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Abstract

Two kinds of models are considered which have a Boltzmann weight which is either not
real or real but not positive and so standard Monte Carlo methods are not applicable.
These sign or complex action problems are solved with the help of cluster algorithms.
In each case improved estimators for the Boltzmann weight are constructed which
are real and positive. The models considered belong to two classes: fermionic and
non-fermionic models.

An example for a non-fermionic model is the Potts model approximation to QCD
at non-zero baryon density. The three-dimensional three-state Potts model captures
the qualitative features of this theory. It has a complex action and so the Boltzmann
weight cannot be interpreted as a probability. The complex action problem is solved
by using a cluster algorithm. The improved estimator for the complex phase of the
Boltzmann factor is real and positive and is used for importance sampling. The first
order deconfinement transition line is investigated and the universal behavior at its
critical endpoint is studied.

An example for a fermionic model with a sign problem are staggered fermions
with 2 flavors in 3+1 dimensions. Here the sign is connected to the permutation sign
of fermion world lines and is of nonlocal nature. Cluster flips change the topology of
the fermion world lines and they have a well defined effect on the permutation sign
independent of the other clusters. The sign problem is solved by suppressing those
clusters whose contribution to the partition function and observables of interest would
be zero. We confirm that the universal critical behavior of the finite temperature
chiral phase transition is the one of the three dimensional Ising model. We also study
staggered fermions with one flavor in 2+1 dimensions and confirm that the chiral
phase transition then belongs to the universality class of the two dimensional Ising

model.
Thesis Supervisor: U.-J. Wiese
Title: Associate Professor of Physics
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Chapter 1

Introduction

Nowadays, the solution to many important problems in physics is obtained numeri-
cally using computers. A well known example is nonperturbative quantum chromo-
dynamics (QCD), the theory which is believed to describe the strong interactions [1].
The QCD Lagrangian looks very similar to its abelian counterpart quantum electro-
dynamics (QED), just that there are eight massless vector bosons — the gluons —
instead of one photon and the fermions — the quarks — come in several flavors and
three colors. Furthermore there is a direct coupling between the gluons, i.e. they
are charged themselves in contrast to photons which are neutral. QED is capable
of describing to a very high precision many physical phenomena involving only pho-
tons and electrons in agreement with experiment using perturbation theory. In sharp
contrast, QCD only grudgingly gives away information about its infrared behavior,
which is the flip side of asymptotic freedom. Non-perturbative studies like Monte
Carlo simulations of the Euclidean QCD path integral on a space-time lattice (see
section 2.2) are needed to gather reliable information about the long-distance physics
predicted by QCD. Features like confinement and generation of a mass gap — which
are easily obtainable in the strong coupling expansion of the pure gauge lattice the-
ory [2] — can be verified to persist in the continuum limit with the help of Monte

Carlo simulations [3, 4]. The static quark-antiquark potential is not Coulomb like as
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a perturbative calculation might suggest, but linearly rising with distance, leading
to the confinement of quarks into hadrons. The approximate chiral symmetry of the
QCD Lagrangian is spontaneously broken in the vacuum. Monte Carlo simulations
can reproduce all these features and more. One can study how chiral symmetry gets
restored and how quarks and gluons become deconfined and form a plasma at high
temperatures [5]. Also hadron masses [6] and meson decay matrix elements [7] can
be calculated from first principles. One can check if physical concepts like the dual
superconductor picture and monopole condensation are adequate [8] and one can

examine the role played by instantons [9].

The situation changes when one is interested in QCD with a nonzero baryon den-
sity. The inappropriateness of perturbation theory carries over from the zero baryon
density case. Unfortunately the possibility of standard Monte Carlo simulations also
ceases to exist and at present no reliable first principles calculations are possible
[10, 11]. Responsible for this dilemma is the complex action problem. At nonzero
baryon density the Euclidean QCD path integral is not a sum of positive real con-
tributions, but it results from messy cancellations of terms with all possible phases.
Therefore the conventional importance sampling methods that make lattice QCD

calculations so successful are not applicable any more.

We are trying to find algorithms that even work in the presence of a complex
action problem. In this thesis I describe how the problem is solved completely in two
toy models. The hope is, of course, to apply our new techniques to solve problems
like QCD at nonzero baryon density or the unrelated but equally difficult problem
of simulating models of strongly correlated electrons that are believed to capture the

physics of high temperature superconductors [12, 13].




Meron cluster algorithms

As has already been stated above, non-perturbative dense QCD can presently not be
studied from first principles because Monte Carlo simulations of lattice QCD with
non-zero baryon chemical potential u suffer from a severe complex action problem.
The Boltzmann factor in the path integral can then not be interpreted as a probability
and standard importance sampling methods fail. In particular, when the p-dependent
part of the Boltzmann factor is included in the measured observables, due to severe
cancellations the required statistics is exponentially large in the space-time volume
[10, 11). The complex action problem prevents the numerical simulation of a large
class of interes‘ting physical systems including other field theories at non-zero chemical
potential or non-zero f-vacuum angle as well as some fermionic field theories with an
odd number of flavors. A special case of the complex action problem is the so-called
fermion sign problem which arises for fermionic path integrals formulated in a Fock
state basis. The problem is due to paths that correspond to an odd permutation
of fermion positions which contribute negatively to the path integral. There are
numerous condensed matter systems ranging from the repulsive Hubbard model away
from half-filling to antiferromagnetic quantum spin systems in an external magnetic
field that cannot be simulated with standard Monte Carlo algorithms. We want to
solve these sign or complex action problems with a special kind of cluster algorithm,
that has been termed meron-cluster algorithm. Meron-cluster algorithms have been
used to solve the sign or complex action problems in several of the cases mentioned
above. For example, the first meron-cluster algorithm has led to a solution of the
complex action problem in the 2-d O(3) symmetric field theory at non-zero f-vacuum
angle [14]. In this model, some of the clusters are half-instantons, so they are called
meron-clusters. The complex action problem also arises in the 2-d O(3) model at
non-zero chemical potential. When formulated as a D-theory [15, 16, 17, 18] —
i.e. in terms of discrete variables that undergo dimensional reduction — the complex

