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Abstract

Lightweight formal modeling and automatic analysis were used to explore the de-
sign of the Intentional Naming System (INS), a new scheme for resource discovery
in a dynamic networked environment. We constructed a model of INS in Alloy, a
lightweight relational notation, and analyzed it with Alcoa, a fully automatic sim-
ulation and checking tool. In doing so, we exposed several serious flaws in both
the algorithms of INS and the underlying naming semantics. We were also able to
characterize conditions under which the existing INS framework works correctly, and
evaluate proposed fixes.

We also discuss semantics issues that arose through our analysis with Alcoa and
need to be resolved in order to develop a scheme in which applications simply describe
their needs in an intentional name that is later resolved by the network infrastructure.
This analysis also enabled us to characterize essential properties of such a scheme.

Thesis Supervisor: Daniel Jackson
Title: Associate Professor
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Chapter 1

Introduction

Naming is a fundamental issue of growing importance in distributed systems. As the

number of directly accessible systems and resources grows, it becomes increasingly

difficult to discover the (names of) objects of interest. Moreover, in many distributed

environments - especially those involving mobile devices - applications do not know

the optimal network location providing the information or functionality they require.

1.1 Intentional naming

In an intentional naming and resolution architecture, applications describe their in-

tent and specify what they are looking for and not where it is situated. This shifts

the burden of resolving what is desired to where it is from the user to the network

infrastructure. It also allows applications to communicate seamlessly with end-nodes,

despite changes in the mapping from name to end-node addresses during the session.

The Intentional Naming System (INS) [2] is a recently developed framework that

provides this functionality. It comprises applications (clients and services) and name

resolvers, which respond to queries from clients.

Like IP routers [21] or conventional name servers [26], name resolvers route re-

quests from clients seeking services to appropriate locations, using a database that

maps service descriptions to their physical network locations. But in a name resolver,

a service is described using a tree-like structure of alternating levels of attributes and
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values where an element at a certain level specializes the ones above it.

A name resolver provides a few fundamental operations. When a service wants

to advertise itself - because, for example, it has just come online after being down,

or because its functionality has been extended - it calls the Add-Name operation

to register the service against an advertisement describing it. Applications make

queries by calling the resolver's Lookup-Name operation, while Get-Name is used to

disseminate information amongst resolvers.

1.2 Formal modeling

The design of a software structure like INS needs careful evaluation. In the past,

numerous other structures of similar complexity have been found with significant de-

sign flaws. For example, Garlan et al. found flaws in the High Level Architecture

(HLA) for distributed, component-based simulation [4], while Sullivan et al. discov-

ered problems in Microsoft's Component Object Model (COM) [23].

Among the basic properties that INS (or any naming scheme for that matter) must

satisfy, foremost is that the name resolution mechanism should not return services

that have conflicting functionality to what is requested. Another essential feature is

that if there are advertised services with the required elements then clients asking

for them should obtain them. It is also crucial that, for a given query, an existing

advertisement should either be valid or invalid. More specifically, it should not be

the case that a new advertisement invalidates an existing one from a different service.

Notice that this could happen due to a flaw in the addition algorithm or the semantics

of the naming scheme.

With regards to INS in specific, there are various other properties that need to be

tested. These include published claims made by the inventors of INS, both about the

behavior of its algorithms and semantics. One of these claims concerns the notion

of wild-cards, and it is asserted that a missing attribute corresponds to a wild-card,

both for queries and advertisements. This correspondence adds a greater degree of

flexibility and expressibility to the naming scheme. However, it is a subtle claim

11



and its consistency with the semantics and algorithms of INS needs to be evaluated

carefully.

In order to evaluate these properties, formal modeling and analysis of the struc-

tures involved are critical. Unfortunately, the scarceness of tools for rapid cycle-time,

interactive, formal modeling and analysis of such structures makes modeling itself

difficult and error-prone.

Alcoa [14] is a tool for fast, interactive analysis of models written in the Alloy

[11] language - a lightweight notation for expressing relational models of software

structures. This thesis explains how we used Alloy and Alcoa to expose flaws in INS

and explore variants of its design.

The focus of our model is the most interesting operation of INS, Lookup-Name,

while accounting for calls to Add-Name by characterizing legal configurations of the

resolver with suitable invariants. Alcoa was used interactively to refine our model to

only 55 lines of Alloy. In contrast, the code of the operation is about 1400 lines of

Java, does not express the key properties directly, and is not amenable to exhaustive

analysis.

Our main contributions are as follows:

" We show how, by construction and analysis of a succinct model, we were able to

expose a variety of flaws in INS, some of which were not known to its designers.

We also evaluate published claims about the properties of wild-cards, and show

these to be false. In all cases Alcoa generates counterexamples showing a query

and a database state that violate the expected property.

" Use of this tool also enabled us to establish conditions under which the current

INS algorithm for name resolution returns correct results.

* We evaluate the proposed fixes of INS inventors to two of the defects, and use

Alcoa to prove that these fixes do not work.

" From our analysis, we are able to raise naming semantics issues that are relevant

to any intentional naming scheme. Finally, we outline essential properties of a

general intentional naming scheme.
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We believe this work is significant for two reasons. First, it realizes the vision

of Guttag and Horning [8], in which a formal model is used interactively to explore

the design of a system. Second, it lays a formal foundation for analysis of a class of

systems that is likely to become increasingly important.

We further believe that this kind of lightweight approach to formal methods as

advocated in [16] has a promising future, since it can detect errors prior to implemen-

tation, including structural flaws that are particularly hard to correct later. The key

leverage in this analysis was provided by the Alcoa tool, which made it possible to

gain confidence in the model, root out modeling errors quickly, and check theorems

without the need to construct proofs.

1.3 Organization of the thesis

This thesis is organised as follows. Chapter 2 presents an overview of INS as described

in [2]. Chapter 3 introduces some fundamental components of the Alloy language

and the Alcoa tool. Chapter 4 presents a formal Alloy model of INS and outlines

how to extract such models from Java code with similar features. This model is

then substantially simplified. In Chapter 5, Alcoa is used to analyze the resulting

model, and reveal several flaws in INS. Chapter 6 evaluates the cost of this model,

in the relative sizes of model to code, and the time performance of the tool. Chapter

7 discusses some subtle semantics issues that are relevant to any intentional naming

scheme, and presents an attempt to extract essential properties of a general intentional

naming scheme. Chapter 8 discusses related and future work, and we conclude there.
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Chapter 2

Intentional Naming System

What's in a name? that which we call a rose

By any other name would smell as sweet

- Romeo and Juliet (2:2)

INS consists of two distinct components, namely the applications and the Inten-

tional Name Resolvers (INRs). Applications may be clients or services with services

providing the functionality or data required by clients. The clients use INRs to route

their requests to appropriate locations.

When an INR receives a lookup request it decides whether to resolve or forward

it, based on the specific service requested by the client application. If the application

chooses early binding, a list of IP-addresses conforming to the name is returned.

Alternatively, a client may opt for late binding in which case the INR instead forwards

the name with its application payload directly to the services (end-nodes). This

integration of name resolution and message routing allows INS to adapt quickly to

changes in the 'best' network location of a service. However, this feature is not

relevant to our model of the core intentional naming architecture in INS.

INRs form a decentralized network and configure themselves into a spanning tree

overlaying the topology of the network. They maintain a periodically updated map-

ping between service descriptions and their network locations, thus eliminating the

need for explicit de-registration of services. Self-configuration of INRs and periodic
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advertisements of services make INS an easily configurable architecture with a high

degree of robustness. However, they too do not form an integral part of its naming

mechanism.

name-specifier

building service

NE-43 camera

Figure 2-1: Name Specifier

The core of the naming scheme of INS constitutes the implementation of inten-

tional names, and their advertisement and resolution. Intentional names are imple-

mented in INS using name-specifiers. A name-specifier (Figure 2-1) is an arrangement

of alternating levels of attributes and values in a tree structure. In Figure 2-1, hollow

circles identify attributes and filled circles identify values. Attributes represent cate-

gories in which an object can be classified. Each attribute has a corresponding value

that is the object's classification within that category. A wild-card may be used in

place of a value to show that any value is acceptable. An attribute together with its

value form an av-pair; each av-pair has a set of child av-pairs that further describe

the object. An av-pair that specializes another is a descendant of it, and av-pairs

that are orthogonal to each other but specialize the same av-pair are siblings in the

tree. The name-specifier in Figure 2-1, thus, describes an object in building NE-43

that provides a camera service.

