
A CHANGE NOTIFICATION FACILITY FOR WORKFLOW CLIENTS

By:

Christopher Waino Hockert

Submitted to the Department of Electrical Engineering and Computer Science in Partial
Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical

Engineering and Computer Science at the Massachusetts Institute of Technology.

May 22, 2000

Copyright 2000, Christopher W. Hockert. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and distribute publicly paper
and electronic copies of this thesis and to grant others the right to do so.

MASSACHUSETTS INSTITUTEOF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

Author
Department of Electrical Enginee ng and C>mputer Y6ience

May 22, 2000

Certified by__________________________
C t i bFrans Kaashoek

Thesis Supervisor

Certified by
Sunil Sarin

Thesis Supervisor

Accepted by
Zthur C. Smith

Chairman, Department Committee on Graduate Theses

A CHANGE NOTIFICATION FACILITY FOR WORKFLOW CLIENTS

By:

Christopher Waino Hockert

Submitted to the Department of Electrical Engineering and Computer Science

May 22, 2000

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This thesis describes the design and implementation of a change notification facility for
InConcert, a workflow management system. Related systems that offer change
information to clients are discussed, along with the design requirements for the proposed
facility. The change notification facility uses TIB/Rendezvous, a publish/subscribe
multicast architecture. Implementation discussion focuses on the integration of the
change notification facility into InConcert's C++ based server and providing a Java client
package to access the facility. The design and implementation of ActiveTaskList is
discussed, a workflow client that uses the new facility. Finally, an analysis is performed
on the facility's impact on the server, network, and clients that use it. This facility offers
the desirable feature of having clients more quickly reflect the information on the server,
and its performance impact was found to be moderate and manageable under levels of
server activity that have been observed in practice.

Thesis Supervisor: Frans Kaashoek
Title: Associate Professor, EECS

Thesis Supervisor: Sunil Sarin
Title: Principal Architect, TIBCO Software Incorporated

Acknowledgements:

First I want to thank Sunil Sarin and Frans Kaashoek, my advisors. Sunil has been a
great help answering my questions about InConcert, and has helped make this thesis
possible. Professor Kaashoek has been a great help with shaping this document and
having me answer some interesting questions, by which I have learned a great deal. Both
Sunil and Frans took time out of their busy schedules and gave me feedback on this
document, and I am grateful for their guidance.

Thanks to the people at InConcert, now TIBCO Software Incorporated: Alex Layton, Ian
Jackson, Ed Black, Jon Gilman, Alireza Farhoush, Steve LeBlanc, Mike Register,
Stephan Foerster, Patricia Lyga, Dick Vacca, Mike Keegan, Matt Hardesty, and John
Bedell. These folks had to deal with all of my stupid questions, as well as some of my
good ones. Additional thanks to all of the employees of InConcert past: Keith Gregory,
Doug Knowles, Jenifer Tidwell, and Meryl Hlynka.

Thanks to all of my friends at MIT: Ankur Chandra, Laura Kwinn, Shawn Hwang, Jade
Wang, Kavita Babal, and Chris Allen. They all have helped keep me sane. Special
thanks to my good friend and roommate, Keith Santarelli, for tolerating my up-to-the-
minute thesis progress updates. Yes Keith, it's done now, let's go drink!

Thanks to Paula Mickevich and Maria Sensale, my mothers in parallel universes. Thank
you for keeping me employed during school and listening to my problems. You have
been my good friends all the time I have been at MIT. Thank you for taking care of me.

Special thanks to Jeff, the best brother anyone could have. Thank you for being there and
listening to me whine. Jeff will be getting married soon to a terrific woman, Katie, a very
welcome addition to the Hockert family. Congratulations to both of them.

Special thanks to Mom and Dad, for their careful guidance throughout my life. Thank
you for getting me here to MIT and supporting me with your prayers and Sunday
noontime phone calls. I'm sorry I had to go to school on the other side of the country,
but you have always been with me. Special thanks to Grandma, to whom I promise to
paint the cupboards next time I am over. I love you dearly and should call you more
often.

Extra special thanks to my beloved, Jennifer. She keeps going where others would have
long ago given up. She was an inspiration to me to keep going with this thesis. Thank
you for always being there for me. I'm sorry I had to spend an extra year here, but I'll be
coming to New York soon!

That's all! Enough dilly-dally! On to the thesis!

Christopher Waino Hockert

2

Table of Contents:

C hapter 1: Introduction .. 5

C hapter 2: R elated W ork.. 7

2.1 Unreal Multi-User Network Game Protocol ... 7

2.2 Zephyr Notification Service ... 8

2.3 M arketSheet .. 9

2.4 Applicability to Workflow Management Systems ... 10

Chapter 3: Design of the Change Notification Facility... 12

3.1 Information to Make Available.. 12

3.2 M essage Transport .. 13

3.2.1 Polling or Pushing? 13

3.2.2 U nicast or M ulticast? .. . 13

3.2.3 Clients receive every event in the order that they occur 14

3.2.4 TIB /R endezvous.. 15

3.3 Presenting the Information to clients .. 17

3.4 Change Notification Facility Design Summary ... 17

Chapter 4: The Change Notification Facility Server Extension.................................... 20

4.1 The InConcert Event/Action Model...20

4.2 Architecture of the InConcert server... 20

4.3 Implementation of the Server Extension.. 22

4.3.1 IcEventNotifier Class Interface Summary ... 23

4.3.2 Rendezvous message encoding of an IcEvent... 23

4.3.3 Publishing options: One or many subjects? 25

4.3.4 RvIcEventEncoder Class Interface Summary .. 25

4.4 Configuration hooks for the IcEventNotifier in the InConcert server 26

4.5 Placement of the Server Extension .. 27

4.5.1 Strategy 1: Publish the events before they are permanently logged..............27

4.5.2 Strategy 2: Publish the events the instant after the event is created..............27

4.6 Running and building the InConcert server with TIB/Rendezvous 28

Chapter 5: The Change Notification Facility Client Extension 30

5.1 Implementation of Client Extension .. 30

3

5.1.1 IcEventService Class Interface Summary ... 30

5.1.2 IcEventFactory Class Interface Summary... 32

5.1.3 IcEventListener Interface Summary.. 32

5.1.4 IcEventFilter Interface Summary .. 33

Chapter 6: Demonstration client that uses the Change Notification Facility................34

6.1 How InConcert manages workflow .. 34

6.2 ActiveTaskList, a real-time TaskList ... 36

6.2.1 Adding more information to the published events .. 39

6.2.2 Actions taken by ActiveTaskList in response to events............................... 39

6.3 Notes on writing clients that use the Change Notification Facility...................... 43

6.3.1 Plan out actions in response to events .. 43

6.3.2 Efficiently determine interest in events.. 43

6.3.3 Altering client should display new state as user changes it 44

Chapter 7: Analysis of the Change Notification Facility .. 46

7.1 C lient Perform ance.. 46

7.2 Server Perform ance .. 46

7.2.1 The cost of publishing events... 47

7.2.2 The cost of unnecessary client queries .. 47

7.3 Network Performance ... 47

7.4 Performance Impact of ActiveTaskList on the InConcert server........................49

7.4.1 ActiveTaskList compared to a polling TaskList .. 50

7.4.2 ActiveTaskList and unnecessary client queries... 50

7.5 Possible improvements of the Change Notification Facility............................... 52

7.5.1 Including more information in the published events.................................... 52

7.5.2 Publishing events to subjects according to event type 52

7.6 Ideas for more applications of the Change Notification Facility 53

7.6.1 Complete client cache maintenance .. 53

7.6.2 A new message architecture for Agents .. 54

7.6.3 Distribute the action processing of the Event/Action daemon 54

C hapter 8: C onclusion .. 56

B ibliography :...58

4

Chapter 1: Introduction

The client/server model of distributed computing gives the appearance that the computer

that you are sitting at is more powerful than it actually is. The ability to connect to

services on a network for information makes the computer you are sitting in front of all

the more powerful as a tool. One problem with many client/server systems is the fact that

clients are given no notification that the information on the server has changed. Once the

information leaves the server and reaches the client to be put in local memory, a copy has

been made, and the information runs the risk of being out of date. It would be ideal if the

server would let the clients know when its information has changed, and even more ideal

if the server would notify the clients without each client having to check periodically.

This thesis focuses on the creation of a facility that provides clients with notification

when information changes on the server. The facility is integrated into InConcert, a

client/server based workflow management system developed by TIBCO Software

Incorporated. The facility uses a publish/subscribe messaging architecture to distribute

the messages to clients. An example application that uses the facility is described, along

with other ideas on how this facility can create a more real-time, event-driven workflow

environment.

The addition of the change notification facility to InConcert will allow clients, as well as

other systems to act on the changing information in the InConcert workflow management

system. It also improves the way applications that InConcert are developed,

incorporating this information in order to make the applications better reflect the

information on the server. We will see how this change notification facility will be more

efficient than polling the server for changed information.

This thesis will review some related computer systems that offer change information to

clients, and discuss the major issues with designing the change notification facility for

InConcert. The server and client extensions are described in detail, along with their

placement within the InConcert workflow management system. The design and

implementation of ActiveTaskList is discussed, an application that uses the new change

notification facility. An analysis is presented of how the change notification facility

5

affects the performance of the InConcert server, network and clients that use the facility.

Finally, advice on how to develop clients that use the change notification facility is

presented, along with possible design improvements to the facility.

6

Chapter 2: Related Work

This thesis focuses on bringing a change notification facility to a workflow management

system, in order to find out how the technology will benefit from the ability to keep its

clients more aware of change. The idea of a change notification facility for computer

systems is not a new technology. This chapter will describe some systems that provide

information on change, and allow clients access to that information. We will also look at

how this information is made available to clients. This is not a complete list, we offer

three representative examples.

2.1 Unreal Multi-User Network Game Protocol

Computer based entertainment systems have established the need to share information

among networked computers. Popular first-person shooter games now allow users to

connect over a network and play against each other in the same virtual space. The

players can hunt for computer-generated enemies, or each other as they move through the

virtual space.

The personal computer game Unreal, produced by Epic Games, Inc. uses an advanced,

third-generation network game architecture to allow multiple users to play in a virtual

space. At the center of the architecture is a server that maintains the complete game state.