action problem has also been solved with a meron-cluster algorithm [19]. Recently,
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the meron concept has been generalized to fermions [20]. Meron-cluster algorithms
have led to a coniplete solution of the fermion sign problem in a variety of models
including non-relativistic spinless fermions [20, 21], relativistic staggered fermions
[22, 23, 24] (chapter 7) and some models in the Hubbard model family [19, 25].1 A
meron-cluster algorithm has also been used to solve the sign problem that arises for
quantum antiferromagnets in an external magnetic field [26]. For a review of these
recent developments see [27, 28].

In the conventional formulation of lattice QCD the quarks are represented by
Grassmann fields. When the quarks are integrated out, they leave behind a fermion
determinant that acts as a non-local effective action for the gluons. At zero chemi-
cal potential aﬁd for an even number of flavors, the fermion determinant is real and
positive and can thus be interpreted as a probability for generating gluon field con-
figurations. Despite the fact that standard importance sampling techniques apply,
the non-local nature of the effective gluon action makes lattice QCD simulations with
dynamical fermions very time consuming. With a non-zero chemical potential for the
baryon number, the fermion determinant becomes complex and standard importance
sampling techniques fail completely [10, 11]. This is the reason why non-perturbative
QCD at non-zero baryon density can presently not be studied from first principles.

It is natural to ask if a meron-cluster algorithm could be used to solve the complex
action problem in QCD. When one integrates out light quarks, one obtains a non-
local effective action for the gluons and it appears unlikely that the meron concept
will apply. On the other hand, when one describes the quarks in a Fock state basis,
the complex action problem is still present, in the form of a fermion sign problem.
Our hope is that this problem will eventually be solved by a meron-cluster algorithm
applied to the D-theory formulation of QCD [15, 16, 17, 18], since the quark and
gluon degrees of freedom are then discrete and should be easier to handle. In this

thesis, two simpler problems are adressed first, which are described in the following.

!The models investigated so far only show s-wave superconductivity.
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The first model we discuss is the 3-d 3 state Potts model approximation to QCD
with very heavy quarks at finite baryon density. It is a purely bosonic model which
has a complex action problem. The second model focuses on a very different feature
of the problem. It is a purely fermionic model with a four fermion interaction. It
has a severe sign problem as well due to the Pauli exclusion principle which assigns
configurations of fermion world lines positive or negative weights depending on their
topology. The complex action problem in QCD can be thought of as a combination
of the two complex action/sign problems that are here solved seperately in the two

toy models.

Potts model approximation to dense QCD

We first consider QCD in the limit of very heavy quarks with a large chemical poten-
tial. These can be integrated out, introducing Polyakov loops into the effective gluon
action. When quarks are integrated out at non-zero chemical potential u we expect
a complex action, and in this case it arises because a Polyakov loop ® and its charge
conjugate ®* get different weights when p # 0.

Polyakov loops are only non-local in the Euclidean time direction, so this effec-
tive gluon action is more manageable than the one that arises for a general fermion
determinant. Indeed, Blum, Hetrick and Toussaint have simulated the theory in this
form on lattices of moderate size where the complex action problem is less severe [29].
Recently, Engels, Kaczmarek, Karsch and Laermann have studied QCD with heavy
quarks at fixed baryon number. Again, for moderate baryon density and moderate
volumes the complex action problem is not too severe and simulations are possible
[30]. Ultimately one would like to be able to solve the complex action problem for this
gluon action completely. At the moment, we still cannot apply a meron-cluster al-
gorithm to solve the problem, because the construction of efficient cluster algorithms

for non-Abelian gauge theories seems to be impossible for Wilson’s formulation of
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lattice field theory. Here we will simplify the problem further by replacing the gauge
dynamics by that of the Z(3) Potts model representing the Polyakov loops [31, 32).
We have found a cluster algorithm that solves this complex action problem in the

Potts model approximation to QCD.

Chiral phase transitions in staggered fermion mod-

els

Next we consider the purely fermionic aspect of the sign problem. The numerical
simulation of lattice fermions is a notoriously difficult problem which is the major
stumbling block in solving QCD and other fermionic field theories. The standard
method is to integrate out the fermions and to simulate the resulting bosonic problem
with a non-local action. In several cases of physical interest — for example, for
QCD with an odd number of flavors or with non-zero chemical potential — the
bosonic Boltzmann factor may become negative or even complex and thus cannot be
interpreted as a probability. When the sign or the complex phase of the Boltzmann
factor is included in measured observables, the numerical simulation suffers from
severe cancellations resulting in a sign problem. The standard fermion algorithms
are.incapable of exploring such models. As a consequence, QCD is usually simulated
with an even number of flavors and at zero chemical potential. Even in the absence
of a sign problem, the simulation of fermions is difficult. For example, lattice QCD
simulations suffer from critical slowing down when one approaches the chiral limit in
which the quarks become massless. In particular, this makes it difficult to identify
the universality class of the finite temperature QCD chiral phase transition.

Even in the simpler models with four-fermion interactions that are considered
here, the identification of the finite temperature critical behavior is a non-trivial issue
[33]. A model with NV fermion flavors shows mean-field behavior in the N = oo limit.