An INR stores its information in a database called a name-tree. This database

maps names to name-records, which include the IP addresses of services advertising

the name. A name-tree can be viewed as a superpositioning of many name-specifiers,

storing the correspondence between name-specifiers and name-records. Figure 2-2

shows an example name-tree that stores two objects, one (i.e. RO) that provides a

15



camera service in NE-43 and the other one (i.e. Ri) that provides a printer service

in the same building.

name-tree

building Y service

NE- 43
camera printer

.RO*

R I

Figure 2-2: Name Tree

Analogous to the attributes and values in a name-specifier, a name-tree also has

two fundamental building blocks, an attribute-node and a value-node. Like values, a

value-node can have several attribute-nodes as its children that provide more specific

classifications of that value. However, in contrast with attributes that have a unique

corresponding value, an attribute-node can have several value-nodes as its children,

each representing a distinct value the name-tree recognizes. A value-node that corre-

sponds to a leaf av-pair of an advertised name-specifier also contains a pointer to the

relevant name-record. In Figure 2-2 this is represented by broken arrows.

INRs interact with name-trees in two key ways: resolving name-specifiers to name-

records and disseminating information about name-specifiers amongst themselves.

The name-records for a name-specifier are retrieved using the Lookup-Name operation.

An algorithm for this operation is given in pseudocode in the published description

of INS [21, and is replicated in Section 4.4.

Resolving the name-specifier in Figure 2-1 in the name-tree of Figure 2-2 results

in the name-record RO. Of the two name-records RO and R1 in the name-tree, only

RO is returned, since the value of attribute 'service' sought by the client does not

match that provided by R. This is because R1 provides a printer service whereas

16



the client seeks a camera object.

The Lookup-Name algorithm makes a series of recursive calls, but does not back-

track. Each call reduces the set of possible name-records by intersecting it with those

contained in matching leaf nodes. The inventors of INS claim [2] that in the exe-

cution of the algorithm 'omitted attributes correspond to wild-cards'. Our analysis

establishes this to be false (Section 5.2).

When a service advertises its availability to an INR, it is included in the name-tree

stored by that INR using the Add-Name algorithm.

To periodically update adjacent INRs about new or expired services, an INR

extracts name-specifiers from its name-tree using the Get-Name algorithm. This al-

gorithm traces upwards from leaf nodes of a name-tree, reconstructing name-specifiers

on its way to the root, and grafting along any previously reconstructed pieces.

In summary, INS achieves its expressiveness using a simple naming language based

on attributes and values. It integrates name resolution and message routing to al-

low applications to be responsive to mobility and performance changes, and uses

periodic service advertisements and soft-state name dissemination protocols between

replicated resolvers to achieve robustness.
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Chapter 3

Modeling tools

Our formalization of the core model of the naming scheme of INS (Figure 4-6) is

written in Alloy, a first-order notation that attempts to combine the best of features

of Z [22] and UML [19]. From UML and its predecessors, it takes various declara-

tion shorthands, navigations, and a focus on set-valued rather than relation-valued

expressions; from Z, it takes schema structuring and a simple set-theoretic semantics.

3.1 Alloy

An Alloy model is built by layering properties using conjunction, in contrast to op-

erational languages in which the model is given by an abstract program. This allows

partial models to be built, in which constraints describe how state components are

related to one another, without explicit rules for how each component is updated.

We describe the basic components of Alloy below (referring to the model in Figure

4-6 to explain the notions as they are introduced.) A detailed rationale for Alloy's

design appears in [11].

Domains. The domain paragraph introduces basic sets that partition the universe

of atoms. Alloy is strongly but implicitly typed; there is a basic type associated with

each domain (which in Z would be declared explicitly as a 'given type'). Attribute,

and Value model respectively the attributes and values that may appear in a name-

specifier and a name-tree. Record models the set of name-records that exist in a

18



name-tree. Unlike a given type, a domain is a set of atoms that exist in a particular

state and not a platonic set of possible atoms. So Record represents a set of name-

records in a particular configuration, not the set of all imaginable name-records.

Multiplicities and Mutabilities. The symbols + (one or more), ! (exactly one) and ?

(zero or one) are used in declarations to constrain sets and relations. The declaration

r :S m - T n

where m and n are multiplicity symbols, makes r a relation from S to T that maps

each S to n atoms of T, and maps m atoms of S to each T. So recNT, for example,

maps at least one Value to each Record, which informally means that all name-records

appear in some value-node. Similarly, the declaration

S : T m

makes S a set of m atoms drawn from the set T. So WildCard, for example, is a set

of values with one element i.e. a scalar. Omission of a multiplicity symbol implies no

constraint.

The keyword fixed introduces a mutability constraint. A set S declared to be fixed

is unchanging: an object cannot be a member of S at one time and a non-member at

another. So the declaration of WildCard as fixed simply means that the same value

must be used consistently to represent wild-cards.

When several set components are declared together, the collection may be marked

as disjoint, thus

disjoint Root, WildCard : fixed Value!

declares Root and WildCard to be disjoint (fixed) subsets of Value of size 1.

Expressions. All expressions denote sets of atoms. The conventional set operators

are written in ASCII form: + (union), &(intersection), - (difference). The navigation

expression e.r denotes the image of the set e under the relation r: that is, the set

of atoms obtained by 'navigating' along r from atoms in e. In e. + r, the image

19



under the transitive closure of r is taken instead: that is, navigating one or more

steps of r. Scalars are treated as singleton sets. This allows us to write navigations

more uniformly, without converting between sets and scalars or worrying about the

difference between functions and more general relations. So the expression

Root.attNS & Root.attNT

for example, denotes the set of attributes common to both the name-specifier and the

name-tree at the top level.

Formulas. Alloy uses the standard logical operators, written in programming-

language form: && (and), I (or) and not. There are two elementary formulas: s in t,

which says that the expression s denotes a subset of the expression t (or membership

when s is a scalar), and s = t, which says that the expressions denote the same set.

Quantifiers. The existential and universal quantifiers are written some and all.

Less conventionally, no x I F and sole x I F mean that there is no x and at most one

x that satisfies F. Quantifiers are used in place of set constants, so

no Root.attNS & Root.attNT

for example, says that there is no attribute in the intersection of Root.attNS and

Root.attNT. Bounds of quantified variables may optionally be omitted; in

all v | v.immFolNS = v.attNS.valNS

the variable v is inferred to belong to domain Value, and could have been written

equivalently as

all v : Value | v.immFolNS = v.attNS.valNS

In our Alloy models of INS that follow, we have omitted most bounds for brevity's

sake, but used variable names consistently to avoid confusion: variables beginning
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with a, v, and r are used for attributes, values, and name-records, respectively.

Paragraphs. An Alloy model is divided into paragraphs much like Z schemas,

but Alloy distinguishes different kinds of constraints. An invariant (introduced by

the keyword inv) models a constraint in the world being modeled; a definition (de)

defines one variable in terms of others, and can in principle always be eliminated

along with the variable being defined. An assertion (assert) is a putative theorem to

be checked. A condition (cond) is a constraint whose consistency is to be checked,

but unlike an invariant is not required always to hold.

An operation (op) specifies transitions of the model with constraints that relate

pre-states and post-states, the latter being referred to by priming the names of state

components.

Alloy also has a graphical notation for visualization of models. In the graphical

representation, a box labeled S, denotes a set of objects, which are indivisible things,

without notions of state or methods. Arrows with open heads denote relations. The

set declaration S : T m is represented as an arrow with a triangular head from a

box marked S m to a box marked T. An arrow with a triangular head and two tails

represents disjoint subsets. If a set is fixed it has a vertical stripe down both the left

and right-hand sides of the box.

3.2 Alcoa

We analyzed our model using Alcoa. Alcoa [14] is a tool for analyzing object models

with a variety of uses. At one end, it acts as a support tool for object model dia-

grams, checking for consistencies of multiplicities and generating sample snapshots.

At the other end, it embodies a lightweight formal method in which subtle proper-

ties of behavior can be investigated. Its input language Alloy supports a declarative

description of state and behavioral properties, by conjoining constraints. An Alloy

model can, therefore, be developed incrementally, with Alcoa investigating whatever

has been developed so far.

Alloy is not a decidable language, so Alcoa cannot provide a sound and complete
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analysis. Instead, it conducts a search within a finite scope chosen by the user that

bounds the number of elements in each primitive type. Here, for example, an analysis

of a theorem about Lookup-Name for a scope of 4 would account for every possible

lookup in which the name-specifier and name-tree are constructed from at most 4

attributes, 4 values and 4 name-records. This is a huge space (comprising about 2100

cases) that could not be covered by traditional simulation methods.

Alcoa's use requires first the creation and compilation of an Alloy model. The

compilation takes a few seconds and finds superficial flaws, such as type errors. The

user then selects a schema that is a paragraph of the model to be analyzed and starts

a run. Alcoa's output is either an instance - a particular state or transition - or a

message that no instance was found in the given scope. When checking an assertion,

an instance is a counterexample to the theorem. When exercising an invariant or

operation, an instance is a demonstration of consistency. The user may then choose

to edit the model, recompile and rerun, or to investigate the same schema further, by

changing the scope or adjusting the solver parameters.

Theoretically, when no instance is found, the user is not entitled to infer anything.

