
Scheduling for Hardware-Software Partitioning in

Embedded System Design

by

Daniel Wayne Engels

B.S., EECS, State University of New York at Buffalo (1992)
M.S., EECS, University of California, Berkeley (1995)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000

@ 2000 Massachusetts Institute of Technology.

/ .e

Author.. ..
Departmer of

All rights reserved.
MASSACHIUSET1TS INSTITUTE

OF TECHNOLOGY

JUN 2 2 2000

LIBRARIES

. o...
FVetr1$cal Enilg ieering and Computer Science

17 May 2000

Certified by.......

Professor

Accepted by.........

Srinivas Devadas
of Electrical Engineering and Computer Science

-T-4esis Supervisor

...

Professor Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

(I rC,

-. -.,.ri,-.-- - -,.. .. .-a- --

Scheduling for Hardware-Software Partitioning in

Embedded System Design

by

Daniel Wayne Engels

Submitted to the Department of Electrical Engineering and Computer Science
on 17 May 2000, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

I present a new approach that solves the hardware-software partitioning problem for
small embedded systems. Small application specific digital systems, often referred to
as embedded systems, are often implemented using both hardware and software. Due
to the impact that the hardware-software partition of the system functionality has on
the system performance and cost, determining an optimal or near optimal hardware-
software partition is essential to building a system that meets its performance criteria
at minimal cost. My approach to solving the hardware-software partitioning problem
is based on transforming an instance of the partitioning problem into an instance of
a deterministic scheduling with rejection problem that minimizes a function of the
completion times of the tasks. Although this scheduling problem is strongly AlP-hard,
it has been studied extensively, and several effective solution techniques are available.
I leverage these techniques to develop an efficient and effective hardware-software
partitioning scheme for small embedded systems.

In addition to the new partitioning scheme, I present new complexity bounds for
several variants of the scheduling problem. These complexity bounds illustrate the
usefulness and futility of modifying the system characteristics to obtain a more easily
solved scheduling problem formulation.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

4

In Memory of Lester and Margaret

6

Acknowledgments

The question was innocent enough. "Which will you later regret not doing?" Simple.

Direct. And a revelation. That simple question held the wisdom only a father could

give to his son: What you don't do in life matters just as much as what you do. And

the answer to it changed my life. Instead of joining the real-world, I went to graduate

school. I have no regrets. None. Thank you, dad. Your simple question changed my

view of life and led to this dissertation.

Throughout my tenure as a gradual student, many people contributed both di-

rectly and indirectly to my growth as both a human being and a scholar. What these

people have given me I could never repay. I only hope that the following adequately

expresses my most sincere gratitude for their help and guidance.

I must begin by thanking my advisor, Professor Srinivas Devadas, for all that he

has done for me. He took me in like a lost puppy: giving me food, shelter, and a

computer to work on before I joined M.I.T. His support, even through unproductive

times, gave me strength and allowed me to grow.

I must also thank David Karger, my de facto theory advisor and one of my read-

ers for this dissertation. David's help and insight into theoretical arcana strongly

influenced the theoretical results of this dissertation. He also instilled in me a great

respect and love of the theoretical computer science world.

I thank Larry Rudolph, my second reader for this dissertation, for his refresh-

ingly practical views on my research and our discussions on the fascinating topic of

multiprocessor scheduling.

The other members of Srini's Computer Aided Automation Group made my time

at M.I.T. fun and enjoyable. Silvina Hanono proved to be the best office-mate a

person could have. She was always available to discuss any topic, and she gave me

quiet and space when I needed it. She has proven herself to be a wonderful friend,

and I look forward to many years of her continued friendship. George Hadjiyiannis,

the original 'Smoky,' was always available to discuss any research topic (wink, wink,

nudge, nudge), and his extensive knowledge on just about every topic never failed to

7

amaze me. Farzan Fallah and Sandeep Chatterjee provided hours of fun just hanging

out and telling jokes (Q: What's red, black, and blue and sits in a corner? A: Dead

baby. Q: What's red, black, blue, and green and sits in a corner? A: Same dead baby

two weeks later.). I would also like to thank the remaining members of the group,

Prabhat Jain and Todd Mills. They have helped to make my time here pleasant and

enjoyable.

My friends, Gitanjali Swamy and her husband, Sanjay Sarma, have provided hours

of fun, relaxation, and encouragement, as well as interesting research problems. I look

forward to their continued friendship and company in the years to come.

I give special thanks to my wife, Adriana. She has suffered through years of

my gradual work. In the years to come, I hope to show her that her suffering was

worthwhile.

Most importantly, I thank my parents. My mother, Georgia, and my father, Keith,

have always supported me in all of my endeavors. Their support and love have meant

the world to me.

*Send general abuse to Stephen Edwards.

8

Barber . . .I wanted to be a lumberjack. Leaping from tree to tree as they float down the mighty rivers of British Columbia... (he is

gradually straightening up with a visionary gleam in his eyes) The giant redwood, the larch, the fir, the mighty scots pine. (he

tears off his barber's jacket, to reveal tartan shirt and lumberjack trousers underneath; as he speaks, the lights dim behind him and

a choir of Mounties is heard faintly in the distance) The smell of fresh-cut timber! The crash of mighty trees! (moves to stand

in front of back-drop of Canadian mountains and forests) With my best girlie by my side... (a frail adoring blonde, the heroin of

many a mountains film, or perhaps the rebel maid, rushes to his side and looks adoringly into his eyes) We'd sing. . sing. . sing.

The choir is loud by now and music as well.

Barber (singing) I'm a lumberjack and I'm OK,

I sleep all night and I work all day.

Lights come up to his left to reveal a choir of Mounties.

Mounties Choir He's a lumberjack and he's OK,

He sleeps all night and he works all day.

Barber I cut down trees, I eat my lunch,

I go to the lavatory.

On Wednesday I go shopping,

And have buttered scones for tea.

Mounties Choir He cuts down trees, he eats his lunch,

He goes to the lavatory.

On Wednesday he goes shopping,

And has buttered scones for tea.

He's a lumberjack and he's OK,

He sleeps all night and he works all day.

Barber I cut down trees, I skip and jump,

I like to press wild flowers.

I put on women's clothing

And hang around in bars.

Mounties Choir He cuts down trees, he skips and jumps,

He likes to press wild flowers.

He puts on women's clothing

And hangs around in bars.. .?

During this last verse, the choir has started to look uncomfortable, but they brighten up as they go into the chorus.

Mounties Choir He's a lumberjack and he's OK,

He sleeps all night and he works all day.

Barber I cut down trees, I wear high heels,

Suspenders and a bra.

I wish I'd been a girlie,

Just like my dear Mama.

Mounties Choir (starting hastily as usual but tailing off as they get to the third line)

He cuts down trees,

he wears high heels,

(spoken rather than sung) Suspenders... and a bra?...

They all mumble. Music runs down. The girl looks horrified and bursts into tears. The choir start throwing rotten fruit at him.

Girl Oh Bevis! And I thought you were so rugged.

9

10

About the Author

Daniel Wayne Engels was born in the untamed wilderness of the Dakota Territory in the long cold

winter of 1970. He spent his first formative year dodging wild natives, playing with Jackrabbits, and

eating lots of chocolate pudding. Having conquered the Dakota Territory by his first birthday, and

eaten his store of chocolate pudding, Danny (as he was known then) set out to travel the world in

search of more chocolate pudding and less snow. Danny was mildly successful in his travels despite

being limited to traveling primarily in the back seat of a car. His travels brought him to pudding

meccas such as Fort Hood, Texas, Fort Lewis, Washington, Fort Leavenworth, Kansas (just visiting,

honest), and his favorite - he says with a nod and a wink and a small touch of sarcasm - Fort

Drum, New York. Along the way, he found much pudding: chocolate, vanilla, and (Yuck!) tapioca,

To combat the effects large quantities of chocolate pudding (and other sugary substances) can

have on the human body, Danny took up that most abusive of sports, wrestling. He quickly mastered

the art of grappling with sweaty, smelly, and, later in his career, hairy men, winning several national

championships as a young boy. Dan (as he was later known) continued wrestling through college.

His mastery of wrestling allowed him to become an NCAA All-American in the 177 pound weight

class.

Having been confined to the University at Buffalo for four long cold winters, Dan again found

himself yearning to travel the world in search of more chocolate pudding and less snow. Thus, in

1992, after receiving his B.S. in Electrical Engineering and Computer Science, Dan moved West.

Still being limited to traveling primarily by car, Dan stopped when he reached the snow-less hills

of Berkeley, California. There, he enjoyed the nice weather, discovered that coffee suppressed his

desire for pudding, and continued his studies.

Dan's stay in California would be brief and restless, partly due to the excessive consumption

of coffee and partly due to the chemical imbalance called LOVE. This combination often led Dan's

thoughts and body back East. And, in 1995 after receiving the M.S. in Electrical Engineering

and Computer Science from the University of California, Berkeley, Dan set off on his seventh (and

hopefully last) lonesome, coffee filled drive across the country.

Upon arrival Back East, Dan found himself in front of 77 Massachusetts Avenue. The temptation

to further abuse his mind and pocketbook proved too great, and he quickly enrolled in the graduate

program at M.I.T. After some of the most snow filled winters in Massachusetts history (and too

much coffee), Dan again yearns to travel the world in search of more chocolate pudding and less

snow.

11

12

Contents

1 Introduction 21

1.1 Introduction . 21

1.2 The Hardware-Software Partitioning Problem 24

1.2.1 Architecture Selection . 25

1.2.2 Task Clustering . 25

1.2.3 Allocation and Scheduling . 26

1.2.4 Inter-Task Communication . 27

1.3 Previous Partitioning Approaches . 28

1.4 Introduction to Scheduling Problems 29

1.4.1 Job Characteristics . 30

1.4.2 Specifying Scheduling Problems 30

1.5 Dissertation Contributions and Overview 32

2 The Scenic Specification Language 41

2.1 Introduction . 42

2.2 Processes and Signals . 43

2.3 Timing Control . 46

2.3.1 A Notion of Time . 46

2.3.2 Timing Control Statements 47

2.4 Specifying Reactivity . 48

3 Modeling a System Specification 51

3.1 Introduction . 51

13

3.2

3.3

3.4

3.5

Task Regions

Defining Tasks

Determining Task Characteristics

Using the Tasks in Scheduling Problems . .

3.5.1 Instances of Tasks

3.5.2 Intertask Communication

3.5.3 Modeling Hardware Execution Times

3.5.4 Wristwatch Example

4 The Formulation

4.1 Introduction .

4.2 The Costs of Implementation .

4.3 Modeling Implementation Costs in a Scheduling Problem

4.4 Modeling Communication Constraints

5 Solving the Scheduling with Rejection Problem

5.1 Introduction .

5.2 The Apparent Tardiness Cost Rule

5.3 Inserted Idleness .

5.4 The Scheduling Algorithm .

6 Experimental Results

6.1 Introduction .

6.2 W ristw atch .

6.3 Multiple Processing Elements .

7 The Complexity of Scheduling with Rejection

7.1 Introduction .

7.2 The Total Weighted Completion Time with Rejection

7.2.1 Complexity of Es wjC + Es ej

7.2.2 Pseudo-Polynomial Time Algorithms

7.3 The Weighted Number of Tardy Jobs with Rejection

14

53

. 5 8

. 5 9

. 6 2

. 6 2

. 6 3

. 6 3

. 6 4

67

68

69

70

71

75

75

77

79

80

83

83

84

87

97

98

101

101

103

107

7.3.1 Complexity of Es cjUj + Eg ej 108

7.3.2 Pseudo-Polynomial-Time Algorithm 109

7.3.3 Special Cases Solvable in Polynomial Time 111

7.4 The Total Weighted Tardiness with Rejection 112

7.4.1 Complexity with Arbitrary Deadlines 112

7.4.2 Complexity with Common Deadline 117

7.5 Common Deadline and Es wjTj + Es cjUj + Eg ej 121

7.5.1 A Simple Pseudo-Polynomial Time Algorithm 122

7.5.2 A Fully Polynomial Time Approximation Scheme 125

7.5.3 Dynamic Programming on the Rejection Costs 128

7.5.4 Using the FPAS . 129

8 The Complexity of Scheduling with Separation Constraints 133

8.1 Introduction . 134

8.2 Chain Structured Tasks . 137

8.2.1 1Ichain;lj,k = lICmax,ZEC 138

8.2.2 1Ichain; pmnt;lj,k = lICmax, E Cj 141

8.2.3 1Ichain; pj =1; lj,k E {,l}ICmax, E Cj 148

8.2.4 1|chain;pj E {1, 2}; lj,k = L (L > 2)1Cmax, E Cj 151

8.2.5 Complexity Boundary Analysis involving Chains 154

8.3 Arbitrary Precedence Structured Tasks 157

8.3.1 11prec; pj = 1;lj,k = lICmax, E Cj 158

8.3.2 Complexity Boundary Analysis 162

8.4 Approximation Bounds for PIprec; pj = 1; lijICmax 164

8.4.1 Introduction . 164

8.4.2 List Schedules . 166

8.4.3 The Coffman-Graham Algorithm 169

9 Conclusions 181

A Digital Wristwatch Example 187

15

List of Figures

1.1 A simple single processor, single ASIC embedded system architecture. 25

2.1 BasicWatch example Scenic process definition. 43

2.2 Wristwatch example main Scenic file. 45

3.1 Canonical task region covers of BasicWatch example process. 56

3.2 Transformation of a wait() node in the CFG. 57

3.3 The complete task graph for the Wristwatch example. 65

5.1 My greedy heuristic algorithm for the scheduling with rejection problem. 81

6.1 Hardware-Software partitioning results for the wristwatch example. . 86

7.1 Objective function complexity hierarchy. 98

7.2 Complexity boundary for problems 1 (-y + E ej). 100

7.3 Complexity boundary for problems 11dj = dK 100

7.4 An algorithm to solve 1 I (Es wjT + Eg ej) using the FPAS from Sec-

tion 7.5.2. 131

8.1 Complexity boundary for problems I chain; 2; 3; N31Cmax,EC 135

8.2 Complexity boundary for problems 1#1; pj = 1; i35 1Cmax, E C. . .. 136

8.3 Template for the proof of Theorem 8.2.1. 139

8.4 Template for the proof of Theorem 8.2.3. 143

8.5 Template for the proof of Theorem 8.2.8. 152

16

List of Tables

6.1 Average time to solve the Wristwatch example. 87

6.2 Prakash and Parker's examples. 89

6.3 Hou's exam ples. 90

6.4 Yen's large random examples. 91

6.5 MOGAC's very large random examples. 92

7.1 Scheduling with rejection complexity results. 99

8.1 Scheduling with separation constraints complexity results. 134

8.2 Complexity boundary for problems 1chain; /2; N3 5 Cmax, ECj. . . . 156

8.3 Complexity boundary for problems P Ichain; 2; 3; 5 Cmax,E w C. . 158

8.4 Complexity boundary for problems PJ/31; /32; 3 ; 4 / 5 Cmax, Cj. . 163

17

Scheduling for Hardware-Software Partitioning in
Embedded System Design

Daniel Wayne Engels

"Where shall I begin, please your Majesty?" he asked.
"Begin at the beginning," the King said, very gravely, "and

go on 'till you come to the end: then stop."

Lewis Carroll, Alice's Adventures in Wonderland

Chapter 1

Introduction

"I know some new tricks,"
Said the Cat in the Hat.
"A lot of good tricks.
I will show them to you.
Your mother
will not mind at all if I do."

Dr. Seuss, The Cat in the Hat

This dissertation presents a novel scheduling-based approach to solving the hard-

ware-software partitioning problem in embedded system design and examines its com-

putational complexity. This chapter lays the foundation for understanding the ap-

proach, motivates the need for implementing embedded systems as a mix of both

hardware and software, and defines the hardware-software partitioning problem. A

scheduling-based approach is used to solve the partitioning problem; therefore, a

brief introduction to scheduling problems and corresponding notation are described.

Finally, an overview of the approach is provided, as well as a summary of the contri-

butions of this dissertation.

1.1 Introduction

Small embedded systems, such as engine management units, dishwasher controllers,

and electronic thermostats, implement dedicated, application specific functions. The

21

functionality of an embedded system is specified prior to its implementation, and

little or no functional modification is allowed once it is installed in its operating

environment. This inflexibility forces the correctness of the embedded system, both

its functional correctness and its temporal correctness, to be stressed during the design

process.

Many embedded systems, such as MP3 players, digital cameras, and cellular tele-

phones, require implementations that exhibit low manufacturing cost, low power con-

sumption, and correct timing functionality. These requirements are best satisfied by

full custom hardware designs. Unfortunately, designing an entire complex embedded

system as an Application Specific Integrated Circuit (ASIC) is a time consuming pro-

cess that can add significant design costs to the product. Short product design cycles

further deter the use of full custom hardware implementations.

By implementing some of the embedded system's functionality in software, both

the design cost and the design time are reduced. A software prototype of the system

functionality is often developed to evaluate the system. The software prototype allows

a complete simulation of the system's behavior, permitting the designer to validate

the system specification. A functionally complete and correct software prototype

for a system is a functionally correct implementation of the system. Consequently,

implementing some or all of the system functionality in software is straightforward,

requiring little additional design work beyond the completion of the prototype. Thus,

the use of software reduces the design time and the design cost of the electronic

embedded system.

The primary disadvantage of using software to implement system functionality is

that it is often much slower than a functionally correct hardware implementation.

Therefore, a temporally correct implementation may require that some functionality

be implemented as custom hardware.

Temporal constraints arise due to the environment in which embedded systems

operate. For example, the electronic fuel injection system in an automobile engine

must not only inject the proper amount of fuel, but it must inject the fuel into the

engine at the correct time. Temporal, or real-time, constraints take the form of

22

periodicity constraints, separation constraints, and deadline constraints. Periodicity

constraints require that some functionality be performed with a given frequency.

For example, the frequency for sampling data in an audio system is a periodicity

constraint. Separation constraints define the minimum time between the occurrence

of two events. For example, the minimum time from the mixing of two chemicals until

the resultant solution can be used is a separation constraint. Deadline constraints

define the maximum time between the occurrence of an event and the reaction to

it. For example, the maximum time to deploy an air-bag once a frontal collision is

detected is a deadline constraint.

A correct system design is dependent upon the system functionality being par-

titioned into hardware and software components such that all temporal constraints

are met in the final implementation. This Hardware-Software Partitioning Problem

requires that, in addition to allocating system functionality to either hardware or

software, the temporal behavior of the allocated functionality must be determined,

either by scheduling the functionality or by other timing estimation techniques. The

computational intractability of the hardware-software partitioning problem makes it

impractical to manually partition complex system functionality. Therefore, auto-

mated design techniques are required to effectively search the design space for an

optimal or near optimal design.

This dissertation presents a new automated approach that solves the hardware-

software partitioning problem in embedded system design. The approach is based on

transforming an instance of the hardware-software partitioning problem to an instance

of a deterministic task scheduling with rejection problem. Solving the scheduling with

rejection problem yields a partition of the system functionality and a deterministic

schedule that describes the temporal behavior of the partitioned system. The sched-

uled tasks correspond to functionality that is to be implemented in software, and

the rejected tasks correspond to functionality that is to be implemented in hard-

ware. The deterministic schedule of the tasks provides important feedback to the

designer, allowing system timing problems and other system design problems to be

identified. Furthermore, the generality of this approach allows the hardware-software

23

partitioning problem to be solved at any level of design abstraction and at any level

of functional granularity.

The remainder of this chapter builds the foundation for understanding the ap-

proach.

1.2 The Hardware-Software Partitioning Problem

The solution to the hardware-software partitioning problem specifies the implementa-

tion of all system functionality and provides some form of estimated timing behavior

for the partitioned system. To find this solution, four main subproblems must be

solved:

1. Architecture Selection: The system architecture, in terms of number of proces-

sors, number of ASICs, and communication topology, is determined.

2. Task Clustering: The functionality is clustered into tasks to reduce the compu-

tational complexity of the problem.

3. Allocation: Each task is allocated to either an ASIC or a processor.

4. Scheduling: The tasks are scheduled on their allocated ASIC or processor to

verify temporal correctness.

These subproblems are interrelated; thus, the solution to one subproblem affects the

solution to the other subproblems. The allocation and scheduling sub-problems are

.MP-hard [24]; therefore, it is unlikely that a polynomial-time algorithm can be found

to optimally solve the hardware-software partitioning problem.

The subproblems may be solved individually to decrease the computational com-

plexity of the problem. I employ this approach, solving the architecture selection and

task clustering subproblems individually. I then solve the allocation and scheduling

subproblems concurrently.

24

1.2.1 Architecture Selection

The architecture of an embedded system may be a complex multiple processor, mul-

tiple ASIC design, a simple single processor, single ASIC design, or something in

between. I assume the simple single processor, single ASIC architecture shown in

Figure 1.1 as the chosen architecture in my scheduling-based approach. Although

simple, this architecture is applicable to a wide range of embedded systems including

engine control units, MP3 players, and small Web servers. And, this architecture may

be implemented as a single integrated circuit, the, so called, System on a Chip (SoC).

I show how to apply my approach to more complex architectures in Chapter 6.

Figure 1.1: A simple single processor, single ASIC embedded system architecture.

1.2.2 Task Clustering

The functionality of a complex embedded system may contain millions of operations.

Considering each operation independently while solving the hardware-software parti-

tioning problem requires enormous quantities of computational resources. To reduce

the computational complexity of the partitioning problem, the operations are clus-

tered into a set of tasks. Each task corresponds to a disjoint subset of the operations

25

to be performed by the embedded system. The set of tasks covers all operations.

The amount of functionality modeled by a single task determines its granularity.

Large granularity tasks decrease the computational complexity of the partitioning

problem by reducing the number of tasks that need to be partitioned. However, large

granularity tasks can lead to sub-optimal solutions since they reduce the possible

number of solutions that can be determined.

The task model abstracts away the functionality of the system, but retains the

pertinent characteristics of the functionality. The characteristics of a task include

the area required to implement its functionality as custom hardware, the memory

required to implement the task in software, and the timing behavior of both the

hardware and software implementations. Additional characteristics such as power

consumption for each implementation and resource requirements may be specified.

The task characteristics may be determined precisely by synthesizing both hardware

and software for a task. Unfortunately, synthesizing both hardware and software

for all tasks is time consuming and, in general, is not possible given the short design

cycles. Therefore, task characteristics are initially estimated, and the estimations may

be refined when more accurate information is available during subsequent iterations

of the design process.

Chapter 3 presents my methodology for determining a set of tasks from the initial

system specification.

1.2.3 Allocation and Scheduling

The allocation and scheduling of the tasks is guided by system constraints and other

system design issues. The system constraints include, but are not limited to, system

timing constraints, hardware area constraints, software memory size constraints, and

power constraints. Hard system constraints, such as a maximum application-specific

hardware area constraint, cannot be violated in a feasible partition. Soft system

constraints, such as a soft timing deadline, act to guide the solution by imposing a

penalty when the constraint is violated. An allocation and schedule of the tasks may

be feasible even if it violates soft constraints.

26

Chapter 4 presents my scheduling-based formulation for both the allocation and

scheduling subproblems. Solving this scheduling problem simultaneously solves both

the allocation and scheduling subproblems. Chapter 5 presents my algorithm for

solving the scheduling problem.

1.2.4 Inter-Task Communication

An important set of constraints that I have so far neglected in my discussion of the par-

titioning problem are communication constraints. Communication constraints arise

between tasks that must share data. Therefore, the choice of system architecture,

the choice of tasks, and the allocation of the tasks determine how inter-task com-

munication affects the solution to the partitioning problem. The effects of inter-task

communication become apparent only after scheduling has been performed.

In the single processor, single ASIC architecture, communication between tasks

that are both implemented in either hardware or software incur no communication

penalty. However, communication between tasks that have different implementations

requires additional communication time and resources. This is because the informa-

tion must be transmitted either from the application-specific hardware to the software

task or vice versa. The communication channels and mechanisms between hardware

and software are often limited in number and bandwidth. Therefore, communication

between tasks in different implementations incurs a timing penalty. The use of the

communication mechanisms may be directly solved in the hardware-software parti-

tioning problem if the target architecture, including communication mechanisms, has

been determined. Otherwise, additional timing constraints may be used to model the

expected communication delay, with the exact communication mechanism allocation

and scheduling performed after the communication mechanisms have been defined.

I assume that the exact communication mechanisms are not known when the

hardware-software partitioning problem is solved. Therefore, I model inter-task com-

munication with separation constraints. Chapter 5 describes how my constructive

algorithm adds separation constraints while it builds a solution to the allocation and

scheduling subproblems.

27

1.3 Previous Partitioning Approaches

Hardware-software partitioning has been studied previously, yielding both exact and

heuristic solution methodologies. The intractable nature of the .AP-hard hardware-

software partitioning problem causes optimal approaches, such as the dynamic pro-

gramming based solution of Knudsen and Madsen [36], the mixed integer linear pro-

gramming formulation proposed by Schwiegershausen et al. [57], and the exhaustive

search proposed by D'Ambrosio and Hu [14], to be useful only for small systems

and simple problem formulations. Therefore, heuristics have been used to partition

large systems with complex problem formulations. These heuristics typically assume

a fixed set of tasks is given, and they are discussed next.

Stochastic search based algorithms, such as simulated annealing and genetic algo-

rithms, start with a complete, but sub-optimal, solution to the partitioning problem

and randomly make local changes to the solution while monitoring its cost. Algo-

rithms using stochastic search heuristics are able to avoid being 'trapped' in locally

minimal solutions, and they have been found to find optimal or near-optimal solu-

tions [2] [29] [17] to complex problem formulations containing multiple objectives.

The non-greedy, random search nature of these algorithms causes them to have long

running times since they explore a large portion of the solution space. Furthermore,

since their solutions are found in an essentially random manner, they often yield little

insight for the designer as to how the system may be changed for the better. The im-

plemented stochastic search approaches tend to concentrate on the allocation of tasks

to either hardware or software while optimizing for the non-timing related objectives.

The software tasks are scheduled as a subroutine to determine timing feasibility and

solution cost.

Iterative improvement algorithms, like stochastic search based algorithms, start

with a complete, but sub-optimal, solution to the partitioning problem and make

local changes to the solution while monitoring its cost. The local changes are typi-

cally greedy in nature; thus, iterative improvement algorithms are prone to becoming

trapped in locally optimal solutions, yielding sub-optimal solutions [30] [65] [64]. Tabu

28

search [21] and Kernighan and Lin-like [52] iterative improvement algorithms are two

examples of iterative improvement algorithms that have been presented. The greedy

nature of iterative improvement algorithms makes them have reasonable run-times;

however, they suffer from the same disadvantages as the stochastic search algorithms.

Their solutions often yield little insight for the designer as to how the system may

be changed for the better, and the software tasks are scheduled as a subroutine to

determine timing feasibility and solution cost.

Constructive algorithms, unlike stochastic search and iterative improvement al-

gorithms, incrementally build a solution. Each decision by a constructive algorithm

affects the global optimality; however, only local information is available (global in-

formation such as the impact on future decisions may only be guessed). In an attempt

to gain more information, constructive algorithms often schedule the software tasks

at the time that they are allocated to software. Despite a lack of global knowledge,

constructive algorithms have been found to yield good solutions [15][34] with a reason-

able execution time. Although many constructive algorithms perform software task

scheduling while the solution is being built, the allocation of tasks to either hardware

or software is usually the objective.

1.4 Introduction to Scheduling Problems

Since scheduling problems play a central role in this dissertation, let us quickly re-

view the area of scheduling. Scheduling is concerned with the optimal allocation of

resources to activities over time; therefore, they arise in all situations in which scarce

resources must be allocated to activities over time. Scheduling problems have been

the subject of extensive research since the early 1950's, and several surveys exist

describing the results in this area [3] [20] [54] [59] [7].

A resource is typically referred to as a machine or processor. An activity is

referred to as a job or task. It is assumed that a job requires at most one processor

to execute at any time. Scheduling problems involve jobs that must be scheduled on

machines subject to certain constraints to optimize some objective function. The goal

29

of the scheduling problem is to produce a schedule that specifies when and on which

processor each task is executed such that the schedule optimizes the given objective

function.

1.4.1 Job Characteristics

Each job j has several parameters associated with it. Some of these parameters

characterize the job.

" The processing time pj indicates how long it takes job j to execute to completion

on a dedicated machine.

" The rejection cost ej specifies the penalty, or cost, of not scheduling job j on a

machine in the schedule.

Additional parameters specify constraints on when a job can be scheduled.

" The release time rj indicates the first time that job j may be scheduled. Release

times may never be violated in a feasible schedule.

" The deadline dj indicates the time by which job j should be completed in the

schedule. Deadlines are violated at some cost in a feasible schedule.

" The period T indicates the frequency at which the job becomes ready to exe-

cute. Successive instances of a job become ready to execute at times rj, rj + T,

rj + 2T, etc. and have respective deadlines dj, dj + T, dj + 2Tj, etc.

Finally, cost parameters wj and cj are used to weight the cost of completing job j at

time Cj in the schedule. The set of scheduled jobs is denoted by S, and the set of

rejected jobs is denoted by 9 = N - S, where N = (1, 2,... , n} denotes the set of

jobs in the scheduling problem.

1.4.2 Specifying Scheduling Problems

There are several different scheduling problems that we examine in this dissertation.

As a convenience in describing these problems, I use the al I-y notation introduced

30

by Graham, Lawler, Lenstra, and Rinnooy Kan [28]. In this notation, a denotes the

machine environment. 3 denotes the side constraints, and -y denotes the objective

function. The machine environment a is assigned one of values in the set {1, P},

denoting one machine and m identical parallel machines respectively. In both of these

machine environments, job j takes processing time pj regardless of which machine it

is executed on. When the number of machines under consideration is fixed to m > 1

rather than being an input to the problem, the machine environment is assigned the

value Pm.

The side constraints # denote any constraints on the job characteristics and on a

feasible schedule. / is specified using five parameters, /1, #2, /3, /34, and 35. / 1 E {O,

chain, intree, outtree, tree, prec} denotes the precedence constraint topology. A

precedence constraint between tasks i and j, i -< j, requires that task i precede task

j in a feasible schedule. /2 E {o , pmtn} denotes the permissibility of preemptions

in a feasible schedule. /3 E {o, pj = 1, pj E {a, b}} denotes restrictions on the

task processing times. /4 E {o , rj} denotes the presence of nonzero release times,

and /35 C {o , lij = L = 0(1), lij = 1, lij E {a, b}} denotes restrictions on the

separation constraints between tasks. Separation constraints are only associated with

precedence constraints i -< j, and they denote the minimum time from the completion

of task i to the beginning of task j in a feasible schedule. lij = L indicates that all

separation constraints are equal in value, and the value is a fixed constant. lij = 1

indicates that all separation constraints are equal in value, but the value is given as

an input to the problem. lij E {a, b} indicates that the separation constraint values

must be one of the values in the given finite set. The absence of constraints of type

/i, 1 < i < 5, is denoted by a 'o.' For clarity, the symbol 'V' is not included in the

al/3y problem statement.

The objective function y denotes how the total cost of the schedule is to be cal-

culated. The optimal schedule for a problem instance is one that minimizes the

given objective function. The objective function is typically a function of the com-

pletion times, Cj, and the costs, wj, cj, and ej, of the tasks. Common objective

functions are the maximum completion time, or makespan, of the scheduled jobs S

31

Cmax = maxjes (Cj), the total (equivalently, average) completion time of the scheduled

jobs EjES C3 (and its weighted version EjEs wjCj), the total tardiness of the sched-

uled jobs EjES T (and its weighted version EZcs wjTj), where Tj = max(0, C - dj),

and the total number of tardy jobs EZjs U (and its weighted version EjEs cjUj),

where Uj equals 1 if T > 0 and 0 otherwise. These objective functions may be aug-

mented by the total rejection cost EZEs e3 if the scheduling problem allows jobs to be

rejected, or not scheduled.

1.5 Dissertation Contributions and Overview

This dissertation is divided into two parts. Part I presents my scheduling-based

approach to solving the hardware-software partitioning problem. Part II analyzes its

complexity and derives several approximation algorithms for variants of the scheduling

problem.

A scheduling problem requires tasks to schedule. Therefore, our discussion begins

in Chapter 3 with my methodology for generating tasks from a system specification.

While the methodology is general enough to be used with any specification language, it

is more easily understood given a particular specification language. For this purpose,

I use the Scenic specification language [25]. Scenic allows for the complete behavioral

specification of a system as a set of concurrently executing, communicating processes.

I describe the relevant features of the Scenic specification language in Chapter 2.

The methodology for deriving tasks from a system specification relies on the iden-

tification of task regions from the control-flow graph for the system specification.

The notion of task regions builds upon theory developed to increase the efficiency

of program analysis in parallel compilers [33]. A task region represents a region of

functionality that may be implemented as a task in some scheduling problem. Since

we are interested in only deterministic schedules, we are concerned with static task

regions. Static task regions identify functional clusters in the system specification

that may be scheduled and implemented in either hardware or software without vio-

lating the semantics of either the specification language or a deterministic scheduling

32

problem. There are O(E 2) static task regions, where E is the number of edges in the

control-flow graph representing the system functionality.

In order to reduce the number of static task regions that must be considered, I

define the notion of a canonical static task region. Canonical static task regions allow

a process to be modeled as either a single task or as a chain of tasks. Therefore, the

problem of determining a set of tasks to model a system specification is reduced to

identifying the canonical static task regions within each process and choosing a level

of granularity for the tasks.

After clustering the system functionality into a set of tasks, the allocation and

scheduling subproblems are solved. I present my scheduling problem formulation for

these two subproblems in Chapter 4. In the +3lxJ- scheduling problem notation, my

scheduling with rejection problem formulation is denoted as:

I1prec; rj ; lgj|(E wjT + Z ej).
jES jES

This formulation is unique in that it is a pure scheduling problem that simultaneously

solves both the allocation and the scheduling sub-problems of the hardware-software

partitioning problem. A solution to the scheduling with rejection problem specifies

the implementation of the tasks. (Rejected tasks are implemented in hardware, and

scheduled tasks are implemented in software.) Furthermore, the deterministic sched-

ule defines the temporal behavior of the partition.

The scheduling problem formulation assumes that scheduling jobs in software such

that they finish at or before their respective deadlines incurs no cost. To achieve this

formulation, timing constraints are modeled as release times and deadlines. The run-

ning time of a task in software corresponds directly to the processing time Pj in the

scheduling problem formulation. Hardware execution times are modeled with sep-

aration constraints on transitive precedence constraints. Communication delays are

modeled with separation constraints on the original precedence constraints. The costs

wj, cj, and e. model the tradeoff between a software implementation and a hardware

implementation. Hard constraints, such as the maximum area for the application-

specific hardware, cannot be modeled with this formulation; however, hard timing

33

constraints are modeled with infinite costs on wj and cj. The best possible result for

this scheduling problem formulation schedules all jobs in software and has a cost of

zero.

Chapter 5 describes my constructive heuristic algorithm used to solve the schedul-

ing with rejection problem. The heuristic algorithm extends a known greedy construc-

tive algorithm [49} to handle rejection and separation constraints. The constructive

algorithm is based upon the Apparent Tardiness Cost (ATC) heuristic that uses the

task weight, wj, and processing time, pj, to guess the cost of the task if it is not

scheduled next. The task with the largest ATC is greedily scheduled next.

In Chapter 6, we examine the usefulness of my scheduling-based approach by

applying it to the non-trivial digital wristwatch example. (A complete Scenic spec-

ification of the digital wristwatch is given in Appendix A.) The basic behavior of a

digital wristwatch with stop watch and alarm functionality is described using nine

Scenic processes. At a fine level of granularity there are thirty-seven canonical static

task regions. Solutions were obtained for several system clock speeds targeting the

single processor, single ASIC architecture in Figure 1.1. My scheduling-based ap-

proach was found to yield optimal solutions for all of the examined data points. All

of the solutions were found in less than one second of CPU time, thereby providing

fast feedback to the designer.