On the other hand, at finite NV one finds the non-trivial critical behavior that one
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expects based on dimensional reduction and standard universality arguments. For
example, in [34] it has been verified that the chiral phase transition in a (2 + 1)-d
four-fermion model with N = 4 and Z(2) chiraLl symmetry is in the universality class
of the 2-d Ising model. Due to the fermion sign problem, standard fermion simulation

methods often do not work in models with a too small number of flavors.

We a@ply the meron-cluster technique [20] for solving the sign problem to a (3+1)-
d model of staggered fermions using the Hamiltonian formulation. The model has
N = 2 flavors and a Z(2) chiral symmetry that is spontaneously broken at low
temperatures. The fermion determinant can be negative in this model. Hence, due
to the sign problem standard fermion algorithms fail in this case. Our algorithm
is the only numerical method available to simulate this model. In this method we
do not integrate out the fermions but describe them in a Fock state basis. The
resulting bosonic model of fermion occupation numbers interacts locally, but has
a non-local fermion permutation sign resulting from the Pauli exclusion principle.
Standard numerical methods would suffer from severe cancellations of positive and
negative contributions to the partition function. Like other cluster methods, our
algorithm decomposes a configuration of fermion occupation numbers into clusters
which can be flipped independently. Under a cluster flip an occupied site becomes
empty and vice versa. The main idea of the meron-cluster algorithm is to construct
the clusters such that they affect the fermion sign independent of each other when
they are flipped. In addition, it must always be possible to flip the clusters into a
reference configuration with a positive sign. A cluster whose flip changes the fermion
sign is referred to as a meron because it can be viewed as a half-instanton. If a
configuration contains a meron-cluster, its contribution to the partition function is
canceled by the contribution of the configuration that one obtains when the meron-
cluster is flipped. The observables that we consider get non-zero contributions from
the zero- and two-meron sectors only. Our algorithm ensures that configurations

with more than two merons are never generated, which leads to an exponential gain
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in statistics and to a complete solution of the sign problem.

Like other cluster algorithms the meron algorithm substantially reduces critical
slowing down. This allows us to work directly in the chiral limit. As a result, we
can study the nature of the chiral phase transition in great detail. The Z(2) chiral
symmetry is spontaneously broken at low temperatures and gets restored in the high-
temperature phase. As expected, the system close to the finite temperature critical
point is in the universality class of the 3-d Ising model. We verify this in a high-
precision finite-size scaling investigation of the chiral susceptibility.

We also apply the meron-cluster algorithm to the same staggered fermion model
in 2+1 dimensions with V = 1 flavor. It has a severe sign problem too and cannot
be explored using standard algorithms. More complicated observables than in the
(3-+1) dimensional case are constructed that require the exploration of the four-meron
sector. We find that the Z(2) chiral symmetry of this model is spontaneously broken
at low temperatures and that the finite-temperature chiral phase transition is in the
universality class of the 2-d Ising model, as expected from dimensional reduction

arguments.

Outline

In chapter 2, I describe the most important physical example, that motivates our
search for a solution of complex action problems — finite density QCD — in more
detail. The present understanding of the temperature density phase diagram is sum-
marized. Then the formulation on a space-time lattice is introduced and it is pointed
out that its Monte Carlo simulations are plagued by the complex action problem.
Chapters 3 to 6 deal with the Potts model approximation to dense QCD. In chapter 3
the limit of heavy quarks is considered and its relation to the 3-d 3 state Potts model
is elucidated. The Potts model approximation still has a complex action problem.

In chapter 4 the complex action problem of the Potts model approximation to finite
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density QCD is solved by a cluster algorithm. Improved estimators for physical quan-
tities are constructed. Chapter 5 contains the derivation of the flux representation
of the Potts model and a description of a Metropolis algorithm to simulate it. A
comparison of the Metropolis algorithm for the flux model and the cluster algorithm
for the original Potts model shows that the latter is more efficient. In chapter 6, we
present the physical results concerning the critical endpoint E in the phase diagram
of the Potts model. Using finite-size scaling techniques, we are able to determine the
position of the critical endpoint of the deconfinement phase transition to high accu-
racy. Our results are consistent with the expected universal 3-d Ising behavior. In
chapter 7, a different aspect of the complex action problem is considered. We study
a purely fermionic model of staggered fermions which suffers from a severe sign prob-
lem. Here the sign problem is connected to a permutation sign of the fermion world
lines and is of nonlocal nature. It is again solved by a meron cluster algorithm. We

perform simulations of the 3+1 dimensional models and confirm that the universal

" critical behavior of the finite temperature chiral phase transition is 3-d-Ising like. We

“also study the same model in 241 dimensions and again it is confirmed by numerical

simulations that the chiral phase transition is in the universality class of the 2-d Ising
model. Hence in both cases the scenario that universal properties are determined by
the dimensionally reduced scalar field theory for the order parameter, are confirmed.
Finally, chapter 8 contains a summary and conclusions. Much of the content of this

thesis has been published in [22, 19, 23, 35].
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Introduction




Chapter 2

QCD at finite temperature and
baryon density

QCD under extreme conditions, like high temperatures and baryon densities has
applications in cosmology [36, 37], astrophysics of neutron stars [38, 39], and heavy
ion collisions [40]. While the cosmological interest focuses on high temperatures and
rather low densities, the other two examples can be located in the intermediate to
high baryon density regime. In a Euclidean formulation a non-zero temperature leads
to a finite Euclidean time extent, which is propdrtional to the inverse temperature
B = 1/T. A finite baryon density is conveniently implemented with the help of a
chemical potential p for baryon number. The thermodynamics of QCD in thermal

and chemical equilibrium is determined by the grand canonical partition function
' B B -
ZQCD(T, ,LL) = /Dw D’Lﬂ DAZL €Xp —/ dr /d3x (EQCD - ,U,Z’lpf’)’o'l,bf) (21)
(see e.g. [41]). Here Lqcp is the Euclidean version of the QCD Lagrangian

