAM RISC Version b
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add SOFF1, RB, RC

{ W.MODE = Ox4; W.OP = 0x1;
W.RA = SOFF1; W.RB = RB; W.RC = RC; }

{ RC <- ADDm(DM[SP + SOFF1], RB); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

add SOFF1, RB, SOFF3

{ W.MODE = Ox5; W.OP = 0x1;
W.RA = SOFF1; W.RB = RB; W.RC = SOFF3; }

{ DM[SP + SOFF3I <- ADDm(DM[SP + SOFF1], RB); }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

Figure 4-18: Adjusted Operations of SPAM RISC Version c

brz RC, OFFS
{ W.MODE = OxC; Split.OFFSs = OFFS; W.RC = RC; }
{ if (RC == 0) { PC <- ADDm(PC, SEXT(OFFS, 15, 24)); }; }
{}
{ Cycle = (RC == 0)*2 + 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

brnz RC, OFFS

{ W.MODE = OxD; Split.OFFSs = OFFS; W.RC = RC; }
{ if (RC ! 0) { PC <- ADDm(PC, SEXT(OFFS, 15, 24)); }; }
{}
{ Cycle = (RC != 0)*2 + 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }
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brz RC, OFFS

{ W.MODE = OxC; Split.OFFSs = OFFS; W.RC = RC; }
{ if (RC == 0) { PC <- ADDm(PC, SEXT(OFFS, 15, 24)); }; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 3; Usage = 1; }

brnz RC, OFFS

{ W.MODE = OxD; Split.OFFSs = OFFS; W.RC = RC; }
{ if (RC != 0) { PC <- ADDm(PC, SEXT(OFFS, 15, 24)); }; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 3; Usage = 1; }

Figure 4-20: Delay Slots in SPAM RISC Version e

ing modes if the target address is maintained along with the data in the internal
data-path. Note however, that we also have to flush the pipeline when control flow
operations occur. This is expressed in ISDL by appropriately modifying the Cycle
cost of any operation that flushes the pipeline. Figure 4-19 shows two examples of
conditional branch operations that conditionally flush the pipeline.

Once again, the array accumulate function was simulated on the new architec-
ture without any modifications. As expected, the number of cycles increased due to
pipeline flushes but with the expectation that the cycle itself would now be shorter
by enough of a margin to offset the cost of extra cycles.

Finally, we decided to investigate the issue of adding delay slot instructions to
the architecture in order to reclaim some of the performance lost to pipeline flushes.
This involves modifying the Latency parameter of control flow operations as shown
in Figure 4-20. In this case, the program for the array accumulate function had to
be modified to move around control flow operations and include nop operations to
fill in the delay slots. The new program is shown in Figure 4-21. Note the increase
in code size because of the need to insert nop operations in some of the delay slots.
Simulation of this program showed a marginal performance increase of about 5.4%
which may not justify the increased code size (about 13%).

Table 4.7 shows a summary of the experiments on calling conventions.

4.3.3 Overview of Architecture Exploration Results

Table 4.8 presents a summary of the architecture exploration results to give a
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acc:
{ subc 1, 2, R2; }
{ brnz R2, LL1; }
{ nop; }
{ nop; }

{ ldc 1, SP, RO; }
{ br LL2; }
{ ldc 0, RO, R15; }
{ stc 3, SP, R15; }

LL1:

{ stc 4, SP, RET; }
{ asrc 1, 2, 5; }
{ movs 1, 8; }
{ movs 5, 9; }
{ call acc; }

{ stc 7, SP, SP; }
{ addc 7, SP, SP; }
{ movs 10, 6; }
{ add 1, 5, 8; }
{ sub 2, 5, 9; }
{ call acc; }
{ stc 7, SP, SP; }
{ addc 7, SP, SP; }
{ ldc 4, SP, RET; }
{ add 6, 10, 3; }

LL2:

{ ret; }

{ ldc 0, SP, SP; }
{ nop; }
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Version Conversion Application Fetch Clock Code
Type Cycles Cycles Size

a NA Array Acc. 1578 2562 34
b stack-relative ops Array Acc. 1070 2171 23
c Harvard Arch. Array Acc. 1070 1460 23
d Pipeline (flush) Array Acc. 1070 2172 23
e Delay Slots Array Acc. 1307 2053 26

Table 4.7: Results of Architecture Exploration on SPAM RISC

Architecture Application Improvement
Code size Performance

SPAM VLIW-1 FIR 10.5% 253.9%
IIR 29.2% 235.1%

SPAM VLIW-2 FIR 44.0% 10.2%
IIR 44.4% 10.2%

SPAM RISC Array Acc. 32.4% 75.5%

Table 4.8: Overview of Architecture Exploration Results

better idea of the benefits that can be gained from the method. The above results
show that it is possible to obtain substantial benefits in terms of both code size and
performance by performing simple architecture exploration.
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Chapter 5

Conclusions

This section summarizes and highlights the main points of the previous sections and
presents further work that can be performed to further advance the field.

5.1 Conclusions

The thesis that this work is based on is that architecture exploration can produce
architectures that are customized to a particular application while reducing the design
cycle over existing methods. In order to support architecture exploration, we claim
that it is necessary to provide the following:

* A machine description language that allows instruction sets to be designed.

e A way of generating a number of design evaluation tools automatically from
such architecture descriptions, namely:

- A retargetable compiler that can produce an implementation of the appli-
cation customized to and optimized for a particular architecture described
in an appropriate machine description language.

- An assembler generator that can generate an assembler given a description
of the target architecture in an appropriate machine description language.
This assembler can be used to convert the output of the compiler to an
executable binary program.

- A simulator generator that can generate a simulator for an architecture
given a description of the architecture in a suitable machine description
language. This simulator can execute the assembled program to provide
performance and utilization measurements.

- A hardware model generator that can generate a synthesizable model of the
implementation of an architecture given a description of the architecture
in a suitable machine description language. This hardware model can be
used to derive the physical costs and properties of the architecture and
provide an initial implementation.
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We further claim that all of the above evaluation tools should be generated from
the same machine description in order to avoid consistency issues and the effort of
translating from one machine description language to another. The language by
which the target architecture is described forms the central component of the system
and therefore should be chosen very carefully. We identified the following desirable
features that any proposed machine description language should provide:

* Descriptions should be easy to read, write, and modify so that engineers and
architects can use the tools without support and so that the final architecture
can be further optimized by hand.

e The machine description language should support the re-targeting or generation
of all of the above design evaluation tools.

* The language should support as wide a variety of architectures as possible and in
particular VLIW architectures which are very efficient for custom applications.

* The language should provide a fine grain of control in order to cover as much
of the supported architecture design space as possible.

* The language should separate the description of the architecture instruction
set from the actual implementation of the instruction set, in order to leave an
additional degree of freedom in finding good architecture candidates.

* Descriptions should contain sufficient information to allow for compiler opti-
mizations and cycle-accurate simulation.

We have presented the ISDL machine description language and have shown that it
provides all of the above features. In particular, ISDL has the form of an annotated
grammar which is simple to understand. Its use of constraints allows it to describe
implementations that result in resource conflicts in a simple and intuitive manner. Its
strong semantics make descriptions concise. We have shown that descriptions of sim-
ple architectures (such as the SPAM RISC) take little time and effort to develop and
that most modifications of these descriptions are local and easy to implement. We
have also shown that ISDL supports a wide variety of architectures and architectural
features by describing a number of architectures that span classes such as VLIW, DSP
and RISC, and contain features as varied as predicated execution, condition codes,
Huffman-encoded op-codes, heavy op-code encoding, register aliasing, and complex
instructions. We have also shown that constraints help isolate the description of the
instruction set from the actual implementation by allowing the description of the in-
struction sets in a local manner as if operations were completely orthogonal. We have
demonstrated the ability of ISDL to support fine-grain modifications by performing
both minor and major modifications to the instruction sets of the architectures we
described. We have also demonstrated the ability of the language to support the
generation of cycle-accurate simulators by generating such simulators automatically
and verifying their behavior. Other researchers have demonstrated the ability of ISDL
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to support the automatic generation of compilers, assemblers and efficient hardware
models.

For the simulator generator tool, we identified the following requirements:

* The simulator generator must support a wide variety of architectures and a
wide range of architectural features.

* It must be able to generate simulators for architectures with complex assembly
functions without additional support (e.g., requiring inclusion of the decode
function in the machine description).

* It must process machine descriptions and produce a simulator in a reasonable
amount of time.

We have described the implementation of a tool that automatically generates
cycle-accurate simulators from machine descriptions in ISDL. We have shown that
this tool, while not flexible enough to deal with all architectures that can possibly
be described in ISDL, supports a wide variety of architectures and architectural fea-
tures in its own right. In particular, we have been able to generate fully functional,
cycle-accurate simulators for all the architectures we described. Simulators can be
generated very fast for most cases, and in a reasonable time in the worst case. The
algorithms embodied in the simulator generator tool are sufficiently intelligent to
support even complicated assembly functions without the need to provide the decode
function in the machine description.

The generated simulators themselves were required to provide the following:

* Cycle-accuracy and full compliance with the semantics of ISDL.

e High simulation speeds.

* A full-featured user interface.

* A broad range of debugging support features.

* A means of obtaining utilization statistics from each execution.

The simulators that were generated by our tools were indeed shown to be cycle-
accurate and bit-true. The simulation speeds range from 1.1 million operations per
second to 4.5 million operations per second. At these speeds, the simulators can be
used to simulate the full application on a realistic input data sample. The generated
simulators also provide both a full-featured graphical user interface and a full-featured
command-line interface. They provide full debugging support as well as other features
that ease the task of regression testing and supporting long-running simulations.
Finally, these simulators can produce execution address traces which can be used to
obtain utilization statistics for a particular execution.

Finally, we have demonstrated the feasibility of the architecture exploration con-
cept by performing simple architecture exploration steps assisted by the infrastructure
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mentioned above, and demonstrating real and substantial benefits in both code size
and performance.

Overall, we have demonstrated the soundness of the thesis by providing an imple-
mentation for the infrastructure necessary to perform architecture exploration thus
proving architecture exploration to be feasible. We also used this implementation
to demonstrate real and substantial benefits in both code-size and performance for
particular applications.

5.2 Future Work

The work presented in the previous sections supports the thesis that an architecture
exploration system can be created and that it can be effective in creating architectures
particularly well suited to a given application. It also presents the implementation of
a substantial portion of the infrastructure for such a system. However, a substantial
amount of work still remains to be done before the full potential of the methods
proposed herein can be unlocked. This section presents some further work that we
believe would go along way towards unlocking the full potential of the methodologies
we described.

5.2.1 ISDL Version 2.x

While ISDL Version 1 is powerful enough to describe such a wide range of architectures
and architectural features, there are a number of additional facilities that could be
beneficial. Some of these facilities were considered for Version 1 but originally post-
poned to Version 2 in order to produce a working language in a reasonable amount of
time. Others were discovered only after a range of experiments had been run and ad-
ditional requirements became clear. This section presents all these possible additions
to ISDL in the hope that they will be included in a future version.

Cache Information and Memory Management

ISDL Version 1 does not have the ability to describe what happens in hardware that
is not visible to the instruction set and therefore does not take into account the costs
and timing related to caches and memory management hardware. Some of this in-
formation can be obtained after a simulation by using the execution address trace of
the simulator. However, even with that capability, the generated compilers cannot
optimize for the presence and structure of caches and memory management systems.

Additionally, it would be hard to judge the impact of interactions between the In-
struction Set, the implementation of a target application on the Instruction Set and
the cache and memory management hardware since the latter has to be investigated
in a separate environment. Cache and memory management hardware information
should be added to the Optional Information section of an ISDL description.
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Multiple-Issue Capabilities

Many architectures contain parallelism which is not explicit in the instruction set.
Usually this is in the form of multiple-issue mechanisms where multiple instructions
are issued in parallel. The most common implementation of multiple-issue schemes
is super-scalar architectures. Since parallelism in such architectures is not explicit in
the instruction set, a non-parallelized version of the instruction set can be described
and simulated in ISDL Version 1. The exact timing can be derived by post-processing
an execution address trace after this is produced by the simulator. However, this
still precludes the use of information about the multiple-issue mechanism to optimize
compilation.

A large amount of information needs to be provided in order to support multiple-
issue execution schemes:

* The number of instructions that can be issued.

e The scheduling policy when some execution units are free and others are occu-
pied.

* The policy for handling data dependencies between instructions.

* The existence of re-order buffers and the policies that govern their operation.

* The presence of speculative execution and the policies that govern its operation.

* The policies concerning branch prediction in the presence of multiple-issue
schemes.

While multiple-issue mechanisms are uncommon in embedded systems and are
generally unsuitable for environments where the application is known before the ar-
chitecture is designed, a way of supporting multiple-issue architectures would broaden
the scope of ISDL and the related tools and could prove valuable. Such information
would be best included in the Optional Information section of an ISDL description.

Exceptions and Interrupts

ISDL Version 1 does not support the notion of exceptions or interrupts. While both
are visible to the instruction set, they were omitted from Version 1 due to time
constraints.

Both exceptions and interrupts take certain actions that modify the state of the
processor when they occur. They can therefore defined in a fashion similar to oper-
ation definitions. To define these actions we can create the abstraction of an event
that is triggered in the case of a specific exception or interrupt, and performs the
above mentioned actions. The following information needs to be provided for each
event:
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* Input parameters. Even though the semantics of exceptions and interrupts
do not allow for parameters, most exceptions perform the same actions with
minor modifications in the exception vector they jump to and various mode
bits they set. These can be defined as parameters in order to allow the same
event definition to be reused for multiple actual exceptions. The same holds for
interrupts.

* Event actions. These can be described in the same RTL language that is used
to describe operation actions.

* Event side effects. The distinction between event actions and event side-effects
is the same as the distinction between operation actions and operation side-
effects.

Once the appropriate events have been defined, an exception can be defined by
giving the conditions that trigger it (if it applies to all operation instantiations) or by
calling an event from an operation definition if it applies only to a single operation

(e.g., division by zero). For interrupts, we can define asynchronous signals which
trigger the appropriate events with the right parameters.

While exceptions and interrupt definitions are not optional for a full description
of an instruction set, in order to maintain backwards compatibility with existing
descriptions in ISDL Version 1 it may be appropriate to include them in the Op-
tional Information section of an ISDL description. Backward compatibility can still be
maintained if exception and interrupt definitions are placed in the Global Definitions
section instead, but at the cost of changing the semantics of the Global Definitions
section in a minor way.

State Dependent Constraints

The constraints mechanism provided by ISDL Version 1 is very flexible, however,
some constraints cannot be described since they depend on the state of the processor
which cannot be accessed by these constraints. In fact, the Motorola 56000 description
contains a number of such constraints, mostly having to do with the contents of the
LC and LA registers which control zero-overhead loops.

We propose to expand the constraints mechanism to include relational operations
and expressions involving the state of the processor in order to remove this limitation.

Branch Prediction Mechanisms

Branch prediction is a way of avoiding the overhead of pipeline flushes in pipelined
architectures by guessing the target of a conditional branch and loading instructions
from the target instead of sequentially. Branch prediction mechanisms can be divided
in two classes depending on whether the guess is provided by the program itself
(hint-driven) or is created dynamically by the hardware at run-time (dynamic). Hint-
driven branch prediction is already supported by ISDL Version 1 since it appears in
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the instruction set as two otherwise identical operations which differ in their costs
depending on whether the branch is taken or not.

Dynamic branch prediction can be described by providing the following informa-
tion:

" A list of the operations that are subject to dynamic branch prediction.

" A definition of the state that the dynamic branch prediction policy needs to
store (such as a flag denoting whether on the last execution of this operation
the branch was taken or not).

" An expression which will update the costs of a branch instruction depending on
the state of the branch prediction mechanism

" A policy for updating the state for a branch prediction mechanism every time
a member of the list of operations subject to this particular policy is executed.

In a completely generic support mechanism, multiple branch prediction policies
should be allowed. Dynamic branch prediction definitions should be included in the
Optional Information Section of an ISDL description.

Byte-addressed Storage

ISDL Version 1 is word-addressed, meaning that once an address is provided, it will
index into the appropriate storage with a stride of 1. However, a number of existing
architectures are byte-addressed meaning that the actual index into the storage is the
address divided by the width of the storage unit in bytes (a practice which is very
common in general purpose processors). In an environment where memory widths
may not be an integer multiple of a byte (such as the SPAM VLIW-1 and SPAM
VLIW-2 architectures), byte addressing does not make sense. Additionally, byte ad-
dressing can be emulated within the RTL definitions of operations and non-terminals.
However, in the interest of making it easier to support existing architectures, it may
be beneficial to provide support in ISDL to declare certain storage elements as byte-
addressed. The natural place for such a definition is in the Storage section of an ISDL
description and can be accomplished by the insertion of a single key-word.

Co-Processor Interfaces

ISDL Version 1 does not support fully generic co-processor models. This is because
co-processors whose instruction sets are unknown are not used in embedded applica-
tions. If the instruction set is already known then it can be included in the instruction
set of the main processor as if it was part of the processor. However, fully generic
co-processor interfaces are commonly used in general purpose processors and it would
be beneficial to support them. Such co-processors would appear as partial operation
definitions (i.e., operation definitions with some of the information missing). The
natural place for inclusion of such co-processors would be in the Instruction Set sec-
tion of an ISDL description. Note, however, that co-processors often have interrupts
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and exceptions associated with them and these should be included as well in the
appropriate section.

External Interface Descriptions

In ISDL Version 1 there is no way of representing peripherals and other interfaces to
the external world. This is because such interfaces are not part of the instruction set.
However, this makes it impossible to describe certain operations in the instruction
set whose sole purpose is to control these peripherals (such as the RESET operation
in the Motorola 56000 DSP). Additionally, it makes it hard to integrate peripherals
into the simulators generated from ISDL since the code that emulates the peripherals
has to constantly poll the state of the control registers in the processor. The ability
to describe interactions of the instruction set with the peripherals, while being of
no use to the compiler, would make it easy to generate simulators that can be easily
integrated into a larger simulation environment that simulates the peripherals as well.

In order to allow such interactions, it is necessary is to provide a mechanism for
performing function calls to code that is not part of the simulator. In ISDL this
would consist of a keyword that denotes such a function call and the definition of
a function call stub (to pass parameters to the function being called to simulate
the peripherals). This keyword and function stub definitions could be inserted at the
appropriate locations in the RTL actions and side-effects of operation definitions (and
possibly event definitions for exceptions and interrupts). Thus, real function calls can
be generated along with the simulator code that will perform event-driven simulation
of the peripherals.

Variable Length Instructions

ISDL Version 1 assumes that the instruction word is of a fixed width'. The overwhelm-
ing majority of VLIW architectures and all unifunctional architectures do indeed have
an instruction of fixed width. However, in the interest of reducing code size, some
VLIW architectures allow the instruction to be of varying width, by omitting the
operations for functional units that would be idle in a specific instruction. There
is no way to support such architectures in ISDL Version 1. The least intrusive way
of supporting such architectures in ISDL would be to provide an instruction re-write
mechanism which would fetch instructions as a stream of the smallest units possible
and re-write them in the form of complete VLIW instructions that include nop op-
erations for units that are idle. While the existence and nature of such a mechanism
is not really optional information, placing it in the Optional Information section of
ISDL would be the least intrusive way of including this information. Alternatively, it
can be included in the Global Definitions section at the cost of a substantial change
in the semantics of this section.

'We do not consider the case of additional instruction words being used to store constants as a
variable instruction width mechanism.
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Formal Arguments for Operations

In ISDL Version 1, parameters to operations are listed as non-terminals or tokens.
However, these non-terminals or tokens have to have unique names even though they

may have exactly the same semantics. For example, in the SPAM VLIW-1 architec-
ture we had to define three separate non-terminals with exactly the same semantics
for UKRA, U1_RB, and U1RC in order to to have unique names. A much better method
would be to allow operation definitions and non-terminal options to take formal pa-
rameters as arguments and attach a type to each of these that would be the single
definition of the underlying non-terminal or token. This would remove unnecessary
definitions of tokens and non-terminals, reducing the size of descriptions and making
them easier to read. However, this would require a substantial change of syntax in
the way operations are defined making it hard to maintain backward compatibility.

Separate Timing Information for Side-Effects

ISDL Version 1 dictates that all the actions and side-effects of an operation obey
the same timing policy. While almost all architectures we know of conform to this
restriction, one can easily imagine architectures in which the side-effects do not share
the same timing as the actions (or even the same timing as each other in the case
of multiple side-effects). ISDL can be extended to provide additional facilities to
describe such cases by allowing the inclusion of timing information in the side-effects

RTL itself. This, however, would complicate the ISDL RTL syntax.

Implementation Directives

Currently there is no way to include hints to the hardware model generator in ISDL
descriptions. We instead have to rely on algorithms to figure out the intent of the
designer or the best way to implement a particular instruction set. In the interest of
generating as efficient hardware models as possible, it would be desirable to include

implementation directives directly in ISDL. For example, the instruction set architect
may know that the best way to implement the instruction set might be to provide a
four-port register file and take an extra cycle to load the first parameter, as opposed
to building a five-port register file. The exact nature that such directives would take
is unclear right now, as is their possible location within as ISDL description. Since any
part of an ISDL description other than the the Instruction Word Format section may
affect the implementation 2 , these directives may also have to be allowed anywhere in
the ISDL description.

5.2.2 Automated Architecture Synthesis

While ISDL and the associated tools provide the infrastructure necessary to perform
architecture exploration effectively, creating and modifying the architectures still re-

2 The Instruction Word Format section clearly also affects the implementation - however, this
implementation is fixed and requires no further directives.
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quires manual effort in the current implementation of the ARIES system. An au-
tomated methodology of creating architectures would fully automate the inner loop
thus resulting in a tool that requires no manual intervention except for the purposes
of tuning the architecture further. The following tasks need to be accomplished in
order to fully automate the architecture exploration loop:

1. Generating a good initial architecture.

2. Deriving useful statistics from the simulator, which can be easily extrapolated
to locate bottlenecks in the architecture.

3. Discovering ways to automatically remove these bottlenecks by performing suit-
able architecture modifications.

Note that the last two tasks are very closely coupled and therefore should be
considered as parts of a unified approach. All three tasks are explained in further
detail below.

The Initial Architecture

Architecture exploration by iterative improvement is equivalent to a gradient descent
algorithm in the design space. Gradient descent algorithms are very sensitive to the
starting point of the search, therefore a good initial architecture is essential if good
solutions are to be obtained.

In order to obtain a good initial architecture, the application code and correspond-
ing profiling information can be analyzed to obtain an estimate of the types of simple
operations performed (such as add, mul etc.) as well as static and dynamic counts of
these operations. The next step is to obtain estimates of the silicon area and power
consumption of each of hardware implementations of these simple operations. An
estimate of the required number of instantiations of each type of operation can be
obtained by dividing the required throughput by the execution time of each operation
implementation multiplied by the dynamic count of the operation. An estimate of
the silicon area and power consumption of the initial architecture can be obtained by
multiplying the number of instantiations of each operation by the silicon or power cost
of each operation implementation. These estimates can be used to rapidly explore
the architecture design space for a promising architecture.

In particular, one way of generating a good initial architecture is to divide the
source code into a number of abstract operations (such as add, mul, load, move, etc.).
Let us call these operations 01 to O. Each of these operations can be implemented
in a number of different ways (including a software implementation). Let us denote
all the possible implementations of operation 01 by OjJ where j varies from 1 to m.
An architecture can be considered as a group of operation implementation instances,
and some interconnect. The following functions can then be defined on operations
and their implementations:

* N(Oi3 ) denotes the number of instances of operation implementation Oij in a
particular architecture. This function effectively describes the architecture.
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" C(Oij) denotes an estimate of the hardware costs (for example, silicon area) of
operation implementation Og.

" S(Og,) denotes an estimate of the encoding (roughly proportional to code size)
of operation implementation Oij. Note that this depends on the architecture as
well, not only on the operation implementation.

" T(Oij) denotes an estimate of the performance cost (execution time) of opera-
tion implementation Oij.

* M(OjJ) denotes the static frequency of operation implementation 0iJ in the
input code.

" F(Oij) denotes the dynamic frequency of operation implementation Oij in the
input code.

We can now form a set of relations that result in estimates of the performance
and hardware cost of the architecture:

CodeSize = a x Z M(O0) x S(02)

ProcessorSize = b x ( N(Oi1 ) x C(Ozj)

. F(Og3 ) x T(Ogg)ExecutionTime = c X F( O ij)
N(Oij)

were a, b, and c are suitable heuristically-determined constants. The functions that
can be modified are N (the architecture), and M and F (the code implementation
functions). We can quickly explore a number of different options and derive esti-
mates for both system size and performance. We can then select the architecture
(the N function) that results in the lowest costs and still promises to meet the per-
formance criteria as an initial architecture, and complete the design by creating an
ISDL description for it.

Architecture Evaluation

Once a simulator has been generated for a candidate architecture, and the application
has been compiled and run on the simulator, we have much more information about
how the architecture interacts with the application. However, it is non-trivial to
extract information from the simulation trace in a form that can suggest possible
improvements.

The information that is readily available from the execution trace (and the com-
piled program) is the static operation count and the dynamic operation count. From
these statistics we can derive the following information by using a set of heuristics:

e Detect under-utilized functional units. These are functional units that fetch
NOPs more often than the average.
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* Detect under-utilized operations. These are operations that have low static or
dynamic counts.

* Detect functional unit bottlenecks. These are functional units that have NOP
counts substantially below average.

* Detect operation bottlenecks. If an operation appears substantially more often
than the rest of the operations in the field, there is probably insufficient re-
sources to execute that operation. If this situation holds for most or all of the
functional units that provide this operation type, then it is almost certain that
the resources devoted to that operation should be expanded.

* Detect data transfer bottlenecks. This would be reflected by NOPs on functional
units while data transfers are taking place.

* Detect operations that could benefit from faster implementations. Operations
that appear very often in the dynamic operation count should probably be
implemented using faster methods than the rest of the operations, assuming
they affect the critical path.

Note that all of the above are heuristics - there is no guarantee that a functional
unit with very few NOPs is a true bottleneck, for example. These and other heuristics,
however, can be used to suggest possible improvements to the architecture.

Performing Architecture Modifications

Improving an architecture given statistics from the simulator follows two simple rules:

9 If a component can be removed while still maintaining performance, then it
should be removed.

* If the performance criterion is not being met, the bottleneck should be located
and the resources allocated to it expanded.

The interaction of these two rules tends to drive the system to the lowest cost
solution that will still meet performance. Note that code size is one of the components
that the rules have to contend with. Also note that most of the time there will be
multiple options for each rule (i.e., multiple modifications that can be made to either
improve performance, or reduce cost).

The first rule is mainly concerned with utilization of components. Components
that seem to be underutilized should be removed. Selecting the right option is a
complex function of the savings in terms of costs, as well as the performance penalty
of the modification. Effectively, each option is assigned a costs saving and a perfor-
mance penalty and a weighted average of the two is used to rate the options. The
option that appears most suitable is then selected and the corresponding modification
implemented.
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The second rule is mainly concerned with bottlenecks. For each candidate archi-
tecture, there will probably be one main bottleneck (and possibly some secondary
ones). There may still be multiple options because there may be multiple imple-
mentations of the task that is creating the bottleneck. Once again, the options are
assigned cost penalties and performance savings, and a weighted average is used to
select the best and implement the corresponding modifications.

The main problem is determining the heuristics that will be used to determine
the possible options for each rule, and assign the weights to each option.

A few examples of such heuristics are given below:

* If an operation appears often in the static operation count but not propor-
tionally often in the dynamic operation count, then the operation should be
considered for heavy encoding that would reduce instruction size at the cost
of performance. The savings in cost is equal to the savings in the instruction
word size multiplied by the static operation count, minus the expansion in the
decode logic. The performance penalty is the additional execution time of the
operation, multiplied by the dynamic operation count.

e If a functional unit is underutilized it should be considered for removal. The
savings in costs is the area consumed by the implementation of the functional
unit, plus the number of instruction word bits required by the functional unit
multiplied by the number of instruction words in the program. The performance
penalty is the number of operations that have to be mapped to other functional
units multiplied by the execution time of each operation on those functional
units, multiplied by a heuristically-determined constant that accounts for the
fact that some of the operations may fit in NOP slots.

* If a functional unit is a bottleneck then the unit should be cloned. The cost
penalty is the cost of the unit plus the number of instruction bits for the
unit multiplied by the number of instructions in the program (multiplied by a
heuristically-determined constant that accounts for the fact that each instruc-
tion is now bigger and holds more operations). The performance savings will
depend on the secondary bottlenecks.

* If a set of operations tend to appear as a group (for example, an add and a mpy),
then it may be a good idea to combine them together into a single operation (a
mac operation). This will both reduce code-size and improve performance.

A different but related problem is the accuracy of the measurements. The mea-
surements obtained from the simulator are exact, however, the depend on the com-
piler having produced code which truly reflects the capabilities of each architecture.
Therefore, the real performance figures may differ from those measured because the
compiler has been unable to use the architectural features provided in an effective
manner. Let us define the real performance of an architecture on a given application
to be the performance given an optimal implementation of the application on the
architecture, and denote it by pR. Let us defined the measured performance to be
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the performance measured for an implementation created by a compiler and denote
it by PM. Let PR and PR denote the real performance for architectures A and B re-
spectively, and similarly for P' and PM. Since the proposed method of architecture
exploration is gradient decent, it can be shown that the algorithm will work as well

as possible if:

AP f P A -> B>P

for all architectures A and B and all applications. We call this the monotonicity

criterion. If the monotonicity criterion holds then no architecture will be considered
as better than another architecture by the gradient decent algorithm, unless it really

is. This implies that the final architecture selected will be the same despite the
fact that the measurements are in fact approximations because of the sub-optimal
implementations generated by the compiler. We currently know of no way of ensuring

that the monotonicity criterion holds. However, the probability that it does hold can
be increased if:

* The implementations produced by the compiler are as close to optimal as pos-
sible.