Clients that are involved in the game keep only part of the game state that is important to

it, and send their movements to the server in the form of requests. Time passes in the

virtual space in the form of variable length clock ticks. During a clock tick, the server

processes the requests for movement on the clients, and sends each client updates of

variables that directly affect the client. Clients use the update messages to update the

local partial game state, and eventually refresh the display for the user playing the game.

The server can make the optimization of only sending update messages for state that

affects the client by analyzing the position of each client within the virtual space. It will

only send update messages for an object's state if it is in the player's visual range [12].

The architecture of the messaging system is well designed and complex. It allows the

ability for outside developers to create their own characters and scenes, along with

7

specifying how clients receive information on these new creations. It offers the ability to

specify what data can be sent to clients reliably or unreliably. This is helpful for sending

updates unreliably for state that is not vital to game play, like background decorations.

Here the information could be lost with no effect on game play. In the cases where the

update is vital, like when an enemy moves directly in front of you, the information can be

sent reliably, so it will be sure to reach the client [12].

The messaging system is built on UDP (User Datagram Protocol), an unreliable,

connectionless protocol for sending information on the Internet. The server and clients

hence listen for UDP packets on the network, and perform their own decoding and

parsing of the data received. Since reliability of message delivery was a desired feature,

the developers of the messaging system had to implement it using UDP. It is perceived

that using UDP and a proprietary data encoding is used for performance reasons [12].

This is an example of a system that was designed with performance in mind. If the server

cannot efficiently send updates to the clients, the game play will appear discontinuous

and "jerky" on the client machines. Although time constraints on the change notification

facility we are building are not as strict, reliability of message delivery is [12].

2.2 Zephyr Notification Service

The Zephyr Notification Service is one of the fruits of the Project Athena distributed

computing environment used at MIT. Zephyr is used to send text messages between

users and groups of users on hosts within Athena. Users on Athena can send messages to

each other, and can carry on conversations in real time. The messages appear in windows

that "pop" up onto a user's screen without warning. A user can send a message to a

named group of users, called an instance. A centralized server keeps track of who is

online to receive messages, and who is a member of an instance [2].

Each host in the Athena computing environment runs a small client, called the Zephyr

Host Manager (zhm) that is responsible for distributing received messages to users that

have a session on that host. Each user on a host runs a Zephyr Window-Gram Client

(zwgc), which handles displaying received messages from the zhm on the host. The

8

Zephyr server keeps track of which hosts a user is logged in to. When a user sends a

message, it sends the message with a header that describes the target user or instance that

the message should go to. The zhm for the host sends the information to the server as

UDP packets [2].

The Zephyr server, receiving the message, takes different action based on the information

in the header. If the target of the message is a user, it gets host information on the target

user from its database. If the target of the message is an instance, the server gets a list of

users that have subscribed to the instance, along with which host each user has a session

on. The server then sends the message to the zhm of each host that should receive the

message. In the case of sending a message to an instance, the message is sent to each

host in the list. Once again, the message is sent as UDP packets. Since the underlying

transport of messages is in the form of UDP packets, unreliable, out-of-order delivery can

occur. The basic Zephyr Notification Service offers no reliability or ordering of

messages. Applications using the service that require reliability or ordering need to

implement these properties on top of the service [2].

The Zephyr Notification Service can be seen as a system that maintains conversations.

When the conversation progresses, in the form of new messages being generated by

users, the system asynchronously sends the messages to the intended users. The idea of a

user subscribing to an instance of conversation is also valuable. This allows the user to

register their own interest, in addition to having messages that are targeted to just them.

The messages that are sent to the users characterize the change within the system. This

change is sent to clients without the clients having to contact the servers for the

information. The notion of asynchronous communication from the server to the client,

even at this high level, is a desirable property in a change notification facility. We do not

want the clients constantly waiting for information if there is none to give, but we want

clients to be told as soon as possible when a change has been made [2].

2.3 MarketSheet

MarketSheet, a product developed by TIBCO Software, is used by securities traders to

analyze securities that the trader is interested in. The graphical user interface for

9

MarketSheet lists stocks and their current price, along with information about the how the

price has changed over time. In addition to just prices, MarketSheet includes a list of the

latest headlines from news sources like the Associated Press. A trader uses the displayed

information to make decisions about what to buy or sell over the course of the day. What

makes MarketSheet special is that fact that it receives updated information in the form of

asynchronous messages, and changes the graphical user interface based on the

information it receives. MarketSheet will color the entry for a stock green if the

messages it receives indicate that the price is increasing steadily, or red if the price is

sharply declining [11].

The servers that MarketSheet depend on for this information translate data from various

news sources, and transmit the information using a publish/subscribe architecture. The

servers publish the data to particular subjects that the MarketSheet listens to. The

messages are sent to the MarketSheet at the time they are published, producing the effect

that the information comes in real-time. The MarketSheet is one of the first uses of the

event-driven technologies developed by TIBCO, and is used at Fidelity Investments.

TIBCO markets a package called TIB/Rendezvous, which allows developers to create

applications that publish data and subscribe to subjects to receive that data on what

TIBCO calls "The Information Bus" [11][8].

MarketSheet, and the system that supplies it with information, is the perfect example use

of a change notification facility. The change information is pushed to the clients, and

part of the MarketSheet program deals with that information as it flows from the

publishing servers. What results is having the clients reflect exactly what information the

server contains, and if any change should occur, clients are automatically notified [11].

2.4 Applicability to Workflow Management Systems

Looking at these three examples, we begin to see some features that are common to

change notification facilities:

o The idea of clients subscribing to a group to receive a particular type of messages.

10

* The option of reliably or unreliably sending messages to clients, and whether or not

order or receiving the messages is important.

* The importance of performance, through imposing a timed constraint on state

updates, using a connectionless transport protocol such as UDP, or taking advantage

of multicast communication.

* The idea that clients do not need to maintain the complete state of the server, only the

state that the client is interested in.

Although many of the above techniques are applicable and are considered in this thesis,

there are aspects of workflow management systems that require additional mechanisms.

In particular, the model of data for workflow systems (such as InConcert) is more

complex and interconnected than just a collection of stocks each of which has a price

(and maybe other properties) but no relationship to any other stock. A typical workflow

"task list" client (which we describe in detail in Chapter 6) presents to workflow users the

set of tasks they need to work on, which is the result of one or more database queries on

task objects and their current state and role assignment. Properly updating this

information requires careful matching and processing of change notification events, such

as updates to task state and assignment, to determine what effect, if any, they have on the

results of the queries being displayed to the user.

Taking a look at systems that provide change information, and considering how they

provide this information brings forth issues that we have to deal with in the design of the

new facility. The next chapter discusses the design of the change notification facility and

addresses many of these issues in detail.

11

Chapter 3: Design of the Change Notification Facility

The primary goal of this thesis is to provide a means for notifying clients when

information has changed on the server. This chapter describes the components and

features of this facility. We address the basic questions that need to be answered in order

for this facility to be successfully built.

3.1 Information to Make Available

The information that is made available to the clients has to adequately describe the

change that has occurred on the server. The information could involve a generic

description of an event that has occurred, or could specifically state which object

properties have changed for the InConcert objects, and what the value has changed to.

There are events that are currently logged in the InConcert server, which don't

necessarily describe which properties have changed, but offer an adequate description of

what has changed on the server. For the thesis, we will use the current InConcert event

as the information we send to clients [6].

The facility will use the existing InConcert event object for two reasons: familiarity and

performance. Adding a new class for the information that is transmitted to the clients

will add one more object to the InConcert object hierarchy. Client application

programmers will have to understand the behavior of this "new" object, although it would

look very much like an event. Having our own object for the information would allow us

to define what data members we want, and possibly describe exactly which properties are

changed, but the programmer using the service would have to become familiar with

another object. We can leverage the previous knowledge of events, making it easier for a

client application programmer to use the new facility.

Creating a new class to handle the information that is sent out to clients will also add

more architecture to the InConcert server. Creation and storage of the new class could

conceivably involve adding a new database table, so instances of the new class can be

logged for distributing to clients. This addition of a database table and functions to

access it will be unnecessary if we simply use the existing event.

12

If necessary, we can expand the InConcert event class (known specifically as IcEvent) to

contain more data, and create new event types to characterize new functionality in the

server. For example, there are currently no events that detail the setting of an attribute to

a new value. These event types will be added so that the change notification facility can

notify clients when this occurs. Chapter 6 details information that was added to some

existing event types so that the event was more helpful to the demonstration application

that was written to use the facility.

3.2 Message Transport

InConcert client applications can currently ask the server for InConcert events of a

particular type, or events associated with a particular object that have occurred over a

particular interval of time. The fact that the events need to be asked for raises the

question of what benefits could be obtained if these events where delivered without

asking.

3.2.1 Polling or Pushing?

For a client to periodically poll for the recent events runs the risk of asking for events

when there are none to give. In addition, the polling can result in unnecessary load on the

server if many clients are polling for events. There is an alternative to polling, that

involves having the server send the event to the clients within a reasonable time after the

event occurs. This is commonly referred to as pushing. The design decision to not push

the events could have been made long ago, when there was not enough time or processor

and network resources to build such a facility. Now that computers are faster, network

bandwidth is higher, and programming languages allow multi-threading (which is ideal

for handling asynchronous events), the issue of whether or not to push events to each

client needs to be explored [9][10].

3.2.2 Unicast or Multicast?

In order to notify clients using a push model, information has to be sent from the place

where the information is stored (the InConcert server) to the place where notification is

13

needed (an InConcert client). There are two general ways of doing this. One is to send

the same message to each client. This requires sending the message n times for n clients.

Another way is to have the server send out one message to a group, multicasting the

message to any client who listens to that group.

Sending the same message to each client, known as unicast, requires knowledge about

which clients wanting to receive messages. This would require some record keeping as

to which clients are interested, including having the clients explicitly register with the

server that is sending messages. It is easy to see that this method wastes network

bandwidth and decreases server performance by sending the same message multiple

times, as many times as there are clients listening.