- 1
Laop =3 Uy +my) U + (Fa R, (22)
f
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where

FM = 0FAY — 0" AP — gfucALAY and DD = 7,(0" + igheAL). (2.3)

For the path integral to make sense in a continuous space-time one would have to
fix the gauge and introduce Faddeev-Popov ghost degrees of freedom [42]. As the
lattice formulation, which will be the focus of this thesis, does need neither gauge
fixing nor ghosts, these concepts will not be introduced here. The lattice formulation
is discussed in more detail in section 2.2. There it will be seen that for p # 0 the
partition function (2.1) can not be simulated with standard importance sampling
techniques. As perturbative treatment is reliable only in extreme limiting cases of
very high temperature or very high densities, this implies that with today’s methods
there is no way to gather reliable information about QCD at finite density from first

principles.

Of course the lack of first principles methods at nonzero p does not stop physi-
cists from thinking about how matter might behave under these conditions. (For a
recent review of the current understanding of QCD at large baryon density see [43].)
The consideration of toy models and semi-rigorous arguments at asymptotically large
densities have already led to a detailed picture of how the phase diagram in the p-
T-plane might look like. One expectation is the existence of at least one kind of new
phase at high densities and low temperatures where the SU(3) color gauge symmetry
is either partially or completely spontaneously broken. This phenomenon has been
termed color superconductivity. Furthermore, a phase with a novel kind of chiral
symmetry breaking might exist at high densities, where color and flavor degrees of
freedom are spontaneously locked together. However this phase could be analytically
connected to the low density phase. A first principles confirmation of the existence of
these new phases and of the topology of the phase diagram can only come from lattice
simulations. Also there is no other way to systematically calculate the exact positions
of the transition lines and critical points or to check the universality hypotheses at

critical or tricritical points in the phase diagram. That is why it is vitally important
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to find ways to overcome the complex action problem.

In the next section the current understanding of the phase diagram is summa-
rized. Then the lattice formulation is briefly described and the presence of a complex
action problem is pointed out. Finally some comments on the standard dimensional

reduction arguments for finite temperature phase transitions are made.

2.1 The conjectured phase diagram

First, we consider the case of zero baryon density. At low temperatures, the physics
is dominated by the vacuum properties of QCD. Quarks and gluons are confined
into hadrons and the approximate chiral symmetry is spontaneously broken. At a
temperature of about 150 MeV qualitative changes are expected to take place. Quarks
and gluons are no longer confined into hadrons but can be excited independently. Also
the approximate chiral symmetry gets restored. Both these changes in the properties
of matter — despite the fact that they might be quite drastic — are most likely no
phase transitions in nature.

It is interesting to consider the quark masses as variables and not to fix them
to their actual values. Only the three lightest quarks have to be considered, since
the others are too heavy to contribute significantly to the dynamics. The u- and
d-quark masses are assumed to be equal to each other. The following limiting cases

are especially interesting:

® Myg=ms; =10
There is an SU(3); x SU(3)g chiral symmetry and a U(1)p symmetry related
to baryon number conservation. At low temperatures this symmetry is sponta-
neously broken to the subgroup SU(3)r—r X U(1)g. There has to be a phase
transition between the low temperature phase with broken chiral symmetry and
the high temperature with restored chiral symmetry, since the chiral condensate

is an order parameter, being zero in the high temperature phase and nonzero
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in the low temperature phase.

® My =0,ms>0
The chiral symmetry group is only SU(2); x SU(2)g. In addition to U(1)g
there is U(1)s related to strangeness conservation. The chiral symmetry group
is again spontaneously broken to the diagonal subgroup SU(2);—z at low tem-

peratures. Again the two phases have to be separated by a phase transition.

® Myg = My = 00
This is as if there were no fermions. There is no chiral symmetry, but there
is a Z(3) center symmetry. The pure Yang-Mills action at finite temperature
is invariant under gauge transformations that are periodic in Euclidean time
up to an element of the center Z(3) of the gauge group SU(3). This center
symmetry is spontaneously broken at high temperatures. An order parameter

for the breaking of the center symmetry is the Polyakov loop expectation value
B
(@) = (TP exp(~ [ dt 4u(z,0) (2.4)
0

For each value of m,4 and m, one can now ask if the transition at nonzero tem-
perature (but zero chemical potential) is first order, second order, or just a crossover,
i.e. not really a phase transition but a rapid but analytic change of properties. This
question is answered in figure 2-1. Let us first consider the upper left corner, where
myg = 0 and my; = oo. There has to be a phase transition, since the chiral con-
densate is an order parameter distinguishing between the phases. The order of the
phase transition and, its universality class in the case of a second order transition
can be estimated by the argument presented in [45]. Universal properties of a fi-
nite temperature phase transition can be calculated in a dimensionally reduced (i.e.
3-dimensional) ¢ model with the same global symmetries. The transition region is
dominated by the longitudinal and transverse fluctuations of the order parameter.