* The standard deviation of the probability distribution that the compiler will
generate an implementation of a particular performance is as small as possible

(i.e., the results of the compiler are as consistent as possible).

Note that the monotonicity criterion and the above criteria also hold for the
hardware model generator, which also produces approximate results.
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Appendix A

Glossary Of Terms

e ASIC: Application Specific Integrated Circuit. An IC custom-designed for one
specific application. Usually most custom circuitry in embedded systems is in
the form of ASICs.

e ASIP: Application Specific Instruction-Set Processor. A processor with an
instruction set which is custom-designed for a specific application. Since em-
bedded systems typically have no use for general purpose facilities, they make
use of processors with custom instruction sets to reduce the cost of the system
and improve performance.

* Additional Instruction Word: In some architectures, the instruction word
is not long enough to accommodate large constants (such as the destination
addresses for jumps and branches) as well as the usual op-codes. In this case,
the constant is instead placed in the next instruction word and this word is
loaded when needed, but not interpreted as an instruction. This second word
is called an additional instruction word.

* Addressed Storage: A storage unit that behaves as a group of storage ele-
ments, generally of the same width. Individual elements (called locations) may
be referred to with an address. Typically, this address is an integer acting as
an index into the group of elements.

9 Addressing Modes: There are various ways for an operation to access its input
and output parameters - these are called addressing modes. Most RISC pro-
cessors provide only a limited number of addressing modes (such as load/store
architectures which only offer a register addressing mode). Most DSP and CISC
type processors have a wide variety of addressing modes.

* Ambiguous Instruction Set: An instruction set with an operation which
is multiply-defined and there are at least two of these definitions which will
both accept a given instantiation of the operation. For example Operation
4,6 could correspond to either of the operation definitions below:

Non-Terminal ADR: INT ... I
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NAME ... ;

Field Bad:

operation INT, ADR ....

operation ADR, ADR ....

e Architecture Exploration: A methodology for performing architecture de-

sign based on iterative improvement. An initial design is created and evaluated

for a particular application. Based on measurements made during the eval-
uation phase, improvements are made to the architecture, either to improve
performance or to reduce cost without sacrificing performance. The process is
repeated until no further improvements can be made.

e Behavioral Language: A machine description language that uses the behav-
ior of operations in the instruction set to describe the hardware. Behavioral

languages generally avoid structural information (such as the structure of the
pipeline). They are high level languages so they are generally easier for auto-

matic tools to process, and easier for human engineers to work with.

* Binary Image: During the assembly phase, each operation in the instruction
set will impart a unique combination of values to a subset of the bits of the

instruction word. The set of values of the bits and the subset of the bits,
together form the binary image of the operation. This subset of bits can be
used to uniquely recognize the particular instance of the operation as being in
the corresponding VLIW instruction.

e Binary Image Overlap: The binary image of an operation consists of a subset
of the bits of the instruction word and a set of unique values for these bits. It
is possible for two operations to have binary images where the subsets of bits
overlap. This is called binary image overlap and sometimes makes it harder to

decode the instruction word.

* Bitfield Assignment: The action of setting the appropriate value to the bits
in the binary image of an operation.

* Bitfield Conflict: In a VLIW instruction it is possible for two operations to
attempt to set the same bits in the instruction. This implies that there is a

binary image overlap between the two operations. Obviously since the binary
image of an operation is the minimum set of bits that must be set to specific

values in order to identify an operation, it is not possible for two operations
with a binary image overlap to co-exist in the same VLIW instruction. This
is called a bitfield conflict. Put simply, it means that two operations in the

same instruction are trying to set the same bits to contradictory values and this
cannot be allowed.

* Bitfield: A contiguous subset of bits in the instruction word.
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* Boolean Clauses: A set of clauses formulated in Boolean algebra that yield
a true or false answer given a set of true or false inputs. ISDL uses Boolean
clauses as constraints by using operation matches as the inputs.

* Branch Prediction: A method of avoiding stalls and delay slots by attempting
to predict the outcome of a branch early into the pipeline. The moment a branch
instruction is fetched, a piece of logic attempts to guess the outcome of the
branch, and hence where the next instruction is going to come from, before it is
fetched. Therefore, if the guess is right, no flushing of the pipeline is necessary
and no delay slot instructions have to be declared. Pipeline flushes or stalls
decrease performance in heavily pipelined machines and delay slots complicate
code generation and expose implementation details to the Instruction Set. There
are two main methodologies for obtaining the guess: hint-driven in which the
branch instruction itself provides the guess and is therefore under the control
of the programmer, and automatic in which cached previous outcomes for the
particular instruction are used and are therefore probabilistic.

e CISC: Complex Instruction Set Computer. Architectures which contain com-
plex and heavily encoded instructions in their instruction sets. Typically they
have a variety of complicated addressing modes and instructions that take mul-
tiple cycles to complete.

* Cache Access Pattern: The sequence of addresses accessed during execution,
especially in the context of how this sequence affects any caches present in the
system.

e Code Generator: A software tool that takes as input a representation of a
piece of source code and emits assembly or binary code specific to an architecture
to implement that particular piece of source code on that particular architecture.
Usually the input is in a compiler intermediate form.

9 Constraint: A boolean clause with operation matches as inputs, which operate
on a current instruction or stream of instructions. If the boolean clause returns
a value of false then the instruction is in violation of the constraint. This could
either mean that the instruction is malformed or improperly scheduled. In either
case the hardware cannot guarantee that the instruction stream will execute as
expected. If the boolean clause returns a value of true then the instruction is not
in violation of this particular constraint. It does not imply, however, that it is
well-formed and properly scheduled since it might still violate other constraints.
Only an instruction that does not violate any constraints is well-formed and
properly scheduled.

* Constraints Section: One of the sections in an ISDL description specifically
dedicated to exposing restrictions in the form of operations or instructions, or
the scheduling of instructions. These are generally restrictions imposed by the
hardware.
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* Control Flow: Operations that deviate from the sequential fetching of instruc-
tions, such as branches, jumps, subroutine calls, returns etc.

* Control Register: A register which when written to may have side effects

(such as resetting interrupt modes or writing values to an output port), and
when read from is not guaranteed to return the last value written to it. Such
registers are usually used to control various modes of the processor and periph-
erals, and to inspect the state of the processor and peripherals. These registers
have to be identified so that code generators do not attempt to use them as
temporary storage.

9 Costs: Any instruction has a set of costs associated with it, such as the number
of cycles it would take to execute the instruction on the hardware, or the number
of additional words it may require. The code generator needs to be aware of
such costs in order to be able to make trade-off calculations between different
implementations of the same piece of code.

9 Cycle-Accurate Simulation: A form of simulation that assigns execution
times (in cycles) to each instruction in the instruction stream, and where these
execution times correspond to the exact number of cycles the same instruction
stream would take on the real hardware.

e Cycle Cost: The number of cycles it would take for a particular instruction
to execute on the hardware.

* DSP: Digital Signal Processor. A processor specifically designed and optimized
to operate on digital data streams. Such processors usually have complex archi-
tectures capable of high numerical throughput and rely on hardware acceleration
for a lot of functions (such as multiply-accumulate operations, address genera-
tion, butterfly operations for FFT etc.). Embedded systems in data-dominated
applications (applications where most of the emphasis is placed on data ma-
nipulation rather than control flow operations) typically rely on DSPs for their
processing power.

e Data Register: A register included in the data path for the explicit purpose
of performing data manipulation. Such registers do not have side effects when
written to, and they return the last value written to them when read from.
They act as simple storage elements.

e Delay Slots: In pipelined architectures the outcome of a branch instruction
may not be available until a few pipeline stages after instruction fetch. In
this case, instructions following the branch may have already been loaded into
the pipeline even though the branch eventually determines control should have
been transferred to a different location in the program. Some architectures
specify that such instructions will be executed even if control is transferred to
a different location in the program. The number of instructions following a
branch that will complete execution when control is transferred to the target of
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the branch, are called delay slots. The code generation should take delay slots
into account when emitting branch instructions and either emit the branch
instruction correspondingly early in the instruction stream (if possible), or fill
them with NOOPs otherwise. Since delay slots complicate code generation and
expose implementation details to the instruction set, they are often avoided by
flushing or stalling the pipeline, or by the use of branch prediction.

e Design Criteria: A set of constraints on the implementation of an architec-
ture such as maximum silicon area, maximum power consumption, minimum
performance, etc.

o Embedded System: A computer system dedicated to a particular application

(such as an engine management computer in a car, or a digital filter in a sound
processor). Most computers that are not used for general purpose computation
are embedded systems.

o Exception: A condition that arises when an operation cannot proceed nor-
mally, either because of the current state of the processor or because of the
values it received as input. Examples of exceptions are division by zero (which
cannot proceed because of the input values), or a privileged mode instruction
being issued in normal user mode (which cannot proceed because of the current
mode of the processor). Typically exceptions will cause a control flow operation
to a fixed address where a small program called an exception handler will try
to recover from the failure.

o Exception Handler: A small piece of code that is executed when a specific
exception condition occurs, and which attempts to recover from the exception
condition.

o Field Definition: A list of operation definitions that are mutually exclusive,
grouped together in the Instruction Set Section of an ISDL description. Typi-
cally corresponds to the operations that can be performed on a single functional
unit in a VLIW processor.

o Fixed Length Instructions: The instruction word of a processor is called a
fixed length instruction if all instructions available in the instruction set of the
processor have the same word length. This does not include additional words
that may be needed to provide large constants.

o Flag: Usually a single-bit piece of state (often provided as a bit in a control
register) that denotes a certain condition (e.g. overflow) has occurred, or that
denotes a current mode (e.g. interrupts disabled). Flags can be, and sometimes
are, longer than a single bit.

o Format Section: The section of an ISDL description that describes the struc-
ture of the instruction word - i.e. the division into logical units called bitfields.
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e Global Definitions Section: The section of an ISDL description that defines
abstractions (such as tokens, non-terminals, and split functions) that are used
in later sections of the description.

e Hardware/Software Co-design: A design methodology targeted mainly to-
wards embedded systems that have both a hardware and a software component
and attempt to integrate both components on a single chip. Such systems have
the property that decisions concerning the hardware component drastically af-
fect the software component and vice-versa. Because of this, the most effective
way to design such systems is to provide a common framework for designing
and evaluating both components together.

e Hint Driven Branch Prediction: A method of branch prediction where the
guess as to the outcome of the branch is provided explicitly by the branch
instruction used. Thus, the branch prediction mechanism is completely under
the programmer's control. It can be achieved by providing duplicate branch
instructions with exactly the same action except for the fact that one causes
the guess to be that control will be diverted to the new location and the other
causes the guess to be that control will remain sequential.

* ISDL: Instruction Set Description Language. A behavioral machine descrip-
tion language specifically designed to support a wide variety of architectures
(including VLIW) and support the automatic generation of design environment
tools. It closely models the structure of the Programmer's Manual.

* Instruction: The smallest logical unit that can be fetched by a processor.
For VLIW architectures this might correspond to a number of operations, all
grouped together into a single unit. For Super-Scalar architectures this may be
a small part of what can be decoded and dispatched by the hardware.

e Instruction Field: A set of mutually exclusive but related operations in the
instruction set of a target architecture. These typically (but not always) corre-
spond to all the operations that a single functional unit in a VLIW architecture
can perform.

o Instruction Level Parallelism: The ability to execute more than a single
operation at any given time when this ability is visible in the instruction set of
the target architecture. This, for example, would not encompass the parallelism
in a super-scalar architecture, where the instruction set looks the same as that
of a unifunctional architecture but operations are actually performed in parallel
on multiple functional units.

o Instruction Level Simulator: A simulator for a target architecture that sim-
ulates effects visible in the instruction set but no lower than that. For example,
the simulator may give cycle-accurate simulation for the target architecture but
not have an explicit model of the pipeline and thus make it impossible to inspect
the state of the pipeline at any given time (the pipeline is not generally visible
in the instruction set).
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e Instruction Set Section: A section of an ISDL description that contains the
definitions for all the operations available in the instruction set of the target

architecture.

e Interrupt: A hardware signal that triggers a control flow operation in the

processor. Control is diverted away from normal program execution and to a

fixed address which may or may not depend on the signal that triggered the

control flow operation. A small program called an interrupt handler resides at
this address. This program attempts to deal with whatever condition asserted

the hardware signal in the first place. Typically interrupts are used by periph-
erals to signal to the processor that they require attention. Interrupts may also

cause mode changes in the processor (such as a switch from normal user mode

to privileged mode).

* Interrupt Handler: A small piece of code that is executed when a specific
interrupt event occurs and which attempts to service the interrupt.

e Latency: The number of instructions that need to be fetched before the effects
of the current operation become visible.

* Lex: A lexical analyzer generator (a tool that receives as input a file containing

regular expressions describing the lexical entities of a language and generates
as output code that will implement a lexical analyzer) [25]. The lexical analyzer

that is used to process ISDL descriptions was generated by Lex. The generated

assemblers also use lexical analyzers generated by Lex to process their input
files.

e Lexical Analyzer: A program that divides an input stream of characters

into lexical entities. Together with a parser it can be used to parse input
files written in various languages. ISDL descriptions are parsed using a lexical
analyzer generated by Lex. The generated assemblers also use lexical analyzers

generated by Lex to process their input files.

* Load/Store Architectures: A class of architectures in which all operations
except loads and stores take their inputs from and write their results to registers.

* Loop Counter: A special purpose register in the data path used to keep count
of how many iterations a zero overhead loop has performed (or has remaining).

* Loop Destination Address: The address of the first instruction in a zero
overhead loop (where the loop will branch back to for each iteration until it

terminates).

* Loop Termination Address: The address of the last instruction in a zero
overhead loop (after which the test is performed to see if the loop terminated

or if another iteration should be executed).
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* Macro Definitions: Definitions of text to be expanded into longer and more
complicated pieces of text by a preprocessor, before the description is actually
processed by the tools. It allows common text patterns to be given shorter
names in order to shrink the size of a description.

e Memory Management Hardware: Hardware that handles address transla-
tion schemes (such as the ones needed for virtual memory).

* Memory-Mapped I/O: A group of control registers that appears as memory
to the Instruction Set but has the function of communicating with I/O pe-
ripherals. Typically, a processor can read from and write to these locations in
the same way that it would read from or write to normal memory (sometimes
using exactly the same operations). However, writes to memory-mapped I/O
locations change the state of I/O peripherals and ports, and reads inspect the
values and state on I/O peripherals and ports.

* Micro-controller: A processor designed mainly to control other peripherals.
Such processors typically have small instruction words and narrow data paths

(usually 8-bit instructions and 8-bit data paths) but have a characteristically
disproportionate amount of I/O capability (such as three 8-bit bi-directional
ports, a serial port and an external memory bus on an 8-bit micro-controller).
They appear mostly in control-dominated applications.

* Multiple Operation Definitions: Operation definitions within the same field
that share a common operation name but different numbers and/or types of
arguments.

* Non-Terminal: An abstraction that groups syntactically unrelated entities
into a logical group. Conceptually, a non-terminal consists of a number of
alternatives, any of which may be replace the non-terminal in an actual instance
of an operation. These alternatives are called options.

* Non-Terminal Costs Clause: Different options in a single non-terminal may
result in different costs in an operation that uses this non-terminal. Non-
terminals contain a set of cost expressions that allow operations to account
for this by providing each option with its own set of cost expressions. This set
of expressions is called a costs clause.

* Non-Terminal Option: One of the many possible alternatives that a non-
terminal groups together into an abstraction. Each option consists of a syntax
definition, a return value, an RTL action, an RTL side effect, a costs clause,
and a timing clause.

e Non-Terminal RTL Action: This is the part of a non-terminal option defini-
tion that describes the action of the particular option (usually simply a storage
reference). Each option in the non-terminal definition has its own RTL action
clause.
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* Non-Terminal RTL Side Effect: This is the part of a non-terminal option
definition that describes the side effects of the particular option (usually simply
a storage reference). Each option in the non-terminal definition has its own side
effects clause.

* Non-Terminal Return Value: Since a non-terminal is a conceptual abstrac-
tion of a number of different options, there must be a mechanism of differen-
tiating between options once a non-terminal is instantiated. This is done by
providing a return value which is different for each option in the non-terminal.
This return value can then be used to perform the bitfield assignment for the
non-terminal so it is very common to encode the return values in such a way
that they are identical to the binary image of the non-terminal.

* Non-Terminal Timing Clause: Different options in a single non-terminal
may result in different timing in an operation that uses this non-terminal. Non-
terminals contain a set of timing expressions that allow operations to account
for this by providing each option with its own set of timing expressions. This
set of expressions is called a timing clause.

e Op-code: Operation Code. A bitfield whose value typically uniquely identifies
the type of operation to be performed by a processor or functional unit.

* Operation: The smallest unit of data manipulation that can be independently
performed by the hardware. In VLIW architectures this is by definition a sub-
part of the instruction since each VLIW instruction can be considered to be
performing a number of independent data manipulations on each of its func-
tional units. In other words, a VLIW instruction consists of multiple operations.
In unifunctional architectures, the operation is by definition the instruction.

* Operation Assembly Definition: The part of an operation definition that
provides the assembly syntax for the operation. It is also used to give a name
to the operation. It is written in terms of an operation name and a list of
parameters which may be tokens or non-terminals.

* Operation Bitfield Assignment: The part of an operation definition that
contains the description of how to perform all the bitfield assignments for the
binary image of the operation. It is written in a restricted expression form based
on assignments.

* Operation Costs: The part of an operation definition that declares the costs
associated with an operation. All costs in ISDL are numerical.

e Operation Definition: A set of ISDL clauses which fully defines a single
operation within an instruction field.

* Operation Match: A regular expression that returns true if an operation (or
one of a group of operations) is present in an instruction.
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e Operation RTL Action: A description of the desired effects of the operation
on processor state, written in an RTL-type language. If the operation makes
use of non-terminals, the RTL action definition of the operation may refer to
the RTL action definition of the non-terminals.

e Operation RTL Side Effect: A description of the side effects of an operation
on visible state, written in an RTL-type language. If the operation makes use
of non-terminals, the side effects definition of the operation may refer to the
side effects definition of the non-terminals.

e Operation Timing: The part of an operation definition that declares the
timing parameters associated with an operation. All timing parameters in ISDL
are numerical. Timing parameters are mainly concerned with when the effects
of an operation become visible in the state of the machine.

e Optional Architectural Information Section: A section of an ISDL de-
scription that provides information on the target architecture that might not
be necessary for useful design tools to be generated, but may result in better
tools. Information on the cache system is a good example - this information
is not necessary to generate a code-generator or a simulator but both might
benefit from the extra information.

* Orthogonal Operations: Operations that can be performed in parallel and
do not affect each other in any way. In particular, the presence of one operation
cannot preclude the presence of the other and the form of one operation cannot
restrict the form of the other. In VLIW architectures, all operations would be
orthogonal if there were no hardware restrictions. In practice this is rarely the
case.

e Partitioning (Hardware/Software): The process of dividing a task into
two sub-parts and assigning one part to a custom hardware (i.e. ASIC) imple-
mentation and the remainder to a software implementation. The main goal of
the process is to select the partition between the two parts so that cost and
performance are optimized.

e Program Counter: A special purpose register present in every architecture,
which points to the current (or next in some cases) instruction in the instruction
stream. Typically the contents of this register cannot be explicitly transferred
to another location (i.e. read). Furthermore, changing the value of this register
diverts control to a new point in the instruction stream and the value automat-
ically gets updated on every instruction fetch. In this respect, it behaves like
a control register which can only be written using control flow operations and
cannot be read explicitly.

* RISC: Reduced Instruction Set Computer. A processor with a simple archi-
tecture and a small instruction set. Typically such processors have very few
addressing modes (most such processors are load/store architectures). They
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often have simple pipeline implementations that are capable of executing each
instruction in one clock cycle and have very fast clock speeds. This gives them

a high throughput but results in larger code size for the same input source

code (note that this may make instruction caches less efficient and thus reduce

effective throughput).

* RTL Functions: A provision in the version of RTL that ISDL supports, to

call functions to perform specialized data manipulation (such as floating point
operations etc.). ISDL pre-defines a set of RTL functions; more may be defined

and used if the tools that process ISDL are updated to make use of them.

* Range Operator: An operator that denotes a range of numbers or characters
by listing the beginning value and the ending value of the range.

* Register File: An addressed storage unit, typically equipped with multiple

ports, through which a functional unit may access multiple registers. The regis-

ters are typically of the same width. Register files are typically used to provide
the source and destination operands to operations in load/store architectures.

They are, more often than not, closely coupled to one or more functional units
and can therefore be accessed in a single clock cycle.

* Register Transfer Language: RTL. A type of language well suited to describ-
ing the behavior of data paths. The main type of statement is an assignment

which assigns a new value to a piece of state. The language also contains a

number of control features that allow it to specify the behavior of control cir-
cuitry as well. ISDL, however, has its own concept of control so it only makes
use of a restricted subset of the language to describe the behavior of the data

paths on a per-operation basis.

* Regular Expressions: An expression syntax specifically designed to describe
regular grammars. It makes heavy use of wild-card characters. ISDL regular
expressions are augmented with variable matches which require the usage of a

stack.

* Regular Grammar: A grammar is a set of input strings. A regular grammar

is one that can be identified by an FSM.

* Resource Conflict: An attempt by two different operations to use the same
data path resource (such as a register, data bus, or port on a register file) for

different purposes. If an architecture's instruction encoding exposes resource
conflicts to the instruction set, then a number of restrictions must be placed
on the operations to avoid such conflicts. Operations that result in a resource
conflict can never be executed successfully by the hardware.

* Retarget able Compiler: A compiler which is capable of emitting output code
for new architectures when provided with a description of these architectures.

127



e Retargetable Simulator: A simulator which has the ability to obtain a de-
scription of a new architecture and assume the task of simulating that particular
architecture.

e Saturation Arithmetic: A method of handling overflow (underflow) in arith-
metic operations. If the result overflows (underflows), the appropriate flag is set
and the largest (smallest) number that can be represented by the architecture
is produced as the result.

e Split Function: A function that can take a large binary constant and split it
into a number of bitfields. These functions are automatically generated from
split function definitions in the Global Definitions Section.

e Stack: A type of storage unit that behaves like a stack of plates: i.e. multiple
values can be stored and the last value stored will be the first one read. It is an
addressed storage unit which uses a special purpose register (the stack pointer)
to provide the address, and two special purpose operations to read and write
the contents. Pop reads the contents of the location pointed to by the stack
pointer and decrements the stack pointer automatically. Push increments the
stack pointer first and then writes a value into the location pointed to by the
new value of the stack pointer. It is an error to pop a value from an empty
stack or to push a value onto a full stack. Typically only the value pointed to
by the stack pointer (called the top of the stack) can be accessed even though
a stack is a form of addressed storage.

e Stack Pointer: The special purpose register that provides the address for a
stack.

e Stall Cost: The maximum additional number of cycles taken up by stalls, when
the next instruction tries to use the results of the current operation. Note that
this cost is derated linearly as the distance between the current operation and
the instruction which attempts to use the results increases. In other words, if
the stall cost is 3, and the instruction using the results of the current operation
is the next instruction (distance 1), the actual number of stall cycles is 3. If the
distance increases to two (i.e. the instruction using the results is the instruction
after the next one) the actual number of stall cycles is 2, and so on until the
stall cost falls to 0. Stall cost is one of the ISDL predefined costs.

* State: The collective amount of visible storage in a processor. This is equivalent
to the storage of the processor, with the distinction that storage usually refers
to the actual storage elements available while state usually refers to the values
contained in these storage elements. A processor can be modeled in terms of
its state and the operations that modify this state.

9 Storage: The collective amount of storage elements present in a processor and
visible to the programmer. This is equivalent to the state of the processor,
with the distinction that storage usually refers to the actual storage elements
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available while state usually refers to the values contained in these storage
elements.

* Storage Alias: An alternative name for a subset of the state of a processor. It
usually groups together subsets of the storage already defined and treats them
as new storage units, with the exception that changes in the subset affect the
value read from the newly defined state (the aliased state) and vice versa.

* Storage Depth: Addressed storage can be considered as a collection of regis-
ters (special purpose or otherwise). The number of such registers that make up
an addressed storage unit is referred to as the depth of the storage unit. The
depth of a single register (a single storage element) is 1.

* Storage Reference: An expression identifying a subset of the storage available
in a processor. It consists of a name, possibly an address or range of addresses

(using a range operator), and/or a subset of bits within the named storage unit.
The name can be the identifier associated either with a properly defined storage
unit or the identifier of a storage alias.

e Storage Section: The section of an ISDL description that describes the storage
units available to the programmer. It consists of a list of storage unit definitions
and, possibly, a number of storage aliases.

* Storage Type: The type of a storage unit. ISDL currently defines the following
types of storage units: memories (including instruction memories), register files,
stacks, registers, control registers, a program counter and memory-mapped I/O
locations.

* Storage Width: The width in bits of a storage element. For a register (control
or otherwise) this is the total number of bits in the register. For an addressed
storage unit, this refers to the width of each element in the storage unit (which
should be the same for all elements in the storage unit).

* Structural Language: A language that describes a target architecture by
giving the structure of the architecture (i.e. by describing the functional units
and storage elements in the architecture and how these are connected together).
Structural languages contain much information which is not relevant to code
generation or instruction level simulation, but can be used to generate both the
tools as well as an implementation of the architecture.

e Super-Scalar: A way of allowing parallelism in the implementation of a pro-
cessor without exposing this parallelism to the instruction set. Thus, super-
scalar architectures typically have instruction sets which are reminiscent of uni-
functional processors, but have implementations that contain multiple identical
functional units and issue instructions to these units in parallel whenever prece-
dence constraints in the software allow it. In effect, super-scalar architectures
do some code-scheduling in hardware while VLIW architectures with multiple
identical functional units do all their scheduling in software.
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" Time-Shifted Constraint: A constraint that expresses a restriction between
instructions issued at different times.

" Timing: A model describing when the effects of a given operation are visible to
other operations. Usually expressed in terms of one or more numerical values.

" Token: A token is an ISDL abstraction which groups together one or more
lexically related entities (such as the names of registers in a register file).

" Token Assembly: The part of a token definition that describes the assembly
syntax of the lexically related entities grouped under a token.

" Token Return Value: Since tokens group together one or more lexical entities,
it is necessary to provide a mechanism that identifies which of the lexical entities
was present for a particular instantiation of a token. This is provided by the
return value which is a numerical value unique to each of the lexical entities
grouped under a token. The return value is often used to generate a binary
image for the entity represented by the token, so the encodings of the return
values should be chosen to make this process easier.

" Trap: An exception generated by the use of an operation specifically designed
for this purpose. Just as in the case of normal exceptions, control is diverted to
a fixed address where a trap handler attempts to service the exception. Traps
may be, and often are, accompanied by changes in the mode of the processor

(such as a change from user mode to privileged mode). They are often used to
trigger execution of kernel functions in privileged mode, or to inform a piece of
privileged code (usually the kernel) of a required service.

" Trap Handler: A small piece of code that is executed when a specific trap
event occurs, and which attempts to service the trap.

" Truncation Arithmetic: A method of handling overflow (underflow) in arith-
metic operations. If the result overflows (underflows), the appropriate flag is
set and the result is set to as many bits as the destination can hold (i.e. the
top few bits are truncated).

" Unifunctional: An architecture that can only perform one operation at a
time. This does not necessarily mean that it only has one functional unit. It
does mean that only one functional unit is active at any given time (ignoring
program counter increment operations). Unifunctional architectures have no
instruction level parallelism.

" Usage(Timing): A timing parameter associated with each operation that de-
clares when the "functional unit" executing the operation may be used again.
A usage of 2 means that the "functional unit" (i.e. the field containing this op-
eration) may not be used in the next instruction, and therefore a NOOP should
be selected from the corresponding field in the next instruction. If any other
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operation is selected instead, the hardware will stall the next instruction until
the functional unit becomes available once again.

* VLIW: Very Long Instruction Word. An architecture with instruction level
parallelism, capable of performing multiple operations on multiple functional
units at the same time. Each functional unit is typically independent of the
others and has its own dedicated bitfields in the instruction word. This typically
results in very large word lengths, hence the name.

e Variable Length Instructions: Some architectures have instructions that
may be of different lengths (depending on the action that the instruction is
taking). The instruction word of such an architecture is called a Variable Length
Instruction.

* Variable Match: An operation match containing a variable binding wild-card.
The first time the given variable binding occurs it will match zero or more
characters of any type and store these in a variable. Any subsequent times it
occurs, it will only match the string that was stored in the variable after the
first match.

* Visible State: The collective state in a processor that can be explicitly in-
spected and/or modified by the use of a sequence of processor instructions.
Thus, all registers that can be directly written to or read from with operations
from the instruction set, are part of the visible state. All registers that cannot

(such as temporary registers in certain functional units and the registers making
up a pipeline) are not considered part of the visible state.

* Wild-cards: Special characters in regular expressions that can match more
than a single character and may match one or more copies of such characters.
For example "?" will match any single character while "*" will match zero or
more copies of any single character.

e Yacc: Yet Another Compiler Compiler[25]. A parser generator which takes
a description of a context free grammar and generates a parser to parse it.
The generated parser in combination with a lexical analyzer can be used to
process inputs in a given language (hence the name compiler compiler). ISDL
is processed using a parser generated by Yacc. The generated assemblers also
use parsers generated by Yacc. Yacc generates SR parsers with single token
lookahead and this must be taken into account when generating grammars for
them.

