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Abstract

This thesis discusses the development and potential applications of acoustic based
phone and word level confidence scores in a segment-based recognizer. The imple-
mentation of the theories in this thesis was performed in the JUPITER [10] weather
information domain, using the SUMMIT [7, 26] recognizer and the TINA [11, 22] natural
language understanding environment. The phone level confidence scores are derived
from features based solely on the acoustic observations. The basic phone level con-
fidence feature is a measure of how well a proposed model accounts for the acoustic
observations relative to a generic catch-all model. The word level confidence scores
are derived by combining the phone level scores in various manners. The basic word
level confidence score is a simple arithmetic mean of the phone level scores within a
word. The performance of the confidence scores was analyzed based on the content
value of words. The results were encouraging, as the confidence scores performed
significantly better on words with high content than words with low content value.
This result, along with the fact that the estimation of the confidence scores was made
computationally tractable by using compact approximates of the catch-all model,
makes the confidence scores viable for use in practical applications. Based on limited
experiments, using confidence scores to re-score word graphs used in the understand-
ing component TINA yields slight increases in performance. In addition to improving
the performance of existing components in a speech understanding system, robust
confidence scores may enable entirely new functionality.
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Chapter 1

Introduction

1.1 Problem Definition

The goal of an automatic speech understanding system is to correctly recognize words
uttered by humans and then extract meaning from them. However, even the current
state of the art speech recognition systems make errors on a regular basis. The errors
are in large part due to errors in the recognition process. These recognition errors are
in the form of substitutions, deletions and insertions. Furthermore, these errors may
lead to undesirable misunderstandings. Eliminating these errors completely maybe
impossible, thus a more reasonable goal is to derive robust methods for figuring which
words might be wrong. Humans are quick to analyze utterances and ask people to
repeat parts they may have not heard well. If reliable word level confidence metrics
can be generated automatically, they can enable a natural manner for asking users to
repeat or clarify parts of utterances. They can also be used to aid in partially parsing
utterances when a complete parse is not possible. Word level confidence scores could
play a key role in making the user feedback from automatic speech understanding
systems more natural and useful.

To this end, this thesis attempts to define a set of robust confidence metrics
which will enable improvements in parsing and possibly user feedback. The metrics
are analyzed under various conditions and methods for deriving an optimum indicator
of confidence are defined. Furthermore, the confidence indicator is incorporated into
the parsing process and is analyzed for the process of user feedback.
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1.2 Background

This thesis focuses on world level confidence scoring within GALAXY, an architecture
for spoken language systems designed and developed by the Spoken Language Sys-
tems (SLS) group at the MIT Laboratory for Computer Science [12]. The GALAXY
architecture connects together the various components necessary to perform language
understanding tasks. The component in GALAXY responsible for generating the recog-
nition hypotheses is called SUMMIT [7, 26]. The work in this thesis revolves around
SUMMIT and, to a smaller degree, the natural language component TINA [11, 22]. Er-
rors in SUMMIT are caused by misclassification of words, the use of out-of-vocabulary
words in a user request, the existence of poor channel conditions and/or various other
spontaneous speech effects (such as false starts and partial words).

As errors occur on different levels in the speech understanding process, the mean-
ing of the confidence scores varies accordingly. There are generally 4 different levels
on which the scores are considered: understanding, sentence, word and phone.

The highest level errors occur at the understanding level [17]. Understanding

refers to the system's ability to extract meaning from a spoken phrase. For exam-
ple, the system must know that a person uttering: "Hello, Please tell me about the

weather in the city of Boston tomorrow," is conveying a 1) a request 2) for weather

3) in Boston 4) tomorrow. Generally, misrecognizing any of these four key compo-

nents leads to a mistake in understanding. For a domain specific system, it may be
sufficient to recognize only a subset of these four. For example, JUPITER, a weather

domain information system, needs only parts 3) and 4) for a proper understanding.
A confidence score at this level describes the certainty that a system's interpretation
of a phrase is correct [17].

The next level down from speech understanding is sentence level recognition. At

this level, a confidence score reflects the word and phone level performance across
the entire utterance. Scores at this level are not widely used, but they may indicate
general channel characteristics and be useful in conjunction with the understanding
level scoring [17].

Word level recognition is next [6, 23, 24]. At this level, the correctness of indi-
vidual words in a recognition hypothesis is considered. Correct recognition entails
finding and classifying each word regardless of context and meaning. Returning to
the previous example, the correct word recognition corresponds to recognizing the ut-
terance as the string of words: "HELLO PLEASE TELL ME ABOUT THE WEATHER IN

THE CITY OF BOSTON TOMORROW." As hinted above, it is possible to make an error
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at this level without causing an error in understanding; specifically, if a non-critical
word is incorrectly recognized, it may still be possible to extract the full meaning
from the phrase [17].

Phone level confidence scores are defined at the lowest level. At this level the confi-
dence in the classification of the lowest level measurements in a speech understanding
system is considered. In the version of SUMMIT used in this thesis these measurements
correspond to landmarks, where as in a Hidden Markov Model (HMM) based system
the lowest level measurements correspond to frames. While the phone level scoring
in this thesis is implemented on the landmarks of a segmentation based system, the
techniques used in conjunction with the landmark level measurements carry over to
the corresponding frames in a HMM based system.

This thesis focuses on the lowest two levels mentioned above, word and phone
level, with the primary emphasis on word level scores. The SLS group is currently
working on several domains which may benefit from access to confidence scores. These
systems include JUPITER, PEGASUS, VOYAGER which cover weather, flight and traffic
information respectively [8, 9, 12]. Currently, the user feedback of these systems is
relatively limited. For example, if a system is unsuccessful in understanding just a
portion of a request it may reject the entire utterance. Also at the times of rejection,
the user is given no clue to why a request may have failed. Confidence scores may
allow better behavior in both situation.

A robust confidence measure maybe useful in picking the right path through a
proposed N-best word graph. The current natural language component TINA uti-
lizes an ad hoc method, described further in Section 6.1.1, for weighing nodes of a
N-best word graph which represent some measure of confidence in the words. The
ad hoc method for weighting the words can be replaced with the actual word level
acoustic confidence scores. Replacing the ad hoc scoring with the actual scores pro-
vides slight performance increases in parsing. Because the language model scores are
also incorporated at this point, they are not used as features for word level confidence.

In addition to boosting parsing performance, the confidence metrics can be used
for identifying weak points in a hypothesized output. Pinpointing weak points in a
hypothesis may allow more informative feedback. For example, if most words in an
utterance are recognized with a high confidence, but a critical word is recognized with
a low one, the system may prompt the user to repeat that critical word. Prompt-
ing users for more information can increase the likelihood that the user's request is
ultimately correctly understood.

13



1.2.1 Previous Work

As the value of robust confidence metrics has been obvious for quite some time, much
work has already been done in the field [6, 23, 24]. Although each approach has been
somewhat different in their specific implementations, many of the methods have much
in common. Some work has been done at language understanding [17] and phonetic
level [1], while most of the existing work has focussed on the problem at the word level.

The approaches are based on finding key features indicative of a correct recogni-
tion or understanding and then deriving a confidence metric from them. The primary
differences in the approaches can be accounted for in the specific set of confidence
features proposed, as well as the methods with which the features are combined.

The number of useful features available for confidence scoring is potentially very
large. Anything correlated with correctness of the system output can be used as a
feature. Past research efforts have used features extracted from a variety of different
intermediate results of recognition [1, 14] or understanding. Some of the more com-
monly used features include number of competing hypotheses for a word, the number
of hypotheses in the N-best list and other values indicative of uncertainty in output.
Also, features based on language model information have been found to work very
well. However, this thesis does not use language model based features because the lan-
guage model information is incorporated in the parsing process where the confidence
scores are used to complement the language model. Generally, the set of proposed fea-
tures is based on both intuition and empirical relationships demonstrated by the data.

The correlation between any single feature and correctness is simple to calculate.
These correlations allow for a relative evaluation of individual features. However,
more interesting than the correlation between a single feature and correctness is the
correlation between a complete set of features and correctness. To incorporate in-
formation from all the proposed features various methods have been proposed. One
such method is via the use of neural networks [21]. The inputs to the neural net are
the various proposed features and the output is a decision whether or not the input
values correspond to a correctly recognized word. The output decision is then com-
pared against a truth value and the nodes of the net are adjusted so as to maximize
agreement between the decision output the truth value. Ideally this approach allows
features to complement each other to achieve better performance than a single feature
could achieve.
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1.2.2 The SUMMIT Speech Recognition System

The various spoken language applications developed by SLS use a recognition engine
called SUMMIT [7, 26]. SUMMIT is a segment-based speech recognition system devel-
oped by the Spoken Language System group at MIT. The segment-based approach
differs from the more common frame-based speech recognition systems in that a seg-
mentation network is used for recognition instead of a sequence of frames.

The recognition process begins in the same fashion as in frame-based recognizers.
First a sequence of observation frames are measures. The observation frames contain
spectral information in the form of Mel Frequency Cepstral Coefficient (MFCC) aver-
ages [19]. Potential segment boundaries, referred to as landmarks, are next proposed
based on changes in spectral content in between frames. Using a set of heuristic rules,
various segmentations are proposed based on the proposed landmarks. Figure 1.1 il-
lustrates four possible segmentations S1,S2,S3 and S4 for four landmarks L1,L2,L3
and L4, where each solid bar corresponds to a segment. As a segmentation hypoth-
esis is made, some of the landmarks become segment internal while others remain
transitional boundaries. For example, in the Figure 1.1, if the segmentation S2 is
hypothesized then landmarks L1,L2 and L4 become transitional boundaries and L3
becomes an internal boundary. In SUMMIT segments roughly correspond to individual
phonetic units.

Si

S2

S3

Li L2 L3 LA

Figure 1.1: Possible segmentations for a given set of landmarks in the SUMMIT recog-
nition system.

Based on the segmentation, word pronunciation models and language model in-
formation, various words are hypothesized. Each utterance is defined to have at least
two words. Each utterance begins with the word <pausel> and ends with the word
<pause2>. The start boundary <pausel> matches up with the first segment bound-
ary in the utterance and the end boundary of <pause2> matches up with the last
segment boundary of the utterance. Words <pausel> and <pause2> may also occur
in the middle of an utterance where they account for silences. In between <pausel>
and <pause2> lies the hypothesized string of words.
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Figure 1.2 illustrates the relationship between the landmarks, segments, phones
and words. The work in this thesis revolves primarily around the landmarks and the
words.

Level

Utterance Utterance

Word <pause l> Word 2 Word 3 <pause2>

Phone segI seg2 segI seg2 seg3 segi 2 segI

Landmark

1 2 3 4 5 6 7 8 910111213141516171819 20212223242526272829303132333435363738

Figure 1.2: A possible segmentation of an utterance in the SUMMIT recognition sys-
tem.

1.3 Thesis Overview

The goal of this thesis is to develop confidence scoring metrics within SUMMIT recog-
nition environment, and analyze methods for utilizing the scores within the GALAXY
architecture. The concepts of this work are general to all of the domains, but the
experiments and the research itself was conducted in the JUPITER weather informa-
tion domain. JUPITER was a natural choice for the experiment domain, as it is the
oldest and most robust of the several domains currently under development by SLS.
A complete description of the corpora used in this thesis and details regarding the
JUPITER recognizer, can be found in Appendix A. In addition to the readily available
data, the behavior of the JUPITER system is well documented and stable.

Deriving word level scores from acoustic features is a two step process. First,
phone level confidence scores are calculated, and then they are combined to derive a
word level scores. The details of this process are discussed in Chapter 2.

The correlations with correctness vary greatly between the various word level fea-
tures and working with a large set of features is cumbersome. Thus, various methods
for combining these features into a single metric were proposed. Of these methods,
discussed in Chapter 3, Fisher linear discriminant analysis provided the best results.

The performance of the word level confidence scoring methods varies as a function
of the words for which they are being used. Chapter 4 describes the effects of word

16



classes on the performance of the confidence scores.

Computation time is not a significant issue in laboratory experiments, however
in building a usable real-time system it becomes a crucial one. The initial confi-
dence metrics discussed in Chapter 2 were computationally expensive and inefficient,
thus methods for improving the efficiency and speed were also explored. Chapter 5
discusses implementation details significant in making the confidence scoring system
work in real time.