Being bosonic, they have zero modes in their finite temperature Matsubara decom-
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Figure 2-1: Presence and absence of the finite-temperature QCD phase transition as
a function of myq and mg. The physical point, indicated roughly by the dashed circle,
is suspected to lie in the region of no transition. From [44].

position. Tﬁese zero modes are the only relevant degrees of freedom in the scaling
region and at low energies the higher Matsubara modes decouple. Therefore the fi-
nite temperature phase transition of a (3+1)-dimensional theory is described by a
3-dimensional scalar theory with the same global symmetries. In the case considered
the symmetry breaking pattern is O(4) = SU(2) x SU(2)r — SU(2)r=r = O(3),
which is identical with the symmetry breaking pattern of the O(4) o model. Hence,
if the the finite temperature phase transition is second order, it is expected to be in
the 3-d O(4) universality class. Lattice simulations of QCD with two flavors [59] are
consistent with a second order transition and 3-d O(4) critical behaviour, however

more precise numerical studies are necessary to reach a satisfactory level of confidence
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and to determine the critical exponents with sufficient precision.

Now let us consider the lower left corner in figure 2-1, where all three quarks are
massless. According to the discussion above, one should consult here the 3-d ¢ model
with the symmetry breaking pattern SU(3), x SU(3)r — SU(3)p—r. It turns out
that this model has a first order phase transition [45] and therefore we expect the
finite temperature phase transition of QCD in this case to be first order, too. Since
the transition is expected to be first order for m; = 0 and second order for m, = oo,
the order of the transition should change in between. The first order region extends

into the m,4 > 0 region while the second order O(4) transition exists only for m,4 = 0.

Now we focus on the upper right corner of figure 2-1, i.e. pure gauge theory. Here
the symmetry that zgets spontaneously broken at the finite temperature phase tran-
sition is the Z(3) center of the SU (3) gauge group, which signals the absence or
presence of confinement. Applying the same arguments as before, the finite temper-
ature phase transition of QCD should be described by the 3-d 3-state Potts model
[46], which has a first order transition [82]. Indeed, these expectations have been

confirmed by QCD simulations of the pure SU(3) gauge theory [47, 48, 49].

In reality, the quark masses are not equal to any of the special cases considered
above. The u- and d-quark masses are nearly but not exactly zero and the s-quark
mass is on the scale of Agcp, i.e. neither light nor heavy. Due to the nonzeroness
of the quark masses, there is no rigorous distinction between the regions of intact
and spontaneously broken chiral symmetry. On the other hand, the presence of light
quarks, which can break the confining string between two test charges, implies the
absence of an order parameter for confinement. Therefore, for realistic quark masses
there does not have to be a transition at all but there could be just a smooth crossover.
This is most likely what happens. The physical point in figure 2-1 (indicated roughly

by the dashed circle) lies most likely in the region of no transition [44].

What happens at nonzero baryon density depends even more on the number of

quark flavors and their masses. To understand what happens for realistic quark
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masses it is again instructive to first consider some “unrealistic” limiting cases. As the
u and d quarks are light compared to the fundamental QCD scale Aqcp, it is a good
first approximation to set m, = mg = 0. The strange quark mass is unfortunately
on the order of Agep and it is not a priori clear if nature behaves as if there were
two or rather three light flavors. To get a better understanding of the subject we
consider some special cases. First we consider two massless quarks and the strange
quark being infinitely heavy. Then we take into account the small nonzero masses of
the u and d quarks but leave the strange quark infinite. Then the strange quark mass

is lowered.

myq = 0, m; = oo (Fig. 2-2 a)

As the u and d quarks are assumed to be massless, there is a chiral phase transition
and not merely a crossover at u = 0. As discussed before, it is believed to be of second
order and in the universality class of the three dimensional O(4) model [45, 50, 51].
The transition continues into the phase diagram for p > 0 and at a tricritical point it
changes from second to first order [52]. At large p and low temperatures is the color
superconducting phase (2SC) [53, 54, 55, 56]. Here, the SU(3) color gauge symmetry
is spontaneously broken to an SU(2) subgroup, giving mass to five of the eight gluons
by the Higgs mechanism. No global symmetries are spontaneously broken in this
phase. In particular the SU(2); x SU(2)g chiral symmetry is intact as well as the

U(1) baryon number symmetry.

mug 7 0, ms = oo (Fig. 2-2 b)

The v and d quarks are not really massless but only very light. As a consequence,
the chiral transition at p = 0 is merely a crossover, which is consistent with current
lattice simulations [5, 57, 58,‘ 59]. Thus, the phase diagram looks more like in Fig. 2-2
b. The second order transition line disappears and the tricritical point is replaced by

a critical endpoint.
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Figure 2-2: QCD phase diagram for four different values of the quark masses. From

[43]
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ms > myg # 0 (Fig. 2-2 c)

If the s quark mass is lowered towards a realistic value, a new superconducting
phase with color-flavor locking (CFL) [60] emerges at sufficiently high densities. If
the three quark flavors were massless, then in the CFL phase the symmetry group
SU(3)cotor X SU(3)1, x SU(3)r x U(1)p is spontaneously broken to the global subgroup
SU(3)color+L+R X Z. So the gauge symmetry is completely broken, giving all eight
gluons a mass and also chiral symmetry is broken. In addition to that also the baryon
number symmetry is broken to a discrete subgroup Zs. If 1 > m,, the quarks appear

light enough so that a transition to the CFL phase can occur.

-

ms = myg (Fig. 2-2 d)

Finally, if the strange quark mass is lowered even further to the order of the u and d
quark masses, then the region of CFL and the baryonic phase might be analytically

connected. Furthermore, the transition at u = 0 is first order.

mg = Myqd = OO

This is the case studied in chapters 3 to 6. As explained before, at zero chemical
potential the Z(3) center symmetry properties determine the nature of the phase
transition and the 3-d 3 rstate Potts model describes the physics very well. The
deconfining transition at nonzero temperature is first order. The phase diagram
at nonzero chemical potential is shown in figure 3-1. The first order deconfining
transition continues into the region of ¢ > 0 and terminates in a critical endpoint.