However, in practice, if an instance exists, there is one usually in small scope. So

when none is found, it is quite likely that an assertion holds, or that an invariant is

inconsistent.

Even in small scopes, the number of cases to consider is usually quite large. A

relation in the scope of k has 2 kxk possible values. For example, a model with only

3 relational state components in a scope of 3 thus has about a billion states. Clearly

several of these will be ruled out by the constraints, and the search mechanism will

prune away large parts of the space. For instance, in checking that an operation

preserves an invariant, the search might exclude most of the post-states that do

not violate the invariant, thus considering only 'bad' executions of the operation,

effectively executing it backwards. Hence, by preemptively ruling out large classes

that are not to cause problems, this scheme is able to account for billions of possible

executions of the operation.

Alcoa works by translating the problem to be analyzed into a (usually huge)
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Boolean formula. This formula is handed to an off-the-shelf SAT solver, and the

solution is translated back by Alcoa into the language of the model. The algorithm

is described in [12], and we outline the basic steps below.

The first step involves two simple manipulations on the problem: conversion to

negation normal form and skolemization. Next it is translated into a boolean for-

mula for the chosen scope along with a mapping between relational variables and

the boolean variables used to encode them. This boolean formula is constructed so

that it has a model exactly when the relational formula has a model in the desired

scope. The boolean formula is then converted to conjunctive normal form, which is

the preferred input of most SAT solvers. Next, the boolean formula is presented to

the SAT solver. If the solver finds a model, a model of the relational formula is then

reconstructed from it.

Alcoa comes with a suite of public domain SAT solvers including SATO [28] and

RelSAT [17], whose parameters can be adjusted within Alcoa itself. However, in our

analysis of INS that follows, these parameters did not require any adjustments.
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Chapter 4

Alloy model of INS

There are two primary challanges to constructing a model of INS in Alloy. First the

semantics of INS are only described informally. Pseudo-code for the main algorithms

is provided in [2], but the definitions of data structures involved are informal. Sec-

ond, Alloy's built in support for representing operations does not handle recursive

functions; Alloy has not previously been used to model algorithms of this nature.

A Java implementation of the naming scheme of INS, however, is given in [20].

Our main model of INS in Alloy (Sections 4.3 and 4.4) is independent of the data

structures used in this implementation and could be constructed from only an informal

description of the data structures and pseudo-code for essential procedures. Thus,

the impatient reader may jump straight ahead to Section 4.3.

Below we begin our discussion by informally describing how to extract Alloy mod-

els from Java code with language features similar to those used in the INS implemen-

tation. Then we explain various transformations that are performed on this model to

reduce its complexity.

4.1 An initial model

Figure 4-1 transcribes parts of the Java code in [20], that are relevant to construction

of an Alloy model.

The basic idea behind the construction of domain and state in an Alloy model is
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class Attribute{

String attribute; ...
class Value {

String value; ...

class NameRecordSet {...

Vector nameRecords; // Vector of NameRecord ...

class AVPair {
Attribute a;

Value v;

Vector children; // Vector of AVPair ...
class NameSpecifier extends AVPair ...

class AttributeNode {
Attribute a;

Vector children; // Vector of ValueNode ... }
class ValueNode {

Value v;

Vector children; // Vector of AttributeNode

NameRecordSet routeSet; ...
NameRecordSet lookup(AVPair n) {. . .} ..

class NameTree extends ValueNode {
Vector nameRecords; // Vector of NameRecord ...

Figure 4-1: Relevant data structures from Java implementation

as follows. For each of the (six) class declarations that extend object, introduce

a new domain. Then for each field in such a class, define a relation that maps an

element of the class to relevant value(s) of that field; Finally, if class A extends

B, include a subset constraint in the model stating A : B, and for each field of A, define

a relation that maps an element of A to element(s) of the domain corresponding to

the type of that field. 1

Figure 4-2 shows this construction and Figures 4-3 and 4-4 anotate it using graph-

ical notation of Alloy. Method lookup in class ValueNode is modelled by defin-

ing an indexed relation lookup; for each element av of AVPair, lookup[av] is a rela-

tion from ValueNode to NameRecordSet. Thus, v.lookup[av] models the function call

'It must be stressed that this is an informal description. It is certainly not an attempt to precisely
define rules that automate extraction of succinct Alloy models from arbitrary Java code; something
left for future work.
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Figure 4-2: Domain and State in initial model

Figure 4-3: NameSpecifier in graphical Alloy
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model INS1 {
domain{Attribute, Value, AVPair, ValueNode, AttributeNode, NameRecordSet}
state{

attributeAV : AVPair? -> Attribute?
valueAV : AVPair? -> Value?

childrenAV : AVPair? -> AVPair

NameSpecifier : fixed AVPair!

attributeAN AttributeNode? -> Attribute!
childrenAN AttributeNode? -> ValueNode+
valueVN : ValueNode? -> Value?
childrenVN : ValueNode! -> AttributeNode
routeSet : ValueNode -> NameRecordSet
NameTree : fixed ValueNode!
nameRecords : NameTree -> NameRecordSet

lookup[AVPair] : ValueNode -> NameRecordSet
immFollowsVN(~immPrecedesVN) ValueNode -> ValueNode
WildCard : fixed Value!

}
}

Attribute Value

attributeAV ? ? alueAV

? AVPair

childrenAV

NameSpecifier



WildCard Value AVPair

valueVN attributeAN
7 ! childrenVN ?

NameRecordSet r ValueNode AttributeNode
routeSet

+ childrenAN ?

nameRecords
NameTree

Figure 4-4: Name Tree in graphical Alloy

v.lookup(av).

The defined relation immFollows VN maps a ValueNode to the possible ValueN-

odes its children AttributeNodes can take in the name-tree; immPrecedes VN is the

transpose of immFollowsVN.

Wild-card is modeled as a fixed Value. This is slightly different from the Java

implementation, which uses a flag.

4.2 Simplifying transformations

There are several simplifications that can be performed to the model above. We begin

by noting that the relation nameRecords that explicitly stores the set of name-records

in the name-tree is essentially redundant. This information can be stored indirectly

by requiring that all elements of NameRecordSet must appear in the image of routeSet.

Recall that intuitively both name-specifier and name-tree are just alternating lev-

els of values and attributes, arranged in a directed tree. We can use this intuition

to remove several relations that appear in Figure 4-2 if we superimpose the two tree

structures with each edge properly labeled, according to whether it belongs to the

name-specifier or the name-tree. Moreover, we no longer need the indirection intro-

duced by relations attributeA V and valueA V in the case of the name-specifier to access

the attributes and values in it. Likewise, relations valueVN and attributeAN are not
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required to access elements of a name-tree.

It should be noted here that this simplification has a limitation. We can no longer

represent repeated values or attributes in the name-specifier or the name-tree. This

means that if some algorithm only breaks down when the same value or attribute

appears multiple times in the name-specifier or the name-tree, then we would not be

able to detect a flaw in that algorithm. In the case of Lookup-Name this is not a

restriction since all the decisions it makes are based on local values observed and it

is illegal to have sibling attribute (value) nodes that share an attribute (value).

Observe, further, that there is no need to have a separate root node each for the

name-specifier and the name-tree. A single root can act as the root of both, with

labeled edges pointing to the appropriate top level attributes.

Another thing to notice is that every recursive call to Lookup-Name is made by

ensuring first that the values of the value-node and av-pair forming the parameters

of the call are identical; both are null on the initial call. Hence there is no need to

model Lookup-Name as an indexed relation.

Based on these observations we can remove the domains AVPair, ValueNode, and

AttributeNode from our model

4.3 Model of INS in Alloy

The domain and state of our new model of INS are presented in Figure 4-6 and

described below. Figure 4-5 illustrates this model using the graphical notation of

Alloy, and replaces the model constructed earlier that appears in Figures 4-3 and 4-4.

The domain consists of three sets Attribute, Value, and Record.

Root and WildCard are distinct values, and Root acts as the root of both the

name-specifier to resolve and the name-tree to search.

The relations valNS and attNS map an attribute to its child value and a value to

its children attributes in the name-specifier, respectively. Thus the name-specifier is

defined by the tuple (attNS,valNS). For example, the name-specifier in Figure 2-1 is

2 Record is the same as NameRecordSet earlier, however we decided to simplify its name too!
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Record

vaINT recNT lou

Attribute Value

attNS, attNT

! !7

Root WildCard

Figure 4-5: Graphical Alloy model of INS that replaces Figures 4-3 and 4-4

Figure 4-6: New domain and state of INS model

29

model INS {
domain{Attribute, Value, Record}

state{

disjoint Root, WildCard : fixed Value!

valNS : Attribute? -> Value?

attNS : Value? -> Attribute

valNT : Attribute? -> Value

attNT : Value? -> Attribute

recNT : Value+ -> Record

immFolNS : Value -> Value

immFolNT (~immPreNT): Value -> Value

lookup : Value -> Record

}
}



given by

attNS = { Root -+ {building, service}}

valNS = {building --+ NE-43, service -± camera}

The relations attNT and vaiNT similarly map a value to its descendant attributes

and an attribute to the possible values it can take respectively, but in the name-

tree. The third relation that defines the name-tree is recNT which maps a value to

name-records. The name-tree of Figure 2-2 would have

attNT {Root - {building, service}}

vaiNT {building -* {fNE-43}, service - {camera, printer}}

recNT {NE-43 -+ {RO, R1}, camera -+ {R0},printer - {R1}}

Thus, the name-tree is just a triple (attNT, valNT, recNT).