Multicasting messages from a server does not involve sending a message directly to each

client host, but sending a message to a group of client hosts. Multicast architectures have

publishers that send messages, and subscribers, which receive messages. In the top level

of design, the publishers do not need to keep track of subscribers that will receive

messages. A multicast architecture could be considered an abstraction of unicasting to a

group of interested clients, and the only ideas that are exposed are a common location for

message sending and receiving, and the idea of publishing and subscribing to this

common location. However, this abstraction allows for optimizations in which a message

is not sent n times to n clients. There are hardware and software implementations of the

multicast architecture, and some with a combination of hardware and software [1][3][7].

Since a multicasting architecture does not care about how many clients are listening,

there is no need to expose information dealing with clients in the publishing part of the

abstraction. Adding a multicast package to the InConcert server will therefore require

minimal additional design. There will be additional design in the initialization of the

server, to start the publisher, and additional design to publish each event. The

performance of the InConcert server will not be affected drastically because it needs to

perform only one additional action (publish) per event.

3.2.3 Clients receive every event in the order that they occur

14

A vital property of the information that we send is that the server sends the events in the

order that they occur within the server, and that the clients receive the events in the order

in which they were sent. The result of these two facts is that the clients receive the events

in the order that they occur. In more technical terms, the client must receive the events in

First In, First Out (FIFO) order. The necessity of a FIFO ordering of messages is made

clear with a simple example. A client could receive two events that denote that the same

property has changed to two differing values, Value 1 for the first event and Value2 for

the second. The client, after processing each event in the order of arrival, finally sets the

value of the property locally to the value in the last event that it processes. The client

could improperly set the value if the events were sent to the client out of order (if, for

instance, Event 2 occurs in the server before Event 1).

Another vital property is that the clients receive every event that is published while the

client is listening. This property will require the multicast architecture to reliably deliver

the events to clients. Some multicast packages do not ensure reliability of message

delivery. This is because some applications, like multicasting audio and video, do not

require that every message is delivered to the client, just enough to produce a decent

picture or sound. In the case of the change notification facility, every message is

necessary because missing a message means that the client has missed information.

Missing messages is not desirable because it defeats the original goal of having the

clients better reflect the state of the server. The client has to have the opportunity to take

action on every event that occurs in the server [10].

3.2.4 TIB/Rendezvous

For this thesis, we will use a reliable multicast transport protocol for sending events to

clients. This will allow us to focus on the details of how each client interprets the events,

instead of focusing on how they are transported. For this thesis, the events will be

transported using a commercial product called TB/Rendezvous [13].

TIB/Rendezvous is a product developed by TIBCO Software Incorporated. Rendezvous

provides application level reliable multicasting of messages to clients. Rendezvous

follows the publish/subscribe architecture for multicasting messages, in addition to

15

providing support for the request/reply architecture that is common to clients and servers.

The API provided by the Rendezvous libraries abstract away many of the details of

message delivery, and allow the developer to focus on the content and structure of the

messages. Multicasting is done to particular subject names, where a client can subscribe

to the subject and receive messages. Rendezvous subjects are based on a hierarchical

naming structure, where periods separate the elements of the subject description. The

data structure for containing a message in TIB/Rendezvous is a Rendezvous message.

This data structure can contain a collection of strings, integers, dates, binary and

encrypted data, and can also include other Rendezvous messages. Each value is keyed

with a string within the Rendezvous message. The maximum size of a single

Rendezvous message is 64 Megabytes, well above the limit for our purpose [13].

Rendezvous depends on each publisher and subscriber either running the Rendezvous

daemon (rvd), or being connected to a Rendezvous daemon by a Rendezvous agent (rva).

The Rendezvous daemon handles all of the reliability and ordering of messages that

enables FIFO delivery. Client applications that wish to use Rendezvous do so by creating

a Rendezvous session. Using the session, the clients can create Rendezvous senders to

publish messages, or Rendezvous listeners to subscribe to subjects and receive messages

[13].

The parameters that are needed for starting a Rendezvous session include a Network,

Service, and Daemon parameter. The Network parameter describes which IP port the

Rendezvous daemon will listen to on behalf of the session. The Service parameter

specifies which network interface will be used by the session, if there is more than on

installed on the host. The Service parameter also allows the use of multicast group

addressing for the transport of messages, taking advantage of network hardware

enhancements that support multicasting. Using the Service parameter, you can specify

which multicast groups to listen to for messages, and which group is used to send

messages. The version of TIB/Rendezvous used for the work on this thesis is version 5.0

[13].

16

For this thesis, we will publish all events to a single subject that clients can listen to. The

name of the subject is dependent on the name of the InConcert server. If the name of the

server is "budget", the subject the clients listen to will be

"com. inconcert .budget .eventservice". Further discussion on publishing to different

subjects depending on the type of event will be discussed in later chapters.

3.3 Presenting the Information to clients

Clients can use the information published by the server in a variety of ways. For now,

the goal is to provide an adequate interface to allow the maximum amount of uses of the

facility. The target language for the client interface will be Java. Java was chosen

because it is an increasingly popular and portable language. Java also cleanly provides

facilities for multithreading, which is necessary to receive information from the network

in an asynchronous fashion like our design mandates.

The client interface should go along side the current InConcert Java Application

Programming Interface, known as the IcJava API. Programmers who are familiar with

the IcJava API should be able to use the facility to enhance their applications. The

interface should allow multiple objects within the client to listen for the event messages,

much like Java objects listen for events from Swing GUI components. This interaction

among the facility and the objects is commonly known as the Observer design pattern [4].

In addition, a way to filter the events will be provided, so listeners can easily discriminate

between the events they are interested in and the ones they are not.

Of course the facility will provide the event information to the Java clients in the form of

InConcert events, namely instances of the IcJava class IcEvent. The main class that will

provide the functionality of delegating the IcEvents will be called the IcEventService.

Please note that from the client's point of view, the change notification facility is called

the IcEventService. The names can be used interchangeably.

3.4 Change Notification Facility Design Summary

17

The addition of the change notification facility will be accomplished by extending the

functionality of both the server and client. It is important to show the relationship

between the extensions that are being added. Figure 1 shows the relationship between the

server that now publishes events, and the clients that subscribe and listen for them. The

darkened arrows denote the flow of a published event.

The host on the bottom is running the InConcert server named "f inance". Within the

server, the Event Publisher encodes the events that are created and publishes them as

Rendezvous messages. Each Rendezvous message that is published by the server is

given to the Rendezvous daemon, which handles the publishing of the message to the

subject "com. inconcert. f inance. eventservice".

Each of the three hosts at the top of the figure is running an InConcert client that uses the

change notification facility. Each client has an instance of IcEventService that is created

to listen for the events that are published by the InConcert server "f inance". The

Rendezvous daemon within each client is subscribed to the Rendezvous subject

"com. inconcert. f inance. eventservice", and passes the Rendezvous messages that it

receives to the IcEventService. Upon receiving the Rendezvous message, the

IcEventService decodes it into an IcEvent, and passes the event to the Listeners that are

registered with the IcEventService.

18

Host

Host

InConcert Client

Listener

Listener IcEventService

Listener

Rendezvous daemon (rvd)

Host'sK Host

Rendezvous subject: com.inconcert.finance.eventservice

Host

Rendezvous daemon (rvd)

InConcert Server: finance

Event Publisher

Figure 1: The relationship between the client and server extensions

The two following chapters describe the client and server extensions, and how they were

added to the existing client/server architecture.

19

Chapter 4: The Change Notification Facility Server Extension

The first step of building this facility is to construct a way for the server to publish the

events that it accumulates over the course of operation. In order to add the functionality

of publishing the events to clients, it is necessary to understand the underlying

architecture of the InConcert server, and how it normally processes these events.

4.1 The InConcert Event/Action Model

The InConcert server can be considered as a storage location for the workflow data.

When this data has changed, InConcert internally logs an event detailing the change.

InConcert has a wide range of event types that are logged internally within the server, and

ultimately written to a database table and optionally a log file. Examples of different

types of events include a completed job, an acquired task, a document being checked out,

and a user being added to a pool.

In addition to event logging, InConcert server offers the capability to perform a particular

action whenever a specific event happens on the server. These actions can be established

by client applications with the use of triggers. A trigger is a named pair containing an

event specification (EventSpec), and an action specification (ActionSpec). The

EventSpec is a description of the event that the trigger is triggered on. The ActionSpec is

the description of the action that is performed when the event occurs. An action can

entail creating a job instance from a template, sending an electronic mail message, or

performing a Remote Procedure Call (RPC) to a host [6]. This Event/Action Model is a

powerful feature for InConcert, and allows open-ended functionality for systems

developers that want to integrate InConcert into their company's existing computing

environment.

4.2 Architecture of the InConcert server

The InConcert server can be described architecturally as a system that maintains a

database of workflow information and listens to requests to retrieve and change that

information. The server is written in C++, so any extensions written for the server need

to be written in C++. The InConcert server creates the abstraction of the workflow

20

objects and their behavior using database tables and queries. The current UNIX version

of InConcert can use an Oracle or Sybase database to store its information. Clients that

access InConcert use the Applications Programming Interface (API) provided with the

InConcert server [5].

The server consists of three types of processes that run concurrently as the server. The

relationship between the processes and the database is visualized in Figure 2. The first

type is the Worker process. A Worker process takes an API call from the client and

performs the particular work that is requested. Each Worker process listens for RPC calls

that correspond to the API calls that are made by clients. Each API call has a unique

program number that the Worker process uses in order to know what work to perform.

The work performed by the Worker process could involve retrieving data from the

database or changing data in the database, and afterward logging the event corresponding

to what has happened during the call. The Worker process returns to the client the

information retrieved along with status information on whether the call was successful.

The InConcert server can run multiple Worker processes, the number specified at the

time the server is started [5].

The second type of process is the Dispatcher. The Dispatcher makes sure the Worker

processes start up properly, in addition to distributing client connections across the

worker processes. When a client connects to the InConcert server, it first makes a

connection with the Dispatcher process. The Dispatcher provides the client with the

particular information to connect to a Worker process. During a session of InConcert, a

client is connected to the same Worker process [5].

The third type of process is the Event/Action daemon. The Event/Action daemon

periodically looks in a table of new events, and fires the triggers that match the particular

events that have occurred. For every event, it locates which triggers have a matching

EventSpec. And when a match occurs, the ActionSpec associated with that EventSpec is

performed, thereby firing the trigger. Only one Event/Action daemon can be run per

InConcert server [5].