In addition to the digital wristwatch example, I examine several examples from

the literature. All of these examples have predefined tasks, and their respective target

architectures must be determined from a given set of processing elements. Using my

scheduling problem formulation as the basis of a simple iterative algorithm, optimal

solutions were found in less than 2.5 seconds for all of these examples.

Part II of this dissertation focuses on the complexity of scheduling problems that

either allow rejection or contain separation constraints. The A'P-hard scheduling

with rejection problem used in my approach is general enough to be used with all

small embedded systems. However, less general problems, while only applicable to a

subset of embedded systems, are of interest since they might be solvable in polynomial

time or pseudopolynomial time. I identify some of these less general formulations and

34

characterize their complexity.

Chapter 7 probes the theoretical complexity of scheduling problems that allow

rejection. The total weighted tardiness is a general objective function. Other objective

functions, such as total number of tardy jobs and makespan, may be appropriate

for some embedded systems. If these less general problem instances may be solved

efficiently, then some embedded systems may be specified so as to take advantage of

them.

In Section 7.2, we consider scheduling problems that optimize for the sum of

weighted completion times plus total rejection penalty. The single machine version of

this problem is denoted as 1 (Es w3Cj + Eg ej). If rejection is not allowed, the single

machine problem is solvable in polynomial time using Smith's rule [58]: schedule the

jobs in non-decreasing order of pj/wj. For any fixed number of parallel machines,

the problem is VP-hard [11]. In Section 7.2.1, I prove that when allowing rejec-

tion, the problem is MP-hard, even on one machine. In Section 7.2.2, I give three

pseudo-polynomial time algorithms for the problem 1f (Es wjCj + Eg ej), proving

that it is only weakly /P-hard. The first algorithm runs in time O(n E'_1 ej). The

second algorithm runs in time (9(n _ wj), and the third algorithm runs in time

((n Z>_pj). The second and third algorithms are joint work with Sudipta Sen-

gupta [22].

In Section 7.3, we consider single machine scheduling problems that optimize for

the sum of weighted number of tardy jobs plus total rejection penalty. The general

problems 1f I(Es c3 U + Eg ej) and 1ff (ZEs U, + Eg ej) are AP-hard. This result

follows from the .AP-hardness of the problem 1f I(Lmax + Eg ej) [22]. (In Section 7.5,

I give a pseudo-polynomial time algorithm proving them to be weakly KP-hard.)

Therefore, we consider the simpler problem where all deadlines are equal, i.e., dj = d

for all jobs j. In Section 7.3.1, I prove that the problem I I dj = d E cj Uj is .A/P-

hard. In Section 7.3.2, I present a pseudo-polynomial time algorithm for the problem

1f dj = df(Es cj Uj + Eg ej), proving it to be weakly AP-hard. And, in Section 7.3.3,

I examine the special case problem If dj = d; cj agreeablef(Es cj Uj + Zs ej) for which

a simple greedy algorithm exists to solve it.

35

In Section 7.4, we consider single machine scheduling problems that optimize for

the sum of weighted tardiness plus total rejection penalty. The general problems

1 (Es wjTj + Eg ej) and 1 (Es T + Eg ej) are MAP-hard. This result follows from

the /P-hardness of the problem 1|I(Lma, + Eg ej) [22]. In Section 7.4.1, I present

a pseudo-polynomial time algorithm for 11(Es T + Eg ej), proving it to be weakly

.hP-hard. The problem 1 (Es wjT + Eg ej) is strongly /VP-hard; therefore, no

pseudo-polynomial time algorithm exists to optimally solve it unless P = /P. In

Section 7.4.2, we examine two special case problems that are solvable in polynomial

time by greedy algorithms. The problem 1dj = d; wj agreeable| IE wjT is solved

by scheduling the jobs in shortest processing time (SPT) first order. The problem

Idj = d; wj disagreeablel E wjTj is solved by scheduling the jobs in longest processing

time (LPT) first order.

In Section 7.5, we consider single machine scheduling problems with a common

deadline that optimize for the sum of weighted tardiness plus the sum of weighted

number of tardy jobs plus the total rejection penalty. In Section 7.5.1, I present

an O(n(EZU pj - d)) pseudo-polynomial time algorithm for the problem 1|dj =

dl(Es wjT + Es c3 U. + Eg ej). I modify this algorithm to develop a fully polynomial

time approximation scheme (FPAS) for this problem in Section 7.5.2. In Section 7.5.3,

I present a more traditional O(n 2d E'_I ej) dynamic programming algorithm for this

problem.

These scheduling with rejection complexity results indicate that by specifying the

embedded system functionality such that the objective function may be something

other than the total weighted tardiness or that all tasks have the same deadline,

a guaranteed near optimal solution to the scheduling problem formulation can be

obtained.

Chapter 8 probes the theoretical complexity of scheduling problems that allow sep-

aration constraints. Recall that separation constraints model the inter-task commu-

nication delays in my scheduling problem formulation. These communication delays

are non-negligible in most systems. Therefore, excluding separation constraints can

yield a solution that is far from optimal. Unfortunately, as the results in this chapter

36

clearly show, including separation constraints in the problem formulation causes the

scheduling problem to be strongly NP-hard.

The results in Chapter 8 consist of a set of strong NP-hardness proofs that nar-

row the boundary between known polynomial time solvable problems involving sep-

aration constraints and known NP-hard problems involving separation constraints.

In Section 8.2, we consider single machine scheduling problems with chain precedence

constraints and separation constraints. In Section 8.2.2, I prove that the problems

11chain; pmtn; li;, = IICmax, E C, are strongly NP-hard by reducing the 3-Partition

Problem to them. Using these results, I prove that the unit execution time problems

I Ichain; pj = 1; lij E {0, l}Cmax, E Cj are strongly NP-hard. In Section 8.2.4, I

prove that the problems 1chain; pj E {1, 2}; li,j = L (L > 2)fCmax, E Cj are strongly

NP-hard.

In Section 8.3, we consider single machine scheduling problems with arbitrary

precedence constraints and separation constraints. In Section 8.3.1, I prove that the

problems 1 prec; pj = 1; li,j = I ICmax, E C, are strongly NP-hard.

These scheduling with separation constraints complexity results indicate that by

considering the communication delays associated with inter-task communication, the

problem becomes computationally intractable to solve optimally regardless of the

other simplifications made to the system specification.

The dissertation concludes with a review of lessons learned and a summary of

contributions and open problems.

37

Part I

Solving the Partitioning Problem

".. The name of the song is called 'Haddocks' Eyes'!"

"Oh, that's the name of the song, is it?" Alice said, trying

to feel interested.
"No, you don't understand," the Knight said, looking a

little vexed. "That's what the name is called. The

name really is 'The Aged Aged Man."'

"Then I ought to have said 'That's what the song is

called'?" Alice corrected herself.
"No, you oughtn't; that's quite another thing! The song

is called 'Ways and Means': but that's only what it is

called you know!"
"Well, what is the song then?" said Alice, who was by this

time completely bewildered.
"I was coming to that," the Knight said. "The song re-

ally is 'A-Sitting on a Gate': and the tune's my own

invention."

Lewis Carroll, Through the Looking Glass

Chapter 2

The Scenic Specification Language
"Now! Now! Have no fear.
Have no Fear!" said the cat.
"My tricks are not bad,"
Said the Cat in the Hat.

Dr. Seuss, The Cat in the Hat

This chapter describes the details of the Scenic specification language that are

relevant to my approach to solving the task clustering subproblem. My task clustering

approach is general enough to be used with any specification language, but some of

the details are more readily understood within the context of a specific specification

language. I use the Scenic specification language for this purpose.

The Scenic specification language allows for a complete behavioral specification

of a system's functionality in a C-like syntax. A complete description of the Scenic

language is beyond the scope of this dissertation; therefore, only those aspects of

the language relevant to the modeling of a Scenic system specification as a set of

tasks are presented. The relevant language features are contained in the semantics

of the language and in how the language forces a system to be specified. The syntax

and implementation details of the language are largely irrelevant to how a system

specification is modeled. Thus, the Scenic description presented here covers the basic

semantics and structure imposed on a system specification. A complete description

of the Scenic specification language and how to use it may be found in the Scenic

user's manual [25].

41

2.1 Introduction

Specification languages are the medium in which system descriptions are written. As

with natural languages, the specification language shapes not only how a design is

expressed but also the very design itself. In essence, the specification language acts,

in part, as a framework for ideas.

The Scenic specification language is a C++ based language that allows for the

complete behavioral specification of a system. The behavior is specified as a set of

concurrently executing, communicating processes. The execution semantics allow mul-

tiple processes to execute concurrently while the instructions within a single process

are executed sequentially.

Communication between processes occurs through signals and channels. Signals

provide a broadcast communication with non-blocking reads and writes of the signal

value. Channels provide point to point buffered communication between processes.

Reads from a channel are blocked when the buffer is empty, and writes to the channel

are blocked when the buffer is full.

The execution semantics assume that all operations require zero time to execute.

Therefore, time must be advanced explicitly in Scenic. In order to allow the speci-

fication of this temporal behavior, clocks are associated with processes. Clocks are

used to define specific instances of time when events can occur. Events correspond

to changes in the value of the inputs to and outputs from processes. Timing control

statements explicitly advance time and update either the calling process's input sig-

nals and channels, output signals and channels, or both its input and output signals

and channels.

The use of communicating processes provides a rigid framework for the system

designer. The designer is forced to perform some degree of functional partitioning

on the system in order to have multiple processes. Further functional partitioning is

required within a process in order to properly position the timing control statements.

42

2.2 Processes and Signals

The fundamental unit for the specification of functionality in Scenic is the process.

A process may be thought of as a sequential program that implements some behav-

ior. Processes force the behavioral partitioning of the system functionality with all

concurrent behavior specified within different processes.

Figure 2.1 illustrates how a process is defined in Scenic. A Scenic process defi-

nition is similar to a C++ class definition except that it must contain at least two

methods: the constructor and the entry() method. The constructor defines the ini-

tial conditions for the process, and the entry() method defines the functionality of

the process.

struct BasicWatch: public sc-sync {
// input ports

const sc-signal<stdulogic>& toggleBeep;

const sc-signal<std-ulogic>& watchTime;
// output ports

sc-signal<std-ulogic>& watchBeep;

sc-signal<std-ulogic>& newWatchTime;

// internal variables to this process

int beepStatus;

// The constructor

BasicWatch(sc-clock-edge& EDGE,
sc-signal<std-ulogic>& TOGGLE-BEEP,
sc-signal<std-ulogic>& WATCH-BEEP,
sc-signal<std-ulogic>& WATCH-TIME,

sc..signal<std-ulogic>& NEW.WATCH-TIME)
sc-sync(EDGE),
toggleBeep(TOGGLE-BEEP),
watchBeep(WATCH-BEEP),
watchTime(WATCH-TIME),

newWatchTime(NEW-WATCH-TIME)

{
newWatchTime.write(0);

beepStatus = 0;

}
void entry();

void BasicWatch::entry()

{
int numBeeps;
int time;

while(true) {
if (toggleBeep.read == '1') {

if (beepStatus == 0)

beepStatus = 1;

else
beepStatus = 0;

}
time = IncrementWatchTime(watchTime.read);

newWatchTime.write(time);

numBeeps = Beep(time, beepstatus);

watchBeep.write(numBeeps);

wait();

}
}

// Definition of BasicWatch Process

// Toggle Hourly Beep

// Current Watch Time

// Beep if Top of Hour and Beep Set
// Current Watch Time Plus 1 Clock Cycle

// To Beep or Not to Beep

// Constructor and its Parameters

// Start the Watch at 0 Hour
// Don't Beep on the Hour

// Process Functionality Contained Here

// Definition of Process Functionality

// This Process Runs Forever
// Toggle Hourly Beep Status

// Update Watch Time

// If on the Hour, then Beep

// Pause Until Next Clock Edge

Figure 2.1: BasicWatch example Scenic process definition.

43

Notice that the entry() method contains a while (true) loop beginning at line

34. Recall that an embedded system continuously interacts with its environment.

Therefore, the functionality of the embedded system is repeatedly executed. The

while (true) loop defines the repeatedly executed functionality of the process;

thus, it specifies the steady-state behavior of the process.

Communication between processes is specified with signals and channels. Signals

provide a non-blocking broadcast communication mechanism. Reads from a signal

do not remove its value; therefore, multiple processes may read a signal's value at the

same time. Writes to a signal overwrite the current signal value with a new value,

irrespective of whether or not the last value has been read. Due to the non-blocking

semantics, signals always have a value associated with them. In this way, signals

behave similar to a register in hardware. As the process in Figure 2.1 illustrates,

Scenic requires explicit reads and writes to signals (at lines 41, 42, and 44).

While signals provide for basic communication between processes, they require

detailed functional specifications when synchronous communication is required. In

order to simplify the specification of synchronous communication and raise the level

of abstraction for the system specification, Scenic provides a point-to-point buffered

communication mechanism, the channel. Channels can only be created between one

source process and one destination process. A channel contains zero or more buffers

that act as a FIFO (First-In-First-Out) queue to hold communicated values. Reads

from and writes to a channel are synchronous. Thus, reading from an empty channel

causes the reading process to stall execution until a value is written to the channel,

and writing to a full channel causes the writing process to stall until a value is read

from the channel.

Processes, signals, and channels form the basic building blocks of a system specifi-

cation. A system specification consists of a set of processes, each describing sequential

behavior, that communicate with one another via signals and channels. Figure 2.2

shows the main scenic function declaring the processes and signals in a simple wrist-

watch example.

The process definitions, declarations, and their interconnections via signals and

44

int scenic(int ac, char* av[1) {
// wristwatch button inputs
sc-signal<std-ulogic> UL;

sc-signal<stdulogic> LL;

sc-signal<std-ulogic> UR;
sc-signal<std-ulogic> LR;

// internal signals
sc.signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>

// Main Method for Declaring a Wristwatch

//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

watchTime;

newWatchTime;

alarmTime;

stopTime;
newStopTime;

toggleBeep;
watchBeep;

alarmBeep;

toggleAlarm;

setWatchPosition;

nextWatchPosition;

startStop;

stopReset;

stopLap;

displayMode;

Upper Left Button
Lower Left Button

Upper Right Button
Lower Right Button

Current Time

Time After Increment

Alarm Time

Stopwatch Time

Stopwatch Time After Increment

Toggle Hourly Chime On/Off
Chime if on Hour and Beep On
Chime if Alarm Time and Alarm On

Toggle Alarm On/Off
Increment Position Value in Set Mode
Move to Next Position in Set Mode
Start/Stop Stopwatch

Reset Stopwatch to Zero

Display Stopwatch Lap Value

Display Mode: watch, alarm, stopwatch

// wristwatch functional outputs
sc-signal<std-ulogic> beepStatus;

sc-signal<std-ulogic> mainDisplay;

// declare the clock

sc-clock clk(''CLOCK'', 100.0, 0.5, 0.0);

// declare the processes

Button Btn(''Button'', clk.posO,
// inputs

UL, LL, UR, LR,

// outputs

toggleBeep, toggleAlarm, displayMode, nextWatchPosition, setWatchPosition, startStop, stopReset, stopLap);
SetWatch SWatch(''SetWatch'', clk.poso),

// inputs

displayMode, nextWatchPosition, setWatchPosition, newWatchTime,
// outputs

watchTime);

BasicWatch BWatch(''BasicWatch'', clk.posO,
// inputs

toggleBeep, watchTime,

// outputs

watchBeep, newWatchTime);

SetAlarm SetA(''SetAlarm'', clk.poso,
// inputs

displayMode, nextWatchPosition, setWatchPosition,
// outputs

alarmTime);

Alarm A(''Alarm'', clk.poso,

// inputs

toggleAlarm, alarmTime, newWatchTime,
// outputs

alarmBeep);

BasicStopWatch BStop(''BasicStopWatch'', clk.poso,
// inputs

displayMode, startStop, stopReset,

// outputs
newStopTime);

LapFilter Lap(''LapFilter'', clk.posO,
// inputs

newStopTime, stopLap,

// outputs

stopTime);

Beep B(''Beep'', clk.poso),

// inputs

watchBeep, alarmBeep, newWatchTime

// outputs

beepStatus);

Display D(''Display'', clk.pos(),

// inputs

displayMode, newWatchTime, stopTime, alarmTime,
// outputs

mainDisplay);

Figure 2.2: Example of a main Scenic file declaring the signals and processes. This
example declares the nine processes and their connecting signals for a wristwatch.

45

1:
2:
3:
4:
5:
6:
7:
8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

}

channels clearly describes the behavioral functionality of the system. It must also

describe the temporal functionality of the system to ensure that communication and

behavior occur at the appropriate times. Scenic provides timing control statements

that may be called from a process to allow for the specification of temporal functional-

ity that, along with the Scenic execution semantics, allow for the complete functional

specification of a system.

2.3 Timing Control

The execution semantics for processes require that all processes execute concurrently

and the instructions within a process execute sequentially and infinitely fast (except

timing control statements described in this section). The execution semantics also

require that a process be executed whenever a value on one of its input signals changes.

Under these execution semantics, basic instructions require zero time to execute and

processes will execute at a time instant until steady state is reached, i.e., no signal

values change1 . Therefore, time must be explicitly advanced to allow the system

specification to describe the temporal functionality of the system. In particular, time

must be advanced in order to specify how the system reacts to changes in the inputs

from its environment. Timing control statements are used to explicitly advance time

and specify temporal behavior in a Scenic system specification.

2.3.1 A Notion of Time

In order to advance time, the system specification must have a notion of time. Clocks

are used to provide this notion of time. The clock for the wristwatch example in

Figure 2.2 is defined at line 30. A clock is a signal with well-defined behavior. This

behavior is defined to be the same as clocks in traditional hardware digital designs.

A clock is a periodic square wave with a fixed period, fixed duty cycle, and defined

active edge (either the positive edge or the negative edge). Multiple clocks may be

1A system specification that does not reach steady state has undefined behavior.

46

defined in the system specification. The active edges of the clocks in the system

specification provide the time instances at which events occur. Events correspond to

changes in the values of the inputs to and outputs from processes.

Clocks may be associated with a process. Processes with an associated clock are

called synchronous processes, and processes without an associated clock are called

asynchronous processes. The BasicWatch process defined in Figure 2.1 is synchronous

since it has an associated clock. The key difference between synchronous and asyn-

chronous processes is the number of times that the input signals and output signals

of a process may be read and updated, respectively, at a particular time instant. In

synchronous processes, the input signals and output signals are read and written,

respectively, at most once per time instant. In asynchronous processes, the input

signals and output signals may be read and written, respectively, more than once per

time instant. The digital hardware analogy to this behavior is that the synchronous

processes have registered inputs and outputs, while the asynchronous processes have

neither registered inputs nor registered outputs.

A consequence of the semantics of synchronous and asynchronous processes is

that synchronous processes need to be executed only once per period of their associ-

ated clock (at most one clock may be associated with a process), and asynchronous

processes need to be executed whenever their input signal values change. More specif-

ically, synchronous processes are executed once at every time instant that the active

edge of their associated clock occurs. All executions of a synchronous process at a

particular time instant yield the same result since the input signal values are only read

once per time instant. Asynchronous processes, however, may be executed multiple

times at every time instant. Since an asynchronous process reads its input signals and

writes its output signals continuously, any change in input signal value necessitates

the execution of the process.

2.3.2 Timing Control Statements

The semantics for synchronous processes require timing control statements that spec-

ify when to read the input signal values and when to write the output signal values.

47

Scenic provides a single timing control statement, the wait () statement, that speci-

fies the time instant at which both the input signal values will be read and the output

signal values will be written for the process containing the wait 0 statement. The

wait 0 statement semantics cause the process executing the wait 0 statement to

suspend execution until the next active edge of the clock associated with the process.

The input signal values and the output signal values are updated on every active edge

of the clock in the same manner that edge-triggered flip-flops update their outputs

on every active edge of the clock.

2.4 Specifying Reactivity

In addition to the mechanisms for the specification of traditional behavioral and

temporal functionality, Scenic provides mechanisms for the specification of reactive

functionality. Reactive functionality allows a process to interact with the environment

and other processes at a rate determined by the environment and the other processes.

The zero time execution semantics of Scenic allow reactive behavior to be described

within a process by simply specifying that a Boolean expression is to be evaluated

immediately upon the execution of the process. The result of this expression may be

used in one of two ways to provide reactive behavior.

1. If the expression evaluates to TRUE, then the specified behavior of the process

is executed. Otherwise, the process terminates execution without performing

any functionality.

2. If the expression evaluates to TRUE, then an 'event handler' function is executed.

Otherwise, the default functionality of the process is executed.

Scenic provides two mechanisms, one for each form of reactive behavior, for the

specification of reactive behavior in an easily identified manner: the wait-until(ex-

pression) and the watching(expression) constructs. In both constructs, expression

must depend upon at least one input signal value (or input channel value); otherwise,

once expression evaluates to FALSE, it will always evaluate to FALSE.

48

The wait-until(expression) construct specifies the first type of reactive behav-

ior. The construct has the same functionality as the following code fragment.

1: do {
2: wait(;
3: } while (!expression);

This mechanism has the effect of stalling the execution of the process until expres-

sion evaluates to TRUE.

The second type of reactive functionality is specified using the watching(expres-

sion) construct. Instead of stalling the execution of the process until the expression

is satisfied, the process executes its default behavior until the expression evaluates to

TRUE. Then, special functionality is performed. The special functionality is referred

to as an 'event handler' since it is only executed when a particular event occurs. (Re-

call that an event is defined as a change in value of input signals or output signals.)

49

You find sometimes that a Thing which seemed
very Thingish inside you is quite different when

it gets into the open and has other people looking

at it.

A. A. Milne, Winnie-the-Pooh

Chapter 3

Modeling a System Specification

That is what the cat said ...
Then he fell on his head!
He came down with a bump
From up there on the ball.
And Sally and I,
We saw ALL the things fall!

Dr. Seuss, The Cat in the Hat

This chapter describes my solution to the task clustering subproblem of the

hardware-software partitioning problem. I derive a set of periodic and sporadic real-

time tasks from the system specification. The tasks abstract away the exact function-

ality of the system while providing an accurate representation of the system behavior

and communication flow in the system. Furthermore, the tasks allow the scheduling

and allocation subproblems to be solved as a scheduling with rejection problem.

3.1 Introduction

The task clustering subproblem of the hardware-software partitioning problem re-

quires that the system specification be modeled as a set of tasks. The resulting task

set comprises a system model, or unified representation, that models the system in

an implementation independent manner. The task graph model allows for both the

allocation and scheduling subproblems to be solved.

51

The critical question, therefore, is what set of tasks can completely model a system

specification and be used as input to a scheduling with rejection problem formulation.

As a system model, each task must correspond to a functional region, or task region,

of the specification. No two tasks can model the same functionality, and the set of

all tasks must model all of the system's functionality. Thus, the set of tasks must

form an irredundant cover of the system's functionality. As input to a scheduling

problem, each task must correspond to functionality that will be executed every time

the schedule is executed. The scheduling problem assumes that each task is executed

when it is scheduled, and it requires a bounded maximum amount of time before it

completes. Thus, branch dependent task executions are not allowed.

Data dependencies and control dependencies between task regions cause prece-

dence constraints to exist between their respective tasks. Scheduling problems treat

all precedence constraints as if they are due to data dependencies. Therefore, if

precedence constraints correspond to branching control flow, then all of the tasks

corresponding to both the taken branch and the not taken branch will be executed.

Thus, the solution to the scheduling problem will incorrectly model the system be-

havior. Furthermore, scheduling problems require that no cycles exist in the inputed

task graph; otherwise, a schedule cannot be found. In order to ensure the proper

modeling of the system behavior, we will consider only task regions that cause prece-

dence constraints that do not correspond to branching control flow and do not cause

cycles in the resulting task graph. Such task regions are referred to as static task

regions.

The remainder of this chapter describes how tasks are derived from a system

specification. Section 3.2 describes how task regions are identified from the Control

Flow Graph (CFG) representing the system behavior. Section 3.3 describes how a set

of tasks modeling the complete system is derived from the set of static task regions.

Section 3.4 describes how the task characteristics are determined. Finally, Section 3.5

details how the set of tasks is used to properly formulate the scheduling with rejection

problem.

52

3.2 Task Regions

The notion of task regions builds upon theory developed to increase the efficiency of

program analysis in parallel compilers [33]. Johnson introduces the notion of single-

entry single-exit regions to analyze the structure of a program and to increase the

efficiency of control flow graph algorithms and data flow analysis. I use Johnson's

notion of single-entry single-exit regions as the basis of my notion of task regions. The

set of static task regions corresponds to a subset of Johnson's single-entry single-exit

regions.

The identification of static task regions within a system specification begins by

determining the set of single-entry single-exit (SESE) regions of the control flow graph

representing the system functionality. The set of static task regions is a proper subset

of the set of SESE regions. Before formally defining single-entry single-exit regions

and task regions, a few definitions are required.

Definition 3.2.1 A control flow graph G is a graph with distinguished nodes start

and end such that every node occurs on some path from start to end. start has no

predecessors, and end has no successors.

Unlike the traditional definition of control flow graphs, my control flow graphs

use explicit switch and merge nodes for standard control flow. In addition, since I

am using Scenic as my specification language, explicit wait nodes are used for Scenic

specific control flow.

Definition 3.2.2 A node x is said to dominate node y in a directed graph if every

path from start to y includes x. A node x is said to postdominate a node y if every

path from y to end includes x.

By convention, a node dominates and postdominates itself. The notions of domi-

nance and postdominance can be extended to edges in the obvious way. Edge-based

single-entry single-exit regions can now be defined as follows.

53

Definition 3.2.3 ([33]) A single-entry single-exit region in graph G is an ordered

edge pair (i, J) of distinct control flow edges i and j where

1. i dominates j,

2. j postdominates i, and

3. every cycle containing i also contains j and vice versa.

i is referred to as the entry edge, and j is referred to as the exit edge of the SESE

region. The first condition ensures that every path from start to within the SESE

region passes through the region's entry edge i. The second condition ensures that

every path from within the region to end passes through the region's exit edge j. The

first two conditions are necessary but not sufficient to characterize SESE regions.

Back-edges do not alter the dominance or postdominance relationships, and the first

two conditions alone do not prohibit back edges from entering or exiting the SESE

region. The third condition encodes two constraints: every path from within the

region to a point 'above' i passes through j, and every path from a point 'below' j to

within the region passes through i.

Single-entry single-exit regions capture the control structure of the system spec-

ification. This structure is used to determine logical regions of the Scenic specifica-

tion which may be implemented as tasks. These task regions are defined based on

the run-time semantics of the run-time scheduler to be used in the implementation.

The scheduling with rejection problem generates static schedules where the run-time

scheduler simply executes tasks according to the predefined schedule. With these run-

time semantics, a static schedule cannot be efficiently generated in the presence of

branching control flow. Furthermore, the scheduling with rejection problem requires

that no cycles exist in the resulting task graph; otherwise, a schedule cannot be found.

In the control flow graph, branching control flow and cycles occur only with both a

switch node and a merge node. Therefore, we only consider task regions that either

do not contain any switch or merge control operations or contain all paths from a

switch control flow node to its corresponding merge node (including the switch and

merge control operations). Such task regions are referred to as static task regions.

54

Definition 3.2.4 A static task region in graph G is an ordered edge pair (i, J) of

distinct control flow edges i and j where i and j form an SESE region and

4. all paths from i to j that contain a switch node also contain its corresponding

merge node and vice versa, and

5. all paths from i to j that contain a merge node also contain its corresponding

switch node and vice versa.

The fourth and fifth conditions for static task regions require that edges i and j
are not contained in either a branch of a branching control statement (such as an

if-then-else statement) or the body of a loop.

If (i, j) and (j, k) are static task regions, then (i, k) is also a static task region.

Therefore, a graph with E edges can have O(E 2) static task regions. To simplify the

search for static task regions, for each edge e we want to find the smallest static task

regions, if they exist, for which e is an entry edge or an exit edge. These are called

the canonical static task regions associated with e.

Definition 3.2.5 A static task region (i, j) is canonical provided

1. j dominates j' for any static task region (i, j'), and

2. i postdominates i' for any static task region (i',).

Canonical static task regions may be found in time O(E). In Figure 3.1(b) the

canonical SESE regions are identified for the Scenic process in Figure 3.1(a). Regions

2 and 3 are disjoint. Regions 4 and 5 are nested, and regions 6 and 7 are sequentially

composed. Figure 3.1(c) and Figure 3.1(d) show the sets of canonical static task

regions that model the complete functionality of the Scenic process. Notice that the

static task regions cannot be disjoint. They are either nested or sequentially composed

as proven in the following theorems.

55

void BasicWatch::entry)

{
int numBeeps;

int time;

// while(true) loop ignored

// while finding SESE regions

while(true) {
// SESE 5
if (toggleBeep.read == '1') {

// SESE 4
if (beepStatus == 0)

// SESE 2
beepStatus = 1;

else

// SESE 3
beepStatus = 0;

}
// SESE 6
time = IncrementWatchTime(watchTime.read);

// signal write ignored

// while finding SESE regions

newWatchTime.write(time);

// SESE 7
numBeeps = Beep(time, beepstatus);

// signal write ignored

// while finding SESE regions

watchBeep.write(numBeeps);

// SESE 8 and SESE 1

wait ();
}

}

(a) Scenic BasicWatch process

5

6

7

8

(c) canonical static task regions

forming a task chain

29:
30:
31:
32:
33:

34:

35:

36:

37:
38:

39:
40:

41:

42:

43:

44:

45:
46:
47:

Figure 3.1: entry() method of BasicWatch example (a) with SESE regions identified

(b) and its two irredundant canonical task region covers (c) and (d).

56

Start

- - - -- - - - - - - - - - - - -

ait
I Bce i

Switch

- - - - - I - - I

Switch

i - - - I I

Merge I

I 4

Merge I

r - -

I L7I
- -I

ait
18 End

9

(b) Control Flow Graph with SESE
regions

(d) canonical static task region cor-

responding to entire process

Theorem 3.2.1 ([33]) If R1 and R 2 are two canonical SESE regions of a graph, one

of the following statements applies.

1. R1 and R 2 are node disjoint.

2. R1 is contained within R 2 or vice versa.

It follows from this theorem that canonical SESE regions cannot have any partial

overlap. They are either disjoint, nested, or sequentially composed.

Theorem 3.2.2 If R1 and R 2 are two canonical static task regions of a graph, one

of the following statements applies.

1. R1 and R 2 are node disjoint.

2. R1 is contained within R 2 or vice versa.

Proof Follows from Theorem 3.2.1 and the definition of canonical static task

regions. m

It follows from this theorem that canonical static task regions cannot have any

partial overlap. Therefore, canonical static task regions within a Scenic process are

either nested or sequentially composed. Thus, the tasks created by modeling a process

using multiple canonical static task regions form a chain as shown in Figure 3.1(c)

and Figure 3.1(d).

Since we are defining task regions based upon edges in the control flow graph and

we would like the Scenic wait 0 statements to delineate at least one task region, we

transform a wait 0 node in the CFG into two nodes, a begin node and an end node

as shown in Figure 3.2 with a directed edge from the end node to the begin node.

wait
end

Figure 3.2: Transformation of a wait 0 node in the CFG.

57

This transformation ensures that at least two canonical static task regions will not

contain the entire wait node. This property is required to ensure the correct Scenic

semantics, with regard to reading and writing Scenic process input and output values

respectively, in the tasks defined from these task regions (described in Section 3.3).

In the remainder of this dissertation, when I refer to a wait node in the context of

task regions, I am referring to the begin and end node transformation.

3.3 Defining Tasks

The task regions of the control-flow graph identify sequences of code that may be

implemented as a single task. Based on these task regions, actual tasks may be defined

in a straightforward manner. The task definition process requires the mapping of one

or more task regions to a single task.

Definition 3.3.1 A task is properly formed if it corresponds to a single task region

or a set of sequentially composed task regions.

Definition 3.3.2 A properly formed task covers task region R if

" the task corresponds to R,

* the task corresponds to a task region that contains R,

* the task corresponds to a set of sequentially composed task regions that include

R or a task region containing R, or

" the task corresponds to a set of sequentially composed task regions that include

all task regions contained in R.

Definition 3.3.3 A set of properly formed tasks T covers a control-flow graph G if

every task region in G is covered by at least one task in T.

Definition 3.3.4 A set of properly formed tasks T is an irredundant cover of control-

flow graph G if every task region in G is covered by exactly one task in T.

58

The goal of the task definition process is to define a set of properly formed tasks

that are an irredundant cover of the control-flow graph representing the Scenic spec-

ification. An irredundant cover is easily constructed from the canonical static task

regions. For each set of nested regions, a level of granularity is determined, and a task

corresponding to each canonical static task region at that level is created. Different

levels of granularity may be determined for each set of nested regions.

The resulting irredundant cover consists of a set of task chains. The chain prece-

dence constraints are due to the control flow within the control flow graph. Fig-

ure 3.1(c) and Figure 3.1(d) show the two sets of canonical static task regions that

form irredundant covers of the control flow graph in Figure 3.1(b).

3.4 Determining Task Characteristics

After the tasks have been defined, the task characteristics must be determined. Some

task characteristics are determined directly from the system specification, in partic-

ular, the release time, deadline, and period. The remaining task characteristics, such

as processing time, are dependent upon the the target processor; therefore, they must

be either estimated or given by the designer.

Recall that in a Scenic system specification, all Scenic processes execute indepen-

dently from one another. Therefore, each Scenic process will have a unique control

flow graph and, thus, a unique chain of tasks modeling its functionality. Recall, also,

that a synchronous Scenic process executes with the frequency given by its associated

clock. This periodic behavior is accounted for by associating a period parameter, T,

with each task j. The task's period is used to determine the number of instances of

the task that are to be scheduled as described in Section 3.5.

Task characteristics from the Scenic process are determined by analyzing the way

in which the wait control operations are distributed throughout a chain of tasks. The

trivial case is that the chain consists of a single task (see Figure 3.1(d)). This task

has a one-to-one correspondence with the Scenic process; therefore, the period and

deadline of the task are equal to the period of the clock associated with the Scenic

59

process, and the release time of the task is equal to the phase offset of the clock

associated with the Scenic process. For the basic watch process of Figure 3.1, the

time needs to be updated once every second. Therefore, a period of 1 second with a

corresponding deadline of 1 second and release time of zero are appropriate for the

task shown in Figure 3.1(d).

For chains consisting of multiple tasks, the analysis becomes more complicated.

If all paths from start to end through the control-flow graph corresponding to the

Scenic process encounter the same number of wait statements, then the Scenic pro-

cess specification may be written such that no canonical task region, save the task

region corresponding to the entire process, encompasses more than one wait control

operation'. Let T be the period of the corresponding Scenic process. Let a be the

total number of wait control operations encountered along all paths from start to

end through the control-flow graph for the process. Consider the task that contains

the ith wait (the begin portion) control operation encountered along some path. For

all paths that encounter this control operation, it is the ith wait control operation

encountered. Therefore, on the 1 + ith clock cycle, this task will be executed. The

release time of this task is iT plus the phase offset of the clock associated with the

Scenic process. The period of this task is Ta. If the task also contains the end portion

of the 1+ ith wait operation, then the deadline of this task is T (the deadline of a

task is specified relative to its release time); otherwise, the deadline is set to infinity.

Consider a task that does not contain the begin portion of a wait control operation.

Let i be the number of wait control operations encountered on all paths from start

to this task. The release time of this task can be safely set to iT without affecting

the schedulability due to precedence constraints. The period of this task is Ta. If the

task contains the end portion of the 1 +ith wait operation, then the deadline of this

task is T; otherwise, the deadline is set to infinity.

If all paths from start to end through the control-flow graph corresponding to

'This may be done by unrolling loops and forcing if conditional statements to contain no wait 0

statements in either branch (possibly repeating the same if statement multiple times after multiple

wait 0 statements).