* Zero Overhead Looping: A methodology of creating efficient software loops
by performing all control overhead associated with the loop (such as decrement-
ing a counter variable, checking the variable for zero or some other value, and
performing flow control) in hardware. Since data dominated applications often
make heavy use of small data manipulation loops, most DSP processors provide
one or more forms of zero overhead looping.
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Appendix B

BNF Syntax of ISDL

NAME [a-zA-zl[a-zA-ZO-9_1+

INT -?[0-9]+
HEX Ox[0-9A-F]+ I Ox[0-9a-f]+
FLOAT := -?[0-9] +\. [0-91 +( [eEl -? [0-91+)?
STRING "[^"]*" [

CHAR

DIGIT [0-91
SPACE [ \t\n]+

RGXRNG \[[^\]]*(\\\])?[^\]]*\]

<number>

<constant>

<range-operator>

<index-operator>

INT

INT

E[)
E[)

I HEX

I HEX I FLOAT
<number> '-' <number> )])

<number> )])

<ISDLDescription> <Format> <Definitions> <Storage> <Instruction>

<Constraints> <Optional>

<Format>

<Format-FieldList>

<FormatField>

'Section' 'Format' <Format _FieldList>

<FormatField> I
<FormatField> <FormatFieldList>

NAME '=' <FormatSubfieldList> );)

<FormatSubfieldList> := <FormatSubfield> I
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<FormatSubfield>

<Definitions>

<DefinitionsList>

<SingleDefinition>

<TokenDefinition>

<Token-Syntax>

<TokenRangeOperato

<TokenReturn>

<FormatSubfield> ',' <FormatSubfieldList>

NAME <index-operator>

'Section' 'GlobalDefinitions'

<DefinitionsList>

<Single-Definition> I
<SingleDefinition> <DefinitionsList>

<TokenDefinition>

<NonTerminalDefinition> I
<SplitFunctionDefinition>

'Token' <TokenSyntax> NAME <TokenReturn> ;

NAME I NAME <TokenRangeOperator> I

STRING I STRING <TokenRangeOperator>

r> '[' <number> '..' <number> ']'

'{' '}' I '{' <number> '; '}'

{ <TokenRangeOperator> ;'}

<NonTerminalDefinition> 'NonTerminal' NAME ':'

<NonTerminalOptionList>

<NonTerminalOptionList> <NonTerminalOption> I
<Non-TerminalOption> '' <NonTerminalOptionList>

<NonTerminalOption> := <NTOptionSyntaxList> <NTOptionReturn>
<NTOptionAction> <NTOptionSideEffect>

<NTOptionCostMod> <NTOptionTimingMod>

<NTOption-SyntaxList> := <NTOptionSyntaxItem> I
<NTOptionSyntaxItem> <NTOptionSyntaxList>

<NTOptionSyntaxItem> := NAME I CHAR

<NTOptionReturn> := '{' <NTOptionReturnAssignmentList> }
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<NT.OptionReturnAssignList> <NTOptionReturnAssignItem>

<NTOptionReturnAssignItem>

<NT-OptionReturnAssignList>

<NTOptionReturnAssignItem> <NTORAssignLeft> '='

<BitfieldAssign-Expression> ';'

<NTORAssign-Left> <BitfieldAssignLeft> I

<NTOptionAction> '{' <RTLPartial> }

<NTOptionSideEffect> '{' <RTLPartial> }

<NT_0ptionCostMod> '{' <CTClause> }

<NTOptionTimingMod> '{' <CTClause> }

<RTLPartial> := <RTLStatement_List> I <RTLExpression>

<SplitFunctionDefinition> := 'Split' '.' NAME
<SplitFunctionSubfieldList> 1;'

<SplitFunctionSubfieldList> <SubfieldName> I
<SubfieldName> '+'

<SplitFunctionSubfieldList>

<SubfieldName> NAME '.' NAME

<Storage> 'Section' 'Storage' <StorageDefinitionList>

<StorageDefinitionList> := <StorageDefinition> I
<StorageDefinition> <StorageDefinitionList>

<StorageDefinition> <IMEMDefinition> I
<MEMDefinition> I
<RegFile-Definition> I
<RegDefinition> I
<CRegDefinition> I
<MMIODefinition> I
<PCDefinition> I
<StackDefinition> I
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<AliasDefinition>

<IMEMDefinition> 'Instruction' 'Memory'

NAME '=' <AdressedSize>

<MEMDefinition> 'Memory' NAME '' <AdressedSize>

<RegFileDefinition> 'RegFile' NAME '=' <AdressedSize>

<RegDefinition> 'Register' NAME '=' <RegisterSize>

<CRegDefinition> 'CRegister' NAME '=' <RegisterSize>

<MMIODefinition> 'MMI0' NAME '=' <AdressedSize>

<PCDefinition> 'ProgramCounter' NAME '=' <RegisterSize>

<StackDefinition> 'Stack' NAME '(' NAME ')' ''

<AdressedSize>

<AliasDefinition> 'Alias' NAME <StorageReferenceList> ';'

<StorageSize>

<AdressedSize> <number> ',' <number>

<RegisterSize> <number>

<StorageSize> <AdressedSize> I <RegisterSize>

<StorageReferenceList> := <StorageReference> I
<StorageReference> ',' <StorageReferenceList>

<StorageReference> NAME

NAME <IR-operator>

NAME <IR.operator> <IR-operator>

<IR-operator> <index-operator> I <range-operator>

<Instruction> 'Section' 'InstructionSet' <InstField-List>

<InstFieldList> <InstField> I
<InstField> <InstFieldList>
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<InstField> 'Field' NAME ':' <OperationDefinitionList>

<OperationDefinitionList> := <OperationDefinition> I
<OperationDefinition> <OperationDefinitionList>

<OperationDefinition> <OperationSyntax>

<OperationBitfieldAssign>

<Operation-Action>

<OperationSideEffects>

<OperationCosts> <OperationTiming>

<OperationSyntax> NAME <OperationParameterList> I
NAME

<OperationParameterList> NAME I
NAME ',' <OperationParameterList>

<OperationBitfieldAssign> '{' <BitfieldAssignList> }

<BitfieldAssignList> <BitfieldAssign> I
<BitfieldAssign> <BitfieldAssignList> I

<BitfieldAssign> <BitfieldAssignStatement> I
<AdditionalWordClause>

<BitfieldAssignStatement> := <BitfieldAssignLeft>

<BitfieldAssignExpression> ';'

<BitfieldAssignLeft> <Subfield-Name> I 'Split' '.' NAME

<BitfieldAssignExpression> := <number>

NAME

'CURRENT'

SubfieldName

( <Bitfield_AssignExpression> ')'

<BitfieldAssignExpression>

<BitfieldAssignExpression> <BABinaryOperator>

<BitfieldAssignExpression>

<BABinaryOperator> '&' 'I' ) '' I '+' I '*' I ' I <<

<AdditionalWordClause> 'Additional' '(' <number> '

<BitfieldAssignStatement> ')' ';'
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<OperationAction> '{' <RTLStatement-List> }

<OperationSideEffects> '{' <RTLStatementList> }

<OperationCosts> '{' <CTClause> }

<OperationTiming> '{' <CTClause> }

<RTLStatementList> <RTLStatement> I
<RTLStatement> <RTLStatementList>

<RTLStatement> <RTLDeclaration>

<RTLAssignment>

<RTLIfClause>

<RTLForClause>

<RTLWhileClause>

<RTLSwitchClause> I
NAME ';1

<RTLFunctionCall>

<RTLDeclaration> 'int' <number> NAME ';

<RTLAssignment> <RTLAssignLeft> '<-' <RTLExpression> ;

<RTLIfClause> 'if' '(' <RTLExpression> ')'
'{' <RTLStatementList> '}' ';'

'if' '(' <RTLExpression> ')'
'{' <RTLStatementList> }

'else' '{' <RTLStatementList> } ;

<RTLForClause> 'for' '(' <RTLStatement> <RTLExpression>

<RTLStatement> ')' '{' <RTLStatementList> }

<RTLWhile Clause> 'while' '(' <RTLExpression> ')'

{ <RTLStatementList> } ;

<RTLSwitchClause> 'switch' '(' <RTLExpression> ') {

<SwitchCaseList> <SwitchOptionalDefault> } ;

<SwitchCaseList> <SwitchCase> I
<SwitchCase> <SwitchCaseList>

<SwitchCase> 'case' <number> ':' '{'

<RTLStatementList> }
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<SwitchOptio

<RTLAssignL

<TokenName>

<NonTerminal

<TmpName>

<RTLExpressi

<RTLSystem_F

<RTLUnaryOp

<RTLBinaryC

<RTLFunctior

<RTLParametE

<RTLParametE

<CTClause>

<CTAssignLi

<CTAssign>

nalDefault> 'default' {

<RTLStatementList> '}'

eft> <StorageReference> I <TokenName>
<NonTerminalName> I <TmpName> I 'NULL'

NAME

_Name> NAME

NAME

on> <constant>

<StorageReference>

<TokenName>

<NonTerminalName>

<TmpName>

<RTLSystemFlag>

<RTLUnaryOperator> <RTLExpression>

<RTLExpression> <RTLBinaryOperator> <RTLExpression>

<RTLFunctionCall>

'(' <RTLExpression> ')'

lag> NAME I <RTLFunctionCall>

erator> : ~ I '! -

perator> : +' I '-' I '*' I '/' | ' ' I '>> I '«<

_Call> NAME '(' <RTLParameterList> ))

NAME '(' ')'

r_List> <RTLParameter> I
<RTLParameter> ',' <RTLParameterList>

r> <RTLExpression> I STRING

<CT AssignList>

st> <CTAssign> I
<CTAssign> <CTAssignList>

NAME '=' <CTExpression> ';'
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<CTExpression> <constant>

<TokenName>

<NonTerminalName>

<Field-Name>

<StorageReference>

<CTUnaryOperator> <CTExpression>

<CTExpression> <CTBinaryOperator> <CTExpression>

<CTFunctionCall>

<CTUnaryOperator>

<CTBinaryOperator>

<CTFunctionCall>

<CTParameterList>

<Constraints>

<ConstraintList>

<Constraint> := <

:= I+ '-' I '*' I / 'I' | '==' I <

'>' I '<=, I >=

NAME '(' <CTParameterList> ')'

NAME '(' ')'

<CTExpression> I
<CTExpression> ',' <CTParameterList>

Section' 'Constraints' <ConstraintList>

<Constraint> I
<Constraint> <ConstraintList> I

ConstraintExpression>

<ConstraintExpression> '(' <RegularExpression> ')'

<ConstraintUnaryOperator> <Constraint-Expression>

( <ConstraintExpression> <ConstraintBinaryOperator>

<ConstraintExpression> ')'

<RegularExpression> <Widlcard>

<VariableMatch>

<RegexConstant>

<RegexRange>

<RegularExpression> <RegularExpression>

<ConstraintUnaryOperator> : ' I <TimeShiftOperator>

<ConstraintBinaryOperator> ='&' I ''
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<TimeShiftOperator>

<Widlcard>

<VariableMatch>

<Regex-Range>

<RegexConstant>

<simple-char>

<escaped-char>

<Optional>

<index-operator>

:= '?' I + *

S '' DIGIT

RGXRNG

NAME I <simple-char> I DIGIT
<escaped-char>

SPACE I '$' I '' I ''' I '''

{ ' | '%' '-' I '}' I
> '<' I ',' | '.' I ':' I

:= \ ' I '\^' | '\&' | '\*' I '\+'
\? I '\[' I '\]' |I \|

:= 'Section' 'Optional'
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Appendix C

Example Descriptions

C.1 The SPAM VLIW-1 Architecture

DB2

DB1

I7 II
U1 U2 U3

ADD(+) ADD(+) ADD(+)
SUB(-) MUL(*) MUL(*)

SUB(-)

D Instruction

A Memory

D Data

A Memory

Figure C-1: The SPAM VLIW-1 Architecture.

Section Format

= OP[2],

= OP[2],

= OP[2],
= SRC[51

= SRC[5]

RA[2], RB[2], RC[2];
RA[2], RB[2], RC[2];

RA[2], RB[2], RC[2];

DEST[5];

DEST[5];

/ ---------------------------------------------------

Section Global-Definitions

// assembly

Token "U1.R"[O.

Token "U2.R"[O.

Token "U3.R"[O.

.3]

.3]

.31

token

U1_R

U2_R
U3_R

value

{ [O..3]; };
{ [0..3]; };

{ [O..3]; };
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NonTerminal UtRA: UtR { $$ = UtR; } {Ut[UR]} {} {} {}
NonTerminal UtRB: UtR { $$ = U1_R; } {Ut[URI} {} {} {}
NonTerminal UtRC: U1_R { $$ = U1_R; } {Ut[URI} {} {} {}

NonTerminal U2_RA: U2_R { $$ = U2_R; } {U2[U2_R]} {} {}
NonTerminal U2_RB: U2_R { $$ = U2_R; } {U2[U2_R]} {} {}
NonTerminal U2_RC: U2_R { $$ = U2_R; } {U2[U2_RI} {} {}

NonTerminal U3_RA: U3_R { $$ = U3_R; } {U3[U3_RI} {} {}
NonTerminal U3_RB: U3_R { $$ = U3_R; } {U3[U3_R1} {} {}
NonTerminal U3_RC: U3_R { $$ = U3_R; } {U3[U3_R1} {} {}

NonTerminal SRC:

NonTerminal DEST:

NonTerminal ADDR:

NonTerminal OFFS:

Ut_R {
U2_R {
U3_R {

UtR {
U2_R {

U3R {

INT {
NAME {

INT {

NAME {

$$
$$
$$

$$
$$
$$

$$
$$

$$
$$

OxOO I UR; } {Ut[UtR]}
Ox04 I U2_R; } {U2[U2_R]}
Ox08 I U3_R; } {U3[U3_R]}

OxOO I UtR; } {Ut[URI}
Ox04 I U2-R; } {U2[U2_RI}
Ox08 I U3_R; } {U3[U3_R]}

{}
{}
{}

{}
{}
{}

{}
{}
{}

{}
{}
{}

{}
{}
{}

{}
{}
{}

{}
{}
{}

{}
{}
{}

= INT; } {INT} {INT} {} {}
= NAME; } {NAME} {NAME} {} {}

= INT; } {INT} {INT}

= NAME - CURRENT; }
{} {} I

{NAME - PC} {NAME - PC} {} {}

#define REG SRC

#define LOC DEST

Split.Const

Split.Addr

Split. Off s

Ut.RB+Ut.RC;

DBt.SRC+DBt.DEST+DB2.SRC;

DBt.SRC+DBt.DEST;

// -----------------------------------------------------------------

Section Storage

//
Instruction Memory INST

Memory DM

RegFile Ut
RegFile U2
RegFile U3

ProgramCounter PC

= entries , bitsper.entry

= Ox10000 , Ox2C

= Ox10000 , Ox10
= 0x4 , Ox10
= Ox4 , Ox10
= Ox4 , Ox10
= xO10
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// --------------------------------------------------------------

#define DEFINENULLOP {} { NULLOPO; } {} {} {}

#define ADDm(x,y) ADD(x,y,16,"trn")

#define SUBm(x,y) SUB(x,y,16,"trn")

#define MULm(x,y) MUL(x,y,16,16,"trn")

#define SEXTm(x,y) SEXT(x,y,16)

Section InstructionSet

Field Ulf:

UtNULL DEFINENULLOP

Utadd UtRA, UtRB, UtRC

{ Ut.OP = OxO; Ut.RA = Ut_RA;
Ul.RB = UtRB; Ut.RC = UtRC; }

{ UtRC <- ADDm(UtRA,URB); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

Utsub Ut_RA, UtRB, UtRC

{ Ut.OP = Oxt; Ut.RA = UtRA;
Ut.RB = UtRB; Ut.RC = UtRC; }

{ UtRC <- SUBm(UtRAUtRB); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

Utaddc UtR, INT

{ Ut.OP = Ox2; U1.RA = Ut_R;
Split.Const = INT & OxF; }

{ Ut[UtR] <- ADDm(U[UR], SEXTm(INT, 4)); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

Utnop

{ Ut.OP = Ox3; }
{ NOPO; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

Field U2f:

U2_NULL DEFINENULLOP
U2_add U2_RA, U2_RB, U2.RC
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{ U2.OP = OxO; U2.RA = U2_RA;
U2.RB = U2_RB; U2.RC = U2_RC; }

{ U2_RC <- ADDm(U2_RAU2_RB); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

U2_sub U2-RA, U2_RB, U2.RC

{ U2.OP = Ox1; U2.RA = U2_RA;
U2.RB = U2_RB; U2.RC = U2_RC; }

{ U2_RC <- SUBm(U2_RA,U2_RB); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

U2_mul U2_RA, U2_RB, U2_RC

{ U2.OP = Ox2; U2.RA = U2_RA;
U2.RB = U2_RB; U2.RC = U2_RC; }

{ U2_RC <- MULm(U2_RAU2_RB); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

U2_nop

{ U2.OP = Ox3; }
{ NOPO; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

Field U3f:

U3_NULL DEFINENULLOP

U3_add U3_RA, U3_RB, U3_RC

{ U3.OP = Ox0; U3.RA = U3_RA;
U3.RB = U3_RB; U3.RC = U3_RC; }

{ U3_RC <- ADDm(U3_RAU3_RB); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

U3_mul U3_RA, U3-RB, U3_RC

{ U3.OP = Ox1; U3.RA = U3_RA;
U3.RB = U3_RB; U3.RC = U3_RC; }

{ U3_RC <- MULm(U3_RAU3BRB); }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

U3_nop

{ U3.OP = Ox3; }
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{ NOP(); }

{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

// DB1 is used for the data

Field DB1:

DB1_NULL DEFINENULLOP

DB1_move SRC, DEST

{ DB1.SRC = SRC; DB1.DEST = DEST; }
{ DEST <- SRC; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

DB1_moveim INT, DEST

{ DB1.SRC = Ox1O I (INT & OxF); DB1.DEST = DEST; }
{ DEST <- INT; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

DB1_nop

{ DB1.DEST = Ox1F; }
{ NOPO; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

// DB2 is used for the address

Field DB2:

DB2_NULL DEFINENULL.OP

DB2_move SRC, DEST

{ DB2.SRC = SRC; DB2.DEST = DEST; }
{ DEST <- SRC; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

DB2_moveim INT, DEST

{ DB2.SRC = 0x10 I (INT & OxF); DB2.DEST = DEST; }
{ DEST <- INT; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

DB2-nop

{ DB2.DEST = Ox1F; }
{ NOPO; }
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{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

#define DMdata OxOC

#define DMaddr OxOD

Field DMf:

DMNULL DEFINENULLOP

// DB1.SRC gets code for DMDATA, DB2.DEST gets code for DMADDR

DMld REG, LOC

{ DB1.SRC = DMdata; DB1.DEST = REG;
DB2.SRC = LOC; DB2.DEST = DMaddr; }

{ REG <- DM[LOCI; }
{}
{ Cycle = 1; Size = 1; Stall = 1; }
{ Latency = 1; Usage = 1; }

// DB1.DEST gets code for DMDATA, DB2.DEST gets code for DMADDR

DMst REG, LOC

{ DB1.SRC = REG; DB1.DEST = DMdata;
DB2.SRC = LOC; DB2.DEST = DMaddr; }

{ DM[LOCI <- REG; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

#define IMdata OxOE

#define IMaddr OxOF

Field IM:

IMNULL DEFINENULLOP

// DB1.SRC gets code for IMDATA, DB2.DEST gets code for IMADDR

IMld REG, LOC

{ DB1.SRC = IMdata; DB1.DEST = REG;

DB2.SRC = LOC; DB2.DEST = IMaddr; }
{ REG <- INSTELOCI; }
{}
{ Cycle = 2; Size = 1; Stall = 1; }
{ Latency = 1; Usage = 1; }

// DB1.DEST gets code for IMDATA, DB2.DEST gets code for IMADDR

Imst REG, LOC

{ DB1.SRC = REG; DB1.DEST = IMdata;
DB2.SRC = LOC; DB2.DEST = IMaddr; }

{ INSTELOCI <- REG; }
{}
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{ Cycle = 2; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

// Control section

// Note that this uses the DB fields to perform control.

// We have available to us all codes where DB2.DEST = 0x10 - Ox1E

// inclusive. Because the above codes are unique we can do anything

// we want with DB2.SRC. We will take over the DB1 bitfields as well

// to store constants

Field Control:

C_NULL DEFINENULLOP

C-jump ADDR

{ DB2.DEST = 0x10; Split.Addr = ADDR; }
{ PC <- ADDR; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

C_brz SRC, OFFS

{ DB2.DEST = 0x11; Split.Offs = OFFS; DB2.SRC = SRC; }
{ if (SRC == 0) { PC <- PC + SEXTm(OFFS, 10); }; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

C_brp SRC, OFFS

{ DB2.DEST = Ox12; Split.Offs = OFFS; DB2.SRC = SRC; }
{ if (SEXT(SRC,16,32) > 0)

{ PC <- PC + SEXTm(OFFS, 10); }; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

C_brn SRC, OFFS

{ DB2.DEST = 0x13; Split.Offs = OFFS; DB2.SRC = SRC; }
{ if (SEXT(SRC,16,32) < 0)

{ PC <- PC + SEXTm(OFFS, 10); }; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

C_brnz SRC, OFFS

{ DB2.DEST = 0x14; Split.Offs = OFFS; DB2.SRC = SRC; }
{ if (SRC != 0) { PC <- PC + SEXTm(OFFS, 10); }; }
{}
{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

C-rep SRC, INT
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C_halt

{ DB2.DEST = 0x15; Split.Offs = INT; DB2.SRC = SRC; }
{ for(SRC <- INT; SRC > 0; SRC <- SRC+1;) {

EVAL(PC+1);

};
{}

{ Cycle = INT; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

{ DB2.DEST = 0x16; }
{ HALTO; }

{}

{ Cycle = 1; Size = 1; Stall = 0; }
{ Latency = 1; Usage = 1; }

// -----------------------------------------------------------------

Section Constraints

// SRC and DEST cannot be the same on either bus

( DB*_move UO[1].R*, UO[1].R* )

// Can not use buses for a move between register files if a memory

// operation is using the buses

~( ((DB*_move* *,*) I (DB*_nop))& ((DM_ *) I (IM_* *)) )

// Can not do both a DM and IM operation - they use the same buses

( (DM_* *) & (IM_* *) )

// Can not write to same register from two different operations

~( (DB1_move *,[11) & (DB2_move *,0[1]) )

Can not do any control operations

(C_* *) & (((DB2_move* *) I (DM_*

Some Control operations cannot be

(DB1_move* *) & ((((((C-jump *)

(C-brz *))

(C.brp *))

(C.brn *))

(C.brnz *))

(C-rep *)))

with IM, DM or DB2 operations

*)) I (IM_* *)))

done with DB1 operations

//1-------------------------------------------------------------
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Section Optional
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Instr
Mem.

Figure C-2: The SPAM VLIW-2 Architecture.

C.2 The SPAM VLIW-2 Architecture

// Conventions:

// I = OR
// & = AND
// Ex..y] = range from x to y
// , = used between required fields
// 0 = variable declaration follows

// \ = ignore special symbol

/-----------------------------------------------------------------
// Number of fields in each VLIW word
// Size and format of each

Section Format

Control
AG2
AG1

ALU
MAC
DB
ALUOP
MACOP
DM1A

DM2A

= OP[4],

= OP[4],
= OP[4],

= OP[4],

= OP[3],

= SRC[4]

= OP[2];
= OP[2];

= OP[1];
= OP[1];

RI [6];

RW[3], RA[3],

RW[3], RA[3],

RW[5], RA[5],

RW[4], RA[4],
SINK[4];

RB[3]
RB[3]

RB[5]
RB [41

RMEM[3];
RMEM[3];

RMEM [5];
RMEM [4];
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/ / --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Section GlobalDefinitions

// This ends up in the lex file.

assembly

"AG1.R"[0. .7]

"AG2.R"[0. .71
"ALU.R"[0. .311
"MAC.R"[0. .151
EIUCR

EIUAR

EIUDR

CTRL

IDLE

token value

AG1_R

AG2_R

ALUR

MAC_R

EIUCRt

EIUARt

EIUDRt

CTRLt

IDLE

{
{
{
{
{
{
{
{
{

[0..7]; };

[0..71; };

[0..311; };
[0. .151; };

// This ends up in the yacc file.

// assembly

NonTerminal RI:

NonTerminal TI:

NonTerminal AG2_RA:

NonTerminal AG2_RB:

Non-Terminal AG2_RMEM:

NonTerminal AG2_RW:

NonTerminal AG1_RA:

Non-Terminal AG1_RB:

NonTerminal AG1_RMEM:

NonTerminal AG1_RW:

token value

AG1_R {$$ = AG1_R; }
{ AG1[AG1_R1 } {}

AG2_R {$$ = AG2_R18; }
{ AG2[AG2_R1 } {}

ALUR {$$ = ALURI32; }
{ ALU[ALUR] } {}

MACR {$$ = MACR116; }
{ MAC[MACR] } {}

INT {$$= INT; }{ INT

AG2_R {$$ = AG2_R;}
{AG2[AG2_RI} {} {}

AG2_R {$$ = AG2_R;}
{AG2[AG2_R1} {} {}

AG2_R {$$ = AG2_R;}

{AG2[AG2_R]} {} {}
AG2_R {$$ = AG2_R;}

{AG2[AG2_R]} {} {}
AG1_R {$$ = AG1_R;}

{AG1[AG1_R]} {} {}
AG1_R {$$ = AG1_R;}

{AG1[AG1_R]} {} {}
AG1_R {$$ = AG1-R;}

{AG1[AG1_R]} {} {}
AG1_R {$$ = AG1_R;}

{} {} I

{} {} I

{} {} I

{}
}

{} ;
{} {} {}

{}

{}

{}

{}

{}

{}

{}
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NonTerminal ALURA:

NonTerminal ALURB:

NonTerminal ALURMEM:

Non-Terminal ALURW:

NonTerminal MACRA:

NonTerminal MACRB:

NonTerminal MACRMEM:

NonTerminal MACRW:

NonTerminal OFFSET:

NonTerminal ADDR:

NonTerminal DATA:

NonTerminal CONST:

NonTerminal SRC:

NonTerminal SRC1:

{AG1[AG1_R]} {}
ALUR {$$ = ALUR;}

{ALU[ALURI} {}
ALUR {$$ = ALUR;}

{ALU[ALURI} {}
ALUR {$$ = ALUR;}

{ALU[ALUR]} {}
ALUR {$$ = ALUR;}

{ALU[ALURI} {}
MACR {$$ = MACR;}

{MAC[MACRI} {}
MACR {$$ = MACR;}

{MAC[MACR]} {}
MACR {$$ = MACR;}

{MAC[MACRI} {}
MACR {$$ = MACR;}

{MAC[MACR]} {}

{} {} ;

{} {} ;

{} {} ;

{} {} ;

{} {};

{} {};

{} {};

{} {};

{} {};

INT {$$ = INT; }{ INT} {}{}{}
NAME {$$ = NAME - CURRENT; }

{ NAME - PC } {} {} {}

INT {$$ = INT; }{ INT } {}{}{} I
NAME {$$ = NAME; } { NAME } {} {} {}

INT {$$ = INT; }{ INT } {} {} {} ;
INT {$$ = INT; }{ INT } {} {} {} ;
AG1_R {DB.SRC = Ox2; AG1.RMEM = AG1_R; }

{AG1[AG1_R1} {} {} {} I
AG2_R {DB.SRC = Ox3; AG2.RMEM = AG2-R; }

{AG2[AG2_RI} {} {} {} I
ALUR {DB.SRC = Ox4; ALU.RMEM = ALUR; }

{ALU[ALUR1} {} {} {} I
MACR {DB.SRC = Ox5; MAC.RMEM = MACR; }

{MAC[MACRI} {} {} {} I
DATA {DB.SRC = Ox6; Split.DATAs = DATA;}

{DATA} {} {} {} I
EIUCRt {DB.SRC = Ox7;} {EIUCR} {} {} {} I
EIUARt {DB.SRC = Ox8;} {EIUAR} {} {} {} I
EIUDRt {DB.SRC = 0x9;} {EIUDR} {} {} {} I
CTRLt {DB.SRC = OxA;} {CTRL} {} {} {}

AG1_R {DB.SRC = Ox2; AG1.RMEM = AG1_R; }
{AG1[AG1_R]} {} {} {} I

AG2_R {DB.SRC = Ox3; AG2.RMEM = AG2_R; }
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{AG2[AG2_R]} {} {} {} I
ALUR {DB.SRC = Ox4; ALU.RMEM = ALU_R;

{ALU[ALUR]} {} {} {} I
MACR {DB.SRC = Ox5; MAC.RMEM = MACR;

{MAC[MACRI} {} {} {} I
EIUCRt {DB.SRC = Ox7;} {EIUCR} {} {} {}
EIUARt {DB.SRC = Ox8;} {EIUAR} {} {} {}
EIUDRt {DB.SRC = 0x9;} {EIUDR} {} {} {}
CTRLt {DB.SRC = OxA;} {CTRL} {} {} {}

NonTerminal SINK:

Split.OFFSETs A

Split.ADDRs C

Split.DATAs A

Split.CONSTs A

AG1_R {DB.SINK = Ox2; AG1.RMEM = AG1_R;
{AG1[AG1_R]} {} {} {} I

AG2_R {DB.SINK = Ox3; AG2.RMEM = AG2_R;
{AG2[AG2_R1} {} {} {} I

ALUR {DB.SINK = Ox4; ALU.RMEM = ALU_R;
{ALU[ALUR]} {} {} {} I

MACR {DB.SINK = Ox5; MAC.RMEM = MAC_R;
{MAC[MACRI} {} {} {} I

EIUCRt {DB.SINK = 0x6;} {EIUCR} {} {} {}
EIUARt {DB.SINK = Ox7;} {EIUAR} {} {} {}
EIUDRt {DB.SINK = Ox8;} {EIUDR} {} {} {}
CTRLt {DB.SINK = Ox9;} {CTRL} {} {} {}
IDLE {DB.SINK = OxC;} {NULL} {} {} {}

G2.OP+AG2.RW+AG2.RA+AG2.RB+AG2.RMEM;

ontrol.RI+AG2.OP+AG2.RW+AG2.RA+AG2.RB

AG2.RMEM;

G2.P+AG2.RW+AG2.RA+AG2.RB+AG2.RMEM

AG1.OP+AG1.RW+AG1.RA+AG1.RB+AG1.RMEM;

LU.RB+ALU.RMEM;

----------------------------------------------------------
// The number of registers for each unit and the topology of

// any of the register files and memories.