21

Initial Client
Connection

0

ct-) 0
S

RPC

Clients

RPC

Clients

RPC

o-

Clients

RPC

V

Database

Figure 2: InConcert server Architecture

4.3 Implementation of the Server Extension

The main functionality that we want to add to the server is the ability to publish

messages. Specifically, we want the server to publish the information that is contained in

the events (instances of the class IcEvent) that are created and logged by the

Event/Action daemon.

A good way to do this would be to add a class whose sole purpose is to take an IcEvent,

encode it in whatever format we wish, and multicast the message. The class would

require initialization parameters to specify how messages are going to be published. The

set of initialization parameters will be specific to the underlying multicast transport

protocol, in this case TIB/Rendezvous. We could design a class that properly abstracts

the details of the message transport, which could allow us to change the transport

protocol easily. We would only have to replace the class with one that implements the

same interface.

22

The class developed for this purpose is called the IcEventNotifier. It uses a separate

helper class for encoding the IcEvents, called the RvIcEventEncoder.

4.3.1 IcEventNotifier Class Interface Summary

IcEventNotifier::IcEventNotifier(const IcString& icServerName,
const IcString& rvService,
const IcString& rvNetwork,
const IcString& rvDaemon)

This constructor constructs an IcEventNotifier given the InConcert server name

icServerName, and the three Rendezvous session initialization parameters rvService,

rvNetwork, and rvDaemon. Within the constructor, a session with the Rendezvous

daemon is established. Given the InConcert server name, it builds the subject that is used

to publish the Rendezvous messages. For example, given the server name "ulysses", the

IcEventNotifier publishes events to the Rendezvous subject:

"com. inconcert .ulysses . eventservice". This design allows a multiple InConcert

server environment, where each server would be publishing events to a different subject,

based on their server name. A Rendezvous sender (RvSender) is created with the

generated subject name and is kept in memory to send events.

IcStatus IcEventNotifier::notify(const IcEvent& event

This method is used by the InConcert server to encode and publish an IcEvent. It simply

uses the static methods in the RvIcEventEncoder class to create a Rendezvous message

(instance of the class RvMsg) from the event and gets the RvSender to publish the

RvMsg.

4.3.2 Rendezvous message encoding of an IcEvent

The RvIcEventEncoder class takes an IcEvent and encodes its data into a Rendezvous

message. Since information in the IcEvent differs on the type of event, this helper class

does something different depending on the event type, in order to extract the correct

information from the IcEvent. It is necessary to point out that this class hides a great deal

of the Rendezvous details of encoding an IcEvent, and could be replaced easily with

another helper class that encodes an IcEvent in another particular data format.

23

IcEvents contain common data, along with data that is specific to the event type. The

following table describes the data members of an InConcert event [6].

Data Member Type Description
Id String The database id of the event
Name String Name of the event
Type Integer The type of the event
Time DateTime the date the event was created
Creator User The InConcert object denoting the user that

created the event
CreatorName String Name of the user that created the event
Translation String A string that describes the specifics of the

event
Object1 Object Event specific data, containing InConcert
ObjectIName String objects and names of objects that are
Object2 Object specific to the event, along with a general
Object2Name String purpose Integer that is called "Version".
Object3 Object This Integer commonly holds the version
Object3Name String of the document when the event type deals
Version Integer with document manipulation.

Table 1: Data members of standard InConcert event

An InConcert event is encoded according to the following table. The top level structure

of the encoding is a RvMsg, and contains the following information:

Field Name Field Type Description
IcEvent Id String The InConcert Id for the IcEvent
IcEvent Name String The name of the event
IcEventType Integer The event type of the IcEvent
IcEvent Time Date The time that the IcEvent was created.
IcEventCreator String The InConcert Id of the User that created the

IcEvent.
IcEvent Creator Name String The name of the User that created the IcEvent
IcEventTranslation String A complete description of the event, including

event-type specific information.
IcEventData RvMsg A Rendezvous message that contains the event-

type specific information of the IcEvent

Table 2: Fields within Rendezvous message encoding an IcEvent

24

Note that IcEventData is a nested Rendezvous message that contains the event-type

specific information, and is encoded according to the following table:

Field Name Field Type Description
Objecti RvMsg The first encoded InConcert object
Objecti Name String The name of the InConcert object Objecti
Object2 RvMsg The second encoded InConcert object
Object2 Name String The name of the InConcert object Object2
Object3 RvMsg The third encoded InConcert object
Object3 Name String The name of the InConcert object Object3
Version Integer An Integer that is used to contain many different

kinds of information, it is named Version because it
is more often used to contain a version number of
an InConcert Document object

Table 3: Fields within the Rendezvous message IcEventData

Object.1, Object2, and Object3 are InConcert primary objects, and are encoded according

to the following table.

Field Name Field Type Description
Id String The Id of the InConcert object
ClassBranch String A string describing the primary class branch of the

InConcert object. The value of the string can be
"Job", "Task", 'Role", "Binder", "User", "Pool",
"Document", "Link", "Repository", "Trigger",
"Class", "CustomObject", or "None".

Table 4: Fields within the Rendezvous message encoding an InConcert object

4.3.3 Publishing options: One or many subjects?

It is conceivable that we could publish the events in a way that could make it easier to

filter. We could publish each event type to its own subject within the "eventservice"

hierarchy. However, since there are on the order of 80 different event types, organizing

the listener to listen to a set of subjects could be cumbersome [6]. For now we will

publish to only one subject, and create our client extension accordingly.

4.3.4 RvIcEventEncoder Class Interface Summary

public static void RvIcEventEncoder::encodeIcEvent(RvMsg& msg,
RvSession& rvs,

25

const IcEvent& evt)

This method performs the encoding of the InConcert event and is called by the

IcEventNotifier. This method encodes common and event type specific data using other

helper methods within the class. The method modifies the RvMsg msg, adding the

common event data to the Rendezvous message. The event type specific data is stored in

a separate RvMsg and added to the msg.

private static void

private static void

private static void

private static void

private static void

private static void

RvIcEventEncoder: :encodeIcObject(RvMsg& msg,
const char* name,

IcObject obj)

RvIcEventEncoder::encodeIcClassBranch(RvMsg& msg,
const IcObject& obj)

RvIcEventEncoder: :encodeIcString(RvMsg& msg,
const char* name,
const IcString& str)

RvIcEventEncoder::encodeIcInteger(RvMsg& msg,
const char* name,
const IcInteger& igr)

RvIcEventEncoder: :encodeIcPrivilege(RvMsg& msg,
const char* name,
const IcPrivilege& prv)

RvIcEventEncoder::encodeIcDateTime(RvMsg& msg,
RvSession& rvs,
const char* name,
const IcDateTime& dte

These methods are used to encode InConcert data types into a common format within a

Rendezvous message. These methods take the RvMsg that they are going to alter, the

name that they are going to give the value that they are adding, and the data that they are

going to encode. In order to encode an InConcert DateTime object, a RvSession needs to

be passed as an argument because the Rendezvous session contains platform specific

information about how date and time information are encoded.

4.4 Configuration hooks for the IcEventNotifier in the InConcert server

Parameters have been provided so that the administrator can correctly configure the

server to publish events given the network environment. The three parameters that

govern the creation of a Rendezvous session (Service, Network, Daemon) were added to

26

the InConcert server parameters as ICRVNOTIFIERSERVICE,

ICRVNOTIFIERNETWORK, and ICRVNOTIFIERDAEMON. The

configuration parameters can be altered during the startup of the InConcert server. The

parameters, once read at startup, are static strings within the server and can be passed to

the IcEventNotifier constructor along with the InConcert server name.

4.5 Placement of the Server Extension

The IcEventNotifier class needs to be integrated into the server in a way that it has access

to and publishes every IcEvent generated by the InConcert server. There are two general

times when the IcEvents can be published using the IcEventNotifier. Each time alludes

to a different strategy to place the extension within the server.

4.5.1 Strategy 1: Publish the events before they are permanently logged

This strategy mandates that the IcEvents are published while they are being permanently

logged to the database, which occurs during the Event/Action daemon polling loop. This

would require the Event/Action daemon to contain an instance of IcEventNotifier, and

use the instance to publish each event. The publishing of the event will happen before

triggers on the event are processed and the event is written to the database log. This

strategy yields a simple solution, and was the first approach thought of in adding the

server extension to the InConcert server.

The fact that the Event/Action daemon works by a polling loop, by which it sleeps for a

period of time and is reactivated, puts a constraint on the timeliness that IcEvents are

published. The amount of time that the Event/Action daemon sleeps is configurable by

the administrator of the InConcert server, so a more timely publishing of IcEvents is

possible. The default time to sleep for the Event/Action daemon is 60 seconds [5].

4.5.2 Strategy 2: Publish the events the instant after the event is created

This strategy mandates that the IcEvents are published immediately after the API call that

created the events has been handled by the worker process. Each Worker process would

have an instance of IcEventNotifier, and publish the events after the API call has finished

27

handling the RPC call from the client. IcEvents are also created by the Event/Action

daemon, when it processes event and "fires" triggers based on the events it processes.

Therefore the Event/Action daemon will also require an instance of IcEventNotifier to

publish the events related to triggers.

One downside to strategy 2 is the fact that a Worker process could die between

performing an API call and publishing the event. In this situation, the change would be

committed to the server, but no event would be published, and this would not be ideal.

Another downside is that strategy 2 requires more integration within the InConcert

server, requiring an IcEventNotifier per Worker process and one for the Event/Action

daemon [5].

The implementation of the InConcert server with the server extension uses the design

suggested by strategy 1. An instance of IcEventNotifier is created in the Event/Action

daemon, and before the daemon processes the new events for triggers that could be set on

them, the daemon iterates through each event and publishes it with the IcEventNotifier.