60

the Scenic process do not encounter the same number of wait statements, then there

will exist at least one canonical static task region that contains both the begin and

end nodes corresponding to the same wait control operation. Such a region cannot

correspond to a task since the execution semantics for all static scheduling algorithms

are incapable of handling such a task while maintaining compatibility with the Scenic

semantics. Therefore, processes containing such a canonical task region can only have

their top-most task region, corresponding to the entire Scenic process, be used for

deterministic static schedules.

The worst-case software processing time, pj, of task j is estimated using traditional

software processing time techniques [44][45]. This is a straightforward process since

the functional specification in Scenic (the code contained in the entry() method

in Figure 3.1(a)) is written in a subset of C. If a task contains multiple wait()

statements, then the worst-case software processing time is simply the worst-case

processing time among all paths beginning at a wait (statement and ending at the

next encountered wait 0 statement.

The rejection cost ej of task j and the task weight wj are used to model the

trade-off in the costs of being implemented in software and missing the deadline and

being implemented in hardware. The rejection cost is a parameterized function of the

hardware costs and interface costs. The hardware costs are estimated using traditional

hardware synthesis and estimation techniques [16]. The interface logic is statically

estimated based on the amount and frequency of inter-process communication with

the task.

The system specification does not contain enough information on the importance

of a task meeting its deadline; therefore, the designer must specify wj. The task's

weight wj determines how tardy the task can be when it is scheduled in software

before it becomes cheaper to reject the task, i.e., implement the task in hardware.

61

3.5 Using the Tasks in Scheduling Problems

3.5.1 Instances of Tasks

The tasks model the structure of the Scenic specification; however, they cannot be

scheduled directly to determine a static deterministic schedule. Instead, instances of

the tasks generated from the system specification are scheduled. Lawler and Mar-

tel [38] proved that statically scheduling instances of all tasks through the Least

Common Multiple (LCM) of their non-zero periods yields a schedule that can be

repeatedly executed with predictable results. This result eliminates the need to gen-

erate a static schedule using an infinite number of instances of each task. Therefore,

we create instances of all tasks through the LCM of the non-zero periods. Tasks with

periods of zero are sporadic tasks that are not associated with a clock, and techniques

exist for determining the appropriate number of instances for these tasks through the

LCM [47]. Note that, in the solution to the scheduling with rejection problem, some

instances of a given task may be scheduled while other instances of the same task are

rejected. Such solutions are feasible since we do not restrict instances of the same

task to have the same implementation.

Precedence constraints exist between successive instances of a task. Therefore,

instance i of task j precedes instance i + 1 of task j. The chain structure of the

tasks is maintained by requiring that instance i of the last task in a chain precede

instance i + 1 of the first task in the chain. Maintaining the chain structure ensures

compliance with the Scenic semantics; otherwise, the second instance of the first task

could execute before the first instance of the last task in the chain.

The release times and deadlines of the task instances are determined as follows.

Let rj be the release time of task j. Let Tj be the period of task j, and let dj be the

deadline of task j. Let r' be the release time of instance i of task j, and let & be the

deadline of instance i of task j. Then, r = r,±(i-1)T andd = r, + di + (i - 1)T.

The deadlines of the task instances are not relative to their release times. The periods

of all task instances are the same as their respective tasks.

62

3.5.2 Intertask Communication

The resulting set of task chains models the control flow for successive invocations of

the Scenic processes. The task chains corresponding to synchronous Scenic processes

may be scheduled without regard to interprocess communication. Provided that the

resulting schedule meets all release times and deadlines, the schedule maintains the

Scenic semantics. However, in the presence of asynchronous Scenic processes and/or

the allowance of deadlines to be missed in a valid schedule (i.e., wj < oc for some

task j), interprocess communication (in the form of signals and channels) must be

explicitly modeled.

I model interprocess communication simply with precedence edges. The Scenic

semantics require that communication occur at the wait statements and at the com-

pletion of asynchronous processes. Therefore, for tasks corresponding to synchronous

processes, intertask communication occurs between tasks that contain the begin or

end portions of a wait node. For tasks corresponding to asynchronous processes, in-

tertask communication occurs between the first task in the corresponding task chain

(inputs) and the last task in the corresponding task chain (outputs).

Precedence constraints modeling the intertask communication are added such that

the task containing the ith occurrence of the begin portion of a wait node in a task

chain is preceded by the ith occurrence of the end portion of a wait node in the other

task chains provided that the process corresponding to the task chain containing the

end portion communicates a signal or channel to the process corresponding to the

task chain containing the begin portion. For tasks corresponding to an entire Scenic

process, the ith occurrence of an end portion of a wait node occurs in the ith instance

of the task, and the ith occurrence of a begin portion of a wait node occurs in the

1 + ith instance of the task.

3.5.3 Modeling Hardware Execution Times

After adding precedence constraints modeling intertask communication, hardware ex-

ecution times and hardware-software communication costs need to be modeled. This

63

timing information is modeled by taking the transitive closure, G*, of the task graph

G and associating with each transitive edge a separation constraint. The separation

constraint value represents the hardware execution time plus communication time if

all tasks bypassed by the transitive edge are rejected. The implicit assumption is

that the hardware execution time plus communication time is less than the software

execution time. The resulting task graph G* is scheduled as described in Chapter 5.

3.5.4 Wristwatch Example

The complete task graph for the digital wristwatch example is shown in Figure 3.3.

The Scenic specification for the digital wristwatch is given in Appendix A. For clarity,

this graph does not contain the transitive edges modeling the hardware execution

times. There are nine task chains corresponding to the nine Scenic processes. The

BasicWatch, BasicStopWatch, Beep, and Display processes are synchronous; all

others are asynchronous. All clock periods are set to 0.01 seconds. While this requires

the BasicWatch to count the hundredths of a second, choosing a period of 1 second

for BasicWatch would require the LCM to be 1 second (with 100 instances of all

tasks not corresponding to the BasicWatch process needing to be scheduled) instead

of 0.01 seconds (and only 1 instance of all tasks needing to be scheduled).

64

2

3 Button

4

5

6

7

SetWatch SetAlarm

BasicStopWatch 21

22 BasicWatch 2

2 2

2 29

2 LapFilter 3

2
__ Alarm

3

33 32 Beep

Display 0

Figure 3.3: The complete task graph for the wristwatch example. The various func-

tional modules are boxed and labeled. Precedence constraints between modules are

explicit, and all synchronous tasks have a period of 0.01 seconds.

65

The important thing in Science is not so much to

obtain new facts as to discover new ways of think-

ing about them.

William Lawrance Bragg, Beyond

Reductionism

Chapter 4

The Formulation

"But I like to be here.
Oh, I like it a lot!"
Said the Cat in the Hat
To the fish in the pot.
"I will NOT go away.

I do NOT wish to go!
And so," said the Cat in the Hat,
"So

so
so ...

I will show you
Another good game that I know!"

Dr. Seuss, The Cat in the Hat

I formulate and solve both the allocation and the scheduling subproblems of the

hardware-software partitioning problem as a single scheduling with rejection prob-

lem. In this chapter, I show how my scheduling with rejection problem formulation

properly models both the allocation and scheduling subproblems. I also show how

the solution to the scheduling with rejection problem corresponds to a solution to

both the allocation and scheduling subproblems for the single processor, single ASIC

target architecture.

67

4.1 Introduction

A problem formulation models a real-world problem that is to be solved. In this way,

the problem formulation is an abstraction of the problem. Problem formulations, in

general, are used to capture specific aspects of a problem in order to reason clearly

about them. Thus, problem formulations need not model all aspects and all sub-

problems of a real-world problem. They may model a single sub-problem and only

a few aspects of a complex real-world problem, or they may model multiple sub-

problems and multiple aspects, thereby providing a more accurate model of the real-

world problem.

I formulate the allocation and scheduling subproblems of the hardware-software

partitioning problem as a scheduling with rejection problem. Specifically, I formulate

the allocation and scheduling subproblems as the following scheduling problem:

1|prec; rj; lg1(1 wjT + E ej).
jES jEs

The input to this scheduling with rejection problem is a set of tasks. The tasks may

have arbitrary processing times, precedence constraints, release times, deadlines, and

separation constraints. The solution to this scheduling with rejection problem is a

schedule of a subset of the tasks on a single processor, with the remaining tasks

being rejected. The optimum schedule minimizes the sum of the sum of the weighted

tardiness of the scheduled tasks and the sum of rejection costs of the rejected tasks.

A solution to this scheduling with rejection problem solves both the allocation and

scheduling subproblems assuming the single processor, single ASIC target architecture

of Figure 1.1. Scheduled tasks correspond to functionality that is to be implemented

in software, and rejected tasks correspond to functionality that is to be implemented

in hardware. The deterministic schedule provides an estimate of the timing behavior

of the partitioned system.

The remainder of this chapter describes how the various costs and constraints

of the hardware-software partitioning problem are formulated within the scheduling

with rejection problem.

68

4.2 The Costs of Implementation

Let us begin by examining the cost of a single integrated circuit implementation of the

single processor, single ASIC target architecture shown in Figure 1.1. The majority of

the costs and constraints that must be modeled by my scheduling problem formulation

are due to the implementation. Most costs are associated with the implementation of

a particular task, for example, a task implemented in software has an implementation

area cost due to its memory requirement. Typical constraints are either system size

constraints, for example, the maximum memory used by all tasks implemented in

software, or timing constraints, for example, the deadline of a particular task.

The software implementation contains both fixed and partition dependent costs.

The processor on which the software executes has a fixed cost in terms of area and

price. The main variable costs of the software are due to the memory requirements,

the power consumption, and the timing constraints of the tasks implemented in soft-

ware. The exact memory requirements of the software are a function of the tasks

implemented in software. The larger the memory requirements, the greater the area

required to implement the ROM and the RAM. The power consumption for the

software functionality is largely determined by the speed of the clock for the micro-

processor. Therefore, slower clock frequencies will reduce the power consumption but

at the cost of increasing the time required to execute the software tasks. The timing

constraints for the software functionality address system performance and feasibility

issues. Timing constraints on the functionality of the system are violated at some

cost since violations affect system feasibility and performance. Furthermore, timing

constraint violations must not make the system infeasible (such violations have an

infinite cost associated with them).

System functionality implemented in hardware does not have any fixed costs.

The size and power requirements of the ASIC are dependent upon only those tasks

implemented in hardware. Each task implemented in hardware requires a certain

amount of area in the ASIC and has a certain power consumption. The more tasks

implemented in hardware, the larger the ASIC area and the higher the ASIC power

69

consumption. Task-level timing constraints are typically not an issue in hardware

since the hardware, in most instances, may be made to execute in one, or a few, clock

cycles, thereby making it 'fast enough' to meet all timing constraints.

4.3 Modeling Implementation Costs in a Schedul-

ing Problem

This section describes how a scheduling problem can model some, but not all, of

the implementation costs of an embedded system. Size constraints, such as a maxi-

mum memory size, maximum ASIC area, and maximum power consumption, are not

modeled by the scheduling problem formulation. Therefore, size constraints must be

verified after a schedule has been generated. If a solution violates a size constraint, the

designer must modify the solution or modify the system design and resolve the par-

titioning problem. Thus, my scheduling-based approach must be used in an iterative

methodology when hard size and power constraints exist.

Since size constraints are not modeled by my scheduling problem, executing a task

in software is considered to have no cost as long as its timing constraints are met. In

order to capture this behavior, the software requirements of a task are modeled using

the five parameters:

" processing time pj,

" release time rj,

" deadline dj,

" weight wj, and

" rejection cost ej.

The processing time pj indicates how long the task will take to complete if it executes

without interruption on the microprocessor. The release time rj indicates the first

time at which the task may begin execution. The deadline dj indicates the time by

70

which the task should be finished. The weight wj indicates the importance of the

task, and the rejection cost ej specifies the cost of not scheduling the task.

Violating the release time of a task in some schedule incurs an infinite cost. Violat-

ing the deadline of a task incurs a cost that is a function f(Cj, wj) of the completion

time Cj of the task in the schedule and the weight wj of the task. In my scheduling

problem formulation, f (C, w) = wfTj, where T = max(O, Cj - dj).

Under this scheduling problem model, scheduling a task corresponds to imple-

menting the task in software. It follows that not scheduling a task, or rejecting the

task, corresponds to implementing the task in hardware. The rejection cost ej and

the weight wj are used to determine how tardy the task may be in a schedule before

it is less costly to reject the task. The rejection cost ej does not necessarily have

any relationship to the actual cost of implementing a task in hardware. Since we

assume that the hardware is 'fast enough,' only the rejection cost ej is associated

with rejecting a task.

The objective of the scheduling problem is to minimize the sum of the costs

incurred by each task. For my scheduling problem formulation, the objective function

is (EZ3 s wjTj + Ejcs ej), where S denotes the set of scheduled tasks and S denotes

the set of rejected tasks.

4.4 Modeling Communication Constraints

Communication between tasks that have different implementations must use the re-

sources connecting the software implementation with the hardware implementation.

These resources are often limited in number and bandwidth. Consequently, inter-task

communication has a non-negligible effect on the temporal correctness of a partition.

The scheduling with rejection problem models inter-task communication with the

use of separation constraints lij. Separation constraint lij requires that task j (and

all of its successors) begin execution at least lij time units after the completion of task

i (and all of its predecessors) in the schedule. Separation constraints may be added

to the given set of tasks as a solution is constructed. My constructive algorithm,

71

described in Chapter 5, adds separation constraints to the given set of tasks as it

constructs a solution.

By using only separation constraints to model inter-task communication, the

scheduling with rejection problem does not consider any communication resource

constraints. Consequently, the separation constraints only give the expected time to

transfer the data between two tasks. A more accurate schedule must be constructed

after the communication resources are defined.

72

This page intentionally left blank'.

73

'Except for the random text on it.

There's always an easy solution to every problem
- neat, plausible, and wrong.

H. L. Mencken

Chapter 5

Solving the Scheduling with

Rejection Problem

"Now look at this trick,"
Said the cat.
"Take a look!"

Dr. Seuss, The Cat in the Hat

After generating a set of tasks from the system specification, the scheduling with

rejection problem is solved to create a solution to the partitioning problem. One of

the key advantages of formulating the partitioning problem as a scheduling problem is

that scheduling problems have been studied extensively from both a practical solution

perspective, as well as, a theoretical perspective. Thus, even though the scheduling

with rejection problem is MP-hard, efficient algorithms are available to find near

optimal solutions to it. This chapter reviews the most effective algorithm for the

weighted tardiness objective function and describes how it is extended to handle

rejection and separation constraints.

5.1 Introduction

Scheduling a set of jobs so as to minimize their total weighted tardiness is a problem

that has been actively investigated for more than thirty years. The continuing interest

75

in this problem stems from its accurate modeling of the manufacturing problem where

a set of jobs must be completed by their respective deadlines, and each job incurs

some penalty if it is tardy. The simplest version of this problem, 1 E T, is weakly

A(P-hard [41] [18]. Hence, a considerable number of heuristic algorithms have been

proposed to solve scheduling problems involving the tardiness objective function.

Most of these algorithms are based upon a greedy constructive algorithm differing

only in their dispatch rules.

The simplest dispatch rules are local, i.e., the priority index calculated for a job j

depends only upon that job's characteristics and the current time t. First Come-First

Served (FCFS) is a commonly used benchmark rule that assigns the highest priority

to the job with the earliest release time (ties broken arbitrarily). FCFS is easy to

implement, but its naive approach performs poorly for most performance criteria

including total tardiness.

The Earliest Due Date first (EDD) rule emphasizes job urgency by using the due

date, or deadline dj, of the job as its priority index. This rule attempts to schedule all

jobs such that they complete by their respective deadlines. However, by neglecting

the job processing times and weights, it may perform badly in situations where some

of the jobs must be tardy. The Minimum Slack (MSLACK) rule attempts to be more

intelligent by using the slack S3 = d - pj - t of job j as its priority index. Like EDD,

MSLACK attempts to schedule all jobs such that they complete by their respective

deadlines, and it may perform badly in situations where some of the jobs must be

tardy. The poor performance of MSLACK arises because it does not consider job

weights, and it will schedule long jobs in situations where scheduling the shortest

jobs will lead to the fewest number of tardy jobs (and the smallest total tardiness),

e.g., when all deadlines are equal. Ratio rules, such as Slack per Remaining Processing

Time (S/RPT) [3], attempt to compensate for this tendency; when the slack becomes

negative, shorter jobs will get a higher priority. The EDD, MSLACK, and S/RPT

dispatch rules have been found to perform reasonably well with light processor loads,

but their performance deteriorates under heavy loads [46] [61].

In contrast to the deadline oriented dispatch rules, traditional throughput oriented

76

dispatch rules have been used with some success. The Weighted Shortest Processing

Time first (WSRPT) priority rule assigns the highest priority to the job with the

largest ratio wj/pj. Thus, the job that incurs the largest penalty per unit of tardy

processing time is scheduled first. The WSRPT rule and its unweighted variant, the

Shortest Processing Time first (SPT) rule, tend to reduce congestion in the schedule

by giving priority to short jobs. By emphasizing the penalty incurred by the jobs,

the WSRPT rule and the SPT rule implicitly assume that the jobs are tardy. Thus,

they should perform well in situations where most jobs are tardy. The SPT and

WSRPT dispatch rules have been found to perform well under heavy loads with tight

deadlines, but fail with light loads and loose deadlines [37] [62] [63].

Given the strengths of the above dispatch rules, an intelligent combination of the

deadline oriented and throughput oriented rules should yield a dispatch rule that

performs well under all system conditions. The Apparent Tardiness Cost (ATC)

rule performs such a combination of the deadline oriented and throughput oriented

dispatch rules, and it has been found to be superior to all of the other dispatch

rules under all system conditions [37] [61] [62]. I use the ATC rule in my greedy

constructive algorithm to solve the scheduling with rejection problem. Section 5.2

describes the ATC dispatch rule. Section 5.3 describes how the ATC dispatch rule is

extended to allow for schedules that have inserted idleness, and Section 5.4 describes

my ATC-based constructive algorithm to solve the scheduling with rejection problem.

5.2 The Apparent Tardiness Cost Rule

To overcome the deficiencies in the simple dispatch rules, more complex dispatching

rules have been developed. The most successful of these heuristics is the Apparent

Tardiness Cost (ATC) rule introduced by Rachamadugu and Morton [48] and ex-

tended to the multiple machine case by Vepsalainen and Morton [61]. The ATC rule

is based on the structure of an optimal schedule when no precedence constraints exist

between tasks. Rachamadugu [56] proved that two neighboring tasks, i and j with i

77

scheduled before j, in an optimal schedule obey the following priority rule:

S 1-max{0, (di - t-pi)} W max{ 0, (dj - t - pj)}

pi p Pi Pj Ai

where t is the start time of task i and the quantity on the left side of the inequality

is the priority of task i. The proof of this rule is based on a pairwise interchange

argument.

Rachamadugu's rule assigns a priority to a task that is equal to wi/pi, equivalently

its WSRPT, if it is tardy and less if there is slack. Instead of trading off the slack of

task i against the processing time of task j, and vice versa, a standard reference should

be used. A piecewise linear look-ahead was first suggested by Carroll [12] by replacing

the unknown pj (job j is not known unless we are given an optimal schedule) in job

i's priority by a factor kp, where p is the mean processing time of the unscheduled

tasks and k is a look-ahead parameter related to the number of competing tardy or

near-tardy tasks. However, an inverse of allowance is actually closer to the 'apparent

cost' of tardiness implied by the break-even priority of tardy tasks with processing

times exceeding their slack. With this in mind, the ATC dispatching rule is defined

as
W max{0, (dj - t - pj)}

ATC3(t) - Pi exp -p i)

where p is the mean processing time of the tasks yet to be scheduled and k is the look-

ahead parameter. Intuitively, the exponential look-ahead works by ensuring timely

completion of short tasks (with a steep increase of priority close to its deadline), and

by extending the look-ahead far enough to prevent long tardy tasks from overshad-

owing clusters of shorter tasks. The look-ahead parameter can be adjusted based

on the expected number of competing tasks to reduce weighted tardiness costs dur-

ing high processor load. Experiments have found that a reasonable range of values

for k is 1.5 < k < 4.5 with k = 2 yielding good results over a wide range of load

conditions [61].

Empirical experiments have found that the ATC rule yields close to optimal sched-

ules for single machine schedules [48] and outperforms all other dispatch rules for mul-

tiple machine schedules [61]. Additionally, the ATC dispatch rule has been found to

78

be robust in the presence of errors in the estimated processing times of the tasks [60].

The robustness of the ATC dispatch rule in the presence of errors in processing time

estimates is essential for its use in solving our scheduling with rejection problem

formulation.

5.3 Inserted Idleness

Simply using the ATC dispatching rule yields a non-preemptive schedule without any

inserted idle time. However, in the presence of release times, or, similarly, separation

constraints, allowing inserted idle time can yield better schedules [37] with minimal

additional computational expense. Morton and Ramnath [49] showed that for all

problem instances and for any regular objective function, including the (weighted)

tardiness objective function, there exists an optimal schedule such that no job is

scheduled next on a given machine unless its release time is at most the current

time plus the processing time of the shortest job that was released by the current

time. Based on this fact, they proposed a modification of the ATC rule for the single

machine problem. The priorities of the jobs are multiplied by a penalty proportional

to the inserted idleness caused by scheduling that job next. In this way, the set of

candidate jobs to be scheduled next is extended to include jobs that will arrive in the

near future.

The priorities of the yet to be released jobs are reduced proportional to the idleness

that would be incurred by scheduling them next. The proportionality multiplier a

may be a constant, or it may be variable to allow it to increase linearly with the

machine utilization as suggested by Morton and Ramnath [49]. The ATC rule that

allows inserted idle time is then defined as

ATC3 (t)' = ATC(t) 1.0 - a x{0,(rj - t)
Pmin

where Pmin is the processing time of the shortest job that is ready at time t. This new

ATC rule degrades the original ATC priority by a term proportional to the induced

idleness as a fraction of the minimum of the processing times of the waiting jobs. If

79

the reduced priority of a yet to be released task is greater than all other task priorities,

then the machine is kept idle until this job is released. I use this dispatching rule with

a constant proportionality multiplier to allow for inserted idleness in the algorithm

described in the following section.

5.4 The Scheduling Algorithm

My greedy constructive algorithm to generate a solution to the scheduling with rejec-

tion problem is simply stated as follows. At each time t that the processor becomes

free, compute ATCj (t)' for all tasks j that are ready to execute at time t or become

ready to execute during the interval t + Pmin, where Pmin is the minimum processing

time of the tasks that are ready to execute at time t. Let i be the task with the largest

computed ATC. Let zi = wiTi be the weighted tardiness of task i if it is scheduled as

soon as possible at or after time t. If zi > ei, then reject task i and repeat the task

selection process at time t; otherwise, schedule task i as soon as possible at or after

time t. Let the completion time of task i be the new current time t. Repeat until all

jobs have been either scheduled or rejected. This algorithm runs in time O(n 2).

80

1: T 4- set of tasks to be scheduled

2: S +- 0 // set of scheduled tasks

3: - 0 // set of rejected tasks

4: t 4- minjETrj // start scheduling at earliest release time

5:

6: while(T 4) {

7: R +- set of ready tasks with rK < t and j E T

8: Pmin +- min E Rpi

9: R' set of ready tasks with rj < t + pmin andj E T

10 : i maxg iER AT Cg(t)'
11: Ti max(t, r; + pi - di

12: z i Wi Ti

13: if (z; < ei) {

14: schedule i beginning at time max(t, ri)

15: S S + i

16: T 7- - i

17: t - max(t, ri + pi

18: } else {

19: reject i

20: 5 5 9- +i

21: T -T-i

22: }

23: }

24:

25: return S and 5

Figure 5.1: My greedy heuristic algorithm for the scheduling with rejection problem.

81

Pooh looked at his two paws. He knew that one
of them was the right, and he knew that when you
had decided which one of them was the right, then

the other one was the left, but he never could
remember how to begin.

A. A. Milne, The House at Pooh Corner

Chapter 6

Experimental Results

"I call this game FUN-IN-A-BOX,"

Said the cat.
"In this box are two things
I will show to you now.
You will like these two things,"
Said the cat with a bow.

Dr. Seuss, The Cat in the Hat

We have seen how to formulate the allocation and scheduling subproblems of the

hardware-software partitioning problem as a scheduling problem, how to generate

tasks for this problem from a system specification, and how to solve the scheduling

problem formulation. Now, we examine how well this scheduling-based approach

performs. In this chapter, I apply my scheduling-based partitioning approach to a

simple digital wristwatch example, as well as several examples from the literature and

analyze the results.

6.1 Introduction

In order to evaluate my scheduling-based approach to solving the hardware-software

partitioning problem, I applied it to multiple variants of a simple digital wristwatch

example. The wristwatch has the basic functionality found on most digital watches

today. It displays the time in increments of one second. It has a stopwatch that is

83

capable of reporting the time to the hundredth of a second, and it has a daily alarm.

I specified the wristwatch functionality in Scenic using nine (9) processes.

Hardware-software partitioning was performed on the wristwatch functionality

at two levels of functional granularity: coarse grain (each process corresponds to a

task) and fine grain (canonical static task regions within each process correspond to

tasks). Partitioning was performed at multiple processor speeds targeting the single-

processor, single-ASIC architecture using my scheduling-based partitioning approach.

The partitioning results found that the complex display functionality should be im-

plemented in hardware for slow clock speeds. However, at the relatively slow clock

speed of 9kHz, all of the functionality could be implemented in software without vi-

olating any timing constraints. Section 6.2 presents the detailed results and analysis

for the wristwatch example.

While the wristwatch example illustrates the usefulness of my approach, it does not

yield any results that may be compared with previously reported approaches. In order

to compare my approach to previous approaches, I applied my scheduling problem

formulation for the allocation and scheduling subproblems to several examples from

the literature. These examples have predefined tasks and do not assume a fixed single-

processor single-ASIC target architecture. Instead, a set of Processing Elements (PEs)

is given, and a subset of these elements must be chosen as the target architecture. In

Section 6.3, I give a simple algorithm to solve this problem by repeatedly applying

the scheduling with rejection problem formulation. My results compare favorably

with those presented in the literature, finding the optimal solution for all examples

in orders of magnitude less running time.

6.2 Wristwatch

The digital wristwatch example is a simplified version of the digital wristwatch com-

monly sold today. The basic functionality of the example is the same as that of the

common digital wristwatch. The main differences occur in the extra features. For

example, the wristwatch example only displays the time in a 24-hour clock mode.

84

There is no 12-hour AM/PM time display mode. The date and day of the week

functionality also are not specified in the example wristwatch. These omissions were

made to simplify the example specification, and they do not affect the validity of the

analysis performed on the example.

The digital wristwatch performs three main types of functionality: time keeper,

stopwatch, and daily alarm. The time keeper, or watch, functionality maintains the

time for display in hours, minutes, and seconds. A chime beeps every full hour, and

the time is set by executing an appropriate setting sequence. The stopwatch records

the minutes, seconds, and hundredths of a second from the time it is started. A lap

time measurement is provided. The chime sounds when the stopwatch is started and

when it is stopped. The daily alarm sounds the chime for thirty seconds when the

alarm time occurs and the alarm is enabled. The alarm time is set by executing an

appropriate setting sequence.

The wristwatch has five display modes that correspond to the five different modes

of operation: the watch mode, the set-watch mode, the stopwatch mode, the alarm

mode, and the set-alarm mode.

The user controls the wristwatch by depressing four buttons. The upper left

button is used for entering and exiting the set-watch mode and the set-alarm mode.

The lower left button is used for cycling between watch mode, stopwatch mode, and

alarm mode. It is also used to change the position being set when in set-watch and

set-alarm modes. The upper right button is used as the LAP button in stopwatch

mode. The lower right button applies a setting in set-watch and set-alarm modes and

is the start/stop button in stopwatch mode.

The system functionality of the wristwatch is described in Scenic. A total of nine

(9) Scenic processes are used to describe the behavior of the digital wristwatch. These

processes contain a total of thirty-seven (37) canonical static task regions as shown

in Figure 3.3.

The wristwatch is not a computationally intensive system with most of the com-

putational complexity resulting from the watch display. Due to this lack of computa-

tional requirements, I chose the PIC16F84 microcontroller as the target processor with

85

the hardware tasks (the rejected tasks in my scheduling formulation) implemented as

a co-processor. Since my approach is not integrated into a complete codesign system,

I cannot provide the final system costs as a result of high-level synthesis.

WRISTWATCH

8 9

(kHz)
0 1 2 3 4 5 6 7

PIC Clock Frequency

10

Figure 6.1: Hardware-Software partitioning results for the wristwatch example. The

fine granularity partitioned 37 tasks, and the coarse granularity partitioned 9 tasks.

When the processor has a low clock frequency, more functionality must be imple-

mented in hardware with a high cost. Conversely, when the processor has a high

clock frequency, all tasks meet their deadlines in software, and there is no require-

ment for hardware.

Figure 6.1 shows the total cost of the partition found by my approach as a function

of the clock frequency of the PIC microprocessor. My approach is implemented in

Java, and all examples required less than 1 second of processing time running on a

300MHz Pentium II processor. Table 6.1 shows the average time required to determine

86

Cost Partitioning Results

85001

8000

7500
Fine Granularity

7000

6500
Coarse Granularity

6000

5500

5000

4500
_

4000

3500

3000

2500

2000

1500

1000

500

0

Table 6.1: Average time to determine the data points for the Wristwatch example
data points in Figure 6.1.

a datapoint for both the coarse granularity and fine granularity task sets. The effect

of granularity is easily seen in Figure 6.1.

The processing time of the tasks, pj, were estimated based on the number and

type of operations performed. Data load and store operations and conditional branch-

ing operations were estimated to require 2 cycles while simple data operations were

estimated to require 1 cycle. The rejection costs of the tasks, ej, were chosen to give

an indication of the hardware area requirements for the tasks. Thus, just as for the

processing times, they were estimated based upon the number and type of operations

performed. The weights of the tasks, wj, were chosen to allow the tasks to be five

time units late before being rejected was more profitable. Thus, wj = ej/5.

The use of fine granularity tasks yielded consistently better solutions than did the

use of coarse granularity tasks. At each of the data points, my scheduling algorithm

determined the optimal solution for the given task set.

6.3 Multiple Processing Elements

In addition to the single-processor single-ASIC target architecture, my scheduling-

based approach can be applied to systems where there are multiple Processing Ele-

ments (PEs) and a subset of them must be chosen as the target architecture. The

straightforward manner of applying my scheduling-based approach is to choose an

initial PE and call it the 'processor.' Run the scheduling with rejection problem with

this target processor. The results of this problem yield a scheduled set of tasks that

87

Wristwatch

Task No. of Average
Granularity Tasks Time (s)

Coarse 9 0.003

Fine 35 0.013

are to be implemented on the chosen PE and a rejected set of tasks. The release

times and deadlines of the rejected tasks can be recalculated based on their depen-

dencies with the scheduled tasks. The rejected tasks then form the input to a second

iteration of the scheduling with rejection problem. A second PE is chosen to act as

the processor, and the scheduling problem is solved with only the rejected tasks as

input. This process is repeated until either no feasible schedule can be found, or all

tasks have been scheduled on some PE. I used this approach to solve several examples

from the literature.

My scheduling algorithm was prototyped in Java. My results were obtained on

a 300 MHz Pentium II system with 128 MB of main memory running the Win-

dows NT 4.0 operating system and Java JDK 1.2. I compare my results with the

published results of MOGAC [17], Oh and Ha [51], SOS [55], and Yen and Wolf [64].

All CPU times are given in seconds.

MOGAC [17] is a genetic algorithm-based hardware-software system that allocates

and schedules a given set of tasks on a given set of PEs. MOGAC consists of approx-

imately 18,000 lines of C++ and Bison code. Its results were obtained on a 200 MHz

Pentium Pro system with 96 MB of main memory running the Linux operating sys-

tem. The generality of the genetic algorithm solution method allows MOGAC to

easily formulate all hardware-software partitioning problem characteristics and con-

straints. This generality also prevents MOGAC from performing intelligent pruning

of the search space to decrease the running time of the algorithm.

Oh and Ha [51] use a heterogeneous multiprocessor list scheduling-based algorithm

to perform allocation and scheduling of a given set of tasks on a given set of PEs. Their

algorithm is implemented in C++, and their results were obtained on an Ultrasparc I

with a 200 MHz processor and 256 MB of main memory. Oh and Ha's approach

consists of repeatedly choosing a subset of PEs as the target architecture (starting

with the lowest cost PE and heuristically adding one additional PE at a time) and then

list scheduling the tasks on this set of PEs. This approach is only useful when the set

of PEs is well-defined. Furthermore, their algorithm does not model all characteristics

and constraints of the partitioning problem. In particular, their algorithm does not

88

consider timing constraints on the tasks. It schedules the tasks so as to minimize the

makespan of the schedule. Timing constraints are checked only after the schedule has

been generated for a set of PEs.

SOS [55] is a Mixed Integer Linear Programming (MILP) formulation for the

allocation and scheduling subproblems of the hardware-software partitioning problem.

SOS's results were obtained on a Solbourne Series5e/900 (similar to a SPARC 4/490)

with 128 MB of main memory. The MILP formulation finds an optimal solution to

the combined allocation and scheduling problem; however, its time complexity makes

it impractical for large problems.

Yen and Wolf [64] use a gradient-search algorithm to perform allocation and

scheduling of a given set of tasks on a given set of PEs. Their algorithm is im-

plemented in C++, and their results were obtained on a Sun Sparcstation SS20. The

iterative improvement nature of Yen's algorithm allows it to find locally optimal solu-

tions, but does not guarantee that it will find globally optimal solutions. Therefore,

the algorithm's final solution is strongly dependent upon the quality of the initial

solution. Thus, the algorithm is useful mainly as a final optimization pass given the

solution found by some other approach.

Table 6.2 compares the performance of my approach to that of SOS, MOGAC,

and Oh and Ha when they are applied to Prakash and Parker's task graphs [55].

The performance number shown by each task graph is the worst-case finish time,

or makespan, of the task graph. For example, "Prakash & Parker 1 (4)," refers to

Prakash and Parker's first task graph with a makespan of 4 time units. The cost of

fT i TI I ifMy
Example No. of SOS MOGAC Oh & Ha Scheduling

(makespan) Tasks Cost CUst Cost Cost tms
ma~.sna - ______ time(s) T____ time(s) _____ time(s) time_______s)__

Paker 9(4) 4 (16) 7 28 7 3.3 7 0.01 7 0.026
Prakash & 4 (16) 5 37 5 2.1 5 0.01 5 0.026Parkeri1 (7) __ _ _ _ _ _ __ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __1

Pake 2() 9 (9) 7 4,511 7 2.1 7 0.01 7 0.014
Prakash & 9~)uu

Parker 2 (15) 9 (9) 5 385,012 5 2.3 5 0.01 5 0.014

Table 6.2: Prakash and Parker's examples.

89

a solution is determined by the price of the PEs used in the solution, plus 1 for each

communication link required.

In these graphs, an unconventional model for communication is used. A task may

begin executing before all of its input data have arrived, and it may output data before

it has completed execution. I converted their specifications into graphs which conform

to the conventional communication model, i.e., a task can only begin execution when

all of its input data have arrived and can only output its data when it is has completed

execution. Their model implies that part of each task is independent of the task's

input data and may perform some operations that do not yield any output data. This

is expressed by splitting each task into multiple tasks such that the resulting tasks

conform to the standard notion of communication. The resulting number of tasks is

shown in parenthesis next to the original number of tasks in the problem.

All of the approaches were able to find the optimal solutions for these simple

examples. The differences between these approaches is evident in their respective

running times. The exact MILP approach of SOS causes it to have an exorbitant

running time for these small examples. The general random search technique em-

ployed by MOGAC is able to find the optimal solution in only a few seconds, and

both the approach of Oh and Ha and my approach take only a few milliseconds to

find the optimal solution.