Section Storage

Instruction Memory IM

Memory DM1

Memory DM2

RegFile ALU

RegFile MAC

RegFile AG1

= depth , width

= Ox1OQOQO , Ox63

= Ox1OQOQO , Ox20

= Ox100000 , Ox20

= 0x20 , Ox20

= Ox10 , Ox20

= 0x8 , Ox20
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RegFile AG2 = Ox8 , Ox20

Register ACC = Ox20
Register SP = Ox4 // stack pointer

CRegister EIUCR = Ox20
CRegister EIUAR = 0x20
CRegister EIUDR = Ox20
CRegister CTRL = Ox20
CRegister JR = Ox20 // jump register

ProgramCounter PC = Ox20 // program counter

Stack STACK(SP) = Ox10 , Ox20

/-----------------------------------------------------------------
// Correspondence between assembly mneumonics, bitfields, and actual

// instructions.

Section InstructionSet

// RTL Descriptions

// NOTES:

//
// 1) There is the possibility that one instruction might have two

// different RTL descriptions based on some piece of state that is
// visible to the compiler. In this case we can use a CASE statement

// selecting over such state to describe which RTL description is
// appropriate for such an instruction. Note that conditional control

// flow instructions make use of this construct.

//
// 2) To describe the flow of control, we describe the values received

// by a specially declared register (declared in the storage section)

// usually called the PC. The value received by this register is the

// address from which the next instruction will be fetched.

//
// 3) NULL is a specially defined register which returns an arbitrary

// value when read and has no effect when written.

//
// here are the definitions of the operators

#define DEFINENULLOP {} { NULLOPO; } {} {} {}

#define ext3(x) EXT(x,3,32)

#define ext6(x) EXT(x,6,32)

#define ext10(x) EXT(x,10,32)

#define ext22(x) EXT(x,22,32)

#define sxl6(x) SEXT(x,16,32)

#define sxlO(x) SEXT(x,10,32)
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#define ADDm(x,y)

#define SUBm(x,y)

#define MULm(x,y)

#define DIVm(x,y)

#define IORm(x,y)

#define ANDm(x,y)

#define NOTm(x)

#define XORm(x,y)

#define LSLm(x,y)

#define LSRm(x,y)

#define FADDm(x,y)

#define FMULm(x,y)

Field Control:

ControlNULL

ControlNOP

Controlcall

Controlrtn

Control-jump

Control-jumpcz RI

Control-jumpcp RI

ADD(x,y,32, "trn")

SUB(x,y,32,"trn")

MUL(x,y,32,32,"trn")

DIV(x,y,32,32,32,"trn")

OR(x,y,32)

AND(x,y,32)

NOT(x,32)

XOR(x,y,32)

ASL(x,y,O,NULL,32)

ASR(x,y,O,NULL,32)

FADD(x,y,8,24,"sat")

FMUL(x,y,8,24,"sat")

DEFINENULLOP

{ Control.OP = OxO ; }
{ NOPO; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; }
{ Control.OP = Ox1 ; }
{ STACKESPI <- PC + 1;

SP <- SP + 1; PC <- JR ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
{ Control.OP = Ox2 ; }
{ SP <- SP - 1; PC <- STACK[SPI; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
{ Control.OP = Ox3 ; }
{ PC <- JR ; }
{}
{ Cycle=1; Size=1; Stall=O;
{ Latency=1; Usage=1; }
{ Control.OP = Ox4
Control.RI = RI ; }

{ if (RI == 0) { PC <- JR

{}

}

}; }

{ Cycle=1; Size=1; Stall=0; }
{ Latency=1; Usage=1; }
{ Control.OP = Ox5
Control.RI = RI ; }

{ if (RI > 0) { PC <- JR ; }; }
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Controlrti

Controltrap TI

Controlrtt

Controlbr OFFSET

Controlbrcz RI,OFFSET

Controlbrcp RI,OFFSET

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
{ Control.OP = Ox6 ; }
{ SP <- SP - 1; PC <- STACK[SPI; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
{ Control.OP = Ox7

Control.RI = TI ; }
{ STACKESPI <- PC + 1;

SP <- SP + 1;
PC <- SUBm(ext6(TI), Ox00000002); }

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
{ Control.OP = Ox8 ; }
{ SP <- SP - 1; PC <- STACKESPI; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
{ Control.OP = Ox9 ;
Split.OFFSETs = OFFSET ; }

{ PC <- ADDm(PC, sx16(OFFSET)) ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
{ Control.OP = OxA

Control.RI = RI

Split.OFFSETs = OFFSET ; }
{ if (RI == 0)

{ PC <- ADDm(PC, sx16(OFFSET)) ; }
else

{ PC <- PC + 1 ; } ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
{ Control.OP = OxB

Control.RI = RI
Split.OFFSETs = OFFSET ; }

{ if (RI > 0)
{ PC <- ADDm(PC, sxl6(OFFSET));};}

{}
{ Cycle=1; Size=1; Stall=0; }
{ Latency=1; Usage=1; }

156



Controlldjr ADDR

Controlldjrpc

ControlHALT

{ Control.OP = OxC ;
Split.ADDRs = ADDR ; }

{ JR <- ext22(ADDR); }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
{ Control.OP = OxD ; }
{ JR <- PC ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
{ Control.OP = OxE ; }
{ HALT(); }
{}

{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

// //////////////////////////////////////////////////////////////

Field ALUf:

ALUNULL

ALUadd ALURAALURBALURW

{ ALURW <-

{}

DEFINENULLOP

{ ALU.OP = OxO

ALU.RA = ALU_RA

ALU.RB = ALURB
ALU.RW = ALURW ; }
ADDm(ALU_RA, ALURB);}

{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

ALUaddc ALURA,CONSTALURW { ALU.OP = Ox1

ALU.RA = ALURA
Split.CONSTs = CONST;
ALU.RW = ALURW ; }

{ ALURW <- ADDm(ALURA, sxlO(CONST)); }
{}

ALUsub

{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

ALURAALURB,ALURW { ALU.OP = Ox2
ALU.RA = ALURA
ALU.RB = ALURB
ALU.RW = ALURW ; }

{ ALURW <- SUBm(ALU_RA, ALURB);}

{}

{ Cycle=1; Size=1; Stall=O; }
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{ Latency=l; Usage=l; }
ALUsubc ALURA,CONSTALURW { ALU.OP = Ox3

ALU.RA = ALURA
Split.CONSTs = CONST;
ALU.RW = ALURW ; }

{ ALU-RW <- SUBm(ALU_RA, sxlO(CONST)); }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

ALU_mul ALURAALURBALURW { ALU.OP = Ox4
ALU.RA = ALURA
ALU.RB = ALURB
ALU.RW = ALURW ; }

{ ALURW <- MULm(ALURA, ALURB);}

{}
{ Cycle=l; Size=1; Stall=O; }
{ Latency=l; Usage=l; }

ALUmulc ALURA,CONSTALURW { ALU.OP = Ox5

ALU.RA = ALURA
Split.CONSTs = CONST;

ALU.RW = ALURW ; }
{ ALURW <- MULm(ALURA, sxlO(CONST)); }

{}
{ Cycle=1; Size=l; Stall=O; }
{ Latency=l; Usage=l; }

ALU_div ALURAALURBALURW { ALU.OP = Ox6

ALU.RA = ALURA
ALU.RB = ALURB
ALU.RW = ALURW ; }

{ ALURW <- DIVm(ALURA, ALURB);}

{}
{ Cycle=l; Size=l; Stall=O; }
{ Latency=l; Usage=l; }

ALUand ALURAALURBALURW { ALU.OP = Ox7

ALU.RA = ALURA
ALU.RB = ALURB
ALU.RW = ALURW ; }

{ ALURW <- ANDm(ALURA, ALURB);}

{}
{ Cycle=l; Size=l; Stall=O; }
{ Latency=l; Usage=1; }

ALU-or ALURA,ALURB,ALURW { ALU.OP = Ox8
ALU.RA = ALURA
ALU.RB = ALURB
ALU.RW = ALURW ; }
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{ ALURW <- IORm(ALURA, ALURB);}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=l; Usage=l; }

ALUnot ALURAALURW { ALU.OP = Ox9
ALU.RA = ALURA
ALU.RW = ALURW ; }

{ ALURW <- NOTm(ALURA);}

{}
{ Cycle=l; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

ALUxor ALURAALURB,ALURW { ALU.OP = OxA
ALU.RA = ALURA
ALU.RB = ALURB
ALU.RW = ALURW ; }

{ ALURW <- XORm(ALURA, ALURB);}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

ALU-pass ALURAALURW { ALU.OP = OxB

ALU.RA = ALURA
ALU.RW = ALURW ; }

{ ALURW <- ALURA }
{}
{ Cycle=1; Size=l; Stall=O; }
{ Latency=l; Usage=l; }

ALUlsl ALURA,ALURBALURW { ALU.OP = OxC

ALU.RA = ALURA
ALU.RB = ALURB
ALU.RW = ALURW ; }

{ ALU-RW <- LSLm(ALURA, ALURB);}

{}
{ Cycle=l; Size=l; Stall=O; }
{ Latency=l; Usage=1; }

ALUlslc ALURA,CONSTALURW { ALU.OP = OxD

ALU.RA = ALURA
Split.CONSTs = CONST;

ALU.RW = ALURW ; }
{ ALURW <- LSLm(ALURA, extlO(CONST)); }

{}
{ Cycle=l; Size=l; Stall=O; }
{ Latency=l; Usage=l; }

ALUlsr ALURA,ALURB,ALU-RW { ALU.OP = OxE
ALU.RA = ALURA
ALU.RB = ALURB
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ALU.RW = ALURW ; }
{ ALURW <- LSRm(ALURA, ALURB);}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

ALUlsrc ALURA,CONST,ALURW { ALU.OP = OxF

ALU.RA = ALURA
Split.CONSTs = CONST;
ALU.RW = ALURW ; }

{ ALURW <- LSRm(ALU.RA, extlO(CONST)); }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

Field MACf:

MACRAMACRB

DEFINENULLOP

{ MAC.OP = OxO
MAC.RA
MAC.RB

{ ACC <- FADDm(ACC, FMULm(MACRB,

{}

= MACRA
= MACRB
MACRA));

{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

MACRAMACRBMACRW { MAC.OP = Ox1
MAC.RA = MACRA
MAC.RB = MACRB
MAC.RW = MACRW ; }

{ ACC <- FADDm(ACC, FMULm(MACRB, MACRA));

MACRW <- FADDm(ACC, FMULm(MACRB, MACRA));}

{}

MACRAMACRB

{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

{ MAC.OP = Ox2
MAC.RA = MACRA
MAC.RB = MACRB ; }

{ ACC <- FADDm(MACRA, MACRB);}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

MACRA,MACRB,MACRW { MAC.OP = Ox3
MAC.RA = MACRA
MAC.RB = MACRB
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MAC_mul MACRAMACRB

MACmulw MACRAMACRB

MAClda MACRA

MACclr

MAC.RW = MACRW ; }
{ ACC <- FADDm(MACRA, MACRB);

MACRW <- FADDm(MACRA, MACRB);}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

{ MAC.OP = Ox4

MAC.RA = MACRA
MAC.RB = MACRB ; }

{ ACC <- FMULm(MACRA, MACRB);}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }
,MACRW { MAC.OP = Ox5

MAC.RA = MACRA
MAC.RB = MACRB
MAC.RW = MACRW ; }

{ ACC <- FMULm(MACRA, MACRB);

MACRW <- FMULm(MACRA, MACRB);}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

{ MAC.OP = Ox6

MAC.RA = MACRA ; }
{ ACC <- MACRA ; }
{}
{ cycle=1; size=1; stall=O; }
{ latency=1; Usage=1; }
{ MAC.OP = Ox7 ; }
{ ACC <- OxOOOOOOOO ; }
{}
{ cycle=1; size=1; stall=O; }
{ latency=1; Usage=1; }

Field DB:

DEFINENULLOP

SRC,SINK { } { SINK <- SRC ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

// ////////////////////////////////////////////////////////////
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// Address Generator 1 register updates

Field AGif:

AG1_NULL

AG1_addbc

AG1_addac

{ AG1_RW <-

AG1_inc

DEFINENULLOP

AG1_RBCONSTAG1_RW { AG1.OP = OxO ;
AG1.RB = AG1_RB;
AG1.RMEM = CONST;

AG1.RW = AG1_RW;}
{ AG1_RW <- ADDm(AG1_RB, ext3(CONST));}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

AG1_RACONSTAG1_RW { AG1.OP = Ox1
AG1.R

AG1.R

AG1.R

ADDm(AG1_RA, ext3(CONST)) ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

AG1_RBAG1_RW { AG1.0
AG1.R

AG1.R

A =

MEM

P

B

w
{ AG1_RW <- ADDm(AG1_RB, OxOO000001) ; }

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

AG1_add AG1_RAAG1_RB,AG1_RW { AG1.OP
AG1.RA

AG1.RB

AG1.RW

{ AG1_RW <- ADDm(AG1_RBAG1_RA) ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

AG1_idle

AG1_RA;

= CONST;

AG1-RW;}

Ox2 ;
AG1_RB;

AG1_RW;}

Ox3 ;
AG1_RA;

AG1_RB;

AG1_RW;}

{ AG1.OP = Ox4;}

{}
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

// Address Generator 2 register updates

Field AG2f:
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AG2-NULL

AG2_addbc

{ AG2_RW <-

DEFINENULLOP

AG2_RBCONSTAG2_RW { AG2.OP = OxO;
AG2.RB = AG2-RB;
AG2.RMEM = CONST;

AG2.RW = AG2_RW;}
ADDm(AG2_RB, ext3(CONST)) ; }

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

AG2_addac AG2_RACONSTAG2_RW { AG2.OP = Ox1;
AG2.RA = AG2_RA;
AG2.RMEM = CONST;

AG2.RW = AG2_RW;}
{ AG2_RW <- ADDm(AG2_RA, ext3(CONST)) ; }

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

AG2_RBAG2_RW { AG2.OP = Ox2;
AG2.RB = AG2_RB;
AG2.RW = AG2_RW;}

{ AG2_RW <- ADDm(AG2_RB, OxOOOOOO01) ;

{}
}

{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

AG2-RA,AG2_RBAG2_RW

{ AG2_RW <-

{ AG2.OP = Ox3;

AG2.RA = AG2_RA;
AG2.RB = AG2_RB;
AG2.RW = AG2_RW;}

ADDm(AG2_RBAG2_RA)

AG2_idle

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

{ AG2.OP = Ox4;}

{}
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

// /////////////////////////////////////////////////////////////////
// Data Memory 1 operations

Field DM1f:

DM1_NULL
DM1_dir-save_i

DEFINENULLOP

ALURMEM, AG1-RA

{ ALU.RMEM = ALURMEM;
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ALUOP.OP = OxO;

DM1A.OP = OxO;

AG1.RA = AG1_RA;

AG1.OP=AG1. P+OxO;}

{ DM1[AG1_RAI <- ALURMEM; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

DM1_dirsaveio ALURMEM, AG1_RA, AG1_RB

{ ALU.RMEM = ALURMEM;
ALUOP.OP = OxO;
DM1A.OP = OxO;
AG1.RA = AG1_RA;

AG1.RB = AG1_RB;

AG1.OP=AG1.OP+0x5;}

{ DM1[ ADDm(AG1_RA, AG1_RB)] <- ALURMEM; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=l; Usage=l; }

DM1_dirsaveic ALURMEM, AG1_RA, CONST

{ ALU.RMEM = ALURMEM;
ALUOP.OP = OxO;
DM1A.OP = OxO;

AG1.RA = AG1_RA;
AG1.RMEM = CONST;
AG1.P=AG1.OP+OxA;}

{ DM1[ ADDm(AG1_RA, ext3(CONST))] <- ALURMEM;}

{}
{ Cycle=1; Size=l; Stall=O; }
{ Latency=l; Usage=l; }

DM1_dirsavem ALU_RMEM, SRC1

{ ALU.RMEM = ALURMEM;
ALUOP.OP = OxO;
DM1A.OP = Oxi;

DB.SINK = OxA; }
{ DM1[SRC1] <- ALU-RMEM; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

DM1_dirloadi ALURMEM, AG1_RA

{ ALU.RMEM = ALU-RMEM;
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ALUOP.OP = Oxi;

DM1A.OP = OxO;

AG1.RA = AG1_RA;

AG1.OP=AG1.OP+OxO;}

{ ALURMEM <- DM1[AG1_RAI ; }
{}
{ Cycle=l; Size=l; Stall=O; }
{ Latency=l; Usage=l; }

DM1_dir_loadio ALURMEM, AG1_RA, AG1_RB

{ ALU.RMEM = ALURMEM;
ALUOP.OP = Oxi;

DM1A.OP = OxO;

AG1.RA = AG1_RA;

AG1.RB = AG1_RB;

AG1.OP=AG1.OP+0x5;}

{ ALURMEM <- DM1[ ADDm(AG1_RA, AG1-RB)1 ; }
{}
{ Cycle=l; Size=1; Stall=O; }
{ Latency=l; Usage=l; }

DM1_dirloadic ALURMEM, AG1_RA, CONST

{ ALU.RMEM = ALURMEM;
ALUOP.OP = Oxi;

DM1A.OP = OxO;
AG1.RA = AG1_RA;

AG1.RMEM = CONST;
AG1.OP=AG1.OP+OxA;}

{ ALURMEM <- DM1[ ADDm(AG1_RA, ext3(CONST))];}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=l; Usage=l; }

DM1_dirload-m ALU-RMEM, SRC1

{ ALU.RMEM = ALURMEM;
ALUOP.OP = Oxi;

DM1A.JP = Oxi;
DB.SINK = OxA; }

{ ALURMEM <- DM1[SRC1] ; }
{}
{ Cycle=l; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

DM1_bussave-i SRC1, AG1_RA

{ DB.SINK = OxO;
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DM1A.OP = OxO;
AG1.RA = AG1_RA;

AG1.OP=AG1.OP+OxO;}

{ DM1[AG1_RA] <- SRC1; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

DM1_bussaveio SRC1, AG1_RA, AG1_RB

{ DB.SINK = OxO;

DM1A.OP = OxO;

AG1.RA = AG1_RA;
AG1.RB = AG1_RB;
AG1.OP=AG1.OP+0x5;}

{ DM1[ ADDm(AG1_RA, AG1_RB)] <- SRC1; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

DM1_bussaveic SRC1, AGi_RA, CONST

{ DB.SINK = OxO;

DM1A.OP = OxO;

AG1.RA = AG1_RA;
AG1.RMEM = CONST;
AG1.OP=AG1.OP+OxA;}

{ DM1[ ADDm(AG1_RA, ext3(CONST))] <- SRC1; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

DM1_busloadi SINK, AG1_RA

{ DB.SRC = OxO;

DM1A.OP = OxO;

AG1.RA = AGi_RA;
AG1.P=AG1.OP+OxO;}

{ SINK <- DM1[AG1_RA] ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

DM1_busloadio SINK, AG1_RA, AG1_RB

{ DB.SRC = OxO;

DM1A.OP = OxO;

AG1.RA = AG1_RA;
AG1.RB = AG1_RB;
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AG1.OP=AG1.OP+0x5;}

{ SINK <- DM1[ ADDm(AG1_RA, AG1_RB)1 ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

DM1_bus-loadic SINK, AG1-RA, CONST

{ DB.SRC = OxO;

DM1A.OP = OxO;

AG1.RA = AG1_RA;
AG1.RMEM = CONST;
AG1.OP=AG1.P+OxA;}

{ SINK <- DM1[ ADDm(AG1_RA, ext3(CONST))];}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

DM1_idle { ALUOP.OP = Ox2;

DM1A.OP = Ox1; }
{}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

// /////////////////////////////////////////////////////////////
// Data Memory 2 operations

Field DM2f:

DM2_NULL DEFINENULLOP

DM2_dirsavei MACRMEM, AG2_RA

{ MAC.RMEM = MACRMEM;
MACOP.OP = OxO;
DM2A.OP = OxO;

AG2.RA = AG2_RA;

AG2.OP=AG2.OP+OxO;}

{ DM2[AG2_RA] <- MACRMEM; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

DM2_dirsaveio MACRMEM, AG2-RA, AG2_RB

{ MAC.RMEM = MACRMEM;
MACOP.OP = OxO;
DM2A.OP = OxO;

AG2.RA = AG2_RA;
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AG2.RB = AG2_RB;

AG2.OP=AG2.OP+0x5;}

{ DM2[ ADDm(AG2_RA, AG2_RB)] <- MACRMEM; }
{}
{ Cycle=1; Size=l; Stall=O; }
{ Latency=l; Usage=l; }

DM2_dirsaveic MACRMEM, AG2_RA, CONST

{ MAC.RMEM = MACRMEM;
MACOP.OP = OxO;

DM2A.OP = OxO;

AG2.RA = AG2_RA;
AG2.RMEM = CONST;
AG2.OP=AG2.OP+OxA;}

{ DM2[ ADDm(AG2_RA, ext3(CONST))] <- MACRMEM;}

{}
{ Cycle=l; Size=l; Stall=O; }
{ Latency=l; Usage=l; }

DM2_dirsavem MACRMEM, SRC1

{ MAC.RMEM = MACRMEM;
MACOP.OP = OxO;

DM2A.OP = Oxi;
DB.SINK = OxB; }

{ DM2[SRC1] <- MACRMEM; }
{}
{ Cycle=l; Size=l; Stall=O; }
{ Latency=l; Usage=l; }

DM2_dirloadi MACRMEM, AG2_RA

{ MAC.RMEM = MAC-RMEM;
MACOP.OP = Oxi;

DM2A.OP = OxO;
AG2.RA = AG2_RA;
AG2.OP=AG2.OP+OxO;}

{ MACRMEM <- DM2[AG2_RA] ; }
{}
{ Cycle=l; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

DM2_dir_loadio MACRMEM, AG2_RA, AG2_RB

{ MAC.RMEM = MACRMEM;
MACOP.OP = Oxi;
DM2A.OP = OxO;
AG2.RA = AG2_RA;
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AG2.RB = AG2_RB;
AG2.OP=AG2.OP+0x5;}

{ MACRMEM <- DM2[ ADDm(AG2_RA, AG2_RB)];}

{}
{ Cycle=1; Size=l; Stall=O; }
{ Latency=1; Usage=1; }

DM2_dir_loadic MACRMEM, AG2_RA, CONST

{ MAC.RMEM = MACRMEM;
MACOP.OP = Oxi;

DM2A.OP = OxO;
AG2.RA = AG2_RA;
AG2.RMEM = CONST;
AG2.OP=AG2.OP+OxA;}

{ MAC-RMEM <- DM2[ ADDm(AG2-RA, ext3(CONST))];}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

DM2_dir_loadm MACRMEM, SRC1

{ MAC.RMEM = MACRMEM;
MACOP.OP = Oxi;
DM2A.OP = Oxi;

DB.SINK = OxB; }
{ MACRMEM <- DM2[SRC1I ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

DM2_bussavei SRC1, AG2_RA

{ DB.SINK = Oxi;

DM2A.OP = OxO;
AG2.RA = AG2_RA;
AG2.OP=AG2.OP+OxO;}

{ DM2[AG2_RA] <- SRC1; }
{}
{ Cycle=1; Size=l; Stall=O; }
{ Latency=1; Usage=1; }

DM2_bus-save-io SRC1, AG2_RA, AG2-RB

{ DB.SINK = Oxi;

DM2A.OP = OxO;

AG2.RA = AG2_RA;

AG2.RB = AG2_RB;
AG2.OP=AG2.OP+0x5;}
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{ DM2[ ADDm(AG2_RA, AG2_RB)] <- SRC1; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

DM2_bussaveic SRC1, AG2_RA, CONST

{ DB.SINK = Oxi;

DM2A.OP = OxO;

AG2.RA = AG2_RA;
AG2.RMEM = CONST;
AG2.OP=AG2.OP+OxA;}

{ DM2[ ADDm(AG2_RA, ext3(CONST))] <- SRC1;}

{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

DM2_busload_i SINK, AG2_RA

{ DB.SRC = Oxi;

DM2A.OP = OxO;
AG2.RA = AG2_RA;
AG2.OP=AG2.OP+OxO;}

{ SINK <- DM2[AG2_RAI ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=1; }

DM2_busloadio SINK, AG2_RA, AG2_RB

{ DB.SRC = Oxi;

DM2A.OP = OxO;
AG2.RA = AG2_RA;
AG2.RB = AG2-RB;
AG2.OP=AG2.OP+0x5;}

{ SINK <- DM2[ ADDm(AG2_RA, AG2_RB)] ; }
{}
{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

DM2_busloadic SINK, AG2_RA, CONST

{ DB.SRC = Oxi;

DM2A.OP = OxO;
AG2.RA = AG2_RA;
AG2.RMEM = CONST;
AG2.OP=AG2.OP+OxA;}

{ SINK <- DM2[ ADDm(AG2_RA, ext3(CONST))];}

{}
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{ Cycle=1; Size=1; Stall=O; }
{ Latency=1; Usage=l; }

DM2_idle { MACOP.OP = Ox2;

DM2A.OP = Oxi; }
{}

{}
{ Cycle=l; Size=l; Stall=O; }
{ Latency=1; Usage=l; }

/-----------------------------------------------------------------
// Any restrictions (in the form of rules) of which instructions go
// together and which do not.

Section Constraints

// Can't do constant addressing memory mode with AG transfers on bus
// bitfield conflict on AG*.RMEM
~((DM1_*ic *) & ((DB.move *,AG1.R*) I (DBmove AG1.R*,*)))
~((DM2_*ic *) & ((DB.move *,AG2.R*) | (DBmove AG2.R*,*)))

// Can't do register updates with constant in AG with AG bus transfers
// bitfield conflict on AG*.RMEM

~((AG1_add?c *) & ((DB-move *,AG1.R*) I (DB-move AG1.R*,*)))
~((AG2_add?c *) & ((DBmove *,AG2.R*) I (DBmove AG2.R*,*)))

// Can't do ALU operations involving constants with ALU bus transfers
// bitfield conflict on ALU.RMEM

~((ALU_*c *) & ((DB-move *,ALU.R*) I (DBmove ALU.R*,*)))

// SRC and SINK cannot be the same in a data bus transfer
// units connected to the bus only have one port to it each

~(DB-move 0 [l]. *, a[El].*)

// Cannot drive both memories on the bus at the same time.

// Bus conflict

~((DM1_busload* *) & (DM2_busload* *))

// Also cannot read both memories from the bus at the same time

1/ bitfiled conflict on DB.SINK
~((DM1_bus_save* *) & (DM2_bus_save* *))

// Cannot do a memory bus transfer and a normal bus transfer at the

// same time

~((DM?_bus* *) & (DB-move *))
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// If you are doing an AG* register update with a constant and a

// memory access with a constant make sure the constants are the

// same - they share the same field AG*.RMEM

(~((DM1.*c *,0[11) & (AG1_add?c *,A[1],*)) I
((DM1_*c *,0[1]) & (AG1.add?c *,@[1],*)) )

// If Instruction Memory (DATA) is the source then can't use AG1

// or AG2 or data memory transfers that use the address generators
// or transfer to an address generator file

// Bit conflict on all the fields of AG1 and AG2
~((DB-move [0-91+, *) &

((((AG?_* *) I
(DM?_bus* *)) I
(DM?_dir_*_i*)) I
(DB-move [0-91+, AG*)))

// load jump register and branch instructions can't be done with
// AG2 instructions, DM2 operations that use the AG2 or a transfer

// to or from the AG2 regfile

// Bitfield conflict on the AG2 subfields

~(((((Controlldjr *) I
(Controlbr *))

(Controlbrcz *)) I
(Control-brcp *))

&
(((((AG2_* *)

(DM2_bus* *))

(DM2_dir_*_i*))

(DB-move *,AG2.R*)) I
(DB-move AG2.R*,*)))

// Can't write to same registers from both execution unit operation
// and DB or transfer path

// Example: If ALU write back to ALU.R1 then DBmove *,ALU.R1 is

// not allowed.

// conflict at the register storage set lines

~((AG?_add* *,*,[1]) & (DBmove *,[11))
~((AG?_inc *,*,Q[1]) & (DB-move *,[1]))
~((MAC-*w *,*,Q[i]) & (DB.move *,Q[1]))
~((ALU_* *,*,[11) & (DBmove *,0[1]))

//----------------------------------------------------------
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173



Register

Memory 
Fl

Figure C-3: The SPAM RISC Architecture.