The position and critical properties of this point are determined in the Potts model

approximation in chapter 6.
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Nature’s quark masses

Fig. 2-2 b to d are a sequence of decreasing strange quark masses. Starting from an
infinitely heavy strange quark and decreasing the mass moves the endpoint F further
to the left until it arrives at some critical mass value at the T' axis. Also the CFL
phase begins to emerge and finally completely displaces the 25C phase at low enough
strange quark mass. Nature is somewhere between b and d and there is a slight
preference among experts for c being the real phase diagram. An improvement of

lattice techniques is urgently needed to get a definite answer to that question.

2.2 Lattice formulation

A very important framework for the understanding of gauge theories is their lattice
formulation [2, 61, 62, 63]. It is especially important for QCD, because of the strong
coupling. Lattice gauge theory is a regularizdtion scheme that replaces fhe continuous
space-time by a regular lattice, most conveniently a hyper-cubic lattice with a lattice

spacing a.

Gauge symmetry

While Lorentz symmetry gets broken by this regularization and gets restored only in
the continuum limit, gauge symmetry is exactly preserved. However, the gauge group
on the lattice is in some sense smaller than in the continuum, since gauge transforma-
tions are only done on a discrete set of lattice points. On a finite lattice with /V points

)N, while in

the QCD gauge group is therefore the finite dimensional Lie group SU(3
the continuum the gauge group would be something like SU (3)uncountable infinity

The quark fields 1, live on the sites of the lattice, while the basic gauge degrees
of freedom are the parallel transporters U;‘,p € SU(3) on the links between two
neighboring lattice sites with coordinates z and z+ajfi. A local gauge transformation

A; is an SU(3) transformation matrix defined on each lattice point z and it acts on
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the fermion and gauge field like

Yo — Yy =Pl (2.6)
Upp — U;,u = AzUm,”A;_}_aﬂ. (2.7)

The link variables U, , have the same transformation property as a Wilson line in the
continuum formulation, i.e. it gets multiplied by the gauge function at the ends of the
link. That implies that the trace of a product of link variables along a closed path
of links is a gauge invariant object. The shortest closed paths on the lattice are the
plaquettes consisting of four links forming a square. The parallel transporter along
such a plaquette p = (z, u, v)

Up = Ua:,uUz+a,ﬁ,,nuU_1 Ua;_,i (28)

T+ad,mu

is used in the Wilson action for the gauge field. It is given by the sum over all

plaquettes p of the real part of the trace of U,
1
SlU]=> "5 (1 - gReTrUp) : (2.9)
P

Among other pleasant features, it becomes equal to the continuum Yang-Mills ac-
tion in the classical continuum limit of the action with 8 = 6/¢%. The universality
hypothesis implies that there are many other lattice actions that one could choose
for the gauge fields without changing the continuum limit, as long as it is in some
sense local and has the same symmetry properties. Equation (2.9) is just the simplest
possible choice. There is a lot of research effort focussed on the question how one can
get closer to the continuum limit without increasing the computing effort much but

just choosing the lattice action in a clever way [64, 65, 66, 67].
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Wilson fermions

The lattice regularization of fermions is unfortunately not as straightforward as it is
for gauge or scalar fields. A simple discretization of the continuum fermion action
leads to the doubling problem [68]. Instead of only one fermion flavor one has 15 addi-
tional doublers after naive discretization. They can be associated with the 16 corners
of the Brillouin zone of Euclidean four-momentum space. There are two standard
ways to deal with this problém which go un:der the names of Wilson fermions and
staggered fermions. In the case of Wilson fermions [69] one adds a term to the action
that gives higher masses to the fermion doublers, so that they completely decouple
in the continuum limit. Unfortunately, to achieve that one has to explicitly break
chiral symmetry, which has to be restored by a fine tuning procedure. In principle
one could reduce the number of flavors to one with this method. Nevertheless, in
order to use standard importance sampling methods one needs an even number of
degenerate flavors to insure that after integrating out the fermions the effective gluon

action is nonnegative.

Staggered fermions

Another way to deal with the fermion doubling problem is the staggered fermion
method [70, 71, 72]. Here the extra fermions are interpreted as physical flavors.
The replication can be reduced from 16 to 4 by assigning only a single fermion field
component instead of four to every lattice site. The action has the particularly simple

form
1 - — p—
5 Z 77-’B,ﬂ(X$X:!:+aﬂ - Xsz—aﬁ) +m Z Xz Xz> (210)

1 T
where the Grassmann field x has only one component instead of four. Staggered
fermions have the pleasant feature that for m = 0 they have a U(1) x U(1) chiral
symmetry even at nonzero lattice spacing which makes them very suitable for toy

models of chiral symmetry breaking. A disadvantage is that in the Euclidean for-
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mulation it describes four degenerateﬁavors 1nthe contmuum limit. As we will see
in chapter 7, in the Hamiltonian formulation the minimal number of flavors in the
continuum limit is two. However, when reformulated as a path integral, there is a
sign problem as the Boltzmann weight is not positive definite. We are able to solve
this sign problem with a meron-cluster algorithm and simulate the finite temperature
chiral phase transition in a Gross-Neveu model with staggered fermions, as will be

described in chapter 7.