4.6 Running and building the InConcert server with TIB/Rendezvous

Now that the InConcert server has been extended to use TIB/Rendezvous, additional

environment settings are needed to allow the InConcert server to function. The PATH

environment variable needs to include the directory that contains the Rendezvous daemon

(rvd) when running the InConcert server. This is necessary because when an instance of

a RvSession is constructed, a Rendezvous daemon needs to be started on the host if one is

not currently running. The C++ version of the TIB/Rendezvous API has the ability to

start a Rendezvous daemon if one is not running. The C++ TIB/Rendezvous API uses

the PATH variable to locate the Rendezvous daemon application (rvd) in order to start it

[14].

In the development process of adding the change notification facility extension to the

InConcert server, the appropriate C++ Rendezvous libraries were added to the makefiles

for the server components that directly used the IcEventNotifier and RvIcEventEncoder.

28

The source code for the extension classes was added to the source tree for a version 4.5 of

the InConcert server.

The server extension is useless without giving clients a way to access the events that are

published. The next chapter describes the client interface implemented for this thesis.

29

Chapter 5: The Change Notification Facility Client Extension

The client extension of the change notification facility provides a simple interface that

allows a Java programmer to use the facility along with the InConcert Java Application

Programming Interface (IcJava API). Part of the structure of the interface is similar to

the Java event/listener model that is used to distribute events generated by the Graphical

User Interface to application objects that anticipate user input. Designing the interface in

this way will allow Java developers to easily adapt to using the new service. They will be

able to program applications that behave almost as if the client is generating the

InConcert events itself, instead of receiving them from a remote host.

5.1 Implementation of Client Extension

The client interface consists of two classes and two interfaces. The two classes provide

the implementation of the service in terms of listening and decoding of Rendezvous

messages into IcEvents. The two interfaces provide application programmers with a way

to access the service. The classes and interfaces will be added to the InConcert Java

distribution, and are located in Java class package "com. inconcert . eventservice".

5.1.1 IcEventService Class Interface Summary

The IcEventService class provides the application's connection to the event service. The

constructor for IcEventService takes the parameters that are used to create a Rendezvous

session, along with the name of the InConcert server that the service should listen to.

Given the name of the server, the IcEventService creates a Rendezvous listener, that

listens for messages on the subject: "com. inconcert .<servername>. eventservice",

where <servername> is the InConcert server name. This is the same subject that the

InConcert server publishes messages to. The IcEventService object maintains a list of

objects that have registered to listen for events from the service. When an event is

received, the IcEventService object delegates the event to each listener in the list. The

object uses a Java inner class IcEventServiceCallback, which simply implements the

TIB/Rendezvous RvServiceCallback interface and performs the decoding and delegation

of the Rendevous message when it is received [16].

30

public IcEventService(String server,
String service,
String network,
String daemon) throws IcException

This constructor for the IcEventService uses the Server/Network/Daemon configuration

of TIB/Rendezvous. Given the InConcert server name and these three parameters, the

IcEventService is constructed and starts listening for events. An IcException is thrown

when a Rendezvous session cannot be constructed, or when a listener cannot be added to

the Rendezvous session. Similar constructors for the IcEventService that use the

Server/Network/Daemon configuration are supplied for constructing the service with

default parameters.

public IcEventService(String server,
String hostname,
int port) throws IcException

This constructor for the IcEventService uses the Hostname/Port configuration of

TIB/Rendezvous. Given the InConcert server name and these two parameters, the

IcEventService is constructed and starts listening for messages. An IcException is

thrown when a Rendezvous session cannot be constructed, or when a listener cannot be

added to the Rendezvous session. Similar constructors for the IcEventService that use the

Host/Port configuration are supplied for constructing the service with default

information. This constructor is provided for Java applets that cannot start a Rendezvous

daemon on their host computer, and need to connect to a daemon through another host

that is running a Rendezvous agent.

public void stopService() throws IcException

This method stops the underlying TIB/Rendezvous service from listening for messages.

An IcException is thrown when there is a problem stoping the underlying Rendezvous

session.

public synchronized void addListener(IcEventListener evtL
public synchronized void removeListener(IcEventListener evtL

31

The first method is used to add listeners to the IcEventService. When a message is

received, it is delegated to each of the listeners that have been added to the service using

this method. The method is synchronized to atomically add the listener, so the delegation

of a received event cannot occur during the addition of a listener. The method will not

add the listener if it is already in the list. The second method removes a listener from the

IcEventService, so it no longer receives events.

5.1.2 IcEventFactory Class Interface Summary

The IcEventFactory class is used by the IcEventService class to convert a Rendezvous

message to a IcEvent object.

public static IcEvent parseEvent(Object message

This method, the only functionality for this class, is a static method that takes a

Rendezvous message and attempts to construct an IcEvent from the contained

information. It uses the specified encoding used by the InConcert server to decode

message into an IcEvent. If a failure occurs at any point in the decoding (due to bad

formatting of the message), a null object reference is returned. The idea to have null

returned, instead of throwing an exception upon error was chosen in order to increase the

efficiency of the parsing. Throwing exceptions has been known to be inefficient in terms

of time and space, and testing for the value of null returned by parseEvent can be done

easily.

5.1.3 IcEventListener Interface Summary

The IcEventListener interface defines the functionality that an object needs to implement

in order to have it receive IcEvents from the service. There is only one method in the

interface.

public void receiveEvent(IcEvent evt

This method, the only required functionality of an object that implements the

IcEventListener interface, is called by the IcEventService in order to delegate the IcEvent

to the object that implements this interface.

32

5.1.4 IcEventFilter Interface Summary

The IcEventFilter interface suggests functionality that can be used in order to make it

easier for an object implementing the IcEventListener interface to determine whether it is

interested in the IcEvent that was delegated to it. Although usage of an IcEventFilter is

not enforced, it is provided as an aid to make determining event interest easier.

IcEventEditableFilter, an example implementation of the IcEventFilter interface that

filters events according to their type, is provided with the client package.

public boolean apply(IcEvent evt)

This method applies the filter to the IcEvent, returning true if the IcEventFilter passes the

IcEvent, and returning false if the IcEventFilter blocks the IcEvent.

Although the IcEventFilter interface is simple, the objects that implement this interface

can be extremely powerful. Filters can be created to discriminate between IcEvents

based on event type, who created the event, when the event was created, or any data

contained in the IcEvent object.

Now that the client and server extensions are developed and in place, it would be good to

put the change notification facility to use. The following chapter details the design of an

application that takes advantage of the change notification facility.

33

Chapter 6: Demonstration client that uses the Change
Notification Facility

This chapter details the design of a client that uses the change notification facility. An

overview of how InConcert manages workflow is presented, along with how the client

specifically uses the change notification facility to better reflect the information on the

server.

6.1 How InConcert manages workflow

InConcert solves the problem of workflow management using a task-oriented model of

processes. InConcert organizes workflow in terms of processes (also known as jobs).

The process is composed of a task dependency graph. Beginning at the start task, the task

dependency graph details the order in which the tasks are to be performed. Branches in

the workflow can occur, upon which there are conditions that govern which task should

be performed next. Tasks can have documents attached to them, detailing the work that

needs to be performed. Users of InConcert are organized into groups, called pools. A

user can be a member of multiple pools. Ready tasks can be acquired and completed by

any user in the assigned pool.

To make it easier to create processes, a user can create a process definition, which acts as

a template that can create process instances (active processes). A process definition

abstractly describes a process, not assigning a task to a particular pool of users, but to a

particular role that has the necessary skill set. A process definition also allows the ability

to include document binders, which are open references to documents. When the process

definition is turned into an active process, the specific bindings of pools to roles and

documents to binders can be made. The creation of process definitions allows a user to

create their own library of particular types of processes, and can instantiate the definition

on demand [6].

34

Process Definition: Claim Handling

Attributes: ESTIMATE = 0
Binders: Instructions

Estimate Form

End Agreement

Task: Estimate

Role: Appraiser_

Binders:

Instructions

Estimate Form

Copy Definition

Binder-Document Assignments:

Binder: Document:
Instructions -> Claim Instructions Document

Estimate Form - Estimate Form Document

End Agreement * End Agreement Document

Role-Pool Assignments:

Role: Pool:
Negotiator - West-Coast Negotiators

Appraiser * West-Coast Appraisers

Senior Claim Handler -- Mid-West Claim Handlers

Junior Claim Handler -- West-Coast Claim Handlers

Processor - South-West Processors

Task: Handle High Estimate

Role: Senior Claim Handler

Perform Condition:

ESTIMATE > 50,000

Binders: Instructions

Estimate Form

End Agreement

Task: Handle Low Estimate

Role: Junior Claim Handler

Perform Condition:

ESTIMATE <= 50,000

Binders: Instructions

Estimate Form

End Agreement

To successfully start an active process:
- Copy the existing process definition.
- Assign documents to binders.
- Assign pools to roles.

Figure 3: Workflow, in terms of InConcert objects.

The process definition diagrammed in Figure 3 details the process of handling an

insurance claim. Each task has a role assigned to it that defines the skills that are

required for the task. In order to have the process perform different tasks based on data

35

Task: Start Deal

Role: Negotiator

Binders:

Instructions

Task: Close Deal

Role: Processor

Binders:

Instructions

End Agreement

Active Process

within the process, perform conditions are assigned to two tasks, based on the value of

ESTIMATE. The claim will be handled by a more experienced person based on the

value of the estimate set by the appraiser. The binders for the process include

placeholders for an instruction document, estimate form and the end agreement. Starting

an active process requires copying the definition, assigning pools to roles, and assigning

documents to the binders.

6.2 ActiveTaskList, a real-time TaskList

The TaskList is the "killer application" of workflow management systems. The TaskList

presents the user with the ready tasks that they have access to acquire, and tasks that they

have acquired. Users can mark the acquired tasks as complete, and acquire more tasks

from the list. The TaskList keeps track of work that the user can perform, and the work

that they have elected to perform. The TaskList downloads the documents that are linked

to the particular task that they have acquired, so the user can read and manipulate them

according to the task at hand. Given the API that InConcert provides to access the server,

the TaskList can take many forms. However, the functionality described above is

common among workflow clients that are written to use InConcert [5].

The common TaskList can be enhanced by using the change notification facility. The

events that are published by the InConcert server can provide timely information for a

TaskList, such that it can update the information contained in the TaskList without

making a query to the server.