C.3 The SPAM RISC Architecture

// This is a RISC-style architecture (unifunctional)
// it allows us to explore issues with control flow and calling
// conventions
//
// NOTES:
// 1) RF[311 is used to store the PC on calls
// 2) RF[301 is used as the stack pointer in this modified version

Section Format

// Only one field for the instruction word (unifunctional)

W = MODE[41, OP[51, RA[51, RB[51, RC[51;

// -----------------------------------------------------------------

Section GlobalDefinitions

// assembly

Token "R"[O. .311

NonTerminal RA:

NonTerminal RB:

NonTerminal RC:

NonTerminal ADDR:

NonTerminal OFFS:

token

Reg

Reg

Reg

Reg

{
{
{

INT {
NAME {

INT {
NAME {

$$
$$
$$

$$
$$

$$
$$

value

{ [0. .311; };

= Reg; } {RF[Reg]} {} {}

= Reg; } {RF[Reg]} {} {}
= Reg; } {RF[Regl} {} {}

= INT; } {INT} {} {} {}

= NAME; } {NAME} {} {} {}

= INT; } {INT} {} {} {} I
= NAME-CURRENT; } {NAME-PC} {} {} {};
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Split.Const W.RA+W.RB;

Split.ADDRs W.OP+W.RA+W.RB+W.RC;

Split.OFFSs W.OP+W.RA+W.RB;

//----------------------------------------------------------

Section Storage

// = entries , bits-per-entry
Instruction Memory IM = Ox1000000 , Ox18

RegFile RF = Ox20 , Ox18

ProgramCounter PC = Ox18

// -----------------------------------------------------------------

#define ADDm(x,y) ADD(x,y,24,"trn")

#define SUBm(x,y) SUB(x,y,24,"trn")

Section InstructionSet

Field Main:

// data processing operations - 3-address

add RA, RB, RC

{ W.MODE = OxO; W.OP = Ox1; W.RA = RA;

W.RB = RB; W.RC = RC; }
{ RC <- ADDm(RA, RB); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

sub RA, RB, RC

{ W.MODE = OxO; W.OP = Ox2; W.RA = RA;

W.RB = RB; W.RC = RC; }
{ RC <- SUBm(RA, RB); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

and RA, RB, RC

{ W.MODE = OxO; W.OP = Ox3; W.RA = RA;

W.RB = RB; W.RC = RC; }
{ RC <- AND(RA, RB, 24); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }
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or RA, RB, RC

{ W.MODE = OxO; W.OP = Ox4; W.RA = RA;

W.RB = RB; W.RC = RC; }
{ RC <- OR(RA, RB, 24); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

xor RA, RB, RC

{ W.MODE = OxO; W.OP = Ox5; W.RA = RA;

W.RB = RB; W.RC = RC; }
{ RC <- XOR(RA, RB, 24); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

asl RA, RB, RC

{ W.MODE = OxO; W.OP = Ox6; W.RA = RA;

W.RB = RB; W.RC = RC; }
{ RC <- RA << RB; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

asr RA, RB, RC

{ W.MODE = OxO; W.OP = Ox7; W.RA = RA;
W.RB = RB; W.RC = RC; }

{ RC <- RA >> RB; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

// data processing operations - 2-address and constant

addc INT, RB, RC

{ W.MODE = OxO; W.OP = Ox8; W.RA = INT;

W.RB = RB; W.RC = RC; }
{ RC <- ADDm(RB, INT); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

subc INT, RB, RC

{ W.MODE = OxO; W.OP = Ox9; W.RA = INT;

W.RB = RB; W.RC = RC; }

176



{ RC <- SUBm(RB, INT); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

aslc INT, RB, RC

{ W.MODE = OxO; W.OP = OxA; W.RA = INT;

W.RB = RB; W.RC = RC; }
{ RC <- RB << INT; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

asrc INT, RB, RC

{ W.MODE = OxO; W.OP = OxB; W.RA = INT;

W.RB = RB; W.RC = RC; }
{ RC <- RB >> INT; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

// data processing operations - 2-address

not RA, RC

{ W.MODE = OxO; W.OP = Ox1E; W.RA = RA;

W.RB = OxO; W.RC = RC; }
{ RC <- NOT(RA, 24); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

neg RA, RC

{ W.MODE = OxO; W.OP = Ox1E; W.RA = RA;

W.RB = Ox1; W.RC = RC; }
{ RC <- SUBm(0, RA); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

// data processing operations - 1-address

clr RC

{ W.MODE = Ox0; W.OP = Ox1F; W.RA = OxO;
W.RB = OxO; W.RC = RC; }

{ RC <- 0; }
{}

{ Cycle = 1; Stall = 0; Size = 1; }
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{ Latency = 1; Usage = 1; }

// relational operations - 2-address

bnt RA, RC

{ W.MODE = OxO; W.OP = Ox1E; W.RA = RA;

W.RB = Ox2; W.RC = RC; }
{ RC <- NOT(RA, 24); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

// relational operations - 3-address

equ RA, RB, RC

{ W.MODE = OxO; W.OP = Ox0C; W.RA

W.RB = RB; W.RC = RC; }
{ if (RA == RB) { RC <- 1; } else
{}
{ Cycle = 1; Stall = 0; Size = 1;
{ Latency = 1; Usage = 1; }

neq RA, RB, RC

{ W.MODE = OxO; W.OP = OxOD; W.RA

W.RB = RB; W.RC = RC; }
{ if (RA != RB) { RC <- 1; } else
{}
{ Cycle = 1; Stall = 0; Size = 1;

{ Latency = 1; Usage = 1; }

= RA;

{ RC <- 0; }; }

}

= RA;

{ RC <- 0; }; }

}

gt RA, RB, RC

{ W.MODE = OxO; W.OP = OxOE; W.RA = RA;

W.RB = RB; W.RC = RC; }
{ if (RA > RB) { RC <- 1; } else { RC <- 0; }; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

lt RA, RB, RC

{ W.MODE = OxO; W.OP = OxOF; W.RA =RA;

W.RB = RB; W.RC = RC; }
{ if (RA < RB) { RC <- 1; } else { RC <- 0; }; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

gte RA, RB, RC
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{ W.MODE = OxO; W.OP = Ox1O; W.RA = RA;

W.RB = RB; W.RC = RC; }
{ if (RA >= RB) { RC <- 1; } else { RC <- 0; }; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

lte RA, RB, RC

{ W.MODE = OxO; W.OP = Ox11; W.RA = RA;

W.RB = RB; W.RC = RC; }
{ if (RA <= RB) { RC <- 1; } else { RC <- 0; }; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

// Load-store instructions - 3-address
ld RA, RB, RC

{ W.MODE = OxO; W.OP = Ox12; W.RA = RA;
W.RB = RB; W.RC = RC; }

{ RC <- IM[ADDm(RA, RB)]; }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

st RA, RB, RC

{ W.MODE = OxO; W.OP = Ox13; W.RA = RA;
W.RB = RB; W.RC = RC; }

{ IM[ADDm(RA, RB)] <- RC; }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

// Load-store instructions - 2-address and constant

ldc INT, RB, RC

{ W.MODE = OxO; W.OP = 0x14; W.RA = INT; W.RB = RB;
W.RC = RC; }

{ RC <- IM[ADDm(INT, RB)]; }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

stc INT, RB, RC

{ W.MODE = OxO; W.OP = 0x15; W.RA = INT; W.RB = RB;
W.RC = RC; }

{ IM[ADDm(INT, RB)] <- RC; }
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{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

// move operations - 1-address and constant

mov RC, INT

{ W.MODE = OxO; W.OP = 0x16;

Split.Const = INT; W.RC = RC; }
{ RC <- INT; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

movm RC, INT

{ W.MODE = OxO; W.OP = Ox17;
Split.Const = INT; W.RC = RC; }

{ RC <- (INT << 10); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

movh RC, INT

{ W.MODE = OxO; W.OP = Ox18;
Split.Const = INT; W.RC = RC; }

{ RC <- (INT << 14); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

// Control operations

jmp ADDR

{ W.MODE = 0x9; Split.ADDRs = ADDR; }
{ PC <- ADDR; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

call ADDR

{ W.MODE = OxA; Split.ADDRs = ADDR; }
{ RF[311 <- PC + 1; PC <- ADDR; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

ret
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{ W.MODE = Ox7; W.OP = 0; W.RA = 0;

W.RB = 0; W.RC = 0; }
{ PC <- RF[311; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

br OFFS

{ W.MODE = OxB; Split.ADDRs = OFFS; }
{ PC <- ADDm(PC, SEXT(OFFS, 20, 24)); }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

brz RC, OFFS

{ W.MODE = OxC; Split.OFFSs = OFFS; W.RC = RC; }
{ if (RC == 0)

{ PC <- ADDm(PC, SEXT(OFFS, 15, 24)); }; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

brnz RC, OFFS

{ W.MODE = OxD; Split.OFFSs = OFFS; W.RC = RC; }
{ if (RC 0)

{ PC <- ADDm(PC, SEXT(OFFS, 15, 24)); }; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

nop

{ W.MODE = OxO; W.OP = 0; W.RA = 0;
W.RB = 0; W.RC = 0; }

{ NOPO; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

halt

{ W.MODE = OxO; W.OP = 0; W.RA = 0;
W.RB = 0; W.RC = 1; }

{ HALTO; }
{}
{ Cycle = 1; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }
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// -----------------------------------------------------------------

Section Constraints

// No constraints - RISCs are VERY simple

/-----------------------------------------------------------------

Section Optional
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ADDRESS
GEN.. UNIT

7

UJ L R -

, NO-7
PORT
BOR M0-7
HOST

15

ON-CHIP
9 1/O

PORT C
AND/OR4-
SSI,SCI INTERNAL -

DATA BUS
SWITCH & 4

BIT MANIP. i

UNIT

CLOCK
IGEN.

YAB
XAB

-' PAB
1~EXTERN.I ADDR

-1DDRESS
-a-BUS I

SWITCH

PROGRAM X MEMORY Y MEMORY
ROM BUS 7

CONTROL

YDB- _

|| || XDB13

| | PDB

|E [ GDB

EXTERNAL
DATA BUS
SWITCH /

IDATA

PORT A

PROG PROG. PROG. DATA ALU

GEN. I CONTR.| CONT. 24X24+56->56-BIT MAC
_..i j|_ I j 2X56-BIT ACCUMULATORS

PROGRAM CONTROLLER

1 MODB/I ROB
MODA/ 16 BITS -

RESET 24 BITS -J

Figure C-4: The Motorola 56000 DSP engine.

C.4 The Motorola 56000 DSP

// Conventions:

// I = OR
// & = AND

// [x..yl = range from x to y
// , = used between required fields
// 0 = variable declaration follows

// \ = ignore special symbol

----------------------------------------------------------
// Number of fields in each VLIW word
// Size and format of each

Section Format

DB = OP[8], MODE[8];

Main = OP[8];

/ ---------------------------------------------------
Section GlobalDefinitions
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Macro definitions

RENAME(x,y) NonTerminal y: x { $$ = x; } { x } { x } { } { }

TRUE

FALSE
DEFINENULLOP

1

0
{} { NULLOPO; } {} {} {}

#define ADDm(x, y) ADD(x,y,56,"sat

#define ADDCm(x, y) ADDC(x,y, 0, CC

#define SUBm(x, y) SUB(x,y,56,"sat

#define SUBCm(x, y) SUBC(x,y, 0, CC

#define MULm(x,y) MUL(x,y,56,24,"

#define DIVm(x,y) DIV(x,y,56,24,2

#define ANDm(x,y) AND(x,y,24)

#define XORm(x,y) XOR(x,y,24)

#define ORm(x,y) OR(x,y,24)

#define SORm(x,y) OR(x,y,8)

#define NOTm(x) NOT(x,24)

#define ANDSm(x,y) AND(x,y,8)

#define ASLm(x) ASL(x,1,0,CCRS[

#define ASRm(x) ASR(x,1,x[551,C

#define LSLm(x) ASL(x,1,0,CCRS[

#define LSRm(x) ASR(x,1,0,CCRS[

#define ROLm(x) ASL(x,1,CCRS[0]

#define RORm(x) ASR(x,1,CCRS[0]

#define ABSm(x) ABS(x,56)

#define RNDm(x) RND(x, 32, "nea

// Shorthand names for flags

#define CF CCRS[01

#define VF CCRS[11

#define ZF CCRS[2]

#define NF CCRS[31
#define UF CCRS[41

#define EF CCRS[51
#define LF CCRS[61

#define LFF MRS[81

#define T-F MRS[61

#define SET-FLAG(c,f) if (c) { f <- 1

#define CSETFLAG(c,f) if (c) { f <- 1
#define SETALL(v,z,n,u,e)

SETFLAG(v,VF);

SETFLAG(z,ZF);

I)
RS[01, 56,
"1)
RS[01, 56,

trn")

4, "trn")

01,56)
CRS[01,56)
01,24)

01,24)

,CCRS[01,2

,CCRS[01,2

r")

;} else {f

"sat")

"sat")

4)

4)

<- 0;}
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#def ine

#define

#define

#define



SET_FLAG(n,NF);

SET-FLAG(u,U-F);

SETFLAG(e,EF);

#define CSETALL(v,z,n,u,e)

CSETFLAG(v,VF)

CSETFLAG(z,ZF)

CSETFLAG(n,NF)

CSETFLAG(u,UF)

CSETFLAG(e,EF)

#define CLEARALL(v,z,n,u,e)

V_F <- v; ZF <- z; NF <- n;

#define SIGNED(acc) (((SMODE

(((acc >> 47) == OxO)

((SMODE == 1) &

(((acc >> 48) == OxO)

((SMODE == 2) &

(((acc >> 46) == OxO)

#define UNORM(acc)

// This

//e
Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

(((SMODE

((SMODE
((SMODE

ends up in the lex file.

assembly token

XO XOR

Xi X1_R

YO YOR

Y1 Y1_R

AO AOR

Al AlR

A2 A2-R

BO BOR

B1 B1_R

B2 B2_R

R[0..71 RR

N[0..71 N-R

M[0..71 M_R

"A10" A10_D

"B10" B10_D

XREG XD

YREG YD

AREG AD
BREG BD

LA LA

U_F <- u; EF <- e;

== 0) &

I ((acc >> 47) == OxlFF)))

I ((acc >> 48) == OxFF))) I

I ((acc >> 46) == Ox3FF))))

0)

1)
1)

type
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{
{
{
{}
{}
{}
{}
{}
{}
{}

&
&
&

!(acc[471
!(acc[481
!(acc[461

^ acc [461

^ acc [471

^ acc[451

value

[0.
[0.
[0.

.71; };

.71; };

.71; };
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Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Token

Non-Terminal C_CODE:

CCC {$$ = CCC;

CGE {$$ = CGE;

CNE {$$ = CNE;

CPL {$$ = CPL;

}
}

}
}

{ CCRS[O] == 0 } {} {} {} I
{ (CCRS[3]^ CCRS[1]) == 0 }
{} {} {} I

{ CCRS[2] == 0 } {} {} {} I
{ CCRS[31 == 1 } {} {} {} I
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LC

SSH
SSL
SP

PC

MR

CCR

SR

OMR

SS

AB

BA

"1X:"

"L:" 1

sia

lia

sid

lid

CCC
CGE
CNE
CPL

CNN

CEC
CLC
CGT

CCS
CLT
CEQ

CMI
CNR

CES

CLS

CLE
"-"

LC

SSH
SSL
SP

PC

MR

CCR

SR

OMR

SS

AB_D

BA_D

XMEM

YMEM

LMEM

PMEM

HASH
SIA

LIA

SID

LID

CCC

CGE
CNE
CPL

CNN

CEC
CLC
CGT
CCS

CLT
CEQ
CMI
CNR

CES

CLS
CLE

SIGN

{OxO;
{Ox;
{ x2;

{ x3;

{x4;
{ x5;

{ x6;

{ x7;

{ x8;

{ x9;

{OxA;
{OxB;
{OxC;
{OxD;

{OxE;
{Ox;

{ Oxi; };



CNN {$$ = CNN; } { (CCRS[2] I
((CCRs [4] )&(~CCRs [5])))
== 0 } {} {} {} I

CEC {$$ = CEC; }{ CCRS[5] 0 } {} {} {} I
CLC {$$ = CLC; }{ CCRS[61 0 } {} {} {} I
CGT {$$ = CGT; } { (CCRS[21 I (CCRS[3] ^ CCRS[11))

== 0 } {} {} {} I
CCS {$$ = CCS; }{ CCRS[01 == 1 } {} {} {} I
CLT {$$ = CLT; } { (CCRS[3] CCRS[1]) == 1 }

{} {} {} I
CEQ {$$ = CEQ; }{ CCRS[21 == 1 } {} {} {} I
CMI {$$ = CMI; } { CCRS[31 == 1 } {} {} {} I
CNR {$$ = CNR; } { (CCRS[21 I

((~CCRS[4])&(~CCRS[5])))

== 1 } {} {} {} I
CES {$$ = CES; }{ CCRS[5] == 1 } {} {} {} I
CLS {$$ = CLS; }{ CCRS[6] 0 } {} {} {} I
CLE {$$ = CLE; } { (CCRS[2] I (CCRS[3] ^ CCRS[11))

== 0 } {} {} {} ;

NonTerminal

NonTerminal

NonTerminal

NonTerminal

Non-Terminal

NonTerminal

NonTerminal

ADDRESS: INT {$$ = INT; } {INT} {INT} {} {}
NAME {$$ = NAME;} {NAME} {NAME} {}

ACC: AD {$$ = 0; } {AREG} {AREG} {} {} I
BD {$$ = 1; } {BREG} {BREG} {} {}

ACCS: AD {$$ = 0; } {A1O} {A1O} {} {} I
BD {$$ = 1; } {B10} {B1O} {} {} ;

ACC_1: AD {$$ =

BD {$$ =

ACC_0: AD {$$ =

BD {$$ =

X_R:

XOR {$$ = 0;}

XlR {$$ = 1;}

Y_R:

YOR {$$ = 0;}

Y1_R {$$ = 1;}

I

f} ;

0; } {A[1]} {A[1]} {} {} I
1; } {B[1]} {B[1]} {} {} ;

0; } {A[0]} {A[0]} {} {} I
1; } {B[0]} {B[0]} {} {}

{X[0]} {X[0]} {} {} I
{X[1]} {X[1]} {} {} ;

{Y[o]} {Y[0]} {} {} I
{Y[1]} {Y[1]} {} {} ;

Non-Terminal

A-D {$$ = 0; } {AREG} {AREG} {} {} I
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BD {$$ = 1; } {BREG} {BREG} {}

NonTerminal

NonTerminal

XOR {$$ = 0;}

XlR {$$ = 1;}

YOR {$$ = 0;}

YlR {$$ = 1;}

{x[0]}
{X[11}

{Y[0]}

{Y[1}

{x[0]} {}

{X[1]} {}

{Y[01} {}
{Y[1]} {}

{}

{}

{}

{}
{}

NonTerminal

XD {$$ = ;}

Y_D {$$ = 1;}

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

DD:
X_R {$$ = XR;} {XR} {XR}

Y_R {$$ = 0x2 I YR;} {YR}

ee:

X_R {$$ = XR;} {XR}

ACC {$$ = Ox2 I ACC;}

EE:
MR

CCR

OMR

$$=
0;} {MRS}

1;} {CCRS}

2;} {OMRS}

{XR}

{ACC}

{MRS}

{CCRS}

{OMRS}

{} {} I
{YR} {}

{} {}
{ACC}

{}
{}
{}

{}

{} ;

{} ;

{}
{}
{}

ff:
Y_R {$$ = YR;} {YR} {YR} {} {} I

ACC {$$ = Ox2 I ACC;} {ACC} {ACC} {}

JJ:

XO_R

YO_R

XlR

Yl_R

DDD:

AO-R

BOR

A2_BR

B2_R

AlR

Bl_R

AD

0;}

1;}

2;}

3;}

OxO;}

Oxl;}

0x2;}

Ox3;}
Ox4;}
Ox5;}

{x[0}
{Y[01}
{X[1]}

{Y[1]}

{A[01
{B[0]

{A[2]

{B[2]

{A[l]

{B[l]

{x[0]}
{Y[O1}

{x[1]}

{Y[1l]}

}
}
}
}
}
}

{}
{}
{}
{}

{A[0]}

{B[0]}

{A[21}
{B[21}

{A[1]}

{B[1]}

{} ;

{}
{}
{}
{}

{}

{}

{}
{}

{}
{}

{}
{}
{}
{}
{}
{}

0x6;} {AREG} {AREG} {} {}
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{YREG}

{XREG}

{YREG}
{}
{}

{}
{}
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;
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B_D {$$ = Ox7;} {BREG} {BREG} {} {}

NonTerminal LLL:

A10-D

B10_D

XD

YD

AD

BD

AB_D

BA_D

= OxO;}

= OX1;}
= 0x2;}
= Ox3;}

= 0x4;}
= Ox5;}

= 0x6;}
= 0x7;}

{A1O}

{B1O}

{XREG}

{YREG}

{AREG}

{BREG}

{ABREG}

{BAREG}

NonTerminal

NonTerminal

TTT:

R_R {$$ = RR;} {AGUR[RRI} {AGUR[RRI} {} {}

ttt:

R_R {$$ = R_R;} {AGUR[R_R]} {AGUR[RR} {} {} ;

NonTerminal

XO_R

YOR

X1_BR

Y1_BR

XO_R

YOBR

X1_R

Y1_R

NonTerminal

QQQ:
XO__R

YO__BR

XOR

YO_R

Y1_R

,' X0_R
YOBR

X1_R

JJJ:
XD

0;
1;

2;

3;

4;

5;

6;

7;

{$$ = 2;}

Y_D {$$ = 3;}

XOR {$$ = 4;}

YOR {$$ = 5;}

X1_R {$$ = 6;}

YlR {$$ = 7;}

}
}
}
}
}
}
}
}

{MULm(X[0]

{MULm(Y[01
{MULm(X [11
{MULm(Y [11
{MULm(X[0]1
{MULm(Y [0]

{MULm(X[1]

{MULm(Y[11

{SEXT(XREG,

{SEXT(XREG,

{SEXT(YREG,

{SEXT(YREG,

{SEXT(X [0],
{SEXT(X [01,
{SEXT(Y[0],

{SEXT(Y[0],

{SEXT(X[11,

{SEXT(X[1],

{SEXT(Y[1],

{SEXT(Y[1],

NonTerminal jjj:
XOR {$$
YOR {$$

= 4;} {X[0]} {X[0]} {}
= 5;} {Y[0]} {Y[0]} {}
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{A1O}

{B1O}

{XREG}

{YREG}

{AREG}

{BREG}

{ABREG}

{BAREG}

{}
{}
{}
{}
{}
{}
{}
{}

{}
{}
{}
{}
{}
{}
{}
{}

X[0o)}

Y[0])}

X[0])}
Y[0])}
Y[1])}
X[0])}
Y[01)}
X[1])}

{}
{}
{}
{}
{}
{}
{}
{}

{}
{}
{}
{}

{}
{}

{}
{}

{}
{}
{}
{}
{}
{}
{}
{}

{} {}

{}

48,

48,

48,

48,

24,

24,

24,

24,

24,
24,

24,

24,

56)}

56)}
56)}
56)}
56)
56)

56)
56)

56)
56)

56)

56)

{}
24}

24}

24}

24}

24}

24}

24}

24}

{}{

{} {} I

{} {} I

{} {}

{}
{}

I

|
|



NonTerminal

X1_R {$$ = 6;} {X[1]} {X[1} {} {}
Y1_R {$$ = 7;} {Y[1]} {Y[1} {} {};

GGG:

SR {$$
OMR {$$
SP {$$
SSH {$$
SSL {$$
LA {$$
LC {$$

Ox1;}
Ox2;}
Ox3;}
Ox4;}
Ox5;}
Ox6;}

0x7;}

{SRS}

{UMRS}

{SPS}
{SSHS}
{SSLS}

{LAS}

{LCS}

{SRS}

{OMRS}

{SPS}

{SSHS}
{SSLS}

{LAS}

{LCS}

{}
{}
{}
{}
{}
{}
{}

{}
{}
{}
{}
{}
{}
{}

NonTerminal DDDD:
DD {$$
DDD {$$

= Ox4 I
= 0x8 I

DD;}

DDD;}
{DD} {DD} {} {}
{DDD} {DDD} {} {} ;

NonTerminal

MB

SR

OMBR

SP
SSH

SSL

LA

LC

NonTerminal

DD

DDD

RR

NR

NonTerminal

DD

DDD

RR

NR

ccccc:
= MR;}
= 0x19;}
= Ox1A;}
= Ox1B;}

$= OxlC;}

= Ox1D;}
= Ox1E;}
= Ox1F;}

ddddd:
= 0x04 I

{$$ = Ox08 I
{$$ = OxO I|
{$$ = Ox18 I

eeeee:

f$$ = Ox04 I
f$$ = Ox08 I
{$$ = OxO io
f$$ = Ox18 I

{AGUM[MR]}

{SRS}

{OMRS}

{SPS}

{SSHS}

{SSLS}

{LAS}

{LCS}

DD; }
DDD;}

BR_R;}
;_R}

DD;}
DDD;}

RR;}

NR;} I

{AGUM[MR]}

{SRS}

{OMRS}

{SPS}

{SSHS}

{SSLS}

{LAS}

{LCS}

{DD}

{DDD}

{AGUR[RR]}

{AGUN[N_.R]}

{DD}

{DDD}

{AGUR[RRI}

{AGUN[NR]}

{}
{}
{}
{}
{}
{}
{}
{}

{}
{}
{}
{}
{}
{}
{}
{}

{DD}

{DDD}

{AGUR[RRRI}

{AGUN[NRI}

{DD}
{DDD}

{AGUR [RRI}

{AGUN[N_-RI}

NonTerminal

DD

DDD
RR

NR
MR

GGG

dddddd:

= Ox04

= Ox08

= Ox1o
= 0x18
= 0x20
= 0x38

DD;}

DDD;}
RR; I
N_R;}

MR; I
GGG;}

{DD}

{DDD}

{AGUR[RR]}

{AGUN[NR] }
{AGUM[MR] }
{GGG}

{DD}

{DDD}
{AGUR[RR]}

{AGUN[NR]}

{AGUM[MR]}

{GGG}
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{}
{}
{}
{}

{}
{}
{}
{}

{}
{}
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NonTerminal EA:

( RR ')' '-' N-R

{ AGUR[RRI

{ AGUR[RRI

( RR ')' )+' N_R

{ AGUR[R-R]
{ AGUR[R-R]

(RR ))' )-)

{ AGUR[RR]

{ AGUR[RR]

( RR ))) '+)

{ AGUR[R_-R]

{ AGUR[RR]

(RR ')))

f AGUR[RR]

{ AGUR[RR]
( RR '+' NR )))

{ AGUR[RR1
{ AGUR[RR]

{$$ = OxOO I (RR & Ox7); }
}
<- AGUR[RR] -

= Ox08 I
}
<- AGUR[RRI +

{$$ = Oxlo I
}
<- AGUR[RR] -

= Ox18 I
}
<- AGUR[RR] +

= Ox20 I
}
} {} {} I

$$= Ox28 I
+ AGUN[NR] }
+ AGUN[NR] }

{ Cycle=2; Size=O; } {} I
(' RR ')' $$= Ox38 I

{ AGUR[RR] - 1 }
{ AGUR[RR] <- AGUR[RR] -

{ Cycle=2; Size=O;} {} I

AGUN[NR]; } {}
(RR & 0x7); }

AGUN[NR]; } {}
(RR & Ox7); }

1; }
(RR

1; }
(RR

{} {} I
& 0x7);

{} {} I
& 0x7);

}

}

(RR & 0x7); }

(RR & Ox7); }

1; }

ADDRESS {$$ = Ox30; Additional(O, Split.ADDR=ADDRESS;); }
{ADDRESS} {ADDRESS} { Cycle = 2; Size = 1; } {}

NonTerminal ADRM:

() RR ')' '-' N-R

{ AGUR[RR]
{ AGU-R[RR]

(' RR ')' )+' N_R

{ AGUR[RR1

{ AGUR[RR
(RR )))' '-)

{ AGUR[RRy]
{ AGUR[RR]

'(' RR 3)) )+)

{ AGUR[RR]
{ AGUR[RR]

(RR ')))

{ AGUR[RR]

{ AGUR[RR]
(' RR '+' NR )))

{$$ = OxOO I (RR & Ox7); }
}
<- AGUR[R_] -

= Ox08 I
}
<- AGUR[RR] +

$= Ox I
}
<- AGUR[RR] -

{$$ = 0x18 1

}
<- AGUR[RR] +

f$$ = Ox20 I
}
} {} {} I

{$= 0x28 I

AGUN[NR]; } {} {} I
(RR & 0x7); }

AGU.N[NR]; } {} {} I
(RR & 0x7); }

1; } {} {} I
(RR & 0x7);

1; } {} {} I
(B._B. & 0x7);

}

}

(RR & 0x7); }
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{ AGUR[RR] + AGUN[NR]
{ AGUR[RR] + AGUN[NR]
{ Cycle=2; Size=O; } {} I

- (' RR ')' $$= Ox38

{ AGUR[RR - 1 }
{ AGUR[RR] <- AGUR[RR]

{ Cycle=2; Size=O;} {} ;

NonTerminal SEA:

(RR )))' -) N-R

{ AGUR[R.R] }
{ AGUR[R.R1 <-

( RR ')' '+' NBR

{ AGU.R[RR] }
{ AGUR[RR] <-

(RR ))' )-)

{ AGUR[RR] }
{ AGUR[RR] <-

(RR )))' )+)

f AGUR[RR] }

f AGUR[RR] <-

NonTerminal SEAN:

)() RR ')' '-' NBR

( RR

( RR

( RR

}
}

I (RR & Ox7); }

- 1; }

{$$ = OxOO I (RR & Ox7); }

AGUR [RR]
{$$ = OxO8

AGUR [RR]

{$$ = Oxto

AGUR [RR]