Applications for confidence scores are numerous. This thesis includes a brief anal-
ysis of the value of confidence scores for improving parsing and understanding per-
formance. The confidence scores are used to replace a current ad hoc method for
weighing nodes in a word graph used for understanding. Incorporating the confi-
dence scores into this process results in mild gains in performance. The description
of the parsing application, as well as a brief description of issues surrounding user
feedback, can be found in Chapter 6.

Because of the broad range of issues addressed there is much room for future work
and improvements at various levels. The confidence scores can be improved by various
means, and their applications are too numerous to list. A reliable set of confidence
scores is sure to have many uses, future direction and lessons learned in this thesis
are discussed in Chapter 7, Conclusions and Future Work.
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Chapter 2

Word and Phone Confidence
Scoring

The value of confidence scores lies in their ability to indicate the certainty that a
particular phone or word is correctly classified. An ideal confidence metric would pre-
cisely point to every error, however achieving such performance would imply perfect
speech recognition. Thus, rather than try to solve the problem of speech recognition,
the goal is to develop robust confidence scoring methods which express confidence in
a probabilistic manner.

The process of developing confidence scores is akin to finding features correlated
with correct recognition hypothesis and then combining these features to form a
metric that conveys confidence. As mentioned, this thesis limits the features for
confidence scoring to purely acoustic features, which means features like the language
model scores are not directly used. However, the language model information is
valuable, and it is generally known that features derived from the language model
information work well. Thus, leaving the language model information completely
unused is bad idea. Instead of using the language model scores to generate confidence
scores, the confidence scores are used to complement the language model information
at a later stage. If the language model scores were used in creating confidence scores,
it would not be possible to use the confidence scores to complement the language
model without suffering from circular reasoning.

2.1 Phone Level Confidence Scoring

There are many ways in which a word level confidence scoring problem can be ap-
proached. This thesis approaches word level scoring from the perspective of the
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underlying phone level scores. The phone level scores are used to calculate word level
features that are used to derive a confidence measure. In this thesis, references to
phone level scoring actually refer to the scoring of individual landmarks rather than
phones themselves. Thus, phone level scoring refers to the scale at, rather than the
units on which, the scoring takes places.

As described in Section 1.2.2, landmarks represent hypothesized phone bound-
aries which become either internal or transitional to the proposed segments [7]. An
observation feature is associated with each landmark which contains MFCC averages,
and other acoustic information, from frames around the landmarks.

Because each phone is generally defined by only a few landmarks, the landmark
scoring is referred to as phone level. If one is interested in true phone level scores,
the phone level scores can be derived from the landmark scores via methods analo-
gous to deriving the word level scores from landmark scores as described in Section 2.2.

This thesis utilizes only boundary models for confidence scoring, although it is
possible to utilize the corresponding segment models in addition to, or in the place
of, the boundary models. Only the boundary models were used because the current
JUPITER recognizer uses only boundary scores, making them readily accessible.

While this thesis chooses to derive the word level scores from phone level scores
there is no reason it has to be this way. It is possible to perform word level confidence
scoring without ever performing a phone level analysis. To do so, is to limit the word
level confidence features to strictly word level metrics, such as: length of the word,
language model score, etc [3].

2.1.1 Motivation

Deriving the word level scores from the phone level ones is a natural extension of the
recognition process, as the word level recognition hypotheses are largely a function
of the underlying phone level hypotheses. Similarly, this thesis bases its word level
confidence scores largely on the phone level confidence scores, which makes the phone
level scoring necessary.

In addition to being necessary for word level scoring there are potential benefits
from the phone level scores themselves. In general the phone level confidence scores
lend further insight into the confidence features. Better understanding of the features
will then help in building more robust confidence metrics in the future. It is also
possible that average phone scores across an utterance may yield information about
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the channel. It is not clear how the average should be interpreted and it may not
be very valuable in itself. However, the average may prove valuable when used in
conjunction with other observations. This thesis computes phone level scores only
as an intermediate step to calculating word level confidence metrics, and explores no
phone level applications for them.

2.1.2 Theory

This thesis uses a ratio of acoustic scores as a fundamental feature of confidence from
which many of the other features are derived. The most basic metric for phone level
confidence is the maximum a posteriori (MAP) probability P(cil) [16]. This metric,
which is referred to as Cmap(ci15 ), is shown in Equation 2.1, where ci corresponds to
a proposed boundary class and X to the acoustic observation.

Cmzp (Ci IF P (C I )p( cI)P(c) _ p(c)P(ci) (2.1)
PP) Eyi Cp(Ic.)P(c.)

Equation 2.1 shows the Bayes expansion of the P(cilx) which is a ratio of two
scores. The Cmap(cil) score can be thought of as the ratio of a proposed score and
catch-all score, p('). The proposed score, p(i1ci)P(ci), reflects how well a proposed
boundary model ci accounts for the acoustic observation X, taking into account P(ci),
the prior probability for ci.

The catch-all score reflects how well the JUPITER models in general account for
the acoustic observation. Explicitly, it is the likelihood of the observation X' occurring,
also known as p(s). A mathematical formulation of the catch-all score is shown in
Equation 2.2, where N, is the number of specific models, p(z'cj) is the likelihood that
acoustic observation F occurred given the class cj, and P(cj) is the prior probability
of class cj.

Ne

p(,) = > pXi~cy)P(cy) (2.2)
j=1

The range of values for Cmap(c1XF) is between 0 and 1. A value close to 0 indicates
that there are other models which score as well as, or better, than ci, indicating low
confidence and potentially high confusability. A value close to 1, on the other hand,
signifies that the proposed model ci scores considerably better than any other model
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cj; i 0 j. This indicates a region of low confusability and thus high confidence.

A slight variation of Cmap, the normalized log likelihood score C"u, is equal to the
log of Cmap(ci 5) normalized by the prior probability P(ci). This score, as shown in
Equation 2.3, performs slightly differently from Cmap(ci 5) since it is based purely on
the acoustic observation, as it ignores the prior probability.

pX WA) p(,Ici)
Cnn(ci ) = log ) log ( c (2.3)

( ) ('g j-p('Icj)P(c ))
Since the prior probability P(ci) in the numerator is removed, the ratio before

the log operation is no longer constrained to be between 0 and 1. Thus the range of
values for the Canj range from -oo to logP(ci). The more positive the C 11 score is,
the higher the confidence.

In addition to the Cmap and Cn scores, the p(5) score as seen in Equation 2.2
can also be used as a confidence feature. This feature is indicative of how well the
acoustic models of JUPITER are able to account for the acoustic observation 5. This
feature is not very useful in determining phone level confidence, however, it can be
indicative of how much the Cmap and Cn1 scores can be trusted. It can be thought of
as confidence on the confidence scores.

A low p(S) score indicates poor coverage by the JUPITER models, which can be a
sign of non-speech sounds, noise, or other abnormal conditions. A low p(S) lowers the
significance of Cmap and Cnu, because these scores are only meaningful if the acoustic
data falls in the range of JUPITER's acoustic models. For example, a non-speech sound
not previously observed in the training data may score poorly for both the proposed
model and the catch-all model. This may lead to a Cmap score which is artificially
high, which would incorrectly indicate a high confidence in the proposed model. Since
the actual observed phenomena is not accounted for by JUPITER's acoustic models
it can not possibly be correct. Similarly, a high p(5) score indicates good acoustic
coverage by the JUPITER acoustic models, and thus the features Cmap and CnU, have
more meaning.

2.2 Word Level Confidence Scoring

This thesis approaches word level confidence scoring as a function of the underlying
phone scores described above in Section 2.1. Because of this, the performance of the
word level scores is greatly dependent on how good the phone level scores are. This
thesis makes the assumption that the phone level scores are good enough that word
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level scores can be successfully based on them.

2.2.1 Theory

As mentioned, the word level scores are derived from the phone level scores Cau, p(z),
and Cmap described in Section 5.2.1. There are several ways to analyze the phone
level scores and derive a word level score from them. The basic idea in this thesis is
that the collection of the phone level scores which fall within a hypothesized word are
reflective of how well the hypothesized word can account for the acoustic evidence.
The better the acoustic evidence is supported by a hypothesized word, the higher
the confidence that the word was in fact correct. The corresponding word score can
be expressed mathematically as Equation 2.4, where Cwod is the confidence score
for the word. Fe(' i, '2,..., 4Iword) is a function of the acoustic measurements sXi,
the number of phones within the hypothesized word n, and the hypothesized phone
classes ci.

CWord = Fe(zi, 2,..., jcic 2,...,cn) (2.4)

By varying the function Fe, different methods for combining the phone level scores
can be explored. Several F, functions are explored in this thesis, primarily focusing
on arithmetic and geometric means. The mathematical description of the arithmetic
mean Cam is shown in Equation 2.5, where NL is the number of landmarks within
the word, Cp(c I ) is the phone level confidence score for the kth landmark given the
acoustic evidence 5 k and a proposed model ck.

1NL
Cam (X , 7 2, .... , ) e ci ClC2, . .. , ck) =_ NL k=1 (a (2.5)

Similarly, Equation 2.6 describes the mathematical description of the geometric
mean Cgm.

1NL

( E 10g[C (Ck I A)

C X1zi X2, . k . 1 .,zCc2, . cO) = e NL*1(2.6)

As some scores are initially in non-logarithmic space (Cmap), and others in loga-
rithmic space (C,,), it is important that the meaning of the arithmetic and geometric
means is well defined. This thesis refers to all averages in the non-logarithmic space
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as arithmetic means, and all averages in the logarithmic space as geometric means.

The two means have distinct behaviors depending on the underlying scores. The
geometric mean is well suited for emphasizing small individual values. The geometric
mean allows a small value to pull down the average for an entire word more so than
an arithmetic mean. For example, a word which contains one or two low phone level
scores will have a resulting geometric mean which is very low. On the other hand,
an arithmetic mean would be less sensitive to one or two low value scores. In an
arithmetic mean a single low score has only a small impact, especially if the number
of phone level scores to be averaged is large. A benefit of the arithmetic mean is that
it is less sensitive to small outliers, and thus will be more indicative of the average
ability of the JUPITER models to account for the acoustic observations. Because of
their unique behaviors both the arithmetic and geometric means of Cmap and C"11 are
used as features.

In addition to the above means several other features were proposed. Standard
deviations amap and oa,, for the Cmap and C,1 scores, are used as indicators to how
the means should be interpreted. These standard deviations, shown in Equation 2.7
and Equation 2.8, are only useful in conjunction with the mean scores. For example,
a high arithmetic mean along with a low standard deviation would have a higher
confidence than a high arithmetic mean with a high standard deviation. In the former
case, the low standard deviation translates to scores being close to each other, the
mean being high translates to the scores being high, which means that all the scores
are high. In the latter case, the high standard deviation means that the scores are
widely dispersed, thus it is difficult to say if the mean is high because of a few outliers
or if the scores were indeed consistently high. Generally, a low standard deviation
makes the word level mean scores more reliable.

Umap = Or(Cmap) = ECna - B [Cmap] 2  (2.7)

Onl = (Cn11) = E [C21] - E [Con] 2  (2.8)

Other word level features proposed are various minimum scores. Namely, Cmin-map,
Cmin-nii and a slight variation of the Cmin-map the Cmin-map-int. The mathematical
representations of these scores are in Equation 2.9, Equation 2.10 and Equation 2.11,
where i is the landmark and Q is the set of all landmarks which are internal to
segments.

Cmin-map = min [Cmap(i)] (2.9)
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Cmin-nll= min [Cn11(i)] (2.10)

The Cmin-map-int differs from Cmin-map only in that the Cmin-map-int only con-
siders landmarks which are internal to segments. This feature was added because it
gives insight into how well the segments themselves are scoring. Since only bound-
ary scores are used, the segment internal boundary scores are the closest thing to
segments scores.