Table 6.3 compares the performance of my scheduling-based approach to that of

Yen's system, MOGAC, and Oh and Ha's approach when each is run on the clustered

and unclustered versions of Hou's task graphs [30]. Task clustering is the process

My
No. of Yen MOGAC Oh & Ha Scheduling

Example No of Approach
(makespan) Tasks Cost CP Cost CPU Cost CPU Cost CPU

I time (s) _____ time (s) _____ time (s) Cost]__ time (s)

Hou 1 & 2 (u) 20 170 10,205.3 170 5.7 170 0.1 170 0.083
Hou 1 & 3 (u) 20 240 11,550.2 N.A. N.A. 170 0.1 170 0.084
Hou 3 & 4 (u) 20 210 7,135.0 170 8.0 170 0.1 170 0.083
Hou 1 & 3(c) 8 170 14.96 170 5.1 170 0.01 170 0.045
Hou 1 &3 (c) 7 170 14.92 N.A. N.A. N.A. N.A. 170 0.042

1_1Hou 3 &4 (c) 6 11170 3.34 1] 170 2.2 N.A. N.A. Jj 170 0.035 1

Table 6.3: Hou's examples.

90

of using a pre-pass to collapse multiple tasks into a cluster of tasks. This cluster is

treated as a single task during allocation, i.e., all tasks in a cluster are executed on

the same PE. Hou ran Yen's system on the clustered and unclustered versions of his

graphs. I use the same clusters as Hou, MOGAC, and Oh and Ha when comparing

my results with theirs.

All approaches, except for Yen's approach, found the optimal solution for all of the

examined task graphs. As with the small examples of Prakash and Parker, MOGAC

required a few seconds while the approach of Oh and Ha and my approach required

a few tens of milliseconds. Yen's approach proved to have poor scalability with these

examples. The small clustered examples have on the order of ten tasks, and Yen's

algorithm was able to find the optimal solutions in a few seconds. The unclustered

examples have on the order of twenty tasks, and Yen's algorithm was not able to find

the optimal solution for all examples in several thousand seconds of execution time.

Table 6.4 compares the performance of my scheduling-based approach to that of

Yen's system, MOGAC, and Oh and Ha's approach when each is applied to Yen's

large random task graphs [64]. Yen's random 1 has six independent task graphs, each

containing approximately eight tasks. There are eight PE types available. Yen's ran-

dom 2 consists of eight independent task graphs, each containing approximately eight

tasks. There are twelve PE types available. Both examples have zero communication

delay and zero communication link cost.

My approach and Oh and Ha's approach were able to find the optimal solution

for both of these examples. MOGAC was able to find the optimal solution for Yen's

random 2 but failed to find the optimal solution for Yen's random 1. The running

time for MOGAC was on the order of a few seconds showing only a slight increase

II My
Yen MOGAC Oh & Ha Scheduling

Eape No. of iiApproach
Tasks Cost Cost Cost CPs

______________________ I time (s) time (s)tCosts time (s)

| Yen Random 1 11 50 281 10,252 75 6.4 51 2.1 51 0.699
Yen Random 2 [1 60 1637 21,979 11 81 7.8 81 3.6 81 0.826

Table 6.4: Yen's large random examples.

91

Example No. of MOGAC Oh & Ha Scheduling
Exapl No of Approach

Tasks Cost I]Cost CPU Cost (s)

MOGAC Random 1 1 510 39 2,454 39 1 7.6 39 1.30
MOGAC Random 2 1 990 35 12,210 13 1 299.8 11 13 2.486j

Table 6.5: MOGAC's very large random examples.

in running time over the slightly smaller examples of Hou. Oh and Ha's approach

required a few seconds to find the optimal solutions, while my approach required only

a few tenths of a second.

Table 6.5 compares the performance of my scheduling-based approach to that

of MOGAC and Oh and Ha's approach when each is applied to MOGAC's very

large random task graphs [17]. MOGAC's random 1 contains eight independent task

graphs, each containing approximately sixty-three tasks. There are eight PE types

and five link types. MOGAC's random 2 contains ten independent task graphs, each

containing approximately ninety-nine tasks. There are twenty PE types and ten link

types.

My approach and Oh and Ha's approach were able to find the optimal solution for

both of these examples. MOGAC was able to find the optimal solution for MOGAC

random 1 but failed to find the optimal solution for MOGAC random 2. The running

time for MOGAC was on the order of a few thousand seconds. This running time

is over three orders of magnitude more than that required to solve Yen's examples

that are only one order of magnitude smaller in terms of number of tasks. Oh and

Ha's approach also exhibited an unusually large increase in running time for these

large examples. To solve MOGAC random 1, Oh and Ha's approach required over

seventeen seconds, and for MOGAC random 2, their approach required nearly three

hundred seconds. My approach required only 1.302 seconds to solve MOGAC random

1 (with 510 tasks) and 2.486 seconds to solve MOGAC random 2 (with 990 tasks).

Given the success of my scheduling-based approach in finding the optimal solution

to all of these problem instances, it is natural to ask how this was achieved. After all,

the problem being solved is strongly .A/P-hard, and I do not use an exact approach.

92

Some insight is obtained by examining the solutions to these problems. For all of

the problem instances, the optimal solution required either one or two processing

elements. Furthermore, none of the examples has hard to satisfy timing constraints.

These two features of the optimal solutions allow my simple-minded approach to find

the optimal solutions. My approach should perform less well on problem instances

containing tight timing constraints and requiring more than two processing elements

in an optimal solution.

93

94

Part II

Complexity of the Scheduling Problem
Formulation

There is no such word as 'impossible' in my dictio-
nary. In fact, everything between 'herring' and
marmalade' appears to be missing.

Douglas Adams, Dirk Gently's Holistic
Detective Agency

Chapter 7

The Complexity of Scheduling with

Rejection

"Now, here is a game that they like,"
Said the cat.
"They like to fly kites,"
Said the Cat in the Hat.

Thing Two and Thing One!
They ran up! They ran down!
On the string of one kite
We saw Mother's new gown!

Dr. Seuss, The Cat in the Hat

This chapter examines the complexity of the scheduling with rejection problem,

probing the boundary between easily solved problems involving rejection and their

more difficult generalizations. Knowing that a problem is /'P-hard encourages the

designer to use heuristics to find a feasible solution to the problem. In addition, if

a special case of the problem is solvable in polynomial time, then the design may

be specified so as to take advantage of the efficient algorithms that can solve those

special cases.

97

7.1 Introduction

In this chapter, we consider the complexity of the single machine scheduling with

rejection problem for various objective functions. Figure 7.1 illustrates the complexity

hierarchy describing the complexity relationship between scheduling problems that

differ only in their objective function. This hierarchy indicates that a problem with

the objective function at the head of an arc reduces to a problem with the objective

function at the tail of the arc, e.g., a 10 1Cmax reduces to a /3 JLmax. Thus, if

a 10 JLmax is solvable in polynomial time, then a P# Cmax is solvable in polynomial

time. Conversely, if a L# Cmax is /VP-hard, then a /# Lmax is AP-hard.

WZ j
jC mT wU

-1Ci Lmax/

Cmax

Figure 7.1: Complexity hierarchy for scheduling problems that differ only in their
objective functions. An arrow from 71 to 72 indicates that a 13 'Y1 xc a 13 L72.

The results presented in this chapter are summarized in Table 7.1. These results

narrow the boundary between known polynomial time solvable problems and known

.ANP-hard problems. Figure 7.2 graphically illustrates the boundary with regard to

possible objective functions when rejection is allowed. Figure 7.3 graphically illus-

trates the boundary with regard to possible objective functions when all tasks have

a common deadline. Each circle in these figures represents a scheduling problem.

A filled circle represents a known /P-hard problem. An empty circle represents

98

Problem Result Presented

Pm I(Es w Cj + E3 e) fP-hard proof Section 7.2.1

1I(Es wjCj + E3 ej) O(nE) algorithm Section 7.2.2

1 (Es wC + ES ey) 9(nW) algorithm Section 7.2.2

1H(Es w C + E3 e) O(nP) algorithm Section 7.2.2

11dj = dl E c.U. flP-hard proof Section 7.3.1

1 dj = dl(ES cj Uj + ES ej) O(nP) algorithm Section 7.3.2

1dj = d; cj agreeablel(Es cjUj + Eg ej) 0(n lnn) algorithm Section 7.3.3

11 (Zs T + Eg ej) O(n5PE) algorithm Section 7.4.1

1 d= d; wj agreeable| i wjTj O(n ln n) algorithm Section 7.4.2

1 dy = d; wj disagreeable| E wjT O(nlnn) algorithm Section 7.4.2

1dj = d(Es wjT + Es cj U + Eg ej) O(n(P - d)) algorithm Section 7.5.1

1|d= dl(Es wjT + Es c3 Uj + Eg ej) FPAS Section 7.5.2

1Jdj = dJ(Es wjT + Es cjU + Eg e) (O(n2 dE) algorithm Section 7.5.3

Table 7.1: Results presented in this chapter.

a known polynomial time solvable problem, and a partially filled, or dotted, circle

represents a problem with unknown complexity. Boundary problems with new com-

plexity results presented in this dissertation are indicated with a square. Problems

whose complexity was previously known are indicated with a double circle.

In addition to the simple complexity results of being either NP-hard or poly-

nomial-time solvable, many of the problems considered in this chapter were proven to

be weakly NP-hard. A weakly NP-hard problem is solvable in pseudo-polynomial

time. As shown in Table 7.1, many of the results presented in this chapter are pseudo-

polynomial time algorithms, proving weak NP-hardness results for many problems.

We examine problems with a common deadline, i.e., dj = d for all jobs j, since a

system may be specified such that all functionality must be completed by a common

deadline with the intermediate timing behavior being irrelevant. Furthermore, since

99

1|(- + Es e3)

C Lmax

Cmax

Figure 7.2: Graphical representation of the known complexity boundary for schedul-
ing problems that allow rejection and have no 3 constraints. Nodes corresponding
to problems with new proven complexity bounds presented in this dissertation are
boxed. Nodes corresponding to problems whose complexity was previously known
are doubly circled. We use the representation given by [24]. Problems are repre-
sented by circles, filled-in if known to be M'P-hard and empty if known to be in P.
An arrow from H1 to H2 signifies that problem HI is a subproblem of problem r2.

1dj = dly

w o TC U3 Q

C Lmax

Cmax

Figure 7.3: Graphical representation of the known complexity boundary for schedul-
ing problems that have a common deadline and have no other # constraints.

100

my results prove that it is possible to obtain near optimal solutions in polynomial

time (with the FPAS presented in Section 7.5.2), it is desirable to specify the system

behavior, when possible, with a common deadline.

7.2 The Total Weighted Completion Time with

Rejection

In this section, I show that the problem 1 (Es wjC + Eg ej) is /P-hard in the

weak sense. Thus, the problem is VP-hard for any fixed number of machines m > 1.

For any fixed number of machines m > 2, Pm|I(Es wjCj + Eg ej) is AP-hard by

restricting the problem to Pm|| E wjCj, a known /P-hard problem [11]. On a single

machine, the total weighted completion time problem is solvable in polynomial time

using Smith's rule [58]. However, I show that allowing rejection makes the single

machine problem weakly /P-hard.

7.2.1 Complexity of Total Weighted Completion Time with

Rejection

The decision problem formulation of 1 (Es wjCj + Eg ej) is defined as follows.

Given a set of n independent jobs, J = {J 1, . . . , Jn} with processing times

pj,V1 < j < n, weights wj,V1 < j < n, and rejection penalties ej,V1 K

j < n, a single machine, and a number K, is there a schedule of a subset

of jobs S C J on the machine such that EjEs wjC + ZjyE=j-s ej < K?

I reduce the weakly f/P-complete Partition Problem [24] to 11 (ES wjC + E ej),

proving that even on one machine, scheduling with rejection is A/P-complete.

Theorem 7.2.1 11 (Es wjCj + Eg e) is AP-complete.

Proof 1I(Es wjCj + Eg ej) is clearly in lP. To prove that it is also PP-hard,

I reduce the Partition Problem to it. The Partition Problem is defined as

follows:

101

Given a set A = {ai, a2 , .. . , a4} of n numbers such that E'_1 ai =

2b, is there a subset A' of A such that Eai A, ai =-I En 1 ai = b?

Given an instance A = {ai, a2, ... , an} of the Partition Problem, I

create an instance of 1lH(Es wjCj +Ej ej) with n jobs, J1 ,... , Jn. Each of

the n elements a2 E A corresponds to a job Ji in 11 (Es wjCj + Eg ej) with

pi = wi = ai and ei = bai + 1a2. Since p w3,V1 < j < n, the ordering

of the scheduled jobs does not affect the value of Ejes wjCj. Using this

fact and substituting for the rejection penalty, the objective function can

be rewritten as follows:

EES WCJ + EEg e = EiEs a3 E(i<j,iES) ai + EjEq ej

= EEs a2 + E(i<j,is) aiaj + Ejg(baj + la2)

= [(Ejes a3)2 + Ejcs a2] + b Ej3 g a3 + 1 E3C$ a2

1 (EjES a()2 + b E1 a + 2E a2
-2 2L.~E i=) + 3 ±i

1
a

- 2(EEs a3)2 + b(2b - Ejes aj) + . EnI a?

Since En> a 2is a constant for any particular instance of the Parti-

tion Problem, minimizing the objective function to 1 (Es w3 C3 + Eg e3) is

equivalent to minimizing the following function with x = Eics aj:

-X-2 +b(2b - x).
2

This function has a unique minimum of 3b 2 at x = b, i.e., the optimum

solution has Ejes aj = b, if it exists. Therefore, if the optimum solution to

1J (Es wjC + E e) is equal to !b2 + 1 En_1 a2, then there exists a subset,

A', of A such that Eaj C, ai = b, i.e., the answer to the Partition Problem

is 'Yes,' and S is a witness. If the optimum solution to 1(Es wC 3 +

Eg ej) is greater than b2 + I EnJI a?, then there does not exist a partition

of A such that EaiEA, ai = b, i.e., the answer to the Partition Problem

is 'No.' Conversely, if the answer to the Partition Problem is 'Yes,' the

optimum solution to 1J(Es wjCj+E ej) is clearly equal to lb2+ I En a.

102

If the answer to the Partition Problem is 'No,' the optimum solution to

If (Es wjCj + Eg ej) is clearly greater than b2 + I En_1 a?. m

7.2.2 Pseudo-Polynomial Time Algorithms

In this section, I give pseudo-polynomial time algorithms for solving 1 (Es wjCj +

Eg ej) exactly. In the scheduling problem I II(Es w3C + Eg ej), all jobs are assigned

either to the set of scheduled jobs S or the set of rejected jobs S. The simple nature of

this scheduling problem allows for straightforward dynamic programs to be developed

to optimally solve all instances of the problem. In Section 7.2.2, I give an O(n EZ_ 1 ej)

time dynamic program based on the rejection costs of the rejected jobs. I provide

similar dynamic programs based on the weight of the scheduled jobs (Section 7.2.2)

and based on the makespan of the scheduled jobs (Section 7.2.2).

Dynamic Programming on the Rejection Costs ej

I set up a dynamic program that solves the problem I I(Es wjCj + E ej) when the

total rejection cost of the rejected jobs is given. Number the jobs in non-decreasing

order of wj/pj.

Let f(j, e) denote the optimal value of the objective function when the jobs

1,... , j are considered and the total rejection cost of the rejected jobs from this

set is e. Let w(j, e) denote the total weight of the scheduled jobs that yields the

optimal value of f(j, e). Note that:

f 07C) = 0 ifj=0 and e=0, 71
oo otherwise.

This equation forms the boundary conditions for the dynamic program.

Consider any optimal schedule for the jobs 1, ... , j in which the total rejection

cost of the rejected jobs is e. In any such schedule, there are two possible cases: either

job j is rejected or job j is scheduled.

Case 1: Job j is rejected. This is possible only if e > e,. Otherwise, there is no

feasible schedule in which the sum of the rejection costs of the rejected jobs is

103

e and job j is rejected. Thus, Case 2 must apply. Hence, assume that e > ej.

The total rejection cost of the rejected jobs among 1, ... , j - 1 must be e - ej.

Then, the optimal value of the objective function is clearly f(j - 1, e - ej) + ej.

Case 2: Job j is scheduled. Observe that job j is scheduled before all other sched-

uled jobs from the set {1 ... j - 1}, and scheduling it increases all of their

completion times by pj. Therefore, the optimal value of the objective function

is f (j - 1, e) + pj EiS, i,<j wi. Let w(j, e) = EiEs,isij wi. The use of this

variable eliminates the need to recalculate the total weight of the scheduled

jobs for every entry f(j, e).

Combining these cases, we have:

f (j - 1, e) + (w(j - 1, e) + wj)pj if e > ej,

f (j, e) = (f(j - 1, e) + (w(j - 1, e) + wj)pj), . (7.2)

mm - - ±}otherwise.(f (J - 1, e - ej) + ej)

Observe that the total rejection cost of the rejected jobs can be at most E

j_1 ej. The problem is solved by the calculation of min0<e<E{f(n, e)}. Thus, we

need to compute at most nE values f(j, e). Computation of each value requires 0(1)

time due to the use of the w(j, e) values. Therefore, the overall running time of the

dynamic program is ((nE). Moreover, the dynamic program requires O(nE) space.

Theorem 7.2.2 The above dynamic programming algorithm exactly solves the prob-

lem 1 (EZEs w Ci + Eijg e) in O(n Z>a ej) time.

Dynamic Programming on the Weights wj

Instead of using the rejection costs to set up the dynamic program, the task weights

wj may be used in a dynamic program. I set up a dynamic program that mini-

mizes the objective function when the total weight of the scheduled jobs is given.

Number the jobs in non-decreasing order of pj/wj. For any given set of scheduled

jobs S, scheduling the jobs in non-decreasing order of pj/wj (Smith's rule) minimizes

z;n- 1 WCj.

104

Let f(j, w) denote the optimal value of the objective function when the jobs

.. , n are considered and the total weight of the scheduled jobs from this set is w.

Note that

WnPn if w = wn and j = n,

f (j, w) = en if w 7 wn and j= n, (7.3)

oc otherwise.

This equation forms the boundary conditions for the dynamic program.

Consider any optimal schedule for the jobs j,... , n in which the total weight of

the scheduled jobs is w. In any such schedule, there are two possible cases: either job

j is rejected or job J is scheduled.

Case 1: Job j is rejected. Then, the optimal value of the objective function is

clearly f(j + 1, w) + ej, since the total weight of the scheduled jobs among

j+1, ... ,n must be w.

Case 2: Job j is scheduled. This is possible only if w > wj. Otherwise, there is no

feasible schedule in which the sum of the weights of the scheduled jobs is w and

job j is scheduled. Thus, Case 1 applies. Hence, assume that w > wj. Then, the

total weight of the scheduled jobs among j+1,... , n must be w - w. Also, job

j is scheduled before all jobs in the optimal schedule among the scheduled jobs

in j + 1, ... , n; therefore, the completion time of every scheduled job among

j ..+ 1, ... , n is increased by p3 . Therefore, the optimal value of the objective

function is f (j + 1, w - wj) + wpj.

Combining these cases, we have:

I f(j+1,w)+ej if w < wj,

f (j, W) m n f (j + 1,w) + ej, (7.4)

m f(j±1, W + otherwise.

Observe that the weight of the scheduled jobs can be at most W = Z> wj.

The problem is solved by the calculation of minoswsw{f (1, w)}. Thus, we need to

compute at most nW values f(j, w). Computation of each value requires 0(1) time.

105

Therefore, the overall running time of the dynamic program is ((nW). Moreover,

the dynamic program requires O(nW) space.

Theorem 7.2.3 The above dynamic programming algorithm exactly solves the prob-

lem 11|(|{Ees wjCj + Ejcg ej) in 0(n 1 wj) time.

Dynamic Programming on the Processing Times pj

In this section, I give another dynamic program that solves 1 (Zs wjCj + Eg ej) in

O(n E'I pj) time. I set up a dynamic program that minimizes the objective function

when the total weight of the scheduled jobs, i.e., the makespan, is given. As before,

number the jobs in non-decreasing order of pj/wj.

Let f (j, t) denote the optimal value of the objective function when the jobs 1,... , j
are considered and the total makespan of the scheduled jobs from this set is t. The

boundary conditions for this dynamic program are as follows:

wipi if t =pi and) j=1,
f (j, t) = e if t : pi and j = 1, (7.5)

o otherwise.

Consider any optimal schedule for the jobs 1, . . . , j in which the total makespan

of the scheduled jobs is t. In any such schedule, there are two possible cases: either

job j is rejected or job j is scheduled.

Case 1: Job j is rejected. Then, the optimal value of the objective function is

clearly f(j - 1, t) + ej, since the total processing time of the scheduled jobs

among 1,... ,j- 1 must bet.

Case 2: Job j is scheduled. This is possible only if t > pj. Otherwise, there is no

feasible schedule in which the makespan is t and job j is scheduled. Thus, Case 1

applies. Hence, assume that t > pj. The completion time of job j is t, since the

jobs in S are scheduled in non-increasing order of wj/pj. The total processing

time of the scheduled jobs among 1,... , j - 1 must be t - pj. Therefore, the

optimal value of the objective function is f(j - 1, t - pj) + wjt.

106

Combining these cases, we have:

f (j - 1, t) + ej if t < Pj

f (0, t) =.f (j - 1, t) + ej , (7.6)
mm otherwise.

fuj - 1,t PJ) +wjt

Observe that the total processing time of the scheduled jobs can be at most P

Z=1 pj. The problem is solved by the calculation of mino<t<p{f(n, t)}. Thus, we

need to compute at most nP values f(j, t). Computation of each value requires

0(1) time. Therefore, the overall running time of the dynamic program is 0(nP).

Moreover, the dynamic program requires 0(nP) space.

Theorem 7.2.4 The above dynamic programming algorithm exactly solves the prob-

lem 1||(es wCs + ZE ee) in (n E I pj) time.

7.3 The Weighted Number of Tardy Jobs with Re-

jection

When the jobs have deadlines by which they must complete, the total weighted com-

pletion time objective is not of much interest. In the presence of deadlines, it is often

of interest to schedule the jobs so that as few jobs as possible are tardy, i.e., minimize

the number of jobs that complete after their respective deadlines. If the jobs also

have a cost associated with being tardy, then it is desirable to minimize the total

cost of the tardy jobs. In the traditional scheduling problem notation,'these objective

functions are denoted as E Uj and E cjUj respectively, where Uj is equal to 1 if job

j is tardy and 0 otherwise.

The total (weighted) number of tardy jobs objective function arises when there

is no residual value in completing a job soon after its deadline, but the job must be

completed. Therefore, all tardy jobs may be sequenced at the end of the schedule in

arbitrary order.

107

7.3.1 Complexity of Total Weighted Number of Tardy Jobs

with Rejection

The general weighted scheduling problem 1 I cj Uj is weakly A/P-hard [39] [35]. The

special case with all deadlines equal to d is equivalent to the Knapsack problem.

This equivalence has been stated previously without proof [54]. I provide a proof

of this equivalence by reducing the Knapsack problem to the scheduling problem

1|dj = d| E cjUj.

Theorem 7.3.1 The decision version of the scheduling problem 1|dj = d| E cjUj is

weakly AP-complete.

Proof The decision problem is clearly in .AP. To prove that it is .AP-complete

I reduce the known flP-complete Knapsack problem to it. The Knapsack

problem is stated as follows:

Given a finite set A of n items, with each item j E A having a

size sj and value vj associated with it, and positive integers B

and K. Is there a subset A' C A such that EjCA' si < B and

such that EZjA, Vi > K?

The reduction is straightforward. For each element j E U create a

job Jj with pj = sj and cj = vj. Set the deadline d = B. The decision

question asks: Is there a schedule of jobs J1, . . . , Jn such that E c3 U -

E cj - K? The early jobs, i.e., those jobs that complete before the deadline

d = B, in a valid schedule of the jobs J1 ,... , J correspond to those items

chosen to be placed in the knapsack.

To verify that this reduction is valid, consider an optimal schedule

of the n jobs. Let S be the set of jobs that complete before the deadline.

Clearly, Espj = ES sj < B and Es cj = s aj > K, and the set S

corresponds to the knapsack items.

Conversely, let set S be a set of items that corresponds to an optimal

solution to the Knapsack problem. Scheduling the corresponding set of jobs

108

before the deadline d yields an optimal solution to the scheduling problem.

Therefore, the decision version of the problem 1 dj = dl Z cjUj is AP-

complete.

The pseudo-polynomial time dynamic programming algorithm due

to Lawler and Moore [39] for the problem 11 E cj Uj optimally solves the

problem when all deadlines are equal. Therefore, Idj = d Z cj Uj is weakly

KP-complete. .

It follows from this theorem that the total weighted number of tardy jobs with

rejection scheduling problem is KP-complete.

Corollary 7.3.1 The scheduling problem with rejection, 1|dj = d|(Ejes cjUj+

E g ej), is IPP-complete.

7.3.2 Pseudo-Polynomial-Time Algorithm

In this section, I present a pseudo-polynomial time dynamic program that optimally

solves the problem 111(ECs cUi + Es ei) in O(n E'= p) time. We note that the

problem requires us to partition the jobs into two classes: those jobs which are early

and those which are either tardy or rejected. We can assume that all early jobs are

sequenced in order of their deadlines with the tardy jobs following them in arbitrary

order. In this way, the tardy jobs are equivalent to the rejected jobs. Thus, the tardy

weight for a job j is wj = min(cj, ej). If a job is tardy in a schedule using wj, then it

is rejected if cj > ej.

This observation gives rise to a simple dynamic program for scheduling with re-

jection. This dynamic program is a modification of the one given by Lawler and

Moore [39].

Arrange the jobs in earliest deadline first order. Let f(j, t) be the minimal total

cost for the first j jobs subject to the constraint that job j is completed no later than

time t. Note that:

10 if j = 0 and t > 0,
f (j,t) =(7.7)

~oo otherwise.

109

This equation forms the boundary condition for the dynamic program.

Consider an optimal schedule for the job 1,... , j in which the completion time

of job j, if it is scheduled, is at most t. In any such schedule, there are three possible

cases: j is scheduled early and completes before time t, j is scheduled early and

completes at time t, and j is rejected or tardy.

Case 1: Job j is scheduled early and completes before time t. Then, the optimal

value of the objective function is f(j, t - 1), since j has completed at least one

time unit before t.

Case 2: Job j is scheduled early and completes at time t. Then, the optimal value

of the objective function is f(j - 1, t - p3), since job j completes by its deadline

d ;> t.

Case 3: Job j is rejected or tardy. Then, the optimal value of the objective function

is f(j - 1, t) + min(cj, ej), since job j does not complete by its deadline it can

be rejected (if e < cj) or scheduled as late as possible after all early jobs have

been scheduled.

f (j, t - 1),

f (j, t) mn f (j-1,t-p), (7.8)

f (d - 1, t) + min(cj, ej)

Observe that the maximum completion time t that we need to consider is P =

jZ1 pj. The problem is solved by the calculation of f(n, P). Thus, we need to

compute at most nP values f(j, t). Computation of each value requires 0(1) time.

The overall computation time required for this dynamic program is 0(nP). Moreover,

this algorithm requires 0(nP) space.

Theorem 7.3.2 The above dynamic programming algorithm exactly solves the prob-

lem II(Ejes cjUj + Ej E ej) in 0(n Z> pj) time.

110

7.3.3 Special Cases Solvable in Polynomial Time

In this section, we consider the problem where all costs are agreeable. The costs are

agreeable if pi < pj implies ci > cj and ei > ej. When there is a common deadline

d and all costs are agreeable, the problem 1dj = dI(EGs cUj + EjEcs ej) is solvable

in polynomial time by scheduling the jobs in Shortest Processing Time (SPT) first

order.

Theorem 7.3.3 The total weighted number of tardy jobs scheduling problem with

common deadline and agreeable weights, 1dj = d; cj agreeable|(ZEjcs cjUj + EiEg e3),

is solvable in 9(n Inn) time by scheduling the scheduled jobs in SPT order with ties

broken by largest cost first.

Proof Let the jobs be numbered in SPT order such that pj < pj+i, ties broken

by smallest cost wj = min(cj, ej), and let all costs by agreeable. We will

consider the cost incurred by a job j not completing before the deadline d to

be wj = min(cj, ej). Thus, a rejected job j is equivalently tardy with cost

equal to ej < cj. The resulting problem is equivalent to 1dj = dI E wj Uj.

Let S be an optimal schedule to some instance I of the scheduling

problem 1|dj = dl E wU. Note that S is an optimal schedule to 1 dj =

dl (EES cU + EZEg ei) for the same instance I with wj = min(cj, ej) and

all tardy jobs with wj = ej correspond to rejected jobs. Assume that the

jobs in S are not in SPT order. The order of the early jobs does not affect

the objective function; therefore, assume, without loss of generality, that

the early jobs are arranged in SPT order. The order of the tardy jobs

does not affect the objective function; therefore, assume, without loss of

generality, that the tardy jobs are arranged in SPT order.

Assume that there is at least one tardy job. Let job j be the latest

scheduled job in S that has a smaller job i < j scheduled after it. Let i be

the earliest scheduled job after job j in S such that i < j. By assumption

on the ordering of the early jobs, i must be tardy and jobs i and j are

111

adjacent in the schedule. Interchange jobs i and j to obtain schedule S'.

The completion time of job j in S' is equal to the completion time of job

i in S. If p, = pi, then interchanging jobs i and j can only affect the cost

of the schedule if job j is early and wj # wi. By the ordering of the jobs,

wj < wi; therefore, if wj < wi, job j must be tardy in the optimal schedule

S. Otherwise, interchanging jobs i and j creates a schedule with smaller

objective function.

Since pj > pi, the completion time of job i in S' is less than the

completion time of job j in S. Therefore, the number of tardy jobs may only

decrease by this swapping. Furthermore, since wj < wi by the assumption

of agreeable costs, the objective function may only decrease by swapping

jobs i and j in the schedule.

By repeatedly swapping jobs and then arranging the early and tardy

jobs in SPT order, an optimal schedule S' with all jobs in SPT order is

obtained. The SPT order may be obtained by sorting the tasks based on

processing time. Sorting requires O(m ln n) time. Those tardy jobs that

have ej < cj correspond to rejected jobs. Therefore, the total weighted

number of tardy jobs scheduling problem with rejection, common deadline,

and agreeable costs, 1dj = dl(Ejcs cjUj + Ejeg ej), is solvable in O(n ln n)

time by scheduling the jobs in SPT order with ties broken by largest wj

first. m

7.4 The Total Weighted Tardiness with Rejection

7.4.1 Complexity with Arbitrary Deadlines

The total tardiness scheduling problem 111 E T is weakly AP-hard [41] [18]. There-

fore, the same problem with rejection, i.e., 1I(Es T + Es ej), is also .AP-hard. To

prove that it is weakly /P-hard when the weights are agreeable, I show that an

optimal solution to the problem can be found by a dynamic programming algorithm

112

with worst-case running time of O(n 5PE) or O(n pmaxemax) where P = E'1 pj,

E = "_ en , Pmax maxj(pj), and emax = max3 (ej). The dynamic program solves

all total weighted tardiness with rejection problems, i.e., 1 Es wjTj + Es ej, where

the weighting of the jobs is agreeable in the sense that pi < pj implies wi > wj. The

dynamic program is based on the dynamic program of Lawler [41] for the scheduling

problem 111 E Tj.

We begin with some useful theorems for the total weighted tardiness problem with

agreeable weights. These theorems are valid for the scheduled subset of jobs in the

total tardiness with rejection problem. These theorems are due to Lawler [41], and

their proofs are repeated here for completeness.

Theorem 7.4.1 ([41]) Let the jobs have arbitrary weights. Let S be any sequence

which is optimal with respect to the given deadlines d1 , d2 ,... ,da and let C be the

completion time of job j for this sequence. Let d'. be chosen such that

min(dj,Cj) < d < max(dj,Cj).

Then any sequence S' which is optimal with respect to the deadlines d', d- , d' is

also optimal with respect to d1 , d2 ,-.. , dn (but not conversely).

Proof Let T denote the total weighted tardiness with respect to di, d2 ,... ,d

and T' denote the total weighted tardiness with respect to d' , dI, ... , d'.

Let S' be any sequence which is optimal with respect to d' , d', ... , d' , and

let C be the completion time of job j for this sequence. We have

T(S) = T'(S)+EAj, (7.9)

iT(S') =T'(S') +EBj (7.10)

where, if Cj < dj,

A = 0

Bj = - wj max (0 , min (C' , d3) - di),

113

and, if Cj > dj,

A3 - w (d' - d3)

Bj = wjmax(0,min(Cj,d')-dj).

Clearly, A3 > Bj and Ej A3 > E B3 . Moreover, T'(S) > T'(S')

because S' is assumed to minimize T'. Therefore, the right hand side of

equation (7.9) dominates the right hand side of equation (7.10). It follows

that T(S) > T(S') and S' is optimal with respect to dl, d2 ,... , d0. u

Theorem 7.4.2 ([41]) Suppose the jobs are agreeably weighted. Then there exists

an optimal sequence S in which job i precedes job j if di < dj and pi < pj, and in

which all on time jobs are in nondecreasing deadline order.

Proof Let S be an optimal sequence. Suppose i follows j in S, where di < dj and

pt < pj. Then a simple interchange of i and j yields a sequence for which

the total weighted tardiness is no greater. If i follows j, where di < dj

and i and j are both on time, then moving j to the position immediately

following i yields a sequence for which the total weighted tardiness is no

greater. Repeated applications of there two rules yields an optimal sequence

satisfying the conditions of the theorem. m

Theorem 7.4.3 ([41]) Suppose the jobs are agreeably weighted and numbered in

nondecreasing due date order, i.e., d1 < d2 < ... < dn. Let job k be such that

Pk = maxjfpj}. Then there is some integer a, 0 < a < n - k, such that there exists

an optimal sequence S in which k is preceded by all jobs j such that j < k + a and

followed by all jobs j such that j > k + a.

Proof Let Ck be the latest possible completion time of job k in any sequence

which is optimal with respect to due dates di, d2, ... , dn. Let S be a se-

quence which is optimal with respect to the deadlines di, d2... , d_ 1, d'

max(Ck, dk), dk+1,... , da, and which satisfies the conditions of Theorem 7.4.2

with respect to these deadlines. Let Ck be the completion time of job k in

114

sequence S. By Theorem 7.4.1, S is optimal with respect to the original

due dates. Hence, by assumption, Ck < d'. Job k cannot be preceded in S

by any job j such that dj > d', else job j would also be on time, in violation

of the conditions of Theorem 7.4.2. And, job k must be preceded by all

jobs j such that di < d'. Let a be chosen to be the largest integer such

that dk+a < d', and the theorem is proved. m

Assume the jobs are agreeably weighted and numbered in nondecreasing deadline

order. Suppose we wish to find an optimal schedule of jobs 1, 2,. .. , n, possibly

rejecting some jobs, with processing of the first scheduled job to begin at time t. Let

k be the scheduled job with the largest processing time. It follows from Theorem 7.4.3

that, for some a, 0 < a < n-k, if job k is scheduled, there exists an optimal scheduled

sequence S of the form of:

1. scheduled jobs from the set {1, 2, ... , k -1, k +1,... , k +a}, in some sequence

starting at time t, followed by

2. job k, with completion time Ck(a) = t + Ej<k+ajSPj, followed by

3. scheduled jobs from the set {k + a + 1, k + a + 2, ... , n}, in some sequence,

starting at time Ck(a).

It follows that the overall sequence is optimal only if the sequences of the subsets

of jobs in (1) and (3) are optimal for starting times t and Ck(a), respectively. For any

given subset J of jobs and starting time t, there is a well-defined sequencing problem.