Defined relations immFolNS and immFolNT map a value to possible values its

children attributes can take in the name-specifier and the name-tree respectively. For

Figures 2-1 and 2-2

immFolNS = {Root -4 {NE-43, camera}}

immFolNT {Root -> { NE-43, camera, printer}}

immPreNT is defined to be just the transpose of immFolNT.

The relation lookup models the Lookup-Name method, and maps each value v to

a set of name-records; these records represent the return value of Lookup-Name when

invoked on the value-node and the av-pair corresponding to v. Thus, Root.lookup is

the result of resolving the name-specifier in the name-tree, and is {R0} for Figures

2-1 and 2-2.

Figure 4-7 presents the constraints that model the wild-card value and the name-

specifier, while Figure 4-8 contains the ones for the name-tree and Add-Name . They

can be described as follows.

e The input name-tree and name-specifier are non-null (NonEmpty).

* WildCard is governed by the following three invariants:
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- it does not appear in the name-tree (WC1);

- no attribute specializes it in the name-specifier (WC2);

- it does not contain any name-records (WC3).

* The structure of the name-specifier is constrained by the invariants:

- no attribute maps to Root under the vaiNS relation, i.e. Root has no

ascendants (NS1);

- if a non-root value exists in the name-specifier, it has exactly one ascendant

(NS2);

- if an attribute exists in the name-specifier, it has exactly one descendant

value (NS3), and one ascendant value (NS4);

- the name-specifier data structure is acyclic (NS5); this is expressed using

the transtive closure operator.

* Similar invariants (NT1-5) also hold for validating the name-tree.

* Add-Name is safely abstracted by modeling the constraints it imposes on the

name-tree.

- Addi just requires that no service satisfies all demands;

- Add2 says that a value not appearing in the name-tree does not contain

any name-records;

- when a name-specifier is added to a name-tree, its leaf nodes contain the

corresponding name-record (Add3);

- since only leaf nodes contain that name-record, any ascendant nodes do

not contain it (Add4);

- since each attribute has exactly one corresponding value in a name-specifier,

sibling values do not share a name-record (Add5).
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inv NonEmpty {some Root.attNS && some Root.attNT}

Figure 4-7: Constraints for wild-card and name-specifier

Figure 4-8: Constraints for name-tree and Add-Name
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inv WC1 {no a I WildCard in a.valNT}
inv WC2 {no WildCard.attNS}

inv WC3 {no WildCard.recNT}

def immFolNS {all v I v.immFolNS = v.attNS.valNS}

inv NS1 {no Root.~valNS}

inv NS2 {all v : Value - Root I some v.attNS -> one v.~valNS}

inv NS3 {all a I some a.~attNS -> one a.valNS}

inv NS4 {all a I some a.valNS
-> (one a.valNS && one v I a in v.attNS)}

inv NS5 {no v I v in v.+immFolNS}

def immFolNT {all v I v.immFolNT = v.attNT.valNT}

inv NT1 {no Root.~valNT}

inv NT2 {all v : Value - Root I some v.attNT -> one v.~valNT}

inv NT3 {all a I some a.~attNT -> some a.valNT}

inv NT4 {all a I some a.valNT -> one v I a in v.attNT}

inv NT5 {no v I v in v.+immFolNT}

inv Addi {no Root.recNT}

inv Add2 {all v I no v.~valNT -> no v.recNT}

inv Add3 {all v I some v.~valNT && no v.attNT -> some v.recNT}

inv Add4

{all v I all r : v.recNT I no v1 : v.+immPreNT I r in vi.recNT}

inv Add5 {no vl,v2 I v1 != v2 && (some vl.recNT & v2.recNT) &&

some vlp:vl+v.+immPreNT, v2p:v2+v2.+immPreNT

v1p != v2p && v1p.~valNT = v2p.~valNT}



4.4 Modeling Lookup-Name

Before we describe our model of Lookup-Name in Alloy, we explain its pseudo-code

as it appears in [2] (Figure 4-9 transcribes it).

Lookup-Name (T , n)
S <- the set of all possible name-records

for each av-pair p := (na, nv) in n

Ta <- the child of T such that

Ta's attribute = na's attribute
if Ta = null

continue

if nv = * // wild card matching

S' <- empty-set

for each Tv which is a child of Ta
S' <- S' union (all of the name-records in the

subtree rooted at Tv)
S <- S intersection S'

else // normal matching
Tv <- the child of Ta such that

Tv's value = nv's value
if Tv is a leaf node or p is a leaf node

S <- S intersection (the name-records of Tv)

else

S <- S intersection Lookup-Name(Tv, p)

return S union (the name-records of T)

Figure 4-9: Lookup-Name algorithm

Lookup-Name takes a name-tree and a name-specifier as its input parameters. It

begins by initializing S to be the set of all possible name-records. Then, for each

child av-pair in the name-specifier, it finds an attribute-node in the name-tree whose

attribute is the same as that of the av-pair. If the av-pair contains a wild-card as

its value, then the algorithm computes S' as the union of all name-records in the

value-nodes that correspond to that attribute-node. If not, it finds the corresponding

value-node in the name-tree. If it reaches a leaf of either the name-specifier or the

name-tree, it intersects S with the name-records at the corresponding value-node. If
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not, it makes a recursive call to compute the relevant set from the subtree rooted at

the corresponding value-node, and intersects that with S.

We model Lookup-Name by three mutually exclusive invariants (Lookupl-3), that

are presented in Figure 4-10. Lookupl-2 handle the case without wild-cards, while

Lookup3 adds the functionality for handling them. Despite their cryptic appearance,

these invariants are fairly simple to understand.

cond indexedSubset (r:Record, v:Value)
{all a1:v.attNS,a2:v.attNT,v1p,v2p I

(al = a2 && v1p in ai.valNS && v2p in a2.valNT && vip = v2p)

-> r in vip.lookup + v.recNT}

cond indexedSuperset (r : Record, v:Value)
{all vi : v.immFolNT I vi.recNT + v.recNT in r}

inv Lookupi

{all v:Value - WildCard I
(v.~valNS = v.~valNT && (no v.attNS 11 no v.attNT))

-> v.lookup = v.recNT}
inv Lookup2

{all v:Value - WildCard I
(v.~valNS = v.~valNT && some v.attNS && some v.attNT)

-> (indexedSubset(v.lookup,v) &&

no r : Record - v.lookup I indexedSubset(v.lookup+r,v))}
inv Lookup3

{all v:WildCard I

some v.~valNS.valNT

-> (indexedSuperset(v.~immFolNS.lookup, v.~immFolNS) &&

no r : v.~immFolNS.lookup I
indexedSuperset(v.~immFolNS.lookup - r, v.~immFolNS))}

Figure 4-10: Constraints modelling Lookup-Name

Lookupi says that if v has the same parent attribute in both the name-specifier

and the name-tree and it corresponds to a leaf value-node in the name-tree or to a

leaf av-pair in the name-specifier, then v.lookup is just the name-records contained in

that value-node.

Lookup2 is more subtle and uses the auxillary condition indexedSubset, which

provides the functionality of taking the intersection over a finite collection of sets. It
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uses the simple mathematical equivalences

S nisS -

Vi I.Sc- S. A Vs VS i E I -SU{s} Si

and

(ni 1 Si) U T 0 iEI (si U T)

Lookup3 is similar to Lookup2 and adds the functionality of handling wild-cards.

It makes use of indexedSuperset, which behaves as a dual to indexedSubset.

To see the correspondence between invariants Lookupl-3 and the pseudo-code in

Figure 4-9, notice first that after its initialization, S is modified at 3 points in the

pseudo-code. All these points are inside the for loop. Simply stated, each of our

invariants corresponds to one of these points (Lookupi to the second, Lookup2 to the

third, and Lookup3 to the first). The only difference is that we have incorporated the

effects of repeated intersections and the union operations (while computing S' and on

the last line) of the pseudo-code within our auxillary conditions indexedSubset and

indexedSuperset. This was made possible by the two equivalences mentioned above.

Figures 4-6, 4-7, 4-8, and 4-10 form the core of our Alloy model of INS. We are

now in a position to make assertions about this model and use Alcoa to test whether

or not our beliefs about INS are sound.
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Chapter 5

Analysis

We use Alcoa to perform four kinds of analyses on our Alloy model of INS. First,

we test some basic properties that should hold in a valid naming scheme. Second,we

analyze the published claims concerning the use of wild-cards in INS. Third, we

observe the effect that addition of a new advertisement to the name-tree can have.