Cmin-map-int = min [Cmap(i)] (2.11)

The minimum scores are similar to the standard deviation scores in that they
may not have much meaning in themselves but in conjunction with the mean scores
they can prove valuable. For example, having a high arithmetic mean value and a
high "minimum" value is a sign that the acoustic evidence is well matched to the
hypothesized word. Similarly a low geometric mean score along with a relatively high
"'minimum" score indicates that the low geometric mean is not due to a singular low
phone level score but rather a set of systematically low phone level scores across the
entire utterance.

The average catch-all model score pA is also used as a feature. The pA corresponds
to the arithmetic mean of the p(s), which describes the average ability of the JUPITER

models to account for the acoustic observations in a word.

The last two features which are used are Nnbest and Nphones. While these two
are only indirectly a function of the acoustic evidence, they can be correlated with
correctness. Nnbest is the number of competing hypothesis on the n-best list. The
fewer hypotheses there are, the better the JUPITER models are doing at modeling
the acoustic evidence. This is similar to the catch-all model score mentioned in Sec-
tion 2.1.2. Nphones is actually the number of landmarks within each word. There is a
correlation between the length of a word and the likelihood that the word is correctly
hypothesized. Generally, longer words are more acoustically distinct than shorter
ones, thus the chance of confusion is much smaller for longer words.

Table 2.1 is a complete list of features used for the word level confidence evalua-
tion task.

25



Feature Description

CM ap, Arithmetic mean of the Cmap scores

Cn~ Arithmetic mean of the Cn scores

CGa, Geometric mean of the Cmap scores

C 1 Geometric mean of the Cn11 scores

p A Catch-all model score

Cmin-map Minimum Cmap score in the word

Cmin-map-interna Minimum internal Cmap score in the word

Cmin-nii Minimum Can1 score in the word

Nnbest Number of utterances on n-best list

Umap Standard deviation of Cmap

Unu Standard deviation of Cnn

Nphones Number of landmarks in word

Table 2.1: A complete list of word level features used for confidence scoring.

2.2.2 Implementation

The actual implementation of the means utilizes a slightly modified form of the Equa-
tion 2.5. As shown in Figure 2.1, the first and last boundaries of each word are shared
with adjacent words. Because these boundaries are shared, they are used in calculat-
ing the word level scores for a given word as well as the words preceding and following
that word.

The first and last boundary of each word are weighted by a half to account for the
shared bounds. This gives equal weight to each landmark score across the entire ut-
terance. Since the two boundaries are weighted by a half, the denominator term of the
mean must also be decremented by one. Equations Equation 2.12 and Equation 2.13
describe the actual implementation, where NL is the number of landmarks within the,
word including the boundary landmarks, and Cmap(Ci, klI) and Can1(ci,kaiJ) are the
scores for landmark k.

1~NL -1

Cap =N 0.5 (Cmap(ci,1| 1) + Cmap(ci,NL NLNL)) L.. maP(Ci,k kk)
L k=2

(2.12)
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Figure 2.1: Boundary landmarks which fall between two
adjacent segments.
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segments are shared by the

nIC = NL - 1 0.5 (Cn1 1 (ci,1 |51 ) + Cnlhl(ci,NL iNL)) ±

NL-1

Z: C(Ci,kXk)
k=2

The features CGap and C A, were calculated next. Calculating theCgap follows
the form of the Equation 2.6. The equation must be slightly altered to account for
the weighting of the first and last boundary as described above, the new formula can
be seen in Equation 2.15.

B = 0.5 (log[Cmap(ci,|Iii)] + log[Cmap(ci,NL I N)

_____ [DINL-1

S N L - Jr log[Cmap(ci, k~k) lJ

Ciap = e N--1 k=2

(2.14)

(2.15)

The calculation of C^1 also follows the form of Equation 2.6, however, the exponent
and log are switched as shown in Equation 2.16.

C = log 0.5 (eC+(cii) +eCnh(Ci,NL INL)) - (Ci,k I

NL k=2

(2.16)

The pA was calculated via the arithmetic mean described in Equation 2.5, with
the adjustments for the first and last boundaries as described above. The resulting
form of the pA is shown in Equation 2.17.
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NL -1
[0.5 (p(i) + p(NL + p(k) (2.17)

NL-1 L k=2

A slight variation of the above equations is used to account for the very first and
last words in the utterance. Because the first and last words of the utterance do not
share their first and last bounds respectively with any other words they do not need
to be weighted by a half.

Calculation of the minimum scores Cmin-map and Cmin-nil, is a straight forward
minimum calculation. The smallest landmark value within the word is picked out
in each case. The calculation of the Cmin-map-int varies in that only landmarks
which correspond to internal phone boundaries are considered. If a word contains
no internal bounds then the Cmin-map score is used for the Cmin-map-int as shown in
Equation 2.18.

Ci-ainen minigE [Cmap(i)] if Q # NULL (2.18)
Cmin-mp-interna - Cmin-map otherwise

The standard deviation scores c-map and Unul are calculated following the form of

Equation 2.7 and Equation 2.8. The values E [Chap] and E [C1] are calculated using
an arithmetic mean as described in Equation 2.5. Unlike in the calculation of Cmap
and Cni, means, the first and last landmark are not weighted any differently from the
other landmarks. Weighting them by a half, as in the case of the Cmap and Cni1 mean
scores, would skew the true standard deviation of the scores. Thus, the equations
for E [Cmap] and E [C2 1 ] are shown in Equation 2.19 and Equation 2.20 respectively,
where NL is the number of landmarks in the word.

E [Cap = _ E Cj (2.19)
NLk=1

1 NL
E [Ci.= 5 :Cj (2.20)

NL k

The E [Cmap] and E [C2 1 ] are calculated in a similar fashion. Since the Cna and

C 11 are calculated with the weighted first and last boundary, their values can not

be used as E [Cmap] and E [C211 ] respectively. Instead, the values are calculated via
regular arithmetic means as shown in Equations 2.21 and Equation 2.22.
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I NL
E [Cmap] = Z Cmap (2.21)

NL k=1

1 NL
E [Conj] = N Z CL (2.22)

Lk=1

At the end of each word the values are combined to calculate values for amap and

Ornl. The calculations follow the exact form of Equation 2.7 and Equation 2.8 and
are shown here in Equation 2.23 and Equation 2.24.

Omap = E [C2ap] - E [Cmap] 2  (2.23)

O-nII E [C 1] - E [Cn11 ]2  (2.24)

The last two word level features, Nnbest and Nphones, are easily derived from the
recognition output. Minimum value for Nnbe,t is one, otherwise no hypothesis would

be made, and for Nphone it is 2, as each word must have at least a start and end
boundary.

2.2.3 Experiments

Test Conditions

The word level confidence scores were evaluated on the utterances in a test set de-
scribed in Appendix A. For each utterance the best recognition hypothesis in the
N-best list was used for evaluation. Word level confidence scores were calculated
for each word in the hypothesis, and the correctness of each word in the hypothesis
was evaluated against a forced transcription of the utterance. The correctness of
each word is binary, if the hypothesized word matches the forced transcription in the
word and location then it is considered correct. The performance of the confidence
measures is evaluated based on the correctness information and confidence measures

associated with each word.

Evaluation Metrics

The performance of the individual word level features varies a great deal. Some of the
features work well by themselves, while others yield little or no value alone. Because
of their nature, it is difficult to have a single figure of merit which adequately describes
the performance of each of the features. The goal of the word level confidence measure
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is to classify words as correctly or incorrectly recognized. This becomes a classic
detection problem, thus a Receiver Operating Characteristic (ROC) graph, plotting
the relationship between detection and false alarms, seems like an appropriate manner
for comparing the performance of the various features. Words with confidence scores
exceeding a set threshold are classified as correct while those below it are classified as
incorrectly recognized. The ROC curve plots the detection/false alarm relationship
as the decision threshold is varied. In this context, detection refers to the probability
that a word which is in fact correctly classified has a confidence score which indicates
that the word is correct:

P(detection) = P(word classified as correct~word is correct)

Similarly, a false alarm refers to the probability that a word is classified as correct
when in fact the word is incorrectly recognized:

P(false alarm) = P(word classified as correct~word is incorrect)

A more detailed description of ROC curves is given in Appendix B.

While a single figure of merit is inadequate for fully describing the performance
of a feature, it can be helpful for observing relative performance of features at par-
ticular points of interest. Since detection and false-alarm rate are functions of each
other, picking one determines the other. Depending on the goal of the confidence
scoring, one of the two maybe more relevant. In the context of this thesis, a high
detection rate is desirable, thus values for detection are pegged and a figure or merit
is calculated based on the pegged values. In this case, the pegged value describes
the minimum bound for the detection. Therefore the figure of merit describes the
performance of a feature for all the detection values greater than and equal to the
pegged value. The figure of merit, illustrated in Figure 2.2, is the area under the ROC
curve and above the pegged threshold for detection, normalized by the area above
the pegged threshold. The greater the area under the curve the better the feature
works for detection rates greater than and equal to the threshold.

Results

Table 2.2 displays the FOM performance of the various features for various thresholds.
The most significant column in the table is column with threshold 0.8, since it best
describes the detection range in which we are interested in applying the confidence
scores. The features are ordered based on performance on this column. Included in
this table is the FOM feature chance which corresponds to randomly classifying words
as correct and incorrect. The chance FOM represents a theoretical lower bound on
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performance, any FOM lower than chance can be made greater than chance by simply
reversing the decision rule for that feature.

Table 2.2:
of merit.

Feature Threshold
0.5 0.6 0.7 0.8 0.9

C 1  0.6276 0.5715 0.5032 0.4114 0.2826
Cn~ 0.5689 0.5184 0.4562 0.3782 0.2687

Cmin-map 0.5981 0.5381 0.4622 0.3617 0.2164
Ca, 0.5953 0.5305 0.4542 0.3546 0.2155
Cmin-nl 0.5270 0.4647 0.3910 0.3018 0.1751

Cpa, 0.5201 0.4466 0.3590 0.2591 0.1441
-map 0.4527 0.3878 0.3093 0.2136 0.1132

Cmin-map-internal 0.4027 0.3417 0.2732 0.1965 0.0977
p _ _ 0.3334 0.2852 0.2321 0.1752 0.1105
Nphones 0.2107 0.1633 0.1160 0.0776 0.0421
_-n_ 0.1735 0.1301 0.0904 0.0555 0.0253
Nnbest - - - - 0.0681
chance 0.25 0.20 0.15 0.1 0.05

The phone level performance of all individual features based on the figure

The performance differences between the geometric and arithmetic mean methods
for combining phone level features are clearly seen in the Table 2.2. The geometric
means CSj and CG,,, outperform their arithmetic mean counter parts C ,' and CA,,,
respectively. This illustrates the geometric means ability to punish the entire word
score for a poor individual phone level score. If a word is correctly recognized, then
the individual phone level boundary models should match the acoustic observations
reasonably well. Therefore, for a correctly recognized word the phone level scores are
also reasonably good. Conversely, if a word is incorrectly recognized, it is likely that
at least one phone level score is low. The geometric mean is able to pull the word
level score down based on this single low score. Where as an arithmetic mean may
be only slightly impacted by a single low score, especially if the number of landmarks
in the word is large.

Analysis based solely on the figure of merit described above indicates that the
best feature in the set is CnI, with C 11 and Cmin-map somewhat behind. The C%
score is clearly the best one and the C1 appears to be very close to Cmin-map, how-
ever performance of the latter two features is largely a function of the threshold of
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interest. For some thresholds the two features are very similar in performance and for
others there is a significant difference. This threshold dependent variation illustrates
the problem of attempting to evaluate feature performance based on a single figure
of merit.

To better understand the relationship between the performance of various fea-
tures an ROC graph can be utilized. Figure 2.3 displays the ROC curves for the
three best performing features. As the ROC shows the performance of the features
depends on which operating point is chosen. From the ROC curve it is clear that for
a low threshold, such that high detection probability is achieved, the CS; is in fact
the best feature. The figure does a great job in illustrating the threshold dependent
performance of the C 1 and Cmzn -map features. If the performance criterion for the
features calls for a high detection rate, say over 90%, there is little difference between
the performance of the two features. However, if a low false alarm rate is important
then Cmin-map clearly out performs C%1.