An optimal solution for problem J, t can be found recursively from optimal solutions

to problems of the form J', t', where J' is a proper subset of J and t' > t.

The subsets J which enter into the recursion are of a very restricted type. Each

subset consists of jobs in an interval i, i + 1, . .. , j, with processing times strictly less

than some value Pk. Accordingly, denote such a subset by

J(i, j, k) ={j'I i < j' < J, P' < Pk},

115

and let T(J(i, j, k), t, e) equal the total weighted tardiness for the optimal sequence

of jobs in J(i, j, k), starting at time t, and total rejection penalty of e (where rejected

jobs are from J(i, j, k).

By the application of Theorem 7.4.3, we have:

T(J(i, j, k), t, e) = min{ min {T(J(i, k + a, k'), t, b) +
a,1<b<e

wk max{O, Ck, (a) - dk'} +

T(J(k' + a + 1,j, k'), Ck,(a), e -b,

min {T(J(i, k + a, k'), t, b) +
a,1<b<e-ek'

T(J(k' + a + 1, j, k'), Ck,(a), e - b - ek)}} (7.11)

where k' is such that

Pk' max{pj,|j' E J(i,j,k) and k' not rejected},

and

Ck,(a) =t+ Pil

j' E J(i, k + a, k') and

j' not rejected

where the summation is taken over all jobs j' E J(i, ka, k').

The initial conditions for the equations 7.11 are

T(0, t, e) = 0

J 0
ej :? e : 0

T(j,t,e) 0= e 0

wj max(0, t + pj - dj) e = 0.

Establishing an upper bound on the worst-case running time required to compute

an optimal schedule for the complete set of n jobs is straightforward. There are no

more than O(n 3) subsets J(i, j, k). (There are no more than n values for each of

the indices, i, j, k. Moreover, several distinct choices of the indices may specify the

same subset of jobs.) There are no more than P = Ep < npmax possible values of

t. There are no more than E = E e < nemax possible values of e. Hence, there are

116

no more than O(n 3PE) or O(n5 pmaxemax) equations to solve. Each equation requires

minimization over at most n alternatives (for a) with O(n) running time. Therefore,

the overall running time is bounded by O(n4PE) or O(n6 pmaxemax).

7.4.2 Complexity with Common Deadline

Theorem 7.4.4 In any optimal schedule S for 1|dj = d| E wTj + E ej, the scheduled

jobs J that are started at or after the common due date d are scheduled in order of

nonincreasing values of wj/pj.

Proof Follows immediately from Smith's ratio rule [58]. m

Assume d < Ej pj; otherwise, we can schedule all jobs before d.

Theorem 7.4.5 In each optimal schedule S for I Idj = d| E wjT + E ej, there is no

inserted idle time.

Proof By contradiction. Let S be an optimal schedule for 1 dj = di E wjT + E ej

that has inserted idle period of length t. Let Jj be the first job that is

scheduled after the idle period. Jj is ready to execute at the beginning of

the idle period since we are not considering problems with release times and

inter-job lag times. Therefore, job J can be started t time units earlier,

thereby moving the idle period after job Jj. By starting job Jj t time units

earlier, its tardiness will either decrease or remain unchanged.

By repeating this argument for all jobs scheduled after J in S, the

idle period may be eliminated from the schedule. By our assumption that

d < Ej pj, there is at least one job Ji that is tardy in S. By eliminating

the idle period, the tardiness of this job is decreased by t. Therefore, the

schedule S' created by removing the idle period has a cost that is at least t

less than the cost of S, contradicting our assumption that S is an optimal

schedule with inserted idle time. m

117

For the special case when all deadlines are equal, the total weighted tardiness

problem 1Idj = dj E wjTj with agreeable weights is solvable in O(n in n) time by

scheduling the jobs in Shortest Processing Time (SPT) first order (ties broken by

largest weight, wj, first). Lawler [41] stated this observation without proof.

Theorem 7.4.6 The total weighted tardiness problem with common deadline and

agreeable weights, 1dj = dl E wTj, is solvable in ((n In n) time by scheduling the

jobs in SPT order with ties broken by largest weight first.

Proof Let the jobs be numbered in SPT order such that p3 ;> pji, ties bro-

ken by smallest weight wj, and let the jobs be agreeably weighted. Let

S be an optimal schedule to some instance I of the scheduling problem

1 Id = dl E w.-Tj with agreeable weights. Assume that the jobs in S are

not in SPT order. The order of the early jobs does not affect the total

tardiness; therefore, assume, without loss of generality, that the early jobs

are arranged in SPT order.

By Smith's ratio rule [58], the tardy jobs that start after the deadline

d must be in SPT order (with respect to the tardy jobs only).

Assume that there is at least one tardy job. Let job j be the latest

scheduled job in S that has a smaller job i > j scheduled after it. Let i be

the latest scheduled job after job j in S such that i > j. By assumption

on the ordering of the early jobs, i must be tardy. Interchange jobs i and

j to obtain schedule S'. The completion time of job j in S' is equal to the

completion time of job i in S. If p3 = pi, then interchanging jobs i and j

will result in a schedule with smaller total weighted tardiness (wj < wi due

to the ordering tie breaker), contradicting the assumption of optimality of

S. Thus, pj > pi, and the completion time of job i in S' is less than the

completion time of job j in S. In addition, all jobs scheduled between jobs

i and j in S' have a completion time that is less than their completion

time in S. Therefore, by assumption that S is an optimal schedule, i must

be the job in S that starts before the deadline d and completes after the

118

deadline. Furthermore, wi = wj; otherwise, by interchanging i and j to

obtain S', a schedule with smaller total weighted tardiness has been found,

contradicting the assumption that S is optimal.

It follows from this argument that the k jobs that start after the

deadline d are the k largest jobs, and they are arranged in SPT order. By

swapping jobs i and j and then arranging the early jobs in SPT order, an

optimal schedule S' with all jobs in SPT order is obtained. The SPT order

may be obtained by sorting the tasks based on processing time. Sorting

requires O(n ln n) time. Therefore, the total weighted tardiness problem

with common deadline and agreeable weights, 11dj = di E wjT, is solvable

in O(n in n) time by scheduling the jobs in SPT order with ties broken by

largest weight first. *

Another special case that is solvable in polynomial time occurs when the weighting

of the jobs is disagreeable in the sense that pj < pi implies wj/pj < wi/pi. For

the special case when all deadlines are equal, the total weighted tardiness problem

1Idj = dI E wf Tj with disagreeable weights is solvable in O(n ln n) time by scheduling

the jobs in Longest Processing Time (LPT) first order (ties broken by largest weight,

wj, first).

Theorem 7.4.7 The total weighted tardiness problem with common deadline and

disagreeable weights, 1|dj = d| E wT, is solvable in O(nlnn) time by scheduling the

jobs in LPT order with ties broken by largest weight first.

Proof Let the jobs be numbered in LPT order such that pj pj+i, ties broken

by smallest weight wj, and let the weighting of the jobs be disagreeable.

Let S be an optimal schedule to some instance I of the scheduling problem

1dj = d| IE wjT with disagreeable weights. Assume that the jobs in S are

not in LPT order. The order of the early jobs does not affect the total

tardiness; therefore, assume, without loss of generality, that the early jobs

are arranged in LPT order. By Smith's ratio rule [58], the tardy jobs that

119

start after the deadline d must be in LPT order (with respect to the tardy

jobs only).

Let j be the latest scheduled job in S such that there is a larger job

i > j scheduled after it in S. Let i be the first such job in S. By assumption

on the ordering of the early jobs, i is tardy. Swap jobs i and j to obtain

a new schedule S'. Swapping jobs i and j does not affect the tardiness of

any other job in the schedule. Therefore, the difference in cost between

schedules S and S', if any, will be due to jobs i and j. Furthermore, there

are two possible cases for the choice of jobs i and j: (1) job j is early and

job i starts at or before the deadline d in S and (2) job j starts before

the deadline d but completes after the deadline and job i starts after the

deadline in S.

Case 1: The cost due to jobs j and i in S is wip', where 0 < p' < pi.

The cost due to jobs j and i in S' is wjp' + wi max(0, p' - pj). By

assumption on the optimality of S

wip' < wjp' + wi max(O, p' - pj). (7.12)

If p' < pj,

WiP'< WjP'.

Due to the disagreeable weights wj < wi; therefore, wi = wj; other-

wise, S' has a smaller objective function than does S, contradicting

the assumption of optimality of S. If p' > pj,

Wip' <_ WjP'1 + Wip' - Wip

0 < w p's - Wipj

Wi/P't < Wj/pj.

Due to the disagreeable weights wj/pj < wi/pi. Since p' < pi, wj/Pj <

wj/p'. Therefore, wi/p' = Wj/pj, and S' is optimal; otherwise, S' has a

120

smaller objective function than does S, contradicting the assumption

of optimality of S.

Case 2: The cost due to jobsj and i in S is wiPi+Wp j, where 0 < p < pj.

The cost due to jobs j and i in S' is wj(pj + p - pj) + wjpj. By

assumption on the optimality of S

wipi+WsP Wi(Pi±p -p) +Wjp (7.13)
w~(Pi + WiP- Pj) +WjPj

Wi (Pj -P) <_ Wj (Pj -Pi).-

Due to the disagreeable weights wj < wi; therefore, wj = wi. Other-

wise, S' has a smaller objective function than does S, contradicting

the assumption of optimality of S.

After swapping jobs i and j, early jobs and tardy jobs may be re-

arranged into LPT order. By repeatedly swapping jobs in this manner, an

optimal schedule in LPT order may be obtained. Sequencing the jobs into

LPT order requires time O(n ln n). Therefore, the total weighted tardiness

problem with common deadline and disagreeable weights, 1dj = dl E wjT,

is solvable in O(n Inn) time by scheduling the jobs in LPT order with ties

broken by largest weight first. m

Arkin and Roundy [1] proved that for disagreeable job weights and arbitrary

deadlines, the problem 1I E wjT, is weakly AP-complete.

7.5 The Total Weighted Tardiness plus Weighted

Number of Tardy Jobs with Rejection and

Common Deadline

In this section, we consider a variant of the common deadline scheduling problems we

have examined thus far. Specifically, we consider the problem 1 dj = dl (Es wjT +

121

Es cjUj + ES ej), which we will denote as TWTDUE. In this scheduling problem,

if a job is scheduled, it has a fixed cost cj for being tardy, and it incurs a weighted

tardiness penalty as well. This problem is .AP-hard. In Section 7.5.1, I present a

pseudo-polynomial time algorithm for this problem, proving that it is weakly f/P-

hard. In Section 7.5.2, I modify the pseudo-polynomial time algorithm to obtain a

Fully Polynomial Time Approximation Scheme (FPAS). Finally, in Section 7.5.3, I

present a second pseudo-polynomial time algorithm for the scheduling problem.

7.5.1 A Simple Pseudo-Polynomial Time Algorithm

Assume the jobs are numbered in nondecreasing order of wj/pj. One way to solve the

TWTDUE problem is to generate a list of all feasible combinations of TWTDUE and

processing times. Each such combination is represented by a pair (Z, P) for which

there is a subset of jobs S with

Z = ZwjTJ + E clU + Z ej
jES' jES' jES'

P =(p<B= p -d
jES i

where the set S' is the set of scheduled jobs in S, the set S' is the set of rejected jobs

in S, and the tardiness of a job is determined by scheduling the scheduled jobs in

nonincreasing order of wj/pj starting at time EZ P3 - EES P3 -

The list can be generated in n iterations as follows. Initially place only the pair

(0, 0) in the list. Then, at iteration j form from each pair (Z, P) in the list two

'candidate' pairs, (Z + wj T + c.U., P + p.) and (Z + ej, P + p), if P + p < B, and

place the candidate pair with the smallest Z value in the list if it does not duplicate

an existing pair. The result is that at the end of iteration j, each pair in the list

represents a feasible tardiness with rejection-processing time combination for some

subset of items S C {1, 2,... , j}, and each subset is represented by a pair.

This procedure is inefficient because it generates many pairs which are not needed

to determine an optimal solution with cost Z*. It does not affect the computed value

of Z* if 'dominated' pairs are discarded. If (Z, P) is in the list, one may eliminate

122

any pair (Z', P') where Z < Z' and P > P'. After dominated pairs are eliminated,

each remaining pair (Z, P) satisfies the following conditions at the end of iteration j:

* Z is the smallest attainable TWTDUE for a subset of items S C {1, 2,... , j}

with total processing time at least P, and

" P is the largest attainable total processing time for a subset of items with

TWTDUE at most equal to Z.

The procedure is revised as follows. At the end of each iteration, the pairs (Z, P)

are in strictly increasing order of P and of Z. To perform iteration j, produce the

candidate pair (Z', P + pd), with Z' = min(Z + wjTj + cjUj, Z + ej), for each pair

(Z, P) provided P + Pj <B. Since the list is in increasing order of P, the production

of candidate pairs can be terminated whenever a pair (Z, P) is reached for which

P + pj > B. Then, merge the existing list and the list of candidates discarding

dominated pairs in the process. This is easily accomplished because of the ordering

of Z's and of P's.

At the end of iteration n there exists a set of (Z, P) pairs such that the addition

of some job i C 9 to S will cause P + pj > B. This is the set of (Z, P) pairs

we are interested in since one of these pairs will yield the optimal solution to the

TWTDUE problem. To find an optimal solution, start at the end of the list of pairs

and for each (Z, P) produce the candidate pair (Z + wjT + cUj, P + pj) such that

job j is scheduled beginning at time Epi - (P + pj) and wj(E pi - P) + cj =

minkCx{wk(Eipi - P) + Ck} where X = {klk c S and P +Pk > B}. If all of the

jobs in S are rejected, then produce the candidate pair (Z + ej, P + p.) such that

ej = minkex ek where X = {klk E S and P + PA > B}. Since the list is in increasing

order of P and we are traversing the list in reverse order, the production of candidate

pairs can be terminated whenever a pair (Z, P) is reached for which B - P > maxj p.

A candidate pair with the minimum Z' value, where Z' = Z + wjT + cjUj if some

jobs in S are scheduled and Z' = min{Z + wjT + cjUj, Z + ej} if all jobs in S are

rejected, corresponds to an optimal solution to the TWTDUE problem. The optimal

schedule for the TWTDUE problem is constructed from (Z', P + pj) by scheduling

123

all jobs in S - {j} in arbitrary order starting at time 0. If job j is not rejected,

schedule job j beginning at time Ei pi - P - pj, and schedule the scheduled jobs in

S in nonincreasing order of wj/pj beginning at time Ei pi - P.

At each iteration, the running time and space requirements are linearly propor-

tional to the number of pairs existing in the list at the beginning of the iteration. An

upper bound on the number of pairs in the list is min(Z*, B), where Z* is the total

cost in an optimal solution. Note that B is an upper bound on the number of pairs

in the list. Each of the first n iterations requires time 0(1) per pair (Z, P). The

final iteration to find an optimal solution requires O(n) time per pair (Z, P). Hence,

an upper bound on the running time for the overall procedure, in the worst case, is

((nB), and an upper bound on the space requirements is O(n + B). (The term n in

the space bound accounts for the storage of input data.)

Up to this point, we have ignored the problem of constructing an optimal solution.

A straightforward method, employed in [32], is to convert each pair (Z, P) to a triple

(Z, P, S), where S is a list of indices of items such that

Zp:1 = P, wa>T Z + = Z.
jeS jES' jek

Initially, only the triple (0, 0, 0) is placed in the list. Thereafter, at iteration d, each

candidate triple is of the form (Z+min(wjT, ej), P+p, S U{j}). This has the effect

of increasing the space bound to O(nB), since S may be O(n) in size. Forming the

set S U {j} may be assumed to require 0(n) time, thereby also adding an extra factor

of n to the time bound, making it ((n 2 B).

A more efficient method, employed in [40], constructs S by 'backtracking' through

a secondary data structure in the form of a rooted tree.

Each entry in the list of (Z, P) pairs has five components: a Z value, a P value,

a pointer to the next entry in the list, a pointer to the previous entry in the list, and

a pointer to a node in the rooted tree. Each tree node has two components: an item

index j and a pointer to its parent node.

To find the set S for an entry (Z, P) in the list, one goes to the tree node indicated

by its pointer and then reads off the item indices associated with nodes on the path

124

to the root. It is easily seen that S can be constructed in O(n) time.

Initially, the list contains only the pair (0, 0), and the tree pointer for this pair is

directed to the root of the tree. Thereafter, whenever a pair (Z+min(wjT, ej), P+pj)

is added to the list of (Z, P) pairs, the tree pointer for (Z + min(wjT, ej), P + pj)

is directed to a new tree node with associated item index j. The pointer for this

new node is directed to the node pointed to by (Z, P). These operations can be

implemented in constant time for each new pair (Z + min(wjT, ej), P + pj), or in

O(nB) time overall. Moreover, the tree requires O(nB) space.

7.5.2 A Fully Polynomial Time Approximation Scheme

The computation can be made more efficient by reducing the number of distinct P

values which may occur in the pairs (Z, P). The simplest method to accomplish this

is to replace each cj coefficient by

bj- =cj
k

each e coefficient by

each pj coefficient by

qj I ,

and replace the deadline d by

d' = -d

where k is a suitably chosen scale factor. Then B replaces B in the time and space

bounds given above.

We note that by using qj, the tardiness values are affected. Let C' and T' represent

the new completion time and tardiness values respectively using qj instead of p3 .

Then,

I gj = jpjlk]

< 1/kZ p3 .
i

125

Therefore, all of the completion times are scaled by at most 1/k, i.e., C5 < 9, and,

consequently,

T. C -- d'J

C3 d
-k k

I< -(Cj - d)

k-

requiring that the objective function be scaled by at most 1/k.

We note the inequality

kq3 < pj < k(q + 1).

It follows that for any set S

E pj - k E q < kJS|.
jES jES

Hence, if we can insure that

kJS*I < eB,

where S* is an optimal solution, then k will be a valid scale factor: the solution found

by the computation outlined in the previous section will be within the prescribed

accuracy e > 0.

We know that IS*J < n, and, without loss of generality, we can assume that

B ;> Pmax, where Pmax = maxj (pj). Therefore, we may choose

1
k = CPmax

n

Now, B nPmax, so
B <n2

k -

Substituting ! for B in the bounds obtained in the previous section, we obtain time

and space bounds of 0(3).

To prove that the performance ratio, R(I), is less than or equal to 1 + c we first

observe

OPT(I) - k OPT(Ik) < kn,

126

where OPT(I) is the optimal solution on instance I and OPT(Ik) is the optimal

solution on instance I with all processing times scaled by . This implies that

OPT(I) - Ak(I) < kn,

where Ak(I) is the solution obtained by the scaling algorithm described above. Note

also that OPT(I) > 2 by our assumption that B > pmax. With k = Epmax, we then

derive the performance ratio as follows,

Ak(I)
OPT(I)

< Ak(I)+kn
Ak(I)

kn

=lAx(I)

kn
SlOPT(I) - kn

kn
-2 - kn

< 1+ e.

Before we state the following theorem, we formally define a fully polynomial ap-

proximation scheme.

Definition 7.5.1 An approximation scheme for an optimization problem HI is an

algorithm A which takes as input both the instance I and an error bound e, and has

the performance guarantee

RA(, (1, +)

Definition 7.5.2 A fully polynomial approximation scheme (FPAS) is an approxi-

mation scheme A, where each algorithm A, runs in time polynomial in the length of

the input instance I and 1/E.

Theorem 7.5.1 Algorithm Ak described above with k = 'cpmax is a fully polynomial

approximation scheme with error bound e for 1|dj = dl E wjT + E ej.

Proof Follows from the running time bound of O(), the performance ratio

R(I) < 1+ c, and the definition of a fully polynomial approximation scheme.

0

127

7.5.3 Dynamic Programming on the Rejection Costs

In this section, we will investigate another dynamic program to solve the TWTDUE

scheduling problem, 11dj = dl(Es wjT+Es cjUj+Es ej). When rejection is allowed,

the makespan of the scheduled jobs is not known in advance. There are an exponential

number of sets of jobs that may be rejected. With arbitrary processing times, there

are an exponential number of possible makespans that will need to be examined.

Notice that when rejection is allowed there are four different classes of jobs: (1)

those jobs that finish before the deadline d, (2) those jobs that start at or after the

deadline d, (3) those jobs that are rejected, and (4) the job the starts before the

deadline d and finishes at or after the deadline (referred to as the crossing job).

There is no way to know, a priori, the crossing job. The dynamic program for

the scheduling problem without rejection does not need to know what the crossing

job is a priori because it has a fixed makespan. With a variable makespan due to

the possible rejection of jobs, knowing the crossing job can simplify the problem.

Therefore, for each possible crossing job, a dynamic program is solved assuming that

the crossing job is scheduled, and the best result is chosen from the possible solutions.

The procedure is as follows:

1. Order the jobs in non-decreasing order by Wj/pj ratio.

2. Solve the following dynamic program for each subset of n - 1 jobs:

Let f (j, t, e) be the minimal total cost for the first j jobs subject to the constraint

that the latest scheduled job in the set {1,... , j} completes no later than time

t and the total cost of the rejected jobs equals e.

f(0,t,e) = 0 t > 0;e > 0

f(j,t,e) = 00 t <0;j=0,... ,n

f(j,te) = 00 e < 0; j=0,... ,n

128

f(jt - 1,e)

f (d, t, e)=min f (J' 1, t - Pj, e) (.4
f ((- 1, t, e) + W)t + c

f(j - 1,t, e-) +ej

3. Let f(k)(n, t, e) denote the optimal solution for the subset of jobs {1,... , k -

1, k + 1, ... , n}. Find the values of k, t, and e which minimize

f(k)(n, t, e) + Wk(t + pk - d), (d - Pk < t < d).

The values of k and t identify the crossing job and its time of completion, while

f(k)(n, t, e) can be used to determine the early jobs, the tardy jobs, and the rejected

jobs. Solving the dynamic program requires O(ndE) time, where E = Ej ej is the

sum of the rejection costs for all tasks. The overall computation requires O(n 2dE)

time.

To justify the expression for the tardy jobs, consider the partition of the first j

jobs into early jobs and tardy jobs. Let A3 = Ei pi. If the total processing time

of the early jobs is t, the total processing time of the tardy jobs is A 3 - t. It follows

that if job j is tardy, its completion time will be An - (Aj - t), and the cost will be

w (An - (A3 - t)) = wjt + constant. If some of the jobs are rejected, the cost is still

wjt + constant since the ordering of the tardy jobs (excluding the crossing job) is

fixed by their ratios wj/pj.

7.5.4 Using the FPAS

The FPAS for the TWTDUE problem may be used as the fundamental step in an

algorithm for solving the general problem 1 (Es wjT + Eg ej). The algorithm is

shown in Figure 7.4. This algorithm incrementally builds a solution to the problem

1 (Es wjTj + Eg e,) starting with the last scheduled (and rejected) jobs. At each

iteration of the algorithm, all jobs are assumed to have a deadline equal to dmax, the

maximum deadline of the unscheduled and not rejected jobs. Jobs with a deadline

129

dj < dmax are assumed to incur no cost if they complete before dmax. However, if

job j completes after dmax, it incurs a cost that is equal to the cost incurred with

a deadline of dj. This cost is obtained by computing cj = wj(dmax - di) for each

unscheduled and not rejected job j and adding the term cjUj to the objective function.

The result of these modifications is that, at each iteration, a new problem 11dj =

dmaxI(E s WjiT +Es cj U+E9 ei) must be solved. A solution to this common deadline

scheduling problem is obtained by the FPAS described Section 7.5.2.

The solution to the FPAS yields a partial solution to the original problem

1 (Es wjT + Eg ej). The rejected tasks in the solution to the FPAS are rejected in

the solution to the original problem. However, only the last few scheduled tasks in the

solution to the FPAS may form a partial solution to the original problem. All tasks

in the solution to the FPAS that complete after dmax are prepended to the partial

schedule obtained in previous iterations. Subsequent iterations of the algorithm do

not consider the scheduled and rejected tasks that form a partial solution to the

original problem. A dummy job 0 with deadline do = 0, processing time po = 0,

and rejection cost eo = oc is added to the task set to ensure that all jobs are either

scheduled or rejected by the algorithm.

After all jobs have been either scheduled or rejected, the scheduled jobs are com-

pressed to remove any idle time from the schedule. Compression only decreases the

completion times of the scheduled tasks; therefore, compression only decreases the

cost of the schedule. The compressed schedule and the set of rejected jobs form a

solution to the original problem 1 (Es wjT + Eg ej).

It is an open problem whether or not a Polynomial Time Approximate Scheme

(PTAS) exists for the problem 1I(Es wjTj + Es ej).

130

Figure 7.4: An algorithm to solve 1(Es wjT + ES ej) using the FPAS from Sec-

tion 7.5.2.

131

1: // Incrementally build a solution to 111(S w1T + E9 ej) starting with the

2: // last jobs to be scheduled (and rejected). Set T is assumed to have a dummy job

3: // with deadline 0 and processing time 0.

4:

5: T - set of jobs to be scheduled or rejected

6: S 0 schedule of scheduled jobs

7: 0 set of rejected jobs

8:

9: while(T) {

10: // Assume all jobs have the maximum deadline dmax of the unscheduled jobs

11: dmax (max ET dj

12: // Compensate for assumption that deadline is now dmax instead of dj by adding scaling factor

13: // of c, Uj to objective function.

14: c3 wj (dmax - dj) V j E T

15: T' - T such that dj = dmax

16: S' schedule from FPAS used to solve 11dj = dmaxl(E j Tj + E cj U +E e)

17: for input T'

18: 4- rejected jobs from FPAS used to solve 11dj = dmax (E j T j + Sc U3 +
19: E ej) for input T'

20: // Jobs completed after dmax in S' form partial solution to the problem

21: S schedule of jobs in S' completed after dmax prepended to S

22: T +- T- all jobs in S' completed after dmax

23: // Jobs that are rejected form a partial solution to the problem

24: 9 4-S+5'

25: T -T - '

26: }
27: compress schedule S to remove idle time

28: return S and S

Every step forward in the world was formerly
made at the cost of mental and physical torture.

Nietzsche

Chapter 8

The Complexity of Scheduling with

Separation Constraints

Those two Things had to stop.
Then I said to the cat,
"Now you do as I say.
You pack up those Things
And you take them away!"

Dr. Seuss, The Cat in the Hat

This chapter examines the complexity of scheduling problems that contain sep-

aration constraints, probing the boundary between easily solved problems and their

more difficult generalizations. The scheduling with rejection problem formulation to

solve the hardware-software partitioning problem uses separation constraints to model

communication delays. Therefore, it is important to understand how the use of sep-

aration constraints affects the complexity of the scheduling with rejection problem.

Recent work [8] has shown that most single machine scheduling problems containing

separation constraints are at least as hard as the corresponding multiple machine

scheduling problem without separation constraints. Although this relationship is not

always true, it indicates that the addition of separation constraints can drastically

increase the complexity of a single machine scheduling problem.

133

8.1 Introduction

A complexity hierarchy describing the relationships between scheduling problems that

differ only in their objective functions is shown in Figure 7.1. This hierarchy indicates

that the Cmax and E Cj objective functions are the simplest. Therefore, proving that

a problem is AP-hard for these two objective functions proves that it is AP-hard

for all objective functions in the complexity hierarchy.

We examine the complexity of several single machine scheduling problems involv-

ing separation constraints for both the Cmax and the E C objective functions. We

prove that most of these problems are HP-complete in the strong sense1 for both

of these objective functions; therefore, the problems are HP-complete in the strong

sense for all of the standard objective functions. Table 8.1 summarizes my complexity

results.

Table 8.1: Complexity results presented in this chapter.

to be strongly KP-hard.

A '*' indicates the problem

'A problem is AVP-complete in the strong sense if it cannot be solved by a pseudo-polynomial

time algorithm. Thus, a strongly MP-complete problem cannot be solved in pseudo-polynomial

time even if its parameters are bounded by a polynomial.

134

Problem Presented

*lIchain; pmtn; lij = lCmax Section 8.2.2

*1 chain; pmtn; lij = l E Cj Section 8.2.2

*lIchain; pj = 1; lij, E {0, l}Cmax Section 8.2.3

*1chain;pj = 1; li, E {, l}I EC Section 8.2.3

*Ichain; pi E {1, 2};l = L (L > 2)1Cmax Section 8.2.4

*I chain; pj {1, 2};l, = L (L > 2)1 E Cj Section 8.2.4

*Pmchain; pi = 1 E wCE Section 8.2.5

*I1prec; pj = 1; li, = lCmax Section 8.3.1

*I1prec; pj = 1; lij = l E Cj Section 8.3.1

11chain; 02; 13 ICmax

lij E {0, 1} lij E {0, L} lij E {o, l}

P3

1i'j = 0 iij = 1 lij = L = 0(1) ij =1 lili

0
Pj E {1, 2}

pi = 1

(a)

11chain; 82; 03; 31 Z C

lij E {0, 1} lij E {0, L} lij E {0, l}

li, = 0 lij = 1 lj = L = 0(1) lij = l li,

p3 E {1, 2}

p3 = 1

(b)

Figure 8.1: Graphical representation of the known boundary for single machine
scheduling problems involving chain precedence constraints. Part (a) depicts the
boundary for the makespan objective function. Part (b) depicts the boundary for the
total completion time objective function. Nodes corresponding to problems with new
complexity bounds presented in this dissertation are boxed. Nodes corresponding to
problems whose complexity was previously known are doubly circled. We use the
representation given by [24]. Problems are represented by circles, filled-in if known
to be A/P-complete, empty if known to be in P, and dotted if their complexity is
unknown. An arrow from Hi to r12 signifies that 1, is a subproblem of 12.

135

11, 3 1; p = 1;065ICmax

lij E {o, 1} Iij E {0, L} lij E {0, l}

ij = 0 lij =1 lij L = (1) lij = 1 Ii~ i

prec

tree

chain

(a)

11,81; P = 1; 0 5 1 E Cj

lijE {0,1 1} ijE{0, L} lijE {0,l}

li~j = 0 li = ij = L = 0(1) lij = 1 Iij

prec

tree

chain

(b)

Figure 8.2: Graphical representation of the known complexity boundary for unit
execution time scheduling problems. Part (a) depicts the boundary for the makespan
objective function. Part (b) depicts the boundary for the total completion time
objective function.

136

My new complexity results narrow the boundary between known polynomial time

solvable problems and known VP-complete problems. Figure 8.1 graphically illus-

trates the boundary with regard to possible task processing times and distance con-

straints on a single machine. Figure 8.2 graphically illustrates the boundary with

regard to possible constraint topologies and distance constraints on a single machine.

Each circle represents a problem. A filled-in circle represents a known flP-complete

problem. An empty circle represents a known polynomial-time solvable problem, and

a dotted circle represents an unknown complexity for the problem. Problems with new

complexity results obtained in this dissertation are marked with a square. Problems

whose complexity was previously known are marked with a circle.

8.2 Chain Structured Tasks

In this section, we examine the complexity of several problems involving chain struc-

tured tasks, i.e., problems in which the precedence constraints form sets of chains. I

show that for the makespan, Cmax, and the total completion time, E Cj, objective

functions these problems are strongly f/P-hard; therefore, they are strongly flP-hard

for all of the objective functions shown in Figure 7.1.

The 3-Partition problem is reduced to all of the various scheduling problems in

their respective /VP-hardness proofs. The 3-Partition problem is stated as follows.

Given a set of 3q elements A = {ai, a2 , . .. , a3}, a bound B, and a size

s(aj) for each aj E A such that B/4 < s(aj) < B/2 and EaA As(aj) = qB,

can A be partitioned into q disjoint sets A1 , A 2 ,..., Aq such that for

1 < k < q, Ea CAk s(aj) = B?

For each scheduling problem H in which this reduction is performed I show that

for every instance of 3-Partition we can compute an instance of H and a value z in

polynomial or pseudo-polynomial time such that the instance of 3-Partition has a

'Yes' solution if and only if the instance of H has a schedule of length at most z (for

the makespan objective) or the sum of the completion times is at most z (for the

137

total completion time objective). The strong A/P-hardness results follow from the

fact that 3-Partition is A/P-complete in the strong sense [24].

8.2.1 11chain; Ij,k = lICmax, E Cj

The most basic chain structured tasks scheduling problems involving distance con-

straints are 1chain; lj,k = lCmax, E Cj. The complexity of these problems was first

examined by Balas et. al.[4] and Brucker and Knust[9] respectively. Balas et. al. were

able to prove the strong AP-completeness of 11chain; lj,k = lCmax with a simple

reduction from 3-Partition. Brucker and Knust extended this proof in a straight for-

ward manner to handle the total completion time objective function. The problems

examined in the remainder of this section are restricted versions of these two prob-

lems (in the sense that they contain additional 3 constraints compared with these

problems), and their respective flP-completeness proofs are very similar in structure

to the simple flP-completeness proofs of 11chain; lj,k = llCmax, E C3 . For this reason,

I repeat the fl/P-completeness proofs for 1chain; lj,k =l1Cmax, E Ci.

Theorem 8.2.1 ([4]) 1|chain; lj,k lICmax is AP-complete in the strong sense.

Proof This problem is clearly in P. To prove that it is strongly flP-hard we

reduce the 3-Partition Problem to it.

Given an instance of the 3-Partition Problem, we construct an in-

stance of the 1chain; Ij,k = lCmax problem as follows. There are 4q + 1

tasks. For each a3 E A, there is a task T with processing time pj = s(aj).

For each i C {o, ... , q}, there is a task Xi with processing time pi = B.

The tasks Xi form a chain X = Xo -< X 1 -< - - Xq with all distance

constraints equal to B. The tasks T have no precedence constraints as-

sociated with them. We define z = 2qB + B. Note that the precedence

constraints form a single chain and that the processing times of all the

tasks is equal to z. Also, note that the chain X requires z time units to

complete due to the distance constraints. Thus, any schedule that com-

pletes before the deadline, z, must not have any idle time, and the tasks

138

in X must be scheduled as soon as possible. The template formed by X is

shown in Figure 8.3. It is easily verified that this reduction requires time

polynomial in the parameters of the 3-Partition Problem.

B 3B 5B 7B 2qB-5B 2qB-3B 2qB-B 2qB+B
0 2B 4B 6B 2qB-6B 2qB-4B 2qB-2B 2qB

xI xO ff 1lX2 xM X1 0 - *-3 MXq-2 M X-1 x

Figure 8.3: Template formed from the X chain in the proof of Theorem 8.2.1.

Suppose there exists a 'Yes' solution to the 3-Partition Problem.

Since there exists a 'Yes' solution to the 3-Partition Problem, there exist

q 3-element subsets Si such that EZes, pj = B. Since the chain X can

be scheduled in time 2qB + B leaving q intervals each containing B time

units, each of the q sets Si may be scheduled within one interval for a total

schedule time of 2qB + B.

Suppose that a schedule of length z exists. The chain X requires

a minimum time of 2qB + B to complete. Since there are exactly B time

units between each of the tasks in X in a schedule that completes in time

2qB + B and preemption is not allowed, each set of tasks Si scheduled

between tasks Xi_1 and Xi must have exactly B units of execution time.

Furthermore, since B/4 < pj < B/2 VT there must be at least three tasks

in each set Si. The fact that there are exactly q sets Si requires that there

be exactly three tasks in each set Si. Thus, there exists a partition into q

3-element subsets Si, such that Erjcs pj = EZTjs, s(aj) = B (1 < i < q),

and the schedule is a witness to such a partition. Thus, we have a 'Yes'

instance of 3-Partition. m

The reduction for the total completion time objective function is essentially iden-

tical to the reduction for the makespan objective function. The main difference is

that the template chain X has a large number of extra tasks in it. Combined with

the appropriate cost z, these extra tasks force the tasks in chain X to be scheduled

as soon as possible. A large number of extra tasks are required in X since the exact

139

finish times of the tasks corresponding to the elements of A are not known. The

sum of the finish times of the tasks corresponding to the elements in A may only

be bounded. Thus, without the additional tasks in chain X, it is possible to have

a solution with total completion time at most z when the corresponding 3-Partition

problem does not contain a 'Yes' solution.