Finally, we evaluate two fixes that were proposed by inventors of INS, intended to

patch up the bugs revealed by analysis of Section 5.1.2 (that follows).

5.1 Testing fundamental properties

It is crucial for a naming scheme to have a name resolution algorithm that provides

valid results only. Moreover, existence of valid services should result in clients seeking

for them being served. Below we test some properties that we consider are funda-

mental to any naming scheme.

5.1.1 When INS works

We begin our analysis by testing the behavior of INS in the simple case when the

name-specifier is added to the name-tree using Add-Name and exists there at the

time of query resolution. Having made this assumption, we check the validity of the

following three theorems.
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cond NSExistsNT

{all a,v I a.valNS= v
-> (a.valNT = v && a.~attNS = a.~attNT)}

cond AlreadyAdded
{NSExistsNT && some r I all v I some v.~valNS && no v.attNS

-> r in v.recNT}

cond IsLeafAVPair(a:Attribute, v:Value){a.valNS=v && no v.attNS}

cond IsValidRecord(r:Record)

{all a,v I IsLeafAVPair(a,v)
-> r in v.recNT + v.+immPreNT.recNT}

cond SomeRecordReturned {some Root.lookup}

cond AllRecordsReturnedAreValid

{all r I r in Root.lookup -> IsValidRecord(r)}

cond AllValidRecordsAreReturned

{all r I IsValidRecord(r) -> r in Root.lookup}

assert LookupOK1

assert LookupOK2

assert LookupOK3

{AlreadyAdded -> SomeRecordReturned}

{AlreadyAdded -> AllRecordsReturnedAreValid}

{AlreadyAdded -> AllValidRecordsAreReturned}

Figure 5-1: Three basic theorems about Lookup-Name

Figure 5-2: Alcoa output for analysis of LookupOK2
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Analyzing LookupOK2 ...
Scopes: Record(4), Value(4), Attribute(4)

Conversion time: 0 seconds

Solver time: 2 seconds

Total conversion time: 0 seconds

Total solver time: 2 seconds

No counterexamples exist in this scope



o Lookup-Name returns at least some name-record

" All name-records returned by Lookup-Name are valid

* All valid name-records are returned by Lookup-Name

For now, we consider a name-record to be valid if and only if it is included in the

set of name-records of all leaf value-nodes, that match those of the name-specifier, or

their parents. A more general treatment is presented in Section 7.1, where we argue

that the validity semantics of INS need a reexamination to make the naming more

versatile.

Figure 5-1 shows the Alloy code used to make the assertions above. Condition

NSExistsNT ensures existence of the name-specifier in the name-tree. AlreadyAdded

enforces this existence to be a result of addition. IsLeafAVPair determines whether

the input parameters form a leaf av-pair in the name-specifier, and Is ValidRecord for-

malises the definition of a valid record. SomeRecordReturned just asserts that the re-

sult of Lookup-Name is non-empty. AllRecordsReturnedAre Valid and AllValidRecord-

sAreReturned have been named to describe their behavior. Finally the three assertions

LookupOK1, LookupOK2, and LookupOK3 test the properties listed above.

In all three tests (LookupOK1, LookupOK2, and LookupOK3), Alcoa completes

its search without finding a counterexample. This gives us confidence that INS's

resolution mechanism is sound when the name-specifier appears exactly in the name-

tree as a result of an advertisement. Figure 5-2 shows sample Alcoa output resulting

from the analysis of LookupOK2.

This concludes our analysis under the simplifying assumption that the name-

specifier was added to the name-tree before lookup.

5.1.2 Problems with INS

Here, we consider relaxing the requirement that the name-specifier exists in the name-

tree. This leads to discovery of several flaws in the Lookup-Name algorithm appearing

in [2]. We conduct a series of tests that are presented in Figure 5-3 and described

below.
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assert LookupOK4 {no Root.attNT & Root.attNS -> no Root.lookup}

cond NoRecordOnAVMismatch

{all a,r I (a in Root.attNS & Root.attNT && no a.valNS & a.valNT
&& a.valNS != WildCard && r in a.valNT.recNT)

-> not r in Root.lookup}

assert LookupOK5 {NoRecordOnAVMismatch}

cond SomeCommonAV {some a I a in Root.attNS & Root.attNT &&

some a.valNS & a.valNT}

assert LookupOK6{SomeCommonAV -> NoRecordOnAVMismatch}

Figure 5-3: More basic theorems

Our first test in the general case (LookupOK4) checks the claim that if the name-

tree has no attributes in common with the name-specifier at the top most level, then

Lookup-Name should return the empty set. Alcoa quickly generates a counterexam-

ple. Figure 5-4 shows the original Alcoa counterexample and Figure 5-5 presents a

graphical illustration.

It so happens that the INS algorithm returns all name-records in the name-tree

if there are no matching attributes at the top level! This problem arises since the

algorithm tries to model missing attributes as being equivalent to wild-cards. As we

see below, this putative correspondence gives rise to several other flaws.

Our next assertion (LookupOK5, Figure 5-3) tests the case in which there exists

some common top level attribute. It is natural to believe that if a value-node in the

name-tree had no matching av-pair in the name-specifier, while its parent attribute-

node had one, then the name-records of this value-node would not appear in the result

of Lookup-Name. Once again, Alcoa produces a counterexample that is illustrated in

Figure 5-6.

This flaw has serious implications, since a client asking for a printer service could

get back a camera! It arises because Lookup-Name does not handle a mismatch when

comparing values (Section 4.4).

We next pose the same question under the assumption that the name-tree and
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Figure 5-4: Alcoa output for analysis of LookupOK4

name-specifier

Al

VO'

name-tree

AO

Vo A
RO

Lookup-Name (name-tree, name-specifier) = {R0}

Figure 5-5: Graphical illustration of Alcoa counterexample to LookupOK4
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Analyzing LookupOK4 ...
Scopes: Record(1), Value(2), Attribute(2)

Conversion time: 0 seconds

Solver time: 0 seconds

Counterexample found:

Domains:

Attribute = {AO,A1}

Record = {RO}
Value = {Root,VO}

Relations:

attNS = {Root -> {A1}}
attNT = {Root -> {A}}
immFolNS = {Root -> {V}}
immFolNT = {Root -> {V}}
immPreNT = {VO -> {Root}}
lookup = {Root -> {RO}}
recNT = {VO -> {RO}}
valNS = {A1 -> VO}

valNT = {AO -> {V}}
Skolem constants:

$1 = Root

$50 = Al
$51 = AO
$81 = RO



Figure 5-6: Counterexample to LookupOK5

Figure 5-7: Counterexample to LookupOK6
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name-specifier name-tree

AO AO

VO V1 4
RO

Lookup-Name (name-tree, name-specifier) = {R0}

name-specifier name-tree'

Al AO Al AO

V2 I OVO V2 I Vl

ROk

Lookup-Name (name-tree, name-specifier) {R0}



the name-specifier have a common attribute and moreover one of the corresponding

values also match (LookupOK6, Figure 5-3).

This time, not surprisingly though, Alcoa disproves the assertion with the coun-

terexample displayed in Figure 5-7. The root of this bug is the same as that illustrated

by LookupOK5.

5.2 Analyzing published claims

The published description of Lookup-Name [2] says:

The algorithm uses the assumption that omitted attributes correspond to

wild-cards; this is true for both queries and advertisements.

We put this claim to test (Figure 5-8) in the case of queries as follows. An Alloy

operation Remove WildCard is defined that removes wild-cards from a name-specifier.

The operation mutates the name-specifier by removing the av-pair(s) containing wild-

card(s), while maintaining the state of other av-pairs and the original name-tree. Our

assertion, LookupOK11, (Figure 5-8) says that the result of Lookup-Name should be

the same before and after this mutation.

This assertion is not valid; a counterexample is shown in Figure 5-9. Before

mutation (i.e. with wild-cards) the name records RO and RI are returned; after

mutation (i.e. with omission in place of wildcards), only Ri is returned.