While the above features performed quite well on their own some of the other
features did not. To get a better feel for just how poorly some of the features did on
their own Figure 2.4 shows the ROC curves for Nphones, O-ni, and p(i). A straight
line between the origin and the top right hand corner or the graph would represent a
completely random assignment or correctness. The curves for these features are quite
close to that. Some of them appear to be negatively correlated at some points, this
can be attributed to statistical noise.

The best performing single features, such as CS1 and Cmin-map, perform reason-
ably well. They can achieve approximately 85% correct acceptance rate with about
50% false alarm rate. While this is reasonable, improvements can be made by com-
bining multiple features together as described in Chapter 3. The performance of the
features is also dependent on what type of words are being analyzed, the impact of
the word types is discussed in Chapter 4.
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Figure 2.2: Illustration of the figure of merit used in this thesis as an indicator of
confidence score performance.
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Chapter 3

Combining Features

Chapter 2 describes various features which can be used as indicators of confidence at
both word and phone level. The performance of these features varies greatly. There
are several ways in which these features can be utilized. For example, any one single
feature could be used as a confidence metric, but this wouldn't use all the infor-
mation available. Alternatively, all the features could be used simultaneously which
would incorporate all the information. However, analyzing the 12 different confidence
metrics, each correlated in a different manner, can be very difficult. Yet another ap-
proach, which is the one adopted by this thesis, is to derive a new single measure
from complete list of 12 features. The idea is that the 12 features can be combined
in some fashion where they complement each other to create a new feature which
is more robust. Ideally, the various features should be combined in such a fashion
that the weaknesses of each feature are covered up by the strengths of another. This
thesis explores two different ways for combining the features, probabilistic modeling
for hypothesis testing and Fischer Linear Discriminant analysis. The following sec-
tions describe each of these approaches and Section 3.3 outlines the results from these
approaches.

3.1 Probabilistic Modeling

3.1.1 Theory

A probabilistic hypothesis testing approach was experimented with for the purpose of
combining features into a single metric. Words in the training half of the development
set are labeled, based on a comparison between the hypothesis and forced transcrip-
tion, as either correct or incorrect. A detailed description of the development set can
be found in Appendix A. The F vectors associated with the correct words are used
to train a correct mixture Gaussian model Mcorrect. Similarly, the incorrect words' F
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vectors are used to train an incorrect model Mincorrect. Once the models are trained,
the problem becomes a simple hypothesis testing problem shown in Equation 3.1.
New word level scores F are scored against the correct and incorrect models and the
word is classified as correct or incorrect based on the threshold K. Word is classified
as correct if:

p(FlMcorrect) > K (3.1)
p(FIMincorrect)

By varying the K, a ROC performance evaluation can be performed for this tech-
nique. This thesis performed initial experiments to evaluate the performance of the
hypothesis testing approach for two type of Gaussian mixture models, the diagonal
and full covariance mixture Gaussian models.

3.1.2 Diagonal Gaussian Mixture Model

Diagonal mixture Gaussian models with 50 mixture Gaussian components were trained

for both the correct Mcorrect model and incorrect Mincorrect model. Since diagonal mix-

ture Gaussians assume zero covariance between dimensions, the number of trainable
parameters is significantly reduced. Only the diagonal terms of the covariance matrix
must be calculated for each mixture. The number of individual word level confidence

features in a feature vector F is 12, thus the number of covariance parameters to

be trained is 12 * 50 = 600. The relatively small number of covariance parameters
makes it possible to train robust diagonal models with a relatively small amount of
training data. The downside of using strictly diagonal models, and a limited number
of mixtures, is that it maybe difficult to model some complex relationships in be-
tween dimensions. Generally correlations between dimensions can be accounted for

by additional mixtures, but with 50 mixtures it may be difficult to capture all the
inter-dimensional covariances. Principal components analysis (PCA) can be benefi-

cial in conjunction with diagonal mixture models, however it was not performed as
the expected gains in performance would not be sufficiently large to be significant.

3.1.3 Full Covariance Gaussian Mixture Model

Full covariance models differ from the diagonal ones in that covariances between
individual mixtures are now allowed. This allows the models to account for more
complex behavior with the same number of mixtures. The downside to allowing non-
zero covariances is that the number of parameters, which need to be trained, increases
significantly. With a 12 dimensional F and 50 mixtures, the number of covariance
parameters increases to 122+12 * 50 = 3900. Considering the limited size of training2
sets (approximately 8000 correct tokens, and 1000 incorrect tokens), it is likely that
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the full covariance Mcorrect and Mincorrect models are not sufficiently trained. The
Mincorrect model is likely to be especially poor since only about 10% of the training
set corresponds to misrecognized words.

3.2 Fisher Linear Discriminant Analysis

The goal of the Fisher Linear Discriminant Analysis (FLDA) is to reduce the dimen-
sionality of a space to one dimension while achieving maximum separation between
classes [5]. Figure 3.1 illustrates an example in two dimensions on how FLDA tech-
nique can be used to reduce dimensionality without losing the ability to differentiate
between classes.

w

14

X 1

01

0' /

X1

Figure 3.1: An illustration of FLDA dimensionality reduction via projection to a

single dimension.

To achieve the above criterion, FLDA must calculate a projection vector W' which
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projects the data from d dimensions to 1. Suppose that the original set or data
consists of n d-dimensional samples X1 ,. ... , X (in our case d equals 12). Further
more, suppose that that the samples ' 1 ,..., xo consist of samples from two different
classes X, and X2( which in our case are the correctly recognized and incorrectly
recognized words). Thus, by a linear combination of the components of X the new set
of n 1-dimensional samples, y, can be obtained.

y = w2 x(3.2)

The set y consisting of , ., g, is also divided into two classes T1 and T 2 . The
direction of W' is important while the magnitude of W' is of no real significance since
it only scales the y. For an appropriately chosen W' and X, and X2 which are initially
separated in the d-dimensional space, the resulting T1 and T 2 can also be well sepa-
rated as shown in Figure 3.1.

The difference of the sample means is used as the measure of separation. The
sample mean for the projected points fni is given by Equation 3.4.

1
fii= - E y (3.3)

1
=- Ew 1wmi (3.4)

XiEXi

Thus ni- f21 = I t (i'i1- 'i2 ) . Since the difference in means can be made arbitrarily
large by scaling W', the difference must be large relative to a measure of standard
deviation for each of the classes. Instead of a simple variance, a scatter is defined for
the projected samples as 9?

ig= (y -_ i) 2  (3.5)
yCT1

An estimate of the variance of the pooled data is therefore (1/n)(2+ 2), where

(§2 + §2) is the within-class scatter of the projected samples. The Fisher linear dis-
criminant is defined at the #i for which J(i), as in Equation 3.6, is maximized.

J() = ~2 (3.6)

Scatter matrices Si and Sw are defined as Si = EE(i - iiij)(i - Miji)t and

Sw = Si + S2 , in order to define J as an explicit function of W'. With these defi-
nitions i can be defined as follows.
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-2 E ( t -4 ~-i)2
: Exi

= t((- ni)( -
Xcxi

= tSid (3.7)

Therefore g2 + g2 =tSwi and similarly,

(d rn)2 (ti_ n2)2

= i t (ii - ni2 )(ii - 2)

- tSBw (3.8)

where SB = ( 1 - 2 )(i - ni2 )t As Sw is defined, it is the within-class scatter
matrix which is proportional to the sample covariance of the pooled d-dimensional
data, and SB is the between-class scatter matrix. Equation 3.6 can be written in terms
of SB and Sw as shown in Equation 3.9 below.

J W) tSBwWSBW, (3-9)
wt Sww

It can be shown that the W which maximizes J must satisfy SB ' ASw which
is a generalized eigenvalue problem. If Sw is nonsingular a conventional eigenvalue
problem can be obtained by setting S SB = A, from which the solution, as shown
in Equation 3.10, can be derived.

w = S (ii -Ini 2 ) (3.10)

In this thesis, the projection vector W was calculated based on the development
data set as defined in Appendix A. Once the W' was calculated the feature vector F
was multiplied to get the final confidence metric Fscore as shown in Equation 3.11.

Fscore = W (3.11)

3.3 Results

Based on the initial experiments, the FLDA approach proved to be the more effective
method of the two. Both of the mixture model approaches, Diagonal and Full Covari-
ance, performed about equally well. The evaluation of the above feature combination
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methods was performed on the development set described in Appendix A.

The Development set was divided into two subsets, a training subset and a testing
subset. The Diagonal and Full Covariance models, along with the fisher projection
vector, were trained on the training subset and then tested on the testing subset.

Figure 3.2 displays the relative performance of the above methods on the testing
subset of the development set. The fisher discriminant analysis provided significant
improvements in performance, while the diagonal and full covariance model provided
little or no gains over a single one of the best performing features. While the fisher dis-
criminant analysis performed significantly better than the mixture model approaches,
it is not clear which of the mixture models performed better. Which approach per-
forms better depends on the desired operating point. For a operating point which
required very low false alarm rate, a rate below 15%, the Full Covariance approach
performs slightly better. Conversely, for a operating point which requires a high cor-
rect acceptance, say over 50%, the Diagonal models perform better. It is expected
that with increased training data the performance of the Full Covariance models
would exceed the performance of the Diagonal models, whether or not the perfor-
mance would ever reach the level of the FLDA is unclear.

Because the fisher discriminant analysis performed so much better than the other
methods, it was adopted as the method for combining the individual features. Fig-
ure 3.3 illustrates the difference in performance on the final testing set between C%,
the best performing single feature, and Fscore.

The following Table 3.1 shows the figure of merit values for the Fscore and CG?

shown in Figure 3.3.

Feature Threshold
0.5 0.6 0.7 0.8 0.9

Fscore 0.6746 0.6209 0.5500 0.4502 0.2889

CS G 0.6276 0.5715 0.5032 0.4114 0.2826
chance 0.25 0.20 0.15 0.1 0.05

Table 3.1: The figure of merit performance of the best individual word level feature,
CJ 1, and the FLDA derived word level score, Fscore.
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Figure 3.2: The ROC curves indicating relative word level confidence
for various feature combination methods.
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Chapter 4

Analysis Using Word Classes

The confidence metrics described in the previous chapters are applicable to all words
hypothesized by the recognizer. However, in terms of content, some words are more
significant than others. Significance of a word can be thought of as the amount of
critical information it carries. While all words in an utterance carry information, only
some of the words carry information necessary to convey the overall meaning of an
utterance. Because language is highly domain specific, much of the meaning in an
utterance can be implicit. For example, in a limited domain system such as JUPITER,
a request for weather information in Boston could be: "Could you please tell me the
weather in Boston today?', or alternatively it could be: "Boston today." One is a
complete sentence, the other is not, yet they both convey the same information. In
the latter case, the fact that the utterance is a question for weather is implicit from
the context. In this case two words were able to convey the same information as ten,
from which it follows that some words clearly have more content information than
others. Words which are crucial to the meaning of an utterance can be considered
very significant, or high in content value. Similarly which can be done without are
less significant, or low in content value.

Because some words are more significant than others, we are more interested
in the correctness of some words than others. It doesn't matter much if a word like
"please" is misrecognized as "fleece" since in the context of weather information there
is no content in those words. However, if a word like "Boston" is misrecognized as
"Austin" this could cause significant problems. The confidence scores can be helpful
in discovering recognition errors for all types of words, but clearly there is greater
value in discovering errors on words with high content value. The purpose of this
chapter is to evaluate how well the confidence metrics work for words with various
degrees of information content. Each word is categorized into a content class based
on the amount of critical information the word contains, and next the performance
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of the confidence scores is evaluated for words in each content class.

4.1 Description of Classes

The content classes are defined by the amount of critical information that a word car-
ries. Four content classes are defined in this thesis. The content classes are labeled
1 through 4, with class 1 representing words with the lowest content and class 4 the
highest. The precise categorization of the words is shown in Appendix C.

4.1.1 Content Class 4

The highest content class, class 4, consists of words which are crucial to a correct un-
derstanding of a query. For the JUPITER domain, location is the most important piece
of information, thus this content class consists of all the locations in JUPITER's vocab-
ulary. Locations in JUPITER are primarily city and country names, like:' 'Boston" and
"Japan", and to a smaller extent continents and other geographic locations. Words in
this class are often sufficient in themselves for correctly responding to a user's query.