Theorem 8.2.2 ([9]) 1|chain; Ij,k = 1| E C is is P-complete in the strong sense.

Proof This problem is clearly in flP. To prove that it is strongly flP-hard we

reduce the 3-Partition Problem to it.

Given an instance of the 3-Partition Problem, we construct an in-

stance of 1chain; 1j,k = l E C as follows. There are n = 3q + M tasks

where M = 2(3qB + B)q(q + 1) + q. For each aj E A, there is a task T

with processing time pj = s(aj). For each i E {1,... , M}, there is a task

Xi with processing time pi = 3qB. The tasks Xi form a chain X = X, -<

X2 - - - - XM with all distance constraints equal to B. The tasks T

have no precedence constraints associated with them. We define

M q

z = 1[3qBi + B(i - 1)] + 1[3j(3qB + B)].
i=1 j=1

Suppose that there exists a 'Yes' solution to the 3-Partition Problem.

Since there exists a 'Yes' solution to the 3-Partition Problem, there exist

q 3-element subsets Si such that ErjSsi pi = B. Since the chain X can

be scheduled such that there exists M - 1 'holes' each containing B time

units, the tasks in X are scheduled as soon as possible. Thus, each of the

q sets Si may be scheduled within one hole. We schedule the sets Si in the

first q holes. The resulting mean flow time of the schedule satisfies

En=1 C1 = EM 1 C3 + EI CM+i

<; M1 [3qBi + B(i - 1)] + E,4_ 1 [3j(3qB + b)]

- z.

140

Suppose that a schedule with mean flow time at most z exists. The

first q tasks of chain X must be scheduled as early as possible. Assume

that this is not the case. Then,

In=1 C1 > EMI C_

> Z>=1[j3qB + (j - 1)B]+ Eq+l[j3qB + (j - 1)B + 1]

- z + (M - q) - Eq_ 1[3(3qB + B)j

> z + (M - q) - 1(3qB + B)q(q +1)

Sz+ (M - q) - (M - q)

> Z,

which is a contradiction. Thus, the tasks of the chain X must be scheduled

as early as possible.

In order for the mean flow time of the schedule to be at most z the

tasks T, 1 j < 3q, must be scheduled before task Xq+i. Since there

are exactly B time units between each of the tasks in X and preemption

is not allowed, each set of tasks Si scheduled between tasks Xj_1 and Ti,

2 <i q + 1, must have exactly B units of execution time. Furthermore,

since B/4 < pj < B/2 VTj there must be at least three tasks in each set

Si. The fact that there are exactly q sets Si requires that there be exactly

three tasks in each set Si. Thus, there exists a partition into q 3-element

subsets Si, such that EZEs, Pj = EZes, s(aj) = B (1 < j < q), and the

schedule is witness to such a partition. Thus, we have a 'Yes' instance of

3-Partition. u

8.2.2 11chain; pmnt; Ij,k = LICmax, E Cj

A slightly 'easier' version of the above problems allows preemption in a feasible sched-

ule. The A'P-completeness proofs for the non-preemptive problems do not hold when

preemption is allowed. Therefore, we must reexamine their complexity in light of pre-

emption.

Balas et. al.[4] were able to prove that when preemption is allowed and the dis-

141

tance constraints are restricted to a set of two values that are inputs to the prob-

lem, the problem with the makespan objective function is strongly .AP-complete.

I improve upon this result by showing that preemption does not improve the com-

plexity of the problem when all distance constraints are equal to the same value,

i.e., ljchain;pmnt; l,k = lCmax, E Cj are strongly AP-complete.

The AP-completeness proofs are very similar to those for the non-preemptive

problems. The main differences are that each element of A corresponds to a chain

of tasks instead of a single task and the template chains form 2q intervals within

which these tasks may be scheduled. The key idea is that the schedule from the

first q intervals (corresponding roughly to the schedule in the non-preemptive proofs)

constrains the possible schedules in the second q intervals (the mirror schedule).

Theorem 8.2.3 1|chain; pmnt; lj,k = lCmax is A/P-complete in the strong sense.

Proof llchain; pmnt; l,k = lCmax is clearly in /P. To prove that it is also

strongly A/P-hard, we reduce the 3-Partition Problem to it.

Without loss of generality we assume that B > 3 and that s(aj) >

3, V aj E A. If this is not the case, then we may scale B and s(aj), V aj C A,

by a constant without affecting the 3-Partition Problem. This constraint

is required to ensure the validity of the transformation.

Given an instance of the 3-Partition Problem, we construct the fol-

lowing instance of lIchain; pmnt; 1j,k = lCmax. There are 3q 2 + 7q + 1 tasks

arranged in 3q +2 chains. For each a3 E A there is one chain Cj containing

q + 1 tasks, C(j,1), C(j, 2), ... , C(j,(q+1)). The processing times for C(j,1) and

C(j,(q+1)) are s(aj). All other processing times for the tasks in Cj are equal

to 1.

Two additional chains, X and Y, are created. X contains 2q + 1

tasks each with processing time 1 (defined below). Y contains 2q tasks with

processing times of

3q - 3i + 1 for 1< i < q

3i - 3q - 2 for q + 1 i < 2q

142

1+3q-2 31+3q-5 51+3q-8 71+3q- II

0 1 21 31 41 51 61 71 81

0K 0 o

P1 =s(a.) P 1 P 1 P4 1

2q]-41 2q-1 31 2ql-
2
1 2 q1- 1 2ql

2
ql+ l ++ 2q1+21 2q1+3 +31+4 2ql+

4
1

q- 1) (j.q+ =s(a.)

4l5+q84
5
I-3I.-3

4
-5

4
ql-1+3q-

2

4ql-61 4ql-51 4ql-41 4qI-31 1 4q-21 - 4ql 4ql 4ql+]

1 X2q-3 Y2 -3 X2q-2 Ylq-2 X 2qA M Xq

Figure 8.4: Template formed from the X chain and the Y chain in the proof of

Theorem 8.2.3. This template limits the scheduling structure of the Cj chains.

All distance constraints are equal. We define the non-zero distance

constraint to be

l = B + 3q - 2.

The deadline for the schedule is z = 4ql+l. Note that the processing

times of all the tasks is equal to 4ql + 1; thus, any schedule that completes

before the deadline must not have any idle time. Figure 8.4 illustrates

how the template chain X and the enforcer chain Y create a template

within which the C chains must be scheduled. It is easy to verify that this

reduction requires time polynomial in the parameters of the 3-Partition

problem.

Suppose we have a 'Yes' instance of 3-Partition. A schedule of length

z is constructed as follows. Start the tasks of chain X as soon as possible.

X(2q+1) finishes at time z. We have 2q intervals, 11, 12, - - - , 12q, each of

length I within which the remaining tasks must be scheduled. Chain Y

has 2q tasks; therefore, one task of chain Y must be executed during each

interval. Furthermore, the distance constraints require that no more than

one task of Y may be executed during any one interval. Thus, schedule

143

Yi in interval Ii. After scheduling chain Y, the empty time slots in each

interval Ii are characterized by the following function.

B + 3(i - 1) 1 < i < q
empty (Ii) = (q-2 q+I<i<2B+3(2q-i) q±1 &i g2q

By assumption of a 'Yes' instance of 3-Partition, there exists q dis-

joint 3-task sets, HI, H 2, ... , Hq, with processing time of B and comprised

of the first task from the chains Cj, 1 j < 3q. Schedule Hk in interval

Ik, 1 < k < q. Consider task C(j,1) scheduled in interval Ii (i < q due

to how we scheduled the sets Hk). The tasks C(j,2), C(j,3), ... , C(j,q) can

be scheduled during the next q - 1 intervals. The additional empty time

slots left by chain Y allow these 'pass-through' tasks to be scheduled in

these intervals. By scheduling them thus, C(j,(q+1)) can be scheduled in the

interval Ii+q. The resulting schedule is feasible with a makespan of z.

Conversely, suppose that we have a schedule of length z. As before,

the tasks in chain X must be scheduled as soon as possible, and exactly one

task from chain Y must be scheduled in each interval Ii, 1 < i < 2q. The

tasks from the Cj chains are scheduled without idle times in the remaining

time slots of the intervals. Furthermore, due to the distance constraints and

lengths of the chains C, the first tasks from these chains, C(j,1), 1 < j < 3q,

must be scheduled in the first q intervals Ii, 1 < i < q, and the last tasks

from these chains, C(j,(q+1)), 1 < j < 3q, must be scheduled in the last q

intervals Ii, q + 1 < i < 2q.

Consider the first interval I, and only the first tasks in the chains

C3 . Let Si be the set of C(j,i) tasks that are started and finished in I,.

Task Y requires 3q - 2 time units in 1 leaving B time units to schedule

other tasks. Assume that EC(j,)cSI Pj = B - c for some c > 0. Consider

the interval Iq+1 Yq+ 1 has an execution time of 1. There are at most 3q

unit execution time tasks from the chains Cj that may be scheduled in

this interval. The only additional tasks that may be scheduled in this time

144

interval are the final tasks of the chains Cj whose first task was scheduled

in the first interval I, such that C(j,i) E S1. IS, I 3 by the constraints in

the 3-Partition Problem, and c is characterized by the following function

due to our assumptions on B and s(aj), aj E A.

B if ISi =0

;> B/2+1 if fSi= 1

2 if Si= 2

3 if fSi= 3

Therefore, there are c - 3 + SI > 0 idle time slots in interval Iq±. It

follows that our assumption is incorrect, and Ec(j1)Es pj = B. An itera-

tive application of this argument leads to the identification of sets Si with

ZC(jj)ESi Pj = B for 1 < i < q and to the conclusion that we have a 'Yes'

instance of 3-Partition. m

As in the previous section, the proof for 1 chain; pmnt; lj,k = I Cj follows the

proof for 1 chain; pmnt; 1
3 ,k_ = lCmax. This is achieved by making the template chain

X and the enforcer chain Y much longer than the chains corresponding to the elements

of A. The increased lengths of X and Y ensures that they are scheduled as soon as

possible except possibly at the end. The chains corresponding to the elements of A

must then be scheduled without idle times in the first 2q intervals caused by X if

there is a 'Yes' instance of 3-Partition. Scheduling a task from these chains after all

tasks in X (or most tasks in X) causes the total completion time of the resultant

schedule to be greater than the target value z.

Theorem 8.2.4 1ichain;pmnt; lj,k = i| E C is AP-complete in the strong sense.

Proof 1chain; pmnt; lj,k = i1 E C is clearly in /P. To prove that it is also

strongly VP-hard, we reduce the 3-Partition Problem to it.

Without loss of generality we assume that B > 3 and that s(aj) >

3, V aj E A. If this is not the case, then we may scale B and s(aj), V aj E

A, by a constant without affecting the 3-Partition Problem. Given an

145

instance of the 3-Partition Problem, we construct the following instance of

1Ichain; pmnt; l,k = l T, Cj. There are 3q + 2 chains. For each a3 E A

there is one chain C containing q + 1 tasks, C(j,1), C(j, 2), .. . , C(j,(q+1))-

The processing times for C(j,,) and C(j,(q+1)) are s(aj). All other processing

times for the tasks in Cj are equal to 1.

Two additional chains, X and Y, are created. X contains 1' + 2q +1

tasks each with processing time 1. Y contains 15 + 2q tasks with processing

times of
3q - 31+I for I < i < q

p(Yi)= 3i - 3q - 2 for q +±1 i < 2q

1 for 2q +1 < i < 15 + 2q

All distance constraints are equal. We define the non-zero distance

constraint to be

l = B+ 3q - 2.

The target mean flow time for the schedule is

15 +2q+1 15 +2q 2q

Z= [1(21 - 1)] + 1: [21i] + > [21if (i)],
i=1i=2q+1 i=1

where f(i) is defined as

f(i))4 + [(3q - 2) - (3q - 3i+ 1)] 1 < i < q

4 + [(3q - 2) - (3i - 3q - 2)] q + 1 < i < 2q

It is easy to verify that this reduction requires time polynomial in the

parameters of the 3-Partition problem.

Suppose we have a 'Yes' instance of 3-Partition. A schedule with

mean flow time < z is constructed as follows. Start the tasks of chain X

as soon as possible. Thus,

15 +2q+1 15+2q+1

SCx [l(2i - 1)].

We have 15 +2q intervals, I1, 12, ... h 1,5+2q, each of length I within which the

remaining tasks must be scheduled. Chain Y has 15 + 2q tasks; therefore,

146

one task of chain Y must be executed during each interval. Furthermore,

the distance constraints require that no more than one task of Y may be

executed during any one interval. Thus, schedule Y in interval Ii. It is

easily seen that if the first 2q tasks of X and Y are not scheduled as above,

then the schedule will have a mean flow time > z. After scheduling chain Y,

the empty time slots in each interval I, are characterized by the following

function.

B+3(i-1) 1<i< q

empty(Ii)= B+3(2q-i) q+1<i <2q

0 2q+1<i <1 5i+2q

By assumption of a 'Yes' instance of 3-Partition, there exists q dis-

joint 3-task sets, H 1, H2 ,..., Hq, with processing time of B and comprised

of the first task from the chains C3 , 1 < j < 3q. Schedule Hk in interval

Ik, 1 < k < q. Consider task C(j,1) scheduled in interval Ii (i < q due to

how we scheduled the sets Hk). The tasks C(j,2), C(j, 3), ... , C(j,q) can

be scheduled during the next q - 1 intervals. The additional empty time

slots left by chain Y allow these 'pass-through' tasks to be scheduled in

these intervals. By scheduling them thus, C(j,(q+1)) can be scheduled in the

interval Ii+q. The resulting schedule is feasible with a mean flow time < z.

Conversely, suppose that we have a schedule with a mean flow time

< z. As before, the tasks in chain X must be scheduled as soon as possible,

and exactly one task from chain Y must be scheduled in each interval IA,

1 < i < 15 + 2q. The tasks from the Cj chains are scheduled without

idle times in the remaining time slots of the intervals. If this is not the

case, then there must be at least one task, Tk, with completion time Ck >

(l + 2q + 1)B > ZFi[21if(i)] contradicting our assumption on the mean

flow time of the schedule. Furthermore, due to the distance constraints and

lengths of the chains C3 , the first tasks from these chains, C(j,1), 1 < j < 3q,

must be scheduled in the first q intervals I, 1 < i < q, and the last tasks

147

from these chains, C(j,(q+1)), 1 - j 3q, must be scheduled in the last q

intervals I, q + 1 < i < 2q.

Consider the first interval I, and only the first tasks in the chains

C,. Let Si be the set of C(j,1) tasks that are started and finished in I1.

Task Y requires 3q - 2 time units in I, leaving B time units to schedule

other tasks. Assume that Ec(j,)cssPj = B - c for some c > 0. Consider

the interval Iq+1- Yq+l has an execution time of 1. There are at most 3q

unit execution time tasks from the chains C, that may be scheduled in

this interval. The only additional tasks that may be scheduled in this time

interval are the final tasks of the chains Cj whose first task was scheduled

in the first interval 1 such that C(j,,) E S1. ISi < 3 by the constraints in

the 3-Partition Problem, and c is characterized by the following function

due to our assumptions on B and s(aj), aj c A.

B if IS1= 0

c > B/2 + 1 if ISl = 1

2 if IS1 = 2

3 if ISi1 = 3

Therefore, there are c - 3 + |S1 > 0 idle time slots in interval 'q+1. It

follows that our assumption is incorrect, and EZC)esi Pj = B. An itera-

tive application of this argument leads to the identification of sets S with

ZC(jsesi Pi = B for 1 < i < q and to the conclusion that we have a 'Yes'

instance of 3-Partition. m

8.2.3 1|chain; pj = 1; lj,k E {0, 1}Cmax, E Cj

The strong A'P-completeness results for the preemptive version of the problem sug-

gests that if the problem is restricted to have integral processing times and distance

constraints, then preemptions may occur at integral boundaries only without affecting

the complexity of the problem. The following lemma formalizes this observation.

148

Lemma 8.2.1 If all input parameters are integral valued, then there exists an optimal

solution to 1|131; pmtn; #3; /3 Cma, E Cj such that all preemptions occur at integral

time boundaries.

Proof We will prove this lemma by constructing an optimal solution S' containing

preemptions only at integral time boundaries from an optimal solution S

that may have preemptions at non-integral time boundaries. The solution

S' will be constructed by iteratively 'fixing' a unit of execution time from

a single task into a time slot. Once a unit of execution time is 'fixed' at a

particular time slot it will remain at that time slot for the remainder of the

iterations.

Let S be an optimal solution to a problem in 1|1 3; pmtn; /3; 5

Cmax, E C3 . Let t, be the first time slot in S that has more than one task

scheduled in it. Fix the schedule through time slot ti- 1 . Considering only

non-fixed task segments, let task C be the first task to complete an integral

amount of processing after time t, in S. Let t, > t be the time slot in

which this unit of C completes. We may move this unit of processing time

of C to time slot tk where t, tk < tj and tk is the earliest time slot not

already containing a fixed unit of processing time in which this unit of C

may be scheduled. Fix this unit of C in time slot tk. Note that due to

distance constraints tk may not be equal to ti.

All non C tasks that were scheduled in the interval [tk, tj] in S may

be 'compressed' into the interval [tk + 1, tj] where the compression does

not change the scheduled time of fixed task segments. The compression

maintains the ordering of the compressed tasks in the schedule, and it

does not change the completion times of any task in the schedule S except

possibly decreasing the completion time of task C. Thus, the modified

schedule is still optimal.

By iteratively finding a time slot t2 and a task C, we construct the

schedule S' that contains preemptions only at integral boundaries, and the

149

lemma is proven. m

The complexity results for the makespan scheduling problem containing chains,

unit execution time tasks, and all distance constraints equal to either zero of 1 for

some 1 input to the problem follow directly from Theorem 8.2.3 and Lemma 8.2.1.

Theorem 8.2.5 1|chain;pj = 1;lj,k E {0, l}|Cmax is AP-complete in the strong

sense.

Proof Follows from Theorem 8.2.3 and Lemma 8.2.1. m

Likewise, the complexity for the mean weighted flow time objective follows from

Theorem 8.2.4 and Lemma 8.2.1.

Theorem 8.2.6 1chain;pj = 1; lj,k E {0, l} EwjCj is AP-complete in the strong

sense.

Proof Follows from Theorem 8.2.4 and Lemma 8.2.1. m

However, we can do better than this. The complexity for the total completion time

objective function follows from the complexity for the makespan when all processing

times are equal to one.

Theorem 8.2.7 1| chain; pj = 1; l,k E {0, }1 E Cj is AP-complete in the strong

sense.

Proof We restrict the problem to instances where the optimum schedule Sopt

contains no idle time. The sum of the completion times for Sopt is ZS"ax i

SEn i = n(n + 1). Solving for the optimum sum of completion times is

equivalent to solving for the optimum makespan. The theorem then follows

from Theorem 8.2.5. m

150

8.2.4 1Ichain; pj E {1, 2}; j,k = L (L > 2)1Cmax, E Cj

We now turn our attention to the case when the values of the distance constraints

are no longer part of the input to the problem, but instead are a fixed value. We

consider the problem when all distance constraints are equal to a fixed value L. When

L = 0, 1101; #2; B3; li, = 01Cmax, E Cj are solvable in polynomial time. When L = 1,

1LL 1; /2; /3; li, = 11Cmax are solvable in polynomial time; however, the complexity of

many of these problems is unknown for the sum of completion time objective function

E Cj. We consider problems for which L > 2 and 1 = chain. We further restrict the

problem to contain only tasks with processing times of either 1 or 2. In other words,

we examine the complexity for 1chain; pj E {1, 2}; ljk = L (L > 2)1Cmax, E C. I

prove that 1chain; pj C {1, 2}; Ij,k = L (L > 2)1Cmax, E Cj are strongly A/P-complete

problems. These results are stronger than the results from Section 8.2.1.

Theorem 8.2.8 1|chain; p E {1,2};1, = L (L > 2)|Cmax is A/P-complete in the

strong sense.

Proof This problem is clearly in /P. To prove that it is strongly A/P-hard we

reduce the 3-Partition Problem to it.

Given an instance of the 3-Partition Problem, we construct an in-

stance of the 11chain; pj E {1, 2}; lj,k = L (L > 2)1Cmax problem as follows.

There are [(6 + B)q + 1](L - 2) + 3q(3 + B) + 1 tasks. For each a3 E A,

there is a chain C, consisting of s(aj) + 1 tasks, Cj,1 -- Cj, 2 - - -

Cj,s(,)+l, with processing times Pj,k = 1, 1 < k < s(aj), and pj,s(a,)+1 = 2.

L additional chains, X_, 1 < i < L - 1, and Y, are created. Xi, 1 <

i L - 1, contains (6 + B)q + 2 tasks each with processing time 1. Y

contains (3 + B)q + 1 tasks with processing times of

2 i =

P (Yi) = 1 j(3+ B) + 1 < i _<j(3+ B) + B, 0 < j < q -1

2 j(3+ B) + B+1 < i < j(3+ B) + B + 3, 0 < j < q- 1.

All distance constraints are equal to a constant L > 2.

151

We define z = [(6 + B)q + i]L + L - 1. Note that the sum of the

processing times of all tasks is equal to z; therefore, any schedule that

completes by time z must not have any idle time. Figure 8.5 illustrates

how the template chains Xi and the enforcer chain Y create a template

within which the C chains must be scheduled. It is easy to verify that this

reduction requires time polynomial in the parameters of the 3-Partition

problem.

X. XI x x, H x, y *.*

. . B B+1 XB,2 B+1I X B, 3
XB.4 I B+2 XB+5

XB+6 I B+3 XB+7 H B+4 0 0

. .X . 6+B Y3+B)q X (6B)q +B) 3+Bq (6+B (6+B)q '(3+B)q X(6+B) X(6+B)ql B(3+B)q +

1 -6 -3 1 _ M -41 -2 1 -3 M-21 -1 1 1I

Figure 8.5: Template formed from the Xi chains and the Y chain in the proof of

Theorem 8.2.8. Xk in the figure corresponds to the set of tasks Xik, 1 < i < L - 1.

The shaded regions indicate unused processing times after chains X-, 1 < i < L - 1,

and Y have been scheduled.

Suppose that there exists a 'Yes' solution to the 3-Partition Problem.

Schedule the tasks of chains Xj, 1 < i < L - 1, as soon as possible.

Xi,(6+B)q+2 finish at times [z - L + 1, z]. We have (6 + B)q+ 1 intervals, I1,

12, ... , I(6+B)q+1, each of length 2 within which the remaining tasks can be

scheduled. Chain Y has (3 + B)q + 1 tasks; however, due to the processing

times of the tasks in Xi and the distance constraints there are 3q intervals

during which a task from Y cannot be scheduled, e.g., the interval between

tasks Xi,B+6 and Xi,B+7 Vi. Therefore, we must schedule the tasks of Y as

early as possible. After scheduling chain Y the empty time slots in each

152

interval Ii are characterized by the following function

1

. j(B+6)+B+3 O<j q -1
0 =

j(B+6)+B+5 0 < j < q-1

j(B+6)+B+7 0 < j < q -

empty(I) = <

1 i =k +j(B+±6)+l l, 5k<5BO5j 5q -l

j(B+6)+B+2 0 < j < q-1

2 i= j(B+6)+B+4 0<j<q-1

j(B+6)+B+6 0 < j < q-1

By assumption of a 'Yes' instance of 3-Partition, there exists q dis-

joint 3-element sets, H1 , H 2, ... , Hq, with each element a corresponding

to chain C3 . Schedule the corresponding chains of the elements in H1 dur-

ing the first 3 + B non-full intervals. Note that of these 3 + B intervals,

each of the first B intervals has one idle time unit and each of the last three

intervals has 2 idle time units. The tasks corresponding to H1 consist of B

tasks with pj = 1 and three tasks with pj = 2. The precedence constraints

are such that the tasks corresponding to H1 may be scheduled in the first

3 + B non-full intervals. (A non-full interval is an interval that contains

a non-zero amount of unused processing time after all chains Xi and Y

are scheduled.) Similarly, the tasks corresponding to H 2 may be scheduled

in the next 3 + B non-full intervals, and so on. The resulting schedule is

feasible and has a makespan of z.

Conversely, suppose that we have a schedule of length z. As before,

the tasks in chains Xi, 1 < i < L - 1, must be scheduled as soon as possible,

and the tasks from chain Y must be scheduled as soon as possible within the

(6+ B)q + 1 intervals. The tasks from the Cj chains are scheduled without

idle times in the remaining time slots of the schedule. Furthermore, tasks

153

with an execution time of 1 are only scheduled in intervals containing a

task of Y with an execution time of 1, and tasks with an execution time of

2 are only scheduled in intervals that do not contain a task from Y.

Consider the first 3 + B non-full intervals. Each of the first B in-

tervals contains a unit execution time task in a chain. By assumption on a

schedule of length z, intervals IB+2, IB+4, and IB+6 each contain a non-Y

task with execution time of 2. Since all non-Y tasks with an execution

time of 2 are the final tasks in the C chains, there must be three chains

Ci, Cj, and Ck, that have their respective first s(ai), s(aj), and s(ak), tasks

scheduled in the first B intervals. Therefore, chains Ci, Cj, and Ck are

completely scheduled during the first 3 + B non-full intervals. Ci, Cj, and

Ck correspond to set H1 containing the elements ai, a3 , and ak such that

JHi I = s(a) + s(aj) + s(ak) = B. An iterative application of this argument

over each of the q sets of 3 + B non-full intervals leads to the identification

of sets H with I HI= B for 1 j < q and to the conclusion that we have

a 'Yes' instance of 3-Partition. m

The complexity proof for the total completion time objective function is identical

to the complexity proof for the makespan objective function. This is because the

reduction forces the tasks to have a known sum of completion times. There is no

variability in the sum of completion times if there is a 'Yes' solution to the 3-Partition

problem. Therefore, by replacing z in the complexity proof for the makespan objective

function with the sum of the completion times of chains Xi, 1 < i < L - 1, Y, and

Cj, V aj E A, the proof remains valid for the total completion time objective function.

Theorem 8.2.9 1|chain; pj E {1, 2}; lj,k-- L (L > 2)| E Cj is MP-complete in the

strong sense.

8.2.5 Complexity Boundary Analysis involving Chains

I have proven the strong .AP-completeness of several single machine problems involv-

ing chain structured tasks. By extension, the multiple machine versions of these prob-

154

lems are also strongly .AP-complete. These results lead naturally to the question of

where is the boundary between polynomial time solvable problems and KP-complete

problems.

Table 8.2 presents the known boundary for the single machine case with respect

to the makespan and total completion time objective functions. Polynomial time

solvable problems are denoted by a 'p.' Strongly .A/P-complete problems are denoted

by a '*.' And, problems with an unknown complexity are denoted by a '?.' Note that

the complexity results obtained in this section are all new minimal KP-complete

results.

A graphical representation of this boundary with respect to allowable task pro-

cessing times and distance constraints is shown in Figure 8.1. The graph in Part (a)

of the figure depicts the boundary for the makespan objective function, and the graph

in Part (b) of the figure depicts the boundary for the total completion time objective

function.

We now examine the complexity boundary involving multiple machine problems

and problems that do not involve distance constraints. In order to more fully de-

lineate the boundary I present one additional flP-completeness proof for a paral-

lel machine scheduling problem that does not involve distance constraints, namely

PmIchain; pi = 1 E wj Cj for any fixed m with m > 2. Du, Leung, and Young

proved that PmIchain; pmtnI E wj Cj is strongly /P-complete by showing that pre-

emption can not improve the mean weighted flow time to Pmlchainj E w3 C [19].

This result suggests that requiring all processing times to be equal to one time unit,

i.e., #3 is set to pj = 1, does not reduce the complexity of the problem. I prove this

to be the case after stating the main results obtained in [19].

Theorem 8.2.10 ([19]) Pmlchain| E wjCj is strongly AP-complete.

Theorem 8.2.11 ([19]) Preemption cannot reduce the mean weighted flow time for

a set of chains.

Theorem 8.2.12 ([19]) Pmlchain; pmtn| E wjCj is strongly AP-complete.

155

lCmax

1 E C

{0, 1}1Cmax

{o, I} Ec

{0, L} (L > 2) Cmax

{0, L} (L > 2)1 E Cj

{0, l}fCmax

{0, l} E C

[43]

[9]

[5]

Section 8.2.3

Section 8.2.3

(a)

1chain; lij = 1ICmax

I1Ichain; lijg = I1I E Cj

1 chain; pmtn; lij = L (L > 2)|Cmax

1chain; pmtn; li, = L (L > 2)1 E Cj

I chain; pmtn; lijg = lCmax

1 chatin; pmtn; lijg = 11 E Cj

1chain; p E {1, 2}; li= L (L > 2)1Cmax

1chain; p E {1, 2}; li, = L (L > 2)1 E C

[23]

Section 8.2.2

Section 8.2.2

Section 8.2.4

Section 8.2.4

(b)

Table 8.2: Complexity boundary involving single machine chain scheduling problems

and the makespan and total completion time objective functions.

156

p

p

p

*

*

1 chain; pj

1 chain; pj

1 chain; pj

1 chain; pj

1 chain; pj

1 chain; pj

1 chain; pj

1 chain; pj

1 ; iij

I; iij

I; iij

I; iij

1; iij

I; iij

I; iij

I; iij

E

E
E

E

E

p
?7

?2

?7

*

*

*

*

I now show that PmIchain; pj = 1| E wf C is strongly AP-complete.

Theorem 8.2.13 Pmchain; pj = IE wjCj is strongly VP-complete.

Proof Consider the problem Pmlchain;pmtnl E wjCj. Without loss of generality

we assume that all tasks in PmIchain;pmtn I E wj C have integral process-

ing times, pj. We represent each task Tj E T as a chain of pj unit exe-

cution time tasks Cj,1 -< --- C,,,. To preserve the original precedence

constraints, we add precedence constraints Cii -- Cj,1 V Ti --< T in the

original problem.

With each task Cj,,, we associate the weight wj. The weight for all

other tasks is set to zero.

This reduction is performed in pseudo-polynomial time since the

number of tasks in the reduced problem is equal to E pj.

Solving PmIchain;pj = IIE w3Cj clearly finds a feasible schedule

to Pmchain;pmtnl E wjCj. By Theorem 8.2.11 the optimum schedule to

PmIchain;pj = 1 E wj Cj is an optimum schedule to PmIchain;pmtn I E wj Cj.

Therefore, solving PmIchain;pj = 1| E wj Cj solves PmIchain;pmtnI E w C.
Thus, Pmichain;pj = I E wj Cj is strongly /P-complete. *

Table 8.3 presents the known boundary involving multiple machine unit execu-

tion time chain scheduling problems and makespan, total completion time, and total

weighted completion time objective functions.

8.3 Arbitrary Precedence Structured Tasks

We now examine the complexity of several problems involving tree and prec prece-

dence constraint topologies. I show that for the makespan, Cmax, and total completion

time, E C , objective functions the problems involving prec structured precedence

constraint topologies are strongly fP-hard; therefore, they are strongly fP-hard

for all of the objective functions shown in Figure 7.1.

157

p Pfchain;pj=1fECj [31]

p Pf chain; pj = I; li= lCmax [43]

p l1fchain; p = 1; li, E ,1}fCmax [6]

p 1 chain; pj = 1; 1 E wjCj [42]

* lfchain; pj = I; lij, E to, 1}1Cmax Section 8.2.3

* lfchain; pj = 1; lij E {0, 1}1 E Cj Section 8.2.3

* ifchain; pj = 1; 12,j = 1 E wjCj [59]

* P2|chain; pj = I| E w3 C, Section 8.2.5

Table 8.3: Complexity boundary involving multiple machine chain scheduling prob-

lems and the makespan and total (weighted) completion time objective functions.

8.3.1 11prec; pj = 1; lj,k = lICmax, Cj

We now consider problems with arbitrary precedence constraints, namely 1 prec; p3 =

1; jk = llCmax and 1 prec; pj = 1; l,k = 11 E C3. Unfortunately, allowing arbitrary

precedence constraints makes the problems strongly .A/P-hard.

I reduce the 3-Partition problem to 1 prec; Pj = 1; Ij,k = 1 Cmax in a manner similar

to the reductions used for chain structured tasks. Precedence constraints are used to

create a specific template structure in a similar manner to the way the zero distance

constraints and arbitrary execution times are used in the reductions involving chain

structured tasks.

Theorem 8.3.1 1 prec; pj = 1 ; lj,k = I ICmax is M P-complete in the strong sense.

Proof 1 prec; pj = 1; lj,k = i1 Cmax is clearly in XP. To prove that it is also

strongly A/P-hard, we reduce the 3-Partition Problem to it.

Given an instance of the 3-Partition Problem, we construct the fol-

lowing instance of 1fpreC; Pj = 1; lj,k = llCmax. We define the non-zero

distance constraint to be

l = B+ 3q - 3.

158

There are l(4q + 1) + 4q + 2 tasks arranged in 3q + 1 separate dags. For

each a. E A there is one dag Di containing 2s(ai) +q -1 tasks, D(i,j), D(j, 2),

... D(i,(2s(a)+q-1)). The precedence constraints within Di are defined as

follows. D(ij) - D(i,s(aj)+l), 1 -j s(ai). D(ij) -< D(i,+1), s(ai) + 1 < j <

s(ai) + q - 1. D(i,s(ai)+q-1) < D(), s(ai) + q < j 2s(ai) + q - 1.

One additional dag, X, is created. X contains l(2q + 1) + 4q +

2 + 2 Z 1(1 - B - 3(i - 1)) tasks. The central feature of X is a chain of

4q + 2 tasks, X1, X 2 , ... , X4q+2. All other tasks of X are connected to at

least one of these chain tasks and most are connected to two of the chain

tasks. A non-chain task has precedence relations with chain tasks only. For

simplicity in the definition of the remaining precedence constraints we note

a non-chain task of X as Y. We also use the following invariant. If it is

stated that chain task Xi precedes non-chain task Y, Xi -< Y, then it is

also true that Y precedes Xi+3, Y - Xi+3, if Xi+3 exists.

The remaining precedence constraints in X are defined as follows.

Yoj -< X 3, 1 < j < 1. Xi -< Yij, 1 < j < 1, 1 K i < 4q, and i is even.

Xi 1 Y j I I - B -3(o(i) -1), 1 < i < 2q, i is odd, and o(i) returns

the index of i in the list of odd numbers greater than zero, e.g., o(1) = 1,

o(3) = 2, o(5) = 3, o(7) = 4. Xi -< Yj,, 1 < j < 1 - B - 3(q - o(i - 2q)),

2q + 1 < i < 4q, i is odd, and o(i) is defined as above.

All distance constraints are equal to 1.

The deadline for the schedule is z = 1(4q + 1) + 4q + 2. Note that

the processing times of all the tasks is equal to z; thus, any schedule that

completes before the deadline must not have any idle time. It is easy to

verify that this reduction requires time polynomial in the parameters of the

3-Partition problem.

Suppose we have a 'Yes' instance of 3-Partition. A schedule of length

z is constructed as follows. Start the tasks of chain X as soon as possible.

X(4q+2) finishes at time z. The remaining Yj tasks are constrained to

159

be scheduled in the time interval between task Xi+1 and task Xi+2 . The

resultant template has 2q non-full intervals, 11, 12, - - -, I2q, within which the

remaining tasks must be scheduled. These intervals occur between tasks

Xi and Xi+1 for 1 < i < 4q and i even. The number of empty time slots in

each interval Ii are characterized by the following function.

empt (I) - B + 3(i - 1) 1 < i < q

B+3(2q -i) q+l I i < 2q

By assumption of a 'Yes' instance of 3-Partition, there exists q dis-

joint B-task sets, HI, H 2,. .. , Hq, with processing time of B and comprised

of the first s(ai) tasks from the dags D, 1 < i < 3q. Schedule Hk in in-

terval Ik, 1 < k < q. Consider tasks D(i,), D(Z, 2), ... , D(i,s(ai)) scheduled

in interval Ij (j < q due to how we scheduled the sets Hk). The tasks

D(i,s(ai)+ 1), D(i,s(ai)+2), ... , D(i,s(ai)+q-1) can be scheduled during the next

q - 1 intervals. The additional empty time slots above the B needed to

schedule H allow these 'pass-through' tasks to be scheduled in these in-

tervals. By scheduling them thus, The tasks D(i,s(aj)+q), D(i,s(ai)+q+1), .