For the case of advertisements, one of our analyses (LookupOK10, Figure 5-10)

already disproves the claim. Figure 5-11 illustrates the Alcoa counterexample. It also

points out the difference between the name-specifier simply being 'present' by virtue

of a correspondence in the data structures and it having been 'added' to the name-tree

by an advertisement. If the contested equivalence were to hold, Root.lookup should

be {R0, R1}, but it is empty.
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Figure 5-8: Alloy code for LookupOKil
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Lookup-Name (name-tree, name-specifier) = {RO,R1 I

Lookup-Name (name-tree, name-specifier') = {R1}

Figure 5-9: Counterexample to LookupOKil
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op RemoveWildCard {
all a I a.valNS != WildCard -> a.valNS' = a.valNS

all a I a.valNS = WildCard -> no a.valNS'

all v I all a:v.attNS I a.valNS = WildCard
-> v.attNS' = v.attNS - a

all v I all a:v.attNS I a.valNS != WildCard

-> v.attNS' = v.attNS
all v I v.attNT' = v.attNT && v.recNT' = v.recNT &&

v.immFolNT' = v.immFolNT && v.immPreNT' = v.immPreNT
all a I a.valNT' = a.valNT

}
assert LookupOKil {RemoveWildCard -> Root.lookup = Root.lookup'}



Figure 5-10: Alloy code for LookupOK10

name-specifier name-tree
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Lookup-Name (name-tree, name-specifier) = {}

Figure 5-11: Counterexample to LookupOK10

5.3 Behavior of new advertisements

In this section we analyze the effects that new advertisements can have on existing

ones. Notice that we have not modeled the Add-Name algorithm in its full glory.

Despite that, Alloy lets us ask questions about addition of new name-records in the

name-tree! This is achieved by defining an Alloy operation AddRecordTest which

mutates the state, the effect of which is that a new name-record, and some new

attribute-nodes and value-nodes are added to the existing name-tree. Moreover, the

original name-specifier is preserved, and the result of Lookup-Name before and after

the mutation are compared.

Observe that AddRecord Test differs from Add-Name in INS, since AddRecord Test

does not take a name-specifier and the corresponding name-record as its parameters

and just mutates the state to represent a valid execution of Add-Name on some

(essentially arbitrary) name-specifier and name-record.
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cond NSMatchesNT {NSExistsNT &&

all a I some a.~attNS & a.~attNT}
assert LookupOK10 {NSMatchesNT -> some Root.lookup}



Figure 5-12: Theorem to analyze the effect of Add-Name
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Figure 5-13: Counterexample to LookupOK7
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op AddRecordTest{
all v I some v.attNS && some v.attNT -> some v.attNS & v.attNT

all a I (some a.valNT' && some a.valNS') -> a.valNT' in a.valNS'

Attribute' = Attribute

Value' = Value

all a I a.valNS' = a.valNS
all v I v.attNS' = v.attNS
all a I a.valNT in a.valNT'
all v I v.attNT in v.attNT'
all v I some v.recNT -> v.recNT = v.recNT'
all v I no v.recNT -> sole v.recNT' && v.recNT' in Record' - Record

}
assert LookupIJK7 {AddRecordTest -> Root.lookup in Root.lookup'}



Figure 5-12 presents the Alloy operation and assertion that is tested. Note that in

the operation the first two lines include code to cover up the bugs already discovered

by LookupOK4 and LookupOK5, since we would like to become aware of new flaws,

if any. The assertion LookupOK7 checks whether the name-records that result from

the execution of Lookup-Name before the addition to the name-tree are included in

the result after the addition.

Contrary to our expectations, Alcoa disproves this assertion with a counterex-

ample that is illustrated in Figure 5-13. This is a very serious defect and implies

that Lookup-Name is non-monotonic. The counterexample also points out that ad-

dition of new services do not just invalidate existing ones, but may also result in

Lookup-Name returning no name-record at all, when in fact there are several services

available, that were considered valid before the addition was performed!

5.4 Testing proposed fixes

Private communication with the inventors of INS revealed that they believed their

implementation [20] successfully patches the bugs discovered by Alloy assertions

LookupOK4 and LookupOK5. We take these fixes and put them to test to see if

they are valid, i.e. they fix the problems without introducing new errors.

We first evaluate the proposed fix for flaw revealed by LookupOK4. The implemen-

tation uses a flag to represent that the set S (Section 4.4) on initialization contains

all name-records instead of actually inserting all name records into it. On returning

from Lookup-Name a test is made to see if the flag is set and in that case the string

{*} is output to indicate no records. However, if the flag is set, then the union of S

with any set results in S with the flag set.

We model this behavior in Alloy by defining a condition ReturnStar (Figure 5-14),

which just checks if Lookup-Name returns all name-records'. Then we define an op-

eration AddRecordTestBugFix1 which is similar in functionality to AddRecordTest

'Notice that this is insufficient, but our assertion that follows takes it into account and generates
a counterexample that invalidates the actual proposed fix
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Figure 5-14: Theorem testing proposed fix 1
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Figure 5-15: Counterexample to LookupOK8
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cond ReturnStar {Root.lookup=Record}
op AddRecordTestBugFixl{

all v I sole v.attNS
all a I (some a.valNT' && some a.valNS') -> a.valNT' in a.valNS'
Attribute' = Attribute
Value' = Value

all a I a.valNS' = a.valNS

all v I v.attNS' = v.attNS

all a I a.valNT in a.valNT'
all v I v.attNT in v.attNT'
all v I some v.recNT -> v.recNT = v.recNT'
all v I no v.recNT -> sole v.recNT' && v.recNT' in Record' - Record
some a I no a.~attNS

}
assert LookupOK8

{AddRecordTestBugFixl

-> ((some Root.lookup && not ReturnStar) -> not ReturnStar')}

Al

VI
R2

r



inv Lookup2p

{all v I (v.~valNS = v.~valNT && some v.attNS &&

some v.attNT && no a:v.attNS I a in v.attNT &&
not a.valNS in a.valNT)

-> (indexedSubset(v.lookup,v) &&

no r Record - v.lookup I indexedSubset(v.lookup+r,v))}
inv Lookup2q

{all v I (v.~valNS = v.valNT && some v.attNS &&
some v.attNT && some a:v.attNS I a in v.attNT &&
not a.valNS in a.valNT)

-> no v.lookup}

op AddRecordTestBugFix2{

all v I sole v.attNS
all v I some v.attNS && some v.attNT -> some v.attNS & v.attNT
Attribute' = Attribute
Value' = Value

all a I a.valNS' = a.valNS

all v I v.attNS' = v.attNS

all a I a.valNT in a.valNT'
all v I v.attNT in v.attNT'
all v I some v.recNT -> v.recNT = v.recNT'
all v I no v.recNT -> sole v.recNT' && v.recNT' in Record' - Record
all a I sole a.valNT'

}
assert LookupOK9 {AddRecordTestBugFix2 -> Root.lookup in Root.lookup'}

Figure 5-16: Incorporating proposed fix 2 in our model

above, but removes the bug already discovered by AddRecordTest (line 1). Moreover,

it also removes the bug indicated by LookupOK5 (line 2).

To test the proposed fix we assert LookupOK8, which states that if Lookup-

Name returned a name-record and the condition ReturnStar was false (i.e. a valid

service was found) before the operation, then after the addition of a new service,

ReturnStar should still be false (as otherwise either Lookup-Name returns nothing de-

spite the existence of valid services or it returns a service that was considered invalid

a priori to this addition but valid after the addition.)

Testing LookupOK8 in Alcoa produces a counterexample which is illustrated in

Figure 5-15. Notice that Lookup-Name considers R2 to be a valid service before the
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addition of RO, which due to a mismatch in the second level attribute (AG versus A2)

and a flaw in the proposed fix, renders R2 invalid after this addition.

Clearly detecting this subtle a flaw is non-trivial, but the use of Alcoa makes it

feasible.

We now move on to evaluate the proposed fix to the bug discovered by LookupOK5.

In this case the proposed fix can be modeled directly in Alloy as it concerns a change

in the Lookup-Name algorithm. Figure 5-16 shows the Alloy code that mimics this

change. The invariants Lookup2p and Lookup2q replace old invariant Lookup2 (Figure

4-10) and implement the proposed fix.

We define an Alloy operation AddRecordTestBugFix2, which is once again simi-

lar in spirit to AddRecordTest, but removes the problems already discovered (first two

lines). Our assertion LookupOK9 is identical to LookupOK7, except for the operation

it tests.

name-specifier name-tree name-tree'

Al Al Al

V2 V2 V2 AR1

RR
Ir RI

AO AGO

V0 V1

..- RO

Lookup-Name (name-tree, name-specifier) = {R1}

Lookup-Name (name-tree', name-specifier) = {}

Figure 5-17: Counterexample to LookupOK9

As Figure 5-17 illustrates, Alcoa produces another counterexample, and invali-
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dates this fix too! R1 that was considered to be a valid name-record by Lookup-

Name is invalidated by the addition of RO. Notice, that all three counterexamples

above resulting after addition are independent and point out distinct flaws!

Thus, both the proposed fixes are incorrect, and need to be reconsidered.

The problems exposed by LookupOK4 and LookupOK5 were already known to the

developers of INS. The other problems were apparently not known, and represent

bugs not only in the description of INS but also in its implementation.

5.5 Summary of analyses

We did a comprehensive analysis of our model of INS in Alloy, thereby delineating

the cases when the INS name resolution works fine, discovering several previously

unknown flaws, and evaluating the proposed fixes. Table 5.1 summarizes the results

of these analyses.