4.1.2 Content Class 3

Content type 3, consists of words which are almost as important as the location,
but may not be quite sufficient in themselves to understand a query. These words
primarily describe time, and to a smaller extent specific weather conditions of interest.

4.1.3 Content Class 2

The second lowest class is labeled content type 2, it contains words which contain
little crucial information to a weather domain system. These words by themselves
contain little content information. They generally complement complex queries rather
than express content themselves. Some of the words in this class include: "what",
"thanks", and "forecast." These words in themselves do not add meaning, and they are
often implicit. However, they can be helpful in detecting information about the users
communication status with JUPITER, and are important for grammatical correctness.
Grammatical correctness has little value in JUPITER, however some of these words
can still be useful on their own. For example, a user saying "thanks" or "thank you"
can indicate that the user has received the information they were looking for and is
now ready to move to a new query or end the call.
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Word Class Number of Tokens
Class 1 7781
Class 2 500
Class 3 942
Class 4 1856

Table 4.1: Number of tokens in each word class defined in this thesis.

4.1.4 Content Class 1

The lowest class, content type 1, contains words like "a", "the", "you", etc. These
words are typically function words which contain no content but are needed in or-
der to create syntactically correct sentences. This category also includes filled pause
words, such as: "uh" and "um." All the words which do not fall in the word content
classes 2,3 and 4, as described above, are classified as content type 1.

From the perspective of understanding, the word classes classes 3 and 4 are most
important, while the words in classes 1 and 2 have little or no value in terms of deci-
phering a query. Thus, it is desirable to have good confidence score performance on
classes 3 and 4, while the performance on classes 1 and 2 matters less.

4.2 Effects on Performance

As mentioned, performance on words significant in terms of understanding is most
important. As it turns out, the performance of the words in classes 3 and 4, which
represent high content words, is in fact better than the performance of the words in
classes 1 and 2. Figure 4.1 illustrates the relative performance of the Fisher combined
confidence metric Fcore on the four word classes.

The content classes 3 and 4 perform clearly better than the content classes 1 and
2. However, it is difficult to ascertain which of the two classes, 3 or 4, performs better
because the ROC curves are jagged. The ROC curves for the classes 2 and 3 are
especially jagged because the number of tokens in those classes is much fewer than
in the classes 1 and 4. It is likely that additional data would smooth out the curves
for classes 2 and 3. The smoothed curves 2 and 3 would probably fall near 1 and 4
respectively. Table 4.1 shows the number of tokens in each class.

Because of the limited data in classes 2 and 3, two new classes were defined. The
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Figure 4.1: Relative ROC performance of the word level confidence score Fco,.e for
the various word classes defined in this thesis.

new classes, class high and class low, are combinations of the original classes. Class
high is the result of merging class 3 into class 4 and similarly class low is the result
of merging class 2 into class 1. This merging of classes not only smoothes out the
data, since each class has more tokens, but it also simplifies the analysis. The number
of tokens in these two classes is shown in Table 4.2. Class high now corresponds to
all the words with high content value and class low corresponds to words with low
content value. The Figure 4.2 shows the relative performance of these two classes
using the feature Fscore.

Since misrecognizing words which have little or no meaning matters less, it is fine
that the performance of the confidence scores is worse for the content class low. The
better performance of the confidence metrics on the content class high words can
be partially attributed to the difference in the lengths, and acoustic confusability of
the words in each class. The words in the content class high tend to be longer and
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Class Low 8281
Class High 2798

Table 4.2: Number of tokens in in content class high and low. Content class low
corresponds to the original content classes 1 and 2, and content class high corresponds
to the original content classes 3 and 4.

acoustically more distinct than their counter parts in content class low. Because of
the manner in which the confidence metrics for words are calculated in this thesis,
one landmark at a time, the longer the word the more accurate of a measure of con-
fidence is achieved. In a short word the confidence scores can be harmed by phone
level outliers, whereas in a longer word anomalies can be averaged out yielding more
robust confidence estimates.

Figure 4.3 illustrates the performance of the word class high in respect to the av-
erage for all the words. The performance of the word content class high, consistently
exceeds the performance of all the words.

The results shown in Figure 4.3 are encouraging. However, the difference in per-
formance based on word content class was less dramatic for the single best performing
feature C. This may be attributed to the fact that Fcoe is derived from multiple
features, some of which may work well only on content words, which are generally
longer. Features like the &map and a.n,, are become more robust as words get longer,
which could account for increased performance on high content words. Since the
C% is less dependent on the lengths of the words, similar difference in performance
between high and low content words can not be seen. The high content class still per-
formed better than the low content class at most points, although the performance
of the classes is roughly equal at some operating points. Figure 4.4 illustrates the
relative performance of the C score for content type high and low.

The difference in performance between Fcoe and C' for all words was not very
significant as shown in Figure 3.3, however, with the content type high the difference
is somewhat more pronounced. Figure 4.5 illustrates the difference in performance
between Fcore and CG for words with content type high. The figure illustrates the
real world advantage of using FLDA to combine multiple features. Table 4.3 shows
the figure of merit performance values for Fcoe and C% on various content classes.
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performance for the word level score Fcoe on word classes

Feature Content Type Threshold
0.5 0.6 0.7 0.8 0.9

Fscore High 0.7403 0.6931 0.6233 0.5249 0.3500
Fscore Low 0.6543 0.6000 0.5298 0.4311 0.2752
Fscore All 0.6746 0.6209 0.5500 0.4502 0.2889
CG High 0.6446 0.5887 0.5182 0.4297 0.3156
CG Low 0.6265 0.5700 0.5019 0.4102 0.2749
CG All 0.6276 0.5715 0.5032 0.4114 0.2826

chance 0.25 0.20 0.15 0.1 0.05

on content classes
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Chapter 5

Catch-all Model

Efficiency is a key issue in any real time system. Incorporating confidence scores into
such a system requires efficiency in the part of the confidence score calculation. In
this thesis, a catch-all model has been used in the calculation of confidence features
as described in Chapter 2. Because of its size this catch-all model is computationally
inefficient. This chapter describes the approach taken in this thesis for improving the
efficiency of calculations involving the catch-all model.

5.1 Catch-all Model Description

The biggest hindrance to performance is related to the catch-all model's size in terms
of the number of Gaussian components in the mixture model. The catch-all model is
created by pooling the mixture Gaussian components from the entire set of JUPITER

boundary models. The mathematical description, already mentioned in Chapter 2, is
shown in Equation 5.1.

N,

p() = p(,Ic)P(cj) (5.1)
j=1

In Equation 5.1 N, is the number of JUPITER boundary model classes, p(Icj) is
the likelihood of the observation X given class cj, and P(cj) is the prior probability of
class cj. The likelihood p(z'cj) can be further broken down to additive components
which represent the contributions of the individual Gaussians which are used to rep-
resent the model for class cj, this is shown in Equation 5.2. In the equation Ngauss(j)
is the number of Gaussians modeling class j, Wk, is the weight, and gk,j(s) is the
Gaussian score for the observation X' for the kth Gaussian in the jth model.
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Ngauss(j)

p(1cj)= E wkjgkj(x) (5.2)
k=1

From the above description, the number of Gaussians describing the catch-all
model Ncatch-all gauss is the sum of the number of Gaussians for each of the classes
as shown in Equation 5.3. Where K is the number of classes and Ngauss(j) is the
number of Gaussians modeling the jth class.

K

Ncatch-all-gauss Z Ngauss(j) (5.3)
j=1

The catch-all model in this thesis contains 11433 Gaussian components, which is
much larger than the individual JUPITER boundary models which are generally made
of less than 50 Gaussians. The number of Gaussian components makes the model
very inefficient and impractical for real-time systems. To get around this problem,
a method for approximating the model with a smaller number of Gaussians was
proposed and is described in Section 5.2.

5.2 Catch-all Model Reduction

The process of reducing the catch-all model size involves an iterative bottom-up clus-
tering process of finding the most similar pair of Gaussians and then combining them.
On each iteration two Gaussians most similar to each other are found and then com-
bined into a new Gaussian. The similarity measure used in this thesis is a weighted
Bhattacharyya distance, the general form of which, Bdistance ,is shown in Equation 5.4.

Bdistance = - logf P1(x)P2 (x)dx (5.4)

The Bhattacharyya distance behaves as a measure of overlap between two Gaus-
sians. The value for the distance ranges between 0 and oo, corresponding to a full
overlap and no overlap between the Gaussians respectively. In practice, since the
Gaussians are in the same space, there is always at least a small amount of overlap
between the Gaussians and the distance metric never goes to oo. The specific imple-
mentation of the Bhattacharyya distance metric for Gaussians yields Equation 5.5,
where p 1 and P2 are the means of the Gaussians and El and E2 are the covariance.

1 - )r El + E2 1  1 (E 1 + E2)/21
Bdistance = 8 ( 2 / (11 - P2) + n (5.5)

1 21 2 I |F-21z
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The Bhattacharyya distance is scaled so that similarly weighted Gaussians are
more likely to be combined. This prevents a single high variance Gaussian from
continuously absorbing neighboring Gaussians, and growing in weight, while outliers
remain unabsorbed. The goal is to compress the acoustic space evenly so that the
entire space is covered with reasonable resolution. The weighting scalar Bscale is
a function of the weights of the Gaussians, w1 and w2 respectively, as shown in
Equation 5.6.

Bscale - w! w2  (5.6)
2W12

The Bscale exhibits behavior which satisfies the above goal, as w, -+ w 2 then
Bscale -+ 1. Conversely, as w, > w 2 or w, < w 2 then Bscale -+ oc. This behavior
causes the weighted distance metric BSD, as shown in Equation 5.7, to exaggerate
distances between Gaussians with big differences in weight and thereby accomplishes
the goal that was set out.

BSD = BscaleBdistance (5.7)

After calculating the BSD between every pair of Gaussians, the pair with the lowest
BSD is combined to form a new Gaussian. The parameters for the new Gaussian are
derived from the parameters of the Gaussians from which it is born. The weight of
the new Gaussian Wnew is equal to the sum of the weights of its Gaussian parents.

Wnew = W 1 + W 2  (5.8)

The mean of each dimension of the new diagonal Gaussian is a weighted sum
of the means of the parent Gaussians, normalized by the sum of the weights of the
parent Gaussians as shown in Equation 5.9.

wi/p1 +w 2 92 (59
Pnew = (5.9)

W 1 + W 2

And the new variance O-new for each dimension, is a weighted sum of the mean
adjusted variances of the parents as shown in Equation 5.10, where a, and U2 corre-
sponds to the variances of the parents and Pnew is as described in Equation 5.9.

0-new = w1 (U041 - Pnew )2) + w2 (0' 2 + (/P2 - Pnew )2) (5.10)

After the new Gaussian is defined, it is added to the Gaussians describing the
catch-all model and the parents from which it was created are removed, effectively
reducing the number of Gaussians by one. The iteration is then repeated as many
times as required to achieve the desired level of reduction in size.
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5.2.1 Implementation Details

The estimation of the catch-all model is not without a penalty. A small amount of
theoretical performance is given up and the Cmap and Cu scores are slightly altered.
Namely, the Cmap score is no longer constrained to be between 0 and 1. The new
range for the Cmap score can be between 0 and some value much greater than 1.
However the distribution of the scores in this research heavily favor scores between 0
and 10, very few scores exceed a value of 10, but when they do they can exceed it by
an extremely large margin. This kind of distribution of scores can be difficult to work
with. To simplify this problem, without losing the ability to differentiate between
high scores, a non-linear transformation was applied to the scores. A new score Cmap
was calculated by mapping score between 0 and 2 linearly to values between 0 and 2,
and values greater than two get mapped as logs of the amount greater than 1 plus 2,
as seen in Equation 5.11.

_ Cmap if 0 < Cmap 2 (5.11)
map - 2 + log (Cmap - 1) otherwise

Because the C,11 score is in the log domain, even large variances in the scores get
scaled to a reasonable range. Therefore no additional adjustments were required for
calculating the C,1. The Fcore scores calculated with reduced catch-all models use
Omap in place of all the Cmap.