A good example of using the change notification facility is having the TaskList listen for

the published event TASKREADY. A TASKREADY event is created whenever a

task becomes ready for acquisition by a pool of users. The information provided with the

event is the task that has become ready, the job that the task belongs to, and the pool that

the task is assigned to. The TaskList could listen for this event using the IcEventService,

and upon receiving the event, determine whether the task was ready for any pool that the

user was a member of. If the task's role was assigned to a pool that the user was a

member of, then the user could acquire and perform that task. The TaskList application

could add the task to the list of ready tasks for the user, updating the graphical user

36

interface so the user can see the task that can be acquired. If the task's role was assigned

to a pool that the user was not a member of, then there would be no reason for the user to

be interested in the task, and the TaskList application would do nothing. Ideally, if the

TaskList could listen to the events published by the InConcert server, the information on

the TaskList would always be up to date (except, of course, for communication latency).

The user would always have an accurate view of what tasks are available for them.

The ActiveTaskList application is a Tasklist that listens to all pertinent events that are

published by the InConcert server. The application shows tasks that are ready for the

user, along with the tasks that the user has acquired. The user has the ability to select and

acquire a ready task, and complete, release, and open an acquired task. In a more robust

TaskList, opening an acquired task would give the ability to open and manipulate the

documents and attributes that are associated with the task. However, to focus on the

event-listening abilities of the ActiveTaskList, which demonstrates the value of the

change notification facility, the "open" functionality was not implemented in the

application.

37

rSession Information:- - - - -

User: jenerlyn Server:

-Ready Tasks: ----------- -

cwh45imo8 LogoW EXR

Task Job Pool
Start Deal Audi West-Coast Negotiators
Estimate BMW West-Coast Appraisers
Estimate Plymouth Voyager West-Coast Appraisers
Estimate Volkswagen Jetta West-Coast Appraisers
Handle Low Estimate Edsel West-Coast Claim Handlers

~cquired Tasks:-

Task Job Pool
Start Deal Honda Civic West-Coast Negotiators
Estimate Toyota 4-Runner West-Coast Appraisers
Estimate Porsche West-Coast Appraisers
Close Deal Volkswagen Rabbit South-West Processors
Start Deal Tucker West-Coast Negotiators
Estimate Ford Fairlane West-Coast Appraisers
Estimate Honda Accord West-Coast Appraisers
Start Deal Chevy Caprice West-Coast Negotiators
Handle Low Estimate Model T West-Coast Claim Handlers

Opuen

Figure 4: InConcert ActiveTaskList

Figure 4 is a screenshot of the ActiveTaskList. When a user logs in to the InConcert

server, the client starts listening to the change notification facility. The client then

initializes the interface by getting the user's lists of the ready and acquired tasks. When

an event that is of interest to the ActiveTaskList is received, the application re-computes

the contents of the lists of ready and acquired tasks. The handling of the events from the

event service is the most interesting part of the application. Each important event type

evokes some action by the application. The application maintains the following state and

performs operations on it according to the events that it receives.

38

RI nConcert ActiveT askLi 111F, .

L

Name Description
CurrentUser The user that is logged in and is currently

using the ActiveTaskList
UserPools The set of pools that the user is a member

of. This is kept to efficiently determine
whether events that deal with tasks are
important to the user.

ReadyTasksData[Task, Job, Role, Pool] A set containing tasks and information on
the tasks available for the user to acquire.
The additional information includes the job
the task is in, the role assigned to the task,
and the pool assigned to the role.

AcquiredTasksData[Task, Job, Role, Pool] A set containing tasks and information on
the tasks the user has acquired. The
additional information includes the job the
task is in, the role assigned to the task, and
the pool assigned to the role.

Table 5: State maintained by ActiveTaskList application

6.2.1 Adding more information to the published events

The following event types had the pool of the particular task added to the event

information that is published, in order to make the ActiveTaskList perform better. These

additions can be seen as an overall improvement of the event, putting the event described

in a more defined context.

* TASKACTIVATE
* TASKACQUIRE
* TASKCOMPLETE
* TASKLATESTART
* TASKOVERDUE
* TASKREADY
* TASKRELEASE
* TASKSKIP
* TASKWAITING

6.2.2 Actions taken by ActiveTaskList in response to events

The following event types are listened for by the ActiveTaskList application. Next to the

event type name is the information that is provided with the event. Each event type listed

39

contains a description of the event, and what action the ActiveTaskList takes upon

receiving the event [6].

" TASK_ACQUIRE(Task A, Job B, Pool C, User D)

Description: This event occurs when user D has acquired the task A, which was

assigned to pool C within job B.

Action: If the task A is in ReadyTasksData, remove it. If the user D is equal to

CurrentUser, then add the task A to AcquiredTasksData.

" TASKACTIVATE(Task A, Job B, Pool C)

Description: This event occurs when task A, within job B, has been activated. This is

a special feature, where by task A can be set to automatically activate

when it has become ready. When task A is activated, the subtasks of A

become ready. Essentially, when a task has become activated, it is

neither ready or acquired, and should be removed from any TaskList.

Action: If task A is in ReadyTasksData or AcquiredTasksData, remove it from

that list.

" TASKCOMPLETE(Task A, Job B, Pool C)

Description: This event occurs when a user has completed the task A within job B.

Action: If task A is in ReadyTasksData or AcquiredTasksData, remove it from

that list.

" TASKDELETE(Task A, Job B)

Description: This event occurs when task A has been deleted from job B.

Action: If task A is in ReadyTasksData or AcquiredTasksData, remove it from

that list.

* TASKREADY(Task A, Job B, Pool C)

Description: This event occurs when task A is ready to be acquired by any user

within pool C that was assigned to the role of the task.

Action: If the pool is in UserPools, then add task A to ReadyTasksData. If task

A is in AcquiredTasksData, remove it.

40

* TASKSETROLE(Task A, Role B, Job C)

Description: This event occurs when task A, within job C, has role B assigned.

Action: If task A is in ReadyTasksData, get the pool that is assigned to role B.

If the pool is in UserPools, then update the changed role and pool

information for the task in ReadyTasksData. If the pool is not in

UserPools, then remove the task A from ReadyTasksData, because the

new role's pool does not contain CurrentUser.

If task A is in AcquiredTasksData, get the pool that is assigned to role

B and update the changed role and pool information for the task in

AcquiredTasksData.

If the task A is neither in ReadyTasksData or AcquiredTasksData, get

the status of the task. If the status is ready, get the pool assigned to role

B. If the pool is in UserPools, then add task A to ReadyTasksData.

" TASKTRANSFER(Task A, User B, User C)

Description: This event occurs when the task A is transferred from user B to user C.

This means that user C has now acquired the task.

Action: If CurrentUser is user B, remove task A from AcquiredTasksData. If

CurrentUser is user C, add task A to AcquiredTasksData.

" TASKSKIP(Task A, Job B, Pool C)

Description: This event occurs when task A, which is part of job B, has been

skipped.

Action: If task A is in ReadyTasksData or AcquiredTasksData, remove it from

that list.

* TASKWAITING(Task A, Job B, Pool C)

Description: This event occurs when task A has been put into a waiting status. A

waiting task cannot be acquired.

41

Action: If task A is in ReadyTasksData or AcquiredTasksData, remove it from

that list.

" POOLADDUSER(Pool A, User B)

Description: This event occurs when user B has been added to pool A.

Action: If the user B is CurrentUser, then add pool A to UserPools and refresh

ReadyTasksData.

" POOLREMOVEUSER(Pool A, User B)

Description: This event occurs when user B has been removed from pool A.

Action: If the user B is CurrentUser, then remove pool A from UserPools, and

refresh ReadyTasksData.

" ROLEDEASSIGN(Role A)

Description: This event occurs when the pool has been de-assigned from role A.

This generally means that users in the deassigned pool no longer have

the ability to acquire and complete tasks that require role A.

Action: Remove tasks that use role A within ReadyTasksData.

" ROLEASSIGNPOOL(Role A, Pool B)

Description: This event occurs when pool B has been assigned to role A.

Action: If there are any tasks in ReadyTasksData for role A, remove them if

pool B is not in UserPools. Otherwise, if there are no such tasks and

the pool B is in UserPools, refresh ReadyTasksData.

" JOBCOMPLETE(Job A)

Description: This event occurs when job A has been completed (deleted) from the

server. Tasks that make up job A are skipped if they are ready, or

completed if they are acquired.

Action: Remove every task from ReadyTasksData and AcquiredTasksData that

has job A as its job.

42

There are more events that could be listened to by ActiveTaskList. The following events

could be monitored to enhance the ActiveTaskList written for this thesis.

* TASKLATESTART(Task A, Job B, Pool C)

Description: This event occurs when task A, within job B, becomes ready past the

due date set for the task.

Action: In a more complicated ActiveTaskList, the application could change the

color of the displayed task, alerting the user that it needs to be acquired

and completed in a timely manner.

" TASKOVERDUE(Task A, Job B, Pool C)

Description: This event occurs when task A, within job B goes past the due date.

Action: In a more complicated ActiveTaskList, you could change the color of

the task to make it more apparent to users.

6.3 Notes on writing clients that use the Change Notification Facility

The following are some suggestions that make writing clients that use the change

notification facility easier.

6.3.1 Plan out actions in response to events

When developing a client that listens for events, it is helpful, during the design, to list the

event types the client is interested in. Given the list of events, plan what action the client

will take for each event. While designing the ActiveTaskList, I found it helpful to make

the list in section 6.2.2, detailing the event type, the data that is published with the event,

and action that the client takes if it receives the event.

6.3.2 Efficiently determine interest in events

In addition to planning out the actions for each event type the client is interested in, it is

important to efficiently determine whether the event directly affects the client. If care is

not taken to efficiently determine event interest, the server will be bothered by queries

that are not needed. The effects of inefficient planning are amplified when the client is

43

run on multiple hosts. During the design of ActiveTaskList, the actions were planned to

make additional queries to the server only when necessary.

6.3.3 Altering client should display new state as user changes it

The purpose for developing InConcert clients is not to just view information on the

InConcert server, but to also change it. When a client changes information on the server,

there will be an event published that describes that change. For the purposes or this

discussion, that particular client is called the altering client for the event that is published.

If this client is designed correctly the altering client will take action on the published

event, updating the graphical user interface to reflect the correct state of the server.