{$$ = Ox18

- AGUN[NR]; } {}
I (RR & 0x7); }

+ AGUN[NR]; } {}
I (RR & Ox7); }

- 1; } {} {} I
I (RR & 0x7); }

{} I

{} I

AGUR[RR] + 1; } {} {} ;

f$$ = OxOO I (RR & Ox7); }
{ AGUR[RR] - AGUN[NR] } {} {} {}
')' '+' N-R $$ = 0x08 (RR & Ox7); }
{ AGUR[RR] + AGUN[NR] } {} {} {}

)$$ = Ox1O I (RR & Ox7); }
{ AGUR[RR] - 1 } {} {} {}
))) )+) {$$ = 0x18 I (RR & Ox7); }
{ AGUR[RR] + 1 } {} {} {}

NonTerminal BIT5:

HASH INT {$$ = OxOO00001F & INT;}

NonTerminal BIT8:

HASH INT {$$ = OxOQOOOFF & INT;}

NonTerminal BIT12:

HASH INT {$$ = OxOOOOOFFF & INT;}

NonTerminal BIT16:

HASH INT {$$ = OxOOOOFFFF & INT;}

NonTerminal

{INT} {INT} {} {}

{INT} {INT} {} {}

{INT} {INT} {} {}

{INT} {INT} {} {}

BIT24:
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HASH INT {$$ = OxOOFFFFFF & INT;} {INT} {INT} {} {}

NonTerminal ADD6:

INT {$$ = Ox0000O3F & INT;} {INT} {INT} {} {}

NonTerminal PRT6:

INT {$$ = Ox00003F & INT;} {INT} {INT} {} {}

NonTerminal ADD12:

INT {$$ = OxOOOOOFFF & INT;} {INT} {INT} {} {}

NonTerminal ADD16:

INT {Additional(O, Split.ADDR = OxOOQOFFFF & INT;);}

{INT} {INT} {} {}

NonTerminal XPP:

XMEM PRT6 {$$ = PRT6;} {XPort[PRT6]} {XPort[PRT6]} {}

NonTerminal YPP:

YMEM PRT6 {$$ = PRT6;} {YPort[PRT6]} {YPort[PRT6]} {}

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

NonTerminal

XAA:
XMEM ADD6 {$$

YAA:

YMEM ADD6 {$$

= ADD6;} {XMEMS[ADD6I} {XMEMS[ADD6I} {}

= ADD6;} {YMEMS[ADD6I} {YMEMS[ADD6I} {}

{}

{}

{}

{};

XEA:

XMEM EA {$$ = EA;} {XMEMS[EAI} {EA}

{Cycle = EA; Size = EA;} {} ;

YEA:

YMEM EA {$$ = EA;} {YMEMS[EAI} {EA}

{Cycle = EA; Size = EA;} {} ;

XSEA:

XMEM

YSEA:
YMEM

SEA {$$ = SEA;} {XMEMS[SEA]} {SEA} {} {}

SEA {$$ = SEA;} {YMEMS[SEAI} {SEA} {} {}

PEA:

PMEM EA {$$ = EA;} {IM[EAI} {EA}

{Cycle = EA; Size = EA;} {}
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NonTerminal

NonTerminal

NonTerminal

PAA:
PMEM ADD6 {$$ =

LEA:

LMEM EA

LAA:

LMEM ADD6 {$$ =

NonTerminal BITMODE:

BIT5 ',l XPP

BIT5 ',' YPP

ADD6;} {IM[ADD6]} {IM[ADD6]} {} {}

{$$ = EA;} {LMEMS[EAI} {EA}
{Cycle = EA; Size = EA;} {}

ADD6;} {LMEMS[ADD6I} {LMEMS[ADD6]} {} {}

{$$ = 0x8000 I (XPP << 8) 1 BIT5;}

{XPP[BIT5]} {XPP[BIT5]} {} {} I
{$$ = 0x8040 I (YPP << 8) 1 BIT5;}

{YPP[BIT5I} {YPP[BIT5]} {} {} I
BIT5 ',' XEA

BIT5 , YEA

BIT5 ',' XAA

BIT5 ',' YAA

NonTerminal BITMODE2:

BIT5 ',' XPP

BITS ',' YPP

{$$ = 0x4000 I (XEA << 8) 1 BIT5;}
{XEA[BIT5]} {XEA}

{ Cycle = XEA; Size = XEA; } {}

f$$ = 0x4040 I (YEA << 8) 1 BIT5;}
{YEA[BIT5]} {YEA}

{ Cycle = YEA; Size = YEA; } {}
f$$ = OxOOOO I (XAA << 8) 1 BIT5;}

{XAA[BIT5]} {XAA[BIT5]} {} {}
f$$ = 0x0040 I (YAA << 8) 1 BIT5;}
{YAA[BIT5]} {YAA[BIT5]} {} {}

f$$ = 0x8000 I (XPP << 8) 1 BIT5;}

{XPP[BIT5]} {XPP[BIT5]} {} {}
{$$ = 0x8040 I (YPP << 8) 1 BIT5;}
{YPP[BIT5]} {YPP[BIT5]} {} {}

BIT5 ',' XMEM ADRM

{$$ = 0x4000 I (ADRM << 8) 1 BIT5;}
{XMEMS[ADRMI[BIT5]} {ADRM} {} {}

BIT5 ',' YMEM ADRM

BIT5 ',' XAA

BITS ',' YAA

Non-Terminal

{$$ = 0x4040 I (ADRM << 8) 1 BIT5;}
{YMEMS[ADRM][BIT5]} {ADRM} {} {}

{$$ = OxOOQO I (XAA << 8) 1 BIT5;}
{XAA[BIT5]} {XAA[BIT5I} {} {}

f$$ = 0x0040 I (YAA << 8) 1 BIT5;}
{YAA[BIT5]} {YAA[BIT5]} {} {}

MEMMODE:
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XMEM ADRM {$$ = 0x4000 I (ADRM << 8);}

{XMEMS[ADRMI} {XMEMS[ADRMI} {} {}
YMEM ADRM {$$ = 0x4040 I (ADRM << 8);}

{YMEMS[ADRM]} {YMEMS[ADRMI} {} {}
XAA {$$ = x (XAA << 8);}

{XAA} {XAA} {} {}
YAA {$$ = 0x0040 I (YAA << 8);}

{YAA} {YAA} {} {}

RENAME(XO_R, XO__R);

RENAME(YO_R, YO__R);

Split.ADDR

Split.DATA

DB.OP+DB.MODE+Main.OP;

DB.OP+DB.MODE+Main.OP;

/-----------------------------------------------------------------
// The number of registers for each unit and the topology of
// any of the register files.

Section Storage

//
Instruction Memory IM

Memory XMEMS

Memory YMEMS

RegFile AGU_R

RegFile AGU_N

RegFile AGUM

RegFile X

RegFile Y

RegFile A

RegFile B

MMIO XPort

MMIO YPort

CRegister LAS

CRegister LCS

CRegister MRS

CRegister CCRS

CRegister OMRS

CRegister SPS

ProgramCounter PCS

Stack SSS(SPS)

= depth , width

= Ox1OOO , Ox18

= Ox1000 , Ox18

= Ox1OOO Ox18

= Ox8 , 0x18
= Ox8 , 0x18
= Ox8 , 0x18
= Ox2 , 0x18
= Ox2 , Ox18

= Ox3 , 0x18
= Ox3 , 0x18
= Ox40 , Ox18

= Ox40 , Ox18

= Ox10
= Ox10

= Ox8
= 0x8
= Ox8

= Ox6
= Ox10

= Oxf , 0x20

// Loop Address

// Loop Counter

Alias AREG

Alias BREG

A[21 [0x7

B[2] [0x7

- OxO,A[11,A[0];

- OxO],B[11,B[O];
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Alias XREG X[1],X[01; Ox30

Alias YREG Y[1],Y[01; Ox30

Alias SSHS SSS[SPS][Oxlf - OxOl; Ox10

Alias SSLS SSS[SPS][OxOf - Ox00]; Ox10

Alias SRS MRS,CCRS; Ox10

Alias A10 A[11,A[01; 0x30

Alias B10 B[11,B[01; Ox30

Alias LMEMS XMEMS[O - 0xFFF],YMEMS[0 - OxFFF]; OxlOOO,0x30

Alias ABREG A[11,B[11; Ox30

Alias BAREG B[11,A[1]; Ox30

Alias SMODE MRS[2 - 31; Ox02

/-----------------------------------------------------------------
// Correspondence between assembly mneumonics, bitfields, and actual
// instructions.

// NOTE: The timing described here assumes there is no wait states
// and all memory is internal.

Section InstructionSet

Field DBM:

MOVENULL DEFINENULLOP

MOVE XSEA, ee, YSEA, ff

{ DB.OP = OxCO I ((YSEA >> 3) << 4)
1 (ee << 2) I ff;
DB.MODE = Ox80 I ((Ox3 & YSEA)<< 5) I XSEA; }

{ ff <- YSEA; ee <- XSEA; }
{ XSEA; YSEA; CSETFLAG(LIMIT, L_F); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 2; Usage = 1; }

MOVE XSEA, ee, ff, YSEA

{ DB.OP = Ox80 I ((YSEA >> 3) << 4)

1 (ee << 2) 1 ff;
DB.MODE = 0x80 I ((Ox3 & YSEA)<< 5) I XSEA; }

{ YSEA <- ff; ee <- XSEA; }
{ XSEA; YSEA; CSETFLAG(LIMIT, L_F); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 2; Usage = 1; }

MOVE ee, XSEA, YSEA, ff

{ DB.OP = OxCO I ((YSEA >> 3) << 4)
1 (ee << 2) I ff;
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DB.MODE = OxOO I ((Ox3 & YSEA)<< 5) 1 XSEA; }
{ ff <- YSEA; XSEA <- ee; }
{ XSEA; YSEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 2; Usage = 1; }

MOVE ee, XSEA, ff, YSEA

{ DB.OP = Ox80 I ((YSEA >> 3) << 4)

1 (ee << 2) 1 ff;
DB.MODE = 0x00 I ((Ox3 & YSEA)<< 5) I XSEA; }

{ YSEA <- ff; XSEA <- ee; }
{ XSEA; YSEA; CSETFLAG(LIMIT, L_F); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 2; Usage = 1; }

MOVE XEA, ddddd

{ DB.OP = Ox40 I ((ddddd >> 3) << 4)
I (Ox7 & ddddd);

DB.MODE = OxCO I XEA; }
{ ddddd <- XEA; }
{ XEA; CSETFLAG(LIMIT, LF); }
{ Cycle = XEA; Stall = 0; Size = XEA; }
{ Latency = 2; Usage = 1; }

MOVE ddddd, XEA

{ DB.OP = Ox40 I ((ddddd >> 3) << 4)
I (Ox7 & ddddd);

DB.MODE = 0x40 I XEA; }
{ XEA <- ddddd; }
{ XEA; CSETFLAG(LIMIT, LF); }
{ Cycle = XEA; Stall = 0; Size = XEA; }
{ Latency = 2; Usage = 1; }

MOVE XAA, ddddd

{ DB.OP = Ox40 I ((ddddd >> 3) << 4)
I (0x7 & ddddd);

DB.MODE = Ox80 I XAA; }
{ ddddd <- XAA; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 2; Usage = 1; }

MOVE ddddd, XAA

{ DB.OP = 0x40 I ((ddddd >> 3) << 4)
I (0x7 & ddddd);
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DB.MODE = OxOO I XAA; }
{ XAA <- ddddd; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 1; }
{ Latency = 2; Usage = 1; }

MOVE YEA, ddddd

{ DB.OP = Ox48 I ((ddddd >> 3) << 4)

I (Ox7 & ddddd);

DB.MODE = OxCO I YEA; }
{ ddddd <- YEA; }
{ YEA; CSETFLAG(LIMIT, LF); }
{ Cycle = YEA; Stall = 0; Size = YEA; }
{ Latency = 2; Usage = 1; }

MOVE ddddd, YEA

{ DB.OP = Ox48 I ((ddddd >> 3) << 4)
I (Ox7 & ddddd);

DB.MODE = Ox40 I YEA; }
{ YEA <- ddddd; }
{ YEA; CSETFLAG(LIMIT, LF); }
{ Cycle = YEA; Stall = 0; Size = YEA; }
{ Latency = 2; Usage = 1; }

MOVE YAA, ddddd

{ DB.OP = Ox48 I ((ddddd >> 3) << 4)

I (Ox7 & ddddd);

DB.MODE = Ox80 I YAA; }
{ ddddd <- YAA; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 2; Usage = 1; }

MOVE ddddd, YAA

{ DB.OP = Ox48 I ((ddddd >> 3) << 4)
I (Ox7 & ddddd);

DB.MODE = Ox00 I YAA; }
{ YAA <- ddddd; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 2; Usage = 1; }

MOVE LEA, LLL

{ DB.OP = Ox40 I ((LLL >> 2) << 4)
I (Ox3 & LLL);
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DB.MODE = OxCO I LEA; }
{ LLL <- LEA; }
{ LEA; CSETFLAG(LIMIT, LF); }
{ Cycle = LEA; Stall = 0; Size = LEA; }
{ Latency = 1; Usage = 1; }

MOVE LLL, LEA

{ DB.OP = Ox40 I ((LLL >> 2) << 4)

I (Ox3 & LLL);

DB.MODE = Ox40 I LEA; }
{ LEA <- LLL; }
{ LEA; CSETFLAG(LIMIT, LF); }
{ Cycle = LEA; Stall = 0; Size = LEA; }
{ Latency = 1; Usage = 1; }

MOVE LAA, LLL

{ DB.OP = Ox40 I ((LLL >> 2) << 4)

I (Ox3 & LLL);

DB.MODE = Ox80 I LAA; }
{ LLL <- LAA; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 1; Usage = 1; }

MOVE LLL, LAA

{ DB.OP = Ox40 I ((LLL >> 2) << 4)
I (Ox3 & LLL);

DB.MODE = OxCO I LAA; }
{ LAA <- LLL; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 1; Usage = 1; }

MOVE BIT8, ddddd

{ DB.OP = Ox20 I ddddd;
DB.MODE = BIT8; }

{ ddddd <- BIT8; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 1; Usage = 1; }

MOVE eeeee, ddddd

{ DB.OP = 0x20 I (eeeee >> 3);

DB.MODE = ((Ox7 & eeeee) << 5) 1 ddddd; }
{ ddddd <- eeeee; }
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MOVE SEA

{ CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 0;

{ Latency = 1; Usage = 1; }

{ DB.OP = 0x20;

DB.MODE = Ox40

{}
{ SEA; }
{ Cycle = 0; Stall = 0; Size = 0;
{ Latency = 1; Usage = 1; }

}

I SEA; }

}

MOVENOP

{ DB.OP = Ox20;
DB.MODE = Ox00; }

{ NOPO; }
{}
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 1; Usage = 1; }

X_R, YEA, ff

{ DB.OP = 0x10 I (XR << 3)

DB.MODE = OxCO I YEA; }
{ X_R <- ACC; ff <- YEA; }
{ YEA; CSETFLAG(LIMIT, LF); }
{ Cycle = YEA; Stall = 0; Size =

{ Latency = 1; Usage = 1; }

X_R, ff, YEA

{ DB.OP = 0x10 I (XR << 3)

DB.MODE = Ox40 I YEA; }
{ X_R <- ACC; YEA <- ff; }
{ YEA; CSETFLAG(LIMIT, LF); }
{ Cycle = YEA; Stall = 0; Size =

{ Latency = 1; Usage = 1; }

I (ACC << 2) I ff;

YEA; }

I (ACC << 2) I ff;

YEA; }

MOVE ACC, X_R, BIT24, ff

{DB.OP = 0x10 I (XR << 3) I (ACC << 2) 1 ff;
DB.MODE = OxF4;

Additional(0, Split.DATA = BIT24;); }
{ X_R <- ACC; ff <- BIT24; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 1; Usage = 1; }
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MOVE YOR, ACC, YEA

{ DB.OP = Ox08 I ACC;
DB.MODE = Ox80 I YEA; }

{ ACC <- Y[0]; ACC <- YEA; }
{ YEA; CSETFLAG(LIMIT, LF); }
{ Cycle = YEA; Stall = 0; Size = YEA; }
{ Latency = 1; Usage = 1; }

MOVE XEA, ee, ACC, Y_R

{ DB.OP = 0x10 I (ee << 2) I (ACC << 1) Y_R;

DB.MODE = Ox80 I XEA; }
{ ee <- XEA; YR <- ACC; }
{ XEA; CSETFLAG(LIMIT, LF); }
{ Cycle = XEA; Stall = 0; Size = XEA; }
{ Latency = 1; Usage = 1; }

MOVE ee, XEA, ACC, YR

{ DB.OP = Ox10 I (ee << 2) I (ACC << 1) Y_R;

DB.MODE = OxOO I XEA; }
{ XEA <- ee; YR <- ACC; }
{ XEA; CSETFLAG(LIMIT, LF); }
{ Cycle = XEA; Stall = 0; Size = XEA; }
{ Latency = 1; Usage = 1; }

MOVE BIT24, ee, ACC, YR

{ DB.OP = 0x10 I (ee << 2) I (ACC << 1) Y_R;

DB.MODE = OxB4;
Additional(0, Split.DATA = BIT24;); }

{ ee <- BIT24; YR <- ACC; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 0; Stall = 0; Size = 0; }
{ Latency = 1; Usage = 1; }

MOVE ACC, XEA, XO_R

{ DB.OP = Ox08 I ACC;

DB.MODE = OxCO I XEA; }
{ XEA <- ACC; ACC <- X[01; }
{ XEA; CSETFLAG(LIMIT, LF); }
{ Cycle = XEA; Stall = 0; Size = XEA; }
{ Latency = 1; Usage = 1; }

Field Main:

MainNULL DEFINENULL_0P

JS CCODE, ADD12
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{ DB.OP = OxOF;

DB.MODE = (CCODE << 4) I (ADD12 >> 8);
Main.OP = ADD12 & OxFF; }

{ if (CCODE)
{ SPS <- SPS +1; SSHS <- PCS; SSLS <- SRS;

PCS <- ADD12; }; }
{}
{ Cycle = 6; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

J CCODE, ADD12

{ DB.OP = OxOE;
DB.MODE = (CCODE << 4) I (ADD12 >> 8);
Main.OP = ADD12 & OxFF; }

{ if (CCODE) { PCS <- ADD12; }; }
{}
{ Cycle = 6; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

JSR ADD12

{ DB.OP = OxOD;
DB.MODE = OxOF & (ADD12 >> 8);
Main.OP = ADD12 & OxFF; }

{ SPS <- SPS + 1; SSHS <- PCS;

SSLS <- SRS; PCS <- ADD12; }
{}
{ Cycle = 6; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

JS CCODE, EA

{ DB.OP = OxOB;

DB.MODE = OxCO I EA;
Main.OP = OxAO | CCODE; }

{ if (CCODE) { SPS <- SPS +1; SSHS <- PCS;

SSLS <- SRS; PCS <- EA; }; }
{ EA; }
{ Cycle = 6 + EA; Stall = 0; Size = 1 + EA; }
{ Latency = 1; Usage = 1; }

JSR EA

{ DB.OP = OxOB;

DB.MODE = OxCO I EA;
Main.OP = Ox80; }

{ SPS <- SPS + 1; SSHS <- PCS; SSLS <- SRS;

PCS <- EA; }
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{ EA; }
{ Cycle = 6 + EA; Stall = 0; Size = 1 + EA; }
{ Latency = 1; Usage = 1; }

J CCODE, EA

{ DB.OP = OxOA;

DB.MODE = OxCO I EA;
Main.OP = OxAO I CCODE; }

{ if (CCODE) { PCS <- EA; }; }
{ EA; }
{ Cycle = 6 + EA; Stall = 0; Size = 1 + EA; }
{ Latency = 1; Usage = 1; }

JMP ADD12

{ DB.OP = OxOC;

DB.MODE = Ox00 I (ADD12 >> 8);

Main.OP = OxFF & ADD12; }
{ PCS <- ADD12; }
{}
{ Cycle = 6; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

JMP EA

{ DB.OP = Ox0A;

DB.MODE = OxCO I EA;
Main.OP = Ox80; }

{ PCS <- EA; }
{ EA; }
{ Cycle = 6 + EA; Stall = 0; Size = 1 + EA; }
{ Latency = 1; Usage = 1; }

JSSET BITMODE2, ADD16

{ DB.OP = OxOB;
DB.MODE = BITMODE2 >> 8;
Main.OP = OxAO I (OxFF & BIT_MODE2);

Additional(0, Split.ADDR = ADD16;); }
{ if (BITMODE2) { SPS <- SPS + 1; SSHS <- PCS;

SSLS <- SRS; PCS <- ADD16; }; }
{ BITMODE2; }
{ Cycle = 6 + BITMODE2; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

JSCLR BITMODE2, ADD16

{ DB.OP = OxOB;
DB.MODE = BITMODE2 >> 8;

203



Main.OP = Ox80 I (OxFF & BITMODE2);
Additional(O, Split.ADDR = ADD16;); }

{ if (~BIT-MODE2) { SPS <- SPS + 1; SSHS <- PCS;
SSLS <- SRS; PCS <- ADD16; }; }

{ BITMODE2; }
{ Cycle = 6 + BITMODE2; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

JSET BITMODE2, ADD16

{ DB.OP = OxOA;
DB.MODE = BITMODE2 >> 8;
Main.OP = OxAO I (OxFF & BIT_MODE2);
Additional(0, Split.ADDR = ADD16;); }

{ if (BITMODE2) { PCS <- ADD16; }; }
{ BITMODE2; }
{ Cycle = 6 + BITMODE2; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

JCLR BITMODE2, ADD16

{ DB.OP = OxCA;

DB.MODE = BITMODE2 >> 8;
Main.OP = 0x80 I (OxFF & BIT_MODE2);
Additional(O, Split.ADDR = ADD16;); }

{ if (~BITMODE2) { PCS <- ADD16; }; }
{ BITMODE2; }
{ Cycle = 6 + BITMODE2; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

JSSET BIT5, dddddd, ADD16

{ DB.OP = OxOB;

DB.MODE = OxCO I dddddd;
Main.OP = Ox20 I BIT5;
Additional(O, Split.ADDR = ADD16;); }

{ if (dddddd[BIT5]) { SPS <- SPS + 1; SSHS <- PCS;
SSLS <- SRS; PCS <- ADD16; }; }

{}
{ Cycle = 6; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

JSCLR BIT5, dddddd, ADD16

{ DB.OP = OxOB;
DB.MODE = OxCO I dddddd;
Main.OP = 0x00 I BIT5;
Additional(0, Split.ADDR = ADD16;); }

{ if (~dddddd[BIT5]) { SPS <- SPS + 1; SSHS <- PCS;

204



SSLS <- SRS; PCS <- ADD16; }; }
{}
{ Cycle = 6; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

JSET BIT5, dddddd, ADD16

{ DB.OP = OxOA;
DB.MODE = OxCO I dddddd;
Main.OP = Ox20 I BIT5;
Additional(0, Split.ADDR = ADD16;); }

{ if (dddddd[BIT5]) { PCS <- ADD16; }; }
{}
{ Cycle = 6; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

JCLR BIT5, dddddd, ADD16

{ DB.OP = OxOA;

DB.MODE = OxCO I dddddd;
Main.OP = OxOO I BIT5;
Additional(0, Split.ADDR = ADD16;); }

{ if (~dddddd[BIT5]) { PCS <- ADD16; }; }
{}
{ Cycle = 6; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

BTST BITMODE

{ DB.OP = OxOB;

DB.MODE = BITMODE >> 8;
Main.OP = 0x20 I (OxFF & BITMODE); }

{ C_F <- BITMODE; }
{}
{ Cycle = 4+BIT_MODE; Stall = 0; Size = 1+BITMODE; }
{ Latency = 1; Usage = 1; }

BCHG BITMODE

{ DB.OP = OxOB;

DB.MODE = BITMODE >> 8;

Main.OP = OxOO I (OxFF & BIT-MODE); }
{ C_F <- BITMODE; BITMODE <- ~BITMODE; }
{}
{ Cycle = 4+BIT_MODE; Stall = 0; Size = 1+BITMODE; }
{ Latency = 1; Usage = 1; }

BSET BIT-MODE
{ DB.OP = OxOA;
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DB.MODE = BITMODE >> 8;
Main.OP = 0x20 I (OxFF & BITMODE); }

{ C_F <- BITMODE; BITMODE <- 1; }
{}
{ Cycle = 4+BIT-MODE; Stall = 0; Size = 1+BITMODE; }
{ Latency = 1; Usage = 1; }

BCLR BITMODE

{ DB.OP = OxOA;

DB.MODE = BITMODE >> 8;
Main.OP = OxOO I (OxFF & BITMODE); }

{ C_F <- BITMODE; BITMODE <- 0; }
{}
{ Cycle = 4+BITMODE; Stall = 0; Size = 1+BITMODE; }
{ Latency = 1; Usage = 1; }

BTST BIT5, dddddd

{ DB.OP = OxOB;

DB.MODE = OxCO I dddddd;
Main.OP = 0x60 I BIT5; }

{ C_F <- dddddd[BIT5]; }
{}
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

BCHG BIT5, dddddd

{ DB.OP = OxOB;

DB.MODE = OxCO I dddddd;
Main.OP = Ox40 I BIT5; }

{ C_F <- dddddd[BIT5]; dddddd[BIT5] <- ~dddddd[BIT5];}

{}
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

BSET BIT5, dddddd

{ DB.OP = Ox0A;

DB.MODE = OxCO I dddddd;
Main.OP = Ox60 I BIT5; }

{ C_F <- dddddd[BIT5]; dddddd[BIT5] <- 1; }
{}
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

BCLR BIT5, dddddd

{ DB.OP = OxOA;
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DB.MODE = OxCO I dddddd;
Main.OP = 0x40 I BIT5; }

{ C_F <- dddddd[BIT5]; dddddd[BIT5] <- 0; }
{}
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

REP BIT12

{ DB.OP = Ox06;

DB.MODE = OxFF & BIT12;
Main.OP = OxAO I (OxOF & (BIT12 >> 8)); }

{ int 16 TMP;

for (TMP <- BIT12; TMP != 0; TMP <- TMP - 1;) {
EVAL(PCS+1); }; }

{ CSETFLAG(LIMIT, LF); }
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

REP dddddd

{ DB.OP = Ox06;

DB.MODE = OxCO I dddddd;
Main.OP = Ox20; }

{ int 16 TMP;

for (TMP <- dddddd; TMP != 0; TMP <- TMP - 1;) {
EVAL(PCS+1); }; }

{ CSETFLAG(LIMIT, L.F); }
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

REP MEMMODE

{ DB.OP = Ox06;
DB.MODE = OxFF & (MEM_MODE >> 8);

Main.OP = 0x20 I (OxFF & MEMMODE); }
{ int 16 TMP;

for (TMP <- MEMMODE; TMP != 0; TMP <- TMP - 1;) {
EVAL(PCS+1); }; }

{ CSETFLAG(LIMIT, LF); }
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

DO BIT12, BIT16

{ Additional(0, Split.ADDR = OxFFFF & BIT16;);
DB.OP = Ox06;
DB.MODE = 0xFF & BIT12;

Main.OP = 0x80 I (Ox0F & (BIT12 >> 8)); }
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{ SPS <- SPS + 1; SSHS <- LAS; SSLS <- LCS;

LCS <- BIT12; SPS <- SPS + 1; SSHS <- PCS;
SSLS <- SRS; LAS <- BIT16;

LFF <- 1;

while (LCS > 1) {
while (PCS != (LAS - 1)) {

EVAL(PCS + 1); PCS <- PCS + 1;

};
PCS <- SSHS;

LCS <- LCS - 1;

SRS <- 0x0040 & SSLS; SPS <- SPS - 1; LAS <- SSHS;
LCS <- SSLS; SPS <- SPS - 1;

}
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 6; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

DO dddddd, BIT16

{ Additional(0, Split.ADDR = OxFFFF & BIT16;);
DB.OP = Ox06;

DB.MODE = OxCO I dddddd;
Main.OP = OxOO; }

{ SPS <- SPS + 1; SSHS <- LAS; SSLS <- LCS;

LCS <- dddddd; SPS <- SPS + 1; SSHS <- PCS;

SSLS <- SRS; LAS <- BIT16;

LFF <- 1;

while (LCS > 1) {
while (PCS != (LAS - 1)) {
EVAL(PCS + 1); PCS <- PCS + 1;

};
PCS <- SSHS;

LCS <- LCS - 1;

SRS <- 0x0040 & SSLS; SPS <- SPS - 1; LAS <- SSHS;
LCS <- SSLS; SPS <- SPS - 1; }

{ CSETFLAG(LIMIT, LF); }
{ Cycle = 6; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

DO MEMMODE, BIT16

{ Additional(O, Split.ADDR = OxFFFF & BIT16;);
DB.OP = 0x06;
DB.MODE = OxFF & (MEM_MODE >> 8);
Main.OP = OxOC I (OxFF & MEM-MODE); }
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{ SPS <- SPS + 1; SSHS <- LAS; SSLS <- LCS;

LCS <- MEMMODE; SPS <- SPS + 1; SSHS <- PCS;

SSLS <- SRS; LAS <- BIT16;

LFF <- 1;

while (LCS > 1) {
while (PCS != (LAS - 1)) {
EVAL(PCS + 1); PCS <- PCS + 1;

};
PCS <- SSHS;

LCS <- LCS - 1;

SRS <- 0x0040 & SSLS; SPS <- SPS - 1; LAS <- SSHS;
LCS <- SSLS; SPS <- SPS - 1; }

{ CSETFLAG(LIMIT, LF); }
{ Cycle = 6; Stall = 0; Size = 2; }
{ Latency = 1; Usage = 1; }