Assertion checked in Alcoa Result

Simple Case: Lookup-Name returns something Yes
name-specifier Every record returned is valid Yes
in name-tree Every valid record is returned Yes
Properties of No record if no attributes match No
any naming No record if no values match No
scheme Record returned has matching value No

Addition does not invalidate existing records No
Proposed fixes Fix for bug found by LookupOK4 is sound No

Fix for bug found by LookupOK5 is sound No
Particular claims Missing attribute - wild-card (queries) No
about INS Missing attribute ~ wild-card (advertisements) No

Table 5.1: Summary of analyses
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Chapter 6

Evaluation

The Java implemetation of the naming scheme of INS appearing in [20] is 2300 lines

long excluding Add-Name and Get-Name. About 900 of these lines constitute the

testing code. Our model of the core functionality of INS (excluding Get-Name) con-

sists of 55 lines of Alloy. All the analyses in Alcoa consist of another 85 lines of Alloy.

Notice that these analyses include those performed to test the proposed fixes.

Table 6.1: Performance for exhaustive search

We evaluated the theorems presented in Section 5.1.1 using Alcoa with a scope

between 3 and 6 (inclusive) in each domain. Alcoa reported back its analysis in a

reasonable amount of time when the domains were restricted to be within 5. The

times taken to perform these analyses are tabulated in Table 6.1. It is interesting

to note that by performing the simplifications mentioned in Section 4.2, we were

able to almost double the number of elements within the scope for each domain while
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Scope 3 4 5 6
Invariant

LookupOKI I s 7 s 56 s 11 m 51 s
LookupOK2 Is 4 s 41 s 6 m 26 s
LookupOK3 Is 12 s 2 m 7 s 58 m 21 s



Table 6.2: Performance for counterexample detection using a scope of 4

performing an exhaustive search, and still got back the results in a reasonable amount

of time.

Table 6.2 presents the performance analysis of counterexample generation by Al-

coa. A scope of 4 elements in each domain is used to test assertions LookupOK4-11.

The counterexamples to the analyses LookupOK4, LookupOK5, and LookupOK6 (Sec-

tion 5.1.2) took only a few seconds. Counterexamples to published claims (Lookup OK0,

and LookupOK11, Section 5.2) took 3 seconds and 16 seconds, respectively. The be-

haviour of new advertisements on existing ones (LookupOK7, Section 5.3) was an-

alyzed in 19 seconds. Problems with proposed fixes (LookupOK8 and LookupOK9,

Section 5.4) were discovered in no more than 30 seconds. None of the counterexamples

required more than 4 elements in any domain.

Observe that a uniform scope of 4 in each domain is not necessary to produce these

counterexamples. We performed further tests by reducing the scope in each domain to

get the minimum number of elements required to generate a counterexample. Table

6.3 shows the results produced. In only one case (i.e. LookupOK8) we require over

2 elements in more than 1 domain. Moreover, half of these counterexamples could

have been produced by restricting the maximum scope to 3. This provides strong

evidence in support of the "small scope hypothesis" - that most bugs can found in

small scopes [13].
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Invariant j Time

LookupOK4 2 s
LookupOK5 3 s
LookupOK6 3 s
LookupOK7 19 s
LookupOK8 24 s
LookupOK9 30 s
LookupOK10 3 s
LookupOKil 16 s



Table 6.3: Minimum Scope Required

A 300 MHz Celeron processor running Windows NT with 128 MB of memory was

used to perform all tests.

We were able to generate all counterexamples (except that for LookupOK9) with-

out incorporating the functionality for wild-cards, which was added when Remove Wil-

dCard was introduced. This only emphasizes one of the various uses of incremental

modeling.

'The performance analyses tabulated above reflect this
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Scope

Invariant Att Val Rec

LookupOK4 2 2 1
LookupOK5 1 3 1
LookupOK6 2 4 1
LookupOK7 2 3 2
LookupOK8 3 4 3
LookupOK9 2 4 2
LookupOK10 2 3 2
LookupOK11 2 4 2



Chapter 7

Semantics issues

There are various issues regarding the development of a naming scheme based on

intentional names that need clarification. In the following sections we discuss some

of these issues and present our point of view on how to resolve them.

We begin with a discussion of what conformance should mean among name-records

and name-specifiers in an intentional naming scenario. Then we discuss other issues

that we consider to be of primary significance, and finally we point out the character-

istics that in our opinion are vital for the validity of any naming scheme in general.

7.1 Conformance

The first step in the development of an intentional naming scheme is a formal defi-

nition of conformance. In the case of INS, the confusion about wild-cards is perhaps

symptomatic of a lack of precise semantics.

It seems reasonable to treat a service that has no conflicting functionality to what

a client seeks, but specialises some of the av-pairs in the query, as conforming to that

query. For instance, if an application requires a picture of the Whitehouse and does

not care about any particular area (or does not have sufficient information to express

that), a service that advertised as providing one in the West Wing of the Whitehouse

should certainly be treated as valid.

A strong reason to allow such conformance is that it is the service providers who
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cond NRConformsNS (r:Record)

{all a,v I IsLeafAVPair
-> some v1 I

assert LookupOK12

{all r I NSExistsNT &

(a,v)
r in vl.recNT && v in vi + vl.immPreNT}

& NRConformsNS(r) -> r in Root.lookup}

Figure 7-1: Theorem testing conformance

Figure 7-2: Counterexample to LookupOK12
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know the exact details of the services they provide, whereas clients who are only

seeking services need some additional flexibility in forming their queries.

We test the behavior of INS in such a situation by formulating the assertion

LookupOK12 in Alloy (Figure 7-1). NRConformsNS defines a name-record to conform

to the name-specifier if it appears in all the value-node(s) corresponding to each leaf

av-pair or one of their descendant value-nodes. LookupOK12just tests if all the name-

records that conform to the name-specifier according to this definition appear in the

result of Lookup-Name .

Alcoa generates a counterexample in 5 sec to this assertion with a scope of 4 in

each domain (Figure 7-2).1

Implementing the behavior of missing attributes as wild-cards is one way to pro-

vide this flexibility in INS, but that requires a significant alteration to Lookup-Name .

7.2 Other issues

Another issue that needs formalization is the meaning of missing attributes. It does

not seem logical to treat any missing attribute as a wild-card. We suggest two or-

thogonal ways to classify its treatment. First missing attributes in queries should be

dealt with separately from missing attributes in advertisements. Second the case in

which all attributes are missing at a certain level should be separated from the case

in which some attributes are missing but others are present.

Our analysis with Alcoa suggests that it would make sense to require that all top

level attributes be specified by both the queries and advertisements. This could be

achieved by defining a set of necessary attributes like accessibility. On the same lines,

it sounds feasible to require that an attribute may only be ignored if all its orthogonal

attributes are also ignored.

Another point that needs to be worked out is whether it is reasonable to assume

that wild-cards only appear at the lowest level (an assumption made in [2]).

'A minimum scope of 2 Attributes, 3 Values, and 1 Record is required to produce a counterex-
ample in this case. Again, wild-cards do not need to be implemented in order to observe this
counterexample.
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While specifying the semantics a naming scheme must also distinguish between

the existence of the name-specifier due to a physical correspondence between data

structures and its valid addition through an advertisement. We saw in Section 5.2

how the name-specifier 'existed' in the name-tree but the result of Lookup-Name was

the empty-set.

A rather subtle issue of concern is how to handle applications that treat orthogonal

attributes as specializing. Due to ambiguities in natural language and words having

several (disparate) meanings, it is conceivable that the client considers an attribute

to be orthogonal to another while the application in its advertisement treated them

as one specializing the other.

Another issue that we believe needs attention is whether it is reasonable to require

an attribute take one or all values. Notice that using the name-specifier there is no

reasonable way to say, for instance, that a camera provides images in only 2 formats,

namely JPEG and GIF. It is certainly desirable for a naming scheme to possess this

flexibility. Thus it would make sense to have applications advertise their services

using a name-tree instead of a name-specifier. A client could also use a similar data-

structure to pose his query, however in his case when an attibute equals several values,

it is more natural to treat them as a disjunction as opposed to the conjuction in the

case of an advertisement. This, however, requires a major overhaul of the Lookup-

Name algorithm.

Finally, it is our opinion that in case Lookup-Name is unable to return a service

that advertised the name-specifier being resolved in its entirety, the client should be

notified that the service(s) he is receiving are only approximate matches. This way

he can take precautionary steps before sending his data to the service.

The semantics concerns expressed in this section are summarized in Figure 7-3.

7.3 Essential characteristics of a naming scheme

Our experience with analyzing INS in Alcoa has enabled us to capture certain features

must be present in a naming scheme in general. These characteristics are summed up
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Figure 7-3: Semantics issues

Figure 7-4: Essential characteristics
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S-I Validity of name-records specializing a query.

S-II Missing attribute ~ wild-card?

S-III Can wild-cards appear at any level?

S-IV Existence versus addition (of a name-specifier in a name-tree).