Does the altering client have to wait for the published event in order to update the

graphical user interface? It can, but the behavior will look odd to the user running the

client. The changes that the user makes won't appear on the screen until the event is

published by the server, which could take as long as a minute given the default server

configuration. If the event was published instantaneously, it would be more feasible to

have the altering client wait. However, that is not the case, so it would be wise to update

the graphical user interface and the state of the altering client.

If we alter the state of the altering client instantly to reflect the change that was made,

sooner or later the published event reflecting that change will make it to the altering

client. What does the altering client do with this event? It cannot distinguish the event it

created from one that another client has made, so it performs the specified actions on the

client's state. This situation can have undesirable effects unless the operations performed

by the client in response to the published events are idempotent.

An operation is idempotent if repeated applications have the same effect as one. The set

operations used in ActiveTaskList have this property. Adding the same element to the set

once does exactly what is described, add the element to the set. If you perform the

operation a hundred times in the row, adhering to the mathematical definition of set, there

would be no effect on the set after the initial addition operation. Similarly, removing an

element from a set has the same effect as removing it multiple times.

44

In the next chapter, we will discuss the performance of the ActiveTaskList in terms of the

performance of the client and impact on the InConcert server. We will also discuss how

the InConcert server and network in general are impacted by the addition of the change

notification facility.

45

Chapter 7: Analysis of the Change Notification Facility

This chapter details the performance impact of providing and using the change

notification facility. In considering the performance impact, we consider the extra work

that both clients and the server have to perform, in addition to the extra network

bandwidth that is used.

7.1 Client Performance

Clients that are using the change notification facility have to screen out events that do not

interest them, and act on events that are of interest. This processing of events will cause

a client to perform more work than its counterpart that does not use the change

notification facility. This is basically the cost of listening. When writing clients that use

this new facility, it is important to process the events in an efficient manner. The client

should efficiently determine whether an event is of interest to them, as to not slow down

the client with events that are of no interest.

With the current design, clients need to process every event that the server publishes.

This is the largest weakness in the design of the change notification facility. Later in this

chapter, we will discuss how the cost of listening could be decreased, so clients only

receive events of types that interest them.

Although clients that use the change notification facility have to process every event

published by the server, it is important to remember that using the facility adds new

functionality that does not exist in previous clients. There are alternative designs for

clients that can yield the same effect as using the change notification facility. For

example, a client could poll the server periodically to update the information it is

interested in. Later in this chapter, the analysis of the impact of ActiveTaskList discusses

how the ActiveTaskList is better than a TaskList that polls periodically for information.

7.2 Server Performance

46

The additional work that the change notification facility adds to the InConcert server can

be divided into two cases, the cost of publishing the events, and the cost of unnecessary

queries made by clients in response to the published events.

7.2.1 The cost of publishing events

During the Event/Action daemon polling loop, the loop retrieves all of the new events,

and publishes each one. Essentially, the Event/Action daemon now iterates through the

set of new events twice, where before it iterated through them only once. The publishing

could not be done at the same time as the trigger processing for the events because the

new events that do not contain triggers are removed from the database table before the

trigger processing loop. Therefore it was necessary to make a new query to the database

to publish the events, before the new events table was altered. Considering that only one

loop of activity and one database query was added to the Event/Action daemon, the

publishing of the events by the server has a minimal effect on server performance.

7.2.2 The cost of unnecessary client queries

An effect of using the change notification facility is having clients make queries to the

server in response to the published events. Some of these queries are useful, and lead to

clients taking proper action. Other times, the client makes unnecessary queries,

investigating events that end up not being related to the client. Although information can

be added to events to provide a better context in order to determine client interest, clients

can still make unnecessary queries. These unnecessary queries add additional load to the

server.

7.3 Network Performance

How does the change notification facility affect the network? Additional network

bandwidth is used by the server publishing events, and by the clients making additional

queries in response to the published events. Since network bandwidth used by additional

client queries is dependent on how the client is designed, it is possible that clients could

be designed to never make additional queries on events. Therefore we will focus on the

network bandwidth used by publishing events.

47

In considering the structure of how events are encoded, it is possible to get an upper

bound on the size of a published event. In calculating the size, we have to consider the

length of the field names, data, and the packaging provided by the Rendezvous messages.

The maximum size encoded IcEvent includes all of the common data, and every optional

data field being filled by its largest value. Luckily, the RvMsg class contains a method

that reports its size in bytes [14]. Constructing the largest Rendezvous message that

possibly encodes an IcEvent and using the size method supplied, we get a largest possible

size of 2104 bytes. The smallest message size is 1009 bytes.

In order to determine the facility's effect on the network, we also need an idea of how

fast the InConcert server publishes the events to the network. For purposes of getting this

metric, I altered the published message to include the time that it was published. By

producing a steady stream of activity on the server, it was possible to get a large amount

of events queued up for publishing during the Event/Action polling loop. Using a client

on the local network to listen for the events, it was possible to get the rate of events

published per second. An InConcert server, running on a SPARC Ultra 10, can publish

1,000 events per second. This rate is dependent on the time it takes to encode an

InConcert event as a Rendezvous message, and sending the message to the Rendezvous

daemon that resides on the host that is running the InConcert server. The message is sent

to the Rendezvous daemon via an Inter-Process Communication (IPC) mechanism that is

implemented using a TCP connection to localhost (a host having a TCP connection to

itself). It has been found that usage of a localhost TCP connection as an IPC mechanism

is equal in speed and more robust than shared memory implementations of IPC [15].

Considering the maximum size of the message and the rate at which the server publishes

messages, the InConcert server, under a constant stream of activity, could publish

2,104,000 bytes per second (2.104 megabytes per second) to the network. Note that this

is using the worst case message size. Due to the action of the Event/Action daemon

processing loop, the new events are published in periodic "bursts". At the beginning of

the processing loop, the server will transmit 2.104 megabytes per second to the network,

48

until it runs out of events to process. The period of the bursts is dependent upon the

polling period, which is set by the administrator of the server.

In practice, production installations of InConcert rarely process more than 180,000 tasks

per hour (an example benchmark figure), typically much less. Since processing of a task

involves three events (TASKREADY, TASKACQUIRE, TASKCOMPLETE) this

gives an upper bound of 540,000 events per hour, or 150 events per second. At this rate

of event generation, which is significantly less than the observed rate at which the

Event/Action daemon can publish events, the network bandwidth utilization works out to

315,600 bytes per second in an absolute worst case, which appears quite manageable.

The following table summarizes the change notification facility's impact on the network.

Minimum Rendezvous message size 1009 bytes
Maximum Rendezvous message size 2104 bytes

Maximum InConcert server event publishing rate 1000 events/sec
Maximum network bandwidth used by InConcert server 2.104 megabytes/sec

publishing events
Maximum practical InConcert server event creation rate 150 events/sec

Maximum practical network bandwidth used by InConcert server 315,600 bytes/sec
publishing events

Table 6: Summary of network impact of the change notification facility

7.4 Performance Impact of ActiveTaskList on the InConcert server

Other than the client's cost of listening, using the change notification facility can have an

effect on the InConcert server. Here we will analyze how the ActiveTaskList impacts the

InConcert server, and how it is better than another design that offers similar functionality.

When considering performance, it is important to note that different types of queries to

the InConcert server have different performance costs. A query to find out which pool is

assigned to a task (property query) is not as performance intensive as getting the list of

ready or acquired tasks for a user (set query). In the ActiveTaskList, if we have to make

a property query to find out which pool a task belongs to in order to prevent a set query, it

is still better than blindly performing the set query.

49

7.4.1 ActiveTaskList compared to a polling TaskList

The ActiveTaskList provides the feature that the graphical user interface is updated when

there is activity on the server that the user should know about. In this regard, it is better

than the standard "static" TaskList. There are alternatives to the ActiveTaskList that

would provide similar functionality. There could be a TaskList that polls every few

minutes to refresh the ready tasks and acquired tasks. We will call this type of TaskList a

polling TaskList.

The polling TaskList makes two set queries (for ready and acquired tasks) every period.

Let's say that the polling TaskList refreshes every 15 minutes. During a 24 hour period

of operation, the polling TaskList will make (4 polls/hour)*(2 set queries/poll)*(24 hours)

= 192 set queries to the server. The polling TaskList will make these set queries

regardless of whether information has changed on the server. The InConcert server gets

bombarded with requests for information on a periodic basis from users on multiple hosts

that are running polling TaskLists.

The polling TaskList is simpler to develop than the ActiveTaskList, because it only needs

to make the queries in a timed manner. However, there is a benefit to the complexity of

ActiveTaskList, because it will make set queries only when information pertaining to the

user mandates it. It prevents bombarding the server with set queries periodically because

it analyzes the information that it receives from the published events and makes a

decision when to ask the server for information.

7.4.2 ActiveTaskList and unnecessary client queries

One case where the ActiveTaskList appears to be not as efficient as the polling TaskList

is in the area of unnecessary client queries. ActiveTaskList performs extra property

queries in order to determine client interest for only one event type, namely

TASKSETROLE. Upon receiving an event of this type, it tests to see whether or not

the task associated with the event is in ReadyTasksData or AcquiredTasksData. If it is in

either of those sets, it will make a property query to get the pool assigned to the newly set

role. If the task is not in ReadyTasksData or AcquiredTasksData, the client makes a

50

property query to get the status of the task. If the status is ready, it makes another

property query to get the pool of the task in order to determine if the pool of the newly

assigned role is one the user is a member of. If the task is of no interest to the user

running the client, the client will end up making one unnecessary client query (getting the

status of the task) for every event of this type it receives.

The TASKSETROLE event happens rarely when the task is ready or acquired, because

setting the role of a task generally is performed during the design of a process template.

If process templates are being designed at the same time ActiveTaskLists are running,

then the ActiveTaskList will make the extra property query to determine whether the task

is ready or acquired. During everyday use of the server, where the process templates are

already designed and are used to create active processes, this event will rarely occur.

Another pitfall with the ActiveTaskList is when the application frequently receives

events that cause it to make a set query to refresh the ready tasks. ActiveTaskList does

this for 3 event types: POOLADDUSER, POOLREMOVEUSER, and

ROLEASSIGNPOOL. Although these circumstances are not strictly unnecessary

queries, the set query needs to be made because the event indirectly denotes that

information changed on the server that could be of interest to the user running the

ActiveTaskList. The set query performed by the client could show that no new tasks are

ready to be acquired.