LUA SEAN, DDDD

{ DB.OP = Ox04;

DB.MODE = Ox40 I SEAN;
Main.OP = Ox1O I DDDD; }

{ DDDD <- SEAN; }
{}
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 2; Usage = 1; }

T CCODE, jjj, ACC, ttt, TTT

{ DB.OP = 0x03;
DB.MODE = (CCODE << 4) I ttt;
Main.OP = (jjj << 4) 1 (ACC << 3) I TTT; }

{ if (CCODE) { ACC <- jjj; TTT <- ttt; }; }
{}
{ Cycle = 2; Stall = 0; Size = 1;}
{ Latency = 2; Usage = 1; }

T CCODE, B-D, A_D, ttt, TTT

{ DB.OP = 0x03;

DB.MODE = (CCODE << 4) I ttt;
Main.OP = Ox00 I TTT; }

{ if (CCODE) { AREG <- BREG; TTT <- ttt; }; }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 2; Usage = 1; }

T CCODE, AD, B_D, ttt, TTT
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{ DB.OP = Ox03;

DB.MODE = (CCODE << 4) I ttt;
Main.OP = Ox08 I TTT; }

{ if (CCODE) { BREG <- AREG; TTT <- ttt; }; }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 2; Usage = 1; }

T CCODE, jjj, ACC

{ DB.OP = Ox02;
DB.MODE = OxFO & (CCODE << 4);
Main.OP = Ox78 & ((jjj << 4) 1 (ACC << 3)); }

{ if (CCODE) { ACC <- jjj; }; }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 2; Usage = 1; }

T CCODE, B_D, A_D

{ DB.OP = 0x02;

DB.MODE = OxFO & (CCODE << 4);
Main.OP = OxOO; }

{ if (CCODE) { AREG <- BREG; }; }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 2; Usage = 1; }

T CCODE, A_D, B_D

{ DB.OP = Ox02;

DB.MODE = OxFO & (CCODE << 4);
Main.OP = Ox08; }

{ if (CCODE) { BREG <- AREG; }; }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 2; Usage = 1; }

***** describe the RTL - not too useful and rather complex *****I
NORM TTT, ACC

{ DB.OP = 0x01;

DB.MODE = OxD8 I TTT;
Main.OP = 0x15 I (ACC << 3); }

{}
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }
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I***** describe the RTL - not too useful and rather complex *****/

DIV JJ, ACC

{ DB.OP = 0x01;

DB.MODE = 0x80;
Main.OP = 0x40 I (JJ << 4) I (ACC << 3) ; }

{}
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

ORI BIT8, EE

{ DB.OP = OxOC;

DB.MODE = BIT8;

Main.OP = OxF8 I EE; }
{ EE <- SORm(BIT8, EE); }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

ANDI BIT8, EE

{ DB.OP = OxOO;

DB.MODE = BIT8;
Main.OP = OxB8 I EE; }

{ EE <- ANDSm(BIT8, EE); }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

ENDDO

{ DB.OP = OxOO;

DB.MODE = 0x00;
Main.OP = Ox8C; }

{ SRS <- 0x0040 & SSLS; SPS <- SPS - 1; LAS <- SSHS;

LCS <- SSLS; SPS <- SPS - 1; }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

STOP

{ DB.OP = Ox00;
DB.MODE = Ox00;
Main.OP = 0x87; }

{ HALTO; }
{}

{ Cycle = 2; Stall = 0; Size = 1; }
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{ Latency = 1; Usage = 1; }

WAIT

{ DB.OP = OxOO;

DB.MODE = OxOO;

Main.OP = Ox86; }
{ HALT(); }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

***** cannot really describe without knowledge of periferals *****/

RESET

{ DB.OP = OxOC;
DB.MODE = OxOO;
Main.OP = Ox84; }

{}
{}
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

RTS

{ DB.OP = 0x00;
DB.MODE = OxOO;
Main.OP = OxOC; }

{ PCS <- SSHS; SPS <- SPS - 1; }
{}
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

***** cannot describe this without knowledge of interrupts *****/

SWI

{ DB.OP = OxOO;
DB.MODE = Ox0O;
Main.OP = 0x06; }

{}
{}
{ Cycle = 8; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

RTI

{ DB.OP = OxOO;
DB.MODE = OxOO;
Main.OP = 0x04; }

{ PCS <- SSHS; SRS <- SSLS; SPS <- SPS - 1; }
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{}
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

***** cannot describe this without knowledge of exceptions *****/

ILLEGAL

{ DB.OP = OxOO;

DB.MODE = OxOO;

Main.OP = OxO1; }
{}
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

NOP

{ DB.OP = OxOO;

DB.MODE = OxOO;

Main.OP = OxOC; }
{ NOPO; }
{}
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MACR QQQ, ACC

{ Main.OP = Ox83 I (QQQ << 4) I (ACC << 3); }
{ ACC <- RNDm(ADDm(ACC, QQQ)); }
{ CSETALL(OVF,(ACC == 0),(ACC[55] == 0),UNORM(ACC),

SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall= 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

MACR SIGN, QQQ, ACC

{ Main.OP = Ox87 I (QQQ << 4) I (ACC << 3); }
{ ACC <- RNDm(SUBm(ACC, QQQ)); }
{ CSETALL(OVF,(ACC == 0),(ACC[55] == 0),UNORM(ACC),

SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall 0; Size 1 + DBM; }
{ Latency = 1; Usage = 1; }

MAC QQQ, ACC
{ Main.OP = 0x82 I (QQQ << 4) I (ACC << 3); }

{ ACC <- ADDm(ACC, QQQ); }
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{ CSETALL(OVF,(ACC == 0),(ACC[551 == O),UNORM(ACC),
SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

MAC SIGN, QQQ, ACC

{ Main.OP = 0x86 I (QQQ << 4) I (ACC << 3); }
{ ACC <- SUBm(ACC, QQQ); }
{ CSETALL(OVF,(ACC == 0),(ACC[551 == O),UNORM(ACC),

SIGNED(ACC))
CSETFLAG(LIMIT, LF); }

{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

MPYR QQQ, ACC

{ Main.OP = 0x81 (QQQ << 4) I (ACC << 3); }
{ ACC <- RNDm(QQQ); }
{ CSETALL(0,(ACC == 0),(ACC[551 == 0),UNORM(ACC),

SIGNED(ACC))

CSETFLAG(LIMIT, LF);

V_F <- 0; }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

MPYR SIGN, QQQ, ACC

{ Main.OP = Ox85 I (QQQ << 4) I (ACC << 3); }
{ ACC <- -RNDm(QQQ); }
{ CSETALL(0,(ACC == 0),(ACC[551 == 0),UNORM(ACC),

SIGNED(ACC))

CSETFLAG(LIMIT, LF);

VF <- 0; }
{ Cycle = 2 + DBM; Stall= 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

MPY QQQ, ACC

{ Main.OP = Ox80 I (QQQ << 4) I (ACC << 3); }
{ ACC <- QQQ; }
{ CSETALL(0,(ACC == 0),(ACC[551 == 0),UNORM(ACC),

SIGNED(ACC))

CSETFLAG(LIMIT, LF);

V_F <- 0; }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }
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MPY SIGN, QQQ, ACC

{ Main.OP = Ox84 I (QQQ << 4) 1 (ACC << 3); }
{ ACC <- -QQQ; }
{ CSETALL(0,(ACC == 0),(ACC[551 == 0),UNORM(ACC),

SIGNED(ACC))

CSETFLAG(LIMIT, L-F);

V-F <- 0; }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

CMPM jjj, ACC

{ Main.OP = Ox07 < (jj < 4) (ACC << 3); }
{ NULL <-

SUBCm(ABSm(SEXT(jjj, 24, 56) << 24), ABSm(ACC)); }
{ CSETALL(OVF,(ACC == 0),(ACC[551 == 0),UNORM(ACC),

SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall 0; Size 1 + DBM; }
{ Latency = 1; Usage = 1; }

CMPM BD, AD

{ Main.OP = Ox07; }
{ NULL <- SUBCm(ABSm(BREG), ABSm(AREG)); }
{ CSETALL(OVF,(AREG == 0),(AREG[551 == 0),UNORM(AREG),

SIGNED(AREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

CMPM AD, BD

{ Main.OP = OxOF; }
{ NULL <- SUBCm(ABSm(AREG), ABSm(BREG)); }
{ CSETALL(OVF,(BREG == 0),(BREG[551 == 0),UNORM(BREG),

SIGNED(BREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall= 0; Size 1 + DBM; }
{ Latency = 1; Usage = 1; }

AND JJ, ACC_1

{ Main.OP = 0x46 I (JJ << 4) I (ACC1 << 3); }
{ ACC_1 <- AND(ACC_1, JJ, 24); }
{ V-F <- 0; CSETFLAG(LIMIT, LF);

CSETFLAG(ACC1[471, NF); }
{ Cycle = 2 + DBM; Stall 0; Size 1 + DBM; }
{ Latency = 1; Usage = 1; }
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CMP jjj, ACC
{ Main.OP = 0x05 < (jj < 4) 1 (ACC << 3); }

{ NULL <- SUBCm(SEXT(jjj, 24, 56) << 24, ACC); }
{ CSETALL(OVF,(ACC == O),(ACC[551 == 0),UNORM(ACC),

SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall 0; Size 1 + DBM; }
{ Latency = 1; Usage = 1; }

CMP B_D, A_D

{ Main.OP = 0x05; }
{ NULL <- SUBCm(BREG, AREG); }
{ CSETALL(OVF,(AREG == 0),(AREG[551

SIGNED(AREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size =

{ Latency = 1; Usage = 1; }

CMP A_D, B_D

{ Main.OP = OxOD; }
{ NULL <- SUBCm(AREG, BREG); }
{ CSETALL(OVF,(BREG == 0),(BREG[551

SIGNED(BREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size =

{ Latency = 1; Usage = 1; }

SUB JJJ, ACC

{ Main.JP = 0x04 I (JJJ << 4) I
{ ACC <- SUBm(ACC, JJJ); }
{}
{ Cycle = 2 + DBM; Stall = 0; Size =

{ Latency = 1; Usage = 1; }

SUB B_D, A_D

{ Main.OP = Ox04; }
{ AREG <- SUBCm(AREG, BREG); }
{ CSETALL(OVF,(AREG == 0),(AREG[55]

SIGNED(AREG))

CSETFLAG(LIMIT, L-F); }
{ Cycle = 2 + DBM; Stall = 0; Size =

{ Latency = 1; Usage = 1; }

== 0),UNORM(AREG),

1 + DBM; }

== 0),UNORM(BREG),

1 + DBM; }

(ACC << 3); }

1 + DBM; }

== 0),UNORM(AREG),

1 + DBM; }

SUB A_D, B_D
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{ Main.OP = OxOC; }
{ BREG <- SUBCm(BREG, AREG); }
{ CSETALL(OVF,(BREG == 0),(BREG[551 == 0),UNORM(BREG),

SIGNED(BREG))

CSET-FLAG(LIMIT, L-F); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

EOR JJ, ACC_1

{ Main.OP = 0x43 I (JJ << 4) I (ACC_1 << 3); }
{ ACC_1 <- XORm(JJ, ACC_1); }
{ V_F <- 0; CSETFLAG(LIMIT, LF);

CSETFLAG(ACC_1[47], NF); }
{ Cycle = 2 + DBM; Stall 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

OR JJ, ACC_1

{ Main.OP = Ox42 I (JJ << 4) I (ACC_1 << 3); }
{ ACC_1 <- ORm(JJ, ACC_1); }
{ V_F <- 0; CSETFLAG(LIMIT, LF);

CSETFLAG(ACC_1[471, NF); }
{ Cycle = 2 + DBM; Stall= 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

TFR jjj, ACC

{ Main.OP = 0x01 I (jjj << 4) I (ACC << 3); }
{ ACC <- jjj; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall= 0; Size= 1 + DBM; }
{ Latency = 2; Usage = 1; }

TFR BD, AD

{ Main.OP = Ox01; }
{ AREG <- BREG; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall 0; Size 1 + DBM; }
{ Latency = 2; Usage = 1; }

TFR AD, BD

{ Main.OP = Ox09; }
{ BREG <- AREG; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 2; Usage = 1; }
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ADD JJJ, ACC

{ Main.OP = OxOO I (JJJ << 4) 1 (ACC << 3); }
{ ACC <- ADDCm(ACC, JJJ); }
{ CSETALL(OVF, (ACC == 0), (Acc[551 == 0), UNORM(ACC),

SIGNED (ACC))
CSETFLAG(LIMIT, LF); }

{ Cycle = 2 + DBM; Stall 0; Size 1 + DBM; }
{ Latency = 1; Usage = 1; }

ADD B_D, A_D

{ Main.OP = OxCO; }
{ AREG <- ADDCm(AREG, BREG); }
{ CSETALL(OVF,(AREG == 0),(AREG[55] == 0),UNORM(AREG),

SIGNED(AREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

ADD AD, BD

{ Main.OP = Ox08; }
{ BREG <- ADDCm(BREG, AREG); }
{ CSETALL(OVF,(BREG == 0),(BREG[55] == 0),UNORM(BREG),

SIGNED(BREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall= 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

SBC j, ACC

{ Main.OP = 0x25 I (j << 4) 1 (ACC << 3); }
{ ACC <-

SUBC(ACC, SEXT(j, 48, 56), C_F, CF, 56, "trn"); }
{ CSETALL(OVF,(ACC == 0),(ACC[551 == 0),UNORM(ACC),

SIGNED(ACC))
CSETFLAG(LIMIT, LF); }

{ Cycle = 2 + DBM; Stall= 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

ADC j, ACC

{ Main.OP = 0x21 (j << 4) 1 (ACC << 3); }
{ ACC <-

ADDC(ACC, SEXT(j, 48, 56), C_F, CF, 56, "trn"); }
{ CSETALL(OVF, (ACC == 0), (ACCE55] == 0), UNORM(ACC),

SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
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{ Latency = 1; Usage = 1; }

ROL ACCS

{ Main.OP = 0x37 I (ACCS << 3); }
{ ACCS <- ASL(ACCS, 1, CF, C_F, 48); }
{ V.F <- 0; CSETFLAG(LIMIT, LF);

CSETFLAG(ACCS[471, NF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

NEG ACC

{ Main.OP = Ox36 I (ACC << 3); }
{ ACC <- -ACC; }
{ CSETALL(OVF,(ACC == 0),(ACC[551 == 0),UNORM(ACC),

SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

LSL ACCS

{ Main.OP = Ox33 I (ACCS << 3); }
{ ACCS <- ASL(ACCS, 1, 0, C_F, 48); }
{ V_F <- 0; CSETFLAG(LIMIT, LF);

CSETFLAG(ACCS[471, NF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

ASL ACC

{ Main.OP = 0x32 I (ACC << 3); }
{ ACC <- ASL(ACC, 1, 0, CF, 56); }
{ CSETALL(CHANGED(ACC[55]),(ACC == 0),(ACC[55] == 0),

UNORM(ACC), SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

ROR ACCS

{ Main.OP = Ox27 I (ACCS << 3); }
{ ACCS <- ASR(ACCS, 1, C_F, C_F, 48); }
{}
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

ABS ACC

{ Main.OP = 0x26 I (ACC << 3); }
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{ ACC <- ABSm(ACC); }
{ CSETALL(OVF, (ACC == 0), (ACC[55] == 0),

UNORM(ACC), SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall= 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

LSR ACCS

{ Main.OP = Ox23 I (ACCS << 3); }
{ ACCS <- ASR(ACCS, 1, 0, C_F, 48); }
{ V_F <- 0; CSETFLAG(LIMIT, LF);

CSETFLAG(ACCS[471, NF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

ASR ACC

{ Main.OP = Ox22 I (ACC << 3); }
{ ACC <- ASR(ACC, 1, 0, CF, 56); }
{ CSETALL(CHANGED(ACC[55]),(ACC == 0),(ACC[55] == 0),

UNORM(ACC), SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall 0; Size 1 + DBM; }
{ Latency = 1; Usage = 1; }

NOT ACC_1

{ Main.OP = 0x17 I (ACC1 << 3); }
{ ACC_1 <- NOTm(ACCJ1); }
{ VF <- 0; CSETFLAG(LIMIT, LF);

CSETFLAG(ACC_1[471, NF); }
{ Cycle = 2 + DBM; Stall= 0; Size 1 + DBM; }
{ Latency = 1; Usage = 1; }

SUBL BD, AD

{ Main.OP = 0x16; }
{ AREG <- SUBCm(MULm(2, AREG), BREG); }
{ CSETALL(OVF I CHANGED(AREG[55]), (AREG == 0),

(AREG[551 == 0),UNORM(AREG),SIGNED(AREG))
CSETFLAG(LIMIT, LF); }

{ Cycle = 2 + DBM; Stall 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

SUBL AD, BD

{ Main.OP = 0x1E; }
{ BREG <- SUBCm(MULm(2, BREG), AREG); }
{ CSETALL(OVF I CHANGED(BREG[55]), (BREG == 0),
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(BREG[551 == 0),UNORM(BREG),SIGNED(BREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

CLR ACC

{ Main.OP = Ox13 I (ACC << 3); }
{ ACC <- 0; }
{ CSETFLAG(LIMIT, LF); E_F <- 0; UF <- 1; NF <- 0;

Z_F <- 1; VF <- 0; }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

ADDL B_D, A_D

{ Main.OP = 0x12; }
{ AREG <- ADDCm(MULm(2, AREG), BREG); }
{ CSETALL(OVF I CHANGED(AREG[55]), (AREG == 0),

(AREG[551 == 0),UNORM(AREG),SIGNED(AREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

ADDL A_D, B_D

{ Main.OP = Ox1A; }
{ BREG <- ADDCm(MULm(2, BREG), AREG); }
{ CSETALL(OVF I CHANGED(BREG[55]), (BREG == 0),

(BREG[55] == 0),UNORM(BREG),SIGNED(BREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

RND ACC

{ Main.OP = Ox11 I (ACC << 3); }
{ switch (SMODE) {

case 1: { ACC <- RND(ACC, 32, "down"); };

case 2: { ACC <- RND(ACC, 32, "up"); };

}; }
{ CSETALL(OVF, (ACC == 0), (ACC[551 == 0),

UNORM(ACC), SIGNED(ACC))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

SUBR BD, AD

{ Main.OP = 0x06; }
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{ AREG <- SUBCm(DIVm(AREG, 2), BREG); }
{ CSETALL(OVF, (AREG == 0), (AREG[551 == 0),

UNORM(AREG), SIGNED(AREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

SUBR AD, BD

{ Main.OP = OxCE; }
{ BREG <- SUBCm(DIVm(BREG, 2), AREG); }
{ CSETALL(OVF, (BREG == 0), (BREG[551 == 0),

UNORM(BREG), SIGNED(BREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

TST ACC

{ Main.OP = Ox03 | (ACC << 3); }
{ NULL <- SUBm(ACC, 0); }
{ CSETALL(0, (ACC == 0), (ACC[55] == 0),

UNORM(ACC), SIGNED(ACC))

CSETFLAG(LIMIT, LF); VF <- 0; }
{ Cycle = 2 + DBM; Stall 0; Size= 1 + DBM; }
{ Latency = 1; Usage = 1; }

ADDR BD, AD

{ Main.OP = Ox02; }
{ AREG <- ADDCm(DIVm(AREG, 2), BREG); }
{ CSETALL(OVF, (AREG == 0), (AREG[55] == 0),

UNORM(AREG), SIGNED(AREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall 0; Size= 1 + DBM; }
{ Latency = 1; Usage = 1; }

ADDR A-D, BD

{ Main.OP = OxOA; }
{ BREG <- ADDCm(DIVm(BREG, 2), AREG); }
{ CSETALL(OVF, (BREG == 0), (BREG[551 == 0),

UNORM(BREG), SIGNED(BREG))

CSETFLAG(LIMIT, LF); }
{ Cycle = 2 + DBM; Stall = 0; Size = 1 + DBM; }
{ Latency = 1; Usage = 1; }

MOVEP XEA, XPP

{ DB.OP = Ox08;
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DB.MODE = OxCO I XEA;
Main.OP = OxCO I XPP; }

{ XPP <- XEA; }
{ XEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 4 + XEA; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MOVEP YEA, XPP

{ DB.OP = 0x08;

DB.MODE = OxCO I YEA;
Main.OP = Ox80 I XPP; }

{ XPP <- YEA; }
{ YEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 4 + YEA; Stall = 0; Size = 1 + YEA; }
{ Latency = 1; Usage = 1; }

MOVEP BIT16, XPP

{ DB.OP = Ox08;

DB.MODE = OxF4;
Main.OP = Ox80 I XPP; }

{ XPP <- BIT16; }
{ CSETFLAG(LIMIT, LF);}
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MOVEP XPP, XEA

{ DB.OP = Ox08;

DB.MODE = Ox80 I XEA;
Main.OP = OxCO I XPP; }

{ XEA <- XPP; }
{ XEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 4 + XEA; Stall = 0; Size = 1 + XEA; }
{ Latency = 1; Usage = 1; }

MOVEP XPP, YEA

{ DB.OP = Ox08;
DB.MODE = Ox80 I YEA;
Main.OP = Ox80 I XPP; }

{ YEA <- XPP; }
{ YEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 4 + YEA; Stall = 0; Size= 1 + YEA; }
{ Latency = 1; Usage = 1; }

MOVEP XEA, YPP

{ DB.OP = 0x09;
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DB.MODE = OxCO I XEA;
Main.OP = OxCO I YPP; }

{ YPP <- XEA; }
{ XEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 4 + XEA; Stall = 0; Size = 1 + XEA; }
{ Latency = 1; Usage = 1; }

MOVEP YEA, YPP

{ DB.OP = 0x09;

DB.MODE = OxCO I YEA;
Main.OP = Ox80 I YPP; }

{ YPP <- YEA; }
{ YEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 4 + YEA; Stall = 0; Size = 1 + YEA; }
{ Latency = 1; Usage = 1; }

MOVEP BIT16, YPP

{ DB.OP = 0x09;

DB.MODE = OxF4;
Main.OP = Ox80 I YPP; }

{ YPP <- BIT16; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MOVEP YPP, XEA

{ DB.OP = Ox09;

DB.MODE = Ox80 I XEA;
Main.OP = OxCO I YPP; }

{ XEA <- YPP; }
{ XEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 4 + XEA; Stall = 0; Size = 1 + XEA; }
{ Latency = 1; Usage = 1; }

MOVEP YPP, YEA

{ DB.OP = Ox09;

DB.MODE = Ox80 I YEA;
Main.OP = Ox80 I YPP; }

{ YEA <- YPP; }
{ YEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 4 + YEA; Stall = 0; Size = 1 + YEA; }
{ Latency = 1; Usage = 1; }

MOVEP PEA, XPP

{ DB.OP = Ox08;
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DB.MODE = OxCO I PEA;
Main.OP = Ox40 I XPP; }

{ XPP <- PEA; }
{ PEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 6 + PEA; Stall = 0; Size = 1 + PEA; }
{ Latency = 1; Usage = 1; }

MOVEP XPP, PEA

{ DB.OP = Ox08;
DB.MODE = Ox40 I PEA;
Main.OP = Ox40 I XPP; }

{ PEA <- XPP; }
{ PEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 6 + PEA; Stall = 0; Size = 1 + PEA; }
{ Latency = 1; Usage = 1; }

MOVEP PEA, YPP

{ DB.OP = Ox09;
DB.MODE = OxCO I PEA;
Main.OP = Ox40 I YPP; }

{ YPP <- PEA; }
{ PEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 6 + PEA; Stall = 0; Size = 1 + PEA; }
{ Latency = 1; Usage = 1; }

MOVEP YPP, PEA

{ DB.OP = Ox09;
DB.MODE = Ox40 I PEA;
Main.OP = Ox40 I YPP; }

{ PEA <- YPP; }
{ PEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 6 + PEA; Stall = 0; Size = 1 + PEA; }
{ Latency = 1; Usage = 1; }

MOVEP dddddd, XPP

{ DB.OP = Ox08;
DB.MODE = OxCO I dddddd;
Main.OP = OxOC I XPP; }

{ XPP <- dddddd; }
{ CSETFLAG(LIMIT, L-F); }
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MOVEP XPP, dddddd

{ DB.OP = Ox08;
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DB.MODE = Ox40 I dddddd;
Main.OP = OxOO I XPP; }

{ dddddd <- XPP; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 4; Stall = 0; Size = 1;}

{ Latency = 1; Usage = 1; }

MOVEP dddddd, YPP

{ DB.OP = Ox09;

DB.MODE = OxCO I dddddd;
Main.OP = OxOC I YPP; }

{ YPP <- dddddd; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MOVEP YPP, dddddd

{ DB.OP = Ox09;

DB.MODE = Ox40 I dddddd;
Main.OP = Ox00 I YPP; }

{ dddddd <- YPP; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 4; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MOVEM dddddd, PEA

{ DB.OP = Ox07;

DB.MODE = Ox40 I PEA;
Main.OP = Ox80 I dddddd; }

{ PEA <- dddddd; }
{ PEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 6 + PEA; Stall = 0; Size = 1 + PEA; }
{ Latency = 1; Usage = 1; }

MOVEM PEA, dddddd

{ DB.OP = 0x07;

DB.MODE = 0x80 I PEA;
Main.OP = 0x80 I dddddd; }

{ dddddd <- PEA; }
{ PEA; CSETFLAG(LIMIT, LF); }
{ Cycle = 6 + PEA; Stall = 0; Size 1 + PEA; }
{ Latency = 1; Usage = 1; }

MOVEM dddddd, PAA

{ DB.OP = 0x07;
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DB.MODE = OxOO I PAA;
Main.OP = OxOO I dddddd; }

{ PAA <- dddddd; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 6; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MOVEM PAA, dddddd

{ DB.OP = Ox07;

DB.MODE = Ox80 I PAA;
Main.OP = OxOO I dddddd; }

{ dddddd <- PAA; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 6; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

I***** If you got this far you need a hobby *****I
MOVEC XAA, ccccc

{ DB.OP = Ox05;

DB.MODE = Ox00 I XAA;
Main.OP = Ox20 | ccccc; }

{ ccccc <- XAA; }
{ CSETFLAG(LIMIT, LF); }
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MOVEC ccccc, XAA

{ DB.OP = 0x05;

DB.MODE = Ox80 I XAA;
Main.OP = Ox20 I ccccc; }

{ XAA <- ccccc; }
{ CSETFLAG(LIMIT, L-F); }
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MOVEC YAA, ccccc

{ DB.OP = Ox05;

DB.MODE = Ox00 I YAA;
Main.OP = Ox60 I ccccc; }

{ ccccc <- YAA; }
{ CSET-FLAG(LIMIT, L-F); }
{ Cycle = 2; Stall = 0; Size = 1; }
{ Latency = 1; Usage = 1; }

MOVEC ccccc, YAA
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{ DB.OP = 0x05;

DB.MODE = Ox80
Main.OP = 0x60

{ YAA <- ccccc; }
{ CSETFLAG(LIMIT, L-F); }
{ Cycle = 2; Stall = 0; Size = 1;

{ Latency = 1; Usage = 1; }

I YAA;

I ccccc; }

}

/-----------------------------------------------------------------
// Any restrictions (in the form of rules) of which instructions go
// together and which do not.

Section Constraints

// Moves cannot be done at the same time as some operations because

// of a bitfield conflict on the DBM fields:
// Note that the list of instructions could be made shorter using
// wildcards at the expense of convenience though.

~( (MOVE *) &

(BCHG *))

(BCLR *))

(BSET *))

(BTST *))

(DIV *))

(DO *))

(ENDDO))

(ILLEGAL))

(j *))

(JI *))
(JCLR *))

(JMP *))

(JMPI *))

(JS *))

(JSI *))

(JSCLR *))

(JSET *))

(JSR* *))

(JSSET *))

(LUA *))

(MOVEC *))

(MOVEM *))

(MOVEP *))

(NORM *))
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(ORI *)) I
(REP *))

(RESET))
(RTI))

(RTS))

(STOP))
(SWI))

(T *))

(WAIT)))

/ You cannot do things like ADD A, A etc

-(ADD 0[l], Q[1])
~(CMP 0[1], Q[1])

~(CMPM 0[1], 0[1])

~ (SUBL (D[El], 0 [ll)
~(SUBR O[1], O[1])

/ Where you do parallel moves to both X and Y mem banks, make sure
/ they use opposite banks in their addressing modes.

-(MOVE *R[0123]*R[01231*)

-(MOVE *R[4567]*R[45671*)

/ The ANDI IMM, MR instruction cannot be used immediately before an
/ ENDDO or RTI instruction and cannot be one of the last three
/ instructions in a DO loop (at LA-2, LA-1, or LA)

/ ***** we have no way of describing the latter part of this
/ constraint for the moment *****

~((ANDI *, MR) & [1((ENDDO) I (RTI)))

// ANDI IMM, CCR cannot be used immediately before an RTI

~((ANDI *, CCR) & [1](RTI))

/ Do is very picky as to what can come before or after it simply
/ because of all the control flow that has to be taken care of.