D(i,2s(ai)+q-1) can be scheduled in the interval Ij+q. The resulting schedule

is feasible with a makespan of z.

Conversely, suppose that we have a schedule of length z. As before,

the tasks in chain X must be scheduled as soon as possible, and the remain-

ing Yj tasks are constrained to be scheduled in the time interval between

task Xi+I and task Xi+2. The resultant template has 2q non-full intervals,

1, I2, ... , I2q, within which the remaining tasks are scheduled. The tasks

from the Di dags are scheduled without idle times in the remaining time

slots of the intervals. Furthermore, due to the distance constraints and

lengths of the chains D(i,s(ai)+l) < D(i,s(ai)+2) -< - - .< D(i,s(ai)+q-1), the

first s(ai) tasks from these dags, Di, 1 < i < 3q, must be scheduled in the

first q intervals Ij, 1 j < q, and the last s(ai) tasks from these dags must

be scheduled in the last q intervals Ij, q +1 < < 2q.

160

Consider the first interval I1 and only the first s(ai) tasks in the dags

Di. Let S be the set of dags Di that have their first s(ai) tasks, D(i,1),

D(j,2), . . . , D(i,s(ai)), scheduled in 1. The template dag leaves B time units

to schedule other tasks in 1. Assume that EDiES, s(ai) =B - c for some

c > 0. Consider the interval Iq+1. The template dag leaves B + 3q - 3 time

units to schedule other tasks in Iq+1. There are at most 3q tasks, D(j,),

s(ai) + 1 < j < s(ai) + q - 1, from the dags Di that may be scheduled

in this interval. The only additional tasks that may be scheduled in this

time interval are the final s(ai) tasks of the dags Di whose first s(aj) tasks

were scheduled in the first interval I, such that Di E S1. ISi < 3 by

the constraints in the 3-Partition Problem, and c is characterized by the

following function due to our assumptions on B and s(ai), ai E A.

B if IS1| = 0

;> B/2+1 if IS1 = 1

2 if IS1 = 2

3 if |Sil= 3

Therefore, there are c - 3 + SI > 0 idle time slots in interval Iq+1. It

follows that our assumption is incorrect, and EDiESi s(ai) = B. An itera-

tive application of this argument leads to the identification of sets Sj with

EDjCSj s(ai) B for 1 < j < q and to the conclusion that we have a 'Yes'

instance of 3-Partition. m

We may assume without loss of generality that the optimum solution to

1 prec; pj = 1; 1j, lCma, does not contain any idle times. Since this problem

involves unit execution time tasks, the total completion time to the optimum schedule

for 1prec; pj = 1; lj,k = lCmax is :C3 = Zxi = jy_1i. This is the smallest

total completion time that any schedule may have. Therefore, finding a schedule to

1 prec; Pj = 1; lj,k = 11 E C with total completion time of Ej_. j finds an optimum

schedule to 1prec; pj = 1; lj,k = lCmax, and 1prec; pj = 1; lj,k = I E C is strongly

A'P-complete. This result is formalized in the following theorem.

161

Theorem 8.3.2 1|prec;pj = 1; lj,k = l| EC is AP-complete in the strong sense.

Proof We reduce the known strongly A/P-complete problem 1 prec; Pj = 1; lj,k =

lCmax to 1prec; p3 = 1; lj,k= l E Cj. Without loss of generality we assume

that the optimum schedule, Sopt, to 1|prec; pj = 1; lj,k = lCmax does not

contain any idle time slots. The mean flow time for S0 pt is I "y j =

Given an instance of 1 prec; pj = 1; lj,k = lCmax, we assign a weight

of one to all tasks. Let y = E> ij. The optimum solution to 11prec; pj =

1; j,k 11 Cmax is a solution to 1 prec; p3 = 1; lj,k = IE C such that

E_.1 C < y. Conversely, any solution to 1Jprec; Pj = 1; lj,k 1 C such

that En_1 C < y is clearly an optimum solution to 1prec;p3 = 1; jk =

1lCmax. The theorem follows. *

8.3.2 Complexity Boundary Analysis

In this section we have examined unit execution time problems involving non-chain

structured tasks and constant distance constraints. Table 8.4 presents the known

boundary for unit execution time scheduling problems involving various precedence

constraint topologies with respect to the makespan and total completion time ob-

jective functions. Note that the results obtained in this section are either minimal

A/P-complete results or maximal polynomial-time solvable results. Figure 8.2 depicts

this boundary graphically.

162

P intree; p , = 1; lij = 11Cmax

P outtree; pj = 1; li, = lCmax

1 prec; pi = 1; ki E {0, 1} Cmax

1fprec; pj = 1; li, E {0,1} 1 E Cj

1|prec; pj = 1; lij = L(L > 2) 1Cmax

1|prec; pj = 1; lij = L(L 2) 1 E Cj

1prec; pi = 1; = lCmax

1|prec; pj = 1; Iij = l1 E C7

(a)

(b)

[43]

[10]

[6]

Section 8.3.1

Section 8.3.1

Table 8.4: Complexity boundary involving scheduling problems with the makespan

and total completion time objective functions.

163

p

p

p

*

*

p 1lprec; ljg = 1|Cmax [23]

? I1|prec; lijg = I E Cj

* 11chain; pj E {1, 2}; lig = L (L > 2)1Cmax Section 8.2.4

* IIchain; p E {1, 2}; lij, = L (L > 2)1 E Cj Section 8.2.4

8.4 Approximation Bounds for

P prec; pj = 1; li ,I C max

As we have seen in the previous sections, most scheduling problems involving separa-

tion constraints are strongly A(P-hard even for chain structured tasks scheduled on a

single machine. Therefore, it is very unlikely that a polynomial time or even a pseu-

dopolynomial time algorithm will be found to solve these problems optimally. Due

to this computational complexity, it is natural to ask if a near optimal solution can

be found efficiently for any problem involving separation constraints. In this section,

we answer this question in the positive by proving that an arbitrary list scheduling

algorithm will find a solution that is within a factor of 2 - 1/(md+ 1) to the optimum

for the problem Plprec; pj 1; lig|Cmax. We also prove an approximation bound

slightly better than 2 - 2/(md + m) for the Coffman-Graham algorithm applied to

this problem.

8.4.1 Introduction

The relaxation of a problem from one of finding an optimum solution to one of find-

ing an approximately optimum solution can significantly reduce the complexity of the

problem. The primary difficulty with this relaxation is proving that the approximate

solution is 'close enough' to the optimum solution. To ensure that 'close enough' is

'good enough,' the error of these approximation algorithms must be bounded. This

bound tells how far from optimum a solution obtained using approximation algorithm

A will be in the worst case. Ideally, we want to bound the absolute difference between

the cost of a solution obtained from A on instance I of the problem and the opti-

mum cost of the solution for instance I. Unfortunately, the absolute approximation

problems for scheduling problems containing separation constraints are as difficult

as their corresponding exact problems. Consequently, we concentrate on finding a-

approximation algorithms for scheduling problems containing separation constraints.

An a-approximation algorithm is a polynomial-time algorithm that returns a solution

164

with objective value at most a times the optimal value. a is often referred to as the

worst-case performance guarantee or ratio of the algorithm.

We consider a general class of scheduling problems on identical parallel machines.

We have a set T of n unit execution time (UET) tasks and m identical parallel

machines. A set of precedence constraints -< is associated with T. These precedence

constraints force a partial ordering on any feasible schedule. We associate with every

precedence constrained task pair (i, J) E-< a nonnegative separation constraint lij.

This separation constraint requires that task j cannot begin execution until li, time

units after task i has completed execution. The set of tasks is to be nonpreemptively

scheduled onto the machines such that all precedence and separation constraints are

met and the objective function is minimized. We only consider the makespan objective

function in this paper. Using the common notation introduced in [28], we denote the

most general of these problems as Plprec;pj = 1; lij|Cmax. We denote the maximum

separation constraint in a problem instance by d = max(ij) -< ki-

List scheduling algorithms, first analyzed by Graham [26] for scheduling problems

without separation constraints, are among the simplest and most commonly used

approximate solution methods for parallel machine scheduling problems [50]. These

algorithms assign each task a priority by ordering all tasks in a list. A greedy al-

gorithm then schedules the tasks as soon as they are ready, giving priority to those

tasks that appear earliest in the list.

Bernstein, Rodeh, and Gertner [6] examined the approximation bound for list

schedules applied to the single machine problem 1 prec; pj = 1; 1i IGCmax. They deter-

mined that an arbitrary list schedule has an approximation ratio of 2 - 1/(d + 1).

Palem and Simons [53] extended this result to the identical parallel machines schedul-

ing problem and determined that an arbitrary list schedule has an approximation

ratio of 2 - 1/(md + m). In Section 8.4.2 we improve this approximation ratio to

2 - 1/(md +1).

Since an arbitrary list can generate a schedule that is within a factor of two of the

optimum, it is natural to ask whether or not a list generated by a particular algorithm

can do any better. In Section 8.4.3 we analyze the Coffman-Graham algorithm [13]

165

for the identical parallel machine problem. Bernstein, Rodeh, and Gertner [6] deter-

mined that the approximation bound for this algorithm applied to the single machine

problem is 2 - 2/(d + 1). We extend this result to the identical parallel machines

problem proving a bound slightly better than 2 - 2/(md + m).

8.4.2 List Schedules

Definition of List Schedules

List schedules are a class of scheduling algorithms that form a schedule by greedily

scheduling a list of tasks in the order the tasks are given in the list. The list scheduling

algorithm is simply stated as follows: Given a priority list L of the tasks of T the list

schedule SL can be constructed by the following procedure:

1. Iteratively schedule the elements of SL starting in time slot 1 such that during

the i-th step, L is scanned from left to right and the first m ready tasks not yet

scheduled are chosen to be executed during time slot i.

2. If less than m tasks are ready, then NOPs are inserted into S for the idle

machines in time slot i.

The list scheduling algorithm is readily adapted to scheduling with distance con-

straints by augmenting the elements of the priority list to contain the initial ready

time of the tasks. This is a function that will be updated during the execution of

the list scheduling algorithm to ensure that no task is scheduled in violation of any

distance constraints.

Consider a class of optimum schedules for UET scheduling. Since all the tasks in

T have unit execution times, an optimum schedule does not need to leave a machine

idle whenever a ready task exists. Therefore, an optimal schedule can always be found

among list schedules. The following lemma formalizes this statement.

Lemma 8.4.1 An optimum schedule may be constructed such that no machine is left

idle during a time slot i if there are ready tasks during that time slot.

166

Proof We show how to construct the desired optimum schedule from an arbitrary

optimum schedule. Consider the optimum schedule So that contains idle

machines during time slots in which tasks are ready to execute. Let time

slot t, be the earliest such time slot, and let ma be an idle machine during

that time slot. Let task T be a task ready during time slot t but scheduled

at time slot tj > tj on machine mb. Task Tk may be rescheduled to time

slot tj on machine ma without violating any constraints. Doing so creates

another idle machine, mb, during time slot tj. Repeatedly performing this

operation yields a schedule containing no idle machines during time slots

in which there are ready tasks. m

Since a list schedule will generate an optimal schedule given the optimal priority

list L, the key to the success of the list scheduling algorithm is generating the optimal

priority list. A list schedule requires time O(n + e) to schedule a priority list where

n is the number of tasks and e is the number of precedence constraints. Therefore,

generating the optimal priority list is as difficult as finding the optimal schedule. In

the following section, we bound how far from optimal a list schedule can be, given a

non-optimal priority list.

Approximation Bounds for Arbitrary List Schedules

We use the following lemma to determine the upper bound for the ratio R = (SL)
W(SO)'

where w(SL) is the makespan for an arbitrary list schedule SL and W(So) is the

makespan for an optimal list schedule So. This lemma and much of the following

analysis closely follows the analysis for distance constrained scheduling on one pro-

cessor in [6].

Lemma 8.4.2 Let T be a set of n tasks, and let w(So) = n+k, i.e., there are k > 0

NOPs in the optimum schedule on m processors. Let SL be a list schedule of T such

that R = '(S') is maximal. If k > m, then there exists a task system T' whose optimalW(So)

schedules contain no NOPs and a list schedule SL' for it such that Rt' = wO(SL) > R.~

167

Proof We show how to construct T' from T. Without loss of generality we assume

n is a multiple of m. If n is not a multiple of m, independent tasks may be

added to T without affecting the optimum solution. Let T' consist of all

tasks in T plus k independent tasks. An optimum schedule S' of T' can be

obtained from the optimum schedule So of T by replacing the k NOPs in

So with the k independent tasks from T'. Therefore, w(S') = w(So). S'

is constructed by scheduling the k independent tasks first. The remaining

schedule is identical to SL. Therefore, W(SL) = w(SL) + k/m. Thus, R' =

w(Si) - w(SL)+k/m > W(SL) R.
W(S') W(So) W(So) -

Let SL be a list schedule of T, and assume that an idle processor exists at time

slot ti. The idle processor is induced by T and T if:

1. scheduled time slot of Ta < tz < scheduled time slot of Tb.

2. (Ta,T) G -<.

Note that every NOP of a list schedule must be induced by at least one pair of

tasks. Let C = C1 ,... , C, be a directed path (chain) in T. C covers a NOP of SL if

the NOP is induced by a pair of tasks of C.

Lemma 8.4.3 ([6]) Let T be a task system, and let SL be a list schedule of T. Then

there exists a directed path C = C 1,. .. , C, in T that covers all the NOPs of SL.

Proof The proof given in [6] is valid for multiple processor systems. m

We let the distance constraints be arbitrary but bounded from above. The maxi-

mum distance constraint in the system is d.

Theorem 8.4.1 Let (T, -<) be a task system with n tasks, So an optimal schedule

and SL an arbitrary list schedule of T. Then R = 0(SL) < 2 - , where m is theW(SO) - (cimd)

number of processors and d is the maximum distance constraint in -<.

168

Proof By Lemma 8.4.2 we may assume that So has no NOPs. Therefore, w(So) =

n/m. Let k be the number of NOPs in SL. Thus, w(SL) = (n + k)/m and

R = 1 + k/n. By Lemma 8.4.3 there exists a directed path C = C1,..., C,

that covers all the NOPs in SL. Therefore, Ez-- D(Ci) > k/r, where

D(C) is the distance constraint from task Ci to task Ci+1. Notice that

since D(T) < d for all T, we have z -1 > k/(md). Since So has no NOPs,

there must be k tasks in So that fill in the delays of C in SL. Therefore,

we get n > k + z > k + k/mnd+ 1. Thus, R = 1+ < I + (k/+)

2- 1 <2-
(md/(1+md/k)) - (1+md) -

This bound is valid for md > 1. Notice that when m = 1, this is the tight

bound for distance constrained scheduling on one processor found by Bernstein [6].
However, for d = 0, Graham [27] reports the tight approximation bound to be 2- mU

for m > 2.

8.4.3 The Coffman-Graham Algorithm

The CG Algorithm

Coffman and Graham [13] give a list scheduling algorithm that prioritizes the tasks

based on their level with the tasks with the highest level having the highest priority.

The level of a task is defined to be the length of the longest path from that task to

a sink task in T. However, instead of making an arbitrary choice among tasks with

the same level, the Coffman-Graham priority rule makes a judicious choice of which

task to give a higher priority.

The Coffman-Graham (CG) priority rule assigns each task j E T a priority label

a(j) C {1, 2, ... , n}. The algorithm to generate the priority list is given below.

1. Choose an arbitrary task j such that it does not have any successors, and define

a(j) = 1.

2. Suppose, for some i < n, that labels 1, 2,. , i - 1 have been assigned. Let R

be the set of tasks with no unlabelled successor. Let j* be a task in R such that

169

the sorted list of priority labels of its immediate successors is lexicographically

smaller than the sorted list of priority labels of the immediate successors for all

other task j E R. Break ties arbitrarily. Define ao(j*) = i.

3. When all tasks have been labeled, construct a list of tasks L = (Tn, Tn_ 1 ,--- , T)

such that a(T) = j for all j, 1 <j < n.

List scheduling (taking distance constraints into account) is applied to list L to gen-

erate a Coffman-Graham (CG) schedule.

The CG priority rule does not consider distance constraints when it generates

the priority labels. We do not modify the CG priority rule to consider distance

constraints. Distance constraints are implicitly considered during list scheduling since

only ready tasks are scheduled at each time step.

Approximation Bound for the CG Algorithm

We consider a schedule computed by the CG algorithm and assume by convention

the tasks are executed on P1, P2 ,... in decreasing order of CG priority during a given

time slot. We note Next(T) the task executed on P during the time slot t(T) + 1, if

such a task exists.

A series of critical tasks is defined by a right to left scanning of the schedule,

i.e., starting with the last scheduled time slot and moving towards the first scheduled

time slot. An idle processor during a time slot is considered as an empty task with

priority 0. Assume that the critical task Uj, i > 0, is defined. The critical task U2+1

is determined by choosing among candidate critical tasks found as follows.

1. If there exists at least one time slot lower than t(Uj) during which the task

executed on P2 has a priority lower than l(Uj), then the task executed by P

during the rightmost of these time slots is a candidate critical task. If no task

is executed on P 1, then the leftmost task executed on P before this empty time

slot is a candidate critical task.

2. If there exists at least one time slot lower than t(Uj) during which the task T'

executed on P has a priority lower than the task executed on P during the

170

next time slot, then the task T' executed during the rightmost of these time

slots is a candidate critical task. Note that T' may correspond to an idle time

slot.

3. If l(Uj) < l(Next(Uj)) for some j E {, ... , i}, there does not exist a Uk, k > j

such that l(Uk) > l(Next(Uj)), and there exists at least one time slot lower

than t(Uj) during which the task T' executed on P has a priority greater than

or equal to the priority of Next(Uj), then the task T' executed during the

rightmost of these time slots is a candidate critical task.

The critical task Uj+ 1 is defined to be the candidate critical task executed during the

rightmost of these time slots. The first critical task Uo is the task executed by Pi

during the rightmost slot of Se,.

A block Xi is defined such that Uj+ 1 precedes each task of Xj:

Xi = {T l(T) > l(Uj) and t(T) > t(Ui+1)}.

If U+1 can not be defined, then Xi is defined as:

Xi = {TJl(T) > l(Uj)}.

Note that a block spans a contiguous set of time slots, and a block may contain time

slots during which no task is scheduled. In particular, a contiguous set of idle time

slots is contained within a single block, and the block does not contain any tasks.

Lemma 8.4.4 At least two tasks of a block Xi are executed during any time slot in

which at least one task of block Xi is executed except the last time slot t(Ui).

Proof Follows from the definition of a block and the way in which critical tasks

are determined. m

Lemma 8.4.5 In an CG schedule, if T is executed on P1 and t(T) < t(T') for

T, T' G Xi for some block Xj, then 1(T) > l(T').

171

Proof The list L used to construct the CG schedule is in order of decreasing

priority values. By convention, processor P is assigned before any of the

other processors; therefore, P is always assigned the ready task with the

highest priority value. The lemma follows from the definition of critical

tasks and blocks. m

Notice that Lemma 8.4.5 is not necessarily true for the entire schedule when

distance constraints are present. This is because distance constraints can cause empty

time slots which are then filled in by lower distance level (and lower priority) tasks.

A fill-in block is defined to be a block Xj such that Uj is created by condition (2)

in the critical task determination or U3+1 is created by condition (3) in the critical

task determination. Note that fill-in blocks can occur contiguously.

A series of critical blocks is defined by a left-to-right scanning of the schedule.

Assume that the critical block Y, j > 0, is defined. The set of tasks Wj(Xi) is

defined for each block Xi as follows:

W3 (Xi) = {TIT E Y or T is preceded by a task of Y and l(T) > l(Ui+ 1)}.

If there exists at least one block Xi to the right of Y such that Wj(Xi) -A Xi

(Wj (Xi) -< Xi when all of the tasks in Xi are preceded by some task in Wj (Xi)),

then Y+1 is defined to be the leftmost of these blocks. The segment W, is defined as

Wj(Y+ 1). If there is no block to the right of Y such that Wj(Xi) - X, then Wj is

defined as follows:

W3 = {TIT E Y or T is preceded by a task of Y and l(T) > l(Uo).}.

Note that if a segment contains one or more fill-in blocks, the fill-in block(s) occur

at the end of the segment. Furthermore, no task of a fill-in block is contained in a

segment due to how the tasks are assigned priorities and the definition of a segment.

The first critical block Y is the left most block.

A task executed during a time slot of w(Wj) that does not belong to Wj is called

an extra task, and a time slot of w(Wj) during which an extra task is executed (or

no task is executed) is called a partial slot. The p partial slots of w(Wj) are noted

172

t1,..., t, from left to right. The task executed by P during ti, if it exists, is noted

as Ti.

Lemma 8.4.6 In an MCG schedule, if T is executed on P1 and t(T) < t(T') for

T,T' E W for some segment W, then 1(T) > I(T').

Proof The lemma follows from Lemma 8.4.5 and the definition of segments. *

Lemma 8.4.7 A segment Wj is the disjoint union of k consecutive non-fill-in blocks,

k > 0, followed by f consecutive fill-in blocks, f > 0, with k + f > 1, and of a set of

at least k - 1 additional tasks. Each additional task is preceded by a task of W.

Proof By the definition of segments, a segment contains consecutive blocks that

are disjoint by the definition of blocks. Fill-in blocks are only contained at

the end of a segment, and no task in a fill-in block is part of the segment.

Thus, a segment consists of the disjoint union of a (possibly empty) set of

non-fill-in blocks followed by the disjoint union of a (possibly empty) set of

fill-in blocks with tasks from the time slots corresponding to the non-fill-in

blocks being the only tasks contained in the segment. A segment containing

zero non-fill-in blocks does not contain any tasks. We prove that a segment

containing k > 1 non-fill-in blocks also contains at least k - 1 additional

tasks.

Consider segment Wj consisting of k non-fill-in blocks, and let Xi

be the second non-fill-in block that is contained in W. By assumption on

the number of non-fill-in blocks in Wj, W (Xi) does not precede all tasks in

Xi (a non-fill-in block). Thus, there exists a task T in Wj(Xi) and a task

T' in Xi such that T does not precede T'. Choose T such that it has no

successors in W(Xi) and T' such that it has no predecessors in Xi. Let I

be the set of tasks in Xi that have no predecessors in Xi. Clearly T' E I.

Consider Ui+i, the last task in Xi+,. From the definition of segments

Ui+1 c Wj(Xi), and from the definition of blocks Ui+ 1 precedes all tasks in

Xi.

173

From the definition of segments all tasks in Wj (Xi) have higher

priorities than Ui+ 1 . Thus, task T has a higher priority than Ui+1. Since T

has no successors in Wj(Xi), T must either precede all tasks in I or must

precede an extra task E for l(T) > l(Ui+ 1) to be true. Since T does not

precede T' C I, E must exist.

E can not be executed after t(Ui+1). If it were, it would be part of Xi.

Thus, E neither belongs to Wj (Xi) nor to Xi. Furthermore, 1(E) > l(Ui) for

l(T) > l(Ui+ 1). Therefore, the disjoint union of Wi(Xi-1), Xi, and {E}

is included in Wj(Xi_ 1) if Xi_ 1 exists or in W if Xi- 1 does not exist.

Repeating this argument for each of the remaining k - 2 non-fill-in

blocks yields k - I extra tasks, each preceded by a task of Wj. The lemma

follows. *

We now show that all tasks in one segment precede all tasks in the next segment.

This is Lemma 2.3 in Lam and Sethi. The proof is repeated here for completeness.

Lemma 8.4.8 For all tasks T in Wj and Tj+ 1 in W±i+, T must be completed before

Tji+1 can start.

Proof Let Xi be the leftmost task in Wj+1. Then from the definition of segments,

all tasks T in Wj precede all tasks Tj+ 1 in Xi. If Xi is the only block in

Wj+1 , then the proof is complete.

Assume that Wi+1 contains blocks Xi, Xi_ 1 , - , Xi-k, for k > 1, as

well as some extra tasks. From the definition of blocks it follows that for

all j, Uj precedes all tasks in Xj_1. By transitivity for all T in Wj, Tj

precedes all tasks in Xi U ... U Xi-k.

The first extra task E added to W+ is preceded by some task in

Xi. Any subsequent extra task added to Wj+1 is either preceded by a task

in some block in Wj + 1 or by an extra task already in Wj+1. In either

case, by transitivity, the extra task is precede by an element of Xi.

The lemma follows. m

174

Lemma 8.4.9 Let Wj be a segment and t1 ,..., tp, be the p' partial slots of t(Wj) that

occur in the k non-fill-in blocks of Wj. Every task of WI with a priority greater than

or equal to l(T) precedes a chain of at least p' - i tasks of Wj.

Proof Consider the partial slot t, of Wj that is not the rightmost, if such a

slot exists. If the task T is a critical task, then it is clear that T -<

Next(T). If T is not a critical task, then because of Lemma 8.4.6 and

the block definition, every extra task E executed during tj is such that

l(E) < l(Next(T)). Thus, T has an immediate successor of priority greater

than or equal to l(Next(T)).

Therefore, if T is a task of W such that l(Ta) > l(T), then T

has an immediate successor Tai+ such that l(Ta+) > l(Next(T)). By

Lemma 8.4.6, l(Ta+i) > l(Ti+1) > l(Uj), where Uj is the rightmost task of

W. Thus, Ta+i belongs to Wj. Repeating this argument for tji+ through

tp, it is clear that T precedes a chain of at least p' - i tasks of W. m

Lemma 8.4.10 Let Wj be a segment with p partial slots. If Wj starts with a full

column, i.e., no idle processors, then an optimal schedule for the tasks in W plus the

idle partial slots is wo0 t(Wi) > p +1.

Proof By Lemma 8.4.9 each task T such that 1(T) > l(T 1) precedes a chain of at

least p' - 1 tasks in Wj. Assume that the first time slot of w(Wj) is not a

partial slot. If a task T of Wj is such that t(T) < t(T) and l(T) < 1(T1),

then at least one task of Wj precedes T since the MCG-algorithm computes

a list schedule. Therefore, there exists a chain of at least p' + 1 tasks, and

the optimum schedule must be at least p'+ 1 time units. If each task T of

Wi executed before Ti is such that l(T) > (T), then there exists at least

m + 1 tasks of Wj preceding a chain of at least p' - 1 tasks of W and the

inequality still holds.

If the set of partial slots includes idle time slots, i.e., time slots

during which no task of W is executed, then these p" = p - p' idle partial

175

slots occur as the last p" slots of w(Wj). Idle partial slots occur as a result

of the non-zero distance constraints. Since the chain of at least p'+ 1 tasks

is scheduled before the idle time slots, the last task in the chain must have a

distance constraint greater than or equal to p" to its immediate successors.

If this were not the case, then the immediate successors would be scheduled

within the fill-in blocks which is not possible due to the definition of critical

tasks and the labeling and scheduling techniques used by the CG-algorithm.

The optimum schedule for Wj must account for these distance constraints.

Therefore, wo0 t(Wj) > p' + p" + 1 p + 1..

Lemma 8.4.11 Let a schedule of G = (V, E) be computed on m machines by the

MCG algorithm and W4 be a segment with respect to this schedule. If md > 1 or

d=O andm>2, then

w(Wj) < (2 - 2/(md + m))wopt(Wj) - (m - 2 - F(m))/m

where F(m) is equal to 1 if m is odd and greater than 2 and is equal to 0 otherwise.

Proof We consider a segment Wj and we bound the worst makespan w(Wj) the

MCG algorithm can compute. Let k be the number of non-fill-in blocks

included in Wj, X be the union of the non-fill-in blocks, Z be the union of

the fill-in blocks, A be the set W - X of additional tasks, JU and Y be the

leftmost critical task and the leftmost critical block of Wj respectively, and

t1,... , tp be the p partial slots of w(Wj). We note F, the set of the tasks

of X executed during ti.

We bound Idle(Wj) with respect to p and F. By construction, w(Wj)

is equal to w(X) + w(Z), and Idle(Wj) is equal to mw(Z) + Idle(X) - AL.

The set w(Wj) is divided into four disjoint subsets by checking the

types of each time slot:

* LD ={L C t(Wj)IL is a partial slot during which no task of X is

executed },

176

" L= {L C t(Wj)IL is a partial slot during which only one task of X

is executed },

" Li,m = {L E t(Wj)IL is a partial slot during which at least two tasks

of X are executed },

" Lm = {L E t(Wj)IL is not a partial slot }.

The use of distance constraints requires that

|LDI max(Wj)d

where Imax(Wj) is the maximum number of distance levels between Wj and

W+1 and d is the maximum distance constraint.

Lemma 8.4.4 requires that

LI < k

where k is the number of non-fill-in blocks included in Wj, and the partial

slot definition requires that

ILDI + Lii + Li,m - P

where p is the number of partial slots of w(Wj).

The above leads to

Idle(W) < mILD I + (m - 1)IL 1 -+ (m - 2)IL,ml - JAI.

Using the above inequalities and relationships and substitute JAl by

k - 1, according to Lemma 8.4.7 we obtain:

Idle(Wj) < (p + 1)(m - 2) - (m - 3) + 2lmax(Wj)d.

Assume that the first slot w(Wj) is not partial. By Lemma 8.4.10

p+ 1 < wopt(W 3).

177

If the first slot of w(Wj) is partial, we can derive the following

inequality for Idle(Wj):

Idle(W) < Idle(F) +p(m - 2) - (m - 3) + 2lmax(Wj)d.

Lemma 8.4.9 requires that each task T such that l(T) > l(T 1) pre-

cedes a chain of at least p' - 1 tasks of Wj with the last task of the chain

containing a distance constraint of at least p" = p - p'. If the first time slot

of w(Wj) is partial, there exists a chain of at least p' tasks of Wj with the

last task of the chain containing a distance constraint of at least p" = p-p';

therefore,

P < WoPt (W).

Assume that jU is not executed during ti. Then, each task of Y -F

is preceded by at least one task of F. Furthermore, every task of A is

preceded by a task of Yj, and jU precedes all tasks of X - Yj. Hence, each

task of Wj - F is preceded by a task of F and

Idle(F) < Idleopt(Wj).

If jU is executed during t1 , then t(W) is equal to t(JU) and the inequality

still holds.

Using the expressions w(Wj) =(|Wj I+Idle(Wj))/m and w0pt(Wj) =

(jW4j+Idleopt(Wj))/m, the above inequalities, and the fact that wopt(W,)

lmax(Wj) (md + m)/m we derive the following inequality:

w(Wj) < (2 - 2/(md + m))wopt(W3) - (m - 3)/m.

When m is even, (m - 3)/m cannot be integer, and we can rewrite

this equation as

w(W.) < (2 - 2/(md + m))w0,t(W.) - (m - 2)/m.

178

When m is equal to one (1), the bound determined by Bernstein

et. al. [6] is valid:

w (Wj) < (2 - 2 /(d + 1)) wopt(Wj).

Theorem 8.4.2 Let a schedule SCG of the unit execution time task system (T, -4) be

computed on m machines by the CG algorithm. If md > 1 or d = 0 and m > 2, then

W(SCG) < (2 - 2/(md + m))wopt(G) - (m - 2 - F(m))/m,

where F(m) is equal to -1 if m = 1, 1 if m is odd and greater than 2, and 0 otherwise.

Proof Let there be r + 1 segments, WO, W ... - , Wr, in the CG schedule S.

Lemma 8.4.8 shows that an optimal schedule can be no shorter than one

that arranges each individual segment optimally. Therefore, letting wo0 t(Wj)

be the optimal schedule length of segment Wj, 0 < j < r, we have

r

wot > Zwot(W).
j=0

From Lemma 8.4.11

(m - 2 - F(m))/m, where

schedule. Thus,

r r

w = w(Wj) < (2 -
j=0 j=0

we have w(Wj) < (2 - 2/(md + m))wopt(Wj) -

w(Wj) is the length of segment Wj in the CG-

2/(md + m))wopt(Wj) - (m - 2 - F(m))/m,

and the theorem is proven. m

179

The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say.

J. R. R. Tolkien, The Lord of the Rings

Chapter 9

Conclusions

Then our mother came in
And she said to us two,
"Did you have any fun?
Tell me. What did you do?"

And Sally and I did not know
What to say.
Should we tell her
The things that went on there that day?

Should we tell her about it?
Now, what SHOULD we do?
W ell ...
What would You do
If your mother asked You?

Dr. Seuss, The Cat in the Hat

The increasing functional complexity of embedded systems is forcing designers to

abandon the ad hoc approach to partitioning system functionality. Instead, rigorous

approaches that are amenable to automation must be employed. These approaches

allow the designer to explore the solution space in a methodical manner. As a result,

automated partitioning approaches can provide indispensable feedback on the feasi-

bility of a design and the functional partitions that are most likely to yield optimal

implementations.

In this dissertation, I have presented a new approach to solving the hardware-

181

software partitioning problem in embedded system design and further defined the

complexity boundary of this approach. The identification of tasks from the system

specification and the scheduling of these tasks form the foundation of my approach.

Using a well-studied, effective, and efficient constructive algorithm as the basis to

solving the scheduling problem, optimal solutions were obtained for several examples

from the literature. Furthermore, applying my approach to the wristwatch example

illustrated its effectiveness in exploring the solution space of a design. My scheduling-

based approach to solving the hardware-software partitioning problem is a simple,

fast, and effective approach to performing automated analysis of a system design and

quickly exploring the solution space.

Tasks modeling a system specification are created by choosing an appropriate set

of task regions, each clustering a disjoint set of system functionality. I presented a

new characterization for task regions based upon single-entry single-exit regions of

the control flow graph. The use of single-entry single-exit regions as the foundation

for the identification of task regions provides a systematic and rigorous method of

clustering functionality into tasks. This characterization is stronger than previous

attempts at generating tasks from a system specification in that it considers the

dynamic execution properties of the tasks. My characterization of static task regions

guarantees that the entry and exit edges execute the same number of times, with

control never passing through one of the edges twice without first passing through

the other. In addition, static task regions contain all control paths between switch

and merge nodes in the control flow graph. These properties allow static task regions

to be used within traditional scheduling problem formulations that do not permit

control-flow dependent executions.

In order to simplify the identification of tasks from a system specification, I defined

the notion of canonical static task regions and proved that they are either node disjoint

or nested. By modeling only canonical static task regions as tasks, the number of

task regions that need to be considered in determining a set of tasks that completely

model the entire system is reduced. The use of canonical static task regions allows

a process to be modeled by a single chain of tasks. Thus, a system specification is

182

modeled as a set of task chains.

My task region-based approach to determining clusters of functionality is general

enough to be used with any system specification language. It may also be used to

determine tasks where the target system allows dynamic scheduling of the system

functionality. For this target architecture, every task region and every switch and

merge node in the control-flow graph may correspond to a task (not just static task

regions). Furthermore, the task region properties force well-defined interfaces between

tasks, simplifying the required communication between tasks.

My pure scheduling problem formulation simultaneously solves both the alloca-

tion and the scheduling subproblems of the hardware-software partitioning problem.

This formulation is able to accurately model the partitioning problem at all levels of

abstraction, and a solution to the scheduling problem yields a deterministic schedule

of the tasks that the designer can use to analyze the system design. A quick glance at

the complexity boundary surrounding my scheduling problem formulation shows that

problem formulations that are easier to solve can be obtained by slightly changing the

formulation or even the system specification. These changes can allow more efficient

or even optimal algorithms to be used to determine a solution.