5.2.2 Performance

The method described above was used to reduce the size of the catch-all model by
75, 95, 99 and 99.5%. Each decrease in model size, gives up a small amount of theo-
retical performance. In theory, there is no way the performance of a reduced model
can exceed the performance of the full model. As such, any apparent performance in-
creases in the reduced models are due to random statistical discrepancies and should
correct themselves given a large enough set of data. Figure 5.1 illustrates the relative
performance of the reduced models on the Fcore for all content types.

Only slight performance degradation is expressed even when the catch-all model
is reduced in size by 99.5%. Figure 5.2 displays a sub-section of Figure 5.1 to better
illustrate the relative performance of the reduced models.

The relative performance of the 99.5% reduced model with the non-reduced catch-
all model is shown in Figure 5.3. Table 5.1 shows the figure of merit measures for the
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Figure 5.1: Relative
words

ROC performance of reduced catch-all models on Fcoe for all

curves shown in Figure 5.1, Figure 5.2 and Figure 5.3.

This relatively small loss in performance carries over to the content words as
described in Chapter 4. The relative performance of the reduced models for Fcoe
on high content words is shown in Figure 5.4. Table 5.2 shows the figure of merit
measures for the curves shown in Figure 5.4.

For the high content words, at a 90% detection rate, the performance of the 99.5%
reduced model appear equal to that of the non-reduced model. This is an encouraging
result, although it is difficult to ascertain whether or not the performance of the are
in fact equal at that point, or if it is simply a nuance of the testing data. The number
of tokens in the high content category is too small to make this distinction for sure.
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Feature Threshold
0.5 0.6 0.7 0.8 0.9

No Reduction for All Content 0.6746 0.6209 0.5500 0.4502 0.2889
75% Reduction for All Content 0.6678 0.6139 0.5433 0.4451 0.2879
95% Reduction for All Content 0.6578 0.6024 0.5304 0.4316 0.2743
99% Reduction for All Content 0.6469 0.5910 0.5177 0.4161 0.2627
99.5% Reduction for All Content 0.6398 0.5839 0.5106 0.4092 0.2587

Table 5.1: Effects of catch-all model
merit.

reduction in performance based on the figure of
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Figure 5.3: An ROC illustration of the relative Fscore
99.5% reduced catch-all models on all words.
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performances for the full and

Feature Threshold
0.5 0.6 0.7 0.8 0.9

No Reduction for High Content 0.7403 0.6931 0.6233 0.5249 0.3500
75% Reduction for High Content 0.7344 0.6859 0.6174 0.5200 0.3514
95% Reduction for High Content 0.7266 0.6768 0.6050 0.5055 0.3330
99% Reduction for High Content 0.7187 0.6680 0.5962 0.4938 0.3219
99.5% Reduction for High Content 0.7104 0.6593 0.5882 0.4876 0.3194

Table 5.2: Effects of catch-all model reduction
high content words.

in the figure of merit performance on

61

0.9

0.8

0.7

C

C5

()

0

0.6

0.5

0.4

0.3

0.2

0.1

n

_____No Reduction

- ----99.5% Reductic

... .. .

on

1



0.9

0.8

0.7

0.6C.c 0.6
Q,.

0.5

0
00.4

C-

0.3

0.2

0.1

- -I- -:

-I-

F____ r No Reduction High content
_ Fsor 99.5% Reduction High Content

. ....... ..... . ... .. .. .. . ... ... ... ... ... . ... ..sc o re ... .

II I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P - False Alarm

Figure 5.4: Relative ROC performance of the full and 99.5% reduced catch-all models
on high content words.
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Chapter 6

Utilizing Confidence Scores

There are many practical applications for word level confidence scores. Work has
been done in applying the scores for re-scoring N-best lists [16, 15], improved back-off
strategies for language modeling, recognition performance prediction [23], and many
others. The confidence scores developed in this thesis are valid for use with these
applications. However, due to limitations in time this thesis attempts to apply con-
fidence scores for only one application, improving parsing performance. The process
of incorporating the confidence scores into the natural language processor TINA is
discussed in Section 6.1.

Due to time constraints an in depth analysis of the confidence scores for the
purpose of user feedback was not possible. None the less, much thought was given to
the possibilities surrounding user feedback. While an actual implementation was not
possible, Section 6.2 describes the concepts and ideas surrounding this topic.

6.1 Improved Parsing

The natural language processing unit TINA receives a N-best list of sentences from the
SUMMIT recognizer. The N-best list consists of N recognition hypotheses, where each
hypothesis is a string of words with no additional information attached. This list of
utterances is re-organized into a word graph which is used for the speech understand-
ing task. In the process of building the word graph, scores indicative of confidence
in each word are attached to arcs in the word graph. Before the availability of ac-
tual acoustic confidence scores, an ad hoc method for indicating some confidence like
measure was calculated for each word. The goal is to replace this ad hoc scoring with
actual confidence scores.
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6.1.1 Ad Hoc Scoring

Prior to the development of word level confidence scores an ad hoc method for ex-
pressing word arc confidence was used. The ad hoc method uses the location of an
utterance in the N-best list, and the number of times a word occurs, as the basis for
word arc scores.

The ad hoc scores are calculated as the N-best list is collapsed into a word graph.
The utterances in the N-best list are weighted based on their location in the list.
The weight is the highest for the best (1st) hypothesis in the N-best list, and then
decreases linearly with each subsequent utterance. For example, an N-best list with N
utterances and a weight of wo on the 1st utterance, the weight for the nth utterance is
then wo - n +1, as shown in Equation 6.1. In TINA, the weight of the best hypothesis
on the N-best list wo is hand picked, and has been determined via experimentation to
be 16.

Wn = WO - n + 1 (6.1)

The ad hoc confidence measure associated with each arc in the word graph is the
sum of the weights wn for each occurrence of a word in a specific locations. Figure 6.1
shows an example N-best list, for N equal to 3, and the word graph to which it is
collapsed. The letters A, B, C, etc. represent hypothesized words in the utterances,
and the numbers to the left of the N-best utterances indicate the utterance weights
wn. The word graph under the N-best list is labeled in the form LABEL:SCORE, where
LABEL is the hypothesized word and SCORE is the ad hoc score associated with that
arc.

The ad hoc confidence score, mathematically referred to as Sad-hoc(), for word
arc i is shown in Equation 6.2,

Nnbest

Sad-hoc(i) E WnCn (6.2)
n=1

where Nnbest is the number of N-best utterances, wn is the weight for utterance n, and
C, is the number of times the word occurred in the specific location in utterance n.
Since multiple instances of a word in an utterance are considered different words, the
C, is constrained to be 0 or 1.

This scoring method is motivated by the correlation between the number of times
a word occurs in the hypotheses and recognition accuracy. The more times a particu-
lar word appears in the N-best hypotheses, the more likely the word is in fact correct.
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Figure 6.1: Illustration of N-best list and the corresponding word graph

By decrementing the weight for each lower consecutive hypothesis in the N-best list,
the ordinal ranking of the hypotheses in the N-best list is accounted for. This ad hoc

score could be incorporated into confidence calculation, however due to limitations in
time this was not done in this thesis, and it is unclear how great of an effect it would

have on the performance.

6.1.2 New Scoring

The goal is to replace the ad hoc scoring method with some method that utilizes the
confidence scores described in this thesis. Several methods for replacing the ad hoc

scores were explored. The simplest method was to replace the utterance level weight

Wn with the actual confidence scores associated with each word. The resulting new
scores, shown in Equation 6.3, vary slightly from the ad hoc scores in Equation 6.2.

Nnbest

Snew( W = 1: Cword i i, n) Cn (6.3)
n=1

In Equation 6.3 Wn is replaced with Cword(i, n) which is the word level confidence
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score for the word i in the utterance n, and the remaining terms remain as in Equa-
tion 6.2.

A slight variation on this method is combination of the ad hoc method with the
new confidence scores. The confidence scores are now scaled by the utterance level
weight, so that the confidence score have more weight the earlier they appear in the
N-best list. The resulting new score Snew-combo(i) utilizes the w" scores as described
in Equation 6.1 and a word level confidence measure Cwod(i, n). The form of the new
combination method is shown in Equation 6.4, where the terms remain the same as
in previous equations.

Nnbest

Snew-combo(i) - E WnCwor(ij, n)Cn (6.4)
n=1

The behavior of Snew-combo is expected to be similar to a performance of a Snew
which uses Cword scores that incorporate the ad hoc scores into the confidence calcu-
lation.

Because the decreasing weight method described in Equation 6.1 makes sense, a
slight variation of the method was also explored. Instead of a linear decrease in the
weight for each subsequent N-best hypothesis, a non linear weight was explored. The
new weight Wn-new is a exponential function with varying rates of decay as shown in
Equation 6.5, where n is the nth hypothesis and a is a constant between 0 and 1.

Wn-new = an- (6.5)

By varying a various rates of decay can be used, the appropriate value can be
found via experimentation. Substituting the new weight Wn-new for the ad-hoc weight
function wn yields a new scoring method shown in Equation 6.7.

Nnbest

Snew-weight(i) ~ Wn-newCword(,, n)Cn (6.6)
n=1

Nnbest

= e a"-Cword(i, n)Cn (6.7)
n=1

6.1.3 Results

The ad hoc method for scoring the word arcs in a word graph was determined through
a process of experimentation. The performance of the ad hoc method has been reason-
ably good and has not been significantly exceeded via other methods. Incorporating
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the confidence scores into word graph scoring provided a performance level roughly
equal to that of the ad hoc method.

The following Table 6.1 outlines performance of the various confidence based scor-
ing methods described above. The results are reported for Cni as the confidence mea-
sure Cwrd, and they are reported relative to the performance of the ad hoc method
for word graph scoring. The columns Better Und. and Worse Und. describe the
number of times a metric performed better and worse respectively in terms of under-
standing. Understanding performance is evaluated on a key-value representation of
the recognition result [4, 13]. The columns Better Rec. and Worse Rec. describe the
number of times a metric performed better and worse in terms of recognition.

Scoring Method Better Worse Better Worse
Und. Und. Rec. Rec.

Snew-weight;a = 2/3 5 3 25 20
Snew 5 7 31 26
Sad-hoc 0 0 0 0

Snew-combo 28 39 62 106

Table 6.1: Parsing performance, in terms of the number of differences in the out-
comes in recognition and understanding between new methods and the original ad
hoc method, for various word graph weighing techniques.

Based on this crude quantitative evaluation Snew-weight, with an oz value of 2/3, is
the best performing method for scoring the word graph. However, while this scoring
results in improvements in both the understanding and recognition sides, the number
of times the new scores outperforms the old ad hoc method appears insignificant.

As mentioned above, there were instances where the new scoring method provided
a much better result which was encouraging, unfortunately this did not occur very
often. Of the 5 times that the best performing new scoring method Snew-weight per-
formed better, in terms of understanding, only twice the performance increase was
due to high content words. Increases in performance due to low content words do not
add much value, as they add little information regarding the users query. Table 6.2
breaks down the differences in performance in terms of word content values for the
Snew-weight and Sad-hoc(i)-

A similar breakdown of recognition performance, into word classes, is shown in
Table 6.3. Similarly, increased performance on low content words means little, while
the performance differences on high content words are more significant. Unfortunately

67



High Content Low Content

Und. Better 2 3
Und. Worse 1 2

Table 6.2: Understanding performance in terms of word content

there appear to be more cases where high content words are misrecognized than when
they are correct.

High Content Low Content
Rec. Better 6 19
Rec. Worse 9 11

Table 6.3: Recognition performance in terms of word content

As a whole the differences in performance between the new methods and the old
ad hoc method are insignificant. This might be expected as due to time constraints,
only the surface of the word graph scoring problem was scratched. The initial result
are encouraging and future work will likely provide increased performance via an
appropriate use of the confidence score.

6.2 User Feedback

While modifications to user feedback were not implemented in this thesis, much
thought was given to possible benefits and problems that may arise from incorpo-
rating the confidence scores into the feedback process. The general idea is that con-
fidence scores may be useful in detecting problems with recognition and the system
maybe able give useful feedback to the user which may help correct possible recogni-
tion problems.