/ Instructions that cannot be performed immediately before a DO

/ MOVEC to LA, LC, SSH, SSL, or SP
/ MOVEM to LA, LC, SSH, SSL, or SP
/ MOVEP to LA, LC, SSH, SSL, or SP

/ MOVEC from SSH

/ MOVEM from SSH

/ MOVEP from SSH
~((((((MOVE? *, LA) I
(MOVE? *, LC)) I
(MOVE? *, SSH)) I
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(MOVE? *, SSL)) I
(MOVE? *, SP)) & [1(DO

~((MOVE? SSH, *) & [l(DO

// You cannot repeat a DO

~((REP *) & [l(DO *))

// This is also illegal

~(DO SSH,*)

usign REP

The following are also illegal but we have no way of describing the
fact so far

The following instructions are not valid when the LF bit is set

JSR to LA

JS CCODE to LA

JSCLR to LA

JSSET to LA

The following instructions cannot begin at the indicated positions
near the end of a DO loop

At LA-2, LA-1, and LA

DO

MOVEC to LA, LC, SSH, SSL, or SP

MOVEM to LA, LC, SSH, SSL, or SP

MOVEP to LA, LC, SSH, SSL, or SP

MOVEC from SSH

MOVEM from SSH

MOVEP from SSH

ANDI *,MR

ORI *,MR

Two word instructions which read LC, SP, or SSL
At LA-1

single word instructions (except REP)

which read LC, SP, or SSL

JCLR

JSET

Two word JMP

Two word J CCODE

At LA

1/
/

/
/
/
/
/

/
1/
1/
/
1/
/
1/
1/
1/
1/
1/
/
1/
/
/
/
/
/
1/
1/
/
/
1/
1/

C_CODE, JSR, REP, RESET, RTI,

// ENDDO timing is just as demanding as DO
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/ The following instructions can never appear imme

/ before an ENDDO
1/ MOVEC to LA, LC, SSH, SSL, or SP

/ MOVEM to LA, LC, SSH, SSL, or SP

/ MOVEP to LA, LC, SSH, SSL, or SP

/ MOVEC from SSH

/ MOVEM from SSH

/ MOVEP from SSH

/1 ANDI *,MR

/I ORI *,MR

~((((((MOVE? *, LA) I
(MOVE? *, LC)) I
(MOVE? *, SSH)) I
(MOVE? *, SSL)) I
(MOVE? *, SP)) & [1](ENDDO))

~((MOVE? SSH, *) & [1](ENDDO))

~((ANDI *,MR) & [1] (ENDDO))
~((ORI *,MR) & [] (ENDDO))
// ENDDO is also illegal as the last instruction in

// A J
~((REP

~ ((REP

C_CODE instruction cannot be repeated with a

*) & [1](J *))
*) & [1](JI *))

diately

a DO loop (at LA)

REP instruction

// A JCLR instruction cannot be repeated with a REP instruction

~((REP *) & [1 (JCLR *))
// A JCRL SSH or JCLR SSL cannot follow an instruction that changes SP

~(((((((((((((((((DO *) I (ENDDO)) I (JS *)) I (JSI *)) I
(JSCLR *)) I (JSRI *)) I ( JSR*)) I (JSSET *))
(RTI)) I (RTS)) I (BCHG *,SP)) I (BCLR *,SP)) I
(BSET *,SP)) I (MOVEC *,SP)) I (MOVEM *,SP)) I
(MOVEP *,SP)) & [1]((JCLR *,SSH,*) I [1(JCLR *,SSL,*)))

/ A JCLR located at LA, LA-1, or LA-2 of the DO loop cannot specify

/ the program controller registers SR, SP, SSH, SSL, LA, or LC as
/ it's target

/ A JMP instruction cannot be repeated with a REP instruction

-((REP *) & [1] (JMP *))

~((REP *) & [1](JMPI *))

/ A JMP instruction used within a DO loop cannot begin at the address

/ LA within that DO loop

/ A JS CCODE instruction cannot be repeated with a REP instruction

-((REP *) & [1](JS *))
~((REP *) & [1](JSI *))
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/ A JS CCODE instruction used within a DO loop cannot begin at the
/ address LA within that DO loop

/ A JS C.CODE instruction used within a DO loop cannot specify the
/ loop address (LA) as it's target

/ A JSCLR instruction cannot be repeated with a REP instruction
-((REP *) & [1](JSCLR *))

/ A JSCRL SSH or JSCLR SSL cannot follow an instruction that
/ changes the SP

~(((((((((((((((((DO *) I (ENDDO)) I (JS *)) I (JSI *)) I
(JSCLR *)) I (JSRI *)) I ( JSR *)) I (JSSET *)) I
(RTI)) I (RTS)) I (BCHG *,SP)) I (BCLR *,SP)) I
(BSET *,SP)) I (MOVEC *,SP)) I (MOVEM *,SP)) I
(MOVEP *,SP)) & [1((JSCLR *,SSH,*) I (JSCLR *,SSL,*)))

/ A JSCLR located at LA, LA-1, or LA-2 of the DO loop cannot specify
/ the program controller registers SR, SP, SSH, SSL, LA, or LC as
/ it's target

/ A JSCLR instruction used within a DO loop cannot specify the

/ loop address (LA) as it's target

/ A JSET instruction cannot be repeated with a REP instruction
~((REP *) & [1](JSET *))
// A JSET SSH or JSET SSL cannot follow an instruction that changes SP
~(((((((((((DO *) (ENDDO)) I (JS *)) I (JSI *)) I

(JSCLR *)) I (JSRI *)) I ( JSR *)) I (JSSET *)) I
(RTI)) I (RTS)) I (BCHG *,SP)) I (BCLR *,SP)) I
(BSET *,SP)) I (MOVEC *,SP)) I (MOVEM *,SP)) I
(MOVEP *,SP)) & [1((JSET *,SSH,*) I (JSET *,SSL,*)))

/ A JSET located at LA, LA-1, or LA-2 of the DO loop cannot specify

/ the program controller registers SR, SP, SSH, SSL, LA, or LC as
/ it's target

/ A JSET instruction used within a DO loop cannot specify the

/ loop address (LA) as it's target

/ A JSR instruction cannot be repeated with a REP instruction
~((REP *) & [1(JSR *))
~((REP *) & [i](JSRI *))
/ A JSR instruction used within a DO loop cannot begin at the address

/ LA within that DO loop

/ A JSR instruction used within a DO loop cannot specify the

/ loop address (LA) as it's target

/ A JSSET instruction cannot be repeated with a REP instruction

-((REP *) & [1](JSSET *))
1/ A JSSET SSH or JSSET SSL cannot follow an instruction that
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// changes the SP

~(((((((((((((((((DO *) I (ENDDO)) I (JS *)) I (JSI *)) I
(JSCLR *)) I (JSRI *)) I ( JSR*)) I (JSSET *)) I
(RTI)) I (RTS)) I (BCHG *,SP)) I (BCLR *,SP)) I
(BSET *,SP)) I (MOVEC *,SP)) I (MOVEM *,SP)) I
(MOVEP *,SP)) & [1]((JSSET *,SSH,*) I (JSSET *,SSL,*)))

/ A JSSET located at LA, LA-1, or LA-2 of the DO loop cannot specify
/ the program controller registers SR, SP, SSH, SSL, LA, or LC as
/ it's target

/ A JSSET instruction used within a DO loop cannot specify the

/ loop address (LA) as it's target

/ A MOVEC SSH, SSH instruction is illegal and cannot be used
~(MOVEC SSH,SSH)

/ A MOVE? instruction which specifies SP as the destination operand

/ cannot be used immediately before a MOVEC, MOVEM, or MOVEP
/ instruction which specifies SSH or SSL as the source operand.

~((MOVE? *,SP) & [1]((MOVE? SSH,*) I (MOVE? SSL,*)))

/ A REP instruction cannot repeat the following:
/ DO, J, JI, JCLR, JMP, JSET, JS, JSI, JSCLR, JSR, JSRI,

/ RTI, RTS, STOP, SWI, WAIT, ENDDO

~((REP *) & [ll]((((((((((((((((((((DO *) I (J *) I
(JI *)) I (JCLR *)) I (JMP *)) I
(JMPI *)) I (JSET *)) I (JS *)) |

(JSI *)) I (JSCLR *)) I (JSR *)) I
(JSRI *)) I (JSSET *)) I (REP *))
(RTI)) I (RTS)) I (STOP)) I (SWI))

(WAIT)) I (ENDDO)))

JSSET, REP,

Also, the REP instruction cannot be the last instruction in a DO

loop

// A RESET cannot be the last instruction in a DO loop (at LA).

The following instructions

before an RTI

MOVEC to LA, LC, SSH,

MOVEM to LA, LC, SSH,
MOVEP to LA, LC, SSH,

MOVEC from SSH

MOVEM from SSH

MOVEP from SSH

ANDI *,MR

ORI *,MR

can never appear immediately

SSL,

SSL,
SSL,

or
or

or

SP

SP

SP
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// ANDI *,CCR

// ORI *,CCR
~((((MOVE? *, LA) I
(MOVE? *, LC)) I
(MOVE? *, SSH)) I
(MOVE? *, SSL)) I
(MOVE? *, SP)) & [1] (RTI))

~((MOVE? SSH, *) & [1](RTI))

~((ANDI *,MR) & [1](RTI))

~((ORI *,MR) & [1](RTI))

~((ANDI *,CCR) & [11(RTI))

~((ORI *,CCR) & [1](RTI))

// An RTI cannot be the last instruction in a DO loop (at LA)

// The following instructions can never appear immediately
// before an RTS

// MOVEC to LA, LC, SSH, SSL, or SP

// MOVEM to LA, LC, SSH, SSL, or SP

// MOVEP to LA, LC, SSH, SSL, or SP

// MOVEC from SSH
// MOVEM from SSH

// MOVEP from SSH

~((((((MOVE? *, LA) I
(MOVE? *, LC)) I
(MOVE? *, SSH)) I
(MOVE? *, SSL)) I
(MOVE? *, SP)) & [1(RTS))

// You cannot repeat an RTS usign REP

~((REP *) & [1](RTS))

// Also, an RTS cannot be the last instruction in a DO loop (at LA)

// A STOP instruction cannot be used in a fast interrupt routine

// An SWI instruction cannot be used in a fast interrupt routine

// A WAIT instruction cannot be used in a fast interrupt routine

// A WAIT instruction cannot be the last instruction in a DO loop

// (at LA)

/-----------------------------------------------------------------

Section Optional
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Appendix D

Example Applications

D.1 Applications for the SPAM VLIW-1 Architec-
ture

These are the assembly applications for the SPAM VLIW-1 architecture Version a.

D.1.1 Finite Impulse Response (FIR) Filter

* A simple FIR filter for the example architecture

Memory Map

Writeback loc

Outer Loop Cnt

coefficients

Samples

Output

IM[11
IM[2]

IM[31-IM[101

DM[0]-DM[10231

DM[20481-DM[30721

Prologue

load coefficient, adjust coefficient offset
load sample, adjust sample offset

multiply

add to running sum, check if inner loop done

clear acc, write result, increment offset, increment write address

decrement outer loop, rollback coef. address, check outer loop

#define BLANK \
{ U1_NULL; \
U2_NULL; \
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U3.NULL; \
DB1_NULL; \
DB2_NULL; \
DMNULL; \
IMNULL; \
C_NULL; }

/* jump off to main */

{ Ulnop;
U2_nop;

U3_nop;

DB1_NULL;

DB2_NULL;

DMNULL;

IMNULL;

C_jump main; }

* this is where the coefficients should be - these will be loaded

* later from a file - unfortunately our assembler doesn't support

* dot-notation yet. Let's just create some blank holders

BLANK
BLANK

BLANK

BLANK

BLANK

BLANK

BLANK

BLANK

BLANK

BLANK

main:

{ Ulsub U1.R1, U1.R1, U1.R1;
U2_nop;

U3_nop;

DB1_move_im 1, U1.RO;

DB2_move_im 1, U3.R2;

DMNULL;

IM_NULL;

C_NULL; }

{ U1_addc U1.RO, 1;

U2_nop;
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U3_nop;

DB1_NULL;

DB2_NULL;

DM_NULL;

IM_ld U3.RO, U1.RO;

C_NULL; }

{ U1_addc U1.RO, 1;
U2_nop;

U3_nop;

DB1_NULL;

DB2_NULL;

DM_NULL;

IM_ld U3.R1, U1.RO;

C_NULL; }

loopout:

{ Unop;
U2_sub U2.R3, U2.R3, U2.R3;

U3_nop;

DB1_moveim 3, U1.RO;

DB2_moveim 7, U1.R3;

DM_NULL;

IMNULL;

C_NULL; }

loopin:

{ Uladdc U1.RO, 1;
U2_nop;

U3_nop;

DBt_NULL;

DB2_NULL;

DM_NULL;

IM_ld U2.RO, U1.RO;

C_NULL; }

{ U1_addc U1.R1, 1;

U2_nop;

U3_nop;

DB1_NULL;

DB2_NULL;

DM_ld U2.R1, U1.Rl;

IM_NULL;

C_NULL; }
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{ Ulnop;

U2_mul U2.RO, U2.R1, U2.R2;

U3_nop;

DB1.nop;

DB2_nop;

DMNULL;

IMNULL;

C_NULL; }

{ Uladdc U1.R3, -1;
U2_add U2.R2, U2.R3, U2.R3;

U3_nop;

DB1_NULL;

DB2_NULL;

DMNULL;

IMNULL;

C_brnz U1.R3, loopin; }

{ U1_addc U1.R1, -7;
U2_nop;

U3_add U3.RO, U3.R2, U3.RO;

DB1_NULL;

DB2_NULL;

DMst U2.R3, U3.RO;

IMNULL;

C_NULL; }

{ U1_addc U1.RO, -7;
U2_nop;

U3.add U3.R1, U3.R2, U3.R1;

DB1_NULL;

DB2_NULL;

DMNULL;

IMNULL;

C_brnz U3.R1, loopout; }

halt:

{ Ulnop;
U2_nop;

U3_nop;

DB1_nop;

DB2_NULL;

DMNULL;

IMNULL;

C_halt; }

238



END
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D.1.2 Infinite Impulse Response (IIR) Filter

1*
* A simple IIR filter for the example architecture

Memory Map

Writeback loc IME1]

Outer Loop Cnt IM[21

coefficients IM[31-IM[101

Samples DM[0]-DM[10231

Output DM[20481-DM[30721

Prologue

load coefficient, adjust coefficient offset

load sample, adjust sample offset

multiply

add to running sum, check if inner loop done

clear acc, write result, increment offset, increment write address

decrement outer loop, rollback coef. address, check outer loop

#define BLANK \
{ UlNULL; \
U2_NULL; \
U3_NULL; \
DB1_NULL; \
DB2_NULL; \
DMNULL; \
IM_NULL; \
C_NULL; }

/* jump off to main */

{ U1_nop;
U2_nop;
U3_nop;

DB1_NULL;

DB2_NULL;

DMNULL;

IM_NULL;

C-jump main; }

/*
* this is where the coefficients should be - these will be loaded
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* later from a file - unfortunately our assembler doesn't support

* dot-notation yet. Let's just create some blank holders

BLANK
BLANK

BLANK

BLANK

BLANK

BLANK

BLANK

BLANK

BLANK

BLANK

main:

{ U1_sub U1.R1, U1.R1, U1.R1;

U2_nop;

U3_nop;

DB1_moveim 1, U1.RO;

DB2_moveim 1, U3.R2;

DM_NULL;

IM_NULL;

C_NULL; }

{ U1_addc U1.RO, 1;

U2_nop;

U3_nop;

DB1_NULL;

DB2-NULL;

DM_NULL;

IM_ld U1.R1, U1.RO;

CNULL; }

{ U1_addc U1.RO, 1;
U2_nop;

U3_nop;

DB1_NULL;

DB2_NULL;

DM_NULL;

IM_ld U3.R1, U1.RO;

C_NULL; }

{ U1_nop;
U2_nop;

U3_nop;
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DB1_moveim 0, U3.RO;

DB2_nop;

DMNULL;
IMNULL;

C_NULL; }

loopout:

{ Uladdc U1.R1, -7;
U2_nop;

U3_nop;

DB1_moveim 3, U1.RO;

DB2_move-im 7, U1.R3;

DMNULL;

IM_NULL;

C_NULL; }

{ U1_addc U1.RO, 1;
U2_nop;

U3_nop;

DB1_NULL;

DB2_NULL;

DMNULL;

IMld U2.RO, U1.RO;

C_NULL; }

{ U1_nop;

U2_nop;

U3_add U3.RO, U3.R2, U3.RO;

DB1.NULL;

DB2_NULL;

DMld U2.R1, U3.RO;

IMNULL;

C_NULL; }

{ U1nop;
U2_mul U2.RO, U2.R1, U2.R3;

U3_nop;

DB1_nop;

DB2_nop;

DMNULL;

IM_NULL;
C_NULL; }

loopin:

{ U1_addc U1.RO, 1;
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U2_nop;

U3_nop;

DB1 -NULL;
DB2_NULL;

DM_NULL;
IM_ld U2.RO, U1.RO;

C_NULL; }

{ Utaddc U1.R1, 1;
U2_nop;

U3_nop;

DB1_NULL;

DB2_NULL;

DM_ld U2.R1, U1.R1;

IM_NULL;

C_NULL; }

{ Ulnop;
U2_mul U2.RO, U2.R1, U2.R2;

U3_nop;

DB1_nop;

DB2_nop;

DM_NULL;

IMNULL;

C_NULL; }

{ Uladdc U1.R3, -1;
U2_add U2.R2, U2.R3, U2.R3;

U3_nop;

DB1_NULL;

DB2_NULL;

DM_NULL;

IM_NULL;

C_brnz U1.R3, loopin; }

{ Uladdc U1.R1, -1;
U2_nop;

U3_nop;

DB1_nop;

DB2_nop;

DM_NULL;

IM_NULL;

C_NULL; }

{ U1_addc U1.R1, 1;
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U2_nop;

U3_nop;

DB1_NULL;

DB2_NULL;

DMst U2.R3, U1.R1;

IMNULL;

C_NULL; }

{ Ulnop;
U2_nop;

U3_add U3.R1, U3.R2, U3.R1;

DB1_NULL;

DB2_NULL;

DMNULL;

IM_NULL;

C_brnz U3.R1, loopout; }

halt:

{ U1_nop;

U2_nop;

U3_nop;

DB1_nop;

DB2_NULL;

DM_NULL;

IM_NULL;

C_halt; }

END
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D.2 Applications for the SPAM VLIW-2 Architec-
ture

These are the assembly applications for the SPAM VLIW-2 architecture Version a.

D.2.1 Finite Impulse Response (FIR) Filter

include files - std.asm has some basic definitions, vector.asm
defines the exception vectors - including reset (which calls main
if you want to change any vectors you need to redefine the
appropriate vectore label (usually in the form VTRAPx) to point
to the label of your trap handler. The only exception right now
is V_EXC1 which can be redefined as well.

#include "../include/std.asm"

#include "../include/vector.asm"

#define HO Ox3b7ffde7 /* 0.003906125 */
#define H1 Ox3cOOOOOO /* 0.0078125 */
#define H2 Ox3c800000 /* 0.015625 */
#define H3 Ox3dOOOOOO /* 0.03125
#define H4 0x3d800000 /* 0.0625
#define H5 Ox3eOOOOOO /* 0.125
#define H6 0x3e800000 /* 0.25
#define H7 Ox3fOOOOOO /* 0.5

/* start by loading the coeficients in the registers */

main: {Control_NOP;
ALUJIDLE;
MACIDLE;

DBmove HO, MAC.RO;
AG1-NULL;
AG2_NULL;
DM1_idle;

DM2_idle; }

{Control_NOP;

ALUIDLE;
MACIDLE;
DBmove H1, MAC.R1;
AG1_NULL;
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AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALU_IDLE;

MAC_IDLE;

DBmove H2, MAC.R2;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{Control_NOP;

ALU_IDLE;

MAC_IDLE;

DBmove H3, MAC.R3;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALU_IDLE;

MAC_IDLE;

DBmove H4, MAC.R4;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALU_IDLE;

MACIDLE;

DBmove H5, MAC.R5;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALU_IDLE;

MAC_IDLE;

DB_move H6, MAC.R6;

AG1_NULL;
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AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MAC_IDLE;

DB_move H7, MAC.R7;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

/* Load the AG2 coefficients into the registers */

{Control_NOP;

ALUIDLE;

MACIDLE;

DBmove -1023, ALU.R31;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove ALU.R31, AG2.R2;

AG1-idle;

AG2_idle;

DM1_idle;

DM2_idle; }

{Control_NOP;

ALUIDLE;

MACIDLE;

DBmove 0, ALU.R31;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUJIDLE;

MACIDLE;
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DBmove ALU.R31, AG2.RO;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove 2048, ALU.R31;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove ALU.R31, AG2.R1;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_idle; }

/* here goes the main loop */

/* first load the first sample and check the bound at the same time */
loop: {Controlldjrpc;

ALUIDLE;

MACclr;

DBNULL;

AG1_idle;

AG2_add AG2.RO, AG2.R2, AG2.R3;

DM1_idle;

DM2_dirload-m MAC.R8, AG2.RO; }

/* load the rest of the samples and mac them */

{ControlNOP;

ALUIDLE;

MACmac MAC.RO, MAC.R8;
DBNULL;

AG1_idle;
AG2_idle;

DM1_idle;
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DM2_dir-loadic MAC.R8, AG2.RO, 1; }

{ControlNOP;

ALUIDLE;

MACmac MAC.R1, MAC.R8;

DBNULL;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_dir_loadic MAC.R8, AG2.RO, 2; }

{ControlNOP;

ALUIDLE;

MACmac MAC.R2, MAC.R8;

DBNULL;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_dirloadic MAC.R8, AG2.RO, 3; }

{ControlNOP;

ALUIDLE;

MACmac MAC.R3, MAC.R8;

DBNULL;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_dirloadic MAC.R8, AG2.RO, 4; }

{ControlNOP;

ALUIDLE;

MAC_mac MAC.R4, MAC.R8;

DBNULL;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_dirloadic MAC.R8, AG2.RO, 5; }

{Control_NOP;

ALUIDLE;

MACmac MAC.R5, MAC.R8;

DBNULL;

AG1_idle;

AG2_idle;

DM1_idle;
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DM2_dirloadic MAC.R8, AG2.RO, 6; }

{ControlNOP;

ALU_IDLE;

MACmac MAC.R6, MAC.R8;

DBNULL;

AG1-idle;

AG2_idle;

DM1_idle;

DM2_dirloadic MAC.R8, AG2.RO, 7; }

/* write the result back and increment the pointer into the memory */

{Control_NOP;

ALUIDLE;

MACmacw MAC.R7, MAC.R8, MAC.R8;
DBIDLE;

AG1_idle;

AG2_inc AG2.RO, AG2.RO;

DM1_idle;

DM2_idle; }

/* store the result back into a different portion of the memory */
/* break out of the loop if you are done */

{Controlbrcz AG2.R3, stop;
ALU_IDLE;

MAC_IDLE;

DBIDLE;

AGlidle;

AG2_NULL;

DM1_idle;

DM2_idle; }

1* loop back otherwise */

{Control-jump;

ALU_IDLE;

MACIDLE;

DBNULL;

AG1_idle;

AG2_inc AG2.R1, AG2.R1;

DM1_idle;

DM2_dirsavem MAC.R8, AG2.R1; }
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HALTINSTstop:

END

251



D.2.2 Infinite Impulse Response (IIR) Filter

include files - std.asm has some basic definitions, vector.asm

defines the exception vectors - including reset (which calls main
if you want to change any vectors you need to redefine the
appropriate vectore label (usually in the form V_TRAPx) to point
to the label of your trap handler. The only exception right now
is VEXC1 which can be redefined as well.

#include "../include/std.asm"

#include "../include/vector.asm"

#define

#def ine

#def ine

#define

#def ine

#define

#define

#def ine

HO

H1

H2

H3

H4

H5

H6

H7

Ox3f800000

Oxbe8 00000

Oxbe800000

Oxbe800000

Oxbe800000

Oxbe8 00000

Oxbe800000

Oxbe8 00000

1.0
-0.25
-0.25
-0.25
-0.25

-0.25
-0.25
-0.25

/* start by loading the coeficients in the registers */

main: {ControlNOP;

ALUIDLE;

MACIDLE;

DB_move HO, MAC.RO;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove H1, MAC.R1;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;
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MAC-IDLE;

DBmove H2, MAC.R2;

AG1_NULL;

AG2_NULL;

DM1-idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove H3, MAC.R3;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove H4, MAC.R4;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{Control_NOP;

ALUIDLE;

MACIDLE;

DBmove H5, MAC.R5;

AG1_NULL;

AG2_NULL;

DM1-idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove H6, MAC.R6;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;
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MACIDLE;

DBmove H7, MAC.R7;

AG1.NULL;

AG2.NULL;

DM1_idle;

DM2_idle; }

1* Load the AG2 coefficients into the registers */

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove -1023, ALU.R31;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove ALU.R31, AG2.R2;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MAC-IDLE;

DBmove 0, ALU.R31;

AG1_NULL;

AG2_NULL;

DM1-idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove ALU.R31, AG2.RO;

AG1.idle;

AG2_idle;

DM1_idle;
DM2_idle; }
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{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove 7, ALU.R31;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALU_IDLE;

MACIDLE;

DBmove ALU.R31, AG2.R4;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove 2041, ALU.R31;

AG1_NULL;

AG2_NULL;

DM1_idle;

DM2_idle; }

{ControlNOP;

ALUIDLE;

MACIDLE;

DBmove ALU.R31, AG2.R1;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_idle; }

/* here goes the main loop */

/* first load the first sample and check the bound at the same time */

loop: {Controlldjrpc;

ALU_IDLE;

MACclr;

DBNULL;
AG1_idle;

AG2_add AG2.RO, AG2.R2, AG2.R3;
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DM1_idle;

DM2_dirloadm MAC.R8, AG2.RO; }

1* load the rest of the samples and mac them */

{ControlNOP;

ALUIDLE;

MACmac MAC.RO, MAC.R8;

DBNULL;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_dirloadic MAC.R8, AG2.R1, 0; }

{ControlNOP;

ALUIDLE;

MAC-mac MAC.R1, MAC.R8;

DBNULL;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_dirloadic MAC.R8, AG2.R1, 1; }

{ControlNOP;

ALUIDLE;

MACmac MAC.R2, MAC.R8;

DBNULL;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_dirloadic MAC.R8, AG2.R1, 2; }

{ControlNOP;

ALUIDLE;

MACmac MAC.R3, MAC.R8;

DBNULL;

AG1_idle;

AG2_idle;

DM1_idle;

DM2_diroad-ic MAC.R8, AG2.R1, 3; }

{ControlNOP;

ALUIDLE;

MACmac MAC.R4, MAC.R8;

DBNULL;
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AG_idle;

AG2_idle;

DM1idle;

DM2_dirloadic MAC.R8, AG2.R1, 4; }

{ControlNOP;

ALUIDLE;

MAC-mac MAC.R5, MAC.R8;

DB_NULL;

AG1_idle;

AG2_idle;

DM1_ldle;

DM2_dirloadic MAC.R8, AG2.R1, 5; }

{ControlNOP;

ALUIDLE;

MACmac MAC.R6, MAC.R8;

DBNULL;

AGlidle;

AG2_add AG2.R1,AG2.R4,AG2.R5;

DM1_idle;

DM2_dirloadic MAC.R8, AG2.R1, 6; }

/* write the result back and increment the pointer into the memory */

{ControlNOP;

ALUIDLE;

MACmacw MAC.R7, MAC.R8, MAC.R8;

DBIDLE;

AG1_idle;

AG2-inc AG2.RO, AG2.RO;

DM1_idle;

DM2_idle; }

/* store the result back into a different portion of the memory */

/* break out of the loop if you are done */

{Controlbrcz AG2.R3, stop;

ALUIDLE;
MACIDLE;

DBJIDLE;

AG1iidle;

AG2_NULL;

DM1_idle;

DM2_idle; }
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/* loop back otherwise */

{Control-jump;

ALUJIDLE;

MAC_IDLE;

DB_NULL;

AG1_idle;

AG2_inc AG2.R1, AG2.R1;

DM1_idle;

DM2_dirsavem MAC.R8, AG2.R5; }

stop: HALTINST

END
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D.3 Applications for the SPAM RISC Architec-
ture

This is the assembly application for the SPAM RISC architecture Version a.

D.3.1 Divide-and- Conquer Array Accumulate Function

* int acc(a, c) {
* if (c == 1) return a[01;

* return (acc(a, c/2) + acc(a + c/2, c -c/2));

#define RET R31
#define SP R30

start:
{ movm SP, 2; }
{ stc 0, SP, SP; }
{ movm RO, 1; }
{ stc 1, SP, RO; }
{ mov RO, 40; }
{ stc 2, SP, RO; }
{ call acc; }
{ ldc 3, SP, RO; }
{ halt; }

acc:
{ ldc 2, SP, R1; }
{ subc 1, R1, R2; }
{ brnz R2, LL1; }

{ ldc 1, SP, RO; }
{ ldc 0, RO, R15; }
{ br LL2; }

LL1:

{ stc 4, SP, RET; }
{ ldc 1, SP, RO; }
{ asrc 1, R1, R2; }
{ stc 5, SP, R2; }
{ stc 7, SP, SP; }
{ addc 7, SP, SP; }
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{ stc 1, SP, RO; }
{ stc 2, SP, R2; }
{ call acc; }
{ ldc 10, SP, R3; }
{ stc 6, SP, R3; }
{ ldc 1, SP, RO; }
{ ldc 2, SP, R1; }
{ ldc 5, SP, R2; }
{ add RO, R2, R4; }
{ sub R1, R2, R5; }
{ stc 7, SP, SP; }
{ addc 7, SP, SP; }
{ stc 1, SP, R4; }
{ stc 2, SP, R5; }
{ call acc; }
{ ldc 10, SP, R3; }
{ ldc 6, SP, R4; }
{ add R3, R4, R15; }
{ ldc 4, SP, RET; }

LL2:

{ stc 3, SP, R15; }
{ ldc 0, SP, SP; }
{ ret; }

END
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