Chiral symmetry on the lattice

The two implementations of fermions on a lattice described above have some short-
comings concerning chiral symmetry. While for Wilson fermions, chiral symmetry
is completely broken at nonzero lattice spacing, for staggered fermions there is at
least a U(1) x U(1) subgroup vof the SU(4) x SU(4) x U(1) chiral symmetry of the
continuum theory intact at nonzero lattice spacing. This does not mean that chiral
symmetry is fundamentally incompatible with a lattice regularization. In fact, recent
research has proved this old belief wrong [73]. One way to have chiral symmetry on a
lattice is to introduce a fictitious fifth dimension. The chiral fermions live on domain
walls in this fifth direction. Another way to insure chiral symmetry is to impose the
so-called Ginsparg-Wilson relation on the Dirac operator. Both of these methods
have a significant computational overhead compared to simple Wilson or staggered
fermions, which make them still somewhat impractical for actual calculations. But
they show that there is no fundamental incompatibility between chiral symmetry and

lattice regularization.
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The sign problem in lattice QCD

The path integral on a Euclidean space-time lattice is

Z = / DU DU DU ¢~ 5s1%20]-5U] (2.11)

= / DU det M[U]e~1. (2.12)
To be specific we represent quarks with Wilson fermions
S;=> UMY, M =+"D,+rD?+m+ uy, (2.13)

and S,[U] is the usual plaquette action for the gauge field. Monte Carlo simulations
are usually done with the expression (2.12) where fermions are integrated out and a
nonlocal effective action for the gluon field remains. To use conventional importance
sampling techniques, it is necessary for the integrand to be nonnegative, so that
it can be interpreted as a probability. So the fermion determinant det M must be
nonnegative for any gauge configuration. One way to insure this is to have an even
number of degenerate fermion flavors and to have det M € R. It turns out that the
fermion determinant is guaranteed to be real only if 4 = 0. That means at nonzero
1 there is a complex action problem and the QCD partition function can not be
simulated with standard Monte Carlo methods. (For a more detailed discussion of the
general nature of the complex action pfoblem see section 4.1.) If staggered fermions
were used, even four degenerate flavors would be needed to ensure the positiveness of
the Boltzmann weight. In summary, for the QCD partition function to be tractable
with standard importance sampling methods, the following conditions have to be

fulfilled:
o =20

e an even number of degenerate flavors if Wilson fermions are used
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e a multiple of four degenerate flavors if staggered fermions are used.

Obviously these restrictions have to be overcome if realistic quark masses should be
used or if one is interested in a finite baryon density. In this thesis these restrictions
will be lifted for two vastly simplified versions of QCD. First we solve the complex
action problem in a Potts model approximdtion to QCD at nonzero baryon density
with very heavy quarks (see chapter 4). Then we solve the sign problem in a a toy

model with only quarks, namely staggered fermions with two flavors (see chapter 7).

2.3 Remarks on dimensional reduction

In the discussion of the QCD phase diagram at finite temperature and baryon density,
one often uses dimensional reduction arguments to predict properties of phase tran-
sitions. One infers universal properties of a finite temperature phase transition from
the dimensionally reduced scalar field theory for the order parameter field [45]. While
it is often hard to predict the order of a phase transition from such arguments [45],
the universality hypothesis implies that if the transition is second order, the universal
properties of the finite temperature phase transition and the dimensionally reduced
theory for the order parameter should coincide. This standard scenario had been
challenged recently [74] by an observation in the large N limit of the the Gross-Neveu
model in (2+1) dimensions, which is studied in this thesis with N = 1 flavors. It has
been found that the phase transition in the large N limit is second order, but that
the critical exponents are not 2-d Ising like, as would be predicted by the standard
dimensional reduction scenario, but that they are mean field like. This odd behaviour
seems to exist only for N = oo but for any finite NV the standard scenario is recovered
[33]. Therefore this counterexample could be attributed to the peculiarity of the large
N limit. For example in QCD in two dimensions in the limit of infinitely many colors,
even the Mermin-Wagner theorem can be violated.

The history of the supposedly simple (241) dimensional Gross-Neveu model also
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shows how inefficient standard fermion algorithms are. While the behavior for N —
oo can be obtained analytically, for finite NV one relies on Monte Carlo simulations.
In the first numerical studies with a standard hybrid Monte Carlo algorithm for the
fermions, it was concluded that the leading large N behaviour is probably valid at
least up to N as small as 4 [75]. (Smaller N could not be simulated due to the sign
problem.) Only in later large scale studies [33] it was possible to find Ising-behaviour
for finite N and account the leading large N behaviouf to a narrowing of the Ginsburg
region in the large N limit. In the studies using a meron cluster algorithm, whose
results are presented in chapter 7 we find the Ising behaviour for the model with

N =1 flavor with only modest computing effort.



Chapter 3

The Potts model approximation to

dense QCD

We consider QCD with static quarks coupled to a large chemical potential. This
leaves us with an SU(3) Yang-Mills theory with a complex action containing the
Polyakov loop. Close to the deconfinement phase transition the qualitative features
of this theory, in particular its Z(3) symmetry properties, are captured by the 3-d
3-state Potts model. In chapter 4, we solve the complex action problem in the Potts
model by using a cluster algorithm. The improved estimator for the u-dependent part
of the Boltzmann factor is real and positive and is used for importance sampling. In
chapter 6, we localize the critical endpoint of the first order deconfinement phase
transition line and find consistency with universal 3-d Ising behavior. We also calcu-
late the static quark-quark, quark-anti-quark, and anti-quark-anti-quark potentials

which show screening as expected for a system with non-zero baryon density.

The 3-d Z(3)-symmetric Potts model has often been used as an approximation
to QCD with static quarks. In particular, the phase transition to a broken Z(3)
symmetry phase at high temperature corresponds to the first order deconfining phase
transition in QCD. As has been noted by Condella and DeTar, a term that corre-

sponds to a chemical potential can also be included in the Potts model, explicitly
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breaking the Z(3) symmetry [76]. As the coefficient of this term grows, the first order
deconfinement phase transition persists but it becomes weaker and ultimately disap-
pears in a critical endpoint. This point is expected to be in the universality class of
the 3-d Ising model. In this thesis this expectation will be confirmed with numerical

simulations.