Adding and removing users from pools occurs rarely during the everyday operation of the

server, because pool assignments are generally done while setting up the server.

However, assigning a pool to a role typically occurs during the startup of an active

process, where every role for every task in the process is assigned a pool. Most of the

tasks at this time are not ready, and are of no interest to any user running ActiveTaskList.

This event occurs frequently during the everyday operation of the server, because active

processes are created all the time.

The main reason ActiveTaskList listens to the ROLEASSIGNPOOL event is to refresh

the list of ready tasks if a pool is assigned to the role as a replacement for another pool

51

and that role is used by a task that is ready. This situation rarely occurs. Given the

described situations where this event occurs, it might be worth it to not listen for this

event. However, not listening to this event would violate the consistency of

ActiveTaskList covering every case upon which the graphical user interface should be

updated.

From the above analysis, unfortunately there are cases where the ActiveTaskList can

make property and set queries when it shouldn't. ActiveTaskList has the possibility to

negatively impact server performance, but the impact is not as dramatic as initially

anticipated.

7.5 Possible improvements of the Change Notification Facility

There are a few ways that the change notification facility could be improved to make the

clients that listen to it more efficient. One improvement involves providing more

information in the events that are published. The second improvement involves

publishing the events to subjects that are partitioned according to event type.

7.5.1 Including more information in the published events

The InConcert events were intended for logging what has occurred in the InConcert

server. Now they are being used to in a different manner, to inform clients of change.

The change notification facility would be more effective if they included as much

information possible in order to describe the context of the event. This would eliminate

the possibility that the clients would have to do more investigation (making more

property and set queries) in order to decide whether or not to take action on the event.

This modification would involve altering the IcEvent data structure used by the clients

and server, along with expanding the event database table to include more data fields.

7.5.2 Publishing events to subjects according to event type

According to our current design, when an IcEventService instance on the client receives

any event, it delegates it to each of the IcEventListeners that have added themselves to

the IcEventService. Each listener needs to filter the event upon receiving it from the

52

IcEventService. It might be better if the design of the IcEventService filtered out the

event earlier on, so that each listener would receive only the events that it was interested

in. This could be done if the IcEventService took advantage of the hierarchical naming

of the subjects that TIB/Rendezvous could publish to.

Each event type would have its own subject under the "eventservice" hierarchy. For

example, the TASKREADY event occurring on the server named "f inance" would be

published to the subject "c om. inconcert. finance. eventservice .TASKREADY". On

the client, the IcEventService would create a Rendezvous listener for each event type that

its IcEventListeners wanted to listen to. This design would force the IcEventListeners to

explicitly register the event types they were interested in, but the IcEventListeners would

then never encounter event types that it had absolutely no interest in. This reduces the

overall cost of listening discussed earlier. The next version of the change notification

facility should include this design feature.

7.6 Ideas for more applications of the Change Notification Facility

The change notification facility created for this thesis can be used in many different

contexts, not just for clients that listen for events and update their graphical user

interface. Here are three different potential uses for the change notification facility.

7.6.1 Complete client cache maintenance

The events published by the InConcert server can be used by the client to update a cache

of information that the client has received from the server. Depending on the type of

event and the data that comes along with the event, the client will either update the cache

with the data, or ask the server for more information. There are times when the

information provided by the event is enough to adequately perform actions on the cache.

There are instances, however, where the information provided by the event is not enough

to adequately update the state of the cache to reflect the state that changed on the server.

This may happen when a task dependency has been added, in which properties for the

tasks surrounding the added dependency has changed. In this situation, the cache may

53

ask the server for a refresh of the complete dependency map. This idea has the potential

to increase the performance of both the server and client.

7.6.2 A new message architecture for Agents

There are some InConcert applications that do not take input from a human user, or

provide a graphical user interface, but wait to be prompted by the InConcert server in

order to take action. These applications are known as agents. Before the development of

the change notification facility, the server would contact the agents via a Remote

Procedure Call (RPC). This RPC would be set up as a trigger upon the particular event

that you wanted the agent to act on. The agents can now use the change notification

facility to listen for the occurrence of a particular event, and perform its specified actions

when the event is published. This method of contacting agents is more efficient due to

the InConcert server publishing one event to contact potentially 100 agents, for example.

With the RPC method of contacting agents, contacting 100 agents would require the

server to perform 100 RPC calls. An additional benefit is the fact that listening to the

change notification facility requires no setup on the server, while setting up an agent that

listens for an RPC call requires an EventSpec, ActionSpec and a Trigger being set on the

server [6].

7.6.3 Distribute the action processing of the Event/Action daemon

The change notification facility, used to its fullest extent, could also change the

architecture of the InConcert server, allowing the Event/Action daemon to be broken up

to different processes, which may be on different hosts. The portions of the daemon that

perform actions based on the events and the triggers that are set could be broken up and

put on other hosts. The Event daemon could publish the events in the manner

implemented for this thesis, and there could be separate Action daemons that listen for

these events and perform the actions based on the triggers. These Action daemons could

be on separate hosts, and each daemon could handle a particular action, like sending e-

mail, making an RPC call, or starting a job on the InConcert server. This change will

increase the performance of the Event daemon polling loop, because it will not be

54

involved with performing the actions that correspond to the events, it will simply publish

them to a subject listened to by the Action daemons.

55

Chapter 8: Conclusion

This thesis established that providing a change notification facility for the InConcert

workflow management system is possible. The integration of the facility into the

InConcert server required little additional design. The client interface involved minimal

change to the existing InConcert Java API, and could be used to develop applications as

complex as ActiveTaskList. In terms of a learning experience, this thesis has taught me a

great deal about designing and writing software.

One of the most rewarding parts of my work was investigating the design of the

InConcert server. The server has been refined over years by experienced professionals. I

have never had the opportunity to look at that large of a product. The most exciting part

of my work was creating and placing the server extension. I also got the opportunity to

use TIB/Rendezvous, an industry standard messaging package.

Before discovering TIB/Rendezvous, I tried to implement my own reliable multicast

messaging package. What resulted was a package that was limited in many ways. For

example, the range of the publisher I developed was limited, only sending messages to

the local network. Another limitation involved the size of the message, which could be

as big as 540 bytes. Although none of the code written shows up in the final

implementation of the solution for this thesis, I learned a great deal designing and writing

it.

Vivek Ranadive, in his book The Power of Now, combines the publish/subscribe

architecture with an event-driven management strategy to create a new paradigm for

business: the event-driven corporation. This paradigm has the goal of focusing on and

even anticipating customer needs by having employees take advantage of real-time,

event-driven software to analyze information from various sources. Employees,

behaving as knowledge workers, act near-instantly to the information that flows through

their company. Companies can open up this flow of information to potential suppliers,

who can, in turn, use the information to anticipate the company's needs and can compete

with other suppliers for the company's business [11].

56

The work performed in this thesis helps bring the InConcert workflow management

system closer to being a component in the event-driven enterprise described by Ranadive.

This is an important direction to take for the InConcert server, because the process

organization capability of InConcert can be the brains of an event driven environment.

InConcert can be used to sense the real-time information flowing throughout a

corporation and use it to set up higher level goals, in the form of InConcert processes.

Additionally, this thesis shows that the clients and agents in the event-driven enterprise

can use the InConcert server in a new way. Clients and agents can now respond to the

progress that is made within InConcert processes, forming a more complex enterprise-

wide nervous system.

57

Bibliography:

1. Banavar, G. et al., An Efficient Multicast Protocol for Content-Based Publish-
Subscribe Systems, IBM Research Division (Yorktown Heights, NY), Jan 22, 1999.

2. DellaFera, C.A. and Eichin, M.W., The Zephyr Notification Service, Proceedings of
the USENIX Winter Conference, Dallas TX: USENIX Association, 1988.

3. Floyd, S. et al, A Reliable Multicast Framework for Light-weight Sessions and
Application Level Framing, ACM SIGCOMM '95, August 7, 1995.

4. Gamma, E. et al., Design Patterns, Elements of Reuseable Object-Oriented Software,
Addison-Wesley (Reading, MA), 1995.

5. TIBCO Software Inc., TIB/InConcert UNIX Installation and Administrator's Guide,
TIBCO Software Inc. (Cambridge, MA), 2000.

6. TIBCO Software Inc., TIB/InConcert C Programmer's Guide, TIBCO Software Inc.
(Cambridge, MA), 2000.

7. Lin, J., Paul, S., RMTP: A Reliable Multicast Transport Protocol, Proceedings of
IEEE INFOCOM '96, March 1996, 1414-1424.

8. Oki, B., Pfuegl, M., Siegel, A., Skeen, D., The Information Bus - An Architecture
for Extensible Distributed Systems, SIGOPS, ACM Press, 1993, 58-68.

9. Patterson J., Day M., Kucan J., Notification Servers for Synchronous Groupware,
Computer Supported Cooperative Work '96, (Cambridge, MA), 122-129, 1996.

10. Ramduny, D., Dix, A. and Rodden, T., Exploring the design space for notification
servers, Computer Supported Cooperative Work '98, (Seattle, WA), 227-235, 1998.

11. Ranadive, V., The Power of Now, How Winning Companies Sense and Respond to
Change Using Real-Time Technology, McGraw-Hill, (New York, NY), 1999.

12. Sweeny, T., Unreal Networking Architecture,
http://unreal.epicgames.com/1Network.htm, 1999.

13. TIBCO Software Inc., TIB/Rendezvous Concepts Guide Release 5.0, TIBCO
Software Inc., (Palo Alto, CA), 1998.

14. TIBCO Software Inc., TIB/Rendezvous C++ Guide Release 5.0, TIBCO Software
Inc., (Palo Alto, CA), 1998.

15. TIBCO Software Inc., TIB/Rendezvous 5.0 FAQ, TIBCO Software Inc.,
http://www.rv.tibco.com/faq.html, 1998.

58

16. TIBCO Software Inc., TIB/Rendezvous Java Guide Release 5.0, TIBCO Software
Inc., (Palo Alto, CA), 1998.

59