As we saw in Chapter 6, my simple problem formulation can be used to solve more

complex hardware-software partitioning problems. A simple algorithm based on my

scheduling problem formulation was able to effectively determine a set of processing

elements upon which to execute the system functionality.

The main disadvantage of the scheduling problem formulation approach is that

hard system constraints such as area and power cannot be modeled. These constraints

must be checked after a solution to the scheduling problem has been determined.

Therefore, this approach may perform poorly when the solution to the partitioning

problem is dictated primarily by area and/or power constraints instead of timing

constraints as the formulation assumes.

183

184

Appendix

186

Appendix A

Digital Wristwatch Example

This appendix contains the Scenic specification for the digital wristwatch example

used in this dissertation.

Wristwatch Example Main Scenic File

int scenic(int ac, char* av[3) {
I/ wristwatch button inputs

sc-signal<std-ulogic> UL;

sc-signal<std.ulogic> LL;

sc-signal<std-ulogic> UR;

sc-signal<std-ulogic> LR;

// internal signals

sc.signal<stdulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>
sc-signal<std-ulogic>

// Main Method for Declaring a Wristwatch

//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

watchTime;

newWatchTime;

alarmTime;

stopTime;

newStopTime;

toggleBeep;

watchBeep;

alarmBeep;
toggleAlarm;

setWatchPosition;

nextWatchPosition;

startStop;

stopReset;

stopLap;
displayMode;

Upper Left Button

Lower Left Button

Upper Right Button

Lower Right Button

Current Time

Time After Increment

Alarm Time

Stopwatch Time

Stopwatch Time After Increment

Toggle Hourly Chime On/Off

Chime if on Hour and Beep On
Chime if Alarm Time and Alarm On
Toggle Alarm On/Off
Increment Position Value in Set Mode

Move to Next Position in Set Mode

Start/Stop Stopwatch

Reset Stopwatch to Zero

Display Stopwatch Lap Value

Display Mode: watch, alarm, stopwatch

// wristwatch functional outputs

sc-signal<std-ulogic> beepStatus;

sc.signal<std-ulogic> mainDisplay;

// declare the clock

sc-clock clk(''CLOCK'', 100.0, 0.5, 0.0);

// declare the processes

Button Btn(''Button'', clk.posO,

// inputs

UL, LL, UR, LR,

// outputs
toggleBeep, toggleAlarm, displayMode, nextWatchPosition, setWatchPosition, startStop, stopReset, stopLap);

SetWatch SWatch(''SetWatch'', clk.poso,
// inputs

displayMode, nextWatchPosition, setWatchPosition, newWatchTime,

// outputs
watchTime);

BasicWatch BWatch(''BasicWatch'', clk.posO,

// inputs

187

1:
2:
3:
4:
5:

6:
7:
8:
9:
10:
11:
12:

13:
14:

15:
16:

17:
18:
19:
20:

21:

22:

23:
24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

35:
36:
37:
38:
39:
40:
41:

42:
43:

44:

45:
46:
47:

48:

49:

50:
51:
52:
53:
54:

55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

65:
66:
67:
68:
69:
70:
71:
72:
73:
74:

75:
76:
77:
78:

Button Scenic Process Definition

struct Button: public sc-sync {
// input ports

const sc-signal<std-ulogic>& UL;
const sc-signal<std-ulogic>& LL;
const sc-signal<std-ulogic>& UR;
const sc-signal<std-ulogic>& LR;

// output ports

sc-signal<std-ulogic>& toggleBeep;

sc-signal<std-ulogic>& toggleAlarm;

sc-signal<std-ulogic>& displayMode;

sc-signal<std-ulogic>& nextWatchPosition;

sc-signal<std-ulogic>& setWatchPosition;

sc-signal<std-ulogic>& startStop;

scesignal<std-ulogic>& stopReset;

sc-signal<std-ulogic>& stopLap;

// internal variables to this process

int currentMode;

// The constructor

Button(sc-clock-edge& EDGE,
sc-signal<std-ulogic>& TOGGLE-BEEP,

sc-signal<std-ulogic>& TOGGLE-ALARM,
sc-signal<std-ulogic>& DISPLAY-MODE,
sc-signal<std-ulogic>& NEXT-WATCHPOSITION
sc-signal<std-ulogic>& SETWATCHPOSITION,
sc-signal<std-ulogic>& START-STOP,

sc-signal<std-ulogic>& STOP-RESET,
sc-signal<std-ulogic>& STOP-LAP)

sc-sync(EDGE),

toggleBeep(TOGGLE-BEEP),

toggleAlarm(TOGGLE.ALARM),

displayMode(DISPLAY-MODE),
nextWatchPosition(NEXT-WATCH.POSITION),
setWatchPosition(SETWATCH.POSITION),
startStop(START-STOP),
stopReset(STOP-RESET),
stopLap(STOP-LAP)

toggleBeep.write(0);

toggleAlarm.write(0);

displayMode.write(0);

// Definition of Button Process

// Upper Left Button

// Lower Left Button

// Upper Right Button

// Lower Right Button

//
//
//
//
//
//
//
//

Toggle Hourly Beep
Toggle Alarm ON/OFF
What to Display
Next Position in Set Watch/Alarm

Set Position in Set Watch/Alarm

START/STOP Stopwatch

Reset Stopwatch Time

Stopwatch Lap Display

// Current Operation Mode

// Constructor and its Parameters

-Don't Change Default Beep ON/OFF
// Don't Change Default Alap ON/OFF
// Display Time

188

toggleBeep, watchTime,
// outputs
watchBeep, newWatchTime);

SetAlarm SetA(' 'SetAlarm'', clk.poso,

// inputs

displayMode, nextWatchPosition, setWatchPosition,
// outputs
alarmTime);

Alarm A(''Alarm'', clk.posO,
// inputs
toggleAlarm, alarmTime, newWatchTime,

// outputs
alarmBeep);

BasicStopWatch BStop(''BasicStopWatch'', clk.posO,

// inputs

displayMode, startStop, stopReset,

// outputs
newStopTime);

LapFilter Lap(''LapFilter'', clk.posO,

// inputs

newStopTime, stopLap,

// outputs
stopTime);

Beep B(''Beep'', clk.posO,

// inputs

watchBeep, alarmBeep, newWatchTime

// outputs
beepStatus);

Display D(''Display'', clk.poso),

// inputs

displayMode, newWatchTime, stopTime, alarmTime,

// outputs
mainDisplay);

}

1:
2:

3:

4:

5:

6:
7:
8:
9:
10:
11:
12:

13:
14:

15:
16:
17:
18:
19:
20:

21:
22:

23:
24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

42:

43:

44:

45:
46:

47:

48:

49:

50:
51:
52:
53:
54:

55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

65:
66:
67:
68:
69:
70:
71:
72:
73:
74:

75:

76:
77:
78:
79:
80:
81:
82:
83:
84:

85:
86:
87:
88:
89:
90:

91:
92:

93:
94:

95:
96:
97:
100:
101:
102:

103:
104:

105:
106:
107:
108:
109:
110:
111:
112:

113:
114:

115:
116:
117:
118:
119:
120:

121:

122:

123:
124:

125:
126:
127:
128:
129:
130:
131:

//
//
//,
//,
//
//

Don't Change Watch Position

Don't Set Watch Position

Don't START/STOP the Stopwatch

Don't Reset Stopwatch

Don't Display Stopwatch Lap

Display the Time

// Process Functionality Contained Here

// Definition of Process Functionality

nextWatchPosition.write(0);

setWatchPosition.write(0);

startStop.write(0);

stopReset.write(0);

stopLap.write(0);

currentMode = 0;

}
void entry();

void Button::entry()

{
ul = UL.read(;

11 = LL.read();

ur = UR.read();

ir = LR.readO);

nextMode = 0;

while(true) {
if(currentMode == 0) {

nextMode = 0;

if(11 == 1) {
nextMode = 1;

I
if(ul == 1) {

nextMode =3;

}
}
if(currentMode == 1) {

nextMode = 1;

if(lr == 1) {
startStop.write(1);

I
if(ur == 1) {

stopLap.write(1);

I
if(ul == 1) {

stopReset.write(1);

I
if(11 == 1) {

nextMode = 2;

}
}
if(currentMode == 2) {

nextMode = 2;

if(ur == 1) {
toggleAlarm.write(1);

I
if(ul == 1) {

nextMode = 4;

}
if(11 == 1) {

nextMode = 0;

}
}
if(currentMods == 3) {

nextMode = 3;

if(ul == 1) {
nextMode = 0;

I
if(ir == 1) {

setWatchPosition.write(1);

I
if(11 == 1) {

nextWatchPosition.write(l);

}
}
if(currentMode == 4) {

nextMode = 4;

if(ul == 1) {
nextMode = 2;

}
if(Ir == 1) {

setWatchPosition .write (1);

I
if(11 == 1) {

nextWatchPosition.write(1);

}
}
currentMode = nextMode;

wait();

}
}

Read the UL Button and

Read the LL Button and

Read the UR Button and

Read the LR Button and

Next Mode of Operation

Store its Value

Store its Value

Store its Value

Store its Value

// This Process Runs Forever

// Watch Mode

// Next Mode is Stopwatch

// Next Mode is Set Watch

// Stopwatch Mode

// Next Mode is Alarm

// Alarm Mode

// Next Mode is Set Alarm

// Next Mode is Watch

// Set Watch Mode

// Next Mode is Watch

// Set Alarm Mode

// Next Mode is Alarm

189

//
//
//
//
//

SetWatch Scenic Process Definition

struct SetWatch: public sc-sync {
// input ports

const sc.signal<std-ulogic>& displayMode;

const sc-signal<std-ulogic>& nextWatchPosition;

const sc-signal<std-ulogic>& setWatchPosition;

const sc-signal<std-ulogic>& newWatchTime;
// output ports
sc-signal<std-ulogic>& watchTime;

// internal variables to this process

int currentPosition;

int time;

// The constructor

SetWatch(sc-clockedge& EDGE,
sc-signal<std-ulogic>& DISPLAY-MODE,

sc-signal<std-ulogic>& NEXT-WATCH.PDSITION,
sc-signal<std-ulogic>& SET.WATCH.POSITION,

sc-signal<std-ulogic>& NEW-WATCH-TIME,
sc-signal<std-ulogic>& WATCH-TIME)

sc-sync(EDGE),

displayMode(DISPLAY-MODE).

nextWatchPosition(NEXT-WATCH.POSITION),

setWatchPosition(SET-WATCHPOSITION),
newWatchTime(NEW-WATCHTIME),

watchTime(WATCH-TIME)

currentPosition = 0;

time = 0;

}
void entry(;

void SetWatch::entry()

int inSetWatchMode;

while(true) {
if(displayMode.read() == 3) {

inSetWatchMode = 1;

time = newWatchTime.read(;

} else {
inSetWatchMode = 0;

time = newWatchTime.read(;

// Definition of SetWatch Process

//
//
//
//

Check if in Set Watch Mode
Change Position Being Set

Increment Current Position Value

Current Watch Time

// Current Watch Time

// Position Being Set
// Temporary Time Var

// Constructor and its Parameters

// Start with the Hour
// No Assumption of Time

// Process Functionality Contained Here

// Definition of Process Functionality

// This Process Runs Forever

I
if((setWatchPosition.read() == 1) && (inSetWatchMode == 1)) {

time = SetTime(newWatchTime.readO), currentPosition);

I
if((nextWatchPosition.read() == 1) && (inSetWatchMode == 1)) {

currentPosition = NextPosition(currentPosition);

I
watchTime.write(time);

wait 0;

}

BasicWatch Scenic Process Definition

1: struct BasicWatch: public sc-sync {
2: // input ports

const sc-signal<std-ulogic>& toggleBeep;

const sc-signal<std-ulogic>& watchTime;

// output ports

sc-signal<std-ulogic>& watchBeep;

sc-signal<std-ulogic>& newWatchTime;

// internal variables to this process

int beepStatus;

// The constructor

BasicWatch(sc-clock-edge& EDGE,
sc-signal<std-ulogic>& TOGGLE-BEEP,
sc-signal<std-ulogic>& WATCH-BEEP,

// Definition of BasicWatch Process

// Toggle Hourly Beep

// Current Watch Time

// Beep if Top of Hour and Beep Set
// Current Watch Time Plus 1 Clock Cycle

// To Beep or Not to Beep

// Constructor and its Parameters

190

3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

}

sc-signal<std-ulogic>& WATCH-TIME,
sc-signal<std-ulogic>& NEW-WATCH-TIME)
sc-sync(EDGE),

toggleBeep(TOGGLE-BEEP),

watchBeep(WATCHBEEP),
vatchTime(WATCH-TIME),

newWatchTime (NEW-WATCH-TIME)

{ newWatchTime.write(0);

beepStatus = 0;

15:
16:
17:
18:
19:
20:
21:

22:

23:
24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

35:
36:
37:
38:
39:
40:

41:

42:
43:

44:

45:

46:

47:

// Start the Watch at 0 Hour

// Don't Beep on the Hour

// Process Functionality Contained Here

// Definition of Process Functionality

// This Process Runs Forever

// Toggle Hourly Beep Status

// Update Watch Time

// If on the Hour, then Beep

// Pause Until Next Clock Edge

SetAlarm Scenic Process Definition

struct SetAlarm: public sc-sync {
// input ports

const sc-signal<std-ulogic>& displayMode;
const sc-signal<std-ulogic>& nextWatchPosition;
const sc-signal<std-ulogic>& setWatchPosition;
// output ports
sc-signal<std-ulogic>& alarmTime;

// internal variables to this process

int currentPosition;
int time;

// The constructor

SetAlarm(sc.clockedge& EDGE,
sc-signal<std-ulogic>& DISPLAY-MODE,
sc-signal<std-ulogic>& NEXT-WATCH-POSITION,
sc-signal<std-ulogic>& SETWATCH.POSITION,
sc-signal<std-ulogic>& ALARM-TIME)
sc-sync(EDGE),

displayMode(DISPLAY-MODE),

nextWatchPosition(NEXT-WATCH.POSITION),
setWatchPosition(SET-WATCH-POSITION),

alarmTime(ALARMTIME)

{
currentPosition = 0;

time = 0;

void entry();

void SetAlarm::entryo)

{
int inSetAlarmMode;

while(true) {
if(displayMode.read() == 4) {

inSetAlarmMode = 1;

} else {
inSetAlarmMode = 0;

}

// Definition of SetAlarm Process

// Check if in Set Alarm Mode

// Change Position Being Set

// Increment Current Position Value

// Current Alarm Time

// Position Being Set

// Alarm Time Var

// Constructor and its Parameters

// Start with the Hour

// No Assumption of Alarm Time

// Process Functionality Contained Here

// Definition of Process Functionality

// This Process Runs Forever

if((setWatchPosition.read() == 1) && (inSetAlarmMode == 1)) {
time = SetTime(time, currentPosition);

}

191

void entryo;

};

void BasicWatch::entry()

{
int numBeeps;

int time;

while(true) {
if (toggleBeep.read == '1') {

if (beepStatus == 0)
beepStatus = 1;

else

beepStatus = 0;

}
time = IncrementWatchTime(watchTime.read);

newWatchTime.write(time);

numBeeps = Beep(time, beepstatus);

watchBeep.write(numBeeps);

wait();

}

1:

2:

3:

4:
5:
6:

7:

8:

9:

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:

21:

22:

23:
24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

35:
36:
37:
38:
39:
40:

41:

42:

if((nextWatchPosition.reado) == 1) && (inSetAlarmMode == 1)) {
currentPosition = NextPosition(currentPosition);

}
alarmTime.write(time);

wait 0;

Alarm Scenic Process Definition

struct Alarm: public sc-sync {
// input ports

const sc-signal<std-ulogic>& toggleAlarm;

const sc-signal<std-ulogic>& alarmTime;

const sc-signal<std-ulogic>& newWatchTime;

// output ports

sc-signal<std-ulogic>& alarmBeep;
// internal variables to this process

int alarmOnOff;

// The constructor

Alarm(sc-clockedge& EDGE,
scsignal<std-ulogic>& TOGGLE-ALARM,

sc-signal<std-ulogic>& ALARM-TIME,

sc-signal<std-ulogic>& NEW.WATCH-TIME,

sc-signal<std-ulogic>& ALARM-BEEP)

sc-sync(EDGE),

toggleAlarm(TOGGLEALARM),

alarmTime(ALARMTIME),

newWatchTime(NEW.WATCH-TIME),

alarmBeep(ALARM-BEEP)

{
alarmOnOff = 0;

}
void entry(;

void Alarm::entry()

{
while(true) {

if(toggleAlarm.read() == 1) {
if(alarmOnOff == 0) {

alarmOnOff = 1;
} else {.

alarmOnOff = 0;

}

// Definition of Alarm Process

// Toggle Alarm ON/OFF

// Alarm Time

// Current Watch Time

// Beep if Alarm Time

// Alarm Status

// Constructor and its Parameters

// Start with Alarm Off

// Process Functionality Contained Here

// Definition of Process Functionality

// This Process Runs Forever

}
} else
if(alarmOnOff == 1) {

if(alarmTime.read() == newWatchTime.read()) {
alarmBeep.write(30);

}
}
wait();

BasicStopWatch Scenic Process Definition

struct BasicStopWatch: public scsync {
// input ports

const sc-signal<stdulogic>& displayMode;

const sc-signal<std-ulogic>& startStop;

const sc-signal<std-ulogic>& stopReset;
// output ports

sc-signal<std-ulogic>& newStopTime;

// Definition of BasicStopWatch Process

// Check if in Stopwatch Mode

// START/STOP Stopwatch

// Reset Stopwatch Time

// Current Stopwatch Time

192

43:

44:

45:

46:

47:

48:

49:
}

}

}

1:
2:

3:

4:

5:
6:
7:

// internal variables to this process

int stopTime;
int run;

// The constructor
BasicStopWatch(sc.clock-edge& EDGE,

sc-signal<std-ulogic>& DISPLAY-MODE,
sc-signal<std-ulogic>& START-STOP,
sc.signal<std-ulogic>& STOP-RESET,
sc.signal<std-ulogic>& NEW.STOP.TIME)
sc-sync(EDGE),
displayMode(DISPLAY-MODE),
startStop(START-STOP),
stopReset(STOP-RESET),
newStopTime (NEW-STOPSTIME)

stopTime = 0;
run = 0;

}
void entry();

8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41':
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:

// Stopwatch Time Var
// Running Time

// Constructor and its Parameters

// Start Stopwatch at Time 0
// Not Running

// Process Functionality Contained Here

// Definition of Process Functionality

// This Process Runs Forever

LapFilter Scenic Process Definition

struct LapFilter: public sc-sync {
// input ports

const sc-signal<std-ulogic>& newStopTime;
const sc-signal<std-ulogic>& stopLap;
// output ports
sc-signal<std-ulogic>& stopTime;
// internal variables to this process
int lapFilter;
int lapTime;

// The constructor
LapFilter(sc-clock-edge& EDGE,

sc-signal<std-ulogic>& NEW.STOP.TIME,
sc-signal<std-ulogic>& STOP.LAP,
sc-signal<std-ulogic>& STOP.TIME)
sc-sync(EDGE),
newStopTime(NEW.STOP.TIME),
stopLap(STOP.LAP),
stopTime(STOP-TIME)

{
lapFilter = 0;

}
void entry(;

void LapFilter::entry()

while(true) {
if(stopLap.readO) == 1) {

if(lapFilter == 0) {
lapFilter = 1;

// Definition of LapFilter Process

// Stopwatch Time
// Use Lap Filter

// Stopwatch Time to Display

// Apply Lap Filter Var
// Lap Filter Time to Display

// Constructor and its Parameters

// Display Current Stopwatch Time

// Process Functionality Contained Here

// Definition of Process Functionality

// This Process Runs Forever

193

void BasicStopWatch: :entryo)

{
while(true) {

if(run == 1) {
stopTime = IncrementStopTime(stopTime);

}

if(startStop.read() == 1) {
if(run == 0) {

run = 1;
} else {

run = 0;

} else
if(stopReset.read() == 1) {

run = 0;
stopTime = 0;

}
newStopTime.write(stopTime);

waitO;

}
}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

lapTime = newStopTime.reado;

} else {
lapFilter = 0;

}

If(lapFilter == 1) {
stopTime.write(lapTime);

} else {
stopTime.write(newStopTime.read(;

wait);

Beep Scenic Process Definition

1: struct Beep: public sc-sync {
2: // input ports

3: const sc-signal<std-ulogic>& watchBeep;

4: const sc-signal<std-ulogic>& alarmBeep;

5: const sc-signal<std-ulogic>& newWatchTime;

6: // output ports

7: sc-signal<std-ulogic>& beepStatus;

8: // internal variables to this process

9: int numBeeps;

10:

11: // The constructor

12: Beep(sc-clock-edge& EDGE,
13: sc.signal<std-ulogic>& WATCH-BEEP,
14: sc-signal<std-ulogic>& ALARM.BEEP,

15: sc-signal<std-ulogic>& NEWAWATCH-TIME,

16: sc.signal<std-ulogic>& BEEP.STATUS)

17: : sc-sync(EDGE),
18: watchBeep(WATCHBEEP),

19: alarmBeep(ALARMBEEP),

20: newWatchTime(NEWWATCH-TIME),

21: beepStatus(BEEP-STATUS)

22: {
numBeeps = 0;

I
void entry(;

};

void Beep::entryo)

{

// Definition of Beep Process

// Beep From Watch

// Beep From Alarm

// Current Watch Time

// 1 = Beep, 0 otherwise

// Number of Beeps Left

// Constructor and its Parameters

// No Beeps to Start

// Process Functionality Contained Here

// Definition of Process Functionality

while(true) { // This Process Runs Forever

if((numBeeps > 0) && (IsSecond(newWatchTime.read())) {
beepStatus.write(1); // Beep Only on Second
numBeeps -= 1;

I

wait();
}

Display Scenic process definition

struct Display: public sc-sync {
// input ports

const sc-signal<std-ulogic>& displayMode;

const sc-signal<std-ulogic>& newWatchTime;
const sc-signal<std-ulogic>& stopTime;

const sc-signal<std-ulogic>& alarmTime;

// Definition of Display Process

// Display Mode

// Current Watch Time

// Stopwatch Time to Display

// Alarm Time to Display

194

32:
33:
34:

35:
36:
37:
38:
39:
40:

41:

42:

43:

44:

45:
46: I

23:
24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

35:
36:
37:
38: I

1:

2:

3:

4:
5:
6:

}

// output ports
sc-signal<std-ulogic>& mainDisplay;
// internal variables to this process

// The constructor

Display(sc-clockedgek EDGE,
sc-signal<std-ulogic>& DISPLAY-MODE,
sc.signal<std-ulogic>& NEWYWATCH-TIME,
sc-signal<std-ulogic>& STOP-TIME,
sc-signal<std-ulogic>& ALARM-TIME,
sc-signal<std-ulogic>& MAIN-DISPLAY)
sc-sync(EDGE),
displayMode(DISPLAY-MODE),
newWatchTime(NEWAWATCHTIME),
stopTime(STOP-TIME),
alarmTime(ALARM-TIME),
mainDisplay(MAIN.DISPLAY)

7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

mainDisplay.write(watchDisplay());

void entry);
};

void Display::entry()
{

int3ode;
while(true) {

mode = displayMode.read();
if((mode == 0) 11 (mode == 3)) {

mainDisplay.write(watchDisplayO);

I
if(mode == 1) {

mainDisplay.write(stopWatchDisplay());

I
if((mode == 2) 11 (mode == 4)) {

mainDisplay.write(alarmDisplay());

I

wait();
}

// Digital Wristwatch Display

// Constructor and its Parameters

// Display Watch

// Process Functionality Contained Here

// Definition of Process Functionality

// This Process Runs Forever

195

{

196

Bibliography

[1] Esther M. Arkin and Robin 0. Roundy. Weighted-tardiness scheduling on par-

allel machines with proportional weights. Operations Research, 39(1):64-81,

January-February 1991.

[2] J. Axelsson. Architecture synthesis and partitioning of real-time systems: A com-

parison of three heuristic search strategies. In Proceedings of the International

Workshop on Hardware/Software Codesign, pages 161-165, March 1997.

[3] Kenneth R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York,

1974.

[4] Egon Balas, Jan Karel Lenstra, and Alkis Vazacopoulos. The one-machine prob-

lem with delayed precedence constraints and its use in job shop scheduling. Man-

agement Science, 41(1):94-109, 1995.

[5] David Bernstein and Izidor Gertner. Scheduling expressions on a pipelined pro-

cessor with a maximal delay of one cycle. A CM Transactions on Programming

Languages and Systems, 11(1):57-66, January 1989.

[6] David Bernstein, Michael Rodeh, and Izidor Gertner. Approximation algorithms

for scheduling arithmetic expressions on pipelined machines. Journal of Algo-

rithms, 10:120-139, 1989.

[7] J. Blasewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Scheduling

Computer and Manufacturing Processes. Springer, 1996.

197

[8] Peter Brucker, Thomas Hilbig, and Johann Hurink. A branch and bound algo-

rithm for a single-machine scheduling problem with positive and negative time-

lags. Technical Report Reihe P, Nr. 179, Universitat Osnabruck, Osnabrucker

Schriften zur Mathematik, 1997.

[9] Peter Brucker and Sigrid Knust. Complexity results for single-machine prob-

lems with positive finish-start time-lags. Technical Report Reihe P, Heft 202,

Universitat Osnabruck, Osnabrucker Schriften zur Mathematik, 1998.

[10] John Bruno, John W. Jones, III, and Kimming So. Deterministic scheduling

with pipelined processors. IEEE Transactions on Computers, C-29(4):308-316,

April 1980.

[11] L. Bruno, Jr. E.G. Coffman, and R. Sethi. Scheduling independent tasks to

reduce mean finishing time. Communications of the ACM, 17:382-387, 1974.

[12] D.C. Carroll. Heuristic Sequencing of Jobs with Single and Multiple Components.

PhD thesis, Sloan School of Management, Massachusetts Institute of Technology,

1965.

[13] E.G. Coffman, Jr. and R.L. Graham. Optimal sequencing for two processor

systems. Acta Informatica, 1:200-213, 1972.

[14] Joseph G. D'Ambrosio and Xiaobo (Sharon) Hu. Configuration-level hard-

ware/software partitioning for real-time embedded systems. In Proceedings of

the Third International Workshop on Hardware/Software Codesign, pages 34-

41, September 22-24 1994.

[15] Bharat P. Dave, Ganesh Lakshminarayana, and Niraj K. Jha. COSYN:

Hardware-software co-synthesis of embedded systems. In Proceedings of the 34th

Design Automation Conference, pages 703-708, June 1997.

[16] Giovanni DeMicheli. Synthesis and Optimization of Digital Circuits. McGraw-

Hill, Inc., 1994.

198

[17] Robert P. Dick and Niraj K. Jha. MOGAC: A multiobjective genetic algo-

rithm for hardware-software co-synthesis of distributed embedded systems. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

17(10):920-935, October 1998.

[18] Jianzhong Du and Joseph Y-T. Leung. Minimizing total tardiness on one machine

is np-hard. Mathematics of Operations Research, 15(3):483-495, 1990.

[19] Jianzhong Du, Joseph Y-T. Leung, and Gilbert H. Young. Scheduling chain-

structured tasks to minimize makespan and mean flow time. Information and

Computation, 92:219-236, 1991.

[20] Jr. E.G. Coffman, editor. Computer and Job-Shop Scheduling Theory. John

Wiley & Sons, 1976.

[21] Petru Eles, Zebo Peng, , Krzysztof Kuchcinski, and Alexa Doboli. Hard-

ware/software partitioning of VHDL system specifications. In Proceedings of

European Design Automation Conference, pages 434-439, September 1996.

[22] Daniel W. Engels, David R. Karger, Stavros G. Kolliopoulos, Sudipta Sengupta,

R.N. Uma, and Joel Wein. Techniques for scheduling with rejection. In Gian-

franco Bilardi, Giuseppe F. Italiano, Andrea Pietracaprina, and Geppino Pucci,

editors, ESA '98, Proceedings of the 6th Annual European Symposium on Algo-

rithms, LNCS, pages 490-501. Springer, 1998.

[23] Lucian Finta and Zhen Liu. Single machine scheduling subject to precedence

delays. Discrete Applied Mathematics, 70:247-266, 1996.

[24] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, 1979.

[25] Abhijit Ghosh, Alan Ahlschlager, and Stan Liao. Using C++ and Scenery for

Describing Systems and Hardware. Synopsys, Inc., 0.7 edition, 1998.

199

[26] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of

Applied Mathematics, 17(2):416-429, March 1969.

[27] R.L. Graham. Bounds on the performance of scheduling algorithms. In E.G.

Coffman, editor, Computer and Job-Shop Scheduling Theory, pages 165-227.

John Wiley, New York, 1976.

[28] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: A Survey. Annals

of Discrete Mathematics, 5:287-326, 1979.

[29] J6rg Henkel and Rolf Ernst. A hardware/software partitioner using a dynam-

ically determined granularity. In Proceedings of the 34th Design Automation

Conference, pages 691-696, June 1997.

[30] Junwei Hou and Wayne Wolf. Process partitioning for distributed embed-

ded systems. In Proceedings of the Fourth International Workshop on Hard-

ware/Software Codesign, pages 70-76, March 1996.

[31] T. C. Hu. Parallel sequencing and assembly line problems. Operations Research,

9:841-848, 1961.

[32] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knap-

sack and sum of subset problems. Journal of the ACM, 22(4):463-468, October

1975.

[33] Richard Johnson, David Pearson, and Keshav Pingali. The program structure

tree: Computing control regions in linear time. In Proceedings of the A CM SIG-

PLAN '94 Conference on Programming Language Design and Implementation,

pages 171-185, June 1994.

[34] Asawaree Kalavade and Edward A. Lee. A global criticality/local phase driven

algorithm for the constrained hardware/software partitioning problem. In Pro-

ceedings of the Third International Workshop on Hardware/Software Codesign,

pages 42-48, September 22-24 1994.

200

[35] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and

J.W. Thatcher, editors, Complexity of Computer Computations, pages 85-103.

Plenum Press, New York, 1972.

[36] Peter Voigt Knudsen and Jan Madsen. PACE: A dynamic programming algo-

rithm for hardware/software partitioning. In Proceedings of the Fourth Interna-

tional Workshop on Hardware/Software Codesign, pages 85-92, 1996.

[37] E. Kutanoglu and I. Sabuncuoglu. An analysis of heuristics in a dynamic job

shop with weighted tardiness objectives. International Journal of Production

Research, 37(1):165-187, 1999.

[38] E.L. Lawler and C. Martel. Scheduling periodically occurring tasks on multiple

processors. Information Processing Letters, 12, February 1981.

[39] E.L. Lawler and J.M. Moore. A functional equation and its application to re-

source allocation and sequencing problems. Management Science, 16(1), Septem-

ber 1969.

[40] Eugene L. Lawler. Fast approximation algorithms for knapsack problems. In

18th Annual Symposium on Foundations of Computer Science, pages 206-213,

1977.

[41] Eugene L. Lawler. A 'pseudopolynomial' algorithm for sequencing jobs to min-

imize total tardiness. In Annals of Discrete Mathematics 1: Studies in Integer

Programming, pages 331-342. North-Holland Publishing Company, 1977.

[42] Eugene L. Lawler. Sequencing jobs to minimize total weighted completion time

subject to precedence constraints. Annals of Discrete Mathematics, 2:75-90,

1978.

[43] Hon F. Li. Scheduling trees in parallel/pipelined processing environments. IEEE

Transactions on Computers, C-26(11):1101-1112, 1977.

201

[44] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded soft-

ware using implicit path enumeration. In Proceedings of the 32nd ACM/IEEE

Design Automation Conference, pages 456-461, June 1995.

[45] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance estima-

tion of embedded software with instruction cache modeling. In Proceedings of

IEEE/ACM International Conference on Computer Aided Design, pages 380-

387, November 1995.

[46] S. Miyazaki. Combined scheduling system for reducing job tardiness in a job

shop. International Journal of Production Research, 19:201-211, 1981.

[47] Aloysius K. Mok. Fundamental Design Problems of Distributed Systems for the

Hard-Real-Time Environment. PhD thesis, Dept. of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology, Cambridge, MA, May

1983.

[48] Thomas E. Morton and Ram Mohan V. Rachamadugu. Myopic heuristics for

the single machine weighted tardiness problem. Technical Report CMU-RI-TR-

83-09, Robotics Institute, Carnegie Mellon University, November 1982.

[49] Thomas E. Morton and P. Ramnath. Guided forward tabu/beam search for

scheduling very large dynamic job shops, i. Technical Report 1992-47, Graduate

School of Industrial Administration, Carnegie Mellon University, 1992.

[50] Alix Munier, Maurice Queyranne, and Andreas S. Schulz. Approximation bounds

for a general class of precedence constrained parallel machine scheduling prob-

lems. In R.E. Bixby, E.A. Boyd, and R.Z. Rios-Mercado, editors, IPCO VI LNCS

1412, pages 367-382, Berlin, 1998. Springer-Verlag.

[51] Hyunok Oh and Soonhoi Ha. A hardware-software cosynthesis technique based

on heterogeneous multiprocessor scheduling. In Proceedings of the Seventh Inter-

national Workshop on Hardware/Software Codesign, pages 183-187, May 1999.

202

[52] Kunle A. Olukotun, Rachid Helaihel, Jeremy Levitt, and Ricardo Ramirez. A

software-hardware cosynthesis approach to digital system simulation. IEEE Mi-

cro, 14(4):48 - 58, August 1994.

[53] Krishna V. Palem and Barbara B. Simons. Scheduling time-critical instructions

on RISC machines. In Proceedings of the 17th Annual Symposium on Principles

of Programming Languages, pages 270-280, 1990.

[54] Michael Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall,

1995.

[55] Shiv Prakash and Alice C. Parker. SOS: Synthesis of application-specific hetero-

geneous multiprocessor systems. Journal of Parallel and Distributed Computing,

16:338-351, 1992.

[56] Ram Mohan V. Rachamadugu. A note on the weighted tardiness problem. Op-

erations Research, 35(3):450-452, 1987.

[57] M. Schwiegershausen, H. Kropp, and P. Pirsch. A system level HW/SW parti-

tioning and optimization tool. In Proceedings of European Design Automation

Conference, pages 120-125, September 1996.

[58] W.E. Smith. Various optimizers for single-stage production. Naval Research

Logistics Quarterly, 3:56-66, 1956.

[59] V.S. Tanaev, V.S. Gordon, and Y.M. Shafransky. Scheduling Theory. Single-

Stage Systems. Kluwer Academic Publishers, Boston, USA, 1994.

[60] Ari P.J. Vepsalainen. State dependent priority rules for scheduling. Technical

Report CMU-RI-TR-84-19, The Robotics Institute, Carnegie-Mellon University,

1984.

[61] Ari P.J. Vepsalainen and Thomas E. Morton. Priority rules for job shops with

weighted tardiness costs. Management Science, 33(8):1035-1047, August 1987.

203

[62] A. Volgenant and E. Teerhuis. Improved heuristics for the n-job single-machine

weighted tardiness problem. Computers & Operations Research, 26:35-44, 1999.

[63] J.K. Weeks. A simulation study of predictable due dates. Management Science,

25:363-373, 1979.

[64] T.-Y. Yen. Hardware-Software Co-Synthesis of Distributed Embedded Systems.

PhD thesis, Princeton University, June 1996.

[65] T.-Y. Yen and W. Wolf. Communication synthesis for distributed embedded

systems. In Proceedings of the International Conference on Computer Aided

Design, pages 288-294, November 1995.

204

We never know how high we are
Till we are called to rise;
And then, if we are true to plan,
Our statures touch the skies.

The heroism we recite
Would be a daily thing,
Did not ourselves the cubits warp
For fear to be a king.

Emily Dickinson, We Never Know How High