S-V Can a query specify specializing attributes as orthogonal?

S-VI Must attributes be paired with either one or all values?

S-VII Special treatment of partial matches?

C-I Addition monotonic

C-II Addition commutative

C-III Resolution idempotent

C-IV Resolution only returns conforming objects

C-V Resolution returns all conforming objects

C-VI Resolution independent of order of prior operations

C-VII All non-conforming objects have the same effect on resolution

C-VIII For every non-empty catalog, some name resolves to an object



in Figure 7-4 and described below.

During the discussion that follows we make the following simplifying assumptions2

First of all, we assume a framework where a catalog stores the correspondence between

names and objects. New objects are inserted into the catalog using an addition oper-

ation with parameters a name and the corresponding object to be inserted into the

catalog, while existing objects are retrieved using a resolution operation that only has

one parameter, namely the name that needs to be looked up. In INS, the name-tree

acts as a catalog, while a name-specifier is a name and name-record an object; the

addition operation being Add-Name and the resolution operation is Lookup-Name .

Next, we assume that addition only involves insertions of new objects; names may,

however, be re-used. Finally, we assume no temporal effects like time-stamping of

object insertions and automatic deletion of non-renewed objects. Thus, insertions

into the catalog exist indefinitely.

As displayed earlier, a foremost requirement is a formal definition of conformance

of an object to a name. Once, this has been established, the naming scheme needs to

possess the following properties.

C-I The effect of addition on name resolution should be monotonic. That is for

an arbitrary name-specifier, the result of lookup before performing an ad-

dition operation should be a subset of that after performing this operation.

As we saw in section 5.3, INS lacks this fundamental property.

C-II Addition should be commutative. This is to say that for an arbitrary name-

specifier, the result of the resolution operation after any sequence of addition

operations, should be the same for all permutations of that sequence.

C-III Resolution should be idempotent. In other words, the effect of executing

this operation once should be the same as the effect of executing it multiple

times, given an arbitrary name and no interleaving addition(s).

2These assumptions can be relaxed in a straightforward manner, however, in our current work
we do not tackle the general case (with temporal effects) and it is left as future work.
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C-IV The resolution operation must return objects that conform to the given

name. This means that no object that fails to meet the comformance criteria

is ever included in the result, and thus a camera never results when a printer

is sought.

C-V The resolution operation must return all objects that conform to the given

name. We believe, this condition can even be relaxed to speed up resolution.

For example, it may be feasible to give priority to objects whose names

match more closely to what is sought.

C-VI The result of the resolution operation given a name, must be independent

of the order in which all previous operations are performed. In particular,

this result should be the same for any possible interleaving or reordering of

additions or resolutions that were carried out on the catalog prior to the

execution of this resolution.

C-VII The behavior of addition of non-conforming objects should be identical.

This is to say that for a given name, its resolution after the addition of a non-

conforming object should result in the same objects, even if a different non-

conforming object was inserted into the catalog (prior to this resolution).

C-VIII For any non-empty catalog there must be a name that results in a non-

empty resolution. This condition is not guaranteed by C - IV and C - V

and is necessary for liveness.
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Chapter 8

Related work and Conclusions

A variety of models have been constructed in Alloy and analyzed in Alcoa, but Alcoa

has not been used previously for the analysis of a recursive algorithm like Lookup-

Name .

Jackson and Sullivan [15] recently recast a model of COM originally written in Z

[24] into Alloy, and showed that its analysis can be automated. The resulting Alloy

model is about 150 lines long, and has 8 relations, 1 indexed relation (i.e. function

from a basic type to a relation), and 8 sets. Using Alcoa, they were able to generate

automatically the counterexamples that Sullivan and his colleagues had found by

hand analysis and extend the original analysis.

Vaziri and Jackson [25] translated the entire core metamodel of UML from OCL

[27], into Alloy. The resulting model, which is about 400 lines long, is about half the

size of the OCL version. It has 41 relations and 37 sets. They used Alcoa to show

that the metamodel is consistent, by generating a sample UML model that satisfies

all the constraints (with additional constraints that rule out the trivial empty model).

Formalizing software structures for purposes of precision and analysis is not a new

idea. Abowd et. al [1] gave a formal semantics to informal architectural diagram using

Z. Garlen et. al [6] displayed efficient development of tools for architecture design

using such models. Various other work has demonstrated the use of a variety of

mathematical frameworks to formalize and analyze models of software architecture.

Inverardi and Wolf [10] used chemical abstract machines to formalize and analyze
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architectures.

Nor is fully automatic or interactive checking of formal specifications a new con-

cept. Model checking applied to a finite state machine is well known. Alcoa is an

analog, albeit incomplete, based on a systematic search of bindings for specifications

in the setting of first-order logic and set theory. Such a framework is especially

well-suited to modeling complex software structures (as opposed to protocols).

Several analysis tools are currently available, with varying degrees of automation

and coverage. They can be broadly divided into the following categories:

" Model checkers such as SPIN [9] provide similar exhaustive search to Alcoa.

However, they are primarily designed for addressing the complexities that arise

from concurrency, and their input languages therefore often parallel composi-

tion and communication mechanisms, and logics for describing event and state

sequences. They generally require the system to be described as an abstract

program and do not support partial, declarative specification. In this study,

for example, it would not have been possible to analyze Lookup-Name in iso-

lation. In contrast, Alcoa addresses the complexity that arises from relational

state structure. The input languages of model checkers generally provide only

rudimentary data structures, and are not designed for the kind of structural

complexity of this problem.

" Theorem provers such as PVS [18] can, unlike Alcoa, prove a theorem for all

possible cases, thus offering greater confidence, but at greater expense. Mod-

ern theorem provers make extensive use of decision procedures and can thus

automate several low level proof steps. Several theorem provers have been em-

bedded in tools for specific languages (e.g. Z/EVES [5] for Z and LP [7] for

Larch) to bridge the gap between proof obligations and assertions in the speci-

fication language. Despite these advances, they are still tools for experts only,

since complex proofs often fail because of flaws in the proof strategy and not in

the assertion being checked. Theorem provers tend not to fail gracefully, and

do not generally provide counterexamples. Thus despite the greater confidence
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they can provide, theorem provers are often too demanding for everyday use.

o Specification animation tools, such as IFAD's VDM tool [3], allow an abstract

specification to be executed from given states. Executability is obtained by

limiting the language, ruling out the kind of declarative specification that we

used here. Also, like conventional testing tools, they generally do not perform

an exhaustive search, but rather check cases specified explicitly by the user.

They typically execute operations from states constructed by the user, and can

check, for example, that the states that follow satisfy invariants. Alcoa typically

considers many more executions; while an animation tool is usually stepped

through manually, Alcoa searches all possible executions - usually billions -

within the given scope. Alcoa can even be induced to behave like an animation

tool. For example, the user may first specify a condition and then request an

execution of an operation that starts from a state satisfying the condition; the

user may equally choose to constrain the post-state and 'execute' the operation

backwards.

We view Alcoa as complementary to these other tools. A theorem prover, for

example, might be used to prove a theorem after an Alcoa analysis has failed to find

counterexamples in a reasonable scope.

Constructing and analyzing a model of an intentional naming scheme exposed a

number of subtle problems in its design, and showed that one of the basic intuitions

held by its designers that motivated aspects of the design was in fact false.

Our original model consisted of six domains and was about 120 lines long. Its

structure corresponded closely to the Java implementation, which naturally leads us

to inquire whether such a model might be constructed automatically. We succeeded

in trimming it down to three domains and less than half its original length. This

final model was about one twentieth of the size of the implementation of the Lookup-

Name operation and its test drivers. It remains a very interesting question if such

remodelling can be automated, and we hope to explore this in future.

Moreover, we were able to formulate the Lookup-Name operation using just one
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parameter. This was so because the first call to Lookup-Name only involves roots, and

subsequent recursive calls are always made on matching values. This simplification

could be carried over into the implementation. Automation of this kind of overhauling

seems to be very tricky since it requires advanced knowledge of the behavior of the

operation involved.

One of the limitations of our new model is that it lacks the capability of represent-

ing repeated values and attributes in the name-tree or the name-specifier. So if the

behavior of some name resolution function is erratic only when multiple value-nodes

have the same value, it would go undetected in the new model. Nonetheless, with

this limitation we were able to greatly expedite the Alcoa analysis.

We believe that the use of this kind of lightweight modeling has great benefits,

and could result in considerable savings by detecting errors prior to implementation,

especially structural flaws that are particularly hard to correct later. Moreover, this

use lies not only in finding flaws but also in simplifying existing designs. Incremental

modeling together with interactive analysis are extremely useful in boiling down a

model to encompass only the essential components, thus making it more amenable to

both human understanding and automated analysis.

The semantics of a naming scheme such as this is a subtle issue. We believe we

can extract necessary properties for the soundness of a general purpose intentional

naming scheme from our model, and we plan to pursue this further.
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