User feedback modification involves critical two parts, figuring out when to prompt
user for feedback and what kind of feedback to give. The first part can be addressed
by analyzing the result of the parsing process. The parsed result contains information
about the nature of the words. Using the parsed result as a guide to which words
are important, the confidence scores can be looked up for key words. The important
words are words which are critical for deriving correct responses to users queries,
these generally the words in the content type high class as described in Section 4.2. If
a key word has a low confidence score, then the user can be asked to confirm or repeat
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that word. A problem with this approach it is only able to address problems with
misrecognitions within a word class. If a city name is misrecognized as a pronoun, or
some other low content type word, this type of analysis is unable to locate or alleviate
the problem because only the confidences of words in content class high are considered.

The manner in which the user is asked to confirm or repeat information is the
second critical part of the user feedback. The specific wording used to prompt the
user for more information has great effect the type of response the user will give.
There are many forms of feedback that are valid, this thesis discusses two of them.
They are both forms of confirmation and vary in their approach and complexity.

The first method is to repeat the recognized word along with a question about
the validity of that word. For example, a system which has a low confidence in the
word Boston may say to the user: "I'm sorry, did you mean Boston," to which the
user may reply yes or no. A benefit of this method is that the words yes and no are
acoustically very distinct and thus the confirmation can be made with high accuracy.
A problem with this method is that the person may not answer with a simple yes
or no answer. Especially if the recognizer has made a mistake and the person wants
to correct it. For example, a user may respond to the above feedback by saying:
"No, I said Austin," or "No, I did not mean Boston. I meant Austin." If the person
responds in a verbose manner then the confirmation may become more difficult to
make. A verbose answer requires a new recognition and parsing process which is com-
plex and may not itself be correct. To alleviate the problem with verbose responses,
the user can be directed to answer in a specific fashion. Instead of giving feedback
which may lead to a potentially open ended response, the feedback can be worded in
a fashion which limits the likely responses. For example, the system may instead say:
"I'm sorry, did you mean Boston. Yes or no?" This may slow down the dialog as
additional steps are now necessary to resolve a no answer, however the confirmation
performance is likely to increase.

The second approach is to ask a more open ended question like: "I'm sorry, could
you repeat the location you were interested in." A query of this sort may yield a
wide range of responses, however they should be consistent in that they all contain
the location of interest which can then be compared to the original recognition re-
sult. The benefit of this type of feedback is that the answers are more likely to be
of a similar format. Because people are not asked to answer a question, which has
multiple valid answers, the responses can be more predictable. The downside to this
type of confirmation is that it is not as robust as a simple yes or no classification.
This method is especially sensitive to unknown words. Words that are not in the
vocabulary of the system will cause serious problems with this type of feedback. The
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system will be unable to hypothesize the correct location regardless of how many
times the user repeats themselves. With a directed dialog method described above,
it is possible to stop asking the yes/no type confirmations after a certain number of
times and simply declare that the location is unknown. With the second approach,
since no confirmation is asked for, it is difficult to ascertain whether or not the new
hypothesis is still wrong.

Further work is necessary to figure out the optimal way to interpret the users
responses to the feedback. For example, a case where the user is asked to repeat
the location of interest, if the repeated location differs from the original recognition
location, what is the appropriate behavior for the system. Should the system accept
the new location as the truth, should it pick the one with the higher confidence score,
should it prompt for further confirmation, these are questions which are not easily
answered without actual experiments. It is clear that the user feedback problem is
not simple and requires much work, but the benefits seem clear and future work is
likely to address this problem.
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Chapter 7

Conclusion and Future Work

This thesis was motivated by the interesting possibilities that robust confidence scores
bring to spoken language systems. Because confidence scores were not readily avail-
able, methods for creating confidence scores were first explored. In, and between, the
creation of the confidence scores and the final applications of confidence scores lay
many steps. On each step in the process, decisions were made and interesting results
were observed. This chapter discusses the some of the interesting findings from each
step in the process and discusses possible future directions relevant to that matter. As
each step builds on the previous ones, improvements on any of the steps will improve
the final performance of the confidence scores and their applications. The significant
steps in the process are roughly divided along the chapters in this thesis, some of the
steps involve processes while others are purely analytical.

This thesis creates word level confidence metrics from phone level confidence
scores. Although this is not the only way to derive word level scores, it proved fairly
robust. Because this thesis derives word level scores from the phone level ones, the
performance of the word level scores is in part limited by the performance of the phone
level scores. Similarly the applications which use the confidence scores are limited in
their performance by how well the word level scores perform. This performance inter-
dependency in between various levels in the system is why improvements at all levels
are crucial to boosting the performance of confidence scores in real world applications.

It is possible to circumvent some of the interdependency by eliminating steps. For
example, it is possible to forego phone level scoring by starting the confidence scoring
analysis at the word level instead. This is done by utilizing only word level features.
Word level features include language model scores, durations and other more complex
measurements like A-stabil [18, 21]. Future work will surely address the differences
in performance of word level confidence scores based solely on word level features and
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ones based on phone level features. While it is uncertain which approach is better,
it is likely that the best result would be achieved by utilizing both, phone level and
word level features.

7.1 Phone Level Confidence Scores

The phone level scoring appeared to work well. However, to make improvements
at this level two issues need to be addressed. First, a method for evaluating phone
level confidence scores must be created. Second, more phone level features must be
proposed and evaluated.

The phone level confidence scores were not evaluated on their own, their per-
formance was inferred from the performance of the word level scores instead. Ul-
timately, developing a robust method for evaluating the performance of the phone
level confidence metrics is a good idea. A possible approach for evaluating phone
level confidence scores is to use the result of a forced transcription path as the correct
phonetic transcription of an utterance, and then compare the hypothesized phones
against this transcription. When the two match the phone is considered correct, and
similarly in places of difference the phone is considered incorrect. By evaluating the
correctness of phone hypothesis via such a method, a performance evaluation could
be performed. Having such a method would make further development and research
into phone level confidence features more fruitful.

In addition to a method for evaluating the phone level performance, new features
should be proposed and evaluated. Variations in the catch-all model would lead to
an interesting experiment. For example, instead of using a generic catch-all model,
various near-miss [2] or boundary specific anti-models could be used [20, 25]. Some
of the anti-model research has been motivated by computational issues. Instead
of having to use a generic model which is large, smaller computationally efficient
normalizing models are used. Each boundary specific anti-model is made of all the
models most like the boundary itself. It is unclear which method for improving
computation is better, estimating a catch-all model, or using small anti-models in
the first place. A comparison of the two method should prove interesting. Through
further experimentation and with the help of phone level performance evaluation
methods, the performance of phone level confidence scoring is likely to increase.
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7.2 Word Level Confidence Scores

The word level scores performed well enough that they appear to be useful. A de-
tection rate of about 90% can be achieved for content words while keeping the false
alarm rate less than 40% as shown in Figure 7.1. To improve the performance of the
word level scores, two straight forward things can be done. First, new features can
be proposed which complement the current set of features, and second, new methods
for combining the features should be evaluated.
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Figure 7.1: Performance of Fcoe on high content words

This thesis limits the word level features to acoustic features derived from the
phone level scores and a few word level features like the number of landmarks within
the word. By incorporating non-acoustic features like the language model scores, per-
formance of the word level scores is likely to increase. To increase the performance
of the features as a collective set, new features should have low correlations with
the current features as well as each other. Highly correlated features, even if they
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themselves work well, complement each other poorly and thus add little to the over
all performance of the set of features. This problem is already seen with the set of
features explored in this thesis, because the features were all derived from the same
underlying acoustic information their cross correlations were also high.

In addition to exploring new features, new methods for combining/evaluating a
set of features should be evaluated. This thesis explored two methods for combin-
ing/evaluating for this purpose, of which Fisher Linear Discriminant Analysis proved
best. There are other methods for combining/evaluating a set of features like neural-
networks. Some methods are more sensitive to the amount of training data available
than others. Which opens the possibility that with more data the relative performance
of various methods for combining/evaluating features may change.

7.3 Performance as a Function of Content Type

A strong correlation between performance of the word level confidence measures and
word content type was found. Words with high content value performed systemati-
cally better than words with little or no content value. This result was very encourag-
ing in terms of possible future applications of the scores. The higher performance can
be attributed to the higher acoustic differentiability between content words. Content
words tend to be longer and more distinct than their non-content counter parts. In
the future a more in-depth analysis should be made to determine what exactly are
the factors that contribute to this difference in performance. It is likely that a bet-
ter understanding of why scores work better on some words than others will lead to
confidence metrics which work better on all types of words.

Creating content specific confidence metrics would lead to an interesting compar-
ison in the future. Based on the content type of a word, one set of features is used
for low content words and a different set for high content words.

In itself, the fact that the confidence metrics perform better on high content words
can be used to justify using the confidence scores in conjunction with word spotting
and other key word related tasks.

7.4 Catch-all Model

The initial size of the catch-all model made it inefficient, thus methods for reducing the
catch-all model size were explored. The reduction of the catch-all model was success-
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ful. The size of the catch-all model was decreased by 99.5% with only a 7% reduction
in performance (when evaluated at 80% detection rate). The reduced model provides
a good balance between computational efficiency and confidence metric performance.
Further reduction in size is not necessary since even todays machines are able to
handle the computation with no problems. However, as the computational power of
computers increases, this reduction becomes less meaningful and in the future this
reduction might be foregone. Although, it is possible that the acoustic models will
grow in complexity and size as the computational power increases, and the catch-all
reduction will remain significant for some time to come.

7.5 Applications of Confidence Scores

While the applications of the confidence scores were the original motivation behind
this thesis, only a small amount of work was completed on this front. It is likely that
the confidence scoring methods developed in thesis will be used in future confidence
score applications. The value of confidence scores in the parsing process is unclear.
Small gains were seen in the experiments performed, however a much more in-depth
analysis is required to make any conclusive statements regarding that application.

There are many unexplored applications for the confidence scores. For example,
user feedback briefly discussed in Section 6.2, appears very interesting and is sure
to be investigated further. Applications is the area of confidence scores which is the
least understood and studied. It is also the area which is going to see the most new
research in the future years. The lessons learned in this thesis will help in under-
standing the strengths and weaknesses of the metrics and should prove valuable in
developing future applications.

7.6 Summary

This thesis set out to explore applications of confidence scores and to create the
necessary infrastructure for accessing such scores. This thesis was more successful in
setting up the methods for the creating confidence scores and, due to time constraints,
less so in developing and analyzing various applications of confidence scores. The
confidence scores are now accessible and can be utilized by any element of the GALAXY
architecture. However, time constraints limited that amount of work done in the
applications side. It is likely that future work will pick off where this thesis left off,
thus covering a more in-depth analysis of the applications of confidence scores.
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Appendix A

The Corpora and JUPITER

Recognizer

The work in this thesis is conducted in the JUPITER [10] weather information do-
main. JUPITER is a telephone based spoken language system which provides users
with weather related information for locations around the world. The system has
access to weather information for approximately 500 locations around the world. The
amount of available real user data for JUPITER is the biggest motivation for working in
this domain. With over 180,000 utterances of recorded data, the amount of JUPITER

data far exceed that of all the other domains being developed at SLS. The system has
been accessible to the public since 1997 via a toll free phone number. The JUPITER

recognizer used in this thesis was trained on 20064 utterances and achieves a word
error rate of 19.2% on the Testing data described below [9]. The performance of the
system varies greatly depending on the utterance content, namely if an utterance is
in-domain or not. An utterance is considered in-domain if it contains no out of vo-
cabulary words, partial words, crosstalk, or other disrupting effects. The word error
rate drops to around on 11% for in-domain utterances and goes up to approximately
65% for out of domain ones.

The development and testing of the confidence scores was done on two sets of
data. The development set was initially further divided into two, a training and test-
ing, subsections. In the development phase, the training of FLDA projection vectors
and mixture Gaussian models, for combining multiple features, was performed on
the testing set. Tests during the development phase were conducted on the testing
subsection of the development set. The final result reported in this thesis are on the
test set while the entire development set, both the initial training and testing halves,
was used for training. Table A.1 shows the respective sizes of above data sets.
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Set Name Utterances Words
JUPITER Training 20064 122267
Confidence Train 1719 9121
Development Test 1718 8957

Total 3437 18078
Confidence Testing 2405 11339
NL Testing 2391 12318

Table A.1: Sizes of data sets used in this thesis.