In principle, one can imagine deriving an effective 3-d 3-state Potts model directly
from QCD by integrating out all degrees of freedom except for the Z(3) phase of the
Polyakov loop. However, the resulting Potts model action would be very complicated
and cannot be derived in practice, except in the strong coupling limit. Here we
approximate QCD with heavy quarks by a 3-d Z(3)-symmetric Potts model with
a standard nearest-neighbor interaction. Universal features like the nature of the
critical endpoint of the deconfinement phase transition are correctly reproduced in
this approximation. Figure 3-1 contains the phase diagram of the 3-d 3-state Potts
model in the (h, k)-plane. The parameter h represents exp(8(p — M)) in QCD with
quarks of mass M at chemical potential ;. We study the limit M, u — oo for any
given y — M. Large h corresponds to 4 > M and small h to p < M. Because
uw—M < M,u we are always, for any h, in the immediate neighborhood of the
onset of non-zero density for the heavy quarks. This means that it does not matter
whether they are fermions or bosons, since they never move. The difference would

only become apparent above the onset, where either a Fermi surface or a degenerate

- Bose gas would occur, and our order of limits is such that we never get that far from

the onset. The parameter « is the standard Potts model coupling, which corresponds
roughly to the temperature 7' = 1/3. The ordinary first-order deconfinement phase
transition at A = 0 (point T in Figure 3-1) extends into a line of first order transitions
that terminates in the critical endpoint E. This endpoint occurs at such a low value
of h that the complex action problem is not very severe there, and we found that
the most efficient way to locate and study it was to employ a reweighted Metropolis

algorithm, which can in this case be applied at volumes large enough to show the
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Figure 3-1: The phase diagram of the Z(3) Potts model in the (h,k)-plane. The
ordinary deconfinement phase transition at T = (0,0.550565(10)) s a triple point

from which a line of first order phase transitions emerges. This line terminates in the
critical endpoint E = (0.000470(2), 0.549463(13)) and continues only as a crossover.
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critical behavior. Similar methods were used recently by Karsch and Stickan [77] in
a version of the 3-d 3-state Potts model where the action is real, and the endpoint
was found to have the critical exponents of the 3-d Ising model. We find that in
the Potts model with complex action the endpoint has the same critical properties.
Furthermore its position is barely shifted in comparison to the model with real action.
We do not limit our attention to the endpoint, but develop a method that solves the

complex action problem everywhere in the phase diagram.

We also calculate the potentials between static quarks and anti-quarks in the Potts

model approximation to QCD. In the confined phase at p = 0 the static quark-anti-
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quark potential is linearly rising with the distance as a manifestation of confinement.
For the same reason the quark-quark and anti-quark-anti-quark potentials are infinite
at all distances. In the deconfined phase the quark-anti-quark potential reaches a
plateau at twice the (now finite) free energy of a quark. Similarly, the quark-quark
and anti-quark-anti-quark potentials are no longer infinite. It should be noted that
quark-quark and anti-quark-anti-quark potentials are usually not calculated in lattice
simulations. This is because—as a consequence of the Z(3) Gauss law—quark or anti-
quark pairs cannot exist in a finite spatial volume with periodic boundary conditions
[78]. Interestingly, this changes for p # 0 because then there are compensating
background charges in the medium that can absorb the Z(3) flux of an external
quark. Since the chemical potential explicitly breaks the Z(3) symmetry, there is no
longer a clear distinction between confinement and deconfinement for p # 0. This
manifests itself in the phase diagram by the fact that confined and deconfined phases
are analytically connected. Figure 3-2 shows the quark-anti-quark, quark-quark and
anti-quark-anti-quark potentials on the confined side (a) and on the deconfined side
(b) of the crossover. Note that at p # 0 even in the confined phase the quark-anti-
quark potential now reaches a plateau. The plateau height corresponds to the sum
of the free energies Fp of an external quark and Fg of an external anti-quark. For
g > 0 quarks are favored in the medium while anti-quarks are suppressed. As a
consequence, the free energy of an external static quark is larger than that of an
external static anti-quark. While an external static anti-quark can bind with a single
background quark from the medium and form a meson, an external static quark needs
two quarks from the medium to form a baryon. Indeed, on the confined side of the
transition Fy is clearly larger than Fg, while on the deconfined side Fg and Fy; are
more or less the same. We have normalized the potentials such that at zero distance
a static quark-anti-quark pair has zero energy. In the Potts model, two quarks at
zero distance are indistinguishable from a single anti-quark, and similarly, two anti-

quarks on top of each other behave like a single quark. Hence, at zero distance the
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Figure 3-2: The static quark-anti-quark, quark-quark and anti-quark-anti-quark po-

tentials (a) on the confined side (at h = 0.01, k = 0.50) and (b) on the deconfined
side (at h = 0.01 and k = 0.56) of the crossover.
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quark-quark potential Vpqg(0) agrees with the free energy of a single anti-quark Fg
and the anti-quark-anti-quark potential obeys Vj35(0) = Fi. At asymptotic distances
the potentials Vgg(00), Voo(co) and Vgg(oo) take the values F 4 Fg, 2Fp and 2F,

respectively. This behavior is consistent with our numerical data shown in figure 3-2.

In the absence of a chemical potential, the Potts model can be simulated with
the original Swendsen-Wang cluster algorithm [79]. When a chemical po<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>