For the experiments involving parsing and TINA, as described in Chapter 6, a
different set of JUPITER data was used. The last line of Table A.1 describes the
data used in those experiments. The experiments with TINA required no training of
additional models therefore a separate testing and training set were not required.
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Appendix B

ROC Computation

The Receiver Operating Characteristic (ROC) is a method for analyzing the perfor-
mance of a classification task which makes use of an adjustable threshold. In the
context of confidence scoring, words are classified either as correctly recognized or
incorrectly recognized. The classification decision is based on the confidence scores
associated with each word. If a confidence metric exceeds a threshold then the word
is classified as correctly recognized, or if it doesn't then it is classified as incorrectly
recognized. Figure B.1 illustrates two hypothetical distributions of confidence metrics
and the threshold which is used for classification.

Threshold

Incorrect Words Correct Words

False Rejection False Alarm

Figure B.1: Hypothetical distribution of confidence metrics

The various outcomes of the classification are shown in Figure B.2. An ROC curve
plots the probability of Detection on the y-axis and the probability of False Alarm on
the x-axis as a function of the same threshold. The area under the incorrect words'
probability density function (PDF), and to the right of the threshold, is equal to the
false alarm probability. Similarly the area under the correct words' PDF, and to the
right of the threshold, is equal to the detection probability.
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P(detection) = P(word classified as correctlword is correct)
P(false alarm) = P(word classified as correct~word is incorrect)

Confidence Score Indicates

Word ncorrctlyWord is Correct

Word Correctly

Hypothesized Confidence Score Indicates
Word is Incorrect

Confidence Score Indicates
Word Incorrectly Word is Correct

Hypothesized

Confidence Score Indicates

Word is Incorrect

Detection

False Alarm

Figure B.2: Possible outcomes of classification

The Detection/False Alarm relationship can be mapped out as a function of the
decision threshold by varying the threshold and plotting the corresponding probabil-
ities. Figure B.3 shows a typical curve which results from such a process, the top
right hand corner of the curve corresponds to a threshold at -oc
left hand corner the thresholds is at oo.

Probability of
Detection

0

0

and at the bottom

Probability of
False Alarm

Figure B.3: A typical ROC curve
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Appendix C

Word Classes

Here is a listing of the words which fall into the content types 2, 3, and 4. Everything
which is not in these content classes is in content class 1.

aberdeen
addis-ababa
akron
alberta
allentown
america
anaheim
ann-arbor
argentina
aruba
asuncion
augusta
b-c
baltimore
bangor
basel
beirut
belgrade
berlin
birmingham
boise
bordeaux

Content Type 4
abidjan abilene
afghanistan africa
alabama alaska
albuquerque algeria
alliance altus
american-samoa amman
anchorage anderson
anniston antarctica
arizona arkansas
asia aspen
athens atlanta
austin australia
baghdad bahamas
bangalore bangkok
bar-harbor barbados
baton-rouge beaufort
belarus belfast
belize bellingham
bermuda bern
bismarck blockisland
bolivia bombay
bosnia bosnia-herzegovina

acapulco

ainsworth
albany

algiers
amarillo

amsterdam

ankara

antigua

arlington

astoria
atlantic-city
austria

bahrain
bangladesh
barcelona
beijing
belgium
bemidji
billings
bogota
bonn

boston
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boulder
brazil
bristol
brookings
bucharest
bulgaria
cairo
cambodia
cancun
cape-town
casper
champaign
chattanooga
china
cleveland
colombo
columbus
copenhagen
crossville
cyprus
dalhart
danville
death-valley
denmark
detroit-lakes
dominican-republic
dublin
durango
eagle
egypt
elko
erie
ethiopia
fargo
finland
fort-collins
fort-myers
frankfurt
gage
germany

Content Type 4 Cont...
bowling-green bradford
breckenridge bremerton
britain british-columbia
brunei brunswick
budapest buenos-aires
burbank burlington
calcutta calgary
cambridge canada
canton cape
caracas caribou
cedar-city central-america
charleston charlotte
chicago childress
christchurch cincinnati
coeur-d+alene cologne
colorado colorado-springs
concord concordia
costa-rica cozumel
cuba curacao
czech-republic d-c
dallas dallas-fort-worth
dayton daytona
del-rio delaware
denver des-moines
devils-lake dickinson
dothan dover
dubois dugway-proving
durham dusseldorf
ecuador edinburgh
el-dorado el-paso
ely england
essen estherville
europe everett
farmington fayetteville
flagstaff florence
fort-deifrance fortiknox
fort-smith fort-worth
franklin french-guiana
gainesville geneva
gibraltar glacier-park

brasilia
bridgeport
british-isles
brussels
buffalo
burma
california
canary-islands
cape-cod
casablanca
chadron
charlottesville
chile
clearwater
colombia
columbia
connecticut
crestview
cut-bank
dakar
damascus
daytona-beach
delhi
detroit
djibouti
dubai
duluth
dyersburg
edmonton
el-salvador
enid
estonia
fairbanks
fiji
florida
fort-lauderdale
france
fresno
georgia
glasgow
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glens-falls
grand-rapids
greenland
grenoble
guam
guyana
harare
havana
helsinki
hiltonlhead
honolulu
houlton
huron
idahoialls
indianapolis
iran
israel
jackson
jamaica
johannesburg
kabul
kansas-city
key-west
korea
La
lake-tahoe
lebanon
libya
lisbon
long-beach
louisiana
luxembourg
madrid
mali
manhattan
martha+s-vineyard
massena
memphis
miami
midwest

Content Type 4 Cont...
goodland grand-canyon
great-britain greece
greensboro greenville
groton guadalajara
guangzhou guatemala
hagerstown haiti
harrisburg harrison
havre hawaii
hibbing hill-city
hobart honduras
hopkinsville hot-springs
houston hungary
hyannis iceland
illinois india
indonesia internationalfalls
iraq ireland
istanbul italy
jacksonihole jacksonville
jamestown japan
jonesboro jordan
kahului kalispell
katmandu kentucky
kingston kinshasa
kuala-lumpur kunming
la-paz laconia
las-vegas latvia
lewiston lexington
lihue lima
lithuania little-rock
long-island longview
louisville lovelock
lynchburg lyon
maine malad-city
malta managua
manila manitoba
martinique maryland
mcalester mccomb
meridian mexico
miami-beach michigan
milan milwaukee

grand-forks
green-bay
greenwood
guadaloupe
gulfport
hanoi
hartford
heidelberg
hilo
hongikong
houghton
huntsville
idaho
indiana
iowa
islamabad
ivory-coast
jakarta
jerusalem
juneau
kansas
kenya
knoxville
kuwait
lagos
leadville
lhasa
limon
london
los-angeles
lubbock
madras
malaysia
manchester
marseille
massachusetts
melbourne
mexico-city
middle-east
mineral-wells



minneapolis
mississippi
mobile
monte-carlo
montgomery

moscow
muscle-shoals
naples
nebraska

new-brunswick

new-hampshire
new-york

newark

nicaragua
norfolk
north-myrtle-beach
norway

ohio
omaha

osaka
paducah

paraguay
pennsylvania

philadelphia
pierre
plattsburgh
port-angeles
prague

puerto-rico
quito
reykjavik
rio-de-janeiro
rocky-mountains
sacramento
saint-martin
salisbury

san-diego
santafe
saskatchewan
scotts-bluff

Content Type 4 Cont...
minnesota minot
missoula missouri
mogadishu monaco
montego-bay monterrey
montpelier montreal
mount-mckinley mount washington
myrtle-beach nairobi
nashville nassau
nepal netherlands
new-caledonia new-delhi
new-jersey new-mexico
new-york-city new-york-state
newfoundland newport-news
nice nigeria
north-america north-carolina
north-pole northern ireland
nova-scotia oakland
oklahoma oklahoma-city
ontario oregon
oslo ottawa
pakistan panama
paris park-city
pensacola perth
philippines phnom-penh
pine-belt-region pine-bluff
pocatello poland
portland portsmouth
prince edward-island providence
pyongyang quebec
raleigh rapid-city
rhinelander rhode-island
riyadh roanoke
romania rome
saint-kitts saintilouis
saint-paul saint petersburg
salt-lake-city samoa
san-francisco san-jose
santiago sao-paulo
saudi-arabia savannah
scranton seattle

minsk
mitchell
montana
montevideo
morocco
munich
nantucket
natchez
nevada
new-england
new-orleans
new-zealand
niagara-falls
nome
north-dakota
northwest-territories
ogden
olympia
orlando
p-e-i
panama-city
pendleton
peru
phoenix
pittsburgh
ponca-city
portugal
provo
quillayute
reno
richmond
rochester
russia
saint-lucia
saint-thomas
san-antonio
san-juan
sarajevo
scotland
senegal
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seoul
shreveport
slovakia
south-africa
south-pole
srilanka
sumter
switzerland
tacoma
taiwan
tanzania
tel-aviv
thailand
titusville
toronto
tucson
turkey
uk
ukraine
united -states-of-america
uzbekistan
vegas
vernal
virgin-islands
wales
washington-state
west-virginia
wichitaifalls
wilmington
wisconsin
yellowstone
zimbabwe

Content Type 4
serbia
siberia
snowmass
south-america
spain
stockholm
sun-valley
sydney
tahiti
tallahassee
taos
tennessee
thief-river-falls
tokyo
toulouse
tulsa
tuscaloosa
u-s
united arab-emirates
uruguay
vail
venezuela
victoria
virginia
warsaw
watertown
wheeling
williamsburg
winnemucca
worcester
yukon
zurich

Cont...
seville
singapore
sofia
south-carolina
spokane
strasbourg
suriname
syracuse
tahoe
tallinn
tasmania
texarkana
tibet
tonopah
trenton
tunisia
twin-falls

united-kingdom
utah
valentine
venice
vienna
virginia-beach
washington
wendover
whidbey-island
williamsport
winnipeg
world
zaire

Content Type 3
afternoon+s antarctic
atlantic august
cloudy cold
december dulles
february fog
friday friday+s

85

afternoon
arctic
caribbean
dif-w
evening+s
freezing

april
b-w-i
current
evening

foggy
gatwick

shanghai
siouxifalls
somalia
south-dakota
springfield
stuttgart
sweden
syria
taipei
tampa
tehran
texas
timbuktu
topeka
trinidad
tupelo
tyler
uganda
united-states
utica
vancouver
vermont
vietnam
vladivostok
washington-d.c
west-palm-beach
wichita
williston
winston-salem
wyoming
zambia



Content Type 3 Cont...
hail
humid
indian
june
may
monday+s
november
orly
pressure
rise
sea
shining
smog
snowstorm
stormy
sunrise
thunderstorms
today+s
tornados
wednesday
yesterday

all
could
each
eighteen
eleven
fifteen
first
fourteen
must
ninety
northern
second
seventh
sixteen
south
ten
third

heat-wave
humidity
j-f-k
la-guardia
mediterranean
morning
o+hare
overcast
rain
rising
september
shower
snow
stapleton
sunday
sunset
thursday
tomorrow
tuesday
wednesday+s
yesterday+s

Content Type
anticipated
did
east
eighteenth
eleventh
fifteenth
five
fourteenth
nine
ninth
northwest
seven
seventy
sixteenth
southeast
tenth
thirteen

heathrow
hurricane
january
logan
midway
morning+s
ocean
pacific
raining
saturday
set
showers
snowfall
storm
sunday+s
temperature
thursday+s
tomorrow+s
tuesday+s
wind

2 Cont...
any

do-you

eastern
eighth
every

fifth
forty
fourth
nineteen
north
one

seventeen
should
sixth

southern
thank-you
thirteenth

hot
hurricanes
july
march
monday
national
october
present
rainy
saturday+s
setting
sleet
snowing
storms
sunny
thunder
today
tornado
warm
windy

can
does
eight
eighty
expected
fifty
four
likely
nineteenth
northeast
predicted
seventeenth
six
sixty
southwest
thanks
thirtieth
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Content Type 2
thirty three twelfth twelve
twentieth twenty two west
western

Content Type 1

All words not listed in Content
Examples: a about

for in
Lwould on
that the
weather

Types 2,3 and 4.
besides
is
like
what